
An Introduction to HP 48 System RPL and Assembly Language
Programming

James Donnelly

May 31, 2009

2

Acknowledgements

This book would not exist were it not for the team that developed the original HP 28. The tribute to their vision
exists in backpacks, briefcases, and on desktops around the world.

Inspiration for the book came from many places, notably the traffic on comp.sys.hp48. Doug Cannon and Brian
Maguire were the principals that helped get the project going and provided valuable examples and suggestions.

Seth Arnold, Lee Buck, Rick Grevelle, Wlodek A.C. Mier-Jedrzejowicz, Richard Nelson, Jeremy Smith, and
others repeatedly provided encouragement when the going got tough and I thought about abandoning the
project. Perhaps the most consistent motivation came from the not-infrequent posting on comp.sys.hp48 from
new HP 48 owners asking for examples and tips for getting started.

Seth Arnold, Ted Beers, Lee Buck, Doug Cannon, Yuan Feng, Joseph Horn, Wlodek A.C. Mier-Jedrzejowicz,
Brian Maguire, and Eric L. Vogel all contributed to the review process.

Hewlett-Packard provided permission to distribute copies of their HP 48 development tools on the disk that
accompanies this book.

Immense credit goes to my wife Janet, who supported and encouraged this project, and thus was left alone for
the many hours of writing, testing, debugging, and proofing.

Disclaimer

Despite the best of intentions and many hours of hard work, mistakes may remain in this book. We suggest
you archive important data in your calculator before beginning to experiment with the new techniques you will
learn here. It is not uncommon to see a typing mistake in source code lead to a “Memory Lost” event. This is a
natural part of the software development process. Neither the author nor the Hewlett-Packard Company can
accept responsibility for the loss of your data.

Contents

1 Introduction 11

2 Getting Started 13

2.1 Terminology . 13

2.1.1 User-RPL vs. System-RPL vs. Assembler . 13

2.1.2 Stack Diagrams . 14

2.1.3 Object Notation . 14

2.1.4 Fonts . 15

2.2 Installing the HP Tools . 15

2.3 Example Programs . 15

2.4 Introducing System-RPL . 15

2.4.1 A First Example . 16

2.4.2 Creating the Example With the HP Tools . 17

2.5 Introducing Assembly Language . 18

2.6 Example File Structures . 19

2.6.1 User-RPL Examples . 19

2.6.2 System-RPL Examples . 19

2.6.3 Assembly Examples . 20

3 Basic Programming Tools 21

3.1 Binary Integers . 21

3.1.1 Internal Binary Integers in the HP 48 Display . 21

3.1.2 Internal Binary Integers in System-RPL Source Code . 21

3.1.3 Type Conversions . 23

3.1.4 Internal Binary Integer Operations . 23

3.2 Flags . 27

3.2.1 Flag Conversions . 27

3.2.2 Flag Utilities . 28

3.3 Tests . 28

3.3.1 Object Equality . 28

3.3.2 Binary Integer Tests . 29

3.3.3 Real Number Tests . 30

3.3.4 Extended Real Number Tests . 31

3.3.5 Complex Number Tests . 31

3

4 CONTENTS

3.3.6 Advanced Topic: Missing Extended Real Test Objects . 32

3.3.7 Unit Object Tests . 33

3.3.8 Character String Tests . 33

3.3.9 Hex String Tests . 33

3.4 Program Flow Control . 34

3.4.1 Early Exits From a Secondary . 34

3.4.2 IF – THEN – ELSE Structures . 35

3.4.3 CASE Objects . 37

3.5 Loop Structures . 43

3.5.1 Definite Loops . 43

3.5.2 Indefinite Loops . 45

3.6 Runstream Operators . 46

3.7 Argument Validation . 47

3.7.1 Attributing Errors . 47

3.7.2 Number of Arguments . 48

3.7.3 Type Dispatching . 49

3.7.4 Object Type Tests . 51

3.8 Temporary Variables . 52

3.8.1 Using Named Temporary Variables . 54

3.8.2 Using Null-Named Temporary Variables . 55

3.8.3 Programming Hint for Temporary Variables . 57

3.8.4 Additional Temporary Variable Utilities . 58

3.9 Error Trapping . 59

3.9.1 Error Trapping Mechanics . 59

3.9.2 Generating an Error . 59

3.9.3 Handling an Error . 60

3.9.4 Additional Error Objects . 60

3.10 Stack Operations . 61

3.11 Control Structure Examples . 66

3.11.1 PLIST Example . 66

3.11.2 SEMI Example . 67

3.11.3 ticR Example . 68

4 Objects & Object Utilities 69

4.1 Real & Extended Real Numbers . 69

4.1.1 Compiling Real Numbers . 69

4.1.2 Built-In Real Numbers . 70

4.1.3 Real Number Conversions . 71

4.1.4 Real Number Functions . 72

4.1.5 Extended Real Number Functions . 75

4.2 Complex Numbers . 77

4.2.1 Compiling Complex Numbers . 77

CONTENTS 5

4.2.2 Complex Number Conversions . 77

4.2.3 Built-In Complex Numbers . 78

4.2.4 Complex Number Functions . 78

4.3 Arrays . 80

4.3.1 Compiling Arrays . 80

4.3.2 Array Utilities . 80

4.3.3 The MatrixWriter . 81

4.4 Tagged Objects . 82

4.5 Characters and Character Strings . 82

4.5.1 Built-In Character Objects . 82

4.5.2 Built-In String Objects . 83

4.5.3 String Manipulation Objects . 84

4.6 Hex Strings . 87

4.6.1 Hex String Conversions . 87

4.6.2 Wordsize Control . 87

4.6.3 Basic Hex String Utilities . 88

4.6.4 Hex String Math Utilities . 88

4.7 Composite Objects . 90

4.7.1 Building Composite Objects . 90

4.7.2 Finding the Number of Objects in a Composite Object . 90

4.7.3 Adding Objects to a Composite . 91

4.7.4 Decomposing Composite Objects . 91

4.7.5 Searching Composite Objects . 92

4.7.6 Detecting Embedded Objects . 92

4.8 Unit Objects . 93

4.8.1 Dimensional Consistency . 93

4.8.2 Building and Decomposing Unit Objects . 93

4.8.3 Unit Object Utilities . 94

5 Memory Utilities 97

5.1 Name Objects . 97

5.2 User Variables . 98

5.3 Directory Utilities . 99

5.4 Temporary Memory . 100

5.4.1 Use of Temporary Memory . 100

5.4.2 Garbage Collection . 101

5.5 Memory Utilities . 101

6 CONTENTS

6 Graphics, Text, and the LCD 103

6.1 LCD Display Regions . 103

6.1.1 Status Area Control . 103

6.1.2 Stack Area Control . 104

6.1.3 Menu Area Control . 104

6.1.4 Combined Area Controls . 105

6.2 Basic Display Memory Principles . 105

6.2.1 The Current Display Grob . 105

6.2.2 The Stack Grob . 106

6.2.3 The Graphics Grob . 106

6.2.4 Verifying Display Grob Height . 107

6.2.5 Enlarging ABUFF or GBUFF . 107

6.2.6 Scrolling ABUFF or GBUFF . 107

6.2.7 The Menu Grob . 108

6.2.8 Display Pointer Examples . 109

6.3 Graphics Coordinates . 110

6.3.1 Subgrob Coordinates . 110

6.3.2 User Pixel Coordinate - Bint Conversion . 110

6.3.3 User-Unit to Pixel Conversion . 111

6.3.4 Accessing PPAR . 111

6.4 Displaying TextPICT . 112

6.4.1 Medium Font Display Objects . 112

6.4.2 Displaying Temporary Messages . 112

6.4.3 Large Font Display Objects . 113

6.5 Basic Grob Tools . 114

6.5.1 Creating Grobs . 114

6.5.2 Finding Grob Dimensions . 114

6.5.3 Extracting a Subgrob . 115

6.5.4 Inverting a Grob . 115

6.5.5 Combining Graphics Objects . 115

6.5.6 Clearing a Grob Region . 115

6.6 Drawing Tools . 116

6.6.1 Line Drawing . 116

6.6.2 Pixel Control . 116

6.7 Menu Grob Utilities . 117

6.8 Built-in Grobs . 117

6.9 Graphics Examples . 118

6.9.1 Drawing a Grid . 118

6.9.2 A Rocket Launch . 119

CONTENTS 7

7 Keyboard Utilities 121

7.1 Key Buffer Utilities . 121

7.2 Checking The Keyboard While Running . 121

7.2.1 Detecting the [ON] Key . 122

7.2.2 Detecting Any Key . 122

7.3 Waiting For a Key . 124

7.4 Keycodes . 125

7.5 Repeating Keys . 126

7.6 InputLine . 127

7.6.1 Input Parameters . 127

7.6.2 InputLine Results . 128

7.6.3 InputLine Examples . 129

8 The Parameterized Outer Loop 133

8.1 Introducing ParOuterLoop Parameters . 133

8.2 Temporary Environments and the POL . 139

8.3 The Exit Object . 139

8.4 The Error Object . 139

8.5 Display Objects . 139

8.6 Hardkey Handlers . 140

8.6.1 Key and Plane Codes . 140

8.6.2 Hardkey Handler Structure . 140

8.7 Softkey Definitions . 144

8.7.1 Null Menu Keys . 145

8.7.2 Softkey Label Objects . 145

8.7.3 Softkey Action Object . 146

8.8 The POL Error Trap Object . 148

8.9 POL Utilities . 149

8.10 Menu Utilities . 150

9 Graphical User Interfaces 153

9.1 Message Boxes . 153

9.1.1 Message Box Parameters . 154

9.1.2 Message Box Example . 154

9.2 Equation Library Browser . 155

9.2.1 Browser Parameters . 155

9.2.2 Active Browser Keys . 156

9.2.3 Browser Support Objects . 157

9.2.4 Browser Example . 157

9.3 Choose Boxes . 159

9.3.1 Choose Box Styles . 159

9.3.2 Choose Box Parameters . 160

9.3.3 Choose Box Message Handler . 161

8 CONTENTS

9.3.4 Decompile Objects . 162

9.3.5 Customizing Choose Box Menus . 164

9.3.6 Choose Event Procedures . 167

9.4 Input Forms . 168

9.4.1 Input Form Parameters . 169

9.4.2 Label Specifiers . 169

9.4.3 Field Specifiers . 169

9.4.4 Input Form DEFINEs for RPLCOMP . 172

9.4.5 Specifying Object Types . 173

9.4.6 Specifying Decompile Formats . 173

9.4.7 Input Form Message Handlers . 174

9.4.8 Input Form Data Access . 174

9.4.9 Customizing Input Form Menus . 175

9.4.10 ORBIT Example . 177

10 Introducing Saturn 183

10.1 The Saturn CPU . 183

10.1.1 The Working and Scratch Registers . 184

10.1.2 The Status Bits . 185

10.1.3 Input and Output Registers . 185

10.1.4 The Return Stack . 185

10.1.5 Arithmetic Mode . 186

10.1.6 The Pointer Register . 186

10.2 Instruction Set Summary . 186

10.2.1 Memory Access Instructions . 186

10.2.2 Load Constant Instructions . 187

10.2.3 P Register Instructions . 187

10.2.4 Scratch Register Instructions . 188

10.2.5 Shift Instructions . 188

10.2.6 Logical Instructions . 188

10.2.7 Arithmetic Instructions . 189

10.2.8 Branching Instructions . 190

10.2.9 Test Instructions . 190

10.2.10Register & Status Bit Instructions . 192

10.2.11System Control Instructions . 193

10.2.12Keyscan Instructions . 193

10.2.13NOP Instructions . 193

10.2.14Assembler Pseudo-Op Instructions . 193

CONTENTS 9

11 Writing Your Own Code Objects 195

11.1 Code Object Execution . 195

11.2 Stack Access . 196

11.2.1 Example: SWAP Two Objects . 197

11.2.2 Example: DROP Nine Objects . 197

11.3 Reading Assembly Language Entry Descriptions . 198

11.4 Saving and Restoring the RPL Pointers . 198

11.4.1 Example: Reversing Objects on the Stack . 198

11.4.2 Example: Clearing A Grob . 199

11.5 Stack Utilities . 200

11.5.1 Pop Utilities . 200

11.5.2 Push Utilities . 201

11.5.3 Examples: Indicated ABS . 204

11.6 Memory Utilities . 204

11.6.1 Allocating Memory . 205

11.6.2 Memory Move Utilities . 206

11.6.3 Display Memory Addresses . 208

11.7 Reporting Errors . 209

11.8 Checking Batteries . 209

11.9 Warmstart & Coldstart . 210

11.10Tone Generation . 210

11.10.1Steady Tones . 210

11.10.2Rising and Falling Tones . 210

11.11Keyboard Scanning . 211

11.11.1Managing Interrupts . 212

11.11.2Rapid Keyboard Scans . 213

11.11.3Low Power Keyboard Scans . 214

11.12The RVIEW Debugging Tool . 219

11.12.1The RVIEW User Interface . 219

11.12.2Using RVIEW . 220

11.13The PONG Game . 220

A Messages 223

B Character Codes 229

C Flags 231

D Object Structures 233

D.1 Binary Integer . 233

D.2 Real Number . 233

D.3 Extended Real Number . 233

D.4 Complex Number . 233

D.5 Extended Complex Number . 234

10 CONTENTS

D.6 Character . 234

D.7 String . 234

D.8 Hex String . 234

D.9 Arrays . 234

D.9.1 One-Dimension Array . 234

D.9.2 Two-Dimension Array . 234

D.9.3 Linked Array . 234

D.10 Name Objects . 235

D.10.1 Global Name . 235

D.10.2 Local Name . 235

D.10.3 XLIB Name . 235

D.11 Graphic Object . 235

D.12 Code Object . 235

D.13 Secondary . 235

D.14 Tagged . 235

D.15 List . 236

D.16 Symbolic . 236

D.17 Unit . 236

D.18 Library Data Objects . 236

Chapter 1

Introduction

The HP 48 calculator family is characterized in part by the availability of a wide variety of software products
that address diverse interests, ranging from games to serious engineering applications. Some programs appear
to run much faster than you would suspect possible if all your HP 48 programming experience was confined to
standard programming from the keyboard. This book is designed to introduce some of the techniques used to
create these programs.

The discussion and examples in this book have been drawn from the collective experience of the author and
other contributors — each having a unique view of the HP 48. This book is an introduction to the HP 48 —
we cannot and do not attempt to provide either complete documentation for every facet of the HP 48’s internal
resources or a complete theoretical description of the operating system. We do hope you will learn a few things,
have some fun, and write some new programs for others to enjoy.

As with any book, we make some assumptions about the background of the reader. In particular, we assume the
reader is familiar with all HP 48 object types and most basic HP 48 programming constructs. We recommend
The HP 48 Handbook, by the author, as a good place to begin the study of User-RPL programming. The
Handbook has lots of examples, and should get you started in good form. In particular, study pages 3-200.

Several tools exist that can be utilized to create programs using the HP 48’s internal resources in ways not
possible from the keyboard. The disk that comes with this book includes free copies of the tools provided by
(but not supported by) Hewlett-Packard.

The chapters in this book are organized to provide a progression from fairly straightforward usage of some
system resources in standard programs to complex application projects. However, this is not a novel with a
plot that is linear through the book. For instance, some example programs use objects described later in the
book. The book has been designed to act both as tutorial and reference, so you’ll find yourself going back-and-
forth from time to time.

11

12 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

Any technical dialog is necessarily filled with terms that may confuse the reader new to the subject. We begin
by defining some basic terms, introducing the tools, System-RPL, and assembler.

2.1 Terminology

The kernel of the HP 48 operating system/language known as RPL has been written in assembly language, and
much of the functionality of in the HP 48 is implemented in what is sometimes called “System-RPL”. Programs
entered from the keyboard of the HP 48 are written in what is sometimes called “User-RPL”.

Programs written in assembly language are often known as “code objects” (type 25) and can use all the re-
sources in the HP 48. Unfortunately, the HP 48 has not been provided with a complete debugging environment
for assembly language development. Consequently there have been fewer applications or games written in
assembly language. This book will describe some techniques that can be applied to assembly language devel-
opment projects.

2.1.1 User-RPL vs. System-RPL vs. Assembler

The illustration below shows the relationship between User-RPL, System-RPL, and the kernel of the HP 48.

Programs written in User-RPL and System-RPL share the same resources, stack, return stack, etc. The com-
mands available in User-RPL represent a subset of the functionality available in System-RPL. The objects that
can be used by System-RPL represent a subset of the HP 48 system.

There are three main distinctions between User-RPL and System-RPL:

• User-RPL commands have names that are recognized when you enter them into the command line,
whereas System-RPL objects must be accessed via either the SYSEVAL command or specialized tools.

13

14 CHAPTER 2. GETTING STARTED

• User-RPL commands have extra code responsible for validating input arguments (and thus require a bit
of extra execution time), whereas System-RPL objects usually have little or no error protection. This layer
of protection insures that invalid input arguments do not result in undesirable behavior by underlying
code.

• There are more resources available to programs written in System-RPL. These resources include access
to portions of the HP 48 system objects, additional object types (notably internal binary integers), and
additional control structures which may provide improved execution flow control.

Applications written in assembler have the greatest speed potential, the greatest access to system resources,
and the most difficult development process. The penalties for errors in assembly are sometimes greater than for
System-RPL, meaning that Memory Lost events are more likely. This should discourage only the faint-hearted,
however.

2.1.2 Stack Diagrams

A stack diagram notation is used in this book which describes the type and order of objects supplied to a
command or program and the type and order of results. In the case of an object that can be used in a System-
RPL application, the description includes the name, address, and stack diagram as follows:

NAME Address
Input Output

Level3 Level2 Level1 → Level3 Level2 Level1
Related Flags: Flags which may affect the result

Unless mentioned otherwise, all entries will work on all versions of the HP 48. Entries specific only to the G/GX
series of calculators carry the “G/GX” mnemonic by the address. Some objects are accessed by rompointer (XLIB
name). These entries are indicated by a user binary integer value for LIBEVAL (not always safe — including
the case shown below) in the center of the top line and the XLIB notation at the top-right:

DoMsgBox #000B1h G/GX XLIB 177 0
Displays a message box with a graphics object

”message” #maxwidth #minwidth grob menuobject→ TRUE

2.1.3 Object Notation

Hewlett-Packard has adopted a series of symbols to represent different object types. Some of these symbols
are listed below, along with their object type, an example of what the decompiled object type looks like in
System-RPL, and what the object looks like as displayed on the stack.

Symbol Type Object System-RPL Example Stack Example
% 0 Real number % 1.2345 1.2345

C% 1 Complex number C% 2.3 4.5 (2.3,4.5)
$ 2 String "ABC" "ABC"

arry 3 Real array ARRY [% 1 % 2 % 3] [1 2 3]
arry 4 Complex array ARRY [C% 1 2 C% 3 4] [(1,2) (3,4)]
{ } 5 List { "ABC" % 1.5 } { "ABC" 1.5 }
id 6 Global name ID X cXc

lam 7 Local name LAM y cyc
:: 8 Secondary object (program) :: x« id A %2 x+ x» ; e A 2 + f

symb 9 Algebraic DOSYMB ID X %2 x^ ; cXg2c
hxs 10 User Binary integer HXS 10 7F00000000000000 # 247d
grob 11 Graphics object GROB E 2000080000ABCD Graphic 8 x 2

tagged 12 Tagged object TAG Dist % 34.45 Dist: 34.45
symb 13 Unit object DOEXT ... ; 32_ ft/s^2

romptr 14 XLIB name ROMPTR domain XLIB 766 1
20 Internal binary integer 247 <247d>

%% 21 Extended real number %% 1.23456789012345 Long Real
C%% 22 Extended complex number C%% 1.234 5.678 Long Complex

lnkarry 23 Linked array LNKARRY [% 1 % 2 % 3] Linked Array
chr 24 Character object CHR A Character
code 25 Code object CODE ... ENDCODE Code

2.2. INSTALLING THE HP TOOLS 15

Objects are composed of a prologue and a body. An object prologue indicates the type of object, and the body
contains the information of interest. Some objects, like strings, have a length field after the prologue that
indicates the size of the object. Objects are also classified as being atomic or composite. An atomic object is a
single object, like a real number. The body of a composite object, like a list, consists of one or more objects. For
details about individual objects, see the appendix Object Structures on page 233.

2.1.4 Fonts

A font convention has been adopted to help distinguish between text, source code, and comments. The fonts
are used as follows:

e 1.23 + f The dot matrix font is used for User-RPL and text displayed in the HP 48 LCD.

:: % 1.23 %+ ; The Courier font is used for System-RPL or assembler source code.

Validate arguments An italic font is used for comments

2.2 Installing the HP Tools

Hewlett-Packard has graciously permitted the distribution of their tools on the disk that comes with this book.
There are three basic steps to the installation of the HP tools:

1. Copy the .EXE files to a directory in your path, typically a \BIN directory. Then copy the file ENTRIES.O,
and the SASM.OPC file from the TOOLS directory to a convenient directory on your hard disk. On many
systems, this would be a \INCLUDE directory.

The next two steps involve checking the \AUTOEXEC.BAT file on your PC:

2. Make sure that the PATH variable includes the directory containing the tools from step 1.

3. Add the following line to your AUTOEXEC.BAT file: SET SASM_LIB= \INCLUDE. This tells the SASM
assembler where the SASM.OPC file is located. If you place SASM.OPC in a directory other than \IN-
CLUDE, make sure this line refers to the proper directory.

When these three steps have been completed, reboot your PC and you’re ready to go. The examples in this book
will assume that the files mentioned in step 1 above are in the \INCLUDE directory of your PC.

It is beyond the scope of this book to describe the details of the HP tools — you may wish to refer to the HP
documentation on the disk for details about the tools.

2.3 Example Programs

There are three directories of example programs. Each example program comes with a DOS .BAT file that
compiles a working copy of the example program, ready to download to your HP 48. Checksums and sizes are
also provided to help confirm that an example program is properly installed.

Note: Many example programs contain error checking, but most examples of code
objects do not. You should always back up your calculator before experimenting with
example programs or changes to example programs.

2.4 Introducing System-RPL

As mentioned before, System-RPL programming is a superset of the process used to create programs in User-
RPL. The basic resources are the same, but System-RPL has its own notation and options not available in
User-RPL.

16 CHAPTER 2. GETTING STARTED

2.4.1 A First Example

We begin by comparing two objects that compute the length of the hypotenuse of a right triangle — one written
in User-RPL and the other written in System-RPL. The User-RPL example is called a program, but it’s common
in the world of System-RPL to use the term secondary for the example shown on the right.

User-RPL System-RPL
Side1 Side2 → Side3 % %′ → %′′

27.5 Bytes 20 Bytes HYPOT.S
e Start of program :: Start of secondary

DUP * SWAP DUP * Square both sides DUP %* SWAPDUP %* Square both sides
+ Add the squares %+ Add the squares
a Take the square root %SQRT Take the square root

f End of program ; End of secondary

Note the differences between the two:

• Delimiters for a User-RPL program and a secondary written in System-RPL are different. Secondaries
begin with :: (called DOCOL), and finish with ; (called SEMI).

• User-RPL programs are self quoting — they place themselves on the stack until explicitly executed —
and secondaries are executed. See Program Flow Control on page 34 for more about this difference.

• We could have used SQ to square each side in the User-RPL example, but the actual code for the user
command SQ (in the case of a real number) is :: DUP %* ; so we have used DUP * in place of SQ.

• The DUP used in the secondary is not the same as the User-RPL DUP. The User-RPL DUP checks the
stack to make sure that at least one object is on the stack before duplicating it. The System-RPL DUP
assumes that there is at least one object on the stack, and duplicates the object with no checks at all.

• In User-RPL, * encapsulates every possible multiplication operation. The System-RPL example uses %*,
which multiplies two reals, and makes no argument checks. This is the object that is ultimately executed
by the User-RPL * when it is asked to multiply two real numbers. Thus the System-RPL example avoids
the time required to determine which multiply routine to use. The same logic applies to the use of %+ and
%SQRT.

• The System-RPL example is smaller for two reasons. First, the example uses SWAPDUP, which combines
the operations of SWAP and DUP into one efficient piece of machine language. There are many such
objects available through System-RPL that combine common operations into one operation. The use of
SWAPDUP also saves space — this makes the System-RPL example 2.5 bytes shorter than it would have
been if SWAP and DUP were used individually. The System-RPL example is also smaller because it lacks
the ef delimiters found in the User-RPL program. The User-RPL program when decomposed actually
contain :: and ; around the outer program delimiters, so internally the program actually looks like :: e
DUP * SWAP DUP * + a f ; . When a User-RPL program is displayed the :: and ; are suppressed.

• One hazard of using the System-RPL example to find the length of a hypotenuse is that there is no argu-
ment validation. If you’re sure that only real numbers will be present on the stack when the secondary
is executed, no problems should result. Invalid arguments supplied to the User-RPL program will gener-
ate a Bad Argument Type error; invalid arguments supplied to the System-RPL secondary will have
unpredictable consequences, ranging from meaningless results to the loss of memory.

• Another consequence of the lack of argument validation is that the program does not clear the system
RAM location that attributes the source of an error. If an error were to occur, it would be attributed to
the last command that generated an error, which does no actual harm but is quite misleading.

• The System-RPL example will run faster than the User-RPL program, because all the argument checking
code has been bypassed. In this example the speed difference is minor, but in future examples you’ll begin
to see where major speed improvements can be found.

The System-RPL example shown above has been written for maximum efficiency at the expense of argument
validation. That may be appropriate for secondaries embedded in larger applications, but it is not recom-
mended for general use when an inexperienced user might supply invalid input data. Later in the book we will
show a technique for validating the arguments.

We now illustrate the process of compiling the System-RPL example using the HP tools on a PC.

2.4. INTRODUCING SYSTEM-RPL 17

2.4.2 Creating the Example With the HP Tools

To prepare the example, you will compile, assemble, and load the code using a source code file, a loader con-
trol file, and a batch file to automate the process. The input files HYPOT.S, HYPOT.M, and the batch file
HYPOT.BAT are listed below:
HYPOT.S This is the source code file for the program.
ASSEMBLE A pseudo-op that tells the compiler to pass the next output to SASM

NIBASC /HPHP48-A/ This is a download header for binary transmission to the HP 48
RPL A pseudo-op that tells the compiler to compile the source that follows
:: The beginning of the source code

DUP %* SWAPDUP %*
%+
%SQRT

;

HYPOT.M This is the loader control file that controls the execution of the loader SLOAD.
TITLE Hypotenuse This is an optional title that will appear in the .LR output file
OUTPUT HYPOT Instructs SLOAD to put the final output in the file HYPOT
LLIST HYPOT.LR Instructs SLOAD to put listing information and errors in HYPOT.LR
SUPPRESS XREF Suppresses a cross reference listing that would appear in HYPOT.LR
SEARCH \INCLUDE\ENTRIES.O The reference to the addresses in ENTRIES.O
REL HYPOT.O Specifies which file to load
END

HYPOT.BAT This is a batch file that encapsulates the entire process.
RPLCOMP HYPOT.S HYPOT.A Invokes RPLCOMP, generates the SASM source file HYPOT.A
SASM HYPOT.A Assembles HYPOT.A, generates HYPOT.L and HYPOT.O
SLOAD -H HYPOT.M Invokes SLOAD using the control file HYPOT.M, generates HYPOT

The file HYPOT.BAT encapsulates the entire process into a single batch file, so you have only one command to
issue at the PC keyboard. Run HYPOT.BAT, which issues the commands to compile the .S source file, assemble
the resulting .A file, and resolve the entry points with the .M file. Check HYPOT.L to make sure there were no
compile or assembly errors.

Now examine the file HYPOT.LR. You should see something resembling the listing below:

HYPOT.LR
Saturn Loader, Ver. %I%, %G%
Output Module:
Module=HYPOT
Start=00000 End=00037 Length=00038 Symbols=2293 References= 8
Date=Sat Apr 22 14:20:28 1995 Title= Hypotenuse

Source modules:
Module=\INCLUDE\ENTRIES.O
Start=00000 Module Contains No Code
Date=Fri Apr 21 21:35:29 1995 Title=Supported ROM Entry Points

Fri Apr 21 21:35:29 1995

Module=HYPOT.O
Start=00000 End=00037 Length=00038

Date=Sat Apr 22 14:20:28 1995 Title=
Sat Apr 22 14:20:28 1995

/SLOAD: End of Saturn Loader Execution

If an unresolved reference appears at the end of a .LR file, you most likely have specified an entry that is not
in the file ENTRIES.O. Make sure that you have spelled the name correctly, which is the usual source of these
errors.

To try out the System-RPL example, download the file HYPOT into your HP 48 and try it out with real numbers
for input. Remember, the error checking that protected you is now gone. The section Argument Validation on
page 47 in the chapter Basic Programming Tools shows how you can design your own argument validation
routines.

18 CHAPTER 2. GETTING STARTED

2.5 Introducing Assembly Language

To introduce assembly language, we begin with one of the smallest possible examples — the HP 48’s equivalent
of “Hello World” in C programming. This program will return to the stack the address of the object in level
1 expressed as an internal binary integer. The HP 48 stack is merely a stack of 20-bit address pointers to
objects residing in memory. The program copies the address into a CPU register, then branches to a routine
that returns the address expressed as an internal binary integer.

To prepare the example, you will assemble and load the code using a source code file, a loader control file, and
a batch file to automate the process. The input files ADDR.A, ADDR.M, and ADDR.BAT are listed below:

ADDR.A This is the source code file for the program.
NIBASC \HPHP48-A\ This is a download header for binary transmission to the HP 48
CON(5) =DOCODE This is the prologue for a code object
REL(5) end The length field — indicates the size of the code object
GOSBVL =SAVPTR Saves the RPL pointers
A=DAT1 A Reads the pointer from stack level 1 into the A field of register A
GOVLNG =PUSH#ALOOP Pushes the A field of register A as an internal binary integer,

END restores the RPL pointers, and returns to RPL

ADDR.M This is the loader control file that controls the execution of the loader SLOAD.
OUTPUT ADDR Instructs SLOAD to put the final output in the file ADDR
LLIST ADDR.LR Instructs SLOAD to put listing information and errors in ADDR.LR
SUPPRESS XREF Suppresses a cross reference listing that would appear in ADDR.LR
SEARCH \INCLUDE\ENTRIES.O The reference to the addresses in ENTRIES.O
REL ADDR.O Specifies which file to load
END

ADDR.BAT This is a batch file that encapsulates the entire process.
SASM ADDR.A Assembles ADDR.A, generates ADDR.L and ADDR.O
SLOAD -H ADDR.M Invokes SLOAD using the control file ADDR.M, generates ADDR

The file ADDR.BAT encapsulates the entire process into a single batch file, so you have only one command
to issue at the PC keyboard. Run ADDR.BAT, then examine the file ADDR.LR. You should see something
resembling the listing below:

ADDR.LR
Saturn Loader, Ver. %I%, %G%

Output Module:
Module=ADDR
Start=00000 End=0002A Length=0002B Symbols=2293 References= 3

Date=Sat Apr 22 14:21:13 1995 Title=

Source modules:
Module=\INCLUDE\ENTRIES.O

Start=00000 Module Contains No Code
Date=Fri Apr 21 21:35:29 1995 Title=Supported ROM Entry Points

Fri Apr 21 21:35:29 1995

Module=ADDR.O
Start=00000 End=0002A Length=0002B

Date=Sat Apr 22 14:21:13 1995 Title=
Sat Apr 22 14:21:13 1995

/SLOAD: End of Saturn Loader Execution

If an unresolved reference appears at the end of a .LR file, you most likely have specified an entry that is not
in the file ENTRIES.O. Make sure that you have spelled the name correctly, which is the usual source of these
errors. You may also want to check the .L file after assembly to check for compilation or assembly errors.

To try out the example, download the file ADDR into your HP 48 and try it out with the real number 1 on the
stack. If the HP 48 is in HEX mode, you should see the internal binary integer <2A2C9h> on the stack, which
is the address of the built-in constant 1. Notice also that if you recall ADDR to the stack, the program appears

2.6. EXAMPLE FILE STRUCTURES 19

as Code. A code object (type 25) cannot be decompiled directly on the HP 48, but the Jazz tools (available on
various FTP sites) can be used for assembly language development directly on the HP 48.

2.6 Example File Structures

The disk supplied with this book contains a directory named EXAMPLES. There are six subdirectories:

HPTOOLS Contains the HP tools

USERRPL Contains example programs written in User-RPL

SYSRPL Contains example programs written in System-RPL

ASSEMBLY Contains example programs written in assembly language

RVIEW Contains the RVIEW register viewer

PONG Contains the assembly language PONG game

2.6.1 User-RPL Examples

The User-RPL example programs are ready to download to the HP 48 in ASCII format. These files are named
with a .RPL extension.

2.6.2 System-RPL Examples

The System-RPL examples consist of a source file, a loader control file, and a DOS batch file which will build the
example program. A naming convention is used for these files. To illustrate the naming convention, consider
the example program CASE1 described in Case Objects on page 37.

The input files are:

CASE1.S The System-RPL source file

CASE1.M The loader control file

CASE1.BAT The DOS batch file

To compile and load the CASE1 example, just type CASE1 at the PCs command line, and the CASE1.BAT
batch file will issue the commands to compile and load the example.

The output files are (in order of their creation):

CASE1.A The assembler source generated by the RPL compiler RPLCOMP from CASE1.S

CASE1.L The assembler listing file generated by the assembler SASM

CASE1.O The object file generated by the SASM

CASE1.LR The listing output from the loader SLOAD

CASE1 The example ready to download to the HP 48

The following diagram illustrates this process.

20 CHAPTER 2. GETTING STARTED

2.6.3 Assembly Examples

Like the System-RPL examples, the assembly language examples consist of a source file, a loader control file,
and a DOS batch file which will build the example program. A similar naming convention is used for these
files. To illustrate the naming convention, consider the example program SWP described in Writing Your Own
Code Objects on page 197.

The input files are:

SWP.A The assembler source file

SWP.M The loader control file

SWP.BAT The DOS batch file

To compile and load the SWP example, just type SWP at the PC’s command line, and the SWP.BAT batch file
will issue the commands to assemble and load the example.

The output files are (in order of their creation):

SWP.L The assembler listing file generated by the assembler SASM

SWP.O The object file generated by the SASM

SWP.LR The listing output from the loader SLOAD

SWP The example ready to download to the HP 48

Chapter 3

Basic Programming Tools

Programs written in System-RPL have a rich set of options for execution control, local variable use, and argu-
ment validation. This chapter will introduce some of the basic tools and program structures that you will use
many times. There are a number of object types used by System-RPL objects which are not available in the
User-RPL programming environment. The most prevalent of these are internal binary integers and the system
flags TRUE and FALSE. These will be introduced first in the sections Binary Integers and Flags, because they’re
used everywhere else. The section Tests describes objects that perform various kinds of tests. These sections
are followed by an introduction to some execution control constructs in the section Program Flow Control.
When you are designing a System-RPL program, you should evaluate the precautions necessary to prevent
the unwary user from getting unexpected results from invalid or missing input data. The section Argument
Validation will describe the tools available for these tasks. The section Temporary Variables will describe the
use of temporary environments, which are more flexible than the local variables found in User-RPL programs.

3.1 Binary Integers

Internal binary integers (sometimes nicknamed bints) are unsigned 20-bit quantities that are useful for many
functions. These integers differ from user binary integers, which are actually stored internally as hex strings.
To avoid confusion, this book will use the terms user binary integer and internal binary integer (or bint).

