Michaël’s cosy programmers’ corner.

Although I said in the previous issue that I was going to discuss the Message Handlers, I won’t. Why not? When I was writing the Upcoming Programs, I noticed again how much of a ‘one man’ show it was… What I mean is that I’m almost the only active programmer in this community. What’s the point then that I’m explaining Message Handlers if no one understands it, because they can’t program. So I decided that after two months of input forms we will learn something which also newbie will understand, something BASIC. We will learn how to use HP-Basic commands in Sys-RPL. Although HP-Basic commands in System RPL are almost the same as there HP-Basic counterparts. There are also some differences. HP-Basic commands in Sys-RPL don’t need time to unpack. the time to unpack is a term from me for the time that a HP-Basic program needs when first run. Now you must also use RPN instead of Algebraic. Other than that there are no differences. They even do error checking for you!

We’ll begin with creating a choosebox. The arguments for a choosebox (left box is for HP-Basic Choosebox in Sys-Rpl):

	In sys-rpl
	HP-Basic

	“Title of choosebox”
	Variable:

	{ “Option 1”
 “Option 2”

 “Option n” }
	“Title of choosebox”;

	%Number (REAL) which option should be highlighted.
	“Option 1”;

“Option 2”;

“Option 3”;

Now we are going to create the same example of the HP-39/40g users guide in Sys-RPL. We start with defining our title. That is “comic strips”. So write: "Comic strips" Now we have to define our options. That is a list with the names of the options in it. We’ll have three options: Dilbert, Calvin&Hobbes and Blondie. So write:
{ "Dilbert" "Calvin&Hobbes" "Blondie" } Now we have to choose which option should be highlighted when run. E.g.: If you want to highlight “Calvin&Hobbes” write %2. We want to highlight “Blondie”. So write: %3 Now write xCHOOSE to make the choosebox.

Code so far:

Compile the code and see the result on your calculator. Now we will store the option the user has chosen in Variable A. If option 1 (= Dilbert) was chosen. %1 Will be stored in A.

First make a variable A, else the program will crash. Now write under xCHOOSE DROP A! . That DROP is for what is put on the stack when CNCL or OK is pressed (we don’t care about that). Next we will display the option that was chosen in a messagebox. Compare Variable A with %1 %2 %3. And write the name of the option + space next to IT See code below:

Because there is only one thing we have to do we don’t have to write :: (and ‘;’) after IT. Now if option 1 was chosen. The string “Dilbert ” will be put on the stack. Write “was chosen”.

With &$ we concatenate two strings. Write &$ after "was chosen!". So if Option “blondie” was chosen there will be now a string “Blondie was chosen!” on the stack. Now it’s time to use the messagebox. Argument for the choosebox.

	In sys-rpl
	HP-Basic

	“textitem”
	“textitem”

just write xMSGBOX after &$. Code:

Compile the code and see the result.

Next up is the HP-Basic input form. Arguments for the input form.

	In sys-rpl
	HP-Basic

	“title of input form”
	Variable:

	“Label”
	“Title of input form”;

	“help”
	“label”;

	%default value
	“help”;

	
	Default value:

The title of our input form will be ‘Quadratic Formula”. So write: "Quadratic formula" For a label we will take "A=" , For our help string we take "Enter a value for A." , for the default value of the inputform we’ll write: %1 To make a inputform with all these arguments xINPUT .Code this far:

Again compile the code and see the result on your calculator. Did you already notice that the names of HP-Basic in Sys-Rpl are the same as the one in HP-Basic, with that one difference there is an ‘x’ in front of the command. You can look in Entry.39 (the H-file in ‘files’) for all the HP-Basic commands.

Anyway back on-topic. I said in my introduction that these commands do error checking. Whereas forgetting an argument in Sys-Rpl would result in a soft reset (or worse), here it will result in a error. Let’s try it out. Delete the %1 and compile the code. Run it on your calculator and you’ll see a bad argument error. Now place the %1 back, but delete “A=”. Compile the code and you’ll see a ‘Too few arguments’ error. Ok, enough fooled around, place that “A=” back.

The number that the user entered is put on the stack. We don’t have to place a DROP before storing something in a variable (like with choose).E.g.:

It’s time for music. Let’s use BEEP. The arguments for BEEP are:

	In sys-rpl
	HP-Basic

	% frequency
	Frequency;

	% seconds
	Seconds:

We’ll play a DO (or C) on our calculator. The frequency of a DO (or C) is % 523.25 (thank you HP-Piano X (). So write % 523.25 . We’ll hold that tone for a second. So write %1 after it. Notice that numbers that aren’t defined in Entry.39 (everything else than 0-10) needs a space between the % and the number. to hear the tone the tone write xBEEP after %1 . Code:

Compile and run. Note that you can also press on [CANCEL] when hearing the note and you are brought to the HOME screen just as when you would have pressed on [CANCEL] in a HP-Basic program.

With that last sentence the end of the HP-Monthly Newsletter has also come. I hope that you’ve enjoyed reading this issue and hope you will start programming soon ;-) So I have something to write about (.
"Quadratic formula"

 "Enter a value for A."

 %1

 xINPUT

 A!

"Quadratic formula"

 "A="

 "Enter a value for A."

 %1

 xINPUT

"Comic strips"

 {

 "Dilbert"

 "Calvin&Hobbes"

 "Blondie"

 }

 %3

 xCHOOSE

 DROP A!

 A@ %1 EQUAL IT "Dilbert "

 A@ %2 EQUAL IT "Calvin&Hobbes "

 A@ %3 EQUAL IT "Blondie "

 "was chosen!" &$ xMSGBOX

A@ %2 EQUAL IT "Calvin&Hobbes "

A@ %3 EQUAL IT "Blondie "

"was chosen!"

 xCHOOSE

 DROP A!

 A@ %1 EQUAL IT "Dilbert "

 A@ %2 EQUAL IT "Calvin&Hobbes "

 A@ %3 EQUAL IT "Blondie "

"Comic strips"

 {

 "Dilbert"

 "Calvin&Hobbes"

 "Blondie"

 }

 %3

 xCHOOSE

xINPUT

A!

% 523.25 %1 xBEEP

© 2004 Michaël De Coninck

