
Page 1 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

One-Minute Marvels
(A collection of short HP48/49 Programs)

By Wlodek Mier-Jedrzejowicz and Richard Nelson

INTRODUCTION

Early HP high end calculators were very limited in the amount of available user program memory.  Small
memory machines could only run short programs and writing down and keying in short programs was not
much of a problem.  As memory and program complexity increased, users became less willing to key in
programs.  External storage in the form of magnetic cards, bar codes, and serial ports solved the problem.
By the time the HP48 arrived on the scene in 1990 the use of printed programs was disappearing.  Of the
many books published for the HP48, very few contain program collections.

Users of the latest machine, the HP49, with its internet compatibility, probably won’t even think about
printed or “listed” programs.  They will simply transfer programs to and from their PC connected to the
internet.  Still, having a program printed on a piece of paper is useful.  This collection of 100 short (about
100 bytes or less) programs is called One-Minute Marvels because it is possible to key in a 100-byte
program in about a minute.  These programs were chosen because they represent the more unusual aspects
of HP48/49 programming.  Slightly longer programs are included if text is used for prompting or labeling.
Omit the prompts and the core program qualifies as “short”.  We hope that new users will be encouraged
to key in a few of these programs and discover the fun of programming for themselves.  Each program, or
algorithm in program form, has the following information as appropriate:

A.  Name, Title, Classification.
B.  What it does, description.
C.  Inputs and outputs, (arguments).
D.  Program listing.
E.  Program statistics: number of commands,
     bytes, check sum, execution time.

F.  Comments, why selected: speed, example of
     good programming, small size, unique
     solution, etc.
G.  Source and author (if not Wlodek or Richard)
     if known.

This collection of programs is divided into eight categories: A-Mathematics, I-Input/Output, L-List
Programs, M-Miscellaneous, S-String Programs, T-Time and Date, U-Utilities and V-SYSEVAL
programs.  The authors thank HP for printing One-Minute Marvels for the 1999 HP Hand Held User’s
Conference.

PROGRAM NOTES

1.  Variables not native to the HP48/49 are bold and checksums are in Hexadecimal for the HP48.
2.  Program commands referenced in the text are underlined for easy user reference/changes.
3.  Last Argument is usually assumed active (normal, default setting).
4.  When in doubt use STD display mode.  Some programs may alter the machine display mode.
5.  Lower case program names are used to avoid conflict with machine used names.
6.  Timing values are not provided for non-repeatable situations such as prompting programs
     or those involving menu changes.
7.  The programs are divided into categories and numbered. A category prefix letter is added for ID.
8.  48PCH is an HP48 Programming Class Handout from six years of EduCALC/Abby HP 48
     weekly Programming Classes conducted by Joseph Horn and Richard Nelson.  Much greater detail
     may be found in these handouts.  Email Richard or Joseph to request copies.  See table five.



Page 2 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

CONTENTS
Mathematics ID Pg Miscellaneous ID Pg

Next prime ……………………………… A1 3 Roll a pair of dice, m.n ………….…………... M1 10
Prime factors ……………………………. A2* 3 Move menu to end ……………….………….. M2* 10
Combinations …………………………… A3 4 Sort directory …………………….………….. M3 11
GCD …………………………………….. A4* 4 Sort directory (directories first) ….………….. M4 11
LCM ……………………………………. A5 4 Clear solver variables …………….…………. M5 11
Log to any base …………………………. A6* 4 Random selection without replacement ….….. M6 11
Permutations ……………………………. A7 4 See junk in display ……………………….….. M7 11
Weighted average ………………………. A8 4 Telephone memory aid text to telephone no.. .. M8 11
Ulam’s Conjecture ……………………… A9* 5 Body Mass Index, BMI……...……………….. M9 12

MOD functions …………………………. A10 5 String Programs
Rounding three ways……………………. A11** 5 Build a text string ………………………….… S1 12
Hamming weight binary no. (# of 1  BITS) A12 5 Generate a text string ………………………... S2 12
Extracting 24 digits of π ………………... A13* 6 Replace Nulls with “ ´��$6&,,������………. S3 12
Benford’s Law ………………………….. A14 6 Replace “´��$6&,,������ZLWK�1XOOV�………. S4 13
Quadratic Equation ……………………... A15 6 Decode string with ASCII number list …….... S5 13
Number of BITS for decimal number…… A16 6 Reverse the order of string characters …….… S6 13
Random numbers required to sum ≥ n…...A17 6 Split a string into two parts …………….……. S7 13

Input/output Insert character(s) into a split string …….…... S8 13

Remove duplicates………………………. I1 6 Convert a string to a name ……………….….. S9* 13
Keyboard keycode to sequential number .. I2 7 Time & Date
Maximum text on the screen …………… I3 7 Friday the 13th ……………………….………. T1 14
Press “Any” key to continue ……………. I4 7 Test for leap year……………………….……. T2 14

List Programs Day of week ………………………….……… T3* 14

Keyboard keycode to digit ……………… L1 8 Nth day of week from date ………….………. T4 14
Randomize a list ………………………... L2 8 Nth day of week of month ………….……….. T5 15
Remove an element …………………….. L3 8 Chinese new year…………………….………. T6 15
Remove a series of elements …………… L4 8 Electronic stopwatch ………………….……... T7 15
Exchange two positions ………………… L5 8 Electronic stopwatch time units …….……….. T8* 15
Rotate elements right one element ……… L6 8 Alarms ………………………………..……… T9* 15
Rotate elements left one element ……….. L7 8 Shorter tine String, TSTR …………….……... T10 16

Rotate elements right N elements ………. L8 9 Utilities
Rotate elements left N elements ………... L9 9 Convert zero to one ……………….…………. U1* 16
Fill a list with zeros (or digit ±1-±9) …… L10 9 Toggle flags one and two ………….………… U2 16
Calculate average of list elements ……… L11 9 Reverse stack order ……………….…………. U3 16
Calculate % of total of list elements ……. L12 9 Delta Percent ……………………….………... U4 16
Calculate Median of list elements ……… L13 9 Horizon distance …………………….………. U5 17
Test a list for reals ……………………… L14 9 Rename a program ………………….……….. U6 17
Replace list object with another ………… L15 10 Temperature Conversion ………………….… U7 17
Return lowest (highest) value …………... L16 10 Simple numeric ID, “register”, data base ….... U8** 18
Insert an element into a list ……………... L17 10 US letter stamp values ………………….…… U9 18
Make a test list 1 to N …………………... L18 10 Pre-tax cost of product………………….……. U10 19
Make a test list A to Z ………………….. L19 10 More meaningful random passwords…….….. U11 19
Tag elements in a list …………………… L20 10 File purge protection technique……….…….. U12 19

Invert (toggle) a flag…………………………. U13 19
* - Multiple programs, *=2, **=3



Page 3 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

CONTENTS,  CONTINUED

SYSEVAL Programs SYSEVAL Programs
Make an illegal name ……………………V1 20 Exploring the HP48 Message Table………….. V4* 20
Generate a blank text string …………….. V2 20 Hide menu……………………………………..V5 20
Position,  POS,  starting from the end…… V3 20

Tables No. Pg Section Pg
Saving program bytes by using short form numbers for numbers 1 to 100…1 21 CONCLUSION.. 25
Working Vs. Improved Stack Command Sequences, Ten-Second Marvels..2 22 EPILOG………. 26
New HP49 Stack Commands Shorten HP48 Programs…………………….. 3 24
Programming Techniques Illustrated by the Program Collection…………... 4 25
HP48 Programming Class Handouts for additional program details……….. 5 25

A  —  MATHEMATICS PROGRAMS
Jeremy Smith heard we were putting together a collection of programs.  Here is his response.

“One-Minute Marvels are unrequited built-in functions.  The 48 has a gazillion functions, so rather than
adding more, you roll your own to suit.  I had Jim Donnely’s first book, and annotated it with such
functions, amongst other things.  I bumped into him at the bookstore one day, and he wanted to include
my annotations in his next version (the present version).  He added lots of the features, but not the little
routines.  The following (A1-A8) consists of those routines, which still annotate my new book, listed right
along with the built in function table.”

“One-Minute Marvels is an excellent name for these.  Previously called, variously, tricks, tips, and
routines in 25 bytes or less, this catchy name is likely to become one of those online self-enhancing lists,
like a FAQ.”

“Some of the following are more than 100 bytes but good programmers will have a blast shoe-horning
them into < 100 bytes.”

“I’ve not timed the commands, nor measured many of them, since many of them aren’t in my machine; I
keyed them in from my book notes.  Warning: this means that I haven’t run and re-tested them since many
years ago.  They should really be gone over.  I’ve added other notes in addition to programs.  I’ve
attributed programs where I know them.”

A1.  Next Prime  (Joe Horn, Brian Walsh)
Enter any integer n (greater than 0) and press ‘np’ .  The original n will be raised to level 2, and the first
prime factor of n will be placed in level 1.  To find the next factor, you can press  /  and then run ‘np’
again.

‘np’  <<  DUP  √  →  s  <<  DUP  2  MOD  {  3  WHILE  DUP2  MOD  OVER  s  <
               AND  REPEAT  2  +  END  DUP  s   >  {  DROP  DUP  }  IFT  }  2  IFTE  >>  >>

31 commands, 108.5 Bytes,  #A114h.
A2.  Prime Factors  (Joe Horn, Brian Walsh)
If you want to find all the prime factors of n, run ‘pf’ .  It replaces n with a list of its prime factors.  (Calls ‘np’
above.)



Page 4 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘pfa’  <<  {  }  SWAP  DO  np  ROT  OVER  +  ROT  ROT  /  DUP  1  SAME  UNTIL  END
                 DROP  >>

16 commands, 55.5 Bytes,  #2E8h. Timing: 27 ⇒ {  3  3  3  } in 161_ms.
Here is another variation.

pfb’  <<  {  }  SWAP  DO  np  ROT  OVER  +  ROT  ROT  /  1  OVER  MOD  NOT  UNTIL
               END  DROP  >>

17 commands, 58.0 bytes, # 267h, Timing: 27 ⇒ {  3  3  3  } in 165_ms.

A3.  Combinations
comb(n,r) replaces all comb(n,r) with n!/(n-r)! * r! according to the mathematical definition.

‘comb’  <<  {’comb(&A,&B)’  ’&A!/(&A-&B)!*&B!’ }  ↑MATCH  >>
7 commands, 93.0 Bytes, #F798h.