3.1.1 Internal Binary Integers in the HP 48 Display

While user binary integers (object type 10) are displayed with a leading # character, internal binary integers
are displayed within <> symbols. A trailing character indicates the base display mode. For instance, if the
base mode of the HP 48 is binary, then the internal binary integer 5 would be displayed as <101b>.

Internal binary integers live in the range 0 ≤ n ≤ FFFFF. If you subtract <1h> from <0h>, you get <FFFFFh>
(decimal 1048575). No overflow or underflow indications are available.

3.1.2 Internal Binary Integers in System-RPL Source Code

The bad news is that in the world of System-RPL programming, the symbol # is used to denote internal binary
integers, and the symbol hxs is used to denote User-RPL binary integers. Thus, when you see an object with
a # in the name, the object probably works with internal binary integers. For instance, the object #+ adds two
internal binary integers, returning an internal binary integer as the result.

The RPL compiler allows two notations for specifying internal binary integers. If the quantity is prefixed with
the symbol #, then hex digits are expected. If no prefix character is present, the digits are interpreted as
decimal values. Some commonly used bints (internal binary integers) are built into the HP 48, and can be
accessed by name, saving 2.5 bytes from the 5 bytes taken by a compiled bint. The following secondary returns
the same value three times:
::

32 The decimal value 32 expressed as a bint
20 The hex number 20h expressed as a bint
THIRTYTWO A pointer to the internal bint 32.

;

21

22 CHAPTER 3. BASIC PROGRAMMING TOOLS

When the code listed above is compiled with RPLCOMP.EXE, the first two instances generate 5 bytes of code
(values compiled as bint objects) and the third example generates 2.5 bytes (a pointer to a built-in bint):

CON(5) =DOCOL The start of the secondary (::)
CON(5) =DOBINT The prologue of an internal binary integer
CON(5) 32 The value of the bint
CON(5) =DOBINT The prologue of an internal binary integer
CON(5) #20 The hex digits for the value 32
CON(5) =THIRTYTWO The pointer to the built-in value of 32
CON(5) =SEMI The end of the secondary (;)

Built-in Internal Binary Integers. The following objects put built-in internal binary integers on the stack:

Object Stack Output Address Object Stack Output Address
MINUSONE <FFFFFh> #6509Eh FORTYTHREE <43d> #0419Dh
ZERO <0d> #03FEFh FORTYFOUR <44d> #64B12h
ONE <1d> #03FF9h FORTYFIVE <45d> #64B1Ch
TWO <2d> #04003h FORTYSIX <46d> #64B26h
THREE <3d> #0400Dh FORTYSEVEN <47d> #64B30h
FOUR <4d> #04017h FORTYEIGHT <48d> #64B3Ah
FIVE <5d> #04021h FORTYNINE <49d> #64B44h
SIX <6d> #0402Bh FIFTY <50d> #64B4Eh
SEVEN <7d> #04035h FIFTYONE <51d> #64B58h
EIGHT <8d> #0403Fh FIFTYTWO <52d> #64B62h
NINE <9d> #04049h FIFTYTHREE <53d> #64B6Ch
TEN <10d> #04053h FIFTYFOUR <54d> #64B76h
ELEVEN <11d> #0405Dh FIFTYFIVE <55d> #64B80h
TWELVE <12d> #04067h FIFTYSIX <56d> #64B8Ah
THIRTEEN <13d> #04071h FIFTYSEVEN <57d> #64B94h
FOURTEEN <14d> #0407Bh FIFTYEIGHT <58d> #64B9Eh
FIFTEEN <15d> #04085h FIFTYNINE <59d> #64B8Ah
SIXTEEN <16d> #0408Fh SIXTY <60d> #64BB2h
SEVENTEEN <17d> #04099h SIXTYONE <61d> #64BBCh
EIGHTEEN <18d> #040A3h SIXTYTWO <62d> #64BC6h
NINETEEN <19d> #040ADh SIXTYTHREE <63d> #64BD0h
TWENTY <20d> #040B7h SIXTYFOUR <64d> #64BDAh
TWENTYONE <21d> #040C1h SIXTYEIGHT <68d> #64C02h
TWENTYTWO <22d> #040CBh SEVENTY <70d> #64C16h
TWENTYTHREE <23d> #040D5h SEVENTYFOUR <74d> #64C20h
TWENTYFOUR <24d> #040DFh SEVENTYNINE <79d> #64C2Ah
TWENTYFIVE <25d> #040E9h EIGHTY <80d> #64C34h
TWENTYSIX <26d> #040F3h EIGHTYONE <81d> #64C3Eh
TWENTYSEVEN <27d> #040FDh ONEHUNDRED <100d> #64CACh
TWENTYEIGHT <28d> #04107h BINT_131d <131d> #64D24h
TWENTYNINE <29d> #04111h BINT255d <255d> #64E28h
THIRTY <30d> #0411Bh ZEROZERO <0d> <0d> #641FCh
THIRTYONE <31d> #04125h ZEROZEROZERO <0d> <0d> <0d> #64309h
THIRTYTWO <32d> #0412Fh ZEROZEROONE <0d> <0d> <1d> #6431Dh
THIRTYTHREE <33d> #04139h ZEROZEROTWO <0d> <0d> <2d> #64331h
THIRTYFOUR <34d> #04143h ONEONE <1d> <1d> #63AC4h
THIRTYFIVE <35d> #0414Dh #FIVE#FOUR <5d> <4d> #642E3h
THIRTYSIX <36d> #04157h #ONE#2 <1d> <27d> #6428Ah
THIRTYSEVEN <37d> #04161h #THREE#FOUR <3d> <4d> #642D1h
THIRTYEIGHT <38d> #0416Bh #TWO#FOUR <2d> <4d> #642BFh
THIRTYNINE <39d> #04175h #TWO#ONE <2d> <1d> #6429Dh
FORTY <40d> #0417Fh #TWO#TWO <2d> <2d> #642AFh
FORTYONE <41d> #04189h #ZERO#ONE <0d> <1d> #64209h
FORTYTWO <42d> #04193h #ZERO#SEVEN <0d> <7d> #6427Ah

Other objects that put binary integers on the stack are listed under Type Dispatching on page 49.

3.1. BINARY INTEGERS 23

3.1.3 Type Conversions

The objects COERCE and UNCOERCE convert between internal binary integers and real numbers. The objects
COERCE2 and UNCOERCE2 convert two numbers. The stack diagrams for these objects are:

COERCE #18CEAh
Converts a real number into an internal binary integer

% → #
COERCE2 #194F7h
Converts two real numbers into internal binary integers

%x %y → #x #y
UNCOERCE #18DBFh
Converts an internal binary integer into a real number

→ %
UNCOERCE2 #1950Bh
Converts two internal binary integers into real numbers

#x #y → %x %y

Notice in these stack diagrams that we’re using the shorthand mentioned before — % refers to real numbers
and # refers to internal binary integers. Real numbers less than zero convert to <0>, values greater than
1048575 convert to <FFFFFh>, fractional parts <.5 round to the next lowest integer, and fractional parts ≥.5
round to the next highest integer.

3.1.4 Internal Binary Integer Operations

The following System-RPL objects operate on a single internal binary integer (bint):

Object Description Address
#1+ Adds 1 to a bint #03DEFh
#1- Subtracts 1 from a bint #03E0Eh
#2+ Adds 2 to a bint #03E2Dh
#2- Subtracts 2 from a bint #03E4Eh
#2* Multiplies a bint by 2 #03E6Fh
#2/ Returns FLOOR(bint/2) #03E8Eh
#3+ Adds 3 to a bint #6256Ah
#3- Subtracts 3 from a bint #625FAh
#4+ Adds 4 to a bint #6257Ah
#4- Subtracts 4 from a bint #6260Ah
#5+ Adds 5 to a bint #6258Ah
#5- Subtracts 5 from a bint #6261Ah
#8+ Adds 8 to a bint #625BAh
#8* Multiplies a bint by 8 #62674h
#10+ Adds 10 to a bint #625DAh
#10* Multiplies a bint by 10 #6264Eh
#12+ Adds 12 to a bint #625EAh

The following System-RPL objects operate on two internal binary integers:

#* #03EC2h
Multiplies two bints

#x #y → #x*y
#+ #03DBCh
Adds two bints

#x #y → #x+y
#- #03DE0h
Subtracts #y from #x

#x #y → #x-y
#/ #03EF7h
Divides #x by #y, returns remainder and quotient

#x #y → #remainder #quotient

24 CHAPTER 3. BASIC PROGRAMMING TOOLS

#+-1 #63808h
Adds two bints, then subtracts 1 from the result

#x #y → #x+y-1
#-#2/ #624FBh
Subtracts #y from #x, divides the result by two, and returns the quotient

#x #y → (#x-#y)/2
#-+1 #637CCh
Subtracts #y from #x, then adds 1

#x #y → #x-#y+1

The following System-RPL objects combine stack operations (see Stack Operations on page 61) with binary
integer numbers or arithmetic functions. They are quite useful for reducing the size of a program.

2DROP00 #6254Eh
Drops ob1 and ob2, then returns 0 0

ob2 ob1 → #0 #0
2DUP#+ #63704h
Duplicates #x and #y, then adds them

#x #y → #x #y #x+y
3PICK#+ #63740h
Copies #x in level 3, then adds to #y

#x ob #y → #x ob #x+y
4PICK#+ #63754h
Copies #x in level 4, then adds to #y

#x ob2 ob1 #y → #x ob2 ob1 #x+y
4PICK#+SWAP #62DE5h
Copies #x in level 4, adds to #y, then does SWAP

#x ob2 ob1 #y → #x ob2 #x+y ob1

#+DUP #627D5h
Adds #x and #y, then duplicates the result

#x #y → #x+y #x+y
#+OVER #63051h
Adds #x and #y, then copies object in level 2

ob #x #y → ob #x+y ob
#+ROLL #612DEh
Adds #x and #y, then does ROLL

obx+y ... ob1 #x #y → obx+y−1 ... ob1 obx+y

#+SWAP #62DFEh
Adds #x to #y, then does SWAP

ob #x #y → #x+y ob
#-SWAP #62E12h
Subtracts #y from #x, then does SWAP

ob #x #y → #x-y ob
#-UNROLL #6132Ch
Subtracts #y from #x, then does UNROLL

obx−y ... ob1 #x #y → ob1obx−y ... ob2

#1+DUP #62809h
Adds 1 to #x, then duplicates result

#x → #x+1 #x+1
#1+NDROP #62F75h
Drops #n+1 objects from the stack

obn+1 ... ob1 #n → #
#1+PICK #61172h
Copies the object in stack level #n+1

obn+1 ... ob1 #n → obn+1 ... ob1 obn+1

#1+ROLL #612F3h
Adds 1 to #x, then does ROLL

obx+1... ob1 #x → obx ... ob1 obx+1

3.1. BINARY INTEGERS 25

#1+ROT #1DABBh
Adds 1 to #x, then does ROT

ob2ob1 #x → ob1#x+1 ob2

#1+SWAP #62E26h
Adds 1 to #x, then does SWAP

ob #x → #x+1 ob
#1+UNROLL #61353h
Adds 1 to #n, then does UNROLL

obn+1 ... ob1 #n → ob1obn+1 ... ob2

#1-1SWAP #62E4Eh
Subtracts 1 from #x, then SWAPs #1 into level 2

#x #1 #x-1
#1-DUP #6281Ah
Subtracts 1 from #x, then duplicates the result

#x → #x-1 #x-1
#1-ROT #62F09h
Subtracts 1 from #x, then does ROT

ob2ob1 #x → ob1#x-1 ob2

#1-SWAP #5E4A9h
Subtracts 1 from #x, then does SWAP

ob #x → #x-1 ob
#1-UNROT #28558h
Subtracts 1 from #x, then does UNROT

ob2ob1 #x → #x-1 ob2 ob1

#2+PICK #611BEh
Adds 2 to #n, then does PICK

obn+2 ... ob1 #n → obn+2 ... ob1 obn+2

#2+ROLL #61318h
Adds 2 to #n, then does ROLL

obn+2 ... ob1 #n → obn+1 ... ob1 obn+2

#2+UNROLL #61365h
Adds 2 to #n, then does UNROLL

obn+2 ... ob1 #n → ob1obn+2 ... ob2

#3+PICK #611D2h
Adds 3 to #n, then does PICK

obn+3 ... ob1 #n → obn+3 ... ob1 obn+3

#4+PICK #611E1h
Adds 4 to #n, then does PICK

obn+4 ... ob1 #n → obn+4 ... ob1 obn+4

DROP#1- #637F4h
Drops one object from the stack, then subtracts 1 from #x

#x ob → #x-1
DROPONE #62946h
Replaces object with #1

ob → #1
DUP3PICK#+ #63704h
Duplicates #y, copies #x, then adds

#x #y → #x #y #x+y
DUP#1+ #628EBh
Duplicates #x, then adds 1

#x → #x #x+1
DUP#1+PICK #6119Eh
Duplicates #n, adds 1, then does PICK

obn+1 ... ob1 #n → obn+1 ... ob1 #n obn+1

DUP#1- #6292Fh
Duplicates #x, then subtracts 1

#x → #x #x-1

26 CHAPTER 3. BASIC PROGRAMMING TOOLS

DUP#2+ #626F7h
Duplicates #x, then adds 2

#x → #x #x+2
DUPTWO #63AD8h
Duplicates ob, then returns #2

ob → ob ob #2
DUPZERO #63A88h
Duplicates ob, then returns 0

ob → ob ob #0
OVER#+ #6372Ch
Copies #x, then adds to #y

#x #y → #x #x+y
OVER#- #6377Ch
Copies #x, then subtracts from #y

#x #y → #x #y-x
OVER#2+UNROL #63105h
Copies #n, adds 2, then does UNROLL

obn+2 ... ob3 #n ob1 → ob1obn+2 ... ob3 #n
ROT#+ #63718h
Moves #x to level 1, then adds to #y

#x ob #y → ob #x+y
ROT#+SWAP #62DCCh
Moves #x to level 1, adds to #y, then swaps levels 1 and 2

#x ob #y → #x+y ob
ROT#- #63768h
Moves #x to level 1, then subtracts from #y

#x ob #y → ob #y-x
ROT#1+ #637B8h
Moves #x to level 1, then adds 1

#x ob1 ob2 → ob1ob2 #x+1
SWAP#- #62794h
Swaps #x and #y, then subtracts #x from #y

#x #y → #y-x
SWAP#1+ #62904h
Moves #x to level 1, then adds 1

#x ob → ob #x+1
SWAP#1+SWAP #51843h
Adds 1 to #x

#x ob → #x+1 ob
SWAP#1- #637E0h
Swaps #x to level 1, then subtracts 1 from #x

#x ob → ob #x-1
SWAP#1-SWAP #51857h
Subtracts 1 from #x in level 2

#x ob → #x-1 ob
SWAPOVER#- #637A4h
Returns #y and #x-y

#x #y → #y #x-y
ZEROOVER #63079h
Returns #0, then does OVER

ob → ob #0 ob
ZEROSWAP #62E3Ah
Returns #0, then does SWAP

ob → #0 ob

3.2. FLAGS 27

3.2 Flags

In User-RPL programs, the result of comparisons (like >) are real numbers with the value 0 or 1. In System-
RPL programs test results are generally the built-in objects TRUE and FALSE. These flags are used for many
purposes, most frequently branching decisions. When executed, these flags just put themselves on the stack:

FALSE #03AC0h
The system object FALSE

→ FALSE
TRUE #03A81h
The system object TRUE

→ TRUE

The objects DROPTRUE and DROPFALSE drop an object and place a flag on the stack:

DROPFALSE #6210Ch
Replaces an object with FALSE

ob → FALSE
DROPTRUE #62103h
Replaces an object with TRUE

ob → TRUE

Other objects are available that put two flags on the stack:

FALSETRUE #6350Bh
Puts FALSE and TRUE on the stack

→ FALSE TRUE
FalseFalse #2F934h
Puts two FALSE flags on the stack

→ FALSE FALSE
TrueFalse #634F7h
Puts TRUE and FALSE on the stack

→ TRUE FALSE
TrueTrue #0BBEDh
Puts two TRUE flags on the stack

→ TRUE TRUE

3.2.1 Flag Conversions

When either of these flags are displayed in the HP 48 stack display, you just see External. User-RPL tests
return the real numbers 1 or 0 for TRUE or FALSE. The object COERCEFLAG is useful for converting flags to real
numbers if your System-RPL program needs to return a true/false result when ending. COERCEFLAG returns 1
for TRUE or 0 for FALSE, then exits the current secondary.

COERCEFLAG #5380Eh
Converts a system flag into a real number and exits the current secondary

TRUE → %1
FALSE → %0

To convert a real number into a flag, use the object %0<>:

%0<> #2A7CFh
Returns TRUE if a real number is non-zero

% → FLAG

The object %0<> is one member of a large family of test objects which are discussed in greater detail in Tests on
the next page.

Example: This program fragment shows the use of COERCEFLAG in a program that needs to return a true/false
result to the user at exit:

28 CHAPTER 3. BASIC PROGRAMMING TOOLS

:: Start of program
... Establish TRUE or FALSE flag on stack
COERCEFLAG Convert flag to 0 or 1

; End of program

Example: This program fragment shows the use of ITE (if...then...else, described later) to return a true/false
result to the user before going on to other tasks. AtUserStack marks the result as being “owned by the user”,
so that the result won’t be discarded if an error occurs later on.

::
... Establish TRUE or FALSE flag on stack
ITE %1 %0 Use ITE to put the corresponding real number on the stack
AtUserStack Mark the result as being owned by the user
... The program continues

;

Any time a System-RPL program returns a result to the user, the result should be marked so that it is preserved
for the user in case of low memory or other errors. The use of COERCEFLAG is often one of these cases. The object
AtUserStack is sometimes used for this purpose, and is discussed in Argument Validation on page 47.

3.2.2 Flag Utilities

The following objects are available for manipulating flags:

AND #03B46h
Logical AND

FLAG1FLAG2 → FLAG3

NOT #03AF2h
Logical NOT

FLAG1 → FLAG2

ORNOT #635B0h
Logical OR followed by logical NOT

FLAG1FLAG2 → FLAG3

NOTAND #62C55h
Logical NOT, followed by logical AND

FLAG1FLAG2 → FLAG3

ROTAND #62C91h
Performs ROT, followed by logical AND

FLAG1ob FLAG2 → ob FLAG3

XOR #03ADAh
Logical XOR

FLAG1FLAG2 → FLAG3

3.3 Tests

The internal flags TRUE and FALSE appear most frequently as the result of a test on one or more objects.
The following objects test object equality, bints, real numbers, extended real numbers, and complex numbers.
There are also tests for object types, listed under Object Type Tests on page 51.

3.3.1 Object Equality

There are two types of object equality tests:

• The EQ family tests to see if two objects are the same object — their physical addresses are identical.

• The EQUAL family test to see if two objects are equal — even if their physical addresses are not the same.
This is the internal counterpart to the User-RPL command SAME.

3.3. TESTS 29

EQ #03B2Eh
Returns TRUE if objects have the same physical address

ob2ob1 → FLAG
EQUAL #03B97h
Returns TRUE if objects are equal (like User-RPL SAME)

ob2ob1 → FLAG
2DUPEQ #635D8h
Returns TRUE if objects have the same physical address

ob2ob1 → ob2ob1 FLAG
EQOR #63605h
Does EQ test, then ORs the result with FLAG

FLAG1ob2 ob1 → FLAG2

EQOVER #6303Dh
Does EQ test, then OVER

ob3ob2 ob1 → ob3FLAG ob3

EQUALNOT #635C4h
Performs EQUAL, followed by logical NOT

ob2ob1 → FLAG
EQUALOR #63619h
Does EQUAL test, then logical OR

FLAG1ob2 ob1 → FLAG2

3.3.2 Binary Integer Tests

The following objects test the value of internal binary integers:

#= #03D19h
Equal

#x #y → FLAG
#<> #03D4Eh
Not equal

#x #y → FLAG
#> #03D83h
Greater than

#x #y → FLAG
#< #03CE4h
Less than

#x #y → FLAG
2DUP#< #6289Bh
Duplicates #x and #y, then does less-than test

#x #y → #x #y FLAG
2DUP#= #628B5h
Duplicates #x and #y, then does equal test

#x #y → #x #y FLAG
2DUP#> #628D1h
Duplicates #x and #y, then does greater-than test

#x #y → #x #y FLAG
#0= #03CA6h
Returns TRUE if bint = <0>

→ FLAG
#0<> #03CC7h
Returns TRUE if bint 6= <0>

→ FLAG
#1= #622A7h
Returns TRUE if bint = <1>

→ FLAG
#1<> #622B6h
Returns TRUE if bint 6= <1>

→ FLAG

30 CHAPTER 3. BASIC PROGRAMMING TOOLS

#2= #6229Ah
Returns TRUE if bint = <2>

→ FLAG
#2<> #636C8h
Returns TRUE if bint 6= <2>

→ FLAG
#3= #62289h
Returns TRUE if bint = <3>

→ FLAG
#5= #636B4h
Returns TRUE if bint = <5>

→ FLAG
DUP#0<> #622D4h
Duplicates #, then returns TRUE if bint 6= <0>

→ # FLAG
DUP#0= #62266h
Duplicates #, then returns TRUE if bint = <0>

→ # FLAG
DUP#1= #622C5h
Duplicates #, then returns TRUE if bint = <1>

→ # FLAG
DUP#7< #63687h
Duplicates #, then returns TRUE if bint < <7>

→ # FLAG
OVER#0= #622C5h
Returns TRUE if bint = <0>

ob → # ob FLAG

3.3.3 Real Number Tests

The following objects compare the values of two real numbers:

%< #2A871h
Less than

%2 %1 → FLAG
%<= #2A8B6h
Less than or equal

%2 %1 → FLAG
%<> #2A8CCh
Not equal

%2 %1 → FLAG
%= #2A8C1h
Equal

%2 %1 → FLAG
%> #2A88Ah
Greater than

%2 %1 → FLAG
%>= #2A8A0h
Greater than or equal

%2 %1 → FLAG
%MAXorder #62D81h
Orders two real numbers

%2 %1 → %largest %smallest

The following objects test the value of a single real number:

%0< #2A738h
Less than zero

% → FLAG

3.3. TESTS 31

%0<> #2A7CFh
Not equal to zero

% → FLAG
%0= #2A76Bh
Equal to zero

% → FLAG
%0> #2A799h
Greater than zero

% → FLAG
%0>= #2A7F7h
Greater than or equal to zero

% → FLAG
DUP%0= #63BAAh
Duplicates %, then does equal to zero test

% → % FLAG

3.3.4 Extended Real Number Tests

The following objects test the value of two extended real numbers:

%%< #2A81Fh
Less than

%%2 %%1 → FLAG
%%<= #2A8ABh
Less than or equal

%%2 %%1 → FLAG
%%> #2A87Fh
Greater than

%%2 %%1 → FLAG
%%>= #2A895h
Greater than or equal

%%2 %%1 → FLAG

The following objects test the value of an extended real number:

%%0<= #2A80Bh
Less than or equal to zero

%% → FLAG
%%0< #2A727h
Less than zero

%% → FLAG
%%0<> #2A7BBh
Not equal to zero

%% → FLAG
%%0= #2A75Ah
Equal to zero

%% → FLAG
%%0> #2A788h
Greater than zero

%% → FLAG
%%0>= #2A7E3h
Greater than or equal to zero

%% → FLAG

3.3.5 Complex Number Tests

The following two objects test the values of a complex number or an extended complex number:

32 CHAPTER 3. BASIC PROGRAMMING TOOLS

C%0= #51B43h
Equal to C%0

C% → FLAG
C%%0= #51B2Ah
Equal to C%%0

C%% → FLAG

3.3.6 Advanced Topic: Missing Extended Real Test Objects

Notice that objects to perform the tests %%= and %%<> aren’t included in the tests listed on the previous page.
These objects don’t exist because they weren’t used in the HP 48 operating system, and thus were left out to
save ROM space. These objects can be created with a tiny bit of assembly language. We include the assembly
language examples EREQ and ERNEQ, which generate code objects to perform these tests.

EREQ.A
**
** Object: EREQ
**
** Purpose: Compare two extended real numbers, return TRUE if equal
**
** Entry: 2: %%2 (Extended Real Number)
** 1: %%1 (Extended Real Number)
**
** Exit: 1: FLAG (TRUE if %%2=%%1)
**
**

NIBASC /HPHP48-A/
CON(5) =DOCODE
REL(5) end
P= 2
GOVLNG (=%%<)+7

end

EREQ can be embedded in System-RPL source code as follows:
::
...
CODE

P= 2
GOVLNG (=%%<)+7

ENDCODE
...
;

The object ERNEQ is similar to EREQ, except that the initial value for P is different:

ERNEQ.A
**
** Object: ERNEQ
**
** Purpose: Compare two extended real numbers, return TRUE if not equal
**
** Entry: 2: %%2 (Extended Real Number)
** 1: %%1 (Extended Real Number)
**
** Exit: 1: FLAG (TRUE if %%2<>%%1)
**
**

NIBASC /HPHP48-A/
CON(5) =DOCODE
REL(5) end
P= 13
GOVLNG (=%%<)+7

end

3.3. TESTS 33

3.3.7 Unit Object Tests

The following objects test the values of unit objects, returning %1 for TRUE and %0 for FALSE.

UM#? #0F598h
Returns %1 if unit objects are not equal

unit1 unit2 → %
UM<=? #0F5D4h
Returns %1 if unit1 ≤ unit2

unit1 unit2 → %
UM<? #0F5ACh
Returns %1 if unit1 < unit2

unit1 unit2 → %
UM=? #0F584h
Returns %1 if unit1 == unit2

unit1 unit2 → %
UM>=? #0F5E8h
Returns %1 if unit1 ≥ unit2

unit1 unit2 → %
UM>? #0F5C0h
Returns %1 if unit1 > unit2

unit1 unit2 → %

Note that the System-RPL object U>NCQ may be used to help determine if two unit objects are dimensionally
consistent — see Dimensional Consistency on page 93.

3.3.8 Character String Tests

The following objects test character strings:

DUPNULL$? #63209h
Duplicates $, then returns TRUE if $ is empty

$ → $ FLAG
NULL$? #0556Fh
Returns TRUE if $ is empty

$ → FLAG

3.3.9 Hex String Tests

The following objects compare two hex strings, returning %1 for TRUE and %0 for FALSE. These tests respect
the user’s wordsize setting.

HXS==HXS #544D9h
Returns %1 if hex strings are equal

hxs1 hxs2 → %
HXS#HXS #544ECh
Returns %1 if hex strings are not equal

hxs1 hxs2 → %
HXS<HXS #54552h
Returns %1 if hxs1 < hxs2

hxs1 hxs2 → %
HXS<=HXS #5453Fh
Returns %1 if hxs1 ≤ hxs2

hxs1 hxs2 → %
HXS>=HXS #5452Ch
Returns %1 if hxs1 ≥ hxs2

hxs1 hxs2 → %
HXS>HXS #54500h
Returns %1 if hxs1 > hxs2

hxs1 hxs2 → %

34 CHAPTER 3. BASIC PROGRAMMING TOOLS

3.4 Program Flow Control

We have already stated that programming in System-RPL is much like User-RPL, but there are more options
for managing program execution in System-RPL. Before going further, it is important to highlight one major
difference between the two environments. In User-RPL, an embedded program is treated as an object (e.g.,
placed on the stack), and in System-RPL an embedded secondary is executed. To illustrate the difference,
consider the following two programs:

User-RPL: System-RPL:
e ::

1 %1
e 2 f :: %2 ;
e 3 f :: %3 ;
4 %4

e ;
Stack after execution: Stack after execution:

In combination with test objects that return TRUE or FALSE flags, we can take advantage of System-RPL’s
threaded execution to a great extent. Three classes of control objects are available:

• Objects that exit a secondary based on the state of a flag

• Object that support IF – THEN or IF – THEN – ELSE functions

• Objects that exit a secondary based on the state of a flag and perform additional actions prior to resuming
execution of the parent secondary

Each of these classes of objects will be described and illustrated below.

3.4.1 Early Exits From a Secondary

The objects ?SEMI and NOT?SEMI provide for early exits from a secondary based on the state of a flag on the
stack. The object #0=?SEMI combines the #0= test with ?SEMI, making one efficient object.

?SEMI #61A3Bh
Exits the current secondary if FLAG is TRUE

FLAG →
NOT?SEMI #61A2Ch
Exits the current secondary if FLAG is FALSE

FLAG →
#0=?SEMI #61A18h
Exits the current secondary if # is zero

→

Example: The following embedded secondary divides a number by two and adds one to the result if it isn’t
zero:
::
...
:: Begin embedded secondary

DUP%0= ?SEMI Exit if real number is zero
%2 %/ %1 %+ Complete calculation

; End of embedded secondary
...

;

3.4. PROGRAM FLOW CONTROL 35

3.4.2 IF – THEN – ELSE Structures

There are two classes of objects that may be used to control program execution based on a system flag:

• Postfix objects that take their arguments from the stack

• Prefix objects that execute or skip the next object in the secondary

Postfix Objects. The postfix objects RPIT and RPITE take their arguments from the stack:

RPIT #070FDh
Executes ob if FLAG is TRUE, otherwise drops ob

TRUE ob → Executes ob
FALSE ob →

RPITE #070C3h
Execute obTRUE if FLAG is TRUE, otherwise executes obFALSE

TRUE obTRUE obFALSE → Executes obTRUE

FALSE obTRUE obFALSE → Executes obFALSE

Example: The following secondary expects a real number on the stack and puts "Zero" on the stack if it’s
zero, or "Non-Zero" if the number is non-zero:

::
%0= "Zero" "Non-Zero" RPITE

;

Prefix Objects. The prefix objects take a flag from the stack and execute or skip the next one or two objects
in the secondary. Note that NOT_IT and ?SKIP are two commonly used names for the same object.

NOT_IT or ?SKIP #0712Ah
If FLAG is TRUE, skips the next object in the secondary

FLAG →
:: ... ?SKIP object ... ;

IT #619BCh
If FLAG is TRUE, executes the next object in secondary otherwise skips the
next object

FLAG →
:: ... IT objectTRUE ;

ITE #61AD8h
If FLAG is TRUE, executes the next object in secondary and skips the
following object, otherwise skips the next object and executes the following
object

FLAG →
:: ... ITE objectTRUE objectFALSE ... ;

Examples: The following secondary expects a real number on the stack, divides it by two if it’s non-zero, and
duplicates the result.

::
DUP%0= ?SKIP :: %2 %/ ; DUP

;

The following secondary expects a real number on the stack and puts "Zero" on the stack if it’s zero, or
"Non-Zero" if the number is non-zero, then duplicates the result:

::
%0=
ITE
"Zero"
"Non-Zero"

DUP
;

Combination Objects. The following objects combine test and branch operations:

36 CHAPTER 3. BASIC PROGRAMMING TOOLS

#0=?SKIP #6333Ah
If # is zero, skips the next object in the secondary

→
:: ... #0=?SKIP object ... ;

#1=?SKIP #63353h
If # is one, skips the next object in the secondary, otherwise executes the next
object

→
:: ... #1=?SKIP object ... ;

#>?SKIP #63399h
If #x > #y, skips the next object

#x #y →
:: ... #>?SKIP object ... ;

?SKIPSWAP #62D9Fh
If FLAG is FALSE, swaps ob1 and ob2

ob2 ob1 FALSE → ob1 ob2

ob2 ob1 TRUE → ob2 ob1

:: ... ?SKIPSWAP ... ;
#0=ITE #63E89h
If # is zero, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

→
:: ... #0=ITE objectTRUE objectFALSE ... ;

#<ITE #63E9Dh
If #x <#y, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

#x #y →
:: ... #<ITE objectTRUE objectFALSE ... ;

#=ITE #62C2Dh
If #x = #y, executes the next object in the secondary and skips the following
object, otherwise skips the next object and executes the following object

#x #y →
:: ... #=ITE objectTRUE objectFALSE ... ;

ANDITE #63E61h
If (FLAG1 AND FLAG2) is TRUE, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes
the following object

FLAG1 FLAG2 →
:: ... ANDITE objectTRUE objectFALSE ... ;

DUP#0=IT #63E48h
Duplicates #, then if # is zero executes the next object in the secondary

→
:: ... DUP#0=IT object ... ;

DUP#0=ITE #63EC5h
Duplicates #, then if # is zero executes the next object in the secondary and
skips the following object, otherwise skips the next object and executes the
following object

→
:: ... DUP#0=ITE objectTRUE objectFALSE ... ;

EQIT #63E2Fh
If ob1 has the same address as ob2, executes the next object in the secondary

ob2ob1 →
:: ... EQIT object ... ;

EQITE #63E75h
If ob1 has the same address as ob2, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes
the following object

ob2ob1 →
:: ... EQITE objectTRUE objectFALSE ... ;

3.4. PROGRAM FLOW CONTROL 37

SysITE #63EEDh
If the system flag specified by # is set, executes the next object in the
secondary and skips the following object, otherwise skips the next object and
executes the following object. System flags are numbered from #1d to #64d,
corresponding to flags –1 to –64 in User-RPL.

#system-flag →
:: ... SysITE objectTRUE objectFALSE ... ;

UserITE #63ED9h
If the user flag specified by # is set, executes the next object in the secondary
and skips the following object, otherwise skips the next object and executes
the following object. User flags are numbered from #d to #64d, corresponding
to flags 1 to 64 in User-RPL.

#user-flag →
:: ... UserITE objectTRUE objectFALSE ... ;

Example: The following program tests system flag 40 to see if the clock is being displayed. The string “Pro-
gram Complete” is appended with the time of day if the clock is being displayed, otherwise the string is ap-
pended with a period.

TIMEDONE 78.5 Bytes Checksum #2E17h
(→ $)
::
0LASTOWDOB! Clears saved command name (see Argument Validation on page 47)
CK0NOLASTWD Asserts no arguments
"Program complete"
FORTY SysITE Test system flag 40
:: Start of TRUE object
" at " " at "
TOD TOD>t$ &$ Appends a string representing the current time of day to " at "

; End of TRUE object
"." FALSE object
&$ Appends time or period string

;

3.4.3 CASE Objects

The object case provides one of the most useful program flow control options in System-RPL. case takes a flag
from the stack, usually the result of a test operation. If the flag is TRUE, one level of the return stack is
dropped (effectively discarding the rest of the secondary), then the next object in the secondary is executed. If
the flag is FALSE, the next object in the secondary is skipped and the rest of the secondary is executed.

case #61993h
If FLAG is TRUE, executes objectTRUE and skips the remainder of the
secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

FLAG →
:: ... case objectTRUE ... ;

Example: The following secondary expects a real number on the stack, converts it to a bint, and returns
"Zero" if the bint is 0, "One" if the bint is one, "Two" if the bint is two, otherwise returns "Other". This
example validates the input argument using objects described in Argument Validation on page 47.

38 CHAPTER 3. BASIC PROGRAMMING TOOLS

CASE1 97 Bytes Checksum #636Eh
(% → $)
::
0LASTOWDOB! CK1NOLASTWD Expect one argument
CK&DISPATCH1 real Insist on a real number
::
COERCE Convert real number to a bint
DUP#0= case :: DROP "Zero" ; Return “Zero” if bint is zero
DUP#1= case :: DROP "One" ; Return “One” if bint is one
#2= case "Two" Return “Two” if bint is two
"Other" Return “Other” for all other values

;
;

CASE Combination Objects. There are many objects that can help save code by combining test or other
operations with case. There are two classes of combination objects involving case:

• Objects that execute the next object and discard the remainder of the secondary if the flag is TRUE or
skip the next object in the secondary and execute the remainder of the secondary if the flag is FALSE

• Objects that exit the secondary with an included action if the flag is TRUE or execute the remainder of
the secondary if the flag is FALSE.

