One-Minute Marvels
(A collection of short HP48/49 Programs)
By Wlodek Mier-Jedrzejowicz and Richard Nelson

INTRODUCTION

Early HP high end cal culators were very limited in the amount of available user program memory. Small
memory machines could only run short programs and writing down and keying in short programs was not
much of aproblem. Asmemory and program complexity increased, users became less willing to key in
programs. Externa storage in the form of magnetic cards, bar codes, and serial ports solved the problem.
By the time the HP48 arrived on the scene in 1990 the use of printed programs was disappearing. Of the
many books published for the HP48, very few contain program collections.

Users of the latest machine, the HP49, with itsinternet compatibility, probably won’t even think about

printed or “listed” programs. They will simply transfer programs to and from their PC connected to the
internet. Still, having a program printed on a piece of paper is useful. This collection of 100 short (about
100 bytes or less) programs is cal@ak-Minute Marvels because it is possible to key in a 100-byte

program in about a minute. These programs were chosen because they represent the more unusual aspe
of HP48/49 programming. Slightly longer programs are included if text is used for prompting or labeling.
Omit the prompts and the core program qualifies as “short”. We hope that new users will be encouraged
to key in a few of these programs and discover the fun of programming for themselves. Each program, or
algorithm in program form, has the following information as appropriate:

A. Name, Title, Classification. F. Comments, why selected: speed, example of
B. What it does, description. good programming, small size, unique

C. Inputs and outputs, (arguments). solution, etc.

D. Program listing. G. Source and author (if not Wlodek or Richard)
E. Program statistics: number of commands, if known.

bytes, check sum, execution time.

This collection of programs is divided into eight categories: A-Mathematics, I-Input/Output, L-List
Programs, M-Miscellaneous, S-String Programs, T-Time and Date, U-Utilities and V-SYSEVAL
programs. The authors thank HP for printiwge-Minute Marvels for the 1999 HP Hand Held User’s
Conference.

PROGRAM NOTES

Variables not native to the HP48/49 lhobd and checksums are in Hexadecimal for the HP48.
Program commands referenced in the text are underlined for easy user reference/changes.

Last Argument is usually assumed active (normal, default setting).

When in doubt use STD display mode. Some programs may alter the machine display mode.
Lower case program names are used to avoid conflict with machine used names.

Timing values are not provided for non-repeatable situations such as prompting programs

or those involving menu changes.

The programs are divided into categories and numbered. A category prefix letter is added for ID.
48PCH is an HP48 Programming Class Handout from six years of EQUCALC/Abby HP 48
weekly Programming Classes conducted by Joseph Horn and Richard Nelson. Much greater detail
may be found in these handouts. Email Richard or Joseph to request copies. See table five.

oukwhE

© N

Page 1 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

CONTENTS

Mathematics ID Pg Miscellaneous ID Pg
NeXt primecoovvvviiiee e Al 3 Roll a pair of dice, m.noooel. M1 10
Prime factorscoooovviiiii i, A2* 3 Move menutoendcoeeiiiiiiiiiinneann. M2* 10
Combinationscccoeviiii i A3 4 SOrt direCtoryoovveiieiiieeieiie e M3 11
GCD e Ad* 4 Sort directory (directories first) M4 11
LCM A5 4 Clear solver variablescoo v M5 11
Logtoanybaseooiiiiii A6* 4 Random selection without replacement M6 11
Permutationscooiiiiiii i, A7 4 Seejunkindisplaycoooiiiiiiii, M7 11
Weighted averageccooevvennne. A8 4 Telephone memory aid text to telephone no.. .. M8 11
Ulam’s Conjectureccvvvneiennns A9* 5 Body Mass Index, BMI................oooe i M9 12
MOD functionsccc.cceeeienn A10 5 String Programs
Rounding three ways......................... A1 5 Build atextstringcccooviiiiiiiiinnnns S1 12
Hamming weight binary ng#of 1 BITS) A12 5 Generate atext Stringcccoceevviiennnn. S2 12
Extracting 24 digits oft..................... Al13* 6 Replace Nulls with > (ASCII 134) S3 12
Benford’sLawccccovviieiii e, Al4 6 Replace®” (ASCII 134) with Nulls S4 13
Quadratic Equationo...e. Al5 6 Decode string with ASCII number list S5 13
Number of BITS for decimal number...... Al6 6 Reverse the order of string characters S6 13
Random numbers required to sem...... Al7 6 Split a string into two parts S7 13
I_nput/output Insert character(s) into a split string S8 13
Remove duplicates................coeeeeenes 11 6 Convertastringtoaname S9* 13
Keyboard keycode to sequential number .. 2 7 Time & Date
Maximum text on the screen I3 7 Friday thd'13............coeii i, T1 14
Press “Any” key to continue 14 7 Testforleapyear..........oooveiiiiiiiiiinnnns T2 14
List Programs Day of WeeKcoovviiiiiiiiie T3* 14
Keyboard keycode to digit L1 8 Nth day of week fromdate T4 14
Randomize alistcoocoeiiins L2 8 Nth day of week of month T5 15
Remove anelemento..e L3 8 Chinese new year..........cccoevviiniennnnen. T6 15
Remove a series of elements L4 8 Electronic stopwatchcoiiiiiinns T7 15
Exchange two positions L5 8 Electronic stopwatch time units T8* 15
Rotate elements right one element L6 8 Alarms ... T9* 15
Rotate elements left one element L7 8 Shorter tine String, TSTR ... T10 16
Rotate elements right N elements L8 9 Qtilities
Rotate elements left N elements L9 9 Convert zeroto ONecovviviiiiiiicienanes ul* 16
Fill a list with zeros (or digit1-+9) L10 9 Toggle flags one and two uz2 16
Calculate average of list elements L11 9 Reverse stack orderccooovieii i, Uus 16
Calculate % of total of list elements L12 9 Delta Percentcoovvviiiiiiiiiiii e U4 16
Calculate Median of list elements L13 9 Horizon distancecccooviiiiiiiiiinanes us 17
Testalistforrealscooeenn. L14 9 Rename a programccoeeiiviienneennns ue 17
Replace list object with another L15 10 Temperature Conversion u7z 17
Return lowest (highest) value L16 10 Simple numeric ID, “register”, data base ..x*.. 183
Insert an elementintoalist L17 10 US letter stamp valuesccoeenne. uo 18
Make atestlist LtONccoviennnnnn. L18 10 Pre-tax cost of product............................. ulio 19
Make atestlist AtoZee. L19 10 More meaningful random passwords............ ull 19
Tagelementsinalist........................ L20 10 File purge protection technique.................. Uiz 19
Invert (toggle) aflag..........coooeieiiiiiiinints Uul3 19
* - Multiple programs, *=2, **=3
Page 2 of 26

HHUC99 Conference, HP Vancouver.

One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

CONTENTS, CONTINUED

SYSEVAL Programs SYSEVAL Programs
Makeanillegal name........................ V1 20 Exploring the HP48 Message Table.............. V4* 20
Generate a blank text string V2 20 Hide menu..........coooiiiiii e, V5 20
Position, POS, starting from the end...... V3 20
Tables No. Pg Section Pg

Saving program bytes by using short form numbers for numbers 1 to 100..21 CONCLUSION.. 25
Working Vs. Improved Stack Command Sequences, Ten-Second Marvéls.22 EPILOG.......... 26

New HP49 Stack Commands Shorten HP48 Programs................c.ccve... 3 24

Programming Techniques Illustrated by the Program Collection.............. 4 25

HP48 Programming Class Handouts for additional program details........... 5 25

A — MATHEMATICS PROGRAMS

Jeremy Smith heard we were putting together a collection of programs. Hereis his response.

“One-Minute Marvels are unrequited built-in functions. The 48 has a gazillion functions, so rather than
adding more, you roll your own to suit. | had Jim Donnely’s first book, and annotated it with such
functions, amongst other things. | bumped into him at the bookstore one day, and he wanted to include
my annotations in his next version (the present version). He added lots of the features, but not the little
routines. The followingA1-A8) consists of those routines, which still annotate my new book, listed right
along with the built in function table.”

“One-Minute Marvelsis an excellent name for these. Previoudly caled, varioudly, tricks, tips, and
routines in 25 bytes or less, this catchy name is likely to become one of those online self-enhancing lists,
like a FAQ.”

“Some of the following are more than 100 bytes but good programmers will have a blast shoe-horning
them into < 100 bytes.”

“I've not timed the commands, nor measured many of them, since many of them aren’t in my machine; |
keyed them in from my book notes. Warning: this means that | haven’t run and re-tested them since man
years ago. They should really be gone over. I've added other notes in addition to programs. I've
attributed programs where | know them.”

Al Next Prime (Joe Horn, Brian Walsh)

Enter any integer n (greater than 0) and pregs ‘The origina n will be raised to level 2, and the first
prime factor of n will be placed in level 1. To find the next factor, you can press / and then runrp’
again.

‘np’ << DUP vV - s << DUP 2 MOD { 3 WHILE DUP2 MOD OVER s <
AND REPEAT 2 + END DUP s > { DROP DUP } IFT } 2 IFTE >> >>

31 commands, 108.5 Bytes, #A114h.
A2. Prime Factors (Joe Horn, Brian Walsh)

If you want to find all the prime factors of n, rysf”. It replaces n with a list of its prime factors. (Catig’*
above.)

Page 3 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘pfa’ << { } SWAP DO np ROT OVER + ROT ROT / DUP 1 SAME UNTIL END
DROP >>
16 commands, 55.5 Bytes, #2E8h. Timing: 270 { 3 3 3 } in161_ms.
Here is another variation.

pfb’ << { } SWAP DO np ROT OVER + ROT ROT / 1 OVER MOD NOT UNTIL
END DROP >>
17 commands, 58.0 bytes, # 267h, Timing: 27 /7 { 3 3 3 }in165_ms.