A4. Greatest Common Divisor.  Two versions

‘GCDa’  <<  WHILE  OVER  MOD  DUP  REPEAT  SWAP  END  DROP  >>

8 commands, 30.0 Bytes,  # 15B3h, Timing: 1071, 459 ⇒ 153 in 18.4_ms.

‘GCDb’  <<  WHILE  DUP2  REPEAT  MOD  SWAP  END  DROP2  >>

7 commands, 32.5 Bytes, # 2FA6h, Timing: 1071, 459 ⇒ 153 in 27.5_ms.

A5.  Lowest common multiple  (uses GCD above)

 ‘LCM’   <<   DUP2  GCD  /  * >>
4 commands, 25.0 Bytes,  # 6288h. Timing: 1071, 459 ⇒ 3213 in 26.9_ms.

A6.  Log to any base

LG(2,5) → log25  or X a lg → logaX

'LG'   <<  →  b  x  ’LOG(x)/LOG(b)’  >>

4 commands, 43.0 Bytes,  # 27F8h, Timing: 2, 15 ⇒ 0.55958024809 in 28.9_ms.

'lg'    <<  SWAP  LN  SWAP  LN  /  >>

5 commands, 22.5 Bytes,  # 3147h, Timing: 2, 15 ⇒ 0.5595802481 in 17.8_ms.

A7.  Permutations
perm(n,r) replaces all perm(n,r) with n!/(n-r)! according to the mathematical definition.

‘perm’  <<  { ’perm(&A,&B)’  ’&A!/(&A-&B)! ’ }  ↑MATCH  >>
7 commands, 82.5 Bytes, #4211h.

A8.  Weighted Average  (Joe Horn)

[weights] [data] → weighted mean
e.g. [20 20 20 40] [75 80 85 90] → 84

(total=100%) scores → result

'WTAV'  <<  OVER  DOT  SWAP  CNRM /  >>

5 commands, 22.5 Bytes,  # CAC5h, Timing  [20 20 20 40], [75 80 85 90] ⇒ 84 in 70.6_ms.



Page 5 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

A9.  Ulam’s Conjecture  (Joe Horn)
Professor Ulam says this is not his idea, but many math students have seen this conjecture.  It states that
given any integer if you repeatedly apply one of two operations on the number, and the result, you will
eventually reach one.  The operations are:

1.  If odd, multiply by three and add one.
2.  If even, divide by two.

Take the first interesting integer, 3.  The resultant values are: 3 ⇒ 10, 5, 16, 8, 4, 2, 1.  The “Ulam”
process was applied seven times.  Note that when a power of two is reached the sequence directly divides
by two, repeating operation 2, to reach one.  The two programs below provide the basic Ulam values.
‘ULAM’  applies the rules and returns the next value in the series.  ‘ULM’  repeatedly applies ‘ULAM’
until one is reached keeping count of how may times ‘ULAM’  is applied.

‘ULAM’   <<  IF  DUP  2  MOD  THEN  3  *  1  +  ELSE  2  /  END  >>

13 commands,  52.5 Bytes,  # 2F47h. Timing:  27 ⇒ 82 in 12.7_ms.

‘ULM’   <<  0  OVER  DO  ULAM   SWAP  1  +  SWAP  UNTIL  DUP  1  SAME  END  DROP
                    SWAP  →TAG  >>

16 commands,  55.0 Bytes,  # FBE2h. Timing: 27 ⇒ 111 in 2.78_sec.

A10.  High-precision remainder  (Joseph Horn)
The algorithm HP uses for their MOD function is very high precision, higher than “normal” division.
This may be used to advantage when high precision remainders are required. ‘RMD’ returns the
remainder of level two divided by level one.

‘RMD’  <<  MOD  LASTARG  DUP  SIGN  ROT  SIGN  ≠  *  -  >>

9 commands, 32.5 Bytes,  # EDE2h. 987654321, 0.123456789 ⇒ 0.111111192 in 17.9_ms.

A11.  Rounding three ways  Ten-Second Marvels  (Joseph Horn)

1.  Round obj2 “up” to a multiple of obj1:    ‘UP’   <<  SWAP  OVER  /  CEIL  *  >>
     Examples: 153  25  ‘UP’   ⇒  175

167  25  ‘UP’   ⇒  175

2.  Round obj2 “down” to a multiple of obj1.  ‘DOWN’   <<  OVER  SWAP  MOD  -  >>
     Examples: 153 25  ‘DOWN’  ⇒ 150

167 25  ‘DOWN’  ⇒ 150

3.  Round obj2 to the “closest” multiple of obj1.  ‘NEAR’   <<  SWAP  OVER  /  0  RND  *  >>
     Examples: 153 25  ‘NEAR’   ⇒  150

167 25  ‘NEAR’   ⇒  175

A12.  Hamming weight of binary number (# of 1 BITS)  (Jurjen NE Bos)

‘BITS’   <<  # 7777777777777777h  OVER  SR  OVER  AND  DUP2  SR  AND  ROT  OVER
                    SR  AND   +  +  -   DUP  SR  SR  SR  SR  +   #F0F0F0F0F0F0F0Fh  AND  #FFh
                    DUP2  /  *  -  >>

28 commands, 111.5 Bytes,   # 4169h



Page 6 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

A13.  Extracting first 24 digits of π  (Joseph Horn)
‘π’ returns the correct rounded 12 significant digits (ending in 9) of π.  The HP48 uses 31 digits internally
for its floating point trigonometry functions.  ‘π24a’ uses a trigonometry function found by Joseph Horn
to return π to a truncated 12 digits (ending in 8) by using  0  ACOS  2  *  (in radian mode) as an input to
SIN,  to essentially extract 24 (limit of keyboard input) of the 31 internal digits.  ‘π24a’ is the basic
program.  ‘π24b’ is the “fancy” version.  The name is created using ‘SMENU’  found in the SYSEVAL
Programs category.  Store π related programs in a directory named, π, created with ‘SMENU’ as well.

‘π24a’  <<  RAD  0  ACOS  2  *  DUP  SIN  MANT  DEG  >>

9 commands, 32.5 Bytes,  # 6449h.  Timing: 3.14159265358, 9.79323846264 is returned in 20.3_ms.

‘π24b’  <<  RCLF   0  ACOS  2  *  DUP  SIN  MANT  100000000000  *  →STR  SWAP  STOF  >>

13 commands, 55.5 Bytes,  # 1F95h.  Timing: “3.14159265358979323846264” is returned in 47.1_ms.

A14.  Benford’s Law
Given enough data without artificial restrictions the percentage distribution of leading digits 1 to 9 is
predicted by Benford’s Law.  ‘BEN’  leaves the machine in  STD  mode.  Only digits 1 to 9 input is
allowed.  This program is an example of making a simple program “fancy”.  The output is rounded to
three significant figures.  Underlined commands convert decimal to percent (faster, fewer bytes than
100 / ).

‘BEN’   <<  STD  “Digit “  DUP  “?”  +  “”  INPUT  OBJ→  MANT  IP  DUP  NOT  +  DUP  INV
                   1  +  LOG  1  SWAP  %T  -3  RND  “%”  +  “ is “  SWAP  +  +  +  >>

30 commands, 109.0 Bytes,  #1EF4h
A15.  Quadratic equation  (Eric Lane)

Solving Ax2 + Bx + C = 0,   A ≠0,  is fast with ‘quad’ .  Input A,  ENTER,  B,  ENTER,  C,  ENTER, ‘quad’

‘quad’   <<  3  PICK  /  SWAP  ROT  -2  *  /  DUP  SQ  ROT  -  √  +  LASTARG  -  >>

16 commands, 50.0 Bytes, # 94B5h, timing: 12, 36, -48 ⇒ x=1, x=-4 in 24.3_ms.

A16.  Number of BITS for decimal number  (Joseph Horn)
This in an unusual (looping) approach.

‘NBIT’   <<  0  1  ROT  FOR  c  1  +  c  STEP  >>

9 commands,  36.5 Bytes,  # 17BCh.  1024 ⇒ 11 in 66.8_ms.

A17.  How many random numbers are required to be ≥ to n?  (Detlef Müller)
 This is a unusual application of START…STEP.

‘NRN’   <<  0  0  ROT  START  1  +  RAND  STEP  >>
8 commands,  30.0 Bytes,  # 43DCh.

I  —  INPUT/OUTPUT,  I/O

I1.  Keyboard keycode to digit
When ‘K →D’  runs nothing seems to happen.  The machine is waiting for a key to be pressed.  If any key
other than a digit key is pressed “nothing happens”.  You will know the machine is responding because



Page 7 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

the busy annunciator will turn on briefly.  When you do press a digit key that digit will be returned.  This
may be used with a display “menu” type prompt for a zero to nine choice.

‘K →D’  <<  -7  DO  DROP  0  WAIT  UNTIL  “\RSTHIJ>?@”  SWAP  IP  CHR  POS  DUP
                     END  1  -  >>

15 commands, 60 Bytes,  # 82DEh.

The –7  is a dummy variable for the DO loop to avoid cluttering up the stack with the keycodes of non-
digit keys.  The text string is the ASCII characters of the digit keycodes.   See ‘S1’.

I2.  Keyboard keycode to sequential number  (Joseph Horn)
The  ZERO  WAIT  sequence is very powerful for use with screen (DISP) prompts because the machine
waits for a key press in a low battery drain state.  This is unlike  KEY  which leaves the machine running.
It is useful to convert the A through X key keycodes into sequential numbers 1 through 24 with ‘K →S’.

‘K →S’  <<  0  WAIT  10  MOD  SWAP  10  /  IP  1  -  6  *  +  IP  >>
14 commands, 63.5 Bytes,  # D8D7h.

TABLE I2  —  “A” through “X” HP48 Keycodes

Key In Out Key In Out Key In Out Key In Out Key In Out Key In Out
A 11.1 1 E 15.1 5 I 23.1 9 M 31.1 13 Q 35.1 17 U 43.1 21
B 12.1 2 F 16.1 6 J 24.1 10 N 32.1 14 R 36.1 18 V 44.1 22
C 13.1 3 G 21.1 7 K 25.1 11 O 33.1 15 S 41.1 19 W 45.1 23
D 14.1 4 H 22.1 8 L 26.1 12 P 34.1 16 T 42.1 20 X 46.1 24

‘K →S’ works for keys past the “X” key except it “counts” the ENTER key twice.  It also “skips” keys
after the three shift keys.  The + key returns 53.  The sequential number may be used to  GET  something
from a list,  SUB  a character from a string, etc.