A naming convention helps to differentiate between the different case objects. Generally, an object name ending
with DROP (capital letters) suggests an object whose last action is to DROP an object from the stack. Objects
with drop in the name (lowercase) suggest an object that drops an object in the true case before performing the
next task. Compare casedrop with caseDROP to see how this works.

Before listing the stack diagrams for these objects, we illustrate the use of four of them with examples.

The object casedrop combines case with the action of DROP before the true-object is executed:

casedrop #618F7h
If FLAG is TRUE, drops an object from the stack, executes objectTRUE, and
skips the remainder of the secondary; otherwise skips objectTRUE and
executes the remainder of the secondary

ob TRUE →
ob FALSE → ob

:: ... casedrop objectTRUE ... ;

The object DUP#0=csedrp combines the actions of DUP#0= and casedrop into one object:

DUP#0=csedrp #618A8h
Duplicates #, then if # is zero, drops # from the stack, executes objectTRUE,
and skips the remainder of the secondary; otherwise skips objectTRUE and
executes the remainder of the secondary

→ (# = 0)
→ # (# 6= 0)

:: ... DUP#0=csedrp objectTRUE ... ;

These combination objects allow you to rewrite the example CASE1 on the previous page saving 17.5 bytes:

CASE2 79.5 Bytes Checksum #BEF2h
(% → $)
::
0LASTOWDOB! CK1NOLASTWD Expect one argument
CK&DISPATCH1 real Insist on a real number
::
COERCE Convert real number to a bint
DUP#0=csedrp "Zero" Return “Zero” if bint is zero
DUP#1= casedrop "One" Return “One” if bint is one
#2= case "Two" Return “Two” if bint is two
"Other" Return “Other” for all other values

;
;

3.4. PROGRAM FLOW CONTROL 39

The object #=casedrop combines the actions OVER, #=, and casedrop into a single object that’s useful for execut-
ing different objects based on the value of a bint. This object is used frequently in key handlers, and probably
should have been named OVER#=casedrop.

#=casedrop #618D3h
If #x = #y, drops #x and #y from the stack, executes objectTRUE, and skips the
remainder of the secondary, otherwise drops #y, skips objectTRUE, and
executes the remainder of the secondary

#x #y → (#x = #y)
#x #y → #x (#x 6= #y)

:: ... #=casedrop objectTRUE ... ;

The example CASE3 uses #=casedrop to produce another variant on our previous two examples:

CASE3 82 Bytes Checksum #89E0h
(% → $)
::
0LASTOWDOB! CK1NOLASTWD Expect one argument
CK&DISPATCH1 real Insist on a real number
::
COERCE Convert real number to a bint
ZERO #=casedrop "Zero" Return “Zero” if bint is zero
ONE #=casedrop "One" Return “One” if bint is one
#2= case "Two" Return “Two” if bint is two
"Other" Return “Other” for all other values

;
;

The second class of case combination objects mentioned is objects that exit with a combined operation or
execute the remainder of the secondary. An example of this is caseDROP.

caseDROP #6194Bh
If FLAG is TRUE, drops an object from the stack and exits the secondary;
otherwise executes the remainder of the secondary

ob TRUE →
ob FALSE → ob

:: ... caseDROP ... ;

Example: This secondary expects a real number on the stack representing a user flag. If the number is in the
range 1 to 4, the corresponding user flag is set, otherwise no action is taken.

CASE4 49.5 Bytes Checksum #DCA7h
(% →)
::
0LASTOWDOB! CK1NOLASTWD Expect one argument
CK&DISPATCH1 real Insist on a real number
::
COERCE Convert real number to a bint
DUP#0= caseDROP Exit, dropping the hint, if the hint is zero
DUP FOUR #> caseDROP Exit, dropping the hint, if the bint is greater than four
SetUserFlag Set the user flag

;
;

Here are the objects that combine case with other operations:

#=casedrop #618D3h
If #x = #y, drops #x and #y from the stack, executes objectTRUE, and skips the
remainder of the secondary, otherwise drops #y, skips objectTRUE, and
executes the remainder of the secondary

#x #y → (#x = #y)
#x #y → #x (#x 6= #y)

:: ... #=casedrop objectTRUE ... ;

40 CHAPTER 3. BASIC PROGRAMMING TOOLS

%0=case #5F127h
If % is equal to zero, executes objectTRUE and skips the remainder of the
secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

% →
:: ... %0=case objectTRUE ... ;

%1=case #5F181h
If % is equal to one, executes objectTRUE and skips the remainder of the
secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

% →
:: ... %1=case objectTRUE ... ;

ANDNOTcase #63DDFh
If FLAG1 and FLAG2 are not both TRUE, executes objectTRUE and skips the
remainder of the secondary, otherwise skips objectTRUE and executes the
remainder of the secondary

FLAG2 FLAG1 →
:: ... ANDNOTcase objectTRUE ... ;

ANDcase #63CEAh
If FLAG1 and FLAG2 are both TRUE, executes objectTRUE and skips the
remainder of the secondary, otherwise skips objectTRUE and executes the
remainder of the secondary

FLAG2 FLAG1 →
:: ... ANDcase objectTRUE ... ;

DUP#0=case #61891h
Duplicates #, then if # is zero executes objectTRUE and skips the remainder of
the secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

→
:: ... DUP#0=case objectTRUE ... ;

DUP#0=csedrp #618A8h
Duplicates #, then if # is zero, drops # from the stack, executes objectTRUE,
and skips the remainder of the secondary, otherwise skips objectTRUE and
executes the remainder of the secondary

→ (# = 0)
→ # (# 6= 0)

:: ... DUP#0=csedrp objectTRUE ... ;
EQUALNOTcase #63DF3h
If ob1 is not equal to ob2, executes objectTRUE and skips the remainder of the
secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

ob2 ob1 →
:: ... EQUALNOTcase objectTRUE ... ;

EQUALcase #63CFEh
If ob1 is equal to ob2, executes objectTRUE and skips the remainder of the
secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

ob2 ob1 →
:: ... EQUALcase objectTRUE ... ;

EQUALcasedrp #63CA4h
If ob1 is equal to ob2, drops ob1 from the stack, executes objectTRUE, and skips
the remainder of the secondary, otherwise skips objectTRUE and executes the
remainder of the secondary

ob3 ob2 ob1 → (ob1 = ob2)
ob3 ob2 ob1 → ob1 (ob1 6= ob2)

:: ... EQUALcasedrp objectTRUE ... ;

3.4. PROGRAM FLOW CONTROL 41

EQcase #61933h
If ob1 has the same address as ob2, executes objectTRUE and skips the
remainder of the secondary, otherwise skips objectTRUE and executes the
remainder of the secondary

ob2 ob1 → ob2

:: ... EQcase objectTRUE ... ;
NOTcase #619ADh
If FLAG is FALSE, executes objectTRUE and skips the remainder of the
secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

FLAG →
:: ... NOTcase objectTRUE ... ;

NOTcasedrop #618E8h
If FLAG is FALSE, drops ob, executes objectTRUE, and skips the remainder of
the secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

TRUE →
ob FALSE →

:: ... NOTcasedrop objectTRUE ... ;
NOTcase2drop #619ADh
If FLAG is FALSE, drops ob1 and ob2, executes objectTRUE, and skips the
remainder of the secondary, otherwise skips objectTRUE and executes the
remainder of the secondary

TRUE →
ob2 ob1 FALSE →
:: ... NOTcase2drop objectTRUE ... ;

ORcase #629BCh
If either FLAG1 or FLAG2 are TRUE, executes objectTRUE and skips the
remainder of the secondary, otherwise skips objectTRUE and executes the
remainder of the secondary

FLAG2 FLAG1 →
:: ... ORcase objectTRUE ... ;

OVER#=case #6187Ch
Does OVER, then if #1 = #2, executes objectTRUE and skips the remainder of
the secondary, otherwise skips objectTRUE and executes the remainder of the
secondary

#2 #1 → #2
:: ... OVER#=case objectTRUE ... ;

casedrop #618F7h
If FLAG is TRUE, drops an object from the stack, executes objectTRUE, and
skips the remainder of the secondary, otherwise skips objectTRUE and executes
the remainder of the secondary

ob TRUE →
ob FALSE → ob

:: ... casedrop objectTRUE ... ;

The following case combination objects execute an action before skipping the remainder of the current sec-
ondary if the flag argument or test result is true.

DUP#0=csDROP #618A8h
Duplicates #, then if # = 0, drops # and skips the remainder of the secondary

→ (# = 0)
→ # (# 6= 0)

:: ... DUP#0=csDROP ... ;
NOTcase2DROP #61984h
If FLAG is FALSE, drops two objects from the stack and skips the remainder
of the secondary

ob2 ob1 TRUE → ob2ob1

ob2 ob1 FALSE →
:: ... NOTcase2DROP ... ;

42 CHAPTER 3. BASIC PROGRAMMING TOOLS

NOTcaseFALSE #5FB49h
If FLAG is TRUE, executes the remainder of the secondary, otherwise puts
FALSE on the stack and skips the remainder of the secondary

TRUE →
FALSE → FALSE

:: ... NOTcaseFALSE ... ;
NOTcaseTRUE #638CBh
If FLAG is TRUE, executes the remainder of the secondary, otherwise puts
TRUE on the stack and skips the remainder of the secondary

TRUE →
FALSE → TRUE
:: ... NOTcaseTRUE ... ;

NcaseSIZEERR #63B19h
If FLAG is TRUE, executes the remainder of the secondary, otherwise issues
the Bad Argument Value error

FLAG →
:: ... NcaseSIZEERR ... ;

NcaseTYPEERR #63B46h
If FLAG is TRUE, executes the remainder of the secondary, otherwise issues
the Bad Argument Type error

FLAG →
:: ... NcaseTYPEERR ... ;

case2DROP #61984h
If FLAG is TRUE, drops two objects from the stack and skips the remainder of
the secondary

ob2 ob1 TRUE →
ob2 ob1 FALSE → ob2ob1

:: ... case2DROP ... ;
caseDROP #6194Bh
If FLAG is TRUE, drops an object from the stack and skips the remainder of
the secondary

ob TRUE →
ob FALSE → ob

:: ... caseDROP ... ;
caseDoBadKey #63BEBh
If FLAG is TRUE, executes DoBadKey (issues invalid key beep) and skips the
remainder of the secondary

FLAG →
:: ... caseDoBadKey ... ;

caseDrpBadKy #63BD2h
If FLAG is TRUE, drops an object from the stack, executes DoBadKey (issues
invalid key beep), and skips the remainder of the secondary

ob TRUE →
ob FALSE → ob
:: ... caseDrpBadKy ... ;

caseERRJMP #63169h
If FLAG is TRUE, skips the remainder of the secondary and does ERRJMP

FLAG →
:: ... caseERRJMP ... ;

caseFALSE #6359Ch
If FLAG is TRUE, puts FALSE on the stack and skips the remainder of the
secondary

FALSE →
TRUE → FALSE
:: ... caseFALSE ... ;

caseSIZEERR #63B05h
If FLAG is FALSE, executes the remainder of the secondary, otherwise issues
the Bad Argument Value error

FLAG →
:: ... caseSIZEERR ... ;

3.5. LOOP STRUCTURES 43

caseTRUE #634E3h
If FLAG is TRUE, puts TRUE on the stack and skips the remainder of the
secondary

FALSE →
TRUE → TRUE
:: ... caseTRUE ... ;

casedrpfls #6356Ah
If FLAG is TRUE, drops ob, puts FALSE on the stack, and skips the
remainder of the secondary

FALSE →
ob TRUE → FALSE
:: ... casedrpfls ... ;

case2drpfls #63583h
If FLAG is TRUE, drops ob1 and ob2, puts FALSE on the stack, and skips the
remainder of the secondary

FALSE →
ob2 ob1 TRUE → FALSE

:: ... case2drpfls ... ;
casedrptru #628B2h
If FLAG is TRUE, drops ob, puts TRUE on the stack, and skips the remainder
of the secondary

ob FALSE → ob
ob TRUE → TRUE
:: ... casedrptru ... ;

3.5 Loop Structures

Program loops are useful for repetitive execution of a procedure. There are two general classes of loops:

• Definite loops execute a loop-clause at least once, and execute a predefined number of iterations.

• Indefinite loops execute a loop-clause repeatedly until a test-clause returns a true result. One form of an
indefinite loop may not execute at all if an initial test fails.

3.5.1 Definite Loops

Definite loops are implemented with the object DO and one of its counterparts: LOOP or +LOOP. When DO is exe-
cuted, a DoLoop environment is created which stores the index and stopping value, and the interpreter pointer
is copied to the return stack. The index and stop values are internal binary integers. DoLoop environments
can be nested indefinitely.

Basic DoLoop Objects. The objects DO, LOOP, and +LOOP are recognized by the compiler RPLCOMP, which
checks to see that DO and LOOP objects are properly matched.

DO #073F7h
Begins DO loop

#finish #start →
:: ... #finish #start DO loop-clause LOOP ... ;

:: ... #finish #start DO loop-clause #increment +LOOP ... ;
LOOP #07334h
Increments index of topmost DoLoop environment, abandons DoLoop
environment if the new index is ≥ the stopping value, otherwise executes loop
clause again

→
#NAME? #073A5h
Increments index of topmost DoLoop environment by #increment, abandons
DoLoop environment if the new index is ≥ the stopping value, otherwise
executes loop clause again

#increment →

44 CHAPTER 3. BASIC PROGRAMMING TOOLS

DoLoop Utilities. The objects #1+_ONE_DO, DUP#0_DO, and ZERO_DO combine several actions into one object.
When a program that uses these objects is being compiled with RPLCOMP, the compiler directive (DO) must be
included after the object to tell the compiler that a DoLoop is being started. This will prevent an error from
being generated when the compiler encounters the matching LOOP object.

#1+_ONE_DO #073DBh
Equivalent to ONE #+ ONE DO

#finish →
:: ... #finish #1+_ONE_DO (DO) loop-clause LOOP ... ;

DUP#0_DO #6347Fh
Equivalent to DUP ZERO DO

#finish → #finish
:: ... #finish DUP#0_DO (DO) loop-clause LOOP ... ;

ZERO_DO #073C3h
Equivalent to ZERO DO

#finish →
:: ... #finish ZERO_DO (DO) loop-clause LOOP ... ;

Example: The following source fragment illustrates the use of these objects with the (DO) compiler directive:

::
...
ZERO_DO (DO)
...
LOOP
...

;

Accessing DoLoop Indices. The index value for the topmost DoLoop environment can be recalled with
INDEX@ and can be modified by using INDEXSTO. The index value for the second DoLoop environment can be
recalled with JINDEX@ and can be modified by using JINDEXSTO.

INDEX@ #07221h
Recalls the index value from the topmost DoLoop environment

→ #index
INDEXSTO #07270h
Stores a new value for the index in the topmost DoLoop environment

#index →
JINDEX@ #07258h
Recalls the index value from the second DoLoop environment

→ #index
JINDEXSTO #072ADh
Stores a new value for the index in the second DoLoop environment

#index →

Examples: The first program places the internal binary integers 4, 5, 6, and 7 on the stack; the second
program places the internal binary integers 10, 20, and 30 on the stack:

:: EIGHT FOUR DO INDEX@ LOOP ;

:: THIRTYONE TEN DO INDEX@ TEN +LOOP ;

Accessing DO Loop Stop Values. The stop value for the topmost DoLoop environment can be recalled with
ISTOP@ and can be modified by using ISTOPSTO. The stop value for the second DoLoop environment can be
recalled with JSTOP@ and can be modified by using JSTOPSTO.

ISTOP@ #07249h
Recalls the stop value from the topmost DoLoop environment

→ #stop
ISTOPSTO #07295h
Stores a new stop value in the topmost DoLoop environment

#stop →

3.5. LOOP STRUCTURES 45

ZEROISTOPSTO #6400Fh
Stores <0d> in the stop value in the topmost DoLoop environment

→
JSTOP@ #07264h
Recalls the stop value from the second DoLoop environment

→ #stop
JSTOPSTO #072C2h
Stores a new stop value in the second DoLoop environment

#stop →

3.5.2 Indefinite Loops

There are three indefinite loop structures available:

• BEGIN ... WHILE ... REPEAT loops contain an explicit test-clause and loop-clause. The loop clause may never
be executed if the test-clause returns FALSE. The loop clause is assumed to be a secondary object — the
RPLCOMP compiler places :: and ; around the loop clause. See Compiling WHILE Loops on the next
page.

• BEGIN ... UNTIL loops always execute at least once — the object UNTIL expects either a TRUE or FALSE
flag.

• BEGIN ... AGAIN loops have no test — they execute until an error event occurs or an RDROP is executed to
remove the address placed on the return stack by BEGIN.

AGAIN #071ABh
Unconditionally repeats loop-clause

→
:: ... BEGIN loop-clause AGAIN ... ;

BEGIN #071A2h
Copies the interpreter pointer to the return stack, serving as a beginning
object for three loop structures

→
:: ... BEGIN loop-clause AGAIN ... ;

:: ... BEGIN test-clause WHILE loop-clause REPEAT ... ;
:: ... BEGIN loop-clause UNTIL ... ;

REPEAT #071E5h
Copies the first pointer on the return stack to the interpreter pointer,
completing a WHILE loop

→
:: ... BEGIN test-clause WHILE loop-clause REPEAT ... ;

WHILE #071EEh
If flag is true, allows execution of loop clause, otherwise drops one pointer from
the return stack and skips the interpreter pointer to the object after REPEAT

FLAG →
:: ... BEGIN test-clause WHILE loop-clause REPEAT ... ;

UNTIL #071C8h
If flag is true, drops the top pointer on the return stack to terminate the loop,
otherwise copies the first pointer on the return stack to the interpreter pointer
to execute the loop-clause again

FLAG →
:: ... BEGIN loop-clause UNTIL ... ;

Example: The following program returns the number of random numbers generated before one with a value
greater than or equal to .95 is generated. The object %RAN (address #2AFC2h) returns a random number n such
that 0 ≤ n ≤ 1.

46 CHAPTER 3. BASIC PROGRAMMING TOOLS

NUMRAN 53.5 Bytes Checksum #95D1h
(% → $)
::
AtUserStack Clears saved command name, no arguments
ZERO Initial value of the counter
BEGIN Beginning of WHILE loop structure
%RAN % .95 %< Test-clause

WHILE Executes loop-clause if flag is TRUE
#1+ Loop-clause: increments counter

REPEAT Continue loop at %RAN
UNCOERCE Convert counter to real number

;

Compiling WHILE Loops. The RPLCOMP compiler places secondary delimiters around the loop clause
in a WHILE loop. For instance, the example NUMRAN.S from the previous page looks like this after being
compiled:

::
AtUserStack
ZERO
BEGIN

%RAN % .95 %<
WHILE
:: Beginning of secondary
#1+

; End of secondary
REPEAT
UNCOERCE

;

Since the secondary delimiters are added by the compiler, you can use objects like ?SEMI or case to cause an
early exit from the loop clause (see Case Structures on page 37).

3.6 Runstream Operators

The return stack is a stack of pointers to objects embedded in composite objects, usually secondaries, called the
runstream. The objects described here are useful for placing objects on the data or return stack, or for building
your own control structures. The most often-used is ', which places the next object in the current secondary
on the data stack.

' #06E97h
Pushes the next object (or object pointer) in the program on the data stack

→ object
:: ... ' object ... ;

COLA #06FD1h
Evaluates the next object in the current secondary, discarding the remainder
of the secondary

→
:: ... COLA object discarded objects ;

IDUP #0716Bh
Copies the interpreter pointer to the return stack

→
>R #06EEBh
Pops a composite object off the data stack and pushes it on the return stack

:: ... ; →
'R #06F9Fh
Pops an object (or object pointer) off the return stack and pushes it on the data
stack

→ object

3.7. ARGUMENT VALIDATION 47

ticR #61B89h
Pops the next object in the composite object in the return stack and pushes it
and TRUE on the data stack. If the object is SEMI, pops the return stack and
pushes FALSE on the data stack.

→ object TRUE Not SEMI
→ FALSE SEMI

R@ #07012h
Creates a secondary in temporary memory (TEMPOB) from the composite
pointed to by the top return stack pointer, pops the return stack, and pushes a
pointer to the secondary on the return stack

→ :: ... ;
R> #0701Fh
Creates a secondary in temporary memory (TEMPOB) from the composite
pointed to by the top return stack pointer and pushes a pointer to the
secondary on the return stack

→ :: ... ;
RDROP #06FB7h
Pops the return stack

→
2RDROP #6114Eh
Pops two levels off the return stack

→
3RDROP #61160h
Pops three levels off the return stack

→
RDUP #14EA5h
Duplicates the top item on the return stack

→
RSWAP #60EBDh
Swaps the top two items on the return stack

→

The example RSTR in Control Structure Examples on page 66 shows how some of these objects may be used.

3.7 Argument Validation

Any program that is going accept input from the user should validate the number and type of arguments
before proceeding. One of the reasons that you are probably interested in writing code in System-RPL is that
you wish to avoid the argument checking that is inherent in every User-RPL command or function, yet it is
still important to provide some protection at the very beginning.

3.7.1 Attributing Errors

An integral part of the process of validating arguments is to make sure that errors are correctly attributed.
This is often done in combination with type dispatching. To illustrate the problems associated with error
attribution, consider the System-RPL program :: %/ ; . With the real numbers 5 and 0 in stack levels 3 and
2, and the object :: %/ ; in stack level 1, press [EVAL]. The divide operation generates an Infinite Result
error:

Stack before EVAL: Stack after EVAL:

Notice that the error has been attributed to EVAL, which was the last object to claim responsibility for future
errors. Further, the stack contents are not what you would expect. This can be solved by clearing out the saved

48 CHAPTER 3. BASIC PROGRAMMING TOOLS

command name (using 0LASTOWDOB!) and checking for the proper number of arguments (using CK2NOLASTWD,
described below).

0LASTOWDOB! #1884Dh
Clears saved command name

→

The program now reads :: 0LASTOWDOB! CK2NOLASTWD %/ ; . Now when you press [EVAL] a much more ac-
ceptable result appears:

Stack before EVAL: Stack after EVAL:

If a program plans to accept no arguments, the object AtUserStack is a handy combination of 0LASTOWDOB! and
CK0NOLASTWD (described on the next page).

AtUserStack #40BC9h
Requires no arguments, clears saved command name

→

3.7.2 Number of Arguments

The process for checking the number of arguments is slightly different for program objects that are being
designed as stand alone applications vs. program objects that are included in a library application. The concept
is the same in each case, however. (Library applications are discussed in the HP document MAKEROM.DOC
and illustrated in GEOLIB example provided by HP. These are provided on the disk.) The structural outlines
are:

System-RPL Programs Library Commands
:: ::
0LASTOWDOB! CKn NOLASTWD CKn
... ...

; ;

where n refers to the number of arguments that are expected. The objects available for this task are:

System-RPL Program Library Command Number of Arguments
CK0NOLASTWD CK0 No arguments required
CK1NOLASTWD CK1 One argument required
CK2NOLASTWD CK2 Two arguments required
CK3NOLASTWD CK3 Three arguments required
CK4NOLASTWD CK4 Four arguments required
CK5NOLASTWD CK5 Five arguments required
CKNNOLASTWD CKN N arguments required

For instance, a System-RPL program that requires three objects on the stack should be structured as follows:

::
0LASTOWDOB! CK3NOLASTWD
...

;

The objects CKNNOLASTWD and CKN are available for programs that take the number of arguments off the stack.
Both objects convert the real number on the stack to an internal binary integer, then verify that the specified
number of arguments are on the stack.

3.7. ARGUMENT VALIDATION 49

An example of this type of object is the User-RPL command PICK, in which a user-supplied real number
specifies the stack level to copy. The code for the User-RPL PICK is :: CKN PICK ; , where the PICK is the
internal System-RPL PICK.

Remember that in the case of library commands the CKn objects will attribute errors to the command name.
System-RPL programs that are not parts of libraries or that need to ensure that their errors are not attributed
to another command need to clear the saved command name. The objects CKn NOLASTWD do not modify the
saved command name, so 0LASTOWDOB! is needed to ensure that the saved command name will be cleared. This
prevents an error generated in a program from being attributed to the last command that generated an error.

3.7.3 Type Dispatching

The HP 48’s multiple polymorphic personality is attributable in part to the ability of each built-in command
or function to interpret the types of arguments supplied and take meaningful action based on those types.
The + function is one of the most dramatic examples, operating on over 20 different combinations of types of
arguments.

The objects CK&DISPATCH0 and CK&DISPATCH1 perform a “check and dispatch” operation — choosing an object to
be executed based on the types of stack arguments. The basic structure of a word using CK&DISPATCHn is:

::
#type1 action1
#type2 action2
...
#typen actionn

;

where #typen is an internal binary integer encoding the desired object types, and actionn is the corresponding
action to be taken when the arguments match the specified types. (Internal binary integers were discussed in
greater detail in Internal Binary Integers on page 21.)

It is vital that the table of types and actions be terminated with ; . For System-RPL programs the basic
structure for a program that has different actions based on argument types looks like this:

::
0LASTOWDOB! CKnNOLASTWD
CK&DISPATCHn
#type1 action1
...
#typen actionn

;

Since the table of actions must be terminated by ;, type dispatching operations embedded in larger programs
should be set off in their own secondary. For example:

::
...
::
CK&DISPATCH1
00051 :: Process list and real number ;
00041 :: Process array and real number ;

;
...

;

The example program GRID in Graphics Examples on page 118 illustrates the use of 0LASTOWDOB!, CK3NOLASTWD,
and CK&DISPATCH1.

CK&DISPATCH0 vs. CK&DISPATCH1. In general, the HP 48 treats tags as auxiliary to the main purpose
of any object, consequently CK&DISPATCH1 is used most frequently because it makes a second pass through
the type-action table after recursively stripping any tags from the required objects. If it is important to type
dispatch off tagged objects, then CK&DISPATCH0 should be used, which does not contain the second pass.

Type Dispatching in Library Applications. In the case of library commands, replacing each action with a
pointer to an action will speed up the dispatch process because the time required to skip each action is reduced
to the time required to skip a single pointer. For instance, the two examples below will do the same thing, but
the example on the right will be slightly faster:

50 CHAPTER 3. BASIC PROGRAMMING TOOLS

NULLNAME EX1 NULLNAME EX1
:: ::
CK2 CK2
CK&DISPATCH1 CK&DISPATCH1
real :: ... ; real EXSUB1
cmp :: ... ; cmp EXSUB2
list :: ... ; list EXSUB3

; ;

NULLNAME EXSUB1 :: ... ;
NULLNAME EXSUB2 :: ... ;
NULLNAME EXSUB3 :: ... ;

For library commands requiring at least one argument, the CKn and CK&DISPATCH1 objects can be replaced with
objects that combine their functionality:

Object Replaces
CK1&Dispatch CK1 CK&DISPATCH1
CK2&Dispatch CK2 CK&DISPATCH1
CK3&Dispatch CK3 CK&DISPATCH1
CK4&Dispatch CK4 CK&DISPATCH1
CK5&Dispatch CK5 CK&DISPATCH1

Using these objects, the examples above would look now like this:

NULLNAME EX1 NULLNAME EX1
:: ::
CK2&Dispatch CK2&Dispatch
real :: ... ; real EXSUB1
cmp :: ... ; cmp EXSUB2
list :: ... ; list EXSUB3

; ;

NULLNAME EXSUB1 :: ... ;
NULLNAME EXSUB2 :: ... ;
NULLNAME EXSUB3 :: ... ;

Encoding Argument Types. The internal binary integer corresponding to each action can encode up to five
object types. Viewed as five hex digits, the stack levels are specified as follows:

Each hex digit represents an argument type, as listed in the table on the next page. Notice that leading zeros
mean that objects in their corresponding stack levels will be ignored. For instance, the internal binary integer
00051 specifies a list in level two and a real number in level one.

Some built-in binary integers can be used to encode individual objects or combinations of objects. In cases
where a program is type-dispatching off of one argument, the built-in bints listed in the second column of the
table may be used. For example, a program that takes different actions when the argument is a list or string
might have the following structure:

::
0LASTOWDOB! CK1NOLASTWD CK&DISPATCH1
list :: ... ;
str :: ... ;

;

3.7. ARGUMENT VALIDATION 51

Half of the objects that may be encoded require two digits. A program that requires an extended real in level
two and an extended complex number in level one might have the following structure:
::
0LASTOWDOB! CK2NOLASTWD
CK&DISPATCH1
03F4F :: ... ;

;

Encoding Digits Built-in Bint Object Type User TYPE Number
0 any Any Object
1 real Real Number 0
2 cmp Complex Number 1
3 str Character String 2
4 arry Array 3,4
5 list List 5
6 idnt Global Name 6
7 lam Local Name 7
8 seco Secondary 8
9 symb Symbolic 9
A sym Symbolic Class 6,7,9
B hxs Hex String 10
C grob Graphics Object 11
D TAGGED Tagged Object 12
E unitob Unit Object 13
0F ROM Pointer 14
1F Binary Integer 20
2F Directory 15
3F Extended Real 21
4F Extended Complex 22
5F Linked Array 23
6F char Character 24
7F Code Object 25
8F Library 16
9F Backup 17
AF Library Data 26
BF External object1 27
CF External object2 28
DF External object3 29
EF External object4 30

When possible, it is best to save code by using a built-in internal binary integer (2.5 bytes) instead of compiling
a new one (5 bytes). The following built-in internal binary integers are used for type dispatching:

Name Value Name Value
2EXT #000EEh EXTREAL #000E1h
2GROB #000CCh EXTSYM #000EAh
2LIST #00055h REALEXT #0001Eh
2REAL #00011h REALOB #00010h
3REAL #00111h REALOBOB #00100h
IDREAL #00061h REALREAL #00011h
LISTCMP #00052h REALSYM #0001Ah
LISTLAM #00057h ROMPANY #000F0h
LISTREAL #00051h SYMBUNIT #0009Eh
SYMREAL #000A1h SYMEXT #000AEh
SYMSYM #000AAh SYMID #000A6h
TAGGEDANY #000D0h SYMLAM #000A7h
EXTOBOB #00E00h SYMOB #000A0h

3.7.4 Object Type Tests

There may be times when an initial test is not sufficient — a list must be in level one, but the contents of the
list are also important. Two sets of objects are provided for System-RPL which are useful for testing the type

52 CHAPTER 3. BASIC PROGRAMMING TOOLS

of an object. These objects return the internal flags TRUE or FALSE (described in detail in Tests on page 28).
The stack diagrams below illustrate the operation of the object tests:

TYPEREAL?
Returns TRUE if object is a real number

Object → FLAG
DUPTYPEREAL?
Returns object and TRUE if object is a real number

Object → Object FLAG

The objects in the first column test the type, returning a flag. The objects in the fourth column duplicate the
object before testing the type.

Object type Test Object Address Dup-and-Test Object Address
Array TYPEARRY? #62198h DUPTYPEARRY? #62193h
Internal binary integer TYPEBINT? #6212Fh DUPTYPEBINT? #6212Ah
Complex array TYPECARRY? #62256h
Character TYPECHAR? #62025h DUPTYPECHAR? #62020h
Complex number TYPECMP? #62183h DUPTYPECMP? #6217Eh
Program TYPECOL? #621ECh DUPTYPECOL? #621E7h
String TYPECSTR? #62159h DUPTYPECSTR? #62154h
Unit TYPEEXT? #6204Fh DUPTYPEEXT? #6204Ah
Graphics object TYPEGROB? #62201h DUPTYPEGROB? #621FCh
Hex string TYPEHSTR? #62144h DUPTYPEHSTR? #6213Fh
Identifier (global name) TYPEIDNT? #6203Ah DUPTYPEIDNT? #62035h
Temp. identifier (local name) TYPELAM? #6211Ah DUPTYPELAM? #62115h
List TYPELIST? #62216h DUPTYPELIST? #62211h
Real array TYPERARRY? #6223Bh
Real number TYPEREAL? #6216Eh DUPTYPEREAL? #62169h
ROM pointer (XLIB name) TYPEROMP? #621ADh DUPTYPEROMP? #621A8h
Directory TYPERRP? #621C2h DUPTYPERRP? #621BDh
Symbolic TYPESYMB? #621D7h DUPTYPESYMB? #621D2h
Tagged TYPETAGGED? #6222Bh DUPTYPETAG? #62226h

Note: The objects TYPECARRY? and TYPERARRY? assume an array object is on
the stack, and expect to find a prologue 10 nibbles into the object being tested.)

These tests can be helpful when the filtering provided by the check-and-dispatch mechanism does not provide
a sufficient level of detail. For example, suppose a System-RPL program wants to ensure that it is processing
a real number in level 2 and an array of real numbers in level one. The program shell might look like this:

::
CK2NOLASTWD 0LASTOWDOB!
CK&DISPATCH1
00014
::

DUP TYPERARRY? NcaseSIZEERR
...
;

;

This program would issue a Bad Argument Value error if the array was not an array of real numbers. The
error is issued by the object NcaseSIZEERR if the flag on the stack is FALSE. Notice that the type checks for
real and complex arrays don’t have corresponding objects which first duplicate the object in question, so in this
example the DUP had to be included.

3.8 Temporary Variables

Programs written in System-RPL have access to a much more flexible temporary (local) variable system than
programs written in User-RPL. Temporary variables are stored in memory structures called “temporary envi-
ronments”. Like local variables in User-RPL, temporary variables can be very useful for cleaning up programs

3.8. TEMPORARY VARIABLES 53

that otherwise would manage everything on the stack with great difficulty. In User-RPL, nested local variable
environments are permitted, and the same goes for System-RPL. In System-RPL the creation of a temporary
variable environment can happen at any time — it is not restricted to the beginning of a secondary. Temporary
environments are stacked — they are abandoned in the reverse chronological order of their creation.

Remember:

• Temporary variables reside in temporary memory. When system garbage collection occurs, temporary
memory is scanned and pointers to objects in temporary memory residing on the stack or in temporary
variables are updated.

• When a temporary variable name is executed, the contents of the variable are recalled to the stack, but
not executed.

• Storing to a temporary variable is typically quite fast, because temporary environments are typically
small, and the system avoids the overhead of moving all the data in global variables.

In System-RPL, the object BIND does the job of k in User-RPL, and the object ABND does the job of f (actually
named x>�>ABND — you’ll see this if you decompile a User-RPL program using a tool like Jazz). BIND expects the
objects to be stored in temporary variables to be on the stack along with a list of temporary variable names in
level one.

The object DOBIND does the work for BIND — the temporary variable names and their count are expected on the
stack.

The RPL compiler creates a temporary variable name with the compiler directive LAM. For instance, to compile
the temporary variable name “Fred”, the compiler source should read LAM Fred. To save space, System-RPL
also provides for null-named temporary variables (see Using Null-Named Temporary Variables on page 55).
Space is saved because no name is stored and the temporary variables are referenced by number. The object
NULLLAM may be used instead of a temporary variable name.