A3. Combinations
comb(n,r) replaces all comb(n,r) with n!/(n-r)! * r! according to the mathematical definition.

‘comb’ << {’comb(&A &B) '&Al/(&A-&B)*&BI'} tMATCH >>

7 commands, 93.0 Bytes, #F798h.
A4. Greatest Common Divisor. Two versions

‘GCDa’ << WHILE OVER MOD DUP REPEAT SWAP END DROP >>
8 commands, 30.0 Bytes, # 15B3h, Timing: 1071, 459 /7 153in 18.4 ms.

‘GCDb’ << WHILE DUP2 REPEAT MOD SWAP END DROP2 >>
7 commands, 32.5 Bytes, # 2FA6h, Timing: 1071, 459 /7 153in 27.5_ms.

A5. Lowest common multiple (uses GCD above)

‘LCM’ << DUP2 GCD [/ * >>
4 commands, 25.0 Bytes, # 6288h. Timing: 1071, 459 /7 3213in 26.9_ms.
A6. Log to any base

LG(2,5) - log5 or X alg - logaX

LG << - b x 'LOG(X)/LOG(b) >>
4 commands, 43.0 Bytes, # 27F8h, Timing: 2, 15 /7 0.55958024809 in 28.9_ms.
g0 << SWAP LN SWAP LN / >>

5 commands, 22.5 Bytes, # 3147h, Timing: 2, 15 /7 0.5595802481 in 17.8_ms.

A7. Permutations
perm(n,r) replaces all perm(n,r) with n!/(n-r)! according to the mathematical definition.

‘perm’ << { ‘perm(&A,&B)’ '&Al/(&A-&B)! '} tMATCH >>
7 commands, 82.5 Bytes, #4211h.
A8. Weighted Average (Joe Horn)
[weights] [data] — weighted mean
eg. [20202040][75808590] - 84
(total=100%) scores — result

'WTAV' << OVER DOT SWAP CNRM/ >>
5 commands, 22.5 Bytes, # CAC5h, Timing [20 20 20 40], [75808590] /7 84in 70.6_ms.

Page 4 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

A9. Ulam’s Conjecture (Joe Horn)
Professor Ulam says thisis not hisidea, but many math students have seen this conjecture. It states that
given any integer if you repeatedly apply one of two operations on the number, and the result, you will
eventually reach one. The operations are:

1. If odd, multiply by three and add one.

2. If even, divide by two.

Takethefirst interesting integer, 3. Theresultant valuesare: 300 10, 5, 16, 8, 4, 2, 1. The “Ulam”

process was applied seven times. Note that when a power of two is reached the sequence directly divides
by two, repeating operation 2, to reach one. The two programs below provide the basic Ulam values.
‘ULAM’ appliestherules and returns the next value in the series. ‘ULM’ repeatedly applies ‘ULAM’

until one is reached keeping count of how may times‘ULAM’ is applied.

‘ULAM’ << IF DUP 2 MOD THEN 3 * 1 + ELSE 2 / END >>
13 commands, 52.5 Bytes, # 2F47h. Timing: 27 [7 82in12.7_ms.

‘ULM’ << 0 OVER DO ULAM SWAP 1 + SWAP UNTIL DUP 1 SAME END DROP

SWAP - TAG >>
16 commands, 55.0 Bytes, # FBE2h. Timing: 27 /7 111in 2.78_sec.

A10. High-precision remainder (Joseph Horn)

The algorithm HP uses for their MOD function is very high precision, higher than “normal” division.
This may be used to advantage when high precision remainders are required. ‘RMD’ returns the
remainder of level two divided by level one.

‘RMD’ << MOD LASTARG DUP SIGN ROT SIGN£ * - >>
9 commands, 32.5 Bytes, # EDE2h. 987654321, 0.123456789 /7 0.111111192in17.9 ms.

A1l. Rounding threeways Ten-Second Marvels (Joseph Horn)

1. Round obj2 “up” to a multiple of obj1:'UP’ << SWAP OVER / CEIL * >>
Examples: 153 25 ‘UP’ 0O 175
167 25 ‘UP’ O 175

2. Round obj2 “down” to a multiple of objIDOWN’ << OVER SWAP MOD - >>
Examples: 15325 ‘DOWN’ [0 150
167 25 ‘DOWN’ O 150

3. Round obj2 to the “closest” multiple of obfNEAR’ << SWAP OVER / 0 RND * >>
Examples: 15325 ‘NEAR’ O 150
167 25 ‘NEAR’ [0 175

Al2. Hamming weight of binary number (# of 1 BITS) (Jurjen NE Bos)

‘BITS << #7777777777777777h OVER SR OVER AND DUP2 SR AND ROT OVER
SR AND + + - DUP SR SR SR SR + #FOFOFOFOFOFOFOFh AND #FFh
DUP2 /| * - >>

28 commands, 111.5 Bytes, # 4169h

Page 5 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

A13. Extractingfirst 24 digits of 1t (Joseph Horn)

‘Tt returns the correatounded 12 significant digits (ending in 9) af The HP48 uses 31 digits internally
for its floating point trigonometry functionsr24a’ uses a trigonometry function found by Joseph Horn

to return 1tto atruncated 12 digits (ending in 8) by using 0 ACOS 2 * (in radian mode) as an input to
SIN, to essentially extract 24 (limit of keyboard input) of the 31 internal digits. ‘T24a’ isthe basic

program. ‘1R24b’ is the “fancy” version. The name is created usSSiENU’ found in the SY SEVAL
Programs category. Store 1trelated programsin a directory named, 11, created with ‘'SMENU’ as well.

‘Tk4a’ << RAD 0 ACOS 2 * DUP SIN MANT DEG >>
9 commands, 32.5 Bytes, # 6449h. Timing: 3.14159265358, 9.79323846264 isreturned in 20.3_ms.

‘T24b’ << RCLF 0 ACOS 2 * DUP SIN MANT 100000000000 * - STR SWAP STOF >>
13 commands, 55.5 Bytes, # 1F95h. Timing: “3.14159265358979323846264" is returned in 47.1_ms.

Al4. Benford’'s Law

Given enough data without artificial restrictions the percentage distribution of leading digits1to 9is
predicted by Benford's LawBEN’ leavesthe machinein STD mode. Only digits1to 9inputis

allowed. This program is an example of making a simple program “fancy”. The output is rounded to
three significant figures. Underlined commands convert decimal to percent (faster, fewer bytes than
1007/).

‘BEN’ << STD “Digit* DUP “?” + “ INPUT OBJ. MANT IP DUP NOT+ DUP INV
1 + LOG 1 SWABGT -3 RND “%” + “is“ SWAP + + + >>

30 commands, 109.0 Bytes, #1EF4h

A15. Quadratic equation (Eric Lane)
Solving AX + Bx + C =0, AZ0, is fast withiquad’. Input A, ENTER, B, ENTER, C, ENTER, ‘quad’

‘guad’ << 3 PICK / SWAP ROT -2 * / DUP SQ ROT - Vv + LASTARG - >>
16 commands, 50.0 Bytes, # 94B5h, timing: 12, 36, -48 [7 x=1, x=-4in 24.3_ms.

A16. Number of BITS for decimal number (Joseph Horn)
Thisin an unusual (looping) approach.

‘NBIT" << 01 ROT FOR c 1 + c STEP >>
9 commands, 36.5 Bytes, #17BCh. 1024 /7 11in 66.8_ms.

Al7. How many random numbers are required to be to n? (Detlef Muller)
This is a unusual application of START...STEP.

‘NRN" << 0 0 ROT START 1 + RAND STEP >>

8 commands, 30.0 Bytes, # 43DCh.
| — INPUT/OUTPUT, I/O

1. Keyboard keycodeto diqit
When ‘K - D’ runs nothing seems to happen. The machineiswaiting for akey to be pressed. If any key
other than a digit key is pressed “nothing happens”. You will know the machine is responding because

Page 6 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

the busy annunciator will turn on briefly. When you do press adigit key that digit will be returned. This
may be used with a display “menu” type prompt for a zero to nine choice.

‘K -D’ << -7 DO DROP 0 WAIT UNTIL “\RSTHIJ>?@" SWAP IP CHR POS DUP
END 1 - >>

15 commands, 60 Bytes, # 82DEh.

The —7 is a dummy variable for the DO loop to avoid cluttering up the stack with the keycodes of non-
digit keys. The text string is the ASCII characters of the digit keycodes.!SEee

[2. Keyboard keycode to seqguential number(Joseph Horn)

The ZERO WAIT sequenceisvery powerful for use with screen (DISP) prompts because the machine
waitsfor akey pressin alow battery drain state. Thisisunlike KEY which leaves the machine running.
It isuseful to convert the A through X key keycodes into sequential numbers 1 through 24 with ‘K - S’.

‘K-S << 0 WAIT 10 MOD SWAP 10/ IP1-6* + IP >>
14 commands, 63.5 Bytes, # D8D7h.

TABLE 12 — “A” through “X” HP48 Keycodes

Key In Out|Key In Out]Key In Out|Key In Out]Key In Out]Key In Out
A 111 1 E 151 5 I 231| 9 M | 311 13 Q 351 17 U 431 21
B | 121 2 F 161 6 J | 241 10 N 321 14 R 361 18 vV |41 22
C 131 3 G 211 7 K 251 11 O 331 15 S 411 19 W 451 23
D 141 4 H 221 8 L 261 12 P 341 16 T 421 20 X 461 24

‘K - S’ works for keys past the “X” key except it “counts” the ENTER key twice. It also “skips” keys
after the three shift keys. The + key returns 53. The sequential number may be used to GET something
from a list, SUB a character from a string, etc.