I3.  Maximum text on the screen
Size one font (small menu font) may be used to display text (with an upper case only restriction) if it is
converted to a graphics object first.  While ‘DSP’ is longer than 100 bytes it is so useful for those big text
notes, names, addresses, etc. that it had to be included in this collection.  You only need one copy of DSP
in HOME for all of your text strings.

‘DSP’  <<  STD  OBJ→  # 83h  # 40H  BLANK  SWAP  1  -  6  *  0  FOR  s  # 0h  s  R→B
                  2  →LIST  ROT  1  2  →LIST  ROT  1  →GROB  REPL  -6  STEP  PICT  STO
                  {  # 0h  # 0h  }  PVIEW  0  FREEZE  >>

35 commands, 149.0 Bytes,  # 4476h.

‘DSP’  expects a list of text strings.  Each string may be up to 33 characters (longer strings are truncated).
Ten strings are all that will fit on the screen, the eleventh string is only partially displayed.  Lower case is
converted to upper case.  To store text messages in your HP48 you key the text as a program using the
format:      <<  { “ line one”  …  “ line ten”  }  DSP  >>

I4.  Press “any” key to continue (clear)
You have seen the computer screen message “Press any key to continue”.  Of course they don’t mean any
key.  Shift, etc. doesn’t work.  A similar input response may be programmed on the HP48.  It may be used
at the end of ‘DSP’ above in place of   0  FREEZE.  The shift keys (α,  left and right shift) do not
respond.  The ON key does, however.



Page 8 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘AKEY’   <<  IFERR  0  WAIT  THEN  END  DROP  >>
6 commands, 35.0 Bytes,  # 31C3h.

This I/O option takes advantage of the “half” keystroke.  If the search and press times are approximately
equal, pressing the same key twice in succession saves the second key’s search time.  This gives a value
of 1-1/2 keystrokes to clear the screen and start the next operation.

L  —  LIST PROGRAMS

Many of these list programs are from an HP48PCH.  See Table 5 for details.

L1.  Remove duplicates. (Joseph Horn)

‘RDUPS’  <<  LIST→  {  }  1  ROT  START  SWAP  IF  DUP2  POS  THEN  DROP
                        ELSE  +  END  NEXT  >>

14 commands, 50.0 Bytes,  #4A55h.  Timing: 64 elements with 16 duplicates removed in 0.904_sec.

L2.  Randomize a List
‘RANL’   <<  LIST→  →  t  <<  1  t  FOR  n  n  RAND  *  CEIL  ROLLD  NEXT  t  →LIST  >>  >>

16 commands, 62.5 Bytes,  #1F8Ch.  Timing: 100 elements in 1.52_sec.

L3.  Remove an element
Given a list on level two and a position number on level one, ‘REL’  will remove an element.

‘REL’   <<  SWAP  LIST→  2  +  DUP  ROLL  OVER  SWAP  -  ROLL  DROP  3  -  →LIST  >>

14 commands, 45.0 Bytes,  #849Eh.  Timing: #13, A to Z  in 38.4_ms.

L4.  Remove a series of elements
Given a list on level three and two position numbers on levels two and one, ‘RSL’  will remove the
elements between the two position numbers.

‘RSL’    <<  3  DUPN  DROP  1   -  1  SWAP  SUB  4  ROLLD  SWAP  DROP  1  +  OVER
                    SIZE  SUB  +  >>

18 commands, 55.0 Bytes,  #ABEDh.  Timing: { A…E }, 2, 4  in 31.5_ms.

L5.  Exchange two positions
Given a list on level three and two position numbers on levels two and one, ‘ETP’  will exchange the
elements of the two position numbers.

‘ETP’   <<  ROT  DUP  4  DUPN  DROP  ROT  GET  PUT  4 ROLLD  SWAP  GET  PUT  >>

13 commands, 42.5 Bytes,  #1BA9h.  Timing: { A…E }, 1, 4  in 61.7_ms.

L6.  Rotate elements right one element
‘RR1’   <<  LIST→  ROLLD  LASTARG  →LIST  >>

4 commands, 20.0 Bytes,  #9D6Dh.  Timing: { A…Z }  in 29.4_ms.

L7.  Rotate elements left one element
‘RL1’  << LIST→  ROLL  LASTARG  →LIST   >>

4 commands, 20.0 Bytes,  #A32‘1h.  Timing: { A…Z }  in 29.3_ms.   



Page 9 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

L8.  Rotate elements right N elements
Given a list on level two and the number of elements to rotate right on level one, ‘RRN’  will rotate the
elements in the list.

‘RRN’   <<  SWAP  LIST→  DUP  2  +  ROLL  1  -  OVER  MOD  1  +  1 SWAP  START  ROLLD
                    LASTARG  NEXT  →LIST  >>

19 commands, 57.5 Bytes,  #E51Ch. Timing: { A…Z }, n=5 in 0.689 sec.   

L9.  Rotate elements left N elements
Given a list on level two and the number of elements to rotate left on level one, ‘RLN’  will rotate the
elements in the list.

‘RLN’   <<  1  +  OVER  SIZE  SUB  LASTARG  DROP  1  -  1  SWAP  SUB  +  >>

13 commands, 42.5 Bytes,  #FC43h. Timing: { A…Z }, n=5 in 0.0569 sec.

L10.  Fill a list with zeros (or digit 1-9)
Given a real number of zeros on level one, ‘LN0’  will create a list of N zeros.  Use short form digits ±1 to
±9 in place of 0 in the program if desired.

‘LN0’    <<  1  →LIST  0  CON  ARRY→  EVAL  →LIST  >>

7 commands, 27.5 Bytes,  #6535h.  Timing: 100  in 0.203_sec.

L11.  Calculate average of list elements
Given a list of reals, ‘LA’  returns a real that is the average of the values in the list.

‘LA’   <<  ΣLIST  LASTARG  SIZE  /  >>

4 commands, 23.0 Bytes,  #2CF0h.  Timing: 1 to 100  in 0.406_sec.

L12.  Calculate % of total of list elements
Given a list of reals, ‘L%’  returns a list that is the element for element percent of the total of the elements
in the list.

‘L%’   <<  ΣLIST  LASTARG  %T  >>

3 commands, 20.5 Bytes,  #CE45h.  Timing:  { 5  10  15  20  } in 112_ms.

L13.  Calculate median of list elements
Given a list of reals, ‘LM’  returns a real that is the median of the elements in the list.

‘LM’   <<  SORT  DUP  SIZE  1  +  2  /  GET  LASTARG  FLOOR  GET  +  2  /  >>

14 commands, 48.0 Bytes,  #71CCh.  Timing: 1 to 9  in 0.227_sec., 1 to 10 in 0.360_sec.

L14.  Test a list for reals
Test a list for all elements being reals.  Return 1 if true, 0 if not.

‘TLR’   <<   0  IFERR  MOD  THEN  SWAP  DROP  ELSE  DROP  1  END  >>

10 commands, 45.0 Bytes,  #1F8Ch.  Timing: 100 elements in 0.505_sec.



Page 10 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

L15.  Replace a list object with another (or others)
‘RPL’   <<   →  p  r  <<  LIST→  →  t  <<  t  1  +  p  -  ROLL  LASTARG  r   SWAP   ROT  DROP
                     ROLLD  t  →LIST  >>  >>  >>

22 commands, 84.0 Bytes,  #4B76h.  Timing: 104 elements in 0.115_sec.

Timing is made with a list created by ‘MLA’  with the 2  /  FLOOR  element replaced with a two element
list: {  “XXX”  # AFh  }.

L16.  Return lowest (or highest) value of a list
‘RLV’   <<  LIST→  2  SWAP  START  MIN  NEXT  >>

6 commands, 25.0 Bytes,  #D57Ch.  Timing: 1 to 100  in 0.457_sec.

Replace  MIN  with  MAX  for the highest value in the list.

L17.  Insert an element into a list
‘IEL’   <<   →  p  r   <<  LIST→  →  t  <<  r   t  2  +  p  -  ROLLD  t  1  +  →LIST  >>  >>  >>

19 commands, 76.5 Bytes,  #F0BDh.  Timing: “X” is inserted in the “middle” of 100 elements in 0.103_sec.

L18.  Make a test list 1 to N
‘MLN’ .  <<   1  SWAP  FOR  n  n  NEXT  DUP  →LIST  >>

8 commands, 34.0 Bytes,  #5DDh.  Timing: 100 elements in 0.394_sec.

L19.  Make a test list A to Z
‘MLA’   <<   →  n  <<  {  A…Z  }  1  n  26  /  CEIL  LN  2  LN  /  CEIL  START  DUP  +  NEXT
                      1  n  SUB  >>

21 commands, 198.5 Bytes,  #62B9h.  Timing: 100 elements in 0.120_sec., 500 in 0.408_sec.

If the input exceeds 26, A to Z is repeated as required.  This program is very fast, especially for large lists.

L20. Tag elements in a list
Run this program with a list on the stack and it returns a list with the elements tagged with the element
position number.

‘TAGL’   <<  1  OVER  SIZE  FOR  n  DUP  n  GET  n  →TAG  n  SWAP  PUT  NEXT  >>

14 commands, 53.0 Bytes, 8927h. Timing: { A B C D E F G H } ⇒  { :1:A :2:B :3:C :4:D :5:E :6:F :7:G :8:H } in 378_ms

M  —  MISCELLANEOUS PROGRAMS

M1.  Roll a pair of dice, m.n
‘DICE’   <<  1  2  START  RAND  6  *  CEIL  NEXT  10  /  +  >>

11 commands, 45.5 Bytes, # Adl.  Timing: 26.5_ms.
M2.  Move menu to end  (Ten-second Marvel)
Pressing VAR displays the current user variable menu.  Frequently menu variables at the far left of the
menu line are not the most used and you want them “out of the way”.  One solution is to move them to the
far right end. ‘M2E’ moves the first menu variable to the right end.  Keep in HOME, put in custom if
desired.



Page 11 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘M2E’   <<  VARS  TAIL  ORDER  >>                                                       3 commands, 26.5 Bytes,  # B5Bh.

A more versatile version below allows the variable (one only) to be in a list when the program is run.
This variation also returns to the menu where the program is run.

‘M2Eb’   <<  RCLMENU  →  m  <<  IF  DEPTH  THEN  IF  DUP  TYPE  5  SAME  THEN
                     ORDER  END  END  VARS  TAIL  ORDER  m  MENU  >>

21 commands,  86.0 Bytes,  # 971Fh.