BIND #074D0h
Creates a temporary environment

obn ... ob2 ob1 { LAM namen ... LAM name2 LAM name1 }→
obn... ob2 ob1 { NULLLAMn ... NULLLAM2 NULLLAM1}→

DOBIND #074E4h
Creates a temporary environment

obn... ob2 ob1 LAM namen ... LAM name2 LAM name1 #n→
obn... ob2 ob1 NULLLAMn ... NULLLAM2 NULLLAM1 #n→

ABND #07497h
Discards the topmost temporary environment

→

When temporary variables are named, the process of storing to and recalling from temporary variables is the
same as for User-RPL:

:: ... LAM Fred ... ; Recalls the contents of temporary variable Fred
:: ... ' LAM Fred STO ... ; Stores an object into temporary variable Fred

STO #07D27h
Stores an object in a temporary variable

object name →

There is no compiler requirement that there be a firm one-to-one matching between BINDs and ABNDs. A sec-
ondary that has multiple exit points may need to have more than one ABND to ensure that temporary environ-
ments are discarded properly. The program QRT3 below illustrates this.

To compare the use of temporary variables in User-RPL and System-RPL, we’ll begin by comparing two pro-
grams that do similar jobs — finding the roots of a quadratic equation x = ax2 + bx+ c. We’ll use the quadratic
formula:

−b±
√

b2−4ac
2a

54 CHAPTER 3. BASIC PROGRAMMING TOOLS

The stack diagram for these program examples will be:

a b c → root1 root2

To keep things simple, the System-RPL examples will return the string "Complex Roots" if the quantity
b2 − 4ac is negative. (This is one of the attractive features of User-RPL: the polymorphic behavior of the
operators lets you avoid writing extra code.)

We illustrate the use of temporary variables with four example programs. The first is written in User-RPL, the
rest are written in System-RPL. The results are stored in temporary variables to illustrate the process, even
though this is somewhat inefficient (the results could simply be left on the stack). Notice that this example
uses compiled temporary variable ja, which will work only on HP 48G/GX calculators.

QRT1.RPL
e

0 0 e ja 2 * / f Place zeros and subroutine on the stack
k ja b c root1 root2 Subr Create temporary variables
e

b SQ ja c * 4 * - a Calculate SQRT(b2 − 4ac)
b NEG OVER + Subr EVAL Calculate first root
croot1c STO Store first root in local variable root1
b NEG SWAP - Subr EVAL Calculate second root
croot2c STO Store second root in temporary variable root2
root1 root2 Return roots to the stack

f Discards local variables
f

This is what QRT1.RPL looks like when expressed in System-RPL:

::
x<�<
%0 %0 xSILENT' :: x<�< LAM ←a %2 x* x/ x>�> ;
xRPN-> LAM ←a LAM b LAM c LAM root1 LAM root2 LAM Subr
x<�<
LAM b xSQ LAM ←a LAM c x* %4 x* x- xSQRT
LAM b xNEG xOVER x+ LAM Subr xEVAL
x' LAM root1 xENDTIC xSTO
LAM b xNEG xSWAP x- LAM Subr xEVAL
x' LAM root2 xENDTIC xSTO
LAM root1 LAM root2

x>�>ABND
x>�>

;

3.8.1 Using Named Temporary Variables

The first System-RPL example uses named temporary variables:

3.8. TEMPORARY VARIABLES 55

QRT1 250.5 Bytes Checksum #33EEh
(%a %b %c → %root1 %root2)
::
0LASTOWDOB! CK3NOLASTWD Expect three arguments
CK&DISPATCH1 3REAL Insist on three real numbers
::

%0 %0 Placeholder values for root1 and root2
' :: LAM a %2 %* %/ ; Place subroutine on the stack
{
LAM a
LAM b
LAM c
LAM root1
LAM root2
LAM Subr

} List of temporary variable names
BIND Create temporary variable environment
::
LAM b DUP %* LAM a LAM c %* %4 %* %- Evaluate b2 − 4ac
DUP %0< casedrop "Complex Roots" If <0, drop quantity, put string on stack, abandon temp

env. and exit secondary
%SQRT Evaluate SQRT(b2 − 4ac)
LAM b %CHS OVER %+ LAM Subr EVAL Calculate first root
' LAM root1 STO Store in root1
LAM b %CHS SWAP %- LAM Subr EVAL Calculate second root
' LAM root2 STO Store in root2
LAM root1 Return first root to the user
LAM root2 Return second root to the user

;
ABND Abandon temporary environment

;
;

3.8.2 Using Null-Named Temporary Variables

The second System-RPL example uses null-named temporary variables. When the object NULLLAM is used
instead of a name, space is saved in the temporary environment. Access to null-named temporary variables is
specified by the variable’s number position in the temporary environment rather than by name. This kind of
direct access is more efficient than searching through a series of names.

The objects PUTLAM and GETLAM are the fundamental tools used to store objects to and recall objects from tem-
porary variables:

PUTLAM #075E9h
Stores an object into numbered temporary variable

object #variable →
GETLAM #075A5h
Recalls an object from a numbered temporary variable

#variable → object
NULLLAM #34D30h
Null temporary variable name

→ ''

The use of PUTLAM and GETLAM can be streamlined by using objects which combine the bint specifying the
temporary with the PUT or GET action. For instance, 2PUTLAM combines TWO PUTLAM into a single action that
stores an object into the second temporary variable, and 4GETLAM combines FOUR GETLAM into a single object
that recalls the object stored in the fourth temporary variable. These combined actions save code and are quite
efficient.

56 CHAPTER 3. BASIC PROGRAMMING TOOLS

PUTLAM Combinations GETLAM Combinations
Object Address Object Address
1PUTLAM #615E0h 1GETLAM #613B6h
2PUTLAM #615F0h 2GETLAM #613E7h
3PUTLAM #61600h 3GETLAM #6140Eh
4PUTLAM #61635h 4GETLAM #61438h
5PUTLAM #61625h 5GETLAM #6145Ch
6PUTLAM #61635h 6GETLAM #6146Ch
7PUTLAM #61645h 7GETLAM #6147Ch
8PUTLAM #61655h 8GETLAM #6148Ch
9PUTLAM #61665h 9GETLAM #6149Ch
10PUTLAM #61675h 10GETLAM #614ACh
11PUTLAM #61685h 11GETLAM #614BCh
12PUTLAM #61695h 12GETLAM #614CCh
13PUTLAM #616A5h 13GETLAM #614DCh
14PUTLAM #616B5h 14GETLAM #614ECh
15PUTLAM #616C5h 15GETLAM #614FCh
16PUTLAM #616D5h 16GETLAM #6150Ch
17PUTLAM #616E5h 17GETLAM #6151Ch
18PUTLAM #616F5h 18GETLAM #6152Ch
19PUTLAM #61705h 19GETLAM #6153Ch
20PUTLAM #61715h 20GETLAM #6154Ch
21PUTLAM #61725h 21GETLAM #6155Ch
22PUTLAM #61735h 22GETLAM #6156Ch

The example program QRT2 uses these combination objects to yield a somewhat more efficient program. Here,
we use DOBIND instead of BIND.

QRT2 184 Bytes Checksum #12B1h
(%a %b %c → %root1 %root2)
::

0LASTOWDOB! CK3NOLASTWD Expect three arguments
CK&DISPATCH1 3REAL Insist on three real numbers
::
%0 %0 Placeholder values for root1 and root2
' :: 6GETLAM %2 %* %/ ; Place subroutine on the stack

Temporary variable null names:
' NULLLAM a will be in temporary variable 6
' NULLLAM b will be in temporary variable 5
' NULLLAM c will be in temporary variable 4
' NULLLAM root1 will be in temporary variable 3
' NULLLAM root2 will be in temporary variable 2
' NULLLAM Subr will be in temporary variable 1
SIX DOBIND Create temporary variable environment
::
5GETLAM DUP %* 6GETLAM 4GETLAM %* %4 %* %- Evaluate b2 − 4ac
DUP %0< casedrop "Complex Roots" If <0, drop quantity, put string on

stack, abandon temp env. and exit
secondary

%SQRT Evaluate SQRT(b2 − 4ac)
5GETLAM %CHS OVER %+ 1GETLAM EVAL Calculate first root
3PUTLAM Store first root
5GETLAM %CHS SWAP %- 1GETLAM EVAL Calculate second root
2PUTLAM Store second root
3GETLAM Return first root to the user
2GETLAM Return second root to the user

;
ABND Abandon temporary environment

;
;

As an exercise, try rewriting this example to use CACHE (described on page 58) instead of DOBIND.

3.8. TEMPORARY VARIABLES 57

3.8.3 Programming Hint for Temporary Variables

Notice that for a non-trivial program the source code can quickly turn into a blizzard of n PUTLAM’s and n GETLAM’s
which become hard to read. The RPL compiler’s DEFINE directive can be used to associate easier-to-remember
words with objects like 17GETLAM.

The code in QRT2.S is more efficient than the code in QRT1.S, but the code becomes less readable. When the
source code is being prepared with RPLCOMP.EXE on a PC, DEFINE statements can be used to make the
source code easier to manage. There are two techniques for using DEFINE with local variable names. The first
is to use DEFINE to rename long variable names to short variable names (saving RAM). The second is to use
DEFINE to map names directly to the GETLAM and PUTLAM combination objects. An example of the second use
of DEFINE is the program QRT3.

We make an additional change to illustrate the use of ABND. In User-RPL, the trailing f in a program using
local variables abandons the temporary environment. In System-RPL, an exit from a secondary can be coded
with objects like case, but you must keep track of temporary environments yourself. In this example, there are
two uses of ABND, one for the complex roots exit and one for the real roots exit. (Note that multiple exits from
secondaries like this are prone to coding errors — be careful!)

QRT3 174 Bytes Checksum #6A6Bh
(%a %b %c → %root1 %root2)
DEFINE a 6GETLAM
DEFINE b 5GETLAM
DEFINE c 4GETLAM
DEFINE root1 3GETLAM
DEFINE root1STO 3PUTLAM
DEFINE root2 2GETLAM
DEFINE root2STO 2PUTLAM
DEFINE Subr 1GETLAM
::
0LASTOWDOB! CK3NOLASTWD Expect three arguments
CK&DISPATCH1 3REAL Insist on three real numbers
::
%0 %0 Placeholder values for root1 and root2
' :: a %2 %* %/ ; Place subroutine on the stack
{ List of temporary variable null names:
NULLLAM a will be in temporary variable 6
NULLLAM b will be in temporary variable 5
NULLLAM c will be in temporary variable 4
NULLLAM root1 will be in temporary variable 3
NULLLAM root2 will be in temporary variable 2
NULLLAM Subr will be in temporary variable 1

}
BIND Create temporary variable environment
b DUP %* a c %* %4 %* %- Evaluate b2 − 4ac
DUP %0< casedrop If <0, drop quantity, put string on stack,

:: "Complex Roots" ABND ; abandon temp env. and exit secondary
%SQRT Evaluate SQRT(b2 − 4ac)
b %CHS OVER %+ Subr EVAL Calculate first root
root1STO Store first root
b %CHS SWAP %- Subr EVAL Calculate second root
root2STO Store second root
root1 Return first root to the user
root2 Return second root to the user
ABND Abandon temporary environment

;
;

Notice that the use of DEFINEs makes the source code much easier to read.

58 CHAPTER 3. BASIC PROGRAMMING TOOLS

3.8.4 Additional Temporary Variable Utilities

The following objects are available for working with temporary variables and environments. Some of these
objects combine commonly used sequences of operations.

1ABNDSWAP #62DB3h
Equivalent to :: 1GETLAM ABND SWAP ;

ob → oblam ob
1GETABND #634B6h
Equivalent to :: 1GETLAM ABND ;

→ oblam

1GETSWAP #62F07h
Equivalent to :: 1GETLAM SWAP ;

ob → oblam ob
1LAMBIND #634CFh
Equivalent to :: { NULLLAM } BIND ;

ob →
1NULLLAM{} #34D2Bh
Returns a list containing NULLLAM

→ { NULLLAM }
2GETEVAL #632E5h
Equivalent to :: 2GETLAM EVAL ;

→
4NULLLAM{} #52D26h
Returns a list containing four NULLLAMs

→ { NULLLAM NULLLAM NULLLAM NULLLAM }
@LAM #07943h
Recalls temporary variable by name. If variable exists, the object and TRUE
will be returned, otherwise FALSE will be returned.

lam → oblam TRUE
lam → FALSE

CACHE #610E9h
Saves n objects and n in a new temporary environment, with each temporary
variable named with the provided name.

obn ... ob1 n name →
DUMP #61EA7h
The inverse of CACHE, but works only if NULLLAM was the name used. Forces
a garbage collection.

→ obn ... ob1 n
DUP1LAMBIND #634CAh
Equivalent to :: DUP { NULLLAM } BIND ;

ob → ob
DUP4PUTLAM #61610h
Equivalent to :: DUP 4PUTLAM ;

ob → ob
DUPTEMPENV #61745h
Duplicates the topmost temporary environment

→
GETLAMPAIR #617D8h
is assumed to be 10*k, where k is the index of the desired temporary
variable. If k≤N, where N is the number of temporary variables in the
environment, the stored object, temporary variable name, and FALSE are
returned. If k>N, then TRUE is returned.

→ # TRUE
→ # ob name FALSE

3.9. ERROR TRAPPING 59

3.9 Error Trapping

In User-RPL the IFERR ... THEN ... [ELSE ...] END structures may be used to trap errors. In System-
RPL, the objects ERRSET, ERRJMP, and ERRTRAP provide error trapping capabilities.

In practice, the structure of an error trap is:

::
...
ERRSET
suspect_object
ERRTRAP
iferr_object
...

;

When suspect_object is being executed, any execution of the object ERRJMP will cause the rest of the sus-
pect_object to be discarded and execution will resume at iferr_object. If no error occurs, iferr_object will be
skipped and execution will continue with the following object.

3.9.1 Error Trapping Mechanics

When an error occurs, it is important that the system be returned to a known state for a graceful recovery.
In particular, temporary environments and DoLoop environments that may have been established within the
suspect_object must be discarded. The mechanism for this consists of a protection word associated with each
environment which is initialized to zero when the environment is created by either DO or BIND.

When ERRSET is executed, the protection words for the most recently created temporary and DoLoop environ-
ments are incremented.

If ERRJMP (or a related object like ABORT) is executed, the remainder of the suspect_object is discarded and the
protection words for the most recently created temporary and DoLoop environments are examined. If the
protection word is non-zero, it is decremented. If the protection word is zero, the environment is discarded.
Note that the protection word is a counter, and not a single state setting, so error traps can be nested.

ERRTRAP is executed only if no error occurred. When ERRTRAP is executed, the protection words in the topmost
temporary and DoLoop environments are decremented and the iferr_object is skipped.

ERRSET #04E5Eh
Increments topmost temporary and DoLoop protection words

→
ERRTRAP #04EB8h
Decrements topmost temporary and DoLoop protection words and skips the
next object

→
ERRJMP #04ED1h
Generates an error

→

3.9.2 Generating an Error

In User-RPL the command DOERR generates an error, taking as its argument either a string, or a number
specifying a message that is built into the HP 48 or an attached library. In System-RPL the actions of DOERR
are divided into three actions:

• The object ERRORSTO stores a binary integer specifying a built-in message into a reserved memory location
that can be read later. If the error is to be reported to the user as a string, the object EXITMSGSTO stores a
pointer to the string into a reserved memory location and #70000h is stored to indicate a text error.

• The object AtUserStack declares user ownership of all stack objects.

• The object ERRJMP initiates the error jump itself.

60 CHAPTER 3. BASIC PROGRAMMING TOOLS

For a list of error message numbers, see Appendix A on page 223.

The use of AtUserStack is unique to the User-RPL DOERR, and may not always be needed or appropriate for
your error traps. The objects ERRORCLR, ERRORSTO, and EXITMSGSTO store error code information:

ERRORCLR #04D33h
Clears the stored error number

→
ERRORSTO #04D0Eh
Stores an error number

→
EXITMSGSTO #04E37h
Stores an error string

$ →

3.9.3 Handling an Error

When the iferr_object is executed, the temporary environments and DoLoop environments have been restored
to the state prior to execution of the suspect_object. The iferr_object may need to consider side effects generated
by the suspect_object, such as extra objects left on the stack or a system mode that has been altered.

Part of the action of an iferr_object is to interpret the error being handled. The objects ERROR@ and GETEXITMSG
may be used to recall the contents of stored error codes:

GETEXITMSG #04E07h
Recalls the exit message string

→ $
ERROR@ #04CE6h
Recalls the error number

→ #

Example: A prototype error handler for a plotting application might wish to ignore math errors such as
division by zero. The code fragment below uses ERROR@ to recall the error number. If the error does not
correspond to an anticipated error, the object ERRJMP is used to pass the error up to the next error handler.
Error numbers from 769 to 773 are floating point errors. In this example the error is merely ignored.

::
Begin_Plot_Loop

...
ERRSET Increment protection words
:: The suspect_object

Calculate_A_Point
Plot_The_Point

;
ERRTRAP
:: The iferr_object
ERROR@ DUP Recall the error number
769 #< Less than 769?
SWAP 773 #> Greater than 773?
OR IT ERRJMP Pass the error along if not a floating point error

;
...

End_Plot_Loop
;

3.9.4 Additional Error Objects

The following objects are also provided for error management:

ABORT #04EA4h
Clears the stored error number and does ERRJMP

→

3.10. STACK OPERATIONS 61

DO$EXIT #15048h
Stores #70000h for the error number, stores the string message, does
AtUserStack, then does ERRJMP

$ →
DO#EXIT #1502Fh
Stores the error number, does AtUserStack, then does ERRJMP

→
ERRBEEP #141E5h
Generates a standard error beep

→
ERROROUT #6383Ah
Stores the error number, then does ERRJMP

→
JstGETTHEMSG #04D87h
Returns a message from a message table

→ $
SETMEMERR #04FB6h
Generates Insufficient Memory error

→
SETSIZEERR #18CA2h
Generates Bad Argument Value error

→
SETTYPEERR #18CB2h
Generates Bad Argument Type error

→
SETSTACKERR #18CC2h
Generates Too Few Arguments error

→
SETIVLERR #29DFCh
Generates Undefined Result error

→
SETNONEXTERR #18C92h
Generates Undefined Name error

→

3.10 Stack Operations

The objects listed here perform one or more stack operations. You can save code by using combination objects
like 4PICKSWAP instead of FOUR PICK SWAP. Some stack operations that are combined with binary integer math
operations are also listed under Binary Integers on page 21. Some objects have the same address, such as UNROT
and 3UNROLL. You may use whichever name best matches your way of thinking about a procedure.

#+ROLL #612DEh
obm+n ... ob1 #m #n → obm+n−1 ... ob1 obm+n

#+UNROLL #6133Eh
obm+n ... ob1 #m #n → ob1 obm+n ... ob2

#-ROLL #612CCh
obm−n ... ob1 #m #n → obm−n−1 ... ob1 obm−n

#-UNROLL #6132Ch
obm−n ... ob1 #m #n → ob1 obm−n ... ob2

#1+NDROP #62F75h
obn+1 ... ob1 #n →

#1+PICK #611A3h
obn+1 ... ob1 #n → obn+1 ... ob1 obn+1

#1+ROLL #612F3h
obn+1 ... ob1 #n → obn ... ob1 obn+1

#1+UNROLL #61353h
obn+1 ... ob1 #n → ob1 obn+1 ... ob2

62 CHAPTER 3. BASIC PROGRAMMING TOOLS

#2+PICK #611BEh
obn+2 ... ob1 #n → obn+2 ... ob1 obn+2

#2+ROLL #61318h
obn+2 ... ob1 #n → obn+1... ob1 obn+2

#2+UNROLL #61365h
obn+2 ... ob1 #n → ob1 obn+2 ... ob2

#3+PICK #611D2h
obn+3 ... ob1 #n → obn+3 ... ob1 obn+3

#4+PICK #611E1h
obn+4 ... ob1 #n → obn+4 ... ob1 obn+4

#+PICK #61184h
obm+n ... ob1#m #n → obm+n ... ob1 obm+n

10UNROLL #6312Dh
ob10 ... ob1 → ob1 ob10 ... ob2

2DROP #03258h
ob2 ob1 →

2DROP00 #6254Eh
ob2 ob1 → #0 #0

2DROPFALSE #62B0Bh
ob2 ob1 → FALSE

2DUP #031ACh
ob2 ob1 → ob2 ob1 ob2 ob1

2DUP5ROLL #63C40h
ob3 ob2 ob1 → ob2 ob1 ob2 ob1 ob3

2DUPSWAP #611F9h
ob2 ob1 → ob2 ob1 ob1 ob2

2OVER #63FBAh
ob4 ob3 ob2 ob1 → ob4 ob3 ob2 ob1 ob4 ob3

2SWAP #62001h
ob4 ob3 ob2 ob1 → ob2 ob1 ob4 ob3

3DROP #60F4Bh
ob3 ob2 ob1 →

3PICK #611FEh
ob3 ob2 ob1 → ob3 ob2 ob1 ob3

3PICK3PICK #63C68h
ob3 ob2 ob1 → ob3 ob2 ob1 ob3 ob2

3PICKOVER #630B5h
ob3 ob2 ob1 → ob3 ob2 ob1 ob3 ob1

3PICKSWAP #62EDFh
ob3 ob2 ob1 → ob3 ob2 ob3 ob1

3UNROLL #60FACh
ob3 ob2 ob1 → ob1 ob3 ob2

4DROP #60F7Eh
ob4 ob3 ob2 ob1 →

4PICK #6121Ch
ob4 ob3 ob2 ob1 → ob4 ob3 ob2 ob1 ob4

4PICKOVER #630C9h
ob4 ob3 ob2 ob1 → ob4 ob3 ob2 ob1 ob4 ob1

4PICKSWAP #62EF3h
ob4 ob3 ob2 ob1 → ob4 ob3 ob2 ob4 ob1

4ROLL #60FBBh
ob4 ob3 ob2 ob1 → ob3 ob2 ob1 ob4

4ROLLDROP #62864h
ob4 ob3 ob2 ob1 → ob3 ob2 ob1

4ROLLOVER #630A1h
ob4 ob3 ob2 ob1 → ob3 ob2 ob1 ob4 ob1

4ROLLROT #63001h
ob4 ob3 ob2 ob1 → ob3 ob1 ob4 ob2

3.10. STACK OPERATIONS 63

4ROLLSWAP #62ECBh
ob4 ob3 ob2 ob1 → ob3 ob2 ob4 ob1

4UNROLL #6109Eh
ob4 ob3 ob2 ob1 → ob1 ob4 ob3 ob2

4UNROLL3DROP #6113Ch
ob4 ob3 ob2 ob1 → ob1

4UNROLLDUP #62D09h
ob4 ob3 ob2 ob1 → ob1 ob4 ob3 ob2 ob2

4UNROLLROT #63015h
ob4 ob3 ob2 ob1 → ob1 ob3 ob2 ob4

5DROP #60F72h
ob5 ob4 ob3 ob2 ob1 →

5PICK #6123Ah
ob5 ob4 ob3 ob2 ob1 → ob5 ob4 ob3 ob2 ob1 ob5

5ROLL #60FD8h
ob5 ob4 ob3 ob2 ob1 → ob4 ob3 ob2 ob1 ob5

5ROLLDROP #62880h
ob5 ob4 ob3 ob2 ob1 → ob4 ob3 ob2 ob1

5UNROLL #610C4h
ob5 ob4 ob3 ob2 ob1 → ob1 ob5 ob4 ob3 ob2

6DROP #60F66h
ob6 ob5 ob4 ob3 ob2 ob1 →

6PICK #6125Eh
ob6 ob5 ob4 ob3 ob2 ob1 → ob6 ob5 ob4 ob3 ob2 ob1 ob6

6ROLL #61002h
ob6 ob5 ob4 ob3 ob2 ob1 → ob5 ob4 ob3 ob2 ob1 ob6

6UNROLL #610FAh
ob6 ob5 ob4 ob3 ob2 ob1 → ob1 ob6 ob5 ob4 ob3 ob2

7DROP #60F54h
ob7 ... ob1 →

7PICK #61282h
ob7 ... ob1 → ob7 ... ob1 ob7

7ROLL #6106Bh
ob7 ... ob1 → ob6 ... ob1 ob7

7UNROLL #62BC4h
ob7 ... ob1 → ob1ob7 ... ob2

8PICK #612A9h
ob8 ... ob1 → ob8 ... ob1 ob8

8ROLL #6103Ch
ob8 ... ob1 → ob7 ... ob1 ob8

8UNROLL #63119h
ob8 ... ob1 → ob1ob8 ... ob2

DEPTH #0314Ch
obn ... ob1 → obn ... ob1 #n

DROP #03244h
ob →

DROPDUP #627A7h
ob2 ob1 → ob2 ob2

DROPFALSE #6210Ch
ob → FALSE

DROPNDROP #63FA6h
obn ... ob1 #n ob →

DROPNULL$ #04D3Eh
ob → NULL$

DROPONE #62946h
ob → #1

DROPOVER #63029h
ob3 ob2 ob1 → ob3 ob2 ob3

64 CHAPTER 3. BASIC PROGRAMMING TOOLS

DROPROT #62FC5h
ob4 ob3 ob2 ob1 → ob3 ob2 ob4

DROPSWAP #6270Ch
ob3 ob2 ob1 → ob2 ob3

DROPSWAPDROP #62726h
ob3 ob2 ob1 → ob2

DROPTRUE #62103h
ob → TRUE

DROPZERO #62535h
ob → #0

DUP #03188h
ob → ob ob

DUP#1+PICK #6119Eh
obn ... ob1 #n → obn ... ob1 #n obn

DUP3PICK #611F9h
ob2 ob1 → ob2 ob1 ob1 ob2

DUP4UNROLL #61099h
ob3 ob2 ob1 → ob1 ob3 ob2 ob1

DUPDUP #62CB9h
ob → ob ob ob

DUPONE #63A9Ch
ob → ob ob #1

DUPPICK #630DDh
obn ... ob1 #n → obn ... ob1 #n obn−1

DUPROLL #630F1h
obn ... ob1 #n → obn obn−2 ... ob1 #n obn−1

DUPROT #62FB1h
ob2 ob1 → ob1 ob1 ob2

DUPTWO #63AD8h
ob → ob ob #2

DUPUNROT #61380h
ob2 ob1 → ob1 ob2 ob1

DUPZERO #63A88h
ob → ob ob #0

N+1DROP #62F75h
obn+1 ... ob1 #n →

NDROP #0326Eh
obn ... ob1 #n →

NDROPFALSE #169A5h
obn ... ob1 #n → FALSE

NDUP #031D9h
obn ... ob1 #n → obn ... ob1 obn ... ob1

NDUPN #5E370h
ob #n → ob ... ob #n

ONEFALSE #63533h
→ #1 FALSE

ONESWAP #62E67h
ob → #1 ob

OVER #032C2h
ob2 ob1 → ob2 ob1 ob2

OVER5PICK #63C90h
ob4 ob3 ob2 ob1 → ob4 ob3 ob2 ob1 ob2 ob4

OVERDUP #62CCDh
ob2 ob1 → ob2 ob1 ob2 ob2

OVERSWAP #62D31h
ob2 ob1 → ob2 ob2 ob1

OVERUNROT #62D31h
ob2 ob1 → ob2 ob2 ob1

3.10. STACK OPERATIONS 65

PICK #032E2h
obn ... ob1 #n → obn ... ob1 obn

ROLL #03325h
obn ... ob1 #n → obn−1 ... ob1 obn

ROLLDROP #62F89h
obn ... ob1 #n → obn−1 ... ob1

ROLLSWAP #62D45h
obn ... ob1 #n → obn−1 ... ob2 obn ob1

ROT #03295h
ob3 ob2 ob1 → ob2 ob1 ob3

ROT2DROP #62726h
ob3 ob2 ob1 → ob2

ROT2DUP #62C7Dh
ob3 ob2 ob1 → ob2 ob1 ob3 ob1 ob3

ROTDROP #60F21h
ob3 ob2 ob1 → ob2 ob1

ROTDROPSWAP #60F0Eh
ob3 ob2 ob1 → ob1 ob2

ROTDUP #62775h
ob3 ob2 ob1 → ob2 ob1 ob3 ob3

ROTOVER #62CA5h
ob3 ob2 ob1 → ob2 ob1 ob3 ob1

ROTROT2DROP #6112Ah
ob3 ob2 ob1 → ob1

ROTSWAP #60EE7h
ob3ob2 ob1 → ob2 ob3 ob1

SWAP #03223h
ob2 ob1 → ob1 ob2

SWAP2DUP #6386Ch
ob2 ob1 → ob1 ob2 ob1 ob2

SWAP3PICK #63C54h
ob3 ob2 ob1 → ob3 ob1 ob2 ob3

SWAP4PICK #63C7Ch
ob4 ob3 ob2 ob1 → ob4 ob3 ob1 ob2 ob4

SWAP4ROLL #63C2Ch
ob4 ob3 ob2 ob1 → ob3 ob1 ob2 ob4

SWAPDROP #60F9Bh
ob2 ob1 → ob1

SWAPDROPDUP #62830h
ob2 ob1 → ob1 ob1

SWAPDROPSWAP #6284Bh
ob3 ob2 ob1 → ob1 ob3

SWAPDROPTRUE #21660h
ob2 ob1 → ob1TRUE

SWAPDUP #62747h
ob2 ob1 → ob1 ob2 ob2

SWAPONE #63AB0h
ob2 ob1 → ob1 ob2 #1

SWAPOVER #61380h
ob2 ob1 → ob1 ob2 ob1

SWAPROT #60F33h
ob3 ob2 ob1 → ob1 ob2 ob3

SWAPTRUE #4F1D8h
ob2 ob1 → ob1 ob2 TRUE

UNROLL #0339Eh
obn ... ob1 #n → ob1 obn ... ob2

UNROT #60FACh
ob3 ob2 ob1 → ob1 ob3 ob2

66 CHAPTER 3. BASIC PROGRAMMING TOOLS

UNROT2DROP #6112Ah
ob3 ob2 ob1 → ob1

UNROTDROP #6284Bh
ob3 ob2 ob1 → ob1 ob3

UNROTDUP #62CF5h
ob3 ob2 ob1 → ob1 ob3 ob2 ob2

UNROTOVER #6308Dh
ob3 ob2 ob1 → ob1 ob3 ob2 ob3

UNROTSWAP #60F33h
ob3 ob2 ob1 → ob1 ob2 ob3

UNROTSWAPDRO #60F0Eh
ob3 ob2 ob1 → ob1 ob2

ZEROOVER #63079h
ob → ob #0 ob

ZEROSWAP #62E3Ah
ob → #0 ob

reversym #5DE7Dh
obn ... ob1 #n → ob1 ... obn #n

NOTE: The object reversym is written in System-RPL and is slow — see the program RVRSO on page 198 in
Writing Your Own Code Objects on page 195 for an assembly language version that’s much faster.

3.11 Control Structure Examples

There are an infinite number of ways to illustrate the objects and techniques that have just been described
in this chapter. The first two examples provided here check an argument, loop, use case, and display text
using objects described later in the book. The third example uses the return stack to filter a list and count the
number of real number objects in the list.

You can use SEMI to build your own control structures in a variety of creative ways. The first two examples
illustrate executing the first n of a series of procedures (there are many ways to approach this problem). The
first approach uses a list containing all the procedures and a loop that extracts and executes the desired
procedures. The second approach pushes a series of flags on the stack and uses SEMI to decide when to quit.
The usefulness of each approach will depend on the circumstances under which it’s used.

We hope these examples will stimulate some creative thinking as you consider your programming projects.
Spend some time comparing these two examples. Which is faster? Why?

In the second example, why is there a ?SEMI before the first procedure, since at this point we know that at least
one procedure will be executed? Try removing it and changing the loop counter. (Hint: DO loops execute at least
once.)

3.11.1 PLIST Example

The program PLIST executes the first n of a series of procedures encapsulated in a list.

3.11. CONTROL STRUCTURE EXAMPLES 67

PLIST 158.5 Bytes Checksum #F53h
(% →)
::
0LASTOWDOB! CK1NOLASTWD Clear saved command name, require one object
CK&DISPATCH1 real Require a real number
::
ClrDA1IsStat RECLAIMDISP Suspend clock, assert and clear stack display
TURNMENUOFF Turn off the menu display
SetDAsTemp Freeze the display when program ends
COERCE Convert real number to internal binary integer
DUP#0= caseDROP Quit if no procedures are to be executed
DUP FIVE #> case SETSIZEERR Error out if more than five procedures specified
#1+_ONE_DO (DO) Loop from 1 to number of procedures specified
{ List of procedures
:: "ONE" DISPROW1 ; First procedure
:: "TWO" DISPROW2 ; Second procedure
:: "THREE" DISPROW3 ; Third procedure
:: "FOUR" DISPROW4 ; Fourth procedure
:: "FIVE" DISPROW5 ; Fifth procedure

}
INDEX@ NTHCOMPDROP Get loop index, extract nth procedure
EVAL Execute nth procedure

LOOP End of loop
;

;

3.11.2 SEMI Example

The program SEMI executes the first n of a series of procedures separated by SEMI tests.

SEMI 145 Bytes Checksum #354h
(% →)
::
0LASTOWDOB! CK1NOLASTWD Clear saved command name, require one object
CK&DISPATCH1 real Require a real number
::
ClrDA1IsStat RECLAIMDISP Suspend clock, assert and clear stack display
TURNMENUOFF Turn off the menu display
SetDAsTemp Freeze the display when program ends
COERCE Convert real number to internal binary integer
DUP#0= caseDROP Quit if no procedures are to be executed
DUP FIVE #> case SETSIZEERR Error out if more than five procedures specified
TRUE SWAP Push TRUE on stack to signal end of process
ZERO DO FALSE LOOP Push n FALSE flags on the stack
?SEMI Test first flag
"ONE" DISPROW1 First procedure
?SEMI Test second flag
"TWO" DISPROW2 Second procedure
?SEMI Test third flag
"THREE" DISPROW3 Third procedure
?SEMI Test fourth flag
"FOUR" DISPROW4 Fourth procedure
?SEMI Test fifth flag
"FIVE" DISPROW5 Fifth procedure
DROP Drop TRUE that remains if all five procedures

used
;

;

68 CHAPTER 3. BASIC PROGRAMMING TOOLS

3.11.3 ticR Example

The return stack can be a handy resource for filtering through a composite object. Instead of decomposing a
list on the stack and processing each object, you can put it on the return stack with >R and get one object at a
time back for examination with ticR. The program RSTR uses this technique to count the number of objects in
a list that are real numbers.

RSTR 68.5 Bytes Checksum #6340h
({list} → %count)
::
0LASTOWDOB! CK1NOLASTWD Clear saved command name, require one argument
CK&DISPATCH1 list Require a list
::
>R Push the list on the return stack
%0 The initial value of the counter
BEGIN Copies I to the return stack
RSWAP Swap the list to the first level
ticR Pop the next object from the list

Here, the stack is either: (%counter object TRUE →)
or: (%counter FALSE →)

DUP NOT ?SKIP RSWAP If the object was not SEMI, swap the remainder of the
list back

WHILE If an object was found, do the WHILE clause
:: TYPEREAL? IT %1+ ; If the object is a real number, increment the counter

REPEAT
;

;

Chapter 4

Objects & Object Utilities

This chapter describes several types of object and tools that manipulate them. Objects may be described as
atomic (a single object), or composite (an object which is composed of one or more objects). Internal binary
integers and real numbers are examples of atomic objects, and a list is an example of a composite object. This
chapter covers the following object types:

Atomic Objects Composite Objects
Bint List
Real Secondary

Extended Real Symbolic
Complex Unit

Extended Complex
Character

Character String
Hex String

Graphics Object
Array

Tagged

4.1 Real & Extended Real Numbers

There are two floating point real number object types in the HP 48: real numbers (seen by the user), and
extended real numbers (used internally). A real number consists of a sign, 12-digit mantissa, and a 3-digit
exponent. An extended real number consists of a sign, 15-digit mantissa, and a 5-digit exponent. Exponents
are stored in tens complement form. Real exponents live in the domain -500 < EEE < 500, and extended real
exponents live in the domain -50000 < EEEEE < 50000.