3. Maximum text on the screen

Size one font (small menu font) may be used to display text (with an upper case only restriction) if it is
converted to a graphics object first. WHIESP’ islonger than 100 bytesit is so useful for those big text
notes, names, addresses, etc. that it had to be included in this collection. Y ou only need one copy of DSP

in HOME for all of your text strings.

‘DSP’ << STD OBJ- #83h #40H BLANK SWAP 1 -6 * 0 FOR s #0h s R-B
2 -LIST ROT 1 2 -LIST ROT 1 -GROB REPL -6 STEP PICT STO
{ #0h #0h } PVIEW 0 FREEZE >>
35 commands, 149.0 Bytes, # 4476h.

‘DSP’ expectsalist of text strings. Each string may be up to 33 characters (longer strings are truncated).
Ten strings are all that will fit on the screen, the eleventh string is only partialy displayed. Lower caseis
converted to upper case. To store text messages in your HP48 you key the text as a program using the
format: << { “lineong’ ... “lineten” } DSP >>

4. Press “any” key to continue (clear)

You have seen the computer screen message “Press any key to continue”. Of course they damyt mean
key. Shift, etc. doesn’t work. A similar input response may be programmed on the HP48. It may be used
at the end ofDSP’ above in placeof O FREEZE. The shift keys (a, left and right shift) do not

respond. The ON key does, however.

Page 7 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘AKEY’ << IFERR 0 WAIT THEN END DROP >>
6 commands, 35.0 Bytes, # 31C3h.

This 1/O option takes advantage of the “half” keystroke. If the search and press times are approximately
equal, pressing the same key twice in succession saves the second key's search time. This gives a value
of 1-1/2 keystrokes to clear the screen and start the next operation.

L — LIST PROGRAMS
Many of these list programs are from an HP48PCH. See Table 5 for details.

L1. Removeduplicates. (Joseph Horn)

‘RDUPS’ << LIST- { } 1 ROT START SWAP IF DUP2 POS THEN DROP
ELSE + END NEXT >>

14 commands, 50.0 Bytes, #4A55h. Timing: 64 elements with 16 duplicates removed in 0.904_sec.

L2. Randomize a List
‘RANL’ << LIST- - t << 1t FOR n n RAND * CEIL ROLLD NEXT t =LIST >> >>

16 commands, 62.5 Bytes, #1F8Ch. Timing: 100 elementsin 1.52_sec.

L3. Remove an element
Given alist on level two and a position number on level one, ‘REL’ will remove an element.

‘REL" << SWAP LIST- 2 + DUP ROLL OVER SWAP - ROLL DROP 3 - - LIST >>
14 commands, 45.0 Bytes, #849Eh. Timing: #13, Ato Z in 38.4_ms.

L4. Remove a series of elements

Given alist on level three and two position numbers on levels two and one, ‘RSL’ will remove the
elements between the two position numbers.

‘RSL’ << 3 DUPN DROP 1 - 1 SWAP SUB 4 ROLLD SWAP DROP 1 + OVER
SIZE SUB + >>

18 commands, 55.0 Bytes, #ABEDh. Timing: { A...E }, 2, 4 in 31.5_ms.

L5. Exchangetwo positions

Given alist on level three and two position numbers on levels two and one, ‘ETP’ will exchange the
elements of the two position numbers.

‘ETP’ << ROT DUP 4 DUPN DROP ROT GET PUT 4ROLLD SWAP GET PUT >>
13 commands, 42.5 Bytes, #1BA9h. Timing: { A...E}, 1,4 in 61.7_ms.

L 6. Rotate d ementsright one element
‘RR1" << LIST- ROLLD LASTARG LIST >>

4 commands, 20.0 Bytes, #9D6Dh. Timing: { A...Z} in 29.4_ms.

L7. Rotate e ementsleft one e ement
‘RL1" << LIST- ROLL LASTARG = LIST >>

4 commands, 20.0 Bytes, #A32'1h. Timing: { A...Z} in 29.3_ms.

Page 8 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

L8. Rotate dementsright N elements

Given alist on level two and the number of elements to rotate right on level one, ‘RRN’ will rotate the
elementsin thelist.

‘RRN" << SWAP LIST- DUP 2 + ROLL 1 - OVER MOD 1 + 1SWAP START ROLLD
LASTARG NEXT -LIST >>

19 commands, 57.5 Bytes, #E51Ch. Timing: { A...Z }, n=5in 0.689 sec.

L9. Rotate eementsleft N elements

Given alist on level two and the number of elements to rotate |eft on level one, ‘RLN’ will rotate the
elementsin thelist.

‘RLN’ << 1 + OVER SIZE SUB LASTARG DROP 1 - 1 SWAP SUB + >>
13 commands, 42.5 Bytes, #FC43h. Timing: { A...Z }, n=5in 0.0569 sec.

L10. Fill alist with zeros (or digit 1-9)

Given area number of zeros on level one, ‘LNO’ will create alist of N zeros. Use short form digits+1 to
+9in place of 0 in the program if desired.

‘LNO* << 1 -LIST 0 CON ARRY -~ EVAL -LIST >>
7 commands, 27.5 Bytes, #6535h. Timing: 100 in 0.203_sec.

L11. Calculate average of list elements
Given alist of reals, ‘LA’ returns areal that is the average of the valuesin thelist.

‘LA’ << ZLIST LASTARG SIZE |/ >>
4 commands, 23.0 Bytes, #2CFOh. Timing: 1to 100 in 0.406_sec.

L12. Calculate % of total of list elements

Given alist of reals, ‘L%’ returnsalist that isthe element for element percent of the total of the el ements
inthelist.

‘L%’ << ZLIST LASTARG %T >>
3 commands, 20.5 Bytes, #CE45h. Timing: {5 10 15 20 } in 112 ms.

L13. Calculate median of list elements
Given alist of reals, ‘LM’ returns ared that is the median of the e ementsin thelist.

‘LM’ << SORT DUP SIZE 1 + 2 / GET LASTARG FLOOR GET + 2/ >>
14 commands, 48.0 Bytes, #71CCh. Timing: 1t09 in 0.227 sec., 1t010in 0.360_sec.

L14. Test a list for reals
Test alist for all elementsbeing reals. Return 1 if true, O if not.

‘TLR’ << 0 IFERR MOD THEN SWAP DROP ELSE DROP 1 END >>
10 commands, 45.0 Bytes, #1F8Ch. Timing: 100 dementsin 0.505_sec.

Page 9 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

L15. Replace alist object with another (or others)

‘RPL" << - pr << LIST- - t<<tl+ p-ROLL LASTARG r SWAP ROT DROP
ROLLD t S LIST >> >> >>

22 commands, 84.0 Bytes, #4B76h. Timing: 104 elementsin 0.115_sec.

Timing is made with alist created by ‘MLA’ withthe2 / FLOOR element replaced with atwo element
list: { “XXX” # AFh }.

L16. Return lowest (or highest) value of alist
‘RLV’ << LIST- 2 SWAP START MIN NEXT >>

6 commands, 25.0 Bytes, #D57Ch. Timing: 1to 100 in 0.457_sec.

Replace MIN with MAX for the highest valuein thelist.

L17. Insert an element into a list
IEL’ << - pr << LIST> 5 t<<rt2+p-ROLLDt1+ SLIST >> >> >>

19 commands, 76.5 Bytes, #F0BDh. Timing: “X" is inserted in the “middle” of 100 elements in 0.103_sec.

L18. Makeatestlist 1toN
‘MLN’ . << 1 SWAP FOR n n NEXT DUP -LIST >>

8 commands, 34.0 Bytes, #5DDh. Timing: 100 elementsin 0.394 sec.

L19. Make atestlist Ato Z

‘MLA” << - n<<{ A..Z} 1n26/CEIL LN 2 LN/ CEIL START DUP + NEXT
1n SUB >>

21 commands, 198.5 Bytes, #62B9h. Timing: 100 elementsin 0.120_sec., 500 in 0.408_sec.

If the input exceeds 26, A to Z isrepeated asrequired. This program isvery fast, especialy for large lists.

L20. Tag elements in a list
Run this program with alist on the stack and it returns alist with the elements tagged with the element
position number.

TAGL' << 1 OVER SIZE FOR n DUP n GET n -TAG n SWAP PUT NEXT >>

14 commands, 53.0 Bytes, 8927h. Timing: { ABCDEFGH} J {:1:A:2.B:3:C:4:D :5E:6:F:7:G:8:H}in378_ms
M — MISCELLANEOUS PROGRAMS

M1. Roll apair of dice, m.n
‘DICE’ << 1 2 START RAND 6 * CEIL NEXT 10/ + >>

11 commands, 45.5 Bytes, # Adl. Timing: 26.5 ms.

M2. Move menu to end (Ten-second Marvel)

Pressing VAR displays the current user variable menu. Frequently menu variables at the far |eft of the

menu line are not the most used and you want them “out of the way”. One solution is to move them to the
far right end. ‘M2E’ moves the first menu variable to the right end. Keep in HOME, put in custom if
desired.

Page 10 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘M2E’ << VARS TAIL ORDER >> 3 commands, 26.5 Bytes, # B5Bh.

A more versatile version below allows the variable (one only) to be in alist when the programis run.
This variation also returns to the menu where the program is run.

‘M2Eb’ << RCLMENU - m << IF DEPTH THEN IF DUP TYPE 5 SAME THEN
ORDER END END VARS TAIL ORDER m MENU >>
21 commands, 86.0 Bytes, # 971Fh.
M3. Sort directory (Ten-second Marvel)

Sorts the current directory into ASCII order. Called ‘ZD’ “Zort Directory” to put itself at the far right
end so you will know where it is.

‘ZD’ << VARS SORT ORDER >> 3 commands, 23.5 Bytes, # C67Ah.