M3.  Sort directory  (Ten-second Marvel)
Sorts the current directory into ASCII order.  Called ‘ZD’  “Zort Directory” to put itself at the far right
end so you will know where it is.

‘ZD’   <<  VARS  SORT  ORDER  >>                                                   3 commands, 23.5 Bytes,  # C67Ah.

M4.  Sort directory (directories first)

‘ZDF’   <<  15  TVARS  SORT  VARS  SORT  +  ORDER  >>

7 commands,  44.5 Bytes, #A64Dh.
M5.  Clear solver variables  (Ten-second Marvel)
‘CSV’ clears the variables created when the solver is run.  Keep in HOME and include in your solver list
for fast easy “clean up” when you are done solving.  The program clears all reals type 0, complex
numbers type 1, and Unit objects type 13.

‘CSV’   <<  {  0  1  13  }  TVARS  PURGE  >>                                           3 commands, 35.5 Bytes,  # E836h.

M6.  Random selection without replacement  (Joseph Horn)
This program is typically used to deal hands from a deck of cards.  It returns a random list of n items from
a total of t items.  Input is t, ENTER, n, ‘DEAL’ .

‘DEAL’   <<  →  t  n  <<  1  t  FOR  x  x  DUP  RAND  *  CEIL  ROLLD  NEXT  t  n  -  DROPN
                      n  →LIST  >> >>

22 commands, 81.0 Bytes,  # 7B14h.  Timing:  t=52, n=30 in appros. 0.75_sec.

M7.  See junk in display  (Detlef Müller, clears PICT, suggested by Jeremy Smith)

’dis’ << { #0h #0h } PVIEW PICT PURGE 0 WAIT DROP >>
8 commands, 63.5 bytes, #A344h.

M8.  Telephone memory aid text to number
The telephone keypad has three letters associated with each digit.  Using these letters it is possible to
create a word or phrase to serve as a memory aid to remember a seven digit telephone number.  Examples
are EduCALC, HOTmama, and MyLawyer.  Decoding the text and producing the telephone number was
the HHC98 programming contest problem.  James Unterburger came up with the winning program that
was both the shortest and the fastest as determined by multiplying the program bytes and the execution
time.  For purposes of the contest Q & Z were assigned to zero.  In practice they may also be assigned to
the one digit.

TABLE  M1 — Telephone digit and corresponding letters for HHC98 Programming Contest
Letters ABC DEF GHI JKL MNO PRS TUV WYX QZ
Digit 1 2 3 4 5 6 7 8 9 0



Page 12 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘PHONE’   <<  1  7  START  “22233344455566670778889990” OVER  NUM  64  -  DUP  SUB
                         SWAP  2  8  SUB  NEXT  DROP  +  +  +  “-”  +  +  +  +  >>

24 commands,  112.5 Bytes,  # 34Fah.  EDUCALC ⇒ “338-2252” in 181_ms.

M9.  Body Mass Index, BMI
Body Mass Index or BMI is a more realistic statistical measure of a healthy weight.  This program
calculates your BMI and returns a statement of your condition.  Key in your weight in pounds, ENTER,
key in your height in inches, ‘BMI’ .

‘BMI’   <<  SQ  703  /  /  DUP  5  /  IP  1  -  7  MIN  1  MAX  {  “Underweight”  “Lean”
                   “Healthiest”  “Overweight”  “Obese”  “Clinically Obese”  “Morbidly Obese”  }
                    SWAP  GET  SWAP  1  RND  →TAG  >>

21 commands, 178.0 Bytes,  # B4AEh, Timing:  120, 64 ⇒ 20.6: “Healthiest” in 44.4_ms.

S  —  STRING PROGRAMS

S1.  Build a text string  (Five-second marvel)
I (rjn) once looked at Joseph Horns’s machine during a class and saw ‘BS’  in his menu.  Sure enough he
had done the same thing I had in response to a problem of entering a text string.  Suppose you have the
list of keycodes for the digit keys on your HP48.  They are 0 to 9: 92, 82, 83, 84, 72, 73, 74, 62, 63, and
64 (without the shift plane decimal part).  If you need a text string of these ASCII characters you start
with an empty string, key the number, run ‘BS’ , and repeat as required.   Programs that use unusual text
strings should provide the ASCII character numbers.  This is faster than using CHARS.  Of course the
HP49 CHARS is nicer.

‘BS’   <<  CHR  +  >>                                                                                     2 commands, 15 bytes,  # 430Ah

S2.  Generate a space text string
Input n and ‘GS’  returns a string of spaces n characters long.  The method used is to double the initial two
spaces until enough are generated and using  SUB  for the desired number.  ‘GS’  is very fast.  This
technique is used in L19.  The leading string may be any characters.  Space strings are used for XORing
with other strings to toggle case.

‘GS’   <<  “  ”  OVER  LN  2  LN  /  1  SWAP  START  DUP  +  NEXT  1  ROT  SUB  >>

15 commands, 52.0 Bytes, # 2936h, Timing: 10 in 55.8_ms., 30 in 67.0_ms., 100 in 89.5_ms., 500 spaces in 115_ms.

S3.  Replace Nulls with “ ” (ASCII 134)

ASCII character zero is called a Null.  The HP48 will not allow you to edit strings, lists, programs, etc. if
they contain a Null character.  If you try you will get an “Error: Can’t Edit Null Char.” message.
‘REPL ´�DFFHSWV�D�VWULQJ�DQG�UHSODFHV�DOO�1XOO�FKDUDFWHU�RFFXUUHQFHV�ZLWK�$6&,,�FKDUDFWHU������³ ´�
This character was chosen to be highly visible.  It is seldom used and it makes a good marker.  The Null
character, like all ASCII characters 0 to 30 display as a small black square.

‘REPL ¶  <<  WHILE  DUP  0  CHR  POS  DUP  REPEAT  “ ´��5(3/��(1'��'523��!!

11 Commands, 56.0 Bytes,  # 2E09h. Timing: “A % « =´⇒ “A % « =´�LQ����BPV�



Page 13 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

S4.  Replace “ ” (ASCII 134) with Nulls

S4 is the inverse of S3.  Note that in both programs the Null in the program is generated (so it may be
edited) with the sequence  0 CHR.  If you want to make a test string use spaces where you want Nulls and
change  0  CHR  to  “ ” (one space).

‘REPLN’   <<  WHILE  DUP  “ ´��POS  DUP  REPEAT  0  CHR  REPL  END  DROP  >>
11 Commands, 46.0 Bytes,  # 66CBh. Timing: “A % « =” ⇒ “A % « =´�LQ����BPV�

S5.  Decode string with ASCII number list
With a string on the stack ‘C→N’  will return a list of the corresponding ASCII numbers.

‘C→N’   <<  {  }  SWAP  1  OVER  SIZE  FOR  n  DUP  n  DUP  SUB  NUM  ROT  SWAP  +
                     SWAP  NEXT  DROP  >>

18 commands,  61.5 Bytes,  # C449h.  Timing: “ABCDEFGHIJ” ⇒ { 65 66 67 68 69 70 71 72 73 74 } in 284_ms.

S6.  Reverse a string
‘REV$’  reverses the order of characters in a string on level one of the stack.

‘REV$’   <<  “ ”  OVER  SIZE  1  FOR  n  OVER  n  DUP  SUB  +  -1  STEP  SWAP  DROP  >>

15 commands, 54.0 Bytes,  #DAFBh.  Timing:  “A…Z´⇒ “Z…A´in 433_ms.

This is a very slow program reversing about 60 characters per second.  An HP48 machine code version
will reverse 20,000+ characters per second.  The HP49 SREV will reverse about 30,000 characters in a
second.  It is left as a challenge to the reader to improve the user code performance of this most useful
program.

S7.  Split a string into two parts
‘SPLT’  accepts a string on level two and a character position on level one and returns two strings.  The
first string on level two is the characters up to but not including the character of the specified position.
Level one contains the remainder of the characters of the input string.  Pressing plus after the program is
finished will concatenate the two strings to produce the original input string.

‘SPLT’   <<  DUP2  1  SWAP  1  -  SUB  ROT  ROT  OVER  SIZE  SUB  >>

11 commands, 37.5 Bytes,  # 6F12h.  Timing:  “A…Z”, 13 ⇒ “A…L”, “M…Z” in 16.2_ms.

S8.  Insert character(s) into a split string
‘SPLT’ may be used to insert a character or characters using ‘INS$’ below.  Three inputs are required.
The string on level three.  The first character that is to follow the character or string that is to be inserted
is on level two.  Level one is the character or string that is to be inserted.

‘INS$’   <<  →  a  b  <<  DUP  a  POS  SPLT  b  SWAP  +  +  >>  >>

12 commands, 55.5 Bytes,  # 2C13h.  timing:  “A…Z”, “I”, “III”  ⇒ “A…HIIIIJ…Z” in 47.1_ms.

S9.  Converting a string to a “name”  (Ten-second Marvel)
There are times when a program must “create” the name of a program to recall and/or run.  Timing
several programs called ‘P1’, ‘P2’,  to ‘Pn’ may be done using a loop and creating the names as a string.
The string is converted to the name with ‘S→N’  below.

‘S→N’   <<  “’”  SWAP  +  OBJ→  >>



Page 14 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

4 commands,  23.5 Bytes,  # 6029h.  Timing:  “NAME” ⇒ ‘NAME’ in 167_ms.

The “trick” is to preface the string with a single tic and let the HP48 smart operating system decide that it
is a name object (type 6) and not a string (type 2) using the  OBJ→  command.  The inverse operation is
performed by ‘N→S.

‘N→S’  <<  →STR  IF  “’”  POS  1  ==  THEN  DUP  SIZE  1  -  2  SWAP  SUB  END  >>

15 commands, 58.5 Bytes,  # 88AEh.  Timing: ‘NAME’ ⇒ “NAME” IN 26.6_ms.

T  —  TIME AND DATE PROGRAMS

T1.  Friday the 13th  (Joseph Horn)
Key in a year and ‘FRI13’  returns the dates of Fridays that occur on the 13th of the month.

‘FRI13’   <<  1000000  /  1.13  +  13  FOR  d  6.133  d  DDAYS  7  MOD  NOT  d   IFT  NEXT  >>

16 commands, 88.0 Bytes,  # 670Bh.  Timing:  1987⇒ 2.131987, 3.131987, 11.131987 in 0.148_sec.