The symbol % is used to denote a real number or an object that works with a real number. The symbol %% is
used to denote an extended real number or an object that works with an extended real number. Some object
names use both symbols. For instance, the object %>%% converts a real number to an extended real number.

4.1.1 Compiling Real Numbers

Real numbers can be embedded in System-RPL source code with the % symbol followed by a space followed by
a the number. For example, the sequence :: %RAN % .5 %* ; returns a random number between 0 and .5.

Extended real numbers must be specified using the assembler, as RPLCOMP.EXE has trouble with them.
The System-RPL code fragment below converts a real number to an extended real number, then divides that
number by %% -15.3. Notice that the digits of the exponent are listed in reverse order. The last digit on the
mantissa line is the sign, and is 0 for a positive number and 9 for a negative number.

69

70 CHAPTER 4. OBJECTS & OBJECT UTILITIES

::
%>%%

ASSEMBLE
CON(5) =DOEREL
NIBHEX 10000 Exponent
NIBHEX 0000000000003519 Mantissa

RPL
%%/

;

4.1.2 Built-In Real Numbers

The following table lists real and extended real numbers that are built into the HP 48.

4.1. REAL & EXTENDED REAL NUMBERS 71

Real Numbers Extended Real Numbers
Object Address Object Address

%-MAXREAL #2A487h %%0 #2A4C6h
%-9 #2A42Eh %%.1 #2A562h
%-8 #2A419h %%.4 #2B3DDh
%-7 #2A404h %%.5 #2A57Ch
%-6 #2A3EFh %%1 #2A4E0h
%-5 #2A3DAh %%2 #2A4FAh
%-4 #2A3C5h %%3 #2A514h
%-3 #2A3B0h %%4 #2A52Eh
%-2 #2A39Bh %%5 #2A548h
%-1 #2A386h %%2PI #0F688h
%-MINREAL #2A4B1h %%7 #2B1FFh
%0 #2A2B4h %%10 #2A596h
%MINREAL #2A49Ch %%12 #2B2DCh
%.1 #494B4h %%60 #2B300h
%.5 #650BDh %%PI #2A458h
%1 #2A2C9h
%2 #2A2DEh
%e #650A8h
%3 #2A2F3h
%PI #2A443h
%4 #2A308h
%5 #2A31Dh
%6 #2A332h
%7 #2A347h
%8 #2A35Ch
%9 #2A371h
%10 #650E7h
%11 #1CC03h
%12 #1CC1Dh
%13 #1CC37h
%14 #1CC51h
%15 #1CC85h
%16 #1CD3Ah
%17 #1CD54h
%18 #1CDF2h
%19 #10E07h
%20 #1CC6Bh
%21 #1CCA4h
%22 #1CCC3h
%23 #1CCE2h
%24 #1CD01h
%25 #1CD20h
%26 #1CD73h
%27 #1CD8Dh
%100 #415F1h
%180 #650FCh
%360 #65126h
%MAXREAL #2A472h

4.1.3 Real Number Conversions

The following objects convert between real and extended real objects:

%>%% #2A5C1h
Converts a real number to an extended real number

% → %%
%%>% #2A5B0h
Converts an extended real number to a real number

%% → %

72 CHAPTER 4. OBJECTS & OBJECT UTILITIES

2%>%% #2B45Ch
Converts two real numbers to extended real numbers

% % → %% %%
2%%>% #2B470h
Converts two extended real numbers to real numbers

%% %% → % %

4.1.4 Real Number Functions

The following functions operate on real numbers:

%1+ #50262h
Adds one to a real number

% → %
%1- #50276h
Subtracts one from a real number

% → %
%1/ #2AAAFh
Inverse

% → %
%10* #62BF1h
Multiplies a real number by 10

% → %
%ABS #2A900h
Absolute value

% → %
%ACOS #2ACF1h
Arc cosine

% → %
% → C%

%ACOSH #2AE13h
Inverse hyperbolic cosine

% → %
% → C%

%ALOG #2ABBAh
Antilogarithm

% → %
%ANGLE #2AD38h
Angle from %x and %y (uses current angle mode)

%x %y → %
%ASIN #2ACC1h
Arc sine

% → %
%ASINH #2AE00h
Inverse hyperbolic sine

% → %
%ATAN #2AD21h
Arc tangent

% → %
%ATANH #2AE26h
Inverse hyperbolic tangent

% → %
% → C%

%CEIL #2AF73h
Next greatest integer

% → %
%CH #2AA30h
Percent change from x to y as a percentage of x

%x %y → %

4.1. REAL & EXTENDED REAL NUMBERS 73

%CHS #2A920h
Change sign

% → %
%COMB #2AE62h
Combinations of n objects taken m at a time

%n %m → %
%COS #2AC40h
Cosine

% → %
%COSH #2ADDAh
Hyperbolic cosine

% → %
%D>R #2A622h
Converts degrees to radians

% → %
%EXP #2AB2Fh
Natural exponential

% → %
%EXPM1 #2AB42h
Natural exponential minus 1

% → %
%EXPONENT #2AE39h
Returns exponent

% → %
%FACT #2B0C4h
Factorial or gamma function

% → %
%FLOOR #2AF86h
Next smallest integer

% → %
%FP #2AF4Dh
Fractional part

% → %
%HMS+ #2A6A0h
Adds in HH.MMSSs format

% % → %
%HMS- #2A6C8h
Subtracts in HH.MMSSs format

% % → %
%HMS> #2A68Ch
Converts a number from HH.MMSSs format to decimal hours

% → %
%>HMS #2A673h
Converts a number from decimal hours to HH.MMSSs format

% → %
%IP #2AF60h
Integer part

% → %
%LN #2AB6Eh
Natural logarithm

% → %
% → C%

%LNP1 #2ABA7h
Natural logarithm of (argument + 1)

% → %
%LOG #2AB81h
Common logarithm

% → %
% → C%

74 CHAPTER 4. OBJECTS & OBJECT UTILITIES

%MANTISSA #2A930h
Returns mantissa

% → %
%MAX #2A6F5h
Maximum of two numbers

% % → %
%MIN #2A70Eh
Minimum of two numbers

% % → %
%MOD #2ABDCh
Modulo

% % → %
%NFACT #2AE4Ch
Factorial

% → %
%NROOT #2AA81h
%nth root of %x

%x %n → %
%OF #2A9C9h
Returns percentage of %x that is %y

%x %y → %
%PERM #2AE75h
Permutations of %m items taken %n at a time

%m %n → %
%POL>%REC #2B4BBh
Polar to rectangular conversion

%x %y → %radius %angle
%R>D #2A655h
Radians to degrees conversion

% → %
%RAN #2AFC2h
Generates random number in the range (0≤n<1)

→ %
%RANDOMIZE #2B044h
Sets the random number seed. If % is zero, the system clock is used.

% →
%REC>%POL #2B48Eh
Rectangular to polar conversion

%radius %angle → %x %y
%SGN #2A8D7h
Sign of a real number (-1, 0, or 1)

% → %
%SIN #2ABEFh
Sine

% → %
%SINH #2ADAEh
Hyperbolic sine

% → %
%SPH>%REC #2B4F2h
Spherical to rectangular conversion

%r %θ %φ → %x %y %z
%SQRT #2AB09h
Square root

% → %
% → C%

%T #2AA0Bh
Percent total of %x that is represented by %y

%x %y → %

4.1. REAL & EXTENDED REAL NUMBERS 75

%TAN #2AC91h
Tangent

% → %
%TANH #2ADEDh
Hyperbolic tangent

% → %
%^ #2AA70h
Exponential

%x %y → %x^%y
DDAYS #0CC39h
Days between dates in MM.DDYYYY format (respects flag 42)

% % → %
RNDXY #2B529h
Rounds %x to %n places

%x %n → %
TRCXY #2B53Dh
Truncates %x to %n places

%x %n → %

4.1.5 Extended Real Number Functions

The following functions operate on extended real numbers:

%%* #2A99Ah
Multiply

%% %% → %%
%%*ROT #62FEDh
Multiply followed by ROT

ob1 ob2 %% %% → ob2 %% ob1

%%*SWAP #62EA3h
Multiply followed by SWAP

ob %% %% → %% ob
%%*UNROT #63C18h
Multiply followed by UNROT

ob1 ob2 %% %% → %% ob1 ob2

%%+ #2A943h
Addition

%% %% → %%
%%- #2A94Fh
Subtraction

%% %% → %%
%%/ #2A9E8h
Division

%% %% → %%
%%^ #2AA5Fh
Exponential

%%x %%y → %%x^%%y
%%/>% #63B82h
Division, returns real result

%% %% → %
%%1/ #2AA92h
Reciprocal

%% → %%
%>%%1/ #2AA9Eh
Convert % to %%, then do reciprocal

% → %%
%%ABS #2A8F0h
Absolute value

%% → %%

76 CHAPTER 4. OBJECTS & OBJECT UTILITIES

%%ACOSRAD #2AD08h
Arc cosine using radians

%% → %%
%%ANGLE #2AD4Fh
Angle from %%x and %%y using current angle mode

%%x %%y → %%angle
%%ANGLEDEG #2AD6Ch
Angle from %%x and %%y using degrees

%%x %%y → %%angle
%%ANGLERAD #2ACD8h
Angle from %%x and %%y using radians

%%x %%y → %%angle
%%ASINRAD #2ACD8h
Arc sine using radians

%% → %%
%%CHS #2A910h
Change sign

%% → %%
%%COS #2AC57h
Cosine

%% → %%
%%COSDEG #2AC68h
Cosine using degrees

%% → %%
%%COSH #2ADC7h
Hyperbolic cosine

%% → %%
%%COSRAD #2AC78h
Cosine using radians

%% → %%
%%EXP #2AB1Ch
Natural exponential

%% → %%
%%FLOOR #2AF99h
Next smallest integer

%% → %%
%%H>HMS #2AF27h
Decimal hours to HH.MMSSs

%% → %%
%%INT #2AF99h
Integer part

%% → %%
%%LN #2AB5Bh
Natural logarithm

%% → %%
%%LNP1 #2AB94h
Natural logarithm of argument plus 1

%% → %%
%%MAX #2A6DCh
Maximum of two numbers

%% %% → %%
%%P>R #2B4C5h
Polar to rectangular conversion

%%radius %%angle → %%x %%y
%%R>P #2B498h
Rectangular to polar conversion

%%x %%y → %%radius %%angle

4.2. COMPLEX NUMBERS 77

%%SIN #2AC06h
Sine

%% → %%
%%SINDEG #2AC17h
Sine using degrees

%% → %%
%%SINH #2AD95h
Hyperbolic sine

%% → %%
%%SQRT #2AAEAh
Square root

%% → %%
%%TANRAD #2ACA8h
Tangent using radians

%% → %%

4.2 Complex Numbers

Complex number objects contain two real number object bodies, with the same mantissa and exponent struc-
ture as real numbers. Likewise, extended complex number objects contain two extended real number object
bodies.

The symbol C% is used to denote a complex number, and C%% is used to denote an extended complex number.

4.2.1 Compiling Complex Numbers

Complex numbers can be embedded in System-RPL source code with the C% symbol followed by a space fol-
lowed by the real component, a space, and the imaginary component. For example, :: ... C% 3.5 4.2 ...
; specifies the number (3.5,4.2).

Extended complex numbers must be specified using the assembler, as RPLCOMP.EXE has trouble with them.
The code fragment below shows how the extended complex number (1.25,-.83) is specified in a System-RPL
source file. The prologue is followed by two extended real bodies, the first being the real part.

::
...

ASSEMBLE
CON(5) =DOECMP
NIBHEX 00000 Real Exponent
NIBHEX 0000000000005210 Real Mantissa
NIBHEX 99999 Imaginary Exponent
NIBHEX 0000000000000389 Imaginary Mantissa

RPL
...

;

4.2.2 Complex Number Conversions

The following objects convert between real, extended real, complex, and extended complex objects:

%%>C% #51A07h
Converts two extended real numbers into a complex number

%%real %%imag → C%
%>C% #05C27h
Converts two real numbers into a complex number

%real %imag → C%
C%%>%% #05DBCh
Converts an extended complex number into two extended real numbers

C%% → %%real %%imag

78 CHAPTER 4. OBJECTS & OBJECT UTILITIES

C%%>C% #519F8h
Converts an extended complex number into a complex number

C%% → C%
C%>% #05D2Ch
Converts a complex number into two real numbers

C% → %real %imag

C%>%% #519CBh
Converts a complex number into two extended real numbers

C% → %%real %%imag

C%>%%SWAP #519DFh
Converts a complex number into two extended real numbers, then does SWAP

C% → %%imag %%real

C>Im% #519B7h
Extracts the imaginary portion of a complex number

C% → %imag

C>Re% #519A3h
Extracts the real portion of a complex number

C% → %real

Re>C% #519A3h
Creates a complex from a real number with implied 0 imaginary part

%real → (%real,0)
SWAP%>C% #632A9h
Does SWAP, then converts two real numbers into a complex number

%imag %real → C%

4.2.3 Built-In Complex Numbers

The following table lists complex and extended complex numbers that are built into the HP 48:

Object Address
C%-1 #5196Ah
C%0 #524AFh
C%1 #524F7h
C%%1 #5193Bh

4.2.4 Complex Number Functions

The following functions operate on complex or extended complex numbers:

C%1/ #51EFAh
Inverse

C% → C%
C%ABS #52062h
Returns radius from (0,0) to (x,y)

(x,y) → %
C%ACOS #52863h
Arc cosine

C% → C%
C%ACOSH #52836h
Hyperbolic arc cosine

C% → C%
C%ALOG #52305h
Common antilog

C% → C%
C%ARG #52099h
Returns angle from (x,y)

(x,y) → %

4.2. COMPLEX NUMBERS 79

C%ASIN #52804h
Arc sine

C% → C%
C%ASINH #5281Dh
Hyperbolic arc sine

C% → C%
C%ATAN #52675h
Arc tangent

C% → C%
C%ATANH #527EBh
Hyperbolic arc tangent

C% → C%
C%C^C #52374h
Complex number raised to complex number

C%x C%y → C%x^C%y
C%C^R #52360h
Complex number raised to real number

C% % → C%
C%CHS #51B70h
Change sign

C% → C%
C%%CHS #51B91h
Change sign

C%% → C%%
C%CONJ #51BB2h
Conjugate

C% → C%
C%%CONJ #51BC1h
Conjugate

C%% → C%%
C%COS #52571h
Cosine

C% → C%
C%COSH #52648h
Hyperbolic cosine

C% → C%
C%EXP #52193h
ex

C% → C%
C%LN #521E3h
Natural logarithm

C% → C%
C%LOG #522BFh
Common logarithm

C% → C%
C%R^C #52342h
Real number raised to complex number

% C% → C%
C%SGN #520CBh
Returns unit vector in the direction of z

C% → C%
C%SIN #52530h
Sine

C% → C%
C%SINH #5262Fh
Hyperbolic sine

C% → C%

80 CHAPTER 4. OBJECTS & OBJECT UTILITIES

C%SQRT #52107h
Square root

C% → C%
C%TAN #525B7h
Tangent

C% → C%
C%TANH #5265Ch
Hyperbolic tangent

C% → C%

4.3 Arrays

Arrays may be used to store atomic objects of a common type. Typically, arrays are used to store real and
complex numbers, and many of the objects in the HP 48 manipulate real and complex arrays. Some objects
work only with real or complex valued arrays, so be sure to use the correct manipulation objects. This applies
especially to the MatrixWriter, which can cause the HP 48 to lose memory with arrays that are not composed
of real or complex numbers.

A string array is a good place to store a large number of strings, such as prompts or error messages, in an
application. Notice that while an array can be compiled (see below), and that an element can be obtained from
an array (see GETATELN below), there is no object giving the equivalent of the User-RPL object PUT for an array
of any object type other than real or complex numbers.

4.3.1 Compiling Arrays

The RPLCOMP.EXE compiler may be used to generate arrays of other objects, like internal binary integers or
strings. For example, the code fragment below specifies an array of strings:

::
...
ARRY [

"Joe"
"Fred"
"Janet"
"Jim"

]
...

;

4.3.2 Array Utilities

The objects described below may be used to work with array objects. The following notation convention applies
to these descriptions:

[array] An array of arbitrary type with one or two dimensions
[%array] An array of real numbers with one or two dimensions
[C%array] An array of complex numbers with one or two dimensions
[1-D array] A vector
[2-D array] A two dimensional array
{dims} A list containing a bint specifying a number of elements or two

bints specifying a number of rows and columns
#pos A row-order position within an array

ARSIZE #03562h
Returns the number of elements in an array

[array] → #elements

4.3. ARRAYS 81

GETATELN #0371Dh
Returns an element from an array and TRUE if the element exists, otherwise
returns FALSE

#pos [array] → ob TRUE
#pos [array] → FALSE

MAKEARRY #03442h
Creates an array with all elements equal to the specified object

{ #rows #cols } ob → [array]
MATCON #35CAEh
Sets all elements in an array to a real or complex number

[%array] % → [%array]
[C%array] C% → [C%array]

MATREDIM #37E0Fh
Redimensions a real or complex array. New elements are filled with %0 or
C%0,0.

[%array] {dims} → [%array]
[C%array] {dims} → [C%array]

MATTRN #3811Fh
Transposes a real or complex array.

[%array] → [%array]
[C%array] → [C%array]

MDIMS #357A8h
Returns the dimensions of an array

[1-D array] → #elements FALSE
[2-D array] → #rows #cols TRUE

MDIMSDROP #62F9Dh
Does MDIMS, then DROP

[1-D array] → #elements
[2-D array] → #rows #cols

OVERARSIZE #63141h
Does OVER, then ARSIZE

[array] ob → [array] ob #elements
PULLREALEL #355B8h
Returns the specified real number from a real array

[%array] #pos → [%array] %
PULLCMPEL #355C8h
Returns the specified complex number from a complex array

[C%array] → [C%array] C%
PUTEL #35628h
Places a real or complex number into a real or complex array at a specified
location

[%array] % #pos → [%array]
[C%array] C% #pos → [C%array]

PUTREALEL #3566Th
Places a real number into a real array at a specified location

[%array] % #pos → [%array]
PUTCMPEL #356F3h
Places a complex number into a complex array at a specified location

[C%array] C% #pos → [C%array]

4.3.3 The MatrixWriter

The MatrixWriter can be started by executing either DoNewMatrix to create a new array or DoOldMatrix to edit
a array on the stack.

DoNewMatrix #44C31h
Starts the MatrixWriter and creates a new array

→ [array] If terminated with [ENTER]
→ If terminated with [CANCEL]

82 CHAPTER 4. OBJECTS & OBJECT UTILITIES

DoOldMatrix #44FE7h
Starts the MatrixWriter on an existing array on the stack

[array] → [array] TRUE If terminated with [ENTER]
[array] → FALSE If terminated with [CANCEL]

4.4 Tagged Objects

Tagging an object with a meaningful label is one useful option for labeling a result being returned to the user.
When accepting input from the user, it may be necessary to remove all tags from the base object before deciding
if the input is valid. The objects described below facilitate these tasks.

Note that CK&DISPATCH1 removes tags recursively as it filters user input, while CK&DISPATCH0 does not remove
tags (see Argument Validation on page 47).

%>TAG #22618h
Tags an object with a real number

ob % → tagged
>TAG #05E81h
Tags an object with a string. Has no length check (see USER$>TAG)

ob $ → tagged
ID>TAG #05F2Eh
Tags an object with an a name

ob ID → tagged
STRIPTAGS #64775h
Removes all tags from an object

tagged → ob
STRIPTAGSl2 #647A2h
Removes all tags from an object in level 2

tagged2 ob1 → ob2 ob1

TAGOBS #647BBh
Tags one object or a series of objects

ob $ → tagged
ob1 ... obn { $1 ... $n) → tagged1 ... taggedn

USER$>TAG #225F5h
Tags an object with a string. Issues error if string length is > 255

ob $ → tagged

4.5 Characters and Character Strings

There are two object types representing character information. Character objects (type 24) represent a single
character, and character strings (type 2) contain one or more characters. The following objects are useful for
converting to and from character objects:

#>CHR #05A75h
Creates a character object with a specified character code

→ chr
CHR># #05A51h
Returns a binary integer representing a character’s code

chr → #
CHR>$ #6475Ch
Converts a character object to a one character string object

chr → $

4.5.1 Built-In Character Objects

The following table lists character objects that are built into the HP 48.

4.5. CHARACTERS AND CHARACTER STRINGS 83

Num Name Address Num Name Address
0 CHR_00 #6541Eh 85 CHR_U #65559h

10 CHR_Newline #6566Ah 86 CHR_V #65560h
31 CHR_... #65425h 87 CHR_W #65567h
32 CHR_Space #65686h 88 CHR_X #6556Eh
34 CHR_DblQuote #6542Ch 89 CHR_Y #65575h
35 CHR_# #65433h 90 CHR_Z #6557Ch
40 CHR_LeftPar #65663h 91 CHR_[#65694h
41 CHR_RightPar #65678h 93 CHR_] #6569Bh
42 CHR_* #6543Ah 95 CHR_UndScore #6568Dh
43 CHR_+ #65441h 97 CHR_a #65583h
44 CHR_, #65448h 98 CHR_b #6558Ah
45 CHR_- #6544Th 99 CHR_c #65591h
46 CHR_. #65456h 100 CHR_d #65598h
47 CHR_/ #6545Dh 101 CHR_e #6559Fh
48 CHR_0 #65464h 102 CHR_f #655A6h
49 CHR_1 #6546Bh 103 CHR_g #655ADh
50 CHR_2 #65472h 104 CHR_h #655B4h
51 CHR_3 #65479h 105 CHR_i #655BBh
52 CHR_4 #65480h 106 CHR_j #655C2h
53 CHR_5 #65487h 107 CHR_k #655C9h
54 CHR_6 #6548Eh 108 CHR_i #655D0h
55 CHR_7 #65495h 109 CHR_m #655D7h
56 CHR_8 #6549Ch 110 CHR_n #655DEh
57 CHR_9 #654A3h 111 CHR_o #655E5h
58 CHR_: #654AAh 112 CHR_p #655ECh
59 CHR_; #654B1h 113 CHR_q #655F3h
60 CHR_< #654B8h 114 CHR_r #655FAh
61 CHR_= #654BFh 115 CHR_s #65601h
62 CHR_> #654C6h 116 CHR_t #65608h
65 CHR_A #654CDh 117 CHR_u #6560Th
66 CHR_B #654D4h 118 CHR_v #65616h
67 CHR_C #654DBh 119 CHR_w #6561Dh
68 CHR_D #654E2h 120 CHR_x #65624h
69 CHR_E #654E9h 121 CHR_y #6562Bh
70 CHR_F #654F0h 122 CHR_z #65632h
71 CHR_G #654F7h 123 CHR_{ #656A2h
72 CHR_H #654FEh 125 CHR_} #656A9h
73 CHR_I #65505h 128 CHR_Angle #6564Eh
74 CHR_J #6550Ch 132 CHR_Integral #6565Ch
75 CHR_K #65513h 133 CHR_Sigma #6567Fh
76 CHR_L #6551Ah 135 CHR_Pi #65671h
77 CHR_M #65521h 136 CHR_Deriv #65655h
78 CHR_N #65528h 137 CHR_<= #656B0h
79 CHR_O #6552Fh 138 CHR_>= #656B7h
80 CHR_P #65536h 139 CHR_<> #656BEh
81 CHR_Q #6553Dh 141 CHR_-> #65639h
82 CHR_R #65544h 171 CHR_<�< #65640h
83 CHR_S #6554Bh 187 CHR_>�> #65647h
84 CHR_T #65552h

4.5.2 Built-In String Objects

The following table lists string objects that are built into the HP 48 (not including text in message tables).

84 CHAPTER 4. OBJECTS & OBJECT UTILITIES

Object Contents Address
$_'' "cc" #6571Fh
$_2DQ """" #65749h
$_:: "::" #6572Dh
$_<�<>�> "ef" #656F5h
$_ECHO "ECHO" #65757h
$_EXIT "EXIT" #65769h
$_GRAD "GRAD" #657A7h
$_LRParens "()" #6573Bh
$_R<�< "R~~" #656C5h
$_R<Z "R~Z" #656D5h
$_RAD "RAD" #65797h
$_Undefined "Undefined" #6577Bh
$_XYZ "XYZ" #656E5h
$_[] "[]" #65711h
$_{} "{}" #65703h
NEWLINE$ "\0A" #65238h
SPACE$ " " #65254h

4.5.3 String Manipulation Objects

!append$ #62376h
String concatenation for use in low memory situations — appends directly to
$1 instead of making a copy

$1 $2 → $3

!append$SWAP #62F2Fh
String concatenation for use in low memory situations followed by SWAP

ob $1 $2 → $3 ob
#1+LAST$ #63281h
Returns the tail of a string starting one character past the location specified
by #

$ # → $
#1-SUB$ #63245h
Returns a substring after subtracting one from the bint specifying the end

$ #start #end → $
#:>$ #167D8h
Converts a bint into a string followed by a colon (suitable for stack level #’s)

→ $
#>$ #167E4h
Converts a bint into a string

→ $
$>ID #05B15h
Converts a string object into a name object

$ → ID
&$ #05193h
Concatenates $2 to the end of $1

$1 $2 → $3

&$SWAP #63F6Ah
Concatenates $2 to the end of $1, then does SWAP

ob $1 $2 → $3 ob
1_#1-SUB$ #63259h
Returns substring from 1 to #-1

$ # → $
>H$ #0525Bh
Prepends a character object to a string

$ chr → $
>T$ #052EEh
Appends a character object to a string

$ chr → $

4.5. CHARACTERS AND CHARACTER STRINGS 85

AND$ #18873h
Bitwise logical AND of two strings

$1 $2 → $3

Blank$ #45676h
Creates a string of # space characters

→ $
CAR$ #050EDh
Returns the first character of a string as a character object or an empty string
if the string is empty

$ → chr
$ → ""

CDR$ #0516Ch
Returns the string less its first character or an empty string if the string is
empty

$ → $
$ → ""

CHR>$ #6475Ch
Converts a character object to a one character string object

chr → $
COERCE$22 #12770h
If a string has more than 22 characters, truncates the string to 21 characters
and appends an ellipsis (...)

$ → $
Date>d$ #0CFD9h
Converts a real number representing a date into a string

% → $
DECOMP$ #15B13h
Decompiles an object for the stack display using current display modes

ob → $
DROPNULL$ #04DE3h
Drops an object from the stack and returns an empty string

ob → NULL$
DUP$>ID #63295h
Duplicates a string, then converts string object to name object

$ → $ ID
DUPLEN$ #627BBh
Duplicates a string, then returns its length

$ → $ #length

DUPNULL$? #63209h
Returns TRUE if $ is empty

$ → $ FLAG
EDITDECOMP$ #15A0Eh
Decompiles an object for editing using standard display formats

ob → $
JstGETTHEMESG #04D87h
Retrieves a message from the built-in message table

→ $
ID>$ #05BE9h
Converts a name object to a string object

ID → $
LAST$ #6326Dh
Returns the last # characters in a string

$ # → $
LEN$ #05636h
Returns the number of characters in a string

$ → #
NEWLINE$&$ #63191h
Appends newline character to a string

$ → $

86 CHAPTER 4. OBJECTS & OBJECT UTILITIES

NULL$ #055DFh
Empty string

→ NULL$
NULL$? #0556Fh
Returns TRUE if string is empty

$ → FLAG
NULL$SWAP #62D59h
Swaps an empty string into level 2

ob → NULL$ ob
NULL$TEMP #1613Fh
Empty string in TEMPOB (temporary memory)

→ ""
OR$ #18887h
Bitwise logical OR of two strings

$1 $2 → $3

OVERLEN$ #05622h
Returns the length of a string in level 2

$ ob → $ ob #length

POS$ #645B1h
Searches forwards for a substring within a string starting at a specified
position, returning zero if the substring is not found

$search $find #start → #position

POS$REV #645BDh
Searches backwards for a substring within a string starting at a specified
position, returning zero if the substring is not found

$search $find #start → #position

PromptIdUtil #49709h
Returns a string in the form "ID: object"

ID ob → $
SEP$NL #127A7h
Separates a string at the first newline character

$ → $last $first

SUB$ #05733h
Returns a substring

$ #start #end → $
SUB$1# #30805h
Returns a bint with the value of the character at the specified position

$ #position → #value

SUB$SWAP #62D6Dh
Does SUB$, then SWAP

ob $ #start #end → $ ob
SWAP&$ #622EFh
Concatenates $1 to $2

$1 $2 → $3

TIMESTR #0D304h
Returns a string time and date

%date %time → $
TOD>t$ #0D06Ah
Converts a real number time (24-hour format) into a 9-character string

% → $
XOR$ #1889Bh
Bitwise logical XOR of two strings

$1 $2 → $3

a%>$ #162B8h
Creates a string representation of a real number using the current display
format, excluding commas

% → $

4.6. HEX STRINGS 87

a%>$, #162ACh
Same as a%>$, but includes commas if commas are part of the display format

% → $
palparse #238A4h
Parses a string into an object. If an error occurs, returns position of error

$ → ob TRUE
$ → $ #position $' FALSE

4.6 Hex Strings

User binary integers (type 10) are implemented with hex strings. Hex strings are similar in construction to
character strings, except that the length is arbitrary (character strings must have an even number of nibbles
in the length of the body).

4.6.1 Hex String Conversions

The following objects convert between hex strings and other object types (respecting the user’s wordsize speci-
fication).

%># #543F9h
Converts a real number to a hex string

% → hxs
HXS>% #5435Dh
Converts a hex string to a real number

hxs → %
#>HXS #059CCh
Converts a bint to a hex string with a length of five nibbles

→ hxs
HXS># #05A03h
Creates a bint from the lower 20 bits of a hex string

hxs → #
2HXSLIST? #51532h
Confirms list of two hex strings, then converts to bints. Useful for validating
and converting user pixel coordinates for graphics operations. Generates Bad
Argument Error if list does not contain two hex strings.

{ hxs1 hxs2 } → #1 #2

HXS>$ #54061h
Creates a string representation of a hex string using the current display mode
and wordsize, then appends a letter specifying the current base mode

hxs → $
hxs>$ #540BBh
Creates a string representation of a hex string using the current display mode
and wordsize

hxs → $

4.6.2 Wordsize Control

The user’s wordsize specification can be tested or altered with the following two objects:

WORDSIZE #54039h
Returns the current wordsize

→ #
dostws #53CAAh
Stores a new value for the wordsize

→

88 CHAPTER 4. OBJECTS & OBJECT UTILITIES

4.6.3 Basic Hex String Utilities

&HXS #0518Ah
Appends hxs2 to hxs1

hxs1 hxs2 → hxs3

LENHXS #05616h
Returns the length (in nibbles) of a hex string

hxs → #
NULLHXS #055D5h
Returns a null hex string

→ NULLHXS
SUBHXS #05815h
Returns a substring

hxs #start #end → hxs
HXS==HXS #544D9h
Returns %1 if hex strings are equal

hxs1 hxs2 → %
HXS#HXS #544ECh
Returns %1 if hex strings are not equal

hxs1 hxs2 → %
HXS<HXS #54552h
Returns %1 if hxs1 < hxs2

hxs1 hxs2 → %
HXS<=HXS #5453Fh
Returns %1 if hxs1 ≤ hxs2

hxs1 hxs2 → %
HXS>=HXS #5452Ch
Returns %1 if hxs1 ≥ hxs2

hxs1 hxs2 → %
HXS>HXS #54500h
Returns %1 if hxs1 > hxs2

hxs1 hxs2 → %

4.6.4 Hex String Math Utilities

The following objects are the dispatchees for math operations that involve user binary integers. These objects
assume that the hex strings are 64 bits or shorter. Results are returned according to the user’s wordsize setting.

bit#%* #542EAh
Multiplies hxs by %

hxs % → hxs
bit%#* #542D1h
Multiplies % by hxs

% hxs → hxs
bit#%+ #54349h
Adds % to hxs

hxs % → hxs
bit%#+ #54330h
Adds hxs to %

% hxs → hxs
bit#%- #5431Ch
Subtracts % from hxs

hxs % → hxs
bit%#- #542FEh
Subtracts hxs from %

% hxs → hxs
bit#%/ #542BDh
Divides hxs by %

hxs % → hxs

4.6. HEX STRINGS 89

bit%#/ #5429Fh
Divides % by hxs

% hxs → hxs
bit* #53ED3h
Multiply

hxs1 hxs2 → hxs3

bit+ #53EA0h
Add

hxs1 hxs2 → hxs3

bit- #53EB0h
Subtract

hxs1 hxs2 → hxs3

bit/ #53F05h
Divide

hxs1 hxs2 → hxs3

bitAND #53D04h
Bitwise logical AND

hxs1 hxs2 → hxs3

bitASR #53E65h
Arithmetic shift right one bit

hxs → hxs
bitOR #53D15h
Bitwise logical OR

hxs1 hxs2 → hxs3

bitNOT #53D4Eh
Bitwise logical NOT

hxs → hxs
bitRL #53E0Ch
Circular left shift one bit

hxs → hxs
bitRLB #53E3Bh
Circular left shift one byte

hxs → hxs
bitRR #53DA4h
Circular right shift one bit

hxs → hxs
bitRRB #53DE1h
Circular right shift one byte

hxs → hxs
bitSL #53D5Eh
Shift left one bit

hxs → hxs
bitSLB #53D6Eh
Shift left one byte

hxs → hxs
bitSR #53D81h
Shift right one bit

hxs → hxs
bitSRB #53D91h
Shift right one byte

hxs → hxs
bitXOR #53D26h
Bitwise logical XOR

hxs1 hxs2 → hxs3

90 CHAPTER 4. OBJECTS & OBJECT UTILITIES

4.7 Composite Objects

Composite objects are created from a collection of arbitrary objects. They may be created, searched, and
decomposed. Lists are the most commonly used composite object in User-RPL programs, but the System-RPL
objects described below also let you work with secondaries and unit objects.

4.7.1 Building Composite Objects

The following objects provide null composite objects or create composite objects.

NULL{} #055E9h
A null list

→ NULL{}
{}N #05459h
Creates a list composed of n objects

ob1 ... obn #n → { ob1 ... obn }
ONE{}N #23EEDh
Creates a list containing one object

ob → { ob }
TWO{}N #631B9h
Creates a list containing two objects

ob1 ob2 → { ob1 ob2 }
THREE{}N #631CDh
Creates a list containing three objects

ob1 ob2 ob3 → { ob1 ob2 ob3 }
NULL:: #055FDh
A null secondary

→ NULL::
::N #05445h
Creates a secondary composed of n objects

ob1 ... obn #n → :: ob1 ... obn ;
::NEVAL #632D1h
Creates and then executes a secondary composed of n objects

ob1 ... obn #n →
Ob>Seco #63FE7h
Creates a secondary containing one object

ob → :: ob ;
2Ob>Seco #63FFBh
Creates a secondary containing two objects

ob1 ob2 → :: ob1 ob2 ;
EXTN #05481h
Creates a unit object consisting of numbers, string, unit operators, and
umEND (see Unit Objects on page 93 for more details)

ob1 ... obn−1 umEND #n → unit
SYMBN #0546Dh
Creates a symbolic object
Example: ID A ID B x+ #3 SYMBN → 'A+B'

ob1 ... obn #n → symb

4.7.2 Finding the Number of Objects in a Composite Object

The following objects return the number of objects in a composite object.