M4. Sort directory (directories first)
‘ZDF’ << 15 TVARS SORT VARS SORT + ORDER >>

7 commands, 44.5 Bytes, #A64Dh.
M5. Clear solver variables (Ten-second Marvel)
‘CSV’ clearsthe variables created when the solver isrun. Keep in HOME and include in your solver list
for fast easy “clean up” when you are done solving. The program eleagals type 0, complex
numbers type 1, and Unit objects type 13.

‘CSV' << { 01 13} TVARS PURGE >> 3 commands, 35.5 Bytes, # E836h.

M6. Random selection without replacement(Joseph Horn)

This program is typically used to deal hands from a deck of cards. It returns arandom list of n items from
atota of t items. Inputist, ENTER, n, ‘DEAL’ .

‘DEAL" << - tn<<1t FOR x x DUP RAND * CEIL ROLLD NEXT t n - DROPN

n —LIST >>>>
22 commands, 81.0 Bytes, # 7B14h. Timing: t=52, n=30in appros. 0.75_sec.

M7. See junk in display (Detlef Miller, clears PICT, suggested by Jeremy Smith)

'dis << {#0h #0h } PVIEW PICT PURGE 0 WAIT DROP >>
8 commands, 63.5 bytes, #A344h.

M8. Telephone memory aid text to number

The telephone keypad has three letters associated with each digit. Using these letters it is possible to
create a word or phrase to serve as a memory aid to remember a seven digit telephone number. Example
are EJuCALC, HOTmama, and MyLawyer. Decoding the text and producing the telephone number was
the HHC98 programming contest problem. James Unterburger came up with the winning program that
was both the shortest and the fastest as determined by multiplying the program bytes and the execution
time. For purposes of the contest Q & Z were assigned to zero. In practice they may also be assigned to
the one digit.

TABLE M1 — Telephone digit and corresponding letters for HHC98 Programming Contest

Letters ABC | DEF | GHI JKL | MNO | PRS | TUV | WYX | QzZ
Digit 1 2 3 4 5 6 7 8 9 0
Page 11 of 26

HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘PHONE’ << 1 7 START “22233344455566670778889990" OVER NUM 64 - DUP SUB
SWAP 2 8 SUB NEXT DROP + + + “" + + + + >>

24 commands, 112.5 Bytes, # 34Fah. EDUCALC [J “338-2252" in 181_ms.

M9. Body Mass Index, BMI

Body Mass Index or BMI isamore redlistic statistical measure of a healthy weight. This program
calculates your BMI and returns a statement of your condition. Key in your weight in pounds, ENTER,
key in your height in inches, ‘BMI’ .

‘BMI' << SQ 703 // DUP 5/ 1IP 1 -7 MIN 1 MAX { “Underweight” “Lean”
“Healthiest” “Overweight” “Obese” “Clinically Obese” “Morbidly Obese” }
SWAP GET SWAP 1 RNDTAG >>

21 commands, 178.0 Bytes, # B4AEh, Timing: 120, 64 /7 20.6: “Healthiest” in 44.4_ms.

S — STRING PROGRAMS

S1. Build atext string (Five-second marvel)

I (rjn) once looked at Joseph Horns’s machine during a class ari@Saim his menu. Sure enough he
had done the same thing | had in response to a problem of entering atext string. Suppose you have the
list of keycodes for the digit keys on your HP48. They are 0to 9: 92, 82, 83, 84, 72, 73, 74, 62, 63, and
64 (without the shift plane decimal part). If you need atext string of these ASCI| characters you start
with an empty string, key the number, run ‘BS’, and repeat asrequired. Programs that use unusual text
strings should provide the ASCII character numbers. Thisisfaster than using CHARS. Of course the
HP49 CHARS isnicer.

‘BS’ << CHR + >> 2 commands, 15 bytes, # 430Ah

S2. Generate a space text string

Input nand ‘GS’ returns a string of spaces n characterslong. The method used isto double theinitia two
spaces until enough are generated and using SUB for the desired number. ‘GS’ isvery fast. This
techniqueisused in L19. Theleading string may be any characters. Space strings are used for XORing
with other strings to toggle case.

‘GS’ << “” OVER LN 2 LN / 1 SWAP START DUP + NEXT 1 ROT SUB >>
15 commands, 52.0 Bytes, # 2936h, Timing: 10in55.8 ms., 30in 67.0_ms., 100 in 89.5_ms., 500 spacesin 115 ms.

S3. Replace Nulls with " (ASCII 134)

ASCII character zerois called aNull. The HP48 will not allow you to edit strings, lists, programs, etc. if

they contain a Null character. If you try you will get an “Error: Can’t Edit Null Char.” message.

‘REPLM " accepts a string and replaces all Null character occurrences with ASCII character 134, “p» ™.

This character was chosen to be highly visible. It is seldom used and it makes a good marker. The Null
character, like all ASCII characters 0 to 30 display as a small black square.

‘REPL »’ << WHILE DUP 0 CHR POS DUP REPEAT B REPL END DROP >>

11 Commands, 56.0 Bytes, #2E09h. Timing: “AmBu...aZ"[] “A»BW» ... Z" in 673 ms.

Page 12 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

S4. Replace »” (ASCII 134) with Nulls

Sdistheinverse of S3 Note that in both programs the Null in the program is generated (so it may be
edited) with the sequence 0 CHR. If you want to make atest string use spaces where you want Nulls and
change 0 CHR to “” (one space).

‘REPLN’ << WHILE DUP “»” POS DUP REPEAT_0 CHRREPL END DROP >>
11 Commands, 46.0 Bytes, #66CBh. Timing: “A»B» ... »-7Z" [J “AuBu..nZ” in 671 ms.

S5. Decode string with ASCII number list
With a string on the stack ‘C - N’ will return alist of the corresponding ASCII numbers.

‘C-N << {} SWAP 1 OVER SIZE FOR n DUP n DUP SUB NUM ROT SWAP +
SWAP NEXT DROP >>

18 commands, 61.5 Bytes, # C449h. Timing: “ABCDEFGHIJ’ { 65 66 67 68 69 70 71 72 73 74 } in 284_ms.

S6. Reverseastring
‘REV$’ reversesthe order of charactersin astring on level one of the stack.

‘REV$ << “” OVER SIZE 1 FOR n OVER n DUP SUB + -1 STEP SWAP DROP >>

15 commands, 54.0 Bytes, #DAFBh. Timing: “AllZZ...A'in 433_ms.

Thisisavery slow program reversing about 60 characters per second. An HP48 machine code version
will reverse 20,000+ characters per second. The HP49 SREV will reverse about 30,000 charactersin a
second. It isleft asa challenge to the reader to improve the user code performance of this most useful
program.

S7. Split a string into two parts

‘SPLT’ acceptsastring on level two and a character position on level one and returns two strings. The
first string on level two is the characters up to but not including the character of the specified position.
Level one contains the remainder of the characters of the input string. Pressing plus after the programis
finished will concatenate the two strings to produce the original input string.

‘SPLT’ << DUP2 1 SWAP 1 - SUB ROT ROT OVER SIZE SUB >>
11 commands, 37.5 Bytes, # 6F12h. Timing: “A...Z", 13 [J “A...L", “M...Z" in 16.2_ms.

S8. Insert character (s) into a split string

‘SPLT’ may be used to insert a character or charactersusing ‘INS$’ below. Three inputs are required.

The string on level three. The first character that is to follow the character or string that is to be inserted
is on level two. Level one is the character or string that is to be inserted.

‘INS$’ << - a b << DUP a POS SPLT b SWAP + + >> >>
12 commands, 55.5 Bytes, # 2C13h. timing: “A...Z"7, “I”, “llI” AL HI...Z" in 47.1_ms.

S9. Converting a string to a “name” (Ten-second Marvel)

There are times when a program must “create” the name of a program to recall and/or run. Timing
several programs called ‘P1’, ‘P2’, to ‘Pn’ may be done using a loop and creating the names as a string.
The string is converted to the name wih- N’ below.

‘SN << " SWAP + OBl >>

Page 13 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

4 commands, 23.5Bytes, #6029h. Timing: “NAME” 7 ‘NAME’ in 167_ms.

The “trick” is to preface the string with a single tic and let the HP48 smart operating system decide that it
is a name object (type 6) and not a string (type 2) using the-O8dmmand. The inverse operation is
performed byN - S.

‘N-S << -STR IF “” POS 1 == THEN DUP SIZE 1 - 2 SWAP SUB END >>
15 commands, 58.5 Bytes, # 88AEh. Timing: ‘NAME’ J “NAME” IN 26.6_ms.
T — TIME AND DATE PROGRAMS

T1. Friday the 13" (Joseph Horn)
Key in ayear and ‘FRI13’ returns the dates of Fridays that occur on the 13" of the month.

‘FRI13" << 1000000 / 1.13 + 13 FOR d 6.133 d DDAYS 7 MOD NOT d IFT NEXT >>
16 commands, 88.0 Bytes, # 670Bh. Timing: 1987/7 2.131987, 3.131987, 11.131987 in 0.148 sec.

Every year has at |east one Friday the 13". What is the maximum number possiblein one year? The
following years from 1900 to 2000 have three Friday the 13™: 1903, 1914, 1925, 1928, 1931, 1942,
1953, 1956, 1959, 1970, 1981, 1984, 1987, 1998.

T2. Test for leap year (Christian Meland)

Input ayear and ‘LY?" returnsalif theinputisaleap year, a0 if not. Thisprogram isagood example
of the powerful date commands of the HP48 and HP49.

‘LY? << 2280000 + MANT 1 DATE+ 3 < >>
7 commands, 35.5 Bytes, #580Dh. Timing: Avg. For 1900, 1996, 1997, 2000is12.3 ms.

T3. Day of week
Input a standard date in mm.ddyyyy format and ‘dowl’ (system flag —42 clear) returns a three letter day.

‘dowl’ << 0 TSTR 1 3 SUB >>
5 commands, 22.5 Bytes, # A8DOh. Timing: 8.211999 /7 “SAT” in 26.2_ms.