Every year has at least one Friday the 13th.  What is the maximum number possible in one year?  The
following years from 1900 to 2000 have three Friday the 13ths:  1903, 1914, 1925, 1928, 1931, 1942,
1953, 1956, 1959, 1970, 1981, 1984, 1987, 1998.

T2.  Test for leap year  (Christian Meland)
Input a year and  ‘LY?’  returns a 1 if the input is a leap year, a 0 if not.  This program is a good example
of the powerful date commands of the HP48 and HP49.

‘LY?’   <<  2280000  +  MANT  1  DATE+  3  <  >>

7 commands, 35.5 Bytes,  # 580Dh.  Timing:  Avg. For 1900, 1996, 1997, 2000 is 12.3_ms.

T3.  Day of week
Input a standard date in mm.ddyyyy format and ‘dow1’  (system flag –42 clear) returns a three letter day.

‘dow1’   <<  0  TSTR  1  3  SUB  >>

5 commands,  22.5 Bytes,  #  A8D0h. Timing: 8.211999 ⇒ “SAT” in 26.2_ms.

Joseph Horn suggests using DDAYS and a known date to calculate the day of week.  The known date is a
Sunday (year 3,000) and is selected to have the day and month the same so system flag –42 setting
doesn‘t matter.  He had to “hunt” for a date that met these requirements.  Given a date in mm.ddyyyy
format, ‘dow2’ returns a number between 0 (Sun) and 6 (Sat).  Example:  HHUC date 8.211999, ‘dow2’
returns 6.

‘dow2’   <<  2.023  SWAP  DDAYS  7  MOD  >>

5 commands, 30.5 bytes, #B181h. Timing: 8.211999 ⇒ 0 in 7.17_ms.

T4.  Nth day of week from date  (Brian Walsh)
A company that builds large engines always ships on Friday when it has the required truck available.
Delivery is quoted in weeks.  The XJ engine requires nine weeks to build.  An order is received on
Monday, August 23, 1999.  What is the shipping date? (date N D ⇒ date) 8.231999, 9, 5  ‘ND’  ⇒
10.221999.



Page 15 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘ND’   <<  ROT  DUP  1.022  SWAP DDAYS  7  MOD  ROT  DUP2  ≤  5  ROLL  -  7  *  -  -
                NEG  DATE+  >>

19 commands, 65.5 bytes, #C52Eh, Timing: 8.231999, 9, 5  ‘ND’ ⇒  10.221999 in 28.8_ms.

Table T4  —  Numeric code for the days of the week used by T3, T4 & T5
Day Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Day Code 0 1 2 3 4 5 6

T5.  Nth day of week of month  (Brian Walsh)
On what date does Thanksgiving fall this year?  Thanksgiving is always the fourth Thursday in
November.  Input: date N D ⇒ date.  11, 4, 4, ‘NDM’   returns 11.251999 (November 25).  D is the same
day code as in Table T4.  Note:  this program calls T4, ‘ND’ .

‘NDM’   <<  ROT  DUP  100  *  FP  1  +  100  /  SWAP  IP  +  ROT  ROT  ND  >>

15 commands, 66.5 bytes, #4F2Dh, 11, 4, 4, ‘NDM’ ⇒ 11.251999 in 53.3_ms.

T6.  Chinese New Year  (Prompting & labeling)

‘CHINyear’   <<  “Enter Year”  “”  INPUT  OBJ→  {  “Rooster”  “Dog”  “Pig”  “Rat”  “Ox”  “Tiger”
                               “Hare”  “Dragon”  “Snake”  “Horse”  “Sheep”  “Monkey”  }  OVER  1  -  12
                               MOD  1  +  GET  SWAP  →TAG  >>

27 commands, 187.0 Bytes,  # 3998h.  Timing:  1999 ⇒ “Hare” in 28.9_ms.
T7.  Electronic stopwatch
Single key starts/stops.  The machine does not run while “timing” and is usable for other tasks.  The start
time is stored in user menu ‘t’ .  Move this out of the way to the far right of your menu.  ‘SW’  uses Flag
annunciator 5 (looks like “S”) to indicate stopwatch is “running”.  Time is tagged with “Sec”.  Note:  The
fastest time possible is 0.2 seconds due to system (debounce) response.  See 48PCH for additional details.

‘SW’   <<  1  FIX  TICKS  IF  5  FS?C  THEN  ‘t’   RCL  -  B→R  8192  /  “Sec”  →TAG  ELSE
                 ‘t’   STO  5  SF  END  >>

21 Commands, 100.0 Bytes,  # 69F7h.

T8.  Electronic Stopwatch time units
‘SWU’  may be called in place of the two underlined commands in the Electronic Stopwatch program to
add minutes and hours tagging.  Alternately you may key in the commands to make one program.

‘SWUa’   <<  IF  DUP  60  <  THEN  “Sec”  ELSE  60  /  IF  DUP  60  <  THEN  “Min”  ELSE
                      60  /  “Hr”  END  END  →TAG  >>

22 commands, 122.5 Bytes,  # 2DADh.

Brian Walsh suggests that ’SWUa’ can be rewritten as:

‘SWUb’   <<  DUP  60  <  "Sec"  {  60  /  DUP  60  <  "Min"  {  60  /  "Hr"  }  IFTE  }  IFTE  →TAG  >>

18 commands, 107.5 bytes, #E644h checksum

‘SWUb’ is 15 bytes shorter, and faster than ‘SWUa’.   This is a good example of the use of the short form
IF…THEN…ELSE…END  structure  — IFTE.

T9.  Alarms



Page 16 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Here are two simple repeating alarm sounds programmed to start when you press the menu key and stop
when you press any other key.  ‘ALM1’  and ‘ALM2’  produce alternate low, then high, tones.  ‘ALM2’  is
about twice as fast as ‘ALM1’ .  ‘AM1’  repeats about once per second.

‘ALM1’   <<  DO  900  .2  BEEP  .2  WAIT  1200  .2  BEEP  .4  WAIT  UNTIL  KEY  END  DROP  >>

15 commands,  95.5 Bytes, # C3Afh

‘ALM2’  <<  DO  1000  .1  BEEP  .1  WAIT  500  .1  BEEP  .2  WAIT  UNTIL  KEY  END  DROP  >>

15 commands,  95.5 Bytes, # FD5h
T10.  Shorter Time String, TSTR
For US users (HP48 system flag –42 clear) the time string is 22 characters long showing time in 12 hour
format with an A or P at the end.  This is too long for some display applications and for many applications
the seconds is not needed so dropping a semicolon and two seconds digits is practical.  This program
makes a 19 character time string.

‘tstr’   <<  DATE  TIME  TSTR  DUP  1  9  DUP +  SUB  SWAP  “ ”  DUP  SUB  +  >>

15 commands, 51.0 Bytes,  # 1677h.  Timing: 56.9_ms typically.

This is an example of entering a special character into a string and using short form numbers from table 1.
9  DUP  +  is used in place of 18, and “´�LV�$6&,,�FKDUDFWHU������7KLV�VDYHV�ILYH�E\WHV��������RI�PHPRU\
and adds 6 milliseconds to the run time.  Run ‘tstr’  and press down cursor to view the whole string.
Compare with  TSTR.

U  —  UTILITIES

U1.  Convert zero to one  (Joseph Horn)
Suppose you start your program with a divide and you do not want zero as an input and one is acceptable.
Joseph Horn improved the “obvious” solution of    <<  DUP  0  SAME  {  NOT  }  IFT  >>    with this
solution.  Restricted to reals.

‘0→1a’  <<  DUP  NOT  +  >>                                                                    3 commands, 17.5 Bytes,  #F0FEh.

To replace zero digit counts with 1 digit counts, could we assume we’ll only be working with zero or
positive integers?  If so, then we can come up with a two-instruction solution:

‘0→1b’  <<  1  MAX   >>                                                                            2 commands, 15.0 Bytes,  #109Bh.

U2.  Toggle flags one and two

‘TF1&2’   <<  2  CF  1  FS?C  1  +  SF  >>                                                 7 commands, 27.5 Bytes,  #49F9h.

U3.  Reverse stack order  (?)
This program has been in my (rjn) machine for more than five years.  I normally don’t use j as a local
variable so it is not mine.  We apologize to the unknown author of a great short efficient program.

‘SREV’   <<  DEPTH  2  SWAP  FOR  j   j   ROLL  NEXT  >>

8 commands, 34.0 Bytes,  #3115h.  Timing:  1 to 100 in 0.767 seconds.
U4.  Delta percent
Calculating percent is difficult for most people.  It is not difficult because of the math, it is difficult
because of people.  Just look at the percent function on a dozen calculators of various manufacturers and



Page 17 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

you will see this.  Consider a pie that cost $4 last year and costs $5 this year.  What is the percent change,
delta percent?

Percent problems of this type always have two answers.  This either confuses people or inspires them to
use it to their own advantage.  A sales commission may be 15%.  Is that 15% of the sale or 15% of the
cost of the product sold?  The sales person wants the sale price as the reference, the employer wants the
cost as the reference. The pie is 25% more expensive this year.  The pie was also 20% less expensive last
year.  Same numbers, different reference.

This program solves this “problem”.  ‘D%’  accepts two positive numbers in either order and returns both
percentage answers.  The reduction is negative and always on level two.

‘D%’   <<  %CH  LASTARG  SWAP  %CH  MAX  LASTARG  MIN  >>

7 commands, 27.5 Bytes, #DDBCh.  Timing: 4 ENTER 5 → -20, 25 in 13.2_ms.
U5.  Horizon distance
If you are 5’-6”  tall and you are at the sea shore looking at an object of the same height on the seashore
on an island on a clear day, how far away in miles can the object be visible?  ‘HORZ’   prompts and labels
the answer to this question.  Use zero as object height for distance to the horizon. (2.71 miles).

‘HORZ’   <<  “Object”  “Observer”  1  2  START  “ Height↵in feet?”  “”  INPUT  OBJ→  4  3  /
                      √  SWAP  NEXT  +  -3  RND  “Visible Miles”  →TAG  >>

Note:  ↵  is the new line character, ASCII 10.  The sequence 4  3  /  is 1.33.  This factor ranges from 1.23
to 1.53 depending on the reference you use.  The “trigonometry” solution is closer to 1.50.

22 commands, 120.5 Bytes,  # 703Ah, 5.5 ENTER, 5.5 ENTER → Visible Miles:  5.42.

U6.  Rename  (Joe Horn)

Input the old name, ENTER, new name and run ’RENAME’.  The new name will be moved to the far left
end of the menu line.  Note that the HP49 has a rename command that leaves the menu name “in place”.
It also uses the more conventional input order of old name before the new name.