DUPLENCOMP #63231h
Duplicates a composite and returns the number of constituent elements

comp → comp #n
LENCOMP #0567Bh
Returns the number of constituent elements in a composite object

comp → #n

4.7. COMPOSITE OBJECTS 91

4.7.3 Adding Objects to a Composite

These objects are convenient to use but slow in execution for long lists, so caution should be exercised when
using these object repetitively. The delays occur as composites are taken apart with INNERCOMP, objects are
shuffled, and the composite is reassembled. For instance, the sequence of operations for performing >TCOMP is
something similar to the following program fragment:

::
SWAP INNERCOMP obNEW ob1 ... obn #N
DUP #2+ ROLL ob1 ... obn #N obNEW
SWAP #1+ ob1 ... obn obNEW #N+1
{}N { ob1 ... obn obNEW }

;

apndvarlst #35491h
Appends an object to a list if the object is not found within the list

{ list } ob → { list' }
>HCOMP #052C6h
Prepends an object to a composite object

comp1 ob → comp2

>TCOMP #052FAh
Appends an object to a composite object

comp1 ob → comp2

&COMP #0521Fh
Concatenates two composite objects

comp1 comp2 → comp3

PUTLIST #1DC00h
Replaces an object in a list (assumes 0≤i≤n), where n is the number of list obs

ob #i {list } → { list' }

4.7.4 Decomposing Composite Objects

The following objects decompose a composite object into its constituent objects or extract portions of a com-
posite. It is important to remember that when an object like DUPINCOMP is applied to a composite, the stack
contains pointers into the original composite, not pointers to separate objects in TEMPOB. This means that
as long as there is at least one pointer to an object within a composite, the entire composite is retained in
TEMPOB. The object Embedded? can determine whether an object is embedded in a composite (see Detecting
Embedded Objects on the next page).

CARCOMP #05089h
Returns a composite’s first object or a null composite if the composite is null

comp → ob
comp → comp (null composite)

CDRCOMP #05153h
Returns a composite less its first object or the composite if the composite is
null

comp → comp'
comp → comp (null composite)

DUPINCOMP #631E1h
Duplicates a composite and decomposes the copy

comp → comp ob1 ... obn #n
INCOMPDROP #62B88h
Decomposes a composite object and drops the object count

comp → ob1 ... obn

INNERCOMP #054AFh
Decomposes a composite object

comp → ob1 ... obn #n
INNERDUP #62C41h
Decomposes a composite object and duplicates the object count

comp → ob1 ... obn #n #n

92 CHAPTER 4. OBJECTS & OBJECT UTILITIES

NTHCOMDDUP #62D1Dh
Returns two copies of the ith object in a composite (obi is presumed to exist)

comp #i → obi obi

NTHCOMPDROP #62B9Ch
Returns the ith object in a composite (obi is presumed to exist)

comp #i → obi

NTHELCOMP #056B6h
Returns the ith object in a composite and TRUE or FALSE if there are not at
least i elements in the composite

comp #i → obiTRUE
comp #i → FALSE

SUBCOMP #05821h
Returns a subcomposite. Indices out of range are set to composite bounds

comp #start #end → comp'
SWAPINCOMP #631F5h
Does SWAP, then decomposes a composite

comp obj → obj ob1 ... obn #n

4.7.5 Searching Composite Objects

The object POSCOMP is the generalized tool for searching through a composite object for an object that satisfies
some comparison with a supplied object. The following program fragment indicates the position in a composite
of the first binary integer greater than #5:

::
... ((list})
FIVE ' #> POSCOMP (#pos)
...

;

The objects EQUALPOSCOMP and NTHOF supply the predicate EQUAL to POSCOMP, simplifying some search proce-
dures.

EQUALPOSCOMP #644A3h
Returns the position of the first object in a composite equal to an object. If the
object is not found, zero is returned.

comp ob → #pos
matchob? #643EFh
Returns TRUE if ob is equal to any object within a composite, or ob and
FALSE if not.

ob comp → ob FALSE
ob comp → TRUE

NTHOF #644BCh
Returns the position of the first object in a composite equal to an object. If the
object is not found, zero is returned.

ob comp → #pos
POSCOMP #64426h
Returns the position of the first object in a composite that satisfies a test with
the supplied predicate and an object. If the object is not found, zero is
returned.

comp ob pred → #pos

4.7.6 Detecting Embedded Objects

As mentioned above, an object on the stack may be contained within a composite. The object Embedded? may
be used to detect this case, and CKREF can be used to check all references to an object.

CKREF #37B44h
Creates a unique copy of an object if it is referenced or embedded in any
composite object

ob → ob

4.8. UNIT OBJECTS 93

Embedded? #64127h
Returns TRUE if ob2 is embedded in or is the same as ob1

ob1 ob2 → FLAG

4.8 Unit Objects

Unit objects evolved from representing integer powers in the HP 48S/SX to real powers in the HP 48G/GX. This
can be quickly demonstrated by comparing using the User-RPL function UBASE and the System-RPL object
U>NCQ on the S and G series:

HP 48S/SX HP 48G/GX
Object 1_ mg2.3/sg3.7 1_ mg2.3/sg3.7

UBASE 1_ mg2/sg4 1_ mg2.3/sg3.7
U>NCQ %%1 %%1 HXS 10 002000CF00000000 %%1 %%1 [%0 %2.3 %0 %-3.7 %0 %0 %0 %0 %0 %0]

The object U>NCQ is used to break apart a unit object into a number part, conversion factor, and unit quantity
vector. In the S series, the unit quantities were expressed as 8 signed 8-bit quantities in a hex string. Negative
unit quantities indicate units in the denominator. In the G series, the unit quantities are expressed as a 10
element real vector.

4.8.1 Dimensional Consistency

If two unit objects are dimensionally consistent, their unit quantity vectors will be equal. The unit quantity
vector is formatted as follows:

Element Quantity Base Unit
1 mass kilogram
2 length meter
3 electric current ampere
4 time second
5 thermodynamic temperature kelvin
6 luminous intensity candela
7 amount of substance mole
8 plane angle radian
9 solid angle steradian

10 unspecified (1_?)

The following code fragment checks two objects for dimensional consistency, returning the system flags TRUE or
FALSE:

:: U>NCQ ROTROT2DROP SWAP U>NCQ ROTROT2DROP EQUAL ;

4.8.2 Building and Decomposing Unit Objects

Unit objects are composite objects that can be broken apart with INNERCOMP and assembled with EXTN. Extend-
ing the previous example to use km instead of m, apply INNERCOMP to 1_km^2.3/s^3.7:

:: 1_km^2.3/s^3.7 INNERCOMP ; → %1 "k" "m" umP %2.3 um^ "s" %3.7 um^ um/ umEND ELEVEN

Notice that the object is constructed much the same way as an RPN expression, with the provision that umEND
be the last object. If you’re viewing these objects with tools like SSTK in Jazz, you’ll notice that unit operators
(like um/) are decompiled as {} in User-RPL. These unit operators found within a unit object are different from
objects that manipulate unit objects, such as UM+, UM-, etc.

Unit Operator Purpose Address
um* Multiply operator #10B5Eh
um/ Divide operator #10B68h
um^ Power operator #10B72h
umP Prefix operator #10B7Ch
umEND End of unit object #10B86h

94 CHAPTER 4. OBJECTS & OBJECT UTILITIES

The System-RPL objects UM>U and UMU> are useful for many tasks. UMU> breaks a unit object into a number
and normalized unit part, while UM>U replaces the number part of a unit object (useful when returning a unit
result).

4.8.3 Unit Object Utilities

The following objects operate on unit objects.

EXTN #05481h
Assembles a unit object consisting of numbers, string, unit operators, and
umEND

obn−1 ... ob1 umEND #n → unit
UM% #0FBABh
Returns a percentage of a unit quantity

unit %percentage → unit
UM%CH #0FC3Ch
Returns the percent difference between two unit quantities

unit1 unit2 → %
UM%T #0FCCDh
Returns the percentage fraction of unit1 that is unit2

unit1 unit2 → %
UM* #0F792h
Unit multiply

unit unit → unit
UM+ #0F6A2h
Unit addition

unit unit → unit
UM- #0F774h
Unit subtraction

unit unit → unit
UM/ #0F823h
Unit division

unit unit → unit
UM>U #0F33Ah
Replaces the number part of a unit object

% unit → unit
MABS #0F5FCh
Absolute value

unit → unit
UMCEIL #0FD36h
Next greatest integer

unit → unit
UMCHS #0F615h
Change sign

unit → unit
UMCONV #0F371h
Unit conversion — converts unit1 to unit2 units

unit1 unit2 → unit1'
UMCOS #0F660h
Cosine

unit → %
UMFLOOR #0FD22h
Next smallest integer

unit → unit
UMFP #0FD0Eh
Fractional part

unit → unit

4.8. UNIT OBJECTS 95

UMIP #0FCFAh
Integer part

unit → unit
UMMAX #OFB6Fh
Maximum of two unit quantities

unit1 unit2 → unit
UMMIN #0FB8Dh
Minimum of two unit quantities

unit1 unit2 → unit
UMRND #0FD68h
Round to specified number of places

unit %places → unit
UMSI #0F945h
Converts unit quantity to SI units

unit → unit
UMSIGN #0FCE6h
Returns sign (-1, 0, or 1) of unit quantity

unit → %
UMSIN #0F62Eh
Sine

unit → %
UMSQ #0F913h
Square

unit → unit
UMSQRT #0F29Ch
Square root

unit → unit
UMTAN #0F674h
Tangent

unit → %
UMTRC #0FD8Bh
Truncate to specified number of places

unit %places → unit
UMU> #0F34Eh
Returns number and normalized unit parts of a unit object

unit → % unit'
UMXROOT #0F8FAh
Returns unitxth root of unity

unitx unity → unit
UNIT>$ #0F218h
Decompiles a unit object

unit → $

96 CHAPTER 4. OBJECTS & OBJECT UTILITIES

Chapter 5

Memory Utilities

The HOME directory and its subdirectories are collectively known as USEROB, which is different from the
temporary memory (TEMPOB). In TEMPOB, objects live briefly, and are discarded when memory is low and
no pointers refer to them. In USEROB, an object exists until purged by a user command.

The objects described in this chapter provide some of the basic utilities for dealing with input from the user,
results returned to the user, and directories. An important convention in the HP 48 is the sanctity of variables
stored in user memory. Some operations, like GROB!, don’t care where an object resides. It’s therefore possible
to alter a user’s input arguments instead of providing a unique result. Unless there is a specific design intent,
an application should not change the directory pointed to by the VAR menu when the application begins.

5.1 Name Objects

In this chapter, “ID” and “lam” refer to global and local variable name objects. The following objects convert
between strings and name objects:

97

98 CHAPTER 5. MEMORY UTILITIES

$>ID #05B15h
Converts a string object into a name object

$ → ID
DUP$>ID #63295h
Duplicates a string, then converts string object to name object

$ → $ ID
ID>$ #05BE9h
Converts a name object to a string object

ID → $

5.2 User Variables

Evaluating a user variable is just as straightforward in System-RPL as in User-RPL — just specify the name:

:: ... ID X ... ;

Since any object can be in X, or X may not exist, you might want to exercise some caution. This is part of the
reason the HP 48 is criticized for being slow in some areas, especially with respect to the plotting system. When
a plot is drawn, the contents of PPAR, the equation, and related variables must be validated before the plot
gets underway. Since the user can provide a program for an equation definition, further checks are required to
make sure the program will not inflict untoward damage. If you’re at all concerned about these issues, recall
the contents of the variable before evaluating.

CREATE #08696h
Creates a variable in the current directory (does not check for unique name)

ob ID →
?PURGE_HERE #1854Fh
Purges specified variable only if it exists in the current directory and does not
contain a non-empty directory, otherwise generates Non-empty Directory
error

ID →
PURGE #08C27h
Purges the specified variable. Do not purge a non-empty directory with this
object — use XEQPGDIR instead.

ID →
@ #0797Bh
Recalls the contents of a global or temporary variable. For global variables,
begins at the current directory and searches up through HOME

ID → ob TRUE Global variable exists
ID → FALSE Global variable nonexistent

lam → ob TRUE Temporary variable exists
lam → FALSE Temporary variable nonexistent

Sys@ #2EA6Ah
Recalls the contents of a global variable from HOME directory

ID → ob TRUE Global variable exists
ID → FALSE Global variable nonexistent

SAFE@ #62A34h
Recalls the contents of a global or temporary variable. For global variables,
begins at the current directory and searches up through HOME. ROM bodies
are converted to XLIB names.

ID → ob TRUE Global variable exists
ID → FALSE Global variable nonexistent

lam → ob TRUE Temporary variable exists
lam → FALSE Temporary variable nonexistent

5.3. DIRECTORY UTILITIES 99

SAFE@_HERE #1853Bh
Recalls the contents of a global or temporary variable. For global variables,
recalls only from the current directory. ROM bodies are converted to XLIB
names.

ID → ob TRUE Global variable exists
ID → FALSE Global variable nonexistent

lam → ob TRUE Temporary variable exists
lam → FALSE Temporary variable nonexistent

SAFESTO #07D27h
Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in temporary memory and all
references are adjusted to point to the copy. Searches current and then parent
directories for the global variable, replacing the contents if found, otherwise
creates variable in the current directory. ROM bodies are converted to XLIB
names.

ob lam →
ob ID →

STO #07D27h
Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in tempob and all references are
adjusted to point to the copy. Searches current and then parent directories for
the global variable, replacing the contents if found, otherwise creates variable
in the current directory.

ob lam →
ob ID →

SysSTO #2E9E6h
Stores an object in HOME

ob ID →
XEQSTOID #18513h
Stores an object in the current directory. If the object is to be stored in a global
variable and is referenced, a copy is left in temporary memory and all
references are adjusted to point to the copy. Will not overwrite a directory.
This does the work for the user command STO.

ob lam →
ob ID →

5.3 Directory Utilities

A directory is an object, but you should note that directories are not composite objects. To be used, a directory
must be “rooted”, meaning it must be a subdirectory of the permanent HOME directory. When the HP 48 is
first turned on, the HOME directory is established, and a pointer called CONTEXT refers to this HOME direc-
tory. Subdirectories are said to be “rooted” in their parent directory. As the directory structure is traversed, the
CONTEXT pointer is updated to point to subdirectories within HOME. CONTEXT should never point to an un-
rooted directory, and no pointer should ever point within an unrooted directory, because the garbage-collection
system isn’t designed to traverse a directory in TEMPOB.

CONTEXT! #08D08h
Stores a pointer to a rooted directory in CONTEXT, defining the current
directory

directory →
CONTEXT@ #08D5Ah
Recalls the CONTEXT pointer

→ directory
CREATEDIR #184E1h
Creates a directory in the current directory

ID →
DOVARS #18779h
Returns a list of the variables in the current directory

→ { ID1 ... IDn }

100 CHAPTER 5. MEMORY UTILITIES

PATHDIR #1848Ch
Returns a list describing the path from HOME to the current directory

→ { HOME ID ID ... }
SYSCONTEXT #08D92h
Stores the HOME directory pointer into CONTEXT

→
UPDIR #1A16Fh
Makes the parent directory the current directory

→
XEQORDER #20FF2h
Asserts the order of IDs in the current directory

{ ID1 ... IDn } →
XEQPGDIR #18595h
Purges a directory

ID →

The hidden directory is a null-named directory at the end of the HOME directory, and contains user key
definitions and alarm information. Applications that use this directory need to either clean up after themselves
or provide a user command to clear stored information.

PuHiddenVar #6408Ch
Purges the specified variable in the hidden directory

ID →
RclHiddenVar #64023h
Recalls a hidden variable using @

ID → ob
StoHiddenVar #64078h
Stores an object in the hidden directory using STO

ob ID →

5.4 Temporary Memory

The data stack in the HP 48 is actually a stack of pointers which refer to objects elsewhere in memory. Tem-
porary memory is the calculator’s “scratchpad”. All objects that are not stored in a port or in a user variable
reside in temporary memory. Many of the objects described in this book require temporary memory to construct
intermediate objects or new objects returned as results to the stack.

5.4.1 Use of Temporary Memory

To understand temporary memory a little more, consider what happens when two math operations are per-
formed. Enter the numbers 1.5 and 2.6 on the stack. These numbers now reside in temporary memory, referred
to by pointers on the data stack. When the numbers are added, the result, 4.1, is a number in temporary mem-
ory referenced by a pointer in level 1 of the data stack. The objects 1.5 and 2.6 remain in temporary memory,
referenced by pointers that save the Last Arguments.

Now add 2.8 to the result in level 1. The level 1 pointer on the data stack refers to the object 6.9 in temporary
memory. The last arguments pointers now refer to the objects 2.8 and 4.1, and the objects 1.5 and 2.6 are no
longer referenced.

The object TOTEMPOB may be used to create a new copy of an object in temporary memory, whose only reference
is on the data stack. In general, the system will perform an automatic TOTEMPOB where it makes sense. For
instance, if you recall the contents of a variable to the stack and press [EDIT], the object will be copied to
temporary memory before editing begins.

Sometimes you may want to “free” an object that was extracted from a list. Consider the following User-RPL
program:

e { "AB" "CD" "EF" } 2 GET f

5.5. MEMORY UTILITIES 101

Level 1 of the data stack contains a pointer into the list, which still resides in temporary memory. Executing
NEWOB now would create the unique object “CD” in temporary memory, and release the list for garbage collection.
(Note: set the Last Arguments flag (-55) to prevent the list from being referenced as a last argument.)

The following objects are useful for checking references to objects and their locations.

CKREF #37B44h
Creates a unique copy of an object if it’s referenced, embedded, or in USEROB.

ob → ob
INTEMNOTREF? #06B4Eh
Returns TRUE if ob is in TEMPOB, and not referenced or embedded

ob → ob FLAG
SWAPCKREF #63F7Eh
Swaps objects, then does CKREF

ob1 ob2 → ob2 ob1

TOTEMPOB #06657h
Creates a unique copy of an object in TEMPOB

ob → ob

5.4.2 Garbage Collection

From time to time the HP 48 will “hesitate” during an operation. This hesitation is usually caused by the
removal of objects in temporary memory which are no longer being used. Objects which are no longer refer-
enced continue to accumulate in temporary memory until memory has been filled. When memory is full, the
calculator scans the objects in temporary memory, deleting those without references to them. This process,
known as “garbage collection”, is similar in concept to garbage collection in LISP.

A large number of pointers on the stack that point to temporary memory can slow down the garbage collection
process to an uncomfortable degree. This occurs when there are a large number of objects on the stack, or
an object has been extracted from a large list. A worst case scenario occurs when a list that has been stored
in a local variable has been broken out onto the stack using the User-RPL command OBJk or INNERCOMP (see
Composite Objects on page 90). In this case, the time required for garbage collection increases roughly with
the square of the number of objects that were in the list. List operations can be optimized by storing the lists
in global variables, effectively moving the operations from temporary memory to user memory.

GARBAGE #05F42h
Performs a garbage collection

→

5.5 Memory Utilities

MEM #05F61h
Returns the number of nibbles of free memory. Note that you may wish to
collect garbage first to get an accurate measure of available memory.

→ #
OCRC #05944h
Returns the size of an object in nibbles as a bint and the object’s checksum as
a hex string

→ #size hxs_checksum
OCRC% #1A1FCh
Returns the size of an object in bytes as a real and the object’s checksum as a
hex string

→ %size hxs_checksum
getnibs #6595Ah
Replaces hex string body with data from memory at the specified address

hxs_data hxs_address → hxs_data'
putnibs #6594Eh
Replaces memory data at the specified address with body of data hex string

hxs_data hxs_address →

102 CHAPTER 5. MEMORY UTILITIES

Chapter 6

Graphics, Text, and the LCD

Many people turn to System-RPL for additional control over the HP 48 display. While User-RPL graphics
resources generally work with the built-in graphics object PICT and do not work with the stack display, System-
RPL routines have fewer restrictions. This chapter will introduce the organization of the display and some
basic tools for manipulating graphics objects and display memory.

6.1 LCD Display Regions

When the HP 48 is displaying the stack during normal calculations, the LCD is divided into three regions, each
having display memory and objects associated with them to control display refresh.

The status area and the stack/command line area are displayed using the stack grob (ABUFF). The menu area
is displayed using the menu grob (HARDBUFF2). The object SysDisplay updates the entire display:

SysDisplay #386A1h
Displays the status, stack, and menu areas

→

The User-RPL FREEZE command provides a basic way to prevent one or more of these regions from being up-
dated when a program halts for input or terminates. There are many System-RPL objects and flags associated
with these regions that perform similar tasks. Here we present a subset of these objects that should suit many
applications.

6.1.1 Status Area Control

The status area is 16 pixel rows high. Two objects are of interest for the status area. ClrDA1IsStat suspends
the clock display (this is safe to use whether or not the clock is being displayed). SetDA1Temp “freezes” the
status area after your application halts for a prompt or terminates.

ClrDA1IsStat #39531h
Suspends the ticking clock display

→
SetDA1Temp #3902Ch
Signals that the status area should not be redrawn

→

103

104 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

SetDA1Bad #3947Bh
Signals that the status area should be redrawn

→
DispStatus #395BAh
Draws the status area

→
?DispStatus #3959Ch
If no keys are in the keybuffer, draws the status area, otherwise does not draw
the display area and executes SetDA1Bad

→

6.1.2 Stack Area Control

The stack/command-line area is 40 pixel rows, and is actually divided into two sub-regions named 2a and 2b.
The command line is the main portion of the HP 48 that recognizes the two sub-regions. Region 2a displays
the stack, and region 2b displays the command line. Either area can be null, but in principle they both exist at
all times. The object SetDA2OKTemp signals that neither display area 2a or 2b should be redrawn.

SetDA2OKTemp #39207h
Signals that the stack/command line areas (2a and 2b) should not be redrawn

→
SetDA2aTemp #39045h
Signals that the stack area (2a) should not be redrawn

→
SetDA2bTemp #39059h
Signals that the command line area (2b) should not be redrawn

→
SetDA2aBad #394A5h
Signals that the stack area (2a) should be redrawn

→
SetDA2bBad #394CFh
Signals that the command line area (2b) should be redrawn

→
?DispStack #39B85h
If no keys are in the keybuffer, draws the stack area, otherwise does not draw
the stack area and executes SetDA2aBad

→
DispEditLine #3A00Dh
Displays the edit line

→

6.1.3 Menu Area Control

The menu area occupies the bottom 8 pixel rows of the display. The menu area can be frozen with the object
SetDA3Temp. The current menu definition can be displayed with either of the DispMenu objects (see also Menu
Utilities on page 150).

DispMenu #3A1E8h
Displays the current menu and freezes the menu display line

→
DispMenu.1 #3A1FCh
Displays the current menu

→
?DispMenu #3A1CAh
If no keys are in the keybuffer, draws the menu area, otherwise does not draw
the menu area and executes SetDA3Bad

→

6.2. BASIC DISPLAY MEMORY PRINCIPLES 105

SetDA3Temp #39072h
Signals that the menu should not be redrawn

→
SetDA3Bad #394F9h
Signals that the menu should be redrawn

→

6.1.4 Combined Area Controls

The object ClrDAsOK signals that the entire display should be redrawn when the application terminates. Con-
versely, the object SetDAsTemp signals that no part of the display should be redrawn (the same as 7 FREEZE
in User-RPL).

ClrDAsOK #39144h
Signals entire LCD should be redrawn

→
SetDA12Temp #3921Bh
Signals that only the menu area should be redrawn

→
SetDAsTemp #3922Fh
Signals that no part of the LCD should be redrawn

→

6.2 Basic Display Memory Principles

There are three reserved graphics objects (grobs) in the HP 48: the stack grob, the menu grob, and the graphics
grob (PICT). The HP 48’s LCD always displays either the stack grob or PICT; the menu grob is optional in
either case.

Applications wishing to be compatible with both the S and G series of the HP 48 should avoid using direct
RAM addresses to refer to these grobs, since RAM was relocated for the G series. Built-in objects described in
the next three subsections provide reliable pointers to these grobs.

6.2.1 The Current Display Grob

The object HARDBUFF returns a pointer to the currently displayed stack or PICT grob to the data stack:

HARDBUFF #12635h
Returns the currently displayed stack or graphics grob

→ grob

The following objects clear all or part of the HARDBUFF grob:

BLANKIT #126DFh
Clears #rows starting at the specified row

#rowstart #rows →
BlankDA12 #3A578h
Clears rows 0 – 56

→
BlankDA1 #3A546h
Clears rows 0 – 16

→
BlankDA2 #3A55Fh
Clears rows 16 – 40

→
CLEARVDISP #134AEh
Clears all of HARDBUFF

→

106 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

Clr16 #0E06Fh
Clears the first 16 rows

→
Clr8 #0E083h
Clears the first 8 rows

→
Clr8-15 #0E097h
Clears rows 8 – 15

→

6.2.2 The Stack Grob

The stack display is nominally 131x56 pixels, but may be enlarged and scrolled. The object ABUFF puts a pointer
to the stack display grob on the data stack. The object TOADISP switches the LCD display to the stack grob.

ABUFF #12655h
Returns the stack grob

→ grob
DOCLLCD #5046Ah
Clears the stack grob

→
DOLCD> #503D4h
Returns a grob with the first 56 rows of ABUFF and a copy of the menu area
at the bottom (just like the LCD)

→ grob
DO>LCD #50438h
Stores a grob into the upper-left corner of ABUFF

grob →
TOADISP #1314Dh
Displays the stack grob

→

The stack display is often used by applications or games which do not wish to disturb PICT. The Equation
Writer, MatrixWriter, and Minehunt game all use the stack display. Two objects which are useful for claiming
the stack display for an application are RECLAIMDISP and ClrDA1IsStat:

RECLAIMDISP #130ACh
Switches to stack display, clears, unscrolls, and resizes to default size (131x56)

→
ClrDA1IsStat #39531h
Disables the ticking clock display

→

6.2.3 The Graphics Grob

The graphics grob (PICT) is nominally 131x64 pixels, but may be enlarged and scrolled. The object GBUFF puts
a pointer to the graphics grob on the data stack. The object TOGDISP switches the LCD display to the graphics
grob.

GBUFF #12665h
Returns the graphics grob

→ grob
GBUFFGROBDIM #5187Fh
Returns the dimensions of the graphics grob (PICT)

→ #height #width
GROB>GDISP #12F94h
Stores a grob into GBUFF

grob →

6.2. BASIC DISPLAY MEMORY PRINCIPLES 107

MAKEPICT# #4B323h
Replaces the graphics grob with a blank grob of specified dimensions.

#width #height →
Note: MAKEPICT# will not create a graphics grob less than 64 rows high or 131
columns wide.
TOGDISP #13135h
Displays the graphics grob (PICT)

→
WINDOW# #4F052h
Displays the graphics grob (PICT) at the specified window coordinates. This is
the object that does the work for PVIEW with pixel coordinate parameters.

#x #y →

6.2.4 Verifying Display Grob Height

To make sure that that either ABUFF or GBUFF are at least 64 rows high, use the object CHECKHEIGHT.

CHECKHEIGHT #511E3h
Force either ABUFF or GBUFF to be at least 64 rows high

grob #current_grob_height →

Note: CHECKHEIGHT only works for ABUFF and GBUFF!

Example: To ensure that the stack grob is at least 64 rows high, execute the following fragment:

::
ABUFF Pointer to the stack grob
DUPGROBDIM DROP Height of the stack grob
CHECKHEIGHT Ensures stack grob is at least 64 rows high

;

6.2.5 Enlarging ABUFF or GBUFF

The following objects may be used to enlarge either the stack grob or the graphics grob. They will not work for
any other grob.

HEIGHTENGROB #12DD1h
Adds blank rows to the specified display grob

grob #rows →
WIDENGROB #12BB7h
Adds blank columns to the specified display grob

grob #cols →

6.2.6 Scrolling ABUFF or GBUFF

If either the stack or graphics grob are larger than the size of the LCD, they may be scrolled. You can track the
location of the LCD “window” into the grob by testing/setting the upper left “window” coordinates. The object
WINDOWXY sets these coordinates, and the object WINDOWCORNER returns these coordinates.

WINDOWCORNER #137B6h
Returns the current window coordinates

→ #x #y
WINDOWXY #13679h
Sets the window coordinates

#y #x →

The following objects may be used for scrolling the display. A nice example of their use is the program SCROLL.S,
included with the HP tools and documentation.

108 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

JUMPBOT #516AEh
Move the window to the bottom edge of the grob

→
JUMPLEFT #516E5h
Move the window to the left edge of the grob

→
JUMPRIGHT #51703h
Move the window to the right edge of the grob

→
JUMPTOP #51690h
Move the window to the top edge of the grob

→
SCROLLDOWN #4D16Eh
Scroll the window down one pixel with repeat (tied to down-arrow key)

→
SCROLLLEFT #4D150h
Scroll the window left one pixel with repeat (tied to left-arrow key)

→
SCROLLRIGHT #4D18Ch
Scroll the window right one pixel with repeat (tied to right-arrow key)

→
SCROLLUP #4D132h
Scroll the window up one pixel with repeat (tied to up-arrow key)

→
WINDOWDOWN #13220h
Scroll the window down one pixel

→
WINDOWLEFT #134E4h
Scroll the window left one pixel

→
WINDOWRIGHT #1357Fh
Scroll the window right one pixel

→
WINDOWUP #131C8h
Scroll the window up one pixel

→

6.2.7 The Menu Grob

The menu display is a fixed 131x8 pixel grob. The object HARDBUFF2 puts a pointer to the menu display grob on
the data stack. The objects TURNMENUON, TURNMENUOFF, and MENUOFF? control and test the display of the menu
grob. Note that when TURNMENUOFF is used to turn off the menu display, the stack display (or graphics display)
grob will be enlarged from 56 to 64 rows. The object LINECHANGE does the work for TURNMENUON and TURNMENUOFF.

CLEARMENU #51125h
Clears the menu grob

→
DispMenu #3A1E8h
Displays the current menu and freezes the menu display line (SetDA3Valid)

→
DispMenu.1 #3A1FCh
Displays the current menu

→
HARDBUFF2 #12645h
Returns the menu grob

→ grob

6.2. BASIC DISPLAY MEMORY PRINCIPLES 109

LINECHANGE #4E37Eh
Sets the display pixel row upon which to begin displaying HARDBUFF2.
Valid values are from 55d (menu on) to 63d (menu off).

#row → grob
MENUOFF? #4E360h
Returns TRUE if the menu is not displayed

→ FLAG
TURNMENUOFF #4E2CFh
Turns off the menu display

→
TURNMENUON #4E347h
Turns on the menu display

→

In the example Rolling the Menu Display below, the object LINECHANGE will be used to show how the menu
display is turned on and off. If the menu display is off, the LCD drivers will still display data for a grob that is
64 rows high, regardless of the actual size of the grob. To see what this looks like, warmstart your HP 48 (hold
[ON], press and release [C]), then execute the following secondary:

::
SIXTYFOUR LINECHANGE
SetDAsTemp

;

6.2.8 Display Pointer Examples

To get acquainted with the display grobs, try a quick User-RPL example program that uses SYSEVAL to return
the currently displayed grob to the stack and invert the grob. This example uses INVGROB (#122FFh) to invert
a grob in level 1 of the stack (the User-RPL command NEG creates a copy of the grob, so INVGROB is easier to
use).

e
#12635h SYSEVAL HARDBUFF returns a pointer to the currently displayed grob
#122FFh SYSEVAL INVGROB inverts the grob
DROP Drops the pointer (no longer needed)
7 FREEZE Postpones display updates

f

Inverting the Stack Display. If the program above is executed while the stack display is shown, the stack
display will be inverted. A System-RPL equivalent of this program is:

::
HARDBUFF Returns a pointer to the currently displayed grob
INVGROB Inverts the grob
DROP Drops the pointer (no longer needed)
SetDAsTemp Freeze the display

;

Inverting PICT. For fun, plot a function, then execute the following program:

::
TOGDISP Displays PICT
GBUFF Returns a pointer to the stack grob
INVGROB Inverts the grob
DROP Drops the pointer (no longer needed)
SetDAsTemp Freeze the display

;

Rolling the Menu Display. For more fun, use LINECHANGE to scroll the menu out of the display and back in
again. This program uses SLOW to let you see the menu grob move.

110 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

SCRMEN 80.5 Bytes Checksum #1B05h
(→)
::
0LASTOWDOB! Clears saved command name
CK0NOLASTWD No arguments
HARDBUFF DUPGROBDIM DROP CHECKHEIGHT Verify that the display grob is 64 rows high
SIXTYFOUR FIFTYSIX DO Loop from 56 to 63
INDEX@ LINECHANGE SLOW SLOW Use LINECHANGE to set where menu is displayed

LOOP
WaitForKey 2DROP Wait for a key, discard keycode and plane
NINE ONE DO Prepare to loop from 63 to 56
SIXTYTHREE INDEX@ #- LINECHANGE Use LINECHANGE to set where menu is displayed
SLOW SLOW

LOOP
;

6.3 Graphics Coordinates

System-RPL objects that work with graphics use internal binary integers to represent pixel coordinates. The
upper-left pixel of a grob is always #0,#0.

6.3.1 Subgrob Coordinates

Operations that need to describe the lower-right boundary of an area usually refer to the pixel one row down
and one column to the right of the intended area. For example, if SUBGROB will be used to create a grob from
a larger grob, the coordinates #30 #20 #36 #28 would describe a region beginning on the 31st column and the
21st row in the source grob that is six rows high and eight pixels wide. Other objects that use this convention
include GROB!ZERO and GROB!ZERODRP.

6.3.2 User Pixel Coordinate - Bint Conversion

If you’re writing a graphics command that extends the User-RPL command set, you may wish to accept graph-
ics coordinates from the user as a list of two user binary integers like { #5d #17d }. The object 2HXSLIST?
converts this type of list into two bints, ready for use in System-RPL. If the list contains other than two ele-
ments that are user binary integers a Bad Argument Type error will be generated.

2HXSLIST? #51532h
Converts user pixel coordinates to two bints

{ #x #y } → #x #y

To return a coordinate to the user as a user binary integer, use the object #>HXS (see Hex String Conversions on
page 87). For example, to return the size of a grob to the user as two user binary integers, use this code:

::
GROBDIM (#height #width)
#>HXS SWAP #>HXS (hxswidth hxsheight)

;

6.3. GRAPHICS COORDINATES 111

6.3.3 User-Unit to Pixel Conversion

The following objects use the information in PPAR to convert between user units and pixel coordinates. If
PPAR doesn’t exist when these are executed, a default PPAR will be created. If you’re working on code for
plotting, be aware that these routines carry the burden of validating PPAR.

C%># #4F408h
Converts complex number user-unit coordinates to bint pixel coordinates

C%(x,y) → #x #y
DOC>PX #4F179h
Converts complex number user-unit coordinates to user binary integer pixel
coordinates

C%(x,y) → { #x #y }

DOPX>C #4F0ACh
Converts user binary integer pixel coordinates to complex number user-units

{ #x #y } → C%(x,y)

6.3.4 Accessing PPAR

The following objects provide access to the user variable PPAR and its contents.