Joseph Horn suggests using DDAY S and a known date to calculate the day of week. The known dateisa
Sunday (year 3,000) and is selected to have the day and month the same so system flag —42 setting
doesn‘t matter. He had to “hunt” for a date that met these requirements. Given a date in mm.ddyyyy
format,‘dow?2’ returns a number between 0 (Sun) and 6 (Sat). Examples HHUC date 8.211999, ‘dow?2’
returns 6.

‘dow2’ << 2.023 SWAP DDAYS 7 MOD >>
5 commands, 30.5 bytes, #B181h. Timing: 8.211999 /7 0in 7.17_ms.

T4. Nth day of week from date (Brian Walsh)

A company that builds large engines always ships on Friday when it has the required truck available.
Delivery is quoted in weeks. The XJ engine requires nine weeks to build. An order isreceived on
Monday, August 23, 1999. What is the shipping date? (date N D [date) 8.231999, 9,5 ‘ND’ [
10.221999.

Page 14 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

‘ND’ << ROT DUP 1.022 SWAPDDAYS 7 MOD ROT DUP2 < 5 ROLL - 7 * - -
NEG DATE+ >>

19 commands, 65.5 bytes, #C52Eh, Timing: 8.231999, 9, 5 /N00.221999 in 28.8_ms.

Table T4 — Numeric code for the days of the week used ByT4 & T5
Day Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Day Code 0 1 2 3 4 5 6

T5. Nth day of week of month (Brian Walsh)

On what date does Thanksgiving fall thisyear? Thanksgiving is always the fourth Thursday in
November. Input: date N D O date. 11,4, 4, ‘NDM’ returns 11.251999 (November 25). D isthe same
day code asin Table T4. Note: thisprogram calsT4, ‘ND’.

‘NDM’ << ROT DUP 100 * FP 1 + 100 / SWAP IP + ROT ROT ND >>
15 commands, 66.5 bytes, #4F2Dh, 11, 4, 4, ‘NDML1.251999 in 53.3_ms.
T6. Chinese New Year (Prompting & labeling)

‘CHINyear << “Enter Year” *” INPUT OBJ> { “Rooster” “Dog” “Pig” “Rat” “Ox” “Tiger”
“Hare” “Dragon” “Snake” “Horse” “Sheep” “Monkey” } OVER 1 - 12
MOD 1 + GET SWARTAG >>

27 commands, 187.0 Bytes, #3998h. Timing: 1999 [/ “Hare” in 28.9_ms.
T7. Electronic stopwatch
Single key starts/stops. The machine does not run while “timing” and is usable for other tasks. The start
time is stored in user mertl. Move this out of the way to the far right of your menu. ‘SW’ uses Flag
annunciator 5 (looks like “S”) to indicate stopwatch is “running”. Time is tagged with “Sec”. Note: The
fastest time possible is 0.2 seconds due to system (debounce) response. See 48PCH for additional detail

‘SW' << 1 FIX TICKS IF 5 FS?C THEN ‘' RCL - B-R 8192 / “Sec” -~ TAG ELSE
‘t STO 5 SF END >>

21 Commands, 100.0 Bytes, # 69F7h.

T8. Electronic Stopwatch time units
‘SWU’ may be called in place of the two underlined commands in the Electronic Stopwatch program to
add minutes and hours tagging. Alternately you may key in the commands to make one program.

‘SWUa’ << IF DUP 60 < THEN “Sec” ELSE 60 / IF DUP 60 < THEN “Min” ELSE
60 / “Hr" END END-TAG >>

22 commands, 122.5 Bytes, # 2DADN.
Brian Walsh suggests th&@8WUa’ can be rewritten as:
‘SWUb’ << DUP 60 < "Sec" { 60 / DUP 60 < "Min" { 60 / "Hr" } IFTE } IFTE -TAG >>
18 commands, 107.5 bytes, #£644h checksum
‘SWUb’ is 15 bytes shorter, and faster than ‘'SWUa’. Thisisagood example of the use of the short form

IF...THEN...ELSE...END structure — IFTE.

T9. Alarms

Page 15 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Here are two simple repeating alarm sounds programmed to start when you press the menu key and stop
when you press any other key. ‘ALM1’ and ‘ALMZ2’ produce aternate low, then high, tones. ‘ALM2’ is
about twice asfast as‘ALM1’ . ‘AM1’ repeats about once per second.

‘ALM1’ << DO 900 .2 BEEP .2 WAIT 1200 .2 BEEP .4 WAIT UNTIL KEY END DROP >>
15 commands, 95.5 Bytes, # C3Afh
‘ALM2’ << DO 1000 .1 BEEP .1 WAIT 500 .1 BEEP .2 WAIT UNTIL KEY END DROP >>

15 commands, 95.5 Bytes, # FD5h
T10. Shorter Time String, TSTR
For US users (HP48 system flag —42 clear) the time string is 22 characters long showing time in 12 hour
format with an A or P at the end. This is too long for some display applications and for many applications
the seconds is not needed so dropping a semicolon and two seconds digits is practical. This program
makes a 19 character time string.

‘tstr << DATE TIME TSTR DUP 1 9 DUP+ SUB SWAP &’ DUP SUB + >>

15 commands, 51.0 Bytes, # 1677h. Timing: 56.9 mstypically.

This is an example of entering a special character into a string and using short form numbers from table 1.
9 DUP + isused in place of 18, amtl’is ASCII character 22. This saves five bytes (8.9%) of memory

and adds 6 milliseconds to the run time. Rsin’ and press down cursor to view the whole string.

Comparewith TSTR.

U — UTILITIES

Ul. Convert zerotoone (Joseph Horn)

Suppose you start your program with a divide and you do not want zero as an input and one is acceptable.
Joseph Horn improved the “obvious” solution of << DUP 0 SAME { NOT } IFT >> with this
solution. Restricted to reals.

‘0-1a’ << DUP NOT + >> 3 commands, 17.5 Bytes, #FOFEh.

To replace zero digit counts with 1 digit counts, could we assume we'll only be working with zero or
positive integers? If so, then we can come up with atwo-instruction solution:

‘0-1b’ << 1 MAX >> 2 commands, 15.0 Bytes, #109Bh.

U2. Toqgle flags one and two

‘TF1&2' << 2 CF 1 FSC 1 + SF >> 7 commands, 27.5 Bytes, #49F9h.

U3. Reverse stack ordern(?)
This program has been in my (rjn) machine for more than five years. | normally donasiadocal
variable so it is not mine. We apologize to the unknown author of a great short efficient program.

‘SREV’ << DEPTH 2 SWAP FOR j j ROLL NEXT >>
8 commands, 34.0 Bytes, #3115h. Timing: 1to 100 in 0.767 seconds.
U4. Delta percent

Calculating percent is difficult for most people. It isnot difficult because of the math, it is difficult
because of people. Just look at the percent function on a dozen cal culators of various manufacturers and

Page 16 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

you will seethis. Consider apiethat cost $4 last year and costs $5 this year. What is the percent change,
delta percent?

Percent problems of this type always have two answers. This either confuses people or inspires them to
useit to their own advantage. A sales commission may be 15%. Isthat 15% of the sale or 15% of the
cost of the product sold? The sales person wants the sale price as the reference, the employer wants the
cost as the reference. The pieis 25% more expensive this year. The pie was also 20% |less expensive last
year. Same numbers, different reference.

This program solves this “problem*D%’ accepts two positive numbersin either order and returns both
percentage answers. The reduction is negative and always on level two.

‘D%’ << %CH LASTARG SWAP %CH MAX LASTARG MIN >>

7 commands, 27.5 Bytes, #DDBCh. Timing: 4 ENTERS5 - -20,25in13.2_ms.
U5. Horizon distance
If you are 5’-6” tall and you are at the sea shore looking at an object of the same height on the seashore
on an island on a clear day, how far away in miles can the object be vi$itidZ’ prompts and labels
the answer to this question. Use zero as object height for distance to the horizon. (2.71 miles).

‘HORZ' << “Object” “Observer” 1 2 START “ Heigdhin feet?” *” INPUT OBJ- 4 3 /
Vv SWAP NEXT + -3 RND “Visible Miles”"- TAG >>

Note: [is the new line character, ASCIl 10. The sequence 4 3 / is 1.33. This factor ranges from 1.23
to 1.53 depending on the reference you use. The “trigonometry” solution is closer to 1.50.

22 commands, 120.5 Bytes, # 703Ah, 5.5 ENTER, 5.5 ENTER - Visible Miles: 5.42.
U6. Rename (Joe Horn)

Input the old name, ENTER, new name and’RENAME’. The new name will be moved to the far left
end of the menu line. Note that the HP49 has a rename command that leaves the menu name “in place”.
It also uses the more conventional input order of old name before the new name.

'RENAME’ << OVER RCL SWAP STO PURGE >>
6 commands, 22.5 Bytes, # 543Bh.
U7. Temperature Conversion
This programming example is not much of a marvel. It uses straightforward programming techniques to
illustrate the following concepts.

The input is a number to convert degrees Fahrenheit to degrees &@uelsiise versa.

The program may optionally prompt. Set user flag one to prompt for Temperature if desired.

The output is labeled and formatted.

Two temperature conversions are made for every iflput’C & °C - °F.