’RENAME’  <<  OVER  RCL  SWAP STO  PURGE  >>
6 commands, 22.5 Bytes,  # 543Bh.

U7.  Temperature Conversion
This programming example is not much of a marvel.  It uses straightforward programming techniques to
illustrate the following concepts.

1.  The input is a number to convert degrees Fahrenheit to degrees Celsius and vise versa.
2.  The program may optionally prompt.  Set user flag one to prompt for Temperature if desired.
3.  The output is labeled and formatted.
4.  Two temperature conversions are made for every input. °F→°C & °C→°F.
5.  Because of 3 above, the display mode is altered as needed with  1  FIX  and returned to pre-program
     run status when finished with  STOF  at the end (underlined).

‘DEG?’   <<  IF  1  FS?  THEN  “TEMPERATURE?”  “”  INPUT  OBJ→  END  RCLF  SWAP  DUP
                      9 *  1  FIX  5  /  32  +  OVER  “°C = ”  +  SWAP  +  “°F”  +  SWAP  DUP  32  -  9  /  5
                      *  SWAP  “°F = ”  +  SWAP  +  “°C”  +  ROT  STOF  >>

40 commands, 182.0 Bytes,  # 3460h.  timing: 55, ‘DEG?’  ⇒ “55.0°C = 131.0°F”, “55.0 °F = 12.8°C”



Page 18 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

U8.  Simple numeric ID, “register”, data base
These three programs were written in 1990 to emulate sequentially numbered registers á la the HP-41 and
most other early calculators.  The HP-41 had a  SIZE “command” which allocated memory to the number
of data registers desired.  Memory limited SIZE to 319.  The STO key was pressed when you wanted to
store something in a register and you responded to a prompt for a register number.  This was not pure
RPN , but we really didn’t mind.  Does this demonstrate the importance of prompting?

The HP48 and HP49 are true RPN and so the syntax for storing changes.  HP49 users will take their
machine out of the box in algebraic mode and will have set up a Start variable to insure their machine will
always turn on in RPN mode if they desire (especially after a warm start).  The “registers” are stored in a
list called ‘reg’  when SIZE is run.   They are numbered from 0 to n.

‘size’  <<  1  →LIST  0  CON  OBJ→  DROP  →LIST  ‘reg’   STO  >>
9 commands, 44.0 Bytes,  # E0Fah.  1000 registers created in 2.22 seconds.

Zero is used as a place holder for each register.  Register counting is from zero so if you want register 100
use 101 as the input for ‘size’.

‘sto’   <<  1  +  reg  SWAP  ROT  PUT  ‘reg’   STO  >>
8 commands, 43.0 Bytes,  # 4E76h.

Place the object to be stored on level two and the register number on level one and run  ‘sto’.

‘rcl’   <<  1  +  reg  SWAP  GET  >>
5 commands, 26.5 Bytes,  # 9F49h.

Key the register number (you have to remember what is in which register) and run  ‘rcl’.

Lower case names are used to avoid machine name conflicts.  The one plus starting ‘sto’ and ‘rcl’  may be
omitted if register “zero” is not needed.  This system may be used to store programs, names and
addresses, etc. as well.  You may have a bunch of routines that you want to “hide” and then call in one or
more programs.  Simply store the program in a “register” and use the sequence  n  rcl  EVAL in the
calling program.  A series of alarms used by different programs is one example.

U9.  US letter stamp values
When the US Postal service increases the postage rates they issue a stamp that has no value on it until
they are able to print “regular” stamps.  These “mystery” stamps are printed with Letters, A, B, etc.  Soon
everyone has forgotten what the letter values mean and this program was written to provide letter stamp
values because these old stamps turn up in the most unusual places.  The program is included here as an
example of ASCII encoding and the use of byte saving techniques.  Run  ‘SLTR’ and respond to the
prompt with a letter followed by ENTER.  The output is the input letter followed by the dollar value of
the stamp.

‘SLTR’   <<  “Stamp Letter?”  { α }  INPUT  “ ��´��OVER  NUM  8  SQ  -  DUP  SUB  NUM
                     1  %  SWAP  →TAG  >>

15 commands,  83.0 Bytes,  # 8B37h.

The string following  INPUT  is ASCII characters 15, 18, 20, 22, 25, 29, 32, 33 for stamps A – H.  Use
Build String, S1, to assemble this string.  Beginners will create the string first and type the program
around the string.  Of course you could use  CHARS.  If you enter a letter for which there is no value in
the coded string the input is tagged with zero as an output.  The sequence  8  SQ  is used in place of 64 in



Page 19 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

accordance with Table 1.  The sequence  1  %  is used in place of  100  /  and is a byte saving technique
(saves 8 bytes) of dividing by 100.   See Table 4.

U10.  Pre tax cost of product
Merchants often advertise “We will pay your sales tax”.  What is the cost of the item if the sales tax is
included in the quoted price?  The more mathematically minded person has no difficulty with this
problem and doesn’t need a program.  For those who have a need for this calculation this utility doesn’t
require any thinking.  The program assumes that the tax value is less than the cost of the item so the order
of the inputs doesn’t matter.  If you can remember to input the cost first, followed by the tax rate (in
percent) you can remove the first three commands.  In some countries the VAT tax may be high enough
that this feature is not practical.  The answer is rounded to the nearest cent.  The sequence  1  %  is a
shorter and faster 100 /.

‘BTAX’   <<  MAX  LASTARG  MIN  1  %  1  +  /  2  RND  >>
10 commands, 35.0 Bytes, # 579Ch

U11.  More meaningful random passwords
Many people like to have a random password generator rather than make up their own. The best advice is
to combine upper case, lower case, digits and special symbols, but that can make for very unmemorable
passwords.  It is often enough to use a string of 7 or more lower case letters - at least those make up
something that can be related as a foreign word!  The following program generates a string of 7 lower
case characters - change 7 to another number if you wish. It uses RAND 26 * 96.5 to generate the random
letter between a and z. 96.5 is used instead of 97 because CHR rounds to the nearest number. Totally
random letter combinations contain too few vowels, and too many letters from the end of the alphabet, so
I (wmj) add SQ after RAND to increase the likelihood of the early letters, which contain a higher
proportion of vowels. This makes for a higher proportion of readable words, though with too many "a"s in
them.  Run the program repeatedly until you find a password you like!

‘RPAS’  <<  ""  1  7  START  RAND  SQ  26  *  96. 5  +  CHR  +  NEXT  >>

13 commands, 61 bytes, F0B2h.  Timing: with π RDZ, ⇒ “htabbst” in 176ms.  Following: “aaekkga”, “sjatauz”.

U12.  File purge  protection technique
To protect variables from accidental deletion, put in their names the decimal separator that is not the one
you usually use.  For you or me (US & UK), that’s the comma:

                    level 2          level 1   →   level 1
                obj to store       ’name’

’PSTO’   <<  -51  →  f   <<  IF  f  FS?  THEN  f  CF  "."  +  OBJ→  STO  f  SF  ELSE  f  SF
                      ","  +  OBJ→  STO  f  CF  END  >>

System flag -51 is the decimal separator flag, change it if you need to.  To purge the variable you now
have to toggle the decimal flag - you can write a short program to do this again.  This is left as an exercise
for the reader.

U13.  Invert a flag
Input a flag number and ‘if’  will invert (toggle) its status.  Set becomes clear, and vise versa.

‘if’  <<  DUP  FC?C {  SF  }  {  DROP  }  IFTE  >>
5 commands, 32.5 Bytes,  # 6458h



Page 20 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

V  —  SYSEVAL  PROGRAMS

SYSEVAL is a unique command that causes program execution to start at a supplied address.  If the entry
point is wrong the system will most likely crash, lock up your machine, and frequently clear all of
memory (very bad!).  Using the SYSEVAL command is both powerful and dangerous.  Another reason
SYSEVAL is so powerful is additional speed.  This comes, in part, from not checking inputs.  User RPL
always checks the input for each command to protect the user from mistakes.

The most practical use of SYSEVAL is doing things you normally can’t do.  The HP49 has a powerful set
of “hackers” commands built-in so this category of programs have no use on the HP49.  If you key in one
of the programs in this category be sure to double check the SYSEVAL address (have your machine in
HEX mode) before you run the program.  These programs are not recommended for beginners, but are
included in this collection to provide the flavor of advanced HP48 (System RPL) programming.

V1.  Making an illegal name
There are times when you want to include illegal characters in a program or directory name.  Perhaps you
want to start a name with a number, etc.  This “problem” is solved with ‘SMENU’ .  Be sure to double
check the SYSEVAL address before running the program to avoid crashing your machine.  The  DUP
DROP  sequence insures that the SYSEVAL is not executed with an empty (safely errors) stack for a little
extra anti-crash security.

‘SMENU’   <<  “Type Special Menu Text”  { α }  INPUT  DUP  DROP  # 5B15h  SYSEVAL  >>

7 commands, 69.5 Bytes,  # 79D3h.

Program names ‘π24a’ and ‘π24b’ were created using ‘SMENU’ .  If you try to edit an ‘SMENU’  created
name (Type 6) it will most likely be converted to an algebraic (Type 9) by the HP48 operating system.

V2.  Generate a blank text string
An internal pair of SYSEVALs may be used to generate a string of n spaces when n is on level one.  This
code is used internally for spacing input forms, etc.

‘GS’   <<  # 18CEAh  SYSEVEL  # 45676h  SYSEVAL  >>

4 commands, 42.0 Bytes, 6052h. Timing: 10 in 28.0_ms, 30 in 57.4_ms, 100 in 182_ms., 500 in 1.79_sec.

This is a looping solution and is fast enough for a few spaces.  Compare with S2.  Not all system RPL
operations are faster than (some) slower, but more efficient, user code programs.

V3.  Position,  POS,  starting from the end
The normal  POS  command starts searching from the beginning of a string.  This system program starts
at the end.  ‘POSE’ expects a target string on level two and a find string on level one and returns the
position value where the level one string begins in the level two string.  If there are multiple occurrences
only the first one from the end will be found.

‘POSE’  <<  OVER  SIZE  # 18CEAh  SYSEVAL  # 645BDh  SYSEVAL  # 18DBFh  SYSEVAL  >>

8 commands, 61.5 Bytes,  # 7155h.