CHECKPVARS #4A9AFh
Validate and return the current contents of PPAR. Issues Invalid PPAR
error if PPAR is invalid. Creates and returns default PPAR if PPAR is
nonexistent.

→ { ppar }
GETSCALE #4ADB0h
Returns user-unit distance across 10 pixels

→ %xscale %yscale
PUTSCALE #4AE3Ch
Sets user-unit distance across 10 pixels (does not change center of PICT)

%xscale %yscale →

Note that each of the following objects carries the burden of validating PPAR.

GETPMIN&MAX #4B0DAh
Returns the current PMIN and PMAX entries from PPAR

→ C%PMIN C%PMAX
GETXMIN #4B10Ch
Returns the current Xmin coordinate

→ %Xmin
GETXMAX #4B139h
Returns the current Xmax coordinate

→ %Xmax
GETYMIN #4B120h
Returns the current Ymin coordinate

→ %Ymin
GETYMAX #4B14Dh
Returns the current Ymax coordinate

→ %Ymax
PUTXMIN #4B166h
Stores a new Xmin coordinate

%Xmin →
PUTXMAX #4B1ACh
Stores a new Xmax coordinate

%Xmax →
PUTYMIN #4B189h
Stores a new Ymin coordinate

%Ymin →

112 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

PUTYMAX #4B1CFh
Stores a new Ymax coordinate

%Ymax →

6.4 Displaying TextPICT

The HP 48 has three built-in fonts. Objects are provided that support text display using the medium and large
size fonts in fixed display regions. Use of the small font or arbitrary locations in a grob or display grob requires
the use of objects like $>grob, GROB!, and XYGROBDISP.

6.4.1 Medium Font Display Objects

The following objects display text in the stack grob using the medium font. Each row is truncated to 22
characters or blank filled. The object Disp5x7 breaks lines at carriage-returns. Each object displays text
beginning at the left edge of ABUFF, except for DISPROW1* and DISPROW2*, which display text relative to the
window corner.

DISPROW1 #1245Bh
Displays text on row 1 (pixel rows 0-7)

$ →
DISPROW1* #12725h
Displays text on row 1 relative to the window corner

$ →
DISPROW2 #1246Bh
Displays text on row 2 (pixel rows 8–15)

$ →
DISPROW2* #12748h
Displays text on row 2 relative to the window corner

$ →
DISPROW3 #1247Bh
Displays text on row 3 (pixel rows 16–23)

$ →
DISPROW4 #1248Bh
Displays text on row 4 (pixel rows 24–31)

$ →
DISPROW5 #1249Bh
Displays text on row 5 (pixel rows 32–39)

$ →
DISPROW6 #124ABh
Displays text on row 6 (pixel rows 40–47)

$ →
DISPROW7 #124BBh
Displays text on row 7 (pixel rows 48–55)

$ →
DISPN #12429h
Displays text on the specified row

$ #row →
Disp5x7 #3A4CEh
Displays up to #max rows of text starting on the specified row

$ #row #max →
DISPSTATUS2 #1270Ch
Displays a string in the first two text rows

$ →

6.4.2 Displaying Temporary Messages

The following objects display a message in the top two lines. The display lines used are preserved and restored.

6.4. DISPLAYING TEXTPICT 113

FlashMsg #12B85h
Displays a message.

$ →
FlashWarning #38926h
Displays a message and beeps

$ →

The program MDISPN illustrates the medium font display lines:

MDISPN 65.5 Bytes Checksum #56AFh
(→)
::
CK0NOLASTWD 0LASTOWDOB! Clear saved command name, no arguments
RECLAIMDISP ClrDA1IsStat Claim the display, suspend the clock
EIGHT ONE DO Loop for seven lines
INDEX@ "Line " OVER UNCOERCE DECOMP$ &$ Build the display string
SWAP DISPN Display the string

LOOP
SetDAsTemp Freeze the display

;

6.4.3 Large Font Display Objects

The following objects display text in the stack grob using the large font. Each row is truncated to 22 characters
and blank filled.

BIGDISPROW1 #12415h
Displays text on large font row 1 (pixel rows 16–25)

$ →
BIGDISPROW2 #12405h
Displays text on large font row 2 (pixel rows 26–35)

$ →
BIGDISPROW3 #123F5h
Displays text on large font row 3 (pixel rows 36–45)

$ →
BIGDISPROW4 #123E5h
Displays text on large font row 4 (pixel rows 46–55)

$ →
BIGDISPN #123C8h
Displays text on the specified large font row

$ #row →

The program BDISPN illustrates the large font display lines:

BDISPN 65.5 Bytes Checksum #875Eh
(→)
::
CK0NOLASTWD 0LASTOWDOB! Clear saved command name, no arguments
RECLAIMDISP ClrDA1IsStat Claim the display, suspend the clock
FIVE ONE DO Loop for four lines
INDEX@ "Line " OVER UNCOERCE DECOMP$ &$ Build the display string
SWAP BIGDISPN Display the string

LOOP
SetDAsTemp Freeze the display

;

114 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

6.5 Basic Grob Tools

The objects described below describe a series of tools for basic grob manipulation.

6.5.1 Creating Grobs

The object MAKEGROB is the System-RPL object that does the work for the User-RPL command BLANK. The
height and width are specified with bints.

MAKEGROB #1158Fh
Creates a blank grob

#height #width → grob

The following objects create a grob representation of an object.

$>grob #11F80h
Creates a grob from a string using the small font

$ → grob
$>GROB #11D00h
Creates a grob from a string using the medium font

$ → grob
$>BIGGROB #11CF3h
Creates a grob from a string using the large font

$ → grob
Symb>HBuff #659DEh
Creates an EquationWriter representation of an expression in HARDBUFF
(may enlarge HARDBUFF)

'expression' →

6.5.2 Finding Grob Dimensions

The following objects return the dimensions of a grob.

DUPGROBDIM #5179Eh
Returns a grob and its dimensions

grob → grob #height #width
GBUFFGROBDIM #5187Fh
Returns the dimensions of the graphics grob (PICT)

→ #height #width
GROBDIM #50578h
Returns the dimensions of a grob

grob → #height #width
GROBDIMw #63C04h
Returns the width of a grob

grob → #width

6.5. BASIC GROB TOOLS 115

6.5.3 Extracting a Subgrob

The object SUBGROB returns a new grob copy of a specified region in a grob. Remember that the lower-right
corner is specified by the pixel one row down and one column to the right of the desired region (see Graphics
Coordinates on page 110).

SUBGROB #1192Fh
Returns a subgrob

grob #x1 #y1 #x2 #y2 → subgrob

6.5.4 Inverting a Grob

The object INVGROB inverts the pixels in a grob.

INVGROB #122FFh
Inverts a grob

grob → grob'

6.5.5 Combining Graphics Objects

The objects GROB! and GROB+# place one grob’s data within another grob. Note that GROB! does no range check-
ing, but GROB+# does the work for the User-RPL commands GOR and GXOR, and so does the same range checking.
The object XYGROBDISP places a grob in the current display grob (HARDBUFF).

WARNING
Some of these objects do not perform any range checking. If you specify a
graphics operation that would extend beyond the confines of the grob
arguments, you will corrupt memory.

GROB! #11679h
Stores level 4 grob into level 3 grob at specified coordinates

grobsource grobtarget #x #y →
GROB+# #4F78Ch
If flag is TRUE, ORs grobsource into grobtarget, otherwise XORs grob data

flag grobtarget grobsource #x #y → grobtarget

XYGROBDISP #128B0h
Places a grob into HARDBUFF, resizing HARDBUFF if needed

#x #y grob →

The object CKGROBFITS is useful for ensuring that a grob will fit into another grob when you’re going to use
GROB! and have doubts about the size of the grob being added. CKGROBFITS will truncate the grob being added
so that a GROB! operation will not corrupt memory.

CKGROBFITS #4F7E6h
Ensures that grobnew will fit on grobtarget at the specified coordinates

grobtarget grobnew #x #y → grobtarget grobnew' #x #y

6.5.6 Clearing a Grob Region

The objects GROB!ZERO and GROB!ZERODRP clear a grob’s pixels in a specified region.

GROB!ZERO #11A6Dh
Clears the pixels in the specified region

grob #x1 #y1 #x2 #y2 → grob
GROB!ZERODRP #6389Eh
Clears the pixels in the specified region and drops the pointer to the grob

grob #x1 #y1 #x2 #y2 →

116 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

6.6 Drawing Tools

The following objects are available for drawing lines, setting pixels, etc. Notice that these objects refer either
to the stack grob (ABUFF), or the graphics grob (PICT). Remember that the upper-left corner of a grob has the
coordinates #0 #0 (see Graphics Coordinates on page 110).

6.6.1 Line Drawing

Note that line drawing commands require x2 ≥ x1, so you may wish to use ORDERXY# to ensure the correct order
of parameters.

ORDERXY# #51893h
Asserts left-to-right order for line-drawing coordinates

#x1 #y1 #x2 #y2 → #x1 #y1 #x2 #y2

LINEOFF #50B08h
Turns off a line of pixels in the stack display (ABUFF)

→
LINEOFF3 #50ACCh
Turns off a line of pixels in the graphics display (GBUFF)

#x1 #y1 #x2 #y2 →
LINEON #50B17h
Turns on a line of pixels in the stack display (ABUFF)

#x1 #y1 #x2 #y2 →
LINEON3 #50AEAh
Turns on a line of pixels in the graphics display (GBUFF)

#x1 #y1 #x2 #y2 →
TOGLINE #50AF9h
Toggles a line of pixels in the stack display (ABUFF)

#x1 #y1 #x2 #y2 →
TOGLINE3 #50ADBh
Toggles a line of pixels in the graphics display (GBUFF)

#x1 #y1 #x2 #y2 →

6.6.2 Pixel Control

The following objects clear, set, and test pixels in either the stack or graphics grob.

PIXOFF #1383Bh
Turns off a pixel in the stack display (ABUFF)

#x #y →
PIXOFF3 #1380Fh
Turns off a pixel in the graphics display (GBUFF)

#x #y →
PIXON #1384Ah
Turns on a pixel in the stack display (ABUFF)

#x #y →
PIXON3 #13825h
Turns on a pixel in the graphics display (GBUFF)

#x #y →
PIXON? #13992h
Tests a pixel in the stack display (ABUFF)

#x #y → FLAG
PIXON?3 #13986h
Tests a pixel in the graphics display (GBUFF)

#x #y → FLAG

6.7. MENU GROB UTILITIES 117

6.7 Menu Grob Utilities

The following objects create menu label grobs (8 pixels high by 21 pixels wide) given a string as input:

MakeStdLabel #3A328h
Creates a standard label

$ → grob
MakeDirLabel #3A3ECh
Creates a directory label

$ → grob
MakeBoxLabel #3A38Ah
Creates a label with a “mode box” at the right side

$ → grob
MakeInvLabel #3A44Eh
Creates an outline box label

$ → grob
Box/StdLabel #3EC99h
Creates a label with a “mode box” at the right side if FLAG is TRUE,
otherwise create a label without the mode box

$ FLAG → grob
Std/BoxLabel #3ED0Ch
Creates a standard menu label if FLAG is TRUE, otherwise creates a label
with a “mode box” at the right side

$ FLAG → grob

The following objects are used by the menu system to create and display menu label grobs in the dedicated
menu grob (HARDBUFF2). The #col parameters for the menu labels are listed in the table below.

Menu Label Column Numbers
Softkey Number Column (hex) Column (decimal)

1 0 0
2 16 22
3 2C 44
4 42 66
5 58 88
6 6E 110

Grob>Menu #3A297h
Displays an arbitrary 8x21 grob

#col grob →
Id>Menu #3A2DDh
Displays a standard or directory label based on the contents of ID

#col ID →
Seco>Menu #3A2C9h
Evaluates a secondary that results in a 8x21 grob, then displays the grob

#col :: ... ; →
Str>Menu #3A2B5h
Displays a standard menu label

#col $ →

6.8 Built-in Grobs

The following objects are built-in:

SmallCursor #66EF1h
3x5 cursor (outline box)

→ grob

118 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

MediumCursor #66ECDh
5x7 cursor (outline box)

→ grob
BigCursor #66EA5h
5x9 cursor (outline box)

→ grob
CURSOR1 #13D8Ch
5x9 insert cursor

→ grob
CURSOR2 #13DB4h
5x9 replace cursor

→ grob
MARKGROB #5055Ah
X symbol

→ grob
CROSSGROB #5053Ch
+ symbol

→ grob

6.9 Graphics Examples

The following examples are designed to showcase a few of the objects described in this chapter. We hope you’ll
be inspired to experiment with the possibilities. Each of these examples uses ABUFF — the stack display. We
encourage you to use ABUFF instead of GBUFF, since PICT is considered a user resource like a variable or
flag setting.

6.9.1 Drawing a Grid

Some games, like tic-tac-toe and the Minehunt game (built into the HP 48G/GX) need a grid display. This
program produces a grid centered in the stack display with a specified number of rows and columns. The size
parameter specifies the size of each square (not counting the box boundary lines).

6.9. GRAPHICS EXAMPLES 119

GRID 181 Bytes Checksum #30Ah
(%Size %Rows %Cols →)
::
0LASTOWDOB! CK3NOLASTWD Clear saved command name, require three arguments
CK&DISPATCH1 # 00111 Require three real numbers
::
COERCE2 ROT COERCE #1+ (#rows #cols #size+1)
DUP ROT #* #1+ (*rows #size+1 #width)
DUP BINT_131d #> Verify that the grid is not wider than the display
case SETSIZEERR (#rows #size+1 #width)
OVER 4ROLL #* #1+ (#size+1 #width #height)
DUP SIXTYFOUR #> Verify that the grid is not taller than the display
case SETSIZEERR (#size+1 #width #height)

ClrDA1IsStat Suspend the ticking clock display
RECLAIMDISP Assert, clear, and resize ABUFF
TURNMENUOFF Turn off the menu display

Calculate the addresses of the grid boundaries:
SIXTYTHREE OVER #-#2/ (#size+1 #width #height #toprow)
DUP ROT #+-1 (#size+1 #width #toprow #botrow)
BINT_131d 4PICK #-#2/ (#size+1 #width #toprow #botrow #lfcol)
DUP 5ROLL #+-1 (#size+1 #toprow #botrow #lfcol #rtcol)

Draw the vertical lines:
DUP#1+ 3PICK DO (#size+1 #toprow #botrow #lfcol #rtcol)

INDEX@ 5PICK (... #col #toprow)
OVER 6PICK (... #col #toprow #col #botrow)
LINEON (...)
5PICK (... #size+1)

+LOOP
Draw the horizontal lines:

3PICK #1+ 5PICK DO (#size+1 #toprow #botrow #lfcol #rtcol)
OVER INDEX@ (... #lfcol #row)
3PICK OVER (... #lfcol #row #rtcol #row)
LINEON (...)
5PICK (... #size+1)

+LOOP (#size+1 #toprow #botrow #lfcol #rtcol)
5DROP Drop the box parameters
SetDAsTemp Freeze the display

;
;

The following display was generated with the parameters 3 (size), 9 (rows), and 25 (cols):

For the reader that’s interested in assembly language, we suggest you write a code object that replaces the two
line drawing loops. For fun, post your code to comp.sys.hp48 on the Internet. Whose code is fastest?

6.9.2 A Rocket Launch

The WINDOWXY and window scrolling objects suggest many possibilities. This program enlarges and scrolls
ABUFF to launch a rocket.

120 CHAPTER 6. GRAPHICS, TEXT, AND THE LCD

ROCKET 245.5 Bytes Checksum #E910h
(→)
::
0LASTOWDOB! CK0NOLASTWD Clear saved command name, require no arguments
ClrDA1IsStat RECLAIMDISP Suspend clock display, assert, clear, and resize ABUFF

Build the “launchpad”:
HARDBUFF2 Pointer to menu grob
ZEROZERO 131 EIGHT GROB!ZERO Clear menu grob
INVGROB Invert menu grob
ZERO ONE 131 EIGHT GROB!ZERODRP Clear bottom seven rows of menu grob
ABUFF 55 HEIGHTENGROB Add 55 rows to the stack display

ASSEMBLE Rocket grob
CON(5) =DOGROB
REL(5) end
CON(5) 16
CON(5) 9
NIBHEX 0100010083008300
NIBHEX 8300830083008300
NIBHEX 8300070007000700
NIBHEX EF00EF007D103810

end
RPL
ABUFF 62 40 GROB! Place rocket in display
ELEVEN ZERO DO Draw the countdown to launch:
TEN INDEX@ #- UNCOERCE Real number counts down from 10 to 0
EDITDECOMP$ $>grob Convert number to string, then string to grob
HARDBUFF2 Pointer to menu grob
INDEX@ Get the loop index again
DUP#0=ITE If it’s zero ...
ELEVEN ... use 11 for the count x-coordinate base
:: FIFTEEN VERYSLOW ; ... otherwise use 15 and delay between numbers

SWAP TEN #* #+ Calculate x-coordinate for number
TWO Use 2 for y-coordinate
GROB! Put number into menu grob

LOOP
56 ONE DO Now launch the rocket:
WINDOWDOWN Move the window down one row
%RAN % .5 %> ?SKIP There’s a 50% chance ...
:: 67 55 INDEX@ #+ PIXON ; ... of generating exhaust smoke

SLOW Delay a bit between rows
LOOP
RECLAIMDISP Resize and clear ABUFF when done

;

Chapter 7

Keyboard Utilities

Applications requiring key detection have a variety of options available. In this chapter we illustrate a series
of objects and techniques for key detection. These examples use objects described in previous chapters. We
first discuss key detection while a program is running, then waiting for a key, and finally some higher-level
utilities.

7.1 Key Buffer Utilities

The following objects clear and test the keyboard buffer.

CHECKKEY #04708h
Returns (but does not pop) a pending keycode in the key buffer and TRUE, or
FALSE if no key is pending

→ FALSE
→ #keycode TRUE

FLUSHKEYS #00D71h
Clears the key buffer

→
GETTOUCH #04714h
Pops a pending keycode from the key buffer and returns TRUE, or returns
FALSE if no key is pending

→ FALSE
→ #keycode TRUE

KEYINBUFFER? #42402h
Returns TRUE if any key other than [ON] has been pressed (does not detect
the [ON] key)

→ flag

Notes:

• The keycodes returned by CHECKKEY and GETTOUCH do not map directly to key numbers 1 through 49. See
Keycodes on page 125 below for more information on keycodes.

• These objects don’t detect the [ON] key.

7.2 Checking The Keyboard While Running

The HP 48 interrupt system provides a 15-key buffer and a flag that signals that the [ON] key has been
pressed. The objects described in this section build upon these basic resources to provide many keyboard
detection options.

121

122 CHAPTER 7. KEYBOARD UTILITIES

7.2.1 Detecting the [ON] Key

If a calculation, animation, or simulation process is likely to be either long or infinite, you may wish to let the
user signal that the process should stop. The traditional signal is the [ON] key. On the HP 48S/SX models
this was referred to as [ATTN] (attention). On the HP 48G/GX this was renamed [CANCEL], but the basic
use of the key remained constant. This key is used to interrupt a process, such as an active edit line, a plot
in progress, data transfer, or an HP SOLVE calculation. Some processes that work with lists, strings, and
matrices also check to see if this key has been pressed.

The interrupt system sets a flag (sometimes called the attention flag) when [ON] is pressed. The following
objects clear and test this flag.

ATTNFLGCLR #05068h
Clears the attention flag (does not flush the key from the key buffer)

→
ATTN? #42262h
Returns TRUE if [ON] has been pressed

→ flag

The following program clears the key buffer and attention flag, then begins counting until the object ATTN?
reports that [ON] has been pressed. The object FLUSHKEYS is used to remove the [ON] keystroke from the key
buffer.

ADDIT 67 Bytes Checksum #DE5h
(→ %result)
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
ClrDA1IsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
0% Initial value of counter
ATTNFLGCLR Clear the attention flag
BEGIN
ATTN? NOT Run until [ON] been pressed

WHILE
DUP EDITDECOMP$ DISPROW4 Decompile and display counter
%l+ Increment counter

REPEAT
FLUSHKEYS ATTNFLGCLR Flush key buffer, clear attention flag
ClrDAsOK Signal display needs to be redrawn

;

7.2.2 Detecting Any Key

The object KEYINBUFFER? may be used in conjunction with ATTN? to detect if any key has been pressed. In
practical terms, an application that does this will probably want to use FLUSHKEYS and ATTNFLGCLR at the end
(as shown in the previous example).

KEYINBUFFER? Example: This example is structured much like the ADDIT example, but just uses KEYINBUFFER?
to look at the whole keyboard.

7.2. CHECKING THE KEYBOARD WHILE RUNNING 123

KB 56.5 Bytes Checksum #35EFh
(→ %result)
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
ClrDA1IsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
0% Initial value of counter
BEGIN
KEYINBUFFER? NOT Has a key been pressed?

WHILE
DUP EDITDECOMP$ DISPROW4 Decompile and display counter
%l+ Increment counter

REPEAT
ClrDAsOK Signal display needs to be redrawn

;

When you run KB, notice that the [ON] key is not detected, and that the keystroke detected is executed after
KB ends. It’s also important to notice that the shift keys are treated like any other key in this instance.

SCRIBE Example: This example is more involved than ADDIT and KB, mostly for fun. The object ATTN? is
used in the same manner as illustrated in ADDIT, but the program also uses GETTOUCH to check the rest of the
keyboard.

124 CHAPTER 7. KEYBOARD UTILITIES

SCRIBE 331.5 Bytes Checksum #D363h
(→)
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
ClrDA1IsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
SIXTYFOUR Initial X position
THIRTYTWO Initial Y position
ONE Initial X step Initial Y step
ONE Running flag
TRUE
{
LAM Xpos LAM Ypos
LAM Xstep LAM Ystep
LAM Running Bind local variables

} BIND Clear key buffer and [ATTN] flag
FLUSHKEYS ATTNFLGCLR
BEGIN Has a key been pressed?
GETTOUCH
ITE Yes, drop keycode and signal FALSE
DROPFALSE No, signal TRUE to keep running
TRUE Has [ATTN] been pressed?

ATTN? NOT AND flags together
AND If neither even happened, move point:

WHILE Add step to x position
LAM Xpos LAM Xstep #+ If at left edge,
DUP MINUSONE #= IT then reverse direction
:: #2+ ONE ' LAM Xstep STO ; If at right edge,

DUP BINT_131d #= IT then reverse direction
:: #2- MINUSONE ' LAM Xstep STO ; Save copy on stack for PIXON, store new value

DUP ' LAM Xpos STO Add step to y position
LAM Ypos LAM Ystep #+ If at top,
DUP MINUSONE #= IT then reverse direction
:: #2+ ONE ' LAM Ystep STO ; If at bottom,

DUP SIXTYFOUR #= IT then reverse direction
:: #2- MINUSONE ' LAM Ystep STO ; Save copy on stack for PIXON, store new value

DUP ' LAM Ypos STO Turn on pixel
PIXON

REPEAT When done, clear [ATTN] flag
ATTNFLGCLR Signal display needs to be redrawn
ClrDAsOK

;

7.3 Waiting For a Key

While the previous objects are helpful for detecting a key while a program is running, they are not particularly
useful if your application is just waiting for the user to press a key. There no sense in running down the
batteries!

The object WaitForKey does all the hard work for you — returning a fully-formed keystroke specifying the
keycode and shift plane. While WaitForKey is running, the calculator is placed in a low-power state, conserving
batteries.

When WaitForKey returns, the keycode and shift plane numbers are returned as bints. The keycode numbering
is in row order starting at the top left of the keyboard, running from 1 to 49. The planes are numbered 1 to 6:

7.4. KEYCODES 125

Plane Description
1 Unshifted
2 Left-shifted
3 Right-shifted
4 Alpha
5 Alpha left-shifted
6 Alpha right-shifted

WaitForKey #41F65h
Waits in a low power state for a fully-formed keystroke

→ #keycode #plane

The program WKEY displays the keycode and shift plane detected by WaitForKey until the [ON] key is pressed.
In this example, we use the BEGIN ... UNTIL loop, just to be different.

WKEY 99.5 Bytes Checksum #B4CAh
(→)
::

0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
ClrDA1IsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
BEGIN
WaitForKey UNCOERCE2 Get keycode and shift plane as real numbers
"Keycode: " 3PICK EDITDECOMP$ &$ DISPROW3 Display keycode
"Plane: " SWAP EDITDECOMP$ &$ DISPROW4 Display shift plane

UNTIL
SetDAsTemp Freeze the display

;

7.4 Keycodes

Unlike the keycodes returned by WaitForKey, the keycodes returned by CHECKKEY and GETTOUCH do not map
directly to key numbers from 1 to 49. To see what keycodes are returned, try the program KCODE:

KCODE 64.5 Bytes Checksum #5CFFh
(→)
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
ClrDA1IsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
BEGIN
ATTN? NOT Run until [ON] been pressed

WHILE
GETTOUCH NOT?SEMI Loop again if no key in buffer
UNCOERCE EDITDECOMP$ DISPROW4 Decompile and display keycode

REPEAT
FLUSHKEYS ATTNFLGCLR Flush key buffer, clear attention flag
ClrDAsOK Signal display needs to be redrawn

;

As you study KCODE.S, remember that NOT?SEMI works here because the compiler places :: and ; around the
code between WHILE and REPEAT. To see this, look at the file KCODE.A after KCODE has been compiled. Notice
that the [ON] key is not trapped except by detecting the attention flag.

The object CodePl>%rc.p converts a keycode and plane pair into a real number in RC.P format (as used by user
key assignments):

CodePl>%rc.p #41D92h
Converts keycode and plane bints into real number rc.p key address

#keycode #plane → %rc.p

126 CHAPTER 7. KEYBOARD UTILITIES

The inverse conversion is provided by the object Ck&DecKeyLoc:

Ck&DecKeyLoc #41CA2h
Converts real number rc.p key address into keycode and plane bints

%rc.p → #keycode #plane

7.5 Repeating Keys

Two objects are available for implementing repeating key procedures. Each takes a keycode and procedure
from the runstream and keeps these on the stack. This implies that the object being executed should not alter
the stack. In the example fragment below, object is executed as long as key seventeen is held down:

:: ... REPEATER SEVENTEEN object ... ;

The first object, REPEATER has an initial delay of 300 ms, and a 15 ms delay between events. The second,
REPEATERCH, lacks the long delays, making it well-suited for moving objects around on the screen.

REPEATER #40E88h
Repeats 2nd following object in runstream while the specified key is down

→
REPEATERCH #51735h
Repeats 2nd following object in runstream while the specified key is down

→

The next example uses REPEATER to increment or decrement a number in the display. Try compiling this
program with REPEATER as shown, then use REPEATERCH to see the difference in key response.

RPT 172.5 Bytes Checksum #EDD9h
(→)
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
ClrDA1IsStat RECLAIMDISP Turn off clock, clear ABUFF
TURNMENUOFF Turn off the menu
' :: 1GETLAM %1+ DUP EDITDECOMP$
DISPROW4 1PUTLAM ; Action for [+] key

' :: 1GETLAM %1- DUP EDITDECOMP$
DISPROW4 1PUTLAM ; Action for [-] key

%0 Initial counter value
' NULLLAM THREE NDUPN Three null temporary variable names
DOBIND Create the temporary environment
3GETLAM EVAL Increment and display the counter
BEGIN
::
WaitForKey Get keycode and shift plane as real numbers
DROP Ignore the shift plane for this example
FORTYFOUR #=casedrop Check for [-]
::
REPEATER FORTYFOUR 2GETEVAL Subtract once, repeat as long as key is down
FALSE Continue the loop

;
FORTYFIVE #=casedrop TRUE If [ON] pressed, drop counter and end loop
FORTYNINE #= case Check for [+]
::
REPEATER FORTYNINE :: 3GETLAM EVAL ; Add once, repeat as long as key is down
FALSE Continue the loop

;
DoBadKey FALSE Beep, continue the loop for all other keys

;
UNTIL
ABND Abandon the temporary environment
ClrDAsOK Signal to redraw the display

;

7.6. INPUTLINE 127

When compiled with REPEATERCH, the size is 172.5 bytes and the checksum is #9561h.

7.6 InputLine

The object InputLine does the work for the user word INPUT. While this interface is not as attractive as an
input form (G series only), it’s handy for an occasional prompt and parses the input line if you wish.

When executed, InputLine does the following:

• Displays the status area, clears the stack area, and displays a prompt

• Initializes the command line and edit modes

• Displays a menu

• Accepts input from the command line as a string

• Optionally parses, or parses and evaluates the input string

• Returns a flag indicating the way the command line was terminated

InputLine #42F44h
Accepts input from the user, optionally parsing and evaluating the input string

$Prompt $Input CursorPos #Mode #Entry #Alpha Menu #Row Abort #Action → FALSE
→ $Input TRUE
→ $Input ob

TRUE
→ ... TRUE

7.6.1 Input Parameters

The ten input parameters are:

$Prompt A string prompt displayed in display area 2a. This string may contain a newline character.
$Input The default input string.
CursorPos The initial cursor position. This can be specified either as a bint character number or a list of

two bints specifying the row and column position. Use #0 to specify the end of a row or
column.

#Mode The initial insert/replace mode. Use #0 for the current mode, #1 for insert mode, or #2 for
replace mode.

#Entry The initial entry mode. Use #0 for the current mode + program entry mode, #1 for
program/immediate entry, or #2 for program/algebraic entry mode.

#Alpha The initial alpha-lock mode. Use #0 for the current alpha lock mode, #1 for alpha locked, #2
for alpha unlocked.

Menu The initial edit menu. This menu specification takes the same form as ParOuterLoop menus,
discussed in the next section on page 133.

#Row The first row of the menu to be displayed (usually specified as #1 for the first menu row).
Abort A flag specifying the action of the [ON] key when characters are present in the command line.

If TRUE, [ON] aborts, returning FALSE. If FALSE, [ON] simply clears the command line.
#Action Specifies post-command-line processing if terminated by the [ENTER] key. Use #0 to return

the input string with no processing, #1 to parse the input string, return the input string and
the resulting object, or #2 to parse the input string and evaluate the resulting object. If
parsing is required, the command line will not terminate until a valid object is entered.

For a really simple example, consider a prompt for the user’s name:

:: ... "Name?" NULL$ ZERO ONE ONE ONE NULL{} ONE FALSE ZERO InputLine ... ;

128 CHAPTER 7. KEYBOARD UTILITIES

This example has a null input string, sets the cursor at the end of the (empty) line, sets program entry mode,
locks the alpha mode on, has no menu, specifies that [ON] clears a non-null command line, and does not parse
the result.

Input Menu Objects. The menu specification can be as simple or as complicated as you like. Several objects
are available that replicate the standard edit menu or components of this menu. The standard edit menu is
EditMenu:

EditMenu #3BDFAh
The standard command line edit menu

→ { menu }

A disadvantage of using EditMenu is the presence of the |fSTK| menu key (the interactive stack key). If
you are writing a closed application, you may have objects on the stack that should not be seen by the user,
tampered with, removed, or reordered. To get past this problem, use the individual components that make up
EditMenu as shown below:

<SkipKey #3E2DDh
The skip-left key

→ { key specification }
>SkipKey #3E35Fh
The skip-right key

→ { key specification }
<DelKey #3E3E1h
The delete-left key

→ { key specification }
>DelKey #3E4CAh
The delete-right key

→ { key specification }
TogInsertKey #3E586h
The insert/replace mode key

→ { key specification }
IStackKey #3E5CDh
The interactive stack key

→ { key specification }

To specify a blank key, use NullMenuKey:

NullMenuKey #3EC71h
Null menu key

→ { key specification }

For example, a menu that provides the basic edit capabilities but not the interactive stack might look like this:

{ <SkipKey >SkipKey <DelKey >DelKey NullMenuKey TogInsertKey }

Note that in this example NullMenuKey is used as a placeholder. NullMenuKey is not needed if used after the
last defined key — the system will place a blank keys in the remaining positions for you. A menu with only
two edit keys defined in positions two and three and a string in the fifth position would be specified as follows:

{ NullMenuKey <DelKey >DelKey NullMenuKey "Jim" }

If a string is provided as a menu key object, the menu key label is built from that string, and the string is
echoed into the command line at the current cursor position when the menu key is pressed.

7.6.2 InputLine Results

Since InputLine accepts a variety of input conditions, the results vary depending on input conditions and user
actions. The flag in level one indicates FALSE if the user aborted the command line by pressing [ON]. If this
flag is TRUE, the results above level one depend on the #Action parameter. If #Action was #0 or #1, you know
there will be one or two objects on the stack. If #Action was #2, you have no way of knowing what’s on the
stack. Most applications that use InputLine avoid this case, since there are simply too many ways for the user
to enter a procedure that challenges the programmer’s assumptions about the state of the machine.

7.6. INPUTLINE 129

7.6.3 InputLine Examples

The first example, INP1, illustrates a simple prompt for a name. The menu is specified using individual
EditMenu components and a string to illustrate a simple string-echo key.

INP1 97.5 Bytes Checksum #9FC5h
(→ $ 1 or 0)
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
"Enter your name:" Prompt
NULL$ Initial input line
ZERO Initial cursor position
ONE Insert mode
ONE Program/immediate entry mode
ONE Alpha locked
{ Menu specification

<SkipKey
>SkipKey
<DelKey
>DelKey
ToglnsertKey
"Jim"

}
ONE Menu row one
FALSE [ON] clears the command line
ZERO No post-command-line processing
InputLine Run the command line
ITE %1 %0 Convert the result flag to a real 0 or 1
ClrDAsOK Signal to redraw the display

;

130 CHAPTER 7. KEYBOARD UTILITIES

The second example, INP2, prompts for a real number, ending only if the user aborts by pressing [ON]. Since
InputLine doesn’t accept a specification for what type of object should be returned, the type check must occur
after InputLine. To implement this, a loop is used to continue prompting until a real number is entered or the
user aborts the command line.

INP2 149.5 Bytes Checksum #5EF3h
(→ % %1 or %0)
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
BEGIN Beginning of type checking loop
::

"Enter a number:" Prompt
NULL$ Initial input line
ZERO Initial cursor position
ONE Insert mode
ONE Program/immediate entry mode
TWO Alpha off
{ Menu specification
<SkipKey
>SkipKey
<DelKey
>DelKey
ToglnsertKey

}
ONE Menu row one
FALSE [ON] clears the command line
ONE Parse command line, require a valid object
InputLine Run the command line
NOTcase :: %0 TRUE ; End loop, return %0 if user aborted with [ON]
DUPTYPEREAL? Is the object a real number?
case
:: If so,
SWAPDROP Discard the input string
%1 Return %1 to signal a real number result
TRUE Signal the end of the loop

;
2DROP If not, discard object and input string
"Real Number Only" FlashWarning Display a warning
FALSE and signal the loop needs to continue

;
UNTIL End of type checking loop
ClrDAsOK Signal to redraw the display

;

The third example, INP3, expands the INP2 example with a |HELP| menu key. A different method for dis-
playing a message is used. The help and warning messages are the same, but you could expand the example
to use different messages. The techniques used for the HELP key are described in further detail in the next
section.