Because of 3 above, the display mode is altered as needed with 1 FIX and returned to pre-program
run status when finished with STOF at the end (underlined).

abrwnhpE

‘DEG? << IF 1 FS? THEN “TEMPERATURE?” “* INPUT OBJ END RCLF SWAP DUP
9* 1 FIX 5/ 32 + OVERC'=" + SWAP + °F" + SWAP DUP 32 - 9/ 5
* SWAP°F =" + SWAP + °C" + ROT STOF >>

40 commands, 182.0 Bytes, # 3460h. timing: 55, ‘DEG?" [7 “55.0 C = 131.0F", “55.0 F = 12.8C”

Page 17 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

U8. Simple numeric ID, “reqgister”, data base

These three programs were written in 1990 to emulate sequentially numbered registers & la the HP-41 anc
most other early calculators. The HP-41 had a SIZE “command” which allocated memory to the number
of data registers desired. Memory limited SIZE to 319. The STO key was pressed when you wanted to
store something in a register and you responded to a prompt for a register number. This was not pure
RPN , but we really didn't mind. Does this demonstrate the importance of prompting?

The HP48 and HP49 are true RPN and so the syntax for storing changes. HP49 users will take their
machine out of the box in algebraic mode and will have set up a Start variable to insure their machine will
always turn on in RPN mode if they desire (especially after a warm start). The “registers” are stored in a
list called‘’reg’ when SIZE isrun. They are numbered from O to n.

‘'size’ << 1 -LIST 0 CON OBJ- DROP -LIST ‘reg’ STO >>
9 commands, 44.0 Bytes, # EOFah. 1000 registers created in 2.22 seconds.

Zero is used as aplace holder for each register. Register counting is from zero so if you want register 100
use 101 astheinput for ‘size’.

‘sto’ << 1 + reg SWAP ROT PUT ‘reg’ STO >>
8 commands, 43.0 Bytes, # 4E76h.

Place the object to be stored on level two and the register number on level one and run ‘sto’.

rcl <<'1 + reg SWAP GET >>
5 commands, 26.5 Bytes, # 9F49h.

Key the register number (you have to remember what isin which register) and run ‘rcl’.

Lower case names are used to avoid machine name conflicts. The one plus starting ‘sto’ and ‘rcl’ may be

omitted if register “zero” is not needed. This system may be used to store programs, names and
addresses, etc. as well. You may have a bunch of routines that you want to “hide” and then call in one or
more programs. Simply store the program in a “register” and use the sequenceEVIAL in the

calling program. A series of alarms used by different programs is one example.

U9. US letter stamp values

When the US Postal service increases the postage rates they issue a stamp that has no value on it until
they are able to print “regular” stamps. These “mystery” stamps are printed with Letters, A, B, etc. Soon
everyone has forgotten what the letter values mean and this program was written to provide letter stamp
values because these old stamps turn up in the most unusual places. The program is included here as an
example of ASCII encoding and the use of byte saving techniques.'SRUMR’ and respond to the

prompt with a letter followed by ENTER. The output isthe input letter followed by the dollar value of

the stamp.

‘SLTR’ << “Stamp Letter?” {1} INPUT “smmmmm!” OVER NUM 8 SQ- DUP SUB NUM
1 SWAP . TAG >>

15 commands, 83.0 Bytes, # 8B37h.

The string following INPUT is ASCII characters 15, 18, 20, 22, 25, 29, 32, 33 for stamps A — H. Use
Build String,S1, to assemble this string. Beginners will create the string first and type the program

around the string. Of course you could use CHARS. If you enter a letter for which there is no value in
the coded string the input is tagged with zero as an output. The sequence 8 SQ is used in place of 64 in

Page 18 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

accordance with Table 1. The sequence 1 % isusedin place of 100 / and isabyte saving technique
(saves 8 bytes) of dividing by 100. See Table 4.

U10. Pretax cost of product

Merchants often advertise “We will pay your sales tax”. What is the cost of the item if the sales tax is
included in the quoted price? The more mathematically minded person has no difficulty with this

problem and doesn’t need a program. For those who have a need for this calculation this utility doesn’t
require any thinking. The program assumes that the tax value is less than the cost of the item so the orde
of the inputs doesn’t matter. If you can remember to input the cost first, followed by the tax rate (in
percent) you can remove the first three commands. In some countries the VAT tax may be high enough
that this feature is not practical. The answer is rounded to the nearest cent. The sequence 1 % isa
shorter and faster 100 /.

‘BTAX' << MAX LASTARG MIN 1 % 1 +/ 2 RND >>

10 commands, 35.0 Bytes, # 579Ch

Ull. More meaningful random passwords

Many people like to have arandom password generator rather than make up their own. The best advice is
to combine upper case, lower case, digits and special symbols, but that can make for very unmemorable
passwords. It is often enough to use a string of 7 or more lower case letters - at least those make up
something that can be related as aforeign word! The following program generates a string of 7 lower
case characters - change 7 to another number if you wish. It uses RAND 26 * 96.5 to generate the random
letter between aand z. 96.5 is used instead of 97 because CHR rounds to the nearest number. Totally
random letter combinations contain too few vowels, and too many letters from the end of the aphabet, so
I (wmj) add SQ after RAND to increase the likelihood of the early letters, which contain a higher
proportion of vowels. This makes for a higher proportion of readable words, though with too many "a'sin
them. Run the program repeatedly until you find a password you like!

‘RPAS << "™ 1 7 START RAND SQ 26 * 96.5 + CHR + NEXT >>
13 commands, 61 bytes, FOB2h. Timing: with 77RDZ, [7 “htabbst” in 176ms. Following: “aaekkga”, “sjatauz”.

U12. Filepurge protection technique
To protect variables from accidental deletion, put in their names the decimal separator that is not the one
you usually use. For you or me (US & UK), that's the comma:

level 2 level1 - leve 1
obj tostore ’'name

'PSTO’ << -51 - f << IFf FS? THEN f CF "." + OBJ- STO f SF ELSE f SF
"" + OBJ- STO f CF END >>

System flag -51 is the decimal separator flag, change it if you need to. To purge the variable you now
have to toggle the decimal flag - you can write a short program to do thisagain. Thisisleft asan exercise
for the reader.

Ul3. Invert aflag
Input aflag number and ‘if' will invert (toggle) its status. Set becomes clear, and vise versa.

if << DUP FC?C{ SF } { DROP } IFTE >>

5 commands, 32.5 Bytes, # 6458h

Page 19 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

V — SYSEVAL PROGRAMS

SYSEVAL isaunique command that causes program execution to start at a supplied address. If the entry
point iswrong the system will most likely crash, lock up your machine, and frequently clear all of
memory (very bad!). Usingthe SY SEVAL command is both powerful and dangerous. Another reason
SYSEVAL isso powerful isadditional speed. This comes, in part, from not checking inputs. User RPL
always checks the input for each command to protect the user from mistakes.

The most practical use of SYSEVAL is doing things you normally can’t do. The HP49 has a powerful set
of “hackers” commands built-in so this category of programs have no use on the HP49. If you key in one
of the programs in this category be surddoble check the SYSEVAL address (have your machine in

HEX mode)before you run the program. These programs are not recommended for beginners, but are
included in this collection to provide the flavor of advanced HP48 (System RPL) programming.

V1. Making an illegal nhame

There are times when you want to include illegal characters in a program or directory name. Perhaps you
want to start a name with a number, etc. This “problem” is solved3MENU’ . Be sure to double

check the SY SEVAL address before running the program to avoid crashing your machine. The DUP

DROP sequence insures that the SY SEVAL is not executed with an empty (safely errors) stack for alittle

extra anti-crash security.

‘SMENU’ << “Type Special Menu Text” ¢ } INPUT DUP DROP#5B15h SYSEVAL >>
7 commands, 69.5 Bytes, # 79D3h.

Program name's4a’ and ‘' T24b’ were created using ‘'SMENU’ . If you try to edit an ‘'SMENU’ created
name (Type 6) it will most likely be converted to an algebraic (Type 9) by the HP48 operating system.

V2. Generate a blank text string
Aninternal pair of SYSEVALS may be used to generate a string of n spaceswhen nison level one. This
code is used internally for spacing input forms, etc.

‘GS’ << #18CEAh SYSEVEL #45676h SYSEVAL >>
4 commands, 42.0 Bytes, 6052h. Timing: 10in 28.0_ms, 30in57.4 ms, 100in 182 _ms., 500in 1.79 sec.

Thisisalooping solution and is fast enough for afew spaces. Compare with S2 Not all system RPL
operations are faster than (some) slower, but more efficient, user code programs.

V3. Position, POS, starting from the end

Thenormal POS command starts searching from the beginning of a string. This system program starts
at theend. ‘POSE’ expects atarget string on level two and a find string on level one and returns the
position value where the level one string beginsin the level two string. If there are multiple occurrences
only thefirst one from the end will be found.

‘POSE’ << OVER SIZE # 18CEAh SYSEVAL #645BDh SYSEVAL #18DBFh SYSEVAL >>
8 commands, 61.5 Bytes, # 7155h.

The internal command used, #645BDh, requiresthreeinputsand OVER SIZE isused to provide the
third one — the start position of the search. If exploring SYSEVALS appeals to you be sure to see James
Donnelly’s excellent bookThe HP 48 Handbook,, second edition, published by Armstrong Publishing

Page 20 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Company, 1050 Springhill Drive, Albany OR 97321, USA. Especialy see POS$ and POS$REYV for two
very powerful commands for searching strings — page 154.

V4. Exploring the HP48 M essage Table

The HP48 has a large built-in text message table. Jim Donnelly lists 429 internal text mesHages in

HP 48 Handbook and gives 10 groupings of addresses for 555 more. The message numbers listed by Jim
range from 1 to 59,144. What is in between the values given? What is beyond them?

The following program accepts a single message number or a range of message numbers, start and end,
and returns the text message(s) tagged with the message number. Null strings are dropped. There are o
of messages to explore and discover with these programs. Example messages arg: “Erébvar

name or directory path”, 47390 “Enter decimal places to display”, or 47489“63 Custom ENTER

on”. The first programGETM’ usestwo SY SEVALS to convert the input value to a binary integer,

BINT, and get the message. The second program, ‘EXPM’ accepts a range of message numbers. The

messages are placed on the stack for viewing or further processing.