The internal command used,  #645BDh,  requires three inputs and  OVER  SIZE  is used to provide the
third one – the start position of the search.  If exploring SYSEVALS appeals to you be sure to see James
Donnelly’s excellent book, The HP 48 Handbook,, second edition, published by Armstrong Publishing



Page 21 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Company, 1050 Springhill Drive, Albany OR 97321, USA.  Especially see POS$ and POS$REV for two
very powerful commands for searching strings — page 154.

V4.  Exploring the HP48 Message Table
The HP48 has a large built-in text message table.  Jim Donnelly lists 429 internal text messages in The
HP 48 Handbook and gives 10 groupings of addresses for 555 more.  The message numbers listed by Jim
range from 1 to 59,144.   What is in between the values given?  What is beyond them?

The following program accepts a single message number or a range of message numbers, start and end,
and returns the text message(s) tagged with the message number.  Null strings are dropped.  There are lots
of messages to explore and discover with these programs.  Example messages are:  47505 ⇒ “Enter var
name or directory path”, 47390 ⇒ “Enter decimal places to display”, or 47489 ⇒ “63 Custom ENTER
on”.  The first program, ‘GETM’  uses two SYSEVALS to convert the input value to a binary integer,
BINT, and get the message.  The second program, ‘EXPM’  accepts a range of message numbers.  The
messages are placed on the stack for viewing or further processing.

‘GETM’   <<  # 18CEAh  SYSEVAL  # 4D87h  SYSEVAL  >>

4 commands, 41.0 Bytes,  # 8DA2h. 47505 ⇒  “Enter var name or directory path” in 35.3_ms.

‘expm’   <<  FOR  n  n  DUP  GETM   IF  DUP  “”  SAME  THEN  DROP2  ELSE  SWAP
                    →TAG  END  NEXT  >>

16 commands, 66.5 Bytes,  # 690h. Timing:  47361 to 47515 ⇒ 155 messages in 7.13_sec.
V5.  Hide menu
The above programs are potentially dangerous because you may accidentally use an invalid  SYSEVAL
address.  There is another danger.  Using an incorrect input or doing something the system wasn’t
intended to do.  This last program especially illustrates both the power and the danger of using
SYSEVALS.  You may hide the menus in your directory with a null name.  When a new variable is stored
it appears at the left end of the menu line.  When the name of a stored variable is a null name the system
thinks that the null name is the end of the directory.  A single SYSEVAL will generate the null name.
Store zero in this name to hide all the other variables in the menu line.  Before doing this make a list of
the variables you want to be seen and execute ORDER after you have hidden the menu names.

A hidden directory will behave just as if it were not hidden.  You can type a variable name and evaluate it.
You can purge variables, etc.  You will have to do this “blind” however.  Executing VARs, however, will
only list those variables added after you hide the menus.  DO NOT STORE THE NULL NAME IN THE
HOME DIRECTORY!  That will cause your machine to crash.  Below is ‘NN’  which is a simple
application of the single SYSEVAL.  ‘NN’ uses flag six to toggle between the hide and unhide state.  The
program also orders itself to always be visible.  Unhiding is faster than hiding.  The latter is dependent on
the slow ORDER command.  If you have lots of variables in your machine it may take several seconds to
hide a directory.

‘NN’   <<  # 15777h  SYSEVAL  IF  6  FS?C  THEN  { NN }  0  ROT  STO  ORDER  ELSE
                 PURGE  6  SF  END  >>

16 commands, 78.5 Bytes,  #B4D8h



Page 22 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

TABLE 1  —  Saving program bytes by using short form numbers for numbers 1 to 100 (2)

Savings SavingsNumber
Needed Make With Bytes %

Number
Needed Make With Bytes %

0 - ±9 0  —  ±9 (special, 2.5 bytes) 8.0 76% 55 7  →STR  NUM 3.0 29%
10 1  ALOG 5.5 52% 56 7 8 * 3.0 29%

P   11 LCD→  TYPE 5.5 52% 57 1  R→D  IP 3.0 29%
12 6  DUP  + 3.0 29% 58 1  R→D  CEIL 3.0 29%

P   13 6  7  + 3.0 29% P   59 “,”  NUM 2.0 19%
14 7  DUP  + 3.0 29% 60 5  3  %T 3.0 29%
15 7  8  + 3.0 29% P   61 “=”  NUM 2.0 19%
16 4  SQ 5.5 52% 62 “>”  NUM 2.0 19%

P   17 8  9  + 3.0 29% 63 7  9  * 3.0 29%
18 9  DUP  + 3.0 29% 64 8  SQ 5.5 52%

P   19 PICT  TYPE 5.5 29% 65 “A”  NUM 2.0 19%
20 5  4  * 3.0 29% 66 “B”  NUM 2.0 19%
21 7  3  * 3.0 29% P   67 “C”  NUM 2.0 19%
22 “ASCII  22”  NUM 2.0 19% 68 “D”  NUM 2.0 19%

P   23 “ASCII  23”  NUM 2.0 19% 69 “E”  NUM 2.0 19%
24 4  FACT 5,5 52% 70 8  4  COMB 3.0 29%
25 5  SQ 5.5 53% P   71 “G”  NUM 2.0 19%
26 “ASCII  26”  NUM 2.0 19% 72 8  9  * 3.0 29%
27 3  9  * 3.0 29% P   73 “I”  NUM 2.0 19%
28 4  7  * 3.0 29% 74 5  SINH  IP 3.0 29%

P   29 “ASCII  29”  NUM 2.0 19% 75 4  3  %T 3.0 29%
30 5  6  * 3.0 29% 76 “L”  NUM 2.0 19%

P   31 “ASCII  31”  NUM 2.0 19% 77 “M”  NUM 2.0 19%
32 4  8  * 3.0 29% 78 “N”  NUM 2.0 19%
33 “!”  NUM 2.0 19% P   79 “O”  NUM 2.0 19%
34 C $ 1 “  NUM 2.0 19% 80 5  9  %CH 3.0 29%
35 5  7  * 3.0 29% 81 “Q”  NUM 2.0 29%
36 “%”  NUM 5.5 52% 82 “R”  NUM 2.0 19%

P   37 “ASCII  37”  NUM 2.0 19% P   83 “S”  NUM 2.0 19%
38 “&”  NUM 2.0 19% 84 9  3  COMB 3.0 29%
39 “’” NUM 2.0 19% 85 “U”  NUM 2.0 19%
40 5  8  * 3.0 29% 86 “V”  NUM 2.0 19%

P   41 “ )”  NUM 2.0 19% 87 “W”  NUM 2.0 19%
42 6  7  * 3.0 29% 88 “X”  NUM 2.0 19%

P   43 “+”  NUM 2.0 19% P   89 “Y”  NUM 2.0 19%
44 “ ,”  NUM 2.0 19% 90 “Z”  NUM 2.0 19%
45 9  5  * 3.0 29% 91 “[”  NUM 2.0 19%
46 “.”  NUM 2.0 19% 92 “\”  NUM 2.0 19%

P   47 “/” NUM 2.0 19% 93 “]”  NUM 2.0 19%
48 6  8  * 3.0 29% 94 “^”  NUM 2.0 19%
49 7  SQ 5.5 52% 95 “ ”  NUM 2.0 19%
50 2  1  %T 3.0 29% 96 “`”  NUM 2.0 19%
51 3  →STR  NUM 3.0 29% P   97 “a”  NUM 2.0 19%
52 4  →STR  NUM 3.0 29% 98 “b”  NUM 2.0 19%

P   53 5  →STR  NUM 3.0 29% 99 “c”  NUM 2.0 19%
54 6  9  * 3.0 29% 100 2  ALOG 5.5 52%

Note:  (1)  1 to 255 may be generated by using “ASCII N” to save 2 bytes or 19%.  This is the recommendation in
                  the table if a shorter method wasn’t found.  If two methods were found of the same bytes, the fastest is
                  listed.
          (2)   Special thanks to Joseph Horn who double checked and updated the table.



Page 23 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Table 2  —  Working Vs.  Improved Stack Command Sequences, Ten-Second Marvels
Working Improved

#
S
L Sequence Bts

Tim
(ms) Sequence

Bts
 %

Tim
 %

1  1  {  } +  7.5  12.0  1 →LIST  33.3  54.8
2  1  “ ”  +  7.5  14.2  →STR  66.7  65.3
3  1  0 SWAP 1 SWAP  10  2.59  0 1 ROT  25.0  13.9
4  1  1 PICK  5  3.88  DUP  50.0  27.1
5  1  1 SWAP OVER -  10  4.14  1 – 1 SWAP  0  9.7
6  2  2 ROLL  5  3.97  SWAP  50.0  47.0
7  2  2 ROLLD  5  3.97  SWAP  50.0  47.0
8  2  2 PICK  5  3.87  OVER  50.0  48.6
9  3  3 DROPN  5  3.96  DROP DROP2  0  36.9

10  3  3 ROLL  5  4.00  ROT  50.0  47.0
11  3  3 ROLLD  5  4.08  ROT ROT  0  38.5
12  3  3 ROLLD + SWAP  10  21.2  ROT ROT + SWAP  0  7.1
13  3  3 ROLLD 3 PICK  10  6.27  DUP 4 ROLLD  25.0  29.2
14  4  3 ROLL 4 ROLL  10  6.35  ROT 4 ROLL  25.0  29.5
15  4  4 ROLL 4 ROLL SWAP  12.5  6.70  ROT 4 ROLL  40.0  33.3
16  4  4 DROPN  5  3.85  DROP2 DROP2  0  36.4
17  3  DROP SWAP DROP  7.5  2.70  ROT DROP2  33.3  8.9
18  2  DROP DROP  5  2.38  DROP2  50.0  14.3
19  3  DROP DROP DROP  7.5  2.73  3 DROPN  33.3  29.5
20  1  DUP 1 SWAP  7.5  2.51  1 OVER  33.3  16.7
21  2  DUP 3 PICK  7.5  4.38  DUP2 SWAP  33.3  43.6
22  2  DUP 3 PICK R ROLLD  12.5  6.74  DUP2 ROT  60.0  61.3
23  2  DUP 3 PICK SWAP  10  4.81  DUP2  75.0  55.1
24  2  DUP DUP 4 ROLL  10  4.91  SWAP OVER DUP ROT  0  30.3
25  2  DUP DUP OVER  7.5  2.86  DUP DUP2  33.3  12.0
26  1  DUP DUP DUP  7.5  2.86  DUP DUP2  33.3  12.0
27  1  DUP LASTARG  5  2.70  DUP DUP  0  8.9
28  2  DUP ROT ROT  7.5  2.83  SWAP OVER  33.3  17.3
29  2  DUP ROT SWAP  7.5  2.96  SWAP OVER  33.0  15.5
30  2  DUP2 DROP  5  2.47  OVER  50.0  18.6
31  2  DUP2 ROT DROP  7.5  2.85  OVER SWAP  33.3  12.6
32  2  DUP2 ROT DROP2  7.5  2.88  DROP DUP  33.3  15.6
33  2  DUP2 * ROT ROT + /  15  9.56  * LASTARG + /  33.3  6.8
34  2  DUP2 OVER SWAP  7.5  2.95  OVER LASTARG  33.3  8.5
35  2  DUP2 SWAP 4 ROLL  10  4.83  DUP ROT DUP  25.0  41.2
36  2  OVER OVER  5  2.48  DUP2  50.0  15.7
37  3  OVER OVER 4 ROLLD 4 ROLLD  15  7.17  DUP2 4 ROLLD 4 ROLLD  16.7  5.6
38  2  OVER OVER SWAP 4 ROLL  12.5  5.31  DUP ROT DUP  40.0  46.6
39  2  OVER ROT  5  2.50  SWAP DUP  0  10.4
40  2  OVER ROT DROP  7.5  2.87  SWAP  66.7  28.2

