Tutorial 1: Clearing the screen

Introduction:

We will begin with writing the classic starting program when learning programming in a language, namely “Hello World”. We’ll start from the beginning because I don’t know how much you know about programming or using your calculator. I will first show how to make a new program using a program on the PC called WSR.

To make a new program with WSR 1.1b:

1. Click on ‘file’ and then on ‘new aplet’. Now a window pops up with ‘name of the aplet’ where you can enter the name of the aplet.

Note: On the calculator the name of an aplet can be any length, although if it is longer than 14 characters then it will be truncated in the APLET LIBRARY view.

In this example we will use the name ‘Hello World’ (without the quotes). This is also the name that you will see in the list box of available files when you download the aplet from the PC to the calculator. A folder called ‘Hello World’ will also be created inside the Project folder of the WSR directory.
In ‘Output file you enter the name of the file which is to be created on the PC when your aplet is compiled. Here in this example use ‘Erase’ (again without the quotes). When you compile the program on the next page of the tutorial, a file called ERASE.000 will be created.

Note: There is currently a bug in the HP-tools which means that names must be restricted to 10 characters with no spaces.

New commands:

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

* This command clears the screen.

More information: This command might seem complicated for just erasing the screen, but it’s actually not. GROB!ZERODRP needs five arguments: grob #x1 #y1 #x2 #y2.
The command GROB!ZERODRP erases everything on grob between (x1, y1) and (x2, y2).
HARDBUFF is a grob that’s always on the screen (more information later). ZEROZERO = ZERO ZERO, but it saves 2.5 bytes when writing ZEROZERO. These coordinates represent the upper-left corner of the screen. BINT_131d SIXTYFOUR represents the bottom-right corner of the screen.

WaitForKey

* This command puts the calculator in a low power state and waits till a key is pressed and then continues the code.
$ "" Ck&DoMsgBox

* This commands needs a string as argument. It displays the content of the string in a MSGBOX. It is essentially the same as the MSGBOX command in HP Basic.
E.g.
“You and me” Ck&DoMsgBox

Important: !!! Commands must be written correctly or the program will crash!!!

Before starting to code:
You might have noticed above that the arguments comes first and then the commands. Without getting to technically in other languages you would have:
Ck&DoMsgBox “string”

Not so in System-RPL programming! Pay attention to this.

* and (_ _) (where the _ is a space) are ignored by the compiler. Anything after the * and anything between the () is ignored. This is useful for commenting the code.
The Code:

In WSR scroll down till you see this appearing:

Now between the empty "" write ‘Clearing the screen’ (without the single quotes). This produces is the screen that we will see when we start the aplet (see below).

Note: Most of the time you won’t have an empty string, but something like $ "Aplet Vide par Noda[title of Aplet]DISPROW1. This is of course a bug. So don’t forget to change this or it will crash your calculator.

Explanation:

TURNMENUOFF

* turns the menus off, allowing use of the full screen.
$ ""

* is a string. This is an argument needed for DISPROW1
DISPROW1

* shows the string above on row1 (of 7) of the screen
The rest of the aplet I will explain in a later tutorial.

Note: Between the edge of the screen and the command there is a space (or a tab if you prefer that). This is to make the source more readable, especially when working with labels and ‘if…then’ structures this will come in handy.

Tip: You can also type $ "Clearing the screen" DISPROW1. Enters are equal to a space and a tab.

Basically:

Now scroll down a little further till you see:

When the WSR program starts you should find that there is a small floating window called ‘Insert…’. If there is not, click on ‘Insert’ and then on ‘Command’.

In the main code editing window, make sure that the cursor is positioned before the “Hello World!” (where the (is) and then click in this ‘Insert…’ window on the phrase Erase 39G screen. You should find that a series of commands are inserted which will, when run on the calculator, clear the screen. Finally, underneath the Ck&DoMsgBox, type ‘WaitForKey’ on one line and on the next ‘Entry’ (both without quotes).
You should now see:

Now click on ‘File’ and ‘Save 39G Aplet to save the aplet and then click on ‘program’ and ‘compiler’. A DOS window will show HP-tools being used to work on your source code. When it has finished, close it. Your program is now compiled and can be found in the directory created earlier in the Projects directory. You can now close the WSR program and send the compiled aplet to the calculator. See the next page for notes on running it.

Note: If you look in the source code you will see:

For HP-39(+)g/40g users:
Notice the last line of this. Since we have not created a library in this tutorial, there will be a problem (a missing library error) if you try to transfer the new aplet to the calculator using the normal method of pressing RECV and “Disk drive…”. Additionally, the two files HP39DIR.000 and HP39DIR.CUR which are normally the first things sent to the calculator (to tell it the contents of the directory) have not been created as part of this process. The solution to this is to use the other option in the RECV menu of “HP39/40 (Wire)”. If you choose this option then HPGComm will open a normal Windows file selection dialog to allow you to specify which file is to be sent to the calculator. Remember – the name of the file is the one you chose in ‘Output File at the start of this tutorial.

For HP-39g+ users only:
At the moment of writing the HP-39g+ still comes packed with software that doesn’t allow you to send Sys-RPL programs. Instead download the beta at http://members.iinet.net.au/~ccroft/zipfiles/ConnBeta.zip. (same link as in _READFIRST doc.)
Running the aplet:
	To run the aplet, simply press the START button in the APLET LIBRARY view. You will see the screen:

This was set up in the section “Begin of the presentation”.
	[image: image1.png]earing the screen

ece Enter to shart

	When you press ENTER the screen will clear:
This was done using the command

HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP

	[image: image2.png]

	Pressing any key now will result in:

The pause for a key press was done using the command:

WaitForKey

And the message box was created with the supplied argument of a string, followed by the command to display it:
$ "Hello World!"

Ck&DoMsgBox

	[image: image3.png][eTTs ortar

	Finally, when you press OK or ENTER to remove the message box, the original screen re-appears. This is due to the final command of:
Entry

This is a command to jump to the label called “Entry” which is located back at the start of the section “Begin of the presentation”.
	

Exit the Aplet like you would normally do! Pressing HOME, APLET, …

*		 Begin of the program		*

 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP	(clear screen)

 WaitForKey					(wait for a key to be pressed)	

 $ "Hello World!"				(string)

 Ck&DoMsgBox				(make a messagebox from the string)

 Entry					(go back to label Entry)

**

*		 End of the program		*

**

NAMELESS _Entry

::

*		Begin of the presentation		*

 TURNMENUOFF							(turn menu off)

 HARDBUFF ZEROZERO BINT_131d SIXTYFOUR GROB!ZERODRP	(clear screen)

 $ ""									(empty string)

 DISPROW1								(show on row 1)

 $ "Press Enter to start"					(string)

 DISPROW8								(show on row 2)

*		 Name of the Aplet			*

	Dir_Head 5,Tute1,601

* ^1 ^2 ^3

* ^1=Lenght of the name of the aplet.

* ^2=Name of the aplet.

* ^3=Number of the library. This is necessary even if the library is empty.

NAMELESS _Action�::�***�*		 Begin of the program		*�***�� ($ "Hello World!"						(Hello World!)� Ck&DoMsgBox			 (makes a messagebox with the string)

**

$ "example"

 DISPROW8

=

$ "example"		DISPROW8		or		$ "example" DISPROW8

© 2004 Michaël De Coninck and Colin Croft