‘GETM’ << #18CEAh SYSEVAL #4D87h SYSEVAL >>
4 commands, 41.0 Bytes, # 8DA2h. 47505 /7 “Enter var name or directory path” in 35.3_ms.

‘expm’ << FOR n n DUP GETM IF DUP “* SAME THEN DROP2 ELSE SWAP
- TAG END NEXT >>

16 commands, 66.5 Bytes, # 690h. Timing: 47361 to 47515 /7 155 messagesin 7.13_sec.
V5. Hide menu
The above programs are potentially dangerous because you may accidentally use an invalid SYSEVAL
address. There is another danger. Using an incorrect input or doing something the system wasn’t
intended to do. This last program especially illustrates both the power and the danger of using
SYSEVALS. You may hide the menus in your directory with a null name. When a new variable is stored
it appears at the left end of the menu line. When the name of a stored variable is a null name the system
thinks that the null name is the end of the directory. A single SYSEVAL will generate the null name.
Store zero in this name to hide all the other variables in the menu line. Before doing this make a list of
the variables you want to be seen and execute ORDER after you have hidden the menu names.

A hidden directory will behave just as if it were not hidden. You can type a variable name and evaluate it.
You can purge variables, etc. You will have to do this “blind” however. Executing VARS, however, will
only list those variables addefter you hide the menudDO NOT STORE THE NULL NAME IN THE

HOME DIRECTORY! That will cause your machine to crash. BelowNi’ whichisasimple

application of the single SYSEVAL. ‘NN’ uses flag six to toggle between the hide and unhide state. The
program also orders itself to always be visible. Unhiding is faster than hiding. The latter is dependent on
the slow ORDER command. If you have lots of variables in your machine it may take several seconds to
hide a directory.

‘NN’ << #15777h SYSEVAL IF 6 FS?2C THEN { NN} 0 ROT STO ORDER ELSE
PURGE 6 SF END >>
16 commands, 78.5 Bytes, #B4D8h

Page 21 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

TABLE 1 — Saving program bytes by using short form numbers for numbers 1 to 100)

Number Savings Number Savings
Needed Make With Bytes| % Needed Make With Bytes| %
0-+9 |0 — +9 (specid. 2.5 bvtes) 8.0 76% 55 7 - STR NUM 3.0 | 29%
10 |1 ALOG 55 52% 5 |78* 3.0 [29%
P 11 LCD-. TYPE 55 52% 57 1 R-DIP 3.0 | 29%
12 6 DUP + 3.0 29% 58 1 R.D CEIL 3.0 | 29%
P 13 6 7 + 3.0 29% P 59 “" NUM 20 [19%
14 |7 DUP + 3.0 29% 60 |53 %T 3.0 | 29%
15 78 + 3.0 29% P 61 “=" NUM 2.0 |19%
16 4 SO 5.5 52% 62 “>" NUM 2.0 | 19%
P 17 |89 + 3.0 29% 63 |79 * 3.0 | 29%
18 |9 DUP + 3.0 29% 64 |8 SQ 55 | 52%
P 19 PICT TYPE 55 29% 65 “A” NUM 2.0 | 19%
20 54* 3.0 29% 66 “B” NUM 20 | 19%
21 73* 3.0 29% P 67 “C"” NUM 20 | 19%
22 “ASCIlI 22" NUM 2.0 19% 68 “D” NUM 20 | 19%
P 23 “ASCIlI 23" NUM 2.0 19% 69 “E” NUM 20 [19%
24 4 FACT 55 52% 70 8 4 COMB 3.0 | 29%
25 5 SO 5.5 53% P 71 “G” NUM 20 [19%
26 |“ASCIlI 26" NUM 2.0 19% 72 189 * 3.0 | 29%
27 139+ 3.0 29% P 73 “I"” NUM 20 [19%
28 4 7 * 3.0 29% 74 5 SINH IP 3.0 | 29%
P 29 “ASCIlI 29" NUM 2.0 19% 75 4 3 %T 3.0 | 29%
30 |56* 3.0 29% 76 |“L” NUM 20 [19%
P 31 “ASCIlI 31" NUM 2.0 19% 77 “M” NUM 2.0 | 19%
32 4 8 * 3.0 29% 78 “N” NUM 20 | 19%
33 “I” NUM 2.0 19% P 79 “O” NUM 20 | 19%
34 |IC$1“ NUM 2.0 19% 80 |59 %CH 3.0 [29%
35 57* 3.0 29% 81 |“O" NUM 2.0 | 29%
36 “0%"” NUM 5.5 52% 82 “‘R” NUM 20 [19%
P 37 “ASCIlI 37" NUM 2.0 19% P 83 “S” NUM 20 [19%
38 |“& NUM 2.0 19% 84 |9 3 COMB 3.0 [29%
39 “7 NUM 2.0 19% 85 “U” NUM 2.0 | 19%
40 |58* 3.0 29% 86 |“V" NUM 20 [19%
P 41 “)" NUM 2.0 19% 87 “W” NUM 2.0 | 19%
42 |6 7* 3.0 29% 88 |“X” NUM 20 [19%
P 43 “+” NUM 2.0 19% P 89 “Y” NUM 2.0 | 19%
44 “” NUM 2.0 19% 90 “Z" NUM 20 | 19%
45 |95+ 3.0 29% 91 |“I”_ NUM 2.0 | 19%
46 “” NUM 2.0 19% 92 “\" NUM 20 | 19%
P 47 |“/" NUM 2.0 19% 93 ‘" NUM 2.0 | 19%
48 68* 3.0 29% 94 “ANUM 20 [19%
49 |7 SO 55 | 52% 95 |“” NUM 2.0 |19%
50 121 %T 3.0 29% 96 |“" NUM 20 [19%
51 3 -STR NUM 3.0 29% P 97 ‘a’” NUM 2.0 | 19%
52 4 . STR NUM 3.0 29% 98 “b” NUM 2.0 | 19%
P 53 |5 _STR NUM 3.0 29% 99 |“c” NUM 20 [19%
54 169* 3.0 29% 100 |2 ALOG 5.5 | 52%

Note: (1) 1to 255 may be generated by 'using “ASCII N” to save 2 bytes or 19%. This is the recommendation in
the table if a shorter method wasn't found. If two methods were found of the same bytes, the fastest is
listed.

(2) Special thanks to Joseph Horn who double checked and updated the table.

Page 22 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Table2 — Working Vs. Improved Stack Command Sequences, Ten-Second Marvels

Working | mproved
S Tim Bts | Tim

#| L Sequence Bts | (ms) Sequence % %

111 ({}+ 75 | 120]1 -LIST 333| 548
211 |“"+ 75 | 14.2] _STR 66.7| 65.3
3| 1 |0SWAP1SWAP 10 | 2.59]01ROT 25.0| 13.9
411 | 1PICK 5 3.88] DUP 50.0| 27.1
5| 1 | 1SWAPOVER - 10 | 4.14]1-1SWAP 0 9.7
6| 2 | 2ROLL 5 3.97] SWAP 50.0| 47.0
7| 2 | 2ROLLD 5 3.97] SWAP 50.0| 47.0
8| 2 | 2PICK 5 3.87] OVER 50.0| 48.6
9| 3 | 3DROPN 5 3.96] DROP DROP2 0 36.9
10| 3 | 3ROLL 5 4.00] ROT 50.0| 47.0
11| 3 | 3ROLLD 5 4.08] ROT ROT 0 38.5
12| 3 | 3ROLLD + SWAP 10 | 21.2] ROT ROT + SWAP 0 7.1
13| 3 | 3ROLLD 3 PICK 10 | 6.27] DUP 4 ROLLD 25.0| 29.2
14| 4 | 3ROLL 4 ROLL 10 | 6.35] ROT 4 ROLL 25.0| 295
15| 4 | 4 ROLL 4 ROLL SWAP 12.5| 6.70] ROT 4 ROLL 40.0| 33.3
16| 4 | 4 DROPN 5 3.85] DROP2 DROP2 0 36.4
17| 3 | DROP SWAP DROP 7.5 | 2.70] ROT DROP2 33.3 8.9
18| 2 | DROP DROP 5 2.38] DROP2 50.0| 14.3
19| 3 | DROP DROP DROP 7.5 | 2.73] 3 DROPN 33.3| 29.5
20| 1 | DUP 1 SWAP 7.5 | 2.51]10VER 33.3| 16.7
21| 2 | DUP 3 PICK 7.5 | 4.38] DUP2 SWAP 33.3| 43.6
22| 2 | DUP 3 PICK R ROLLD 12.5| 6.74] DUP2 ROT 60.0| 61.3
23| 2 | DUP 3 PICK SWAP 10 | 4.81] DUP2 75.0| 55.1
24| 2 | DUP DUP 4 ROLL 10 | 4.91] SWAP OVER DUP ROT 0| 30.3
25| 2 | DUP DUP OVER 7.5 | 2.86] DUP DUP2 33.3| 12.0
26| 1 | DUP DUP DUP 7.5 | 2.86] DUP DUP2 33.3| 12.0
27| 1 | DUP LASTARG 5 2.70] DUP DUP 0 8.9
28| 2 | DUP ROT ROT 7.5 | 2.83] SWAP OVER 33.3| 17.3
29| 2 | DUP ROT SWAP 7.5 | 2.96] SWAP OVER 33.0] 155
30| 2 | DUP2 DROP 5 2.47] OVER 50.0| 18.6
31| 2 | DUP2 ROT DROP 7.5 | 2.85] OVER SWAP 33.3| 12.6
32| 2 | DUP2 ROT DROP2 7.5 | 2.88] DROP DUP 33.3] 15.6
33| 2 | DUP2 * ROT ROT +/ 15 | 9.56] * LASTARG +/ 33.3 6.8
34| 2 | DUP2 OVER SWAP 7.5 | 2.95] OVER LASTARG 33.3 8.5
35| 2 | DUP2 SWAP 4 ROLL 10 | 4.83] DUP ROT DUP 25.0| 41.2
36| 2 | OVER OVER 5 2.48] DUP2 50.0| 15.7
37| 3 | OVER OVER 4 ROLLD 4 ROLLD 15 | 7.17] DUP2 4 ROLLD 4 ROLLD | 16.7 5.6
38| 2 | OVER OVER SWAP 4 ROLL 12.5| 5.31] DUP ROT DUP 40.0| 46.6
39| 2 | OVER ROT 5 2.50] SWAP DUP 0| 104
40| 2 | OVER ROT DROP 7.5 | 2.87] SWAP 66.7| 28.2