       



Page 24 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Table 2  —  Working Vs.  Improved Stack Command Sequences, … Continued 
Working Improved

#
S
L Sequence Bts

Tim
(ms) Sequence

Bts
 %

Tim
 %

41  3  OVER ROT ROT  7.5  2.82  OVER SWAP  33.3  12.8
42  3  ROT DUP 4 ROLLD 3 PICK 3 ROLL  20  9.45  ROT ROT DUP2 5 ROLL  37.5  42.9
43  3  ROT DUP 4 ROLLD 4 ROLLD  15  7.27  3 PICK 4 ROLLD  33.3  13.6
44  3  ROT 3 DUPN ROT ROT  12.5  5.24  ROT LASTARG  60.0  45.8
45  3  ROT 1 ROT  7.5  2.61  ROT 1 SWAP  0  1.1
46  3  ROT ROT DROP  7.5  2.96  SWAP DROP SWAP  0  2.0
47  3  ROT ROT SWAP  7.5  3.00  SWAP ROT  33.3  15.7
48  3  ROT ROT SWAP DROP  10  3.46  ROT DROP SWAP  25.0  16.8
49  3  ROT SWAP DROP  7.5  3.00  DROP SWAP  33.3  19.7
50  2  SWAP 1 SWAP  7.5  2.55  1 ROT  33.3  15.7
51  2  SWAP DUP ROT SWAP  10  3.40  OVER  75.0  42.4
52  3  SWAP DUP 4 ROLLD SWAP  12.5  5.30  OVER ROT 4 ROLLD SWAP  0  1.9
53  4  SWAP DROP SWAP DROP  10  3.32  ROT ROT DROP2  25.0  9.6
54  3  SWAP DROP SWAP DROP SWAP DROP  15  4.13  4 ROLLD 3 DROPN  33.3  34.1
55  2  SWAP OVER OVER SWAP  10  3.38  SWAP LASTARG  50.0  16.3
56  2  SWAP OVER SWAP  7.5  2.88  DUP ROT  33.3  10.1
57  3  SWAP ROT ROT  7.5  2.97  ROT SWAP  33.3  12.1

5

Note:  SL = Stack levels used for input.  Output stack levels vary.
           Bts = bytes for Working command sequences, Improved sequence values are in percent.
           Tim = Time to run, typically for symbolic inputs A, B, C etc.  Numeric inputs may be faster.
                      Working sequence values are in milliseconds, Improved sequence values are in percent.

The HP49 adds six new HP48 user code stack commands.  Table 3 shows how these commands may be
used in place of HP48 command sequences.

TABLE 3 — New HP49 Stack Commands (1)

HP48 Command Sequence New HP49 Stack Command
ROT  ROT UNROT

DUP  2  +  ROLL DROP ROLLD UNPICK
3  PICK PICK3

DUP  DUP DUPDUP
SWAP  DROP NIP (1)

2  SWAP  START  DUP  NEXT NDUPN
SWAP DROP ; (2)

        NOTES:  (1)  Names are based on traditional FORTH commands.  The meaning
  is not supposed to be obvious.

         (2)  The algebraic semicolon works in RPN mode, why not use it?



Page 25 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

TABLE 4 —  Programming Techniques Illustrated by the Program Collection

No. Application Typical Improved See
1 Convert decimal to percent. 100  * 1  SWAP  %T                      (1) A1

2 Restore loop counter, n. →  n  <<  n  1  START … -1
STEP…

1  SWAP  START … -1
STEP  LASTARG               (2)

3 Clear stack except level one.→  n  <<  CLEAR  n  >> DROP  CLEAR  LASTARG (3)

4
Largest of two levels on
level two. (to subtract?)

DUP2  <  {  SWAP  }  IFT MAX  LASTARG  MIN     (3) U4

5 Loop n – 1 times 1 -  SWAP START…NEXT 2  SWAP  START…NEXT (2) L16
6 Divide by 100 100  /  1  %                                     (2) U9
7

Notes: (1) Significantly faster.  (2) Significantly shorter.  (3) Significantly faster and shorter.

The weekly Friday evening HP48 programming class taught by Joseph Horn and Richard Nelson stresses
the values of short and fast programs.  The goal of the class is to explore programming techniques to
improve the basics.  Problems studied have been documented in class handouts and many of the programs
found here are from these handouts.  The format for these class exercises is to explore as many different
ways (typically 3 to 7 ) of solving a problem as possible.  Sometimes these problems are shared on the
HP48 news group and the responses are integrated into the class.  Table 3 provides the information
necessary to identify these informal materials.  If you would like a copy you may email a request to
rjnelson@aemf.org .

Table 5  —  HP48 Programming Class Handouts as a source for additional program details
Ref. Pgs. Title Date Fm Comments

A15 6
Solving single-variable quadratic Equations on the
HP48G/GX.

990601
W

15 equations solved,
equal, real, & imaginary

I3 5 Full screen Text on the HP48G/GX. 981023 W

L1-L19 40 Efficient HP48 List Usage From A to Z. 990405 W  144 programs.

M9 19 Recommended Weight Program Assignment 980807 W  31 programs. (Interface)

T7,8 6 Stopwatch Program. 980501 W
U3 40 Efficient HP48 List Usage From A to Z. 990405 W  144 programs.
U4 1 Convert Zero to One. 990709 W
U6 20 Efficient HP48 Stack Usage From A to Z. 990102 W  60 programs.
U7 2 Delta Percent (PE9). 970613 W

Note: Ref. - Program number. Pgs. - Number of printed pages.
Title - Name of program. Date - Six digit date of form YYMMDD.
PE# - EduCALC Programming Exercise
Fm. - Form of text; W-Word 6/95/97, T is Qedit text file with embedded HP DeskJet printer codes.

CONCLUSION

After nine years of HP48 programming the HP49 enhances what we know and love.  These programs
provide a program transition from the HP48 to the HP49.  One-Minute Marvels is intended to illustrate
the power of good programming to the new user.  Experienced users will also find a few clever
programming techniques to add to their own experience.  The variety of applications from many sources
and the number of programs should provide something of interest to every HP48 and HP49 user.



Page 26 of 26

HHUC99 Conference, HP Vancouver.      One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

The authors thank Joseph Horn, Jeremy Smith, and Brian Walsh for their contributions and suggestions
for better programming — not only for this collection, but for many years of contributions to the
community.

August 1999                       Wlodek Mier-Jedrzejowicz   Richard J. Nelson

EPILOG

A few comments regarding the HP49.  Some users had high hopes that the HP49 would be a whole new
generation machine.  These users may be quick to dismiss the 49 as “not much new’.  This could not be
further from the truth, and any user who makes such a statement had better look first.  The HP49
represents a new approach to designing a calculator.  HP has taken advantage of ten years of HP48 user
experience and adapted these achievements into a machine of incredible mathematics power.  Yes, we
will continue to use Maple and other computer based programs for “serious” math, but it is difficult to do
this while on a mountain climbing vacation at 29,000 feet or in the park doing your math homework
taking a break from jogging.

All HP high end scientific calculators have had one outstanding quality.  They have been so powerful that
they are never fully mastered by the user community.  Even when we have ten years and hundreds of
thousands of users banging keys, we hear reports of new discoveries by the “collectors” of the obsolete
models.  The user community has always amazed HP by their accomplishments.  What HP48 designer
would believe the performance of real time 3D wire frame rotation that we see on the HP49 today?  What
HP48 designer would predict the use of gray scale photos on the HP48?  These accomplishments are
possible because of the quality and well thought out features HP machines provide.  This is the prime
reason we buy HP.

The HP49 extends the complexity and feature set of the HP48.  We haven’t come close to mastering the
HP48 as a community.  The internet has helped everybody get up to speed faster and it will continue to
play a vital role for users getting the most of the HP49.  Today’s machines are so complex and so
powerful that it takes a great deal of time to become familiar with the many features and commands.  We
believe that HP could not have made a better choice in adapting the achievements of the user community
and enhancing these ideas to make them even better.  Moving up a less steep learning curve from the
familiar to the new will make all of our lives easier and better.  The scary thought is:  What will we do
when HP makes a “quantum” leap to the next generation?  Let’s enjoy a smooth transition now and
sharpen our skills, especially math, with the 49 to be ready for that day.  There is no rush.  Thanks HP.

Conference attendees are more likely to be skilled programmers.  Apply your skill to the following
program which solves  A3B – AB3.  Reduce it to seven commands.  A and B are on the stack.

‘IMPROVE ME’   <<  DUP  3  Y^X  ROT  DUP  3  Y^X  ROT  ROT  *  ROT  ROT  *  SWAP  -  >>

14 commands, 47.5 Bytes, 869Dh, Timing: ‘A’, ‘B’ inputs in 120_ms.

‘BETTER’   <<                                                                                                        >>

7 commands,  27.5 Bytes, # 79C6h,  (rjn) Timing: ‘A’, ‘B’ inputs in  114_ms.
  or 7 commands,  27.5 Bytes, # D166h, (bpw) Timing: ‘A’, ‘B’ inputs in 117_ms.
or 7 commands,  27.5 Bytes, # 72B5h , (jkh) Timing:   ‘A’, ‘B’ inputs in 114_ms