Page 23 of 26

HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

Table2 — Working Vs. Improved Stack Command Sequences, ... Continued

Working | mproved
S Tim Bts | Tim

#| L Sequence Bts | (ms) Sequence % %

41| 3 | OVER ROT ROT 7.5 2.82 | OVER SWAP 33.3 12.8
42| 3 | ROT DUP4 ROLLD 3PICK 3ROLL 20 9.45 | ROT ROT DUP2 5 ROLL 37.5 42.9
43| 3 | ROT DUP4 ROLLD 4ROLLD 15 7.27 | 3PICK 4ROLLD 33.3 13.6
44| 3 | ROT 3DUPN ROT ROT 125 | 5.24] ROT LASTARG 60.0 45.8
45| 3 | ROT 1ROT 7.5 2.61] ROT 1 SWAP 0 11
46| 3 | ROT ROT DROP 7.5 2.96 | SWAP DROP SWAP 0 2.0
47| 3 | ROT ROT SWAP 7.5 3.00 | SWAPROT 33.3 15.7
48| 3 | ROT ROT SWAP DROP 10 3.46 | ROT DROP SWAP 25.0 16.8
49| 3 | ROT SWAP DROP 7.5 3.00 | DROP SWAP 33.3 19.7
50| 2 | SWAP1SWAP 7.5 255 1ROT 33.3 15.7
51| 2 | SWAPDUP ROT SWAP 10 340] OVER 75.0 424
52| 3 | SWAPDUP4ROLLD SWAP 125 | 5.30 | OVER ROT 4 ROLLD SWAP 0 1.9
53| 4 | SWAP DROP SWAP DROP 10 3.32 | ROT ROT DROP2 25.0 9.6
54| 3 | SWAP DROP SWAPDROP SWAPDROP | 15 | 4.13] 4ROLLD 3 DROPN 333 3#1
55| 2 | SWAP OVER OVER SWAP 10 3.38 | SWAPLASTARG 50.0 16.3
56| 2 | SWAP OVER SWAP 7.5 2.88 | DUPROT 33.3 10.1
57| 3 | SWAP ROT ROT 7.5 2.97 | ROT SWAP 33.3 12.1

Note: SL = Stack levels used for input. Output stack levels vary.
Bts = bytes for Working command sequences, Improved sequence values arein percent.
Tim = Time to run, typically for symbolic inputs A, B, C etc. Numeric inputs may be faster.
Working sequence values are in milliseconds, Improved sequence values are in percent.

The HP49 adds six new HP48 user code stack commands. Table 3 shows how these commands may be
used in place of HP48 command sequences.

TABLE 3 — New HP49 Stack Commandsy)

HP48 Command Sequence New HP49 Stack Command

ROT ROT UNROT

DUP 2 + ROLL DROPROLLD UNPICK
3 PICK PICK3

DUP DUP DUPDUP
SWAP DROP NIP @

2 SWAP START DUP NEXT NDUPN

SWAP DROP e

NOTES: (1) Names are based on traditional FORTH commands. The meaning
is not supposed to be obvious.
(2) The algebraic semicolon worksin RPN mode, why not use it?

Page 24 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

TABLE 4— Programming Techniques lllustrated by the Program Collection

No. Application Typical Improved See
1 |Convert decimal to percent. {100 * 1 SWAP %T @ Al
- n << n 1 START ...- SWAP START ... -1
2 |Restoreloop counter, n. | qrpp STEP LASTARG @
3 |Clear stack except level one. n << CLEAR n >> |DROP CLEAR LASTARG (3
4 Largest of two levels on |DUP2 < { SWAP } IFT | MAX LASTARG MIN) |U4
level two. (to subtract?)
5 |Loop n -1 times 1- SWAP START...NEXT 2 SWAP START...NEXIL16
6 |Divide by 100 100 / 1% 2|U9
7

Notes: (1) Significantly faster. (2) Significantly shorter. (3) Significantly faster and shorter.

The weekly Friday evening HP48 programming class taught by Joseph Horn and Richard Nelson stresses
the values of short and fast programs. The goal of the class is to explore programming techniques to
improve the basics. Problems studied have been documented in class handouts and many of the progran
found here are from these handouts. The format for these class exercises is to explore as many different
ways (typically 3 to 7) of solving a problem as possible. Sometimes these problems are shared on the
HP48 news group and the responses are integrated into the class. Table 3 provides the information
necessary to identify these informal materials. If you would like a copy you may email a request to
rinelson@aemf.org

Table5 — HP48 Programming Class Handouts as a source for additional program details

Ref. | Pgs. Title Date |[Fm Comments
A15 6 Solving single-variable quadratic Equations on the 990601 W 15 equations solved,
HPA8G/GX. equal, real, & imaginary
13 5 |Full screen Text on the HPA8G/GX. 981023 | W
L1-L19| 40 |Efficient HP48 List Usage From A to Z. 990405 | W | 144 programs.
M9 19 |Recommended Weight Program Assignment 980807 | W | 31 programs. (Interface)
T7,8 6 |Stopwatch Program. 980501 | W
U3 40 |Efficient HP48 List Usage From A to Z. 990405 | W | 144 programs.
U4 1 |Convert Zero to One. 990709 | W
U6 20 |Efficient HP48 Stack Usage From A to Z. 990102 | W | 60 programs.
U7 2 |DeltaPercent (PE9). 970613 | W
Note: Ref. - Program number. Pgs. - Number of printed pages.
Title - Name of program. Date - Six digit date of form YYMMDD.

PE# - EQuCALC Programming Exercise
Fm. - Form of text; W-Word 6/95/97, T is Qedit text file with embedded HP DeskJet printer codes.

CONCLUSION

After nine years of HP48 programming the HP49 enhances what we know and love. These programs
provide a program transition from the HP48 to the HP49. One-Minute Marvelsisintended to illustrate
the power of good programming to the new user. Experienced users will also find afew clever
programming techniques to add to their own experience. The variety of applications from many sources
and the number of programs should provide something of interest to every HP48 and HP49 user.

Page 25 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

The authors thank Joseph Horn, Jeremy Smith, and Brian Walsh for their contributions and suggestions
for better programming — not only for this collection, but for many years of contributions to the
community.

August 1999 W odek Mier-Jedrzejowicz Richard J. Nelson
EPILOG

A few comments regarding the HP49. Some users had high hopes that the HP49 would be a whole new
generation machine. These users may be quick to dismiss the 49 as “not much new’. This could not be
further from the truth, and any user who makes such a statement had better look first. The HP49
represents a new approach to designing a calculator. HP has taken advantage of ten years of HP48 user
experience and adapted these achievements into a machine of incredible mathematics power. Yes, we
will continue to use Maple and other computer based programs for “serious” math, but it is difficult to do
this while on a mountain climbing vacation at 29,000 feet or in the park doing your math homework

taking a break from jogging.

All HP high end scientific calculators have had one outstanding quality. They have been so powerful that
they are never fully mastered by the user community. Even when we have ten years and hundreds of
thousands of users banging keys, we hear reports of new discoveries by the “collectors” of the obsolete
models. The user community has always amazed HP by their accomplishments. What HP48 designer
would believe the performance of real time 3D wire frame rotation that we see on the HP49 today? What
HP48 designer would predict the use of gray scale photos on the HP48? These accomplishments are
possible because of the quality and well thought out features HP machines provide. This is the prime
reason we buy HP.

The HP49 extends the complexity and feature set of the HP48. We haven’t come close to mastering the
HP48 as a community. The internet has helped everybody get up to speed faster and it will continue to
play a vital role for users getting the most of the HP49. Today’s machines are so complex and so
powerful that it takes a great deal of time to become familiar with the many features and commands. We
believe that HP could not have made a better choice in adapting the achievements of the user community
and enhancing these ideas to make them even better. Moving up a less steep learning curve from the
familiar to the new will make all of our lives easier and better. The scary thought is: Wivee dall

when HP makes a “quantum” leap to the next generation? Let’'s enjoy a smooth transition now and
sharpen our skills, especially math, with the 49 to be ready for that day. There is no rush. Thanks HP.

Conference attendees are more likely to be skilled programmers. Apply your skill to the following
program which solves 8 — AB®. Reduce it to seven commands. A and B are on the stack.

‘IMPROVE ME' << DUP 3 YAX ROT DUP 3 YAX ROT ROT * ROT ROT * SWAP - >>
14 commands, 47.5 Bytes, 869Dh, Timing: ‘A’, ‘B’ inputs in 120_ms.

‘BETTER’ << >>

7 commands, 27.5 Bytes, # 79C6h, (rjn) Timing: ‘A’, ‘B’ inputs in 114 _ms.
or 7 commands, 27.5 Bytes, # D166h, (bpw) Timing: ‘A’, ‘B’ inputs in 117_ms.
or 7 commands, 27.5 Bytes, # 72B5h , (jkh) Timing: ‘A’, ‘B’ inputs in 114_ms

Page 26 of 26
HHUC99 Conference, HP Vancouver. One-Minute Marvels by Wlodek Mier-Jedrzejowicz and Richard Nelson