7.6. INPUTLINE 131

INP3 405 Bytes Checksum #47C9h
(→ % %1 or %0)
::

0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
' :: Subroutine to show message

ABUFF TEN THIRTY 121 FORTYONE SUBGROB Save display area on stack
ABUFF TEN THIRTY 121 FORTYONE GROB!ZERODRP Clear message area
TEN THIRTY 121 THIRTY LINEON Draw box
121 THIRTY 121 FORTY LINEON
TEN FORTY 121 FORTY LINEON
TEN THIRTY TEN FORTY LINEON
"ENTER A REAL NUMBER" $>grob Create message grob
ABUFF TWENTYFIVE THIRTYTHREE GROB! Put message in display
VERYSLOW VERYSLOW Wait 600 ms

;
' :: ABUFF TEN THIRTY GROB! ; Subroutine to restore display
' LAM ShowHelp
' LAM HelpOff
TWO DOBIND Create temporary environment
BEGIN
::
"Enter a number:" Prompt
NULL$ Initial input line
ZERO Initial cursor position
ONE Insert mode
ONE Program/immediate entry mode
TWO Alpha off
{ Menu specification
<SkipKey >SkipKey
<DelKey >DelKey
TogInsertKey
{ Sixth menu key specification:
"HELP" Label
::
TakeOver Signal takeover secondary
LAM ShowHelp EVAL Display message, wait 600 ms
REPEATER SIX NOP Do nothing while 6th softkey is down
LAM HelpOff EVAL Restore display

;
}

}
ONE Menu row one
FALSE [ON] clears the command line
ONE Parse command line, require valid obj
InputLine Run the command line
NOTcase :: %0 TRUE ; End loop, return %0 if cancelled
DUPTYPEREAL? Is the object a real number?
case :: SWAPDROP %1 TRUE ; Yes, discard input string, signal done
2DROP No, discard string and ob,
LAM ShowHelp EVAL LAM HelpOff EVAL display message,
FALSE and signal the loop needs to continue

;
UNTIL End of type checking loop
ABND Abandon temporary environment
ClrDAsOK Signal to redraw the display

;

132 CHAPTER 7. KEYBOARD UTILITIES

Chapter 8

The Parameterized Outer Loop

Applications wishing to take complete control of the keyboard and display can use any of the techniques de-
scribed so far, but the Parameterized Outer Loop (also known as the POL) provides a flexible, easy-to-use
environment. While somewhat daunting to learn at first, the POL should quickly become a trusty part of your
toolkit. Since there are many potentially complex relationships between the various components of an appli-
cation that uses a POL, you may end up reading through the descriptions and examples several times before
it all makes sense.

At the simplest level, the Parameterized Outer Loop refreshes the display, accepts and processes keys that
you decide are valid and continues until an exit condition is met. The POL is therefore an engine which you
may call with parameters specifying its behavior. POL’s may be nested to the limits of available memory. In
this chapter we’ll explore the POL with a series of examples, each doing a little more work than the last one.
Since there’s a wide variety of ways to use the POL or its components, you’ll find yourself mixing and matching
techniques presented in these examples.

8.1 Introducing ParOuterLoop Parameters

The POL requires nine parameters and does not return anything. Each key may, of course, place an object
on the stack, so the results are non-deterministic unless you count objects removed from or placed onto the
stack. We begin with a general description of the parameters and an example, then discuss some parameters
in greater detail.

ParOuterLoop #38985h
The Parameterized Outer Loop
Display_ob Hardkey_ob NonAppKey_flag DoStdKeys_flag Softkey_menu
#Menurow Suspend_flag Exit_ob Error_ob→

¾ Display Object The display object is evaluated before each key is evaluated. In the simplest case
(where each key performs all display updates), this object is responsible for making
sure the current menu is displayed. The first example does just this.

½ Hardkey Handler The hardkey processing object. This object is first to have a chance at processing each
keystroke. This object is described in detail in Hardkey Handlers on page 140 below.

¼ NonAppKey Flag A flag which, if FALSE, prevents the standard behavior of keys not defined by the
hardkey handler. If this flag is TRUE, then a key not defined by the hardkey handler
would execute as specified by the DoStdKeys flag (described next). Note that soft-
keys are considered “standard keys”, and their actions are usually bundled with the
softkey definition, so this flag must be TRUE to let the softkey code execute.

» DoStdKeys Flag A flag which, if FALSE, allows user key assignments to be processed for keys not
defined by the hardkey handler. If TRUE, this flag causes user key assignments to be
ignored. It’s a good practice to leave this flag TRUE unless you’re expecting arbitrary
input.

º Softkey Menu A list of softkey definitions. These are described in detail in Softkey Definitions on
page 144. If your application has softkey definitions, NonAppKeyFlag must be TRUE
to enable your softkeys.

133

134 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

¹ #Menu Row A binary integer indicating which page of a multiple-page softkey definition should
be displayed first. This value is typically ONE.

¸ Suspend Flag If an application will permit the evaluation of arbitrary objects and commands, the
system becomes quite vulnerable when the user commands HALT or PROMPT are
executed. In this state, the user has access to the entire system, notably the stack and
variable memory. To prevent this, the Suspend flag should always be FALSE, which
makes commands like HALT & PROMPT generate a Halt Not Allowed error.

· Exit Object The POL evaluates this object after each keystroke, and exits when TRUE is re-
turned.

¶ Error Object This object is evaluated when an error occurs during execution of a key definition.
The object can be specified as ' ERRJMP in the simplest case. If you wish to trap
specific errors, this object can be as complex as you like.

Example: The program POLL displays a number, then enables the [+] and [-] keys to increment and decrement
this number. The [OFF] key is enabled, and the softkey |QUIT| is used to provide the exit signal. In the
listing below, the nine ParOuterLoop parameters are highlighted with the numbers ¶ through ¾ indicating
each parameter’s stack level.

POL1 330.5 Bytes Checksum #CA87h
(→)
DEFINE kpNoShift ONE
DEFINE kpRightShift THREE
DEFINE kcRightShift FORTY
DEFINE kcMinus FORTYFOUR
DEFINE kcOn FORTYFIVE
DEFINE kcPlus FORTYNINE

::
0LASTOWDOB! CK0NOLASTWD Clear saved command name, no

arguments
ClrDA1IsStat RECLAIMDISP Suspend clock, clear display
FALSE Exit flag
% 1 Initial counter value
' LAM Running
' LAM Value Create temporary environment
TWO DOBIND Display action

¾ ' :: Display menu if not done already
DA3OK? ?SKIP :: DispMenu.1 SetDA3Valid ; Display the counter value
LAM Value EDITDECOMP$ DISPROW4

;
½ ' :: Hard key handler:

kpNoShift #=casedrop Process primary key plane:
::
DUP#<7 casedrpfls Enable soft keys
kcMinus ?CaseKeyDef Process [-] key
:: TakeOver LAM Value %1- ' LAM Value STO ;

kcPlus ?CaseKeyDef Process [+] key
:: TakeOver LAM Value %1+ ' LAM Value STO ;

kcRightShift #=casedrpfls Enable right shift key
DROP 'DoBadKeyT Reject all other keys

;
kpRightShift #=casedrop Process right shift plane:
::
kcRightShift #=casedrpfls Enable right shift key
kcOn #=casedrpfls Enable [OFF]
DROP 'DoBadKeyT Reject all other keys

;
2DROP 'DoBadKeyT Reject all other planes

;
¼ TRUE Enable softkeys

8.1. INTRODUCING PAROUTERLOOP PARAMETERS 135

» TRUE Reject user key definitions
º { Softkey menu:

NullMenuKey Blank menu key 1
NullMenuKey Blank menu key 2
NullMenuKey Blank menu key 3
NullMenuKey Blank menu key 4
NullMenuKey Blank menu key 5
{ |QUIT|key (6):
"QUIT" Label text
:: TakeOver TRUE ' LAM Running STO ; Key action

}
}

¹ ONE Display 1st menu row
¸ FALSE Don’t allow HALT or PROMPT
· ' LAM Running Exit object
¶ ' ERRJMP Error handler

ParOuterLoop Run the POL
ABND Discard temporary environment
ClrDAsOK Signal to redraw the display

;

Example: The program MAGIC implements a magic square puzzle. Use the arrow keys and digit keys to
place the digits in a 3x3 grid so that all the rows, columns, and diagonals add up to 15. In the listing below,
the nine ParOuterLoop parameters are highlighted with the numbers ¶ through ¾ indicating each parameter’s
stack level.

MAGIC 1488.5 Bytes Checksum #8226h
(→)
DEFINE kpNoShift ONE
DEFINE kpLeftShift TWO
DEFINE kpRightShift THREE
DEFINE kcUpArrow ELEVEN
DEFINE kcLeftArrow SIXTEEN
DEFINE kcDownArrow SEVENTEEN
DEFINE kcRightArrow EIGHTEEN
DEFINE kc7 THIRTYONE
DEFINE kc8 THIRTYTWO
DEFINE kc9 THIRTYTHREE
DEFINE kc4 THIRTYSIX
DEFINE kc5 THIRTYSEVEN
DEFINE kc6 THIRTYEIGHT
DEFINE kcRightShift FORTY
DEFINE kcl FORTYONE
DEFINE kc2 FORTYTWO
DEFINE kc3 FORTYTHREE
DEFINE kc0 FORTYSIX
DEFINE kcOn FORTYFIVE

DEFINE Row 'L1
DEFINE Col 'L2
DEFINE Running 'L3
DEFINE Data 'L4
DEFINE Highlight 'L5
DEFINE PutDigit 'L6

136 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

DEFINE ShowDigit 'L7
DEFINE PutSum 'L8

::
0LASTOWDOB! CK0NOLASTWD Clear saved cmd name, no arguments
ClrDA1IsStat RECLAIMDISP Suspend the clock, clear the display

Draw the grid

FOUR ZERO_DO (DO)
FIFTY INDEX@ TEN #* #+ SIX OVER FORTYTWO LINEON
FIFTY SIX INDEX@ TWELVE #* #+ EIGHTY OVER LINEON

LOOP

THREE ZERO_DO (DO)
82 TWELVE INDEX@ TWELVE #* #+ 85 OVER LINEON
FIFTYFIVE INDEX@ TEN #* #+ FORTYFOUR OVER FORTYEIGHT LINEON
LOOP

FORTYFOUR FORTYEIGHT FORTYEIGHT FORTYFOUR LINEON
82 FORTYFOUR 86 FORTYEIGHT LINEON

Create temporary variables

ONEONE Default X and Y grid location
FALSE Exit flag
{ ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO ZERO } Cache of grid bints
TOTEMPOB

' :: (Highlight) (→) Subroutine to draw underscore
FORTYONE LAM Col TEN #* #+ Calculate X coordinate of line start
FIVE LAM Row TWELVE #* #+ Calculate Y coordinate of line start
OVER EIGHT #+ OVER Line end coordinates
TOGLINE Draw a toggled pixel line

;

' :: (PutDigit) (#digit →) Subroutine to store digit in cache
LAM Row #1- THREE #* LAM Col #+ Calculate digit position in cache
LAM Data 3PICK
EQUALPOSCOMP Is digit already stored?
DUP#0= ITE
:: DROP LAM Data ; No, prepare to store digit
::
ZEROSWAP LAM Data Yes, store 0 in old position
LAM ShowDigit EVAL PUTLIST

;
LAM ShowDigit EVAL Display digit in grid
PUTLIST Store new digit in cache
' LAM Data STO Re-store the cache

;

' :: (ShowDigit) (#digit #pos {data} →) Subroutine to display digit
"\35\3F\49\35\3F\49\35\3F\49" 3PICK SUB$1# Get X position of digit
"\09\09\09\15\15\15\21\21\21" 4PICK SUB$1# Get Y position of digit
5PICK DUP#0= ITE Is this digit zero?
:: DROP SPACE$; Yes, display a space
:: FORTYEIGHT #+ #>CHR CHR>$; No, display the digit

$>GROB XYGROBDISP Convert to grob and put in display
;

' :: (PutSum) (#x #y Pos1 Pos2 Pos3 → #sum) Subroutine to calc and display sum
LAM Data DUPDUP Get three copies of the cache

8.1. INTRODUCING PAROUTERLOOP PARAMETERS 137

4ROLL NTHCOMPDROP Get first digit
SWAP 4ROLL NTHCOMPDROP Get second digit
ROT 4ROLL NTHCOMPDROP Get third digit
#+ #+ DUP 4UNROLL Calculate sum and save copy
DUP UNCOERCE EDITDECOMP$ Decompile digit
$>grob SWAP Make digit into grob
TEN #< IT If sum is less than 10
:: SIX EIGHT MAKEGROB DUPUNROT TWO ZERO GROB! ; then enclose in two-digit-wide grob

XYGROBDISP Display sum grob
; Store new digit in cache

{
LAM Row
LAM Col
LAM Running
LAM Data
LAM Highlight
LAM PutDigit
LAM ShowDigit
LAM PutSum

}
BIND

Put the parameters for the ParOuterLoop on the stack

¾ ' :: Display Action
DA3OK? ?SKIP :: DispMenu.1 SetDA3Valid ; Display the menu if needed
LAM Highlight EVAL Turn on the underscore
ZERO TWENTYONE 88 TEN ONE TWO THREE LAM PutSum EVAL Calculate and display sums
88 TWENTYTWO FOUR FIVE SIX LAM PutSum EVAL
88 THIRTYFOUR SEVEN EIGHT NINE LAM PutSum EVAL
THIRTYSEVEN FIFTY THREE FIVE SEVEN LAM PutSum EVAL
FIFTYTWO FIFTY ONE FOUR SEVEN LAM PutSum EVAL
SIXTYTWO FIFTY TWO FIVE EIGHT LAM PutSum EVAL
72 FIFTY THREE SIX NINE LAM PutSum EVAL
88 FIFTY ONE FIVE NINE LAM PutSum EVAL
TRUE EIGHT ZERO_DO (DO) Loop to see if all sums were 15
SWAP FIFTEEN #= AND

LOOP
ITE "GOT IT!" " " Decide which string to display
$>GROB XYGROBDISP Display string

;

½ ' :: Hardkey Handler
LAM Highlight EVAL Turn off the underscore
kpNoShift #=casedrop Primary key plane
::
DUP#<7 casedrpfls (Enable soft keys)
kcUpArrow ?CaseKeyDef

k

:: TakeOver LAM Row DUP#1= casedrop
DoBadKey #1- ' LAM Row STO ;

kcDownArrow ?CaseKeyDef

q

:: TakeOver LAM Row DUP #3= casedrop
DoBadKey #1+ ' LAM Row STO ;

138 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

kcLeftArrow ?CaseKeyDef

p

:: TakeOver LAM Col DUP#1= casedrop
DoBadKey #1- ' LAM Col STO ;

kcRightArrow ?CaseKeyDef

r

::
TakeOver
LAM Col DUP #3= ITE Enable wrap to next row
:: DROPONE LAM Row DUP #3= ITE

DROPONE #1+ ' LAM Row STO ;
#1+

' LAM Col STO
;

kc0 ?CaseKeyDef :: TakeOver ZERO LAM PutDigit EVAL ; [0]
kc1 ?CaseKeyDef :: TakeOver ONE LAM PutDigit EVAL ; [1]
kc2 ?CaseKeyDef :: TakeOver TWO LAM PutDigit EVAL ; [2]
kc3 ?CaseKeyDef :: TakeOver THREE LAM PutDigit EVAL ; [3]
kc4 ?CaseKeyDef :: TakeOver FOUR LAM PutDigit EVAL ; [4]
kc5 ?CaseKeyDef :: TakeOver FIVE LAM PutDigit EVAL ; [5]
kc6 ?CaseKeyDef :: TakeOver SIX LAM PutDigit EVAL ; [6]
kc7 ?CaseKeyDef :: TakeOver SEVEN LAM PutDigit EVAL ; [7]
kc8 ?CaseKeyDef :: TakeOver EIGHT LAM PutDigit EVAL ; [8]
kc9 ?CaseKeyDef :: TakeOver NINE LAM PutDigit EVAL ; [9]
kcOn ?CaseKeyDef :: TakeOver TRUE ' LAM Running STO ; [ON] ends the program
kcRightShift #=casedrpfls)
DROP 'DoBadKeyT Reject other non-shifted keys

;

kpRightShift #=casedrop Right-shift key plane
::
kcRightShift #=casedrpfls Enable)
kcOn #=casedrpfls Enable [OFF]
DROP 'DoBadKeyT Reject other right-shifted keys

;
2DROP 'DoBadKeyT Reject other planes

;

¼ » TrueTrue Key control flags

º { Softkey menu
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
{
"QUIT"
:: TakeOver TRUE ' LAM Running STO ;

}
}

¹ ¸ ONEFALSE 1st row, no suspend
· ' LAM Running Exit condition
¶ ' ERRJMP Error handler
ParOuterLoop Run the ParOuterLoop
ABND Abandon temp environment

8.2. TEMPORARY ENVIRONMENTS AND THE POL 139

ClrDAsOK Signal to redraw the display
;

8.2 Temporary Environments and the POL

The object ParOuterLoop creates a temporary environment that saves the previous menu system, key handlers,
display objects, and so on. This is the mechanism that lets you nest POLs. Unless you’re using the individ-
ual POL utilities (described later), it’s advisable to use named temporary variables as shown in the previous
example.

8.3 The Exit Object

The exit object’s activity can be as simple as recalling a variables contents or as complex as you like. In the
previous example a temporary variable name was supplied as the exit object. If you’re writing an application
such as an editor, the exit action might make sure the user has “saved information” before permitting an exit.

8.4 The Error Object

The error object gives you a chance to intercept errors that would otherwise terminate your application. In
many cases, applications use error traps within key operations to trap anticipated errors, and just provide
ERRJMP as the error object. Consider a plotting application — an error trap around the calculation for each
point would trap math errors, such as divide-by-zero, while a general system error like low memory might be
passed out of the POL, terminating the application.

The error object also gives you a chance to try to save information that’s in temporary memory. For instance, if
your application is an editor, you might want to try to save information in a user variable before the application
terminates.

8.5 Display Objects

Display updates can be performed either by a key definition or by the POL display object. The display object is
evaluated before each keystroke. The display object has two main responsibilities — display the softkey menu
(if needed), and perform display updates not handled by key definitions. The example on the previous page
illustrates these two activities. Unless your application doesn’t use a menu, the first component is usually
present:

::
DA3OK? ?SKIP :: DispMenu.1 SetDA3Valid ; Display the menu if needed
... Perform general display updates

;

The DA3 display flag is used to track the status of the menu display. If one of your key definitions changes
the menu definition or conditions that would affect the menu display, then executing ClrDA3OK would cause
the menu to be redisplayed the next time the display object is executed. This is useful for dynamic key labels,
which will be illustrated in Softkey Definitions on page 144 below.

If no display action is needed other than for the menu, the display object can be coded as follows:

::
DA3OK? ?SEMI Exit if the menu display is valid
DispMenu.1 SetDA3Valid Otherwise display the menu

;

If your application has no menu and doesn’t need a general display object at all, specify 'NOP.

140 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

8.6 Hardkey Handlers

Every keystroke (including shift modifiers) is processed by the hard key handler. This key handler accepts a
key specification in the form of two binary integer codes — a keycode number and a shift plane number. The
handler returns either an object to evaluate and the flag TRUE or FALSE to pass the key on the rest of the
system.

#keycode #plane → object TRUE Application defines the key
#keycode #plane → FALSE Application does not define the key

8.6.1 Key and Plane Codes

The previous example, POL1, used DEFINEs for the RPL compiler to make the code easier to read. The file
KEYDEFS.H supplied with the HP tools contains definitions for all shift planes and keycodes. To use these
definitions in your source code, just add INCLUDE KEYDEFS.H to include the definitions.

HP 48 keys are numbered from 1 to 49 in row order starting at the upper left of the keyboard. The shift planes
are numbered 1 to 6. Their codes and definitions in KEYDEFS.H are listed below:

Shift Planes
#plane definition Primary Planes #plane definition Alpha Planes

1 kpNoShift Unshifted 4 kpANoShift Alpha
2 kpLeftShift Left-shifted 5 kpALeftShift Alpha left-shifted
3 kpRightShift Right-shifted 6 kpARightShft Alpha right-shifted

The keycode numbers and definitions in KEYDEFS.H are listed below:

1 2 3 4 5 6
kcMenuKey kcMenuKey2 kcMenuKey3 kcMenuKey4 kcMenuKey5 kcMenuKey6

7 8 9 10 11 12
kcMathMenu kcPrgmMenu kcCustomMenu kcVarsMenu kcUpArrow kcNextRow

13 14 15 16 17 18
kcTick kcSto kcEval kcLeftArrow kcDownArrow kcRightArrow

19 20 21 22 23 24
kcSin kcCos kcTan kcSqrt kcPower kcInverse

25 26 27 28 29
kcEnter kcNegate kcEnterExp kcDelete kcBackspace

30 31 32 33 34
kcAlpha kc7 kc8 kc9 kcDivide

35 36 37 38 39
kcLeftShift kc4 kc5 kc6 kcTimes

40 41 42 43 44
kcRightShift kc1 kc2 kc3 kc4

45 46 47 48 49
kcOn kc0 kcPeriod kcSpace kcPlus

8.6.2 Hardkey Handler Structure

Hardkey handlers are typically structured as follows:

8.6. HARDKEY HANDLERS 141

::
Unshifted plane?
Yes, process #keycode for the unshifted plane

Left-shifted plane?
Yes, process #keycode for the left-shifted plane

Right-shifted plane?
Yes, process #keycode for the right-shifted plane

Alpha plane?
Yes, process #keycode for the alpha plane

Alpha left-shifted plane?
Yes, process #keycode for the alpha left-shifted plane

Process #keycode for the alpha right-shifted plane
;

Selecting the Key Plane. The object #=casedrop (which should have been named OVER#=casedrop) is quite
useful for key handlers:

#=casedrop #618D3h
If #x = #y, drops #x and #y from the stack, executes objectTRUE, and skips the
remainder of the secondary, otherwise drops #y, skips objectTRUE, and
executes the remainder of the secondary

#x #y → (#x = #y)
#x #y → #x (#x 6= #y)

:: ... #=casedrop objectTRUE ... ;

Using this object, the key handler begins to take shape:

::
kpNoShift #=casedrop :: process unshifted keycodes ;
kpLeftShift #=casedrop :: process left-shifted keycodes ;
kpRightShift #=casedrop :: process right-shifted keycodes ;
kpANoShiftShift #=casedrop :: process alpha unshifted keycodes ;
kpALeftShift #= case :: process alpha left-shifted keycodes ;
process alpha right-shifted keycodes

;

A key handler that only needs to process two planes, like the POL1 example, would have the following struc-
ture:

::
kpNoShift #=casedrop :: process unshifted keycodes ;
kpRightShift #=casedrop :: process right-shifted keycodes ;
2DROP 'DoBadKeyT (Reject all other planes)

;
or:

::
kpNoShift #=casedrop :: process unshifted keycodes ;
kpRightShift #<> casedrop 'DoBadKeyT (Reject all other planes)
process right-shifted keycodes

;

The object 'DoBadKeyT used above generates the invalid key beep, and is described below under Signaling
Invalid Keys on page 143. Once the plane has been identified, each secondary that processes keycodes now has
the following stack diagram:

#keycode → object TRUE Application defines the key
#keycode → FALSE Application does not define the key

Enabling Specific Standard Keys. Every keystroke, including modifier keys, must be handled by the hard-
key handler. This means that every plane handler must enable the modifier keys for other allowed planes.
Other functions, like [NXT] and [OFF] may be enabled using the same technique. The object #=casedropfls
(which should have been named OVER#=casedropfls) is quite useful here:

142 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

#=casedrpfls #63547h
If #x = #y, drops #x and #y from the stack, leaves FALSE on the stack and
skips the remainder of the secondary, otherwise drops #y and executes the
remainder of the secondary.

#x #y → FALSE (#x = #y)
#x #y → #x (#x 6= #y)

:: ... #=casedropfls ... ;

All well-mannered applications should enable [OFF], since the user might be interrupted at any time. Ex-
panding the example of a hardkey handler that processes only the primary and right-shifted planes from the
previous page, the handler now looks like this:

::
kpNoShift #=casedrop

::
kcRightShift #=casedrpfls Enables)
process remaining unshifted keycodes

;
kpRightShift #=casedrop
::
kcRightShift #=casedrpfls Enables)
kcOn #=casedrpfls Enables [OFF]
process remaining right-shifted keycodes

;
2DROP 'DoBadKeyT Reject all other planes

;

Note that the right-shift key is enabled in both the primary and right-shifted planes. This lets the user press
), then go back to the primary plane by pressing) again.

Multi-Page Menus. If your menu has more than six softkeys, you can enable the standard [NXT] key func-
tions using the same technique used for the shift keys. In the primary, left, and right plane handlers, include
the line:

kcNextRow #=casedrpfls

This enables the following functions:

Keystroke Purpose
[NXT] Display the next 6 softkeys

([NXT] Display the previous 6 softkeys
)[NXT] Display the first 6 softkeys

Enabling Softkeys. In the usual case, softkey actions are included as part of each softkey definition. In this
situation, softkey actions are initiated by the system after the hardkey handler, so the NonAppKey flag must
be TRUE and the hardkey handler must return FALSE for each menu key. Expanding the example on the
previous page, the hardkey handler now looks like this:

::
kpNoShift #=casedrop

::
DUP#<7 casedrpfls Enables primary softkeys
kcRightShift #=casedrpfls Enables)
kcNextRow #=casedrpfls Enables [NXT]
process remaining unshifted keycodes

;
kpRightShift #=casedrop
::
kcRightShift #=casedrpfls Enables)
kcOn #=casedrpfls Enables [OFF]
process remaining right-shifted keycodes

;
2DROP 'DoBadKeyT Reject all other planes

;

8.6. HARDKEY HANDLERS 143

Note that only the primary softkey plane is enabled here. Applications like the solver that use left- and right-
shifted menu keys must include the test for each enabled plane.

Key Definitions. Once you’ve coded the plane handlers, enabled the modifiers, [OFF], [NXT], and softkeys,
you’re ready to include the code that is specific to your application. A useful object for coding key handlers is
?CaseKeyDef:

?CaseKeyDef #3FF1Bh
If #x = #y, drops #x and #y from the stack, leaves the next object in the
secondary on the stack and TRUE and skips the remainder of the secondary,
otherwise drops #y and executes the remainder of the secondary.

#x #y → KeyOb TRUE (#x = #y)
#x #y → #x (#x 6= #y)

:: ... ?CaseKeyDef KeyOb ... ;

Custom key definitions must include the object TakeOver at the start of the definition to signal a custom defi-
nition. This object serves only as a placeholder, and does nothing.

TakeOver #40788h
Indicate a custom key definition

→

Expanding the last example on the previous page, a hardkey handler with custom code for two unshifted arrow
keys and two right-shifted arrow keys looks like this:

::
kpNoShift #=casedrop
::
DUP#<7 casedrpfls Enables primary softkeys
kcRightShift #=casedrpfls Enables)
kcNextRow #=casedrpfls Enables [NXT]
kcLeftArrow ?CaseKeyDef
:: TakeOver do left key ; Process p

kcRightArrow ?CaseKeyDef
:: TakeOver do right key ; Process r

issue error beep for remaining invalid keys
;

kpRightShift #=casedrop
::
kcRightShift #=casedrpfls Enables)
kcOn #=casedrpfls Enables)[OFF]
kcLeftArrow ?CaseKeyDef
:: TakeOver do left key ; Process)p

kcRightArrow ?CaseKeyDef
:: TakeOver do right key ; Process)r

issue error beep for remaining invalid keys
;

2DROP 'DoBadKeyT Reject all other planes
;

Now all that remains is to generate an invalid key beep for the remaining keys.

Signaling Invalid Keys. If your application does not define the key, you may wish to prevent the standard
definition from being executed and generate an invalid key beep. To do this, you actually define the key to
generate an invalid key beep. The object DoBadKey is suited for this purpose:

DoBadKey #3FDD1h
Generate a bad key beep and execute SetDAsNoCh

→

As you build your key handlers, the following objects become useful:

144 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

'DoBadKey #3FDFEh
Places a pointer to DoBadKey on the stack

→ DoBadKey
'DoBadKeyT #3FE12h
Places a pointer to DoBadKey and TRUE on the stack

→ DoBadKey TRUE

A Complete Hardkey Handler. Expanding the previous example, a complete hardkey handler with custom
code for two unshifted arrow keys, two left-shifted arrow keys, and two right-shifted arrow keys, a multi-row
softkey menu, and [OFF] looks like this:

::
kpNoShift #=casedrop

::
DUP#<7 casedrpfls Enables primary softkeys
kcRightShift #=casedrpfls Enables)
kcLeftShift #=casedrpfls Enables (
kcNextRow #=casedrpfls Enables [NXT]
kcLeftArrow ?CaseKeyDef
:: TakeOver do left key ; Process p

kcRightArrow ?CaseKeyDef
:: TakeOver do right key ; Process r

DROP 'DoBadKeyT Issue invalid key beep
;

kpRightShift #=casedrop
::
kcRightShift #=casedrpfls Enables)
kcLeftShift #=casedrpfls Enables (
kcNextRow #=casedrpfls Enables)[NXT]
kcLeftArrow ?CaseKeyDef
:: TakeOver do left key ; Process)p

kcRightArrow ?CaseKeyDef
:: TakeOver do right key ; Process)r

kcOn #=casedrpfls Enables)[OFF]
DROP 'DoBadKeyT Issue invalid key beep

;
kpLeftShift #=casedrop
::
kcRightShift #=casedrpfls Enables)
kcLeftShift #=casedrpfls Enables (
kcNextRow #=casedrpfls Enables ([PREV]
kcLeftArrow ?CaseKeyDef
:: TakeOver do left key ; Process (p

kcRightArrow ?CaseKeyDef
:: TakeOver do right key ; Process (r

DROP 'DoBadKeyT Issue invalid key beep
;

2DROP 'DoBadKeyT Reject all other planes
;

8.7 Softkey Definitions

A softkey definition can be as simple (an object that is echoed into the command line) or complex (a dynamic
label with different actions for different shift planes) as you like. The menu keys for the solver, multiple
equation solver, and modes are illustrations of complex menu definitions in the HP 48.

The basic structure of a softkey definition consists of a list where the first object defines the label and the
second object defines the actions taken when the key is pressed:

{ label_object action_object }

8.7. SOFTKEY DEFINITIONS 145

The softkey definition in the example POL1 in previous pages is structured just this way:

{
"QUIT" Label text
:: TakeOver TRUE ' LAM Running STO ; Key action

}

In the following sections we’ll describe how the label object and the action object can be structured.

8.7.1 Null Menu Keys

Some menus have blank keys that generate an error beep as their defined action. These keys are used to help
distribute labels within the menu row. The object NullMenuKey defines a blank key, and can be used in your
menu definition as shown in the example POL1 at the beginning of this chapter.

NullMenuKey #3EC71h
Defines a blank menu key

→ { menu definition }

8.7.2 Softkey Label Objects

A softkey label object may consist of any of the following:

String Any string object may be used as a label. Remember that the small font used for labels is
not a fixed-width font, so some words will fit in a label and others won’t. In the HP 48G/GX,
the left parenthesis character “(“ was used for the letter “C” in the input form and choose box
“CANCL” menu labels.

8x21 Grob A grob that is 8 rows high and 21 characters wide may be used for the label. Grobs that are
not this size will be decompiled into a string and that string will be used for the label.

Secondary A secondary that begins with TakeOver is expected to return either of the above — a string
or a grob. Utilities first introduced in Menu Grob Utilities on page 117 are useful for re-
turning menu label grobs, and will be illustrated below. These are sometimes called takeover
secondaries.

Anything Else Any other object is decompiled to string form and that string is used for the label.

Dynamic Labels. The third case mentioned above — a secondary beginning with TakeOver — provides the
most flexibility for the label portion of a softkey definition. The secondary can do anything it likes as long as it
follows two basic rules:

• The stack must remain as it was found. If your secondary needs to know which position in the menu is
being displayed, the object INDEX@ may be used to return a bint index from 1 to 6.

• The secondary must return a string or a 8x21 grob.

The example program POL2 provides a concise demonstration of a dynamic label. When this program is
running, the first softkey enables a toggle of user flag 1. The object ?DispStatus is used to show the system
status, illustrating the action of the softkey.

This example has a short menu definition — just one key. The [ON] key terminates the program (instead of
the |QUIT| softkey in POL1).

146 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

POL2 218.5 Bytes Checksum #7D32h
(→)
DEFINE kpNoShift ONE
DEFINE kcOn FORTYFIVE
::
0LASTOWDOB! Clear saved command name
CK0NOLASTWD No arguments
RECLAIMDISP Clear display
FALSE Exit flag
' LAM Running
ONE DOBIND Create temporary envitonment
' :: Display action
DA3OK? ?SKIP :: DispMenu.1 SetDA3Valid ; Display menu if not done already
?DispStatus Display the status area

;
' :: Hardkey handler:

kpNoShift #=casedrop Process primary key plane:
::
DUP#<7 casedrpfls Enable softkeys
kcOn ?CaseKeyDef Process [ON] key

:: TakeOver TRUE LAM Running STO ;
DROP 'DoBadKeyT Reject all other keys

;
2DROP 'DoBadKeyT Reject all other planes

;
TRUE Enable softkeys
TRUE Reject user key definitions
{ Softkey menu:
{

:: Label secondary
TakeOver
"1" ONE TestUserFlag Test user flag 1
Box/StdLabel Use test result to create label

;
:: Key action:
TakeOver
ONEONE TestUserFlag Test user flag
ITE ClrUserFlag SetUserFlag Toggle flag state
SetDA1Bad SetDA3Bad Signal to redraw status and menu

;
}

}
ONEFALSE Display 1st menu row, no suspend
' LAM Running Exit object
' ERRJMP Error handler
ParOuterLoop Run the POL
ABND Discard temporary environment
ClrDAsOK Signal to redraw the display

;

8.7.3 Softkey Action Object

The action object may define actions for the primary, left-shift, and right-shift planes. Action objects consist of
a takeover secondary, or a list containing two or three takeover secondaries, as follows:

8.7. SOFTKEY DEFINITIONS 147

:: TakeOver ... ; Action object for the primary plane

{
:: TakeOver ... ; Action object for the primary plane
:: TakeOver ... ; Action object for the left-shift plane

}

{
:: TakeOver ... ; Action object for the primary plane
:: TakeOver ... ; Action object for the left-shift plane
:: TakeOver ... ; Action object for the right-shift plane

}

Remember: The hardkey handler must enable the shift planes for the shift-action objects to work.

The example POL3 below defines a one-key menu. The key definition consists of a string for the label object
and an action object list defining primary, left-, and right-shift actions. Notice that each action begins with the
object TakeOver.

POL3 343.5 Bytes Checksum #355h
(→)
DEFINE kpNoShift ONE
DEFINE kpLeftShift TWO
DEFINE kpRightShift THREE
DEFINE kcLeftShift THIRTYFIVE
DEFINE kcRightShift FORTY
DEFINE kcOn FORTYFIVE
::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no

arguments
RECLAIMDISP ClrDA1IsStat Clear display, suspend clock
FALSE ' LAM Running ONE DOBIND Exit flag
' :: DA3OK? ?SEMI DispMenu.1 SetDA3Valid ; Display action
' :: Hardkey handler:

kpNoShift #=casedrop Primary plane
::
DUP#<7 casedrpfls
kcLeftShift #=casedrpfls
kcRightShift #=casedrpfls
kcOn ?CaseKeyDef
:: TakeOver TRUE ' LAM Running STO ;

DROP 'DoBadKeyT
;

kpLeftShift #=casedrop Left-shift plane
::
DUP#<7 casedrpfls
kcLeftShift #=casedrpfls
kcRightShift #=casedrpfls
DROP 'DoBadKeyT

;
kpRightShift #=casedrop Right-shift plane
::
DUP#<7 casedrpfls
kcLeftShift #=casedrpfls
kcRightShift #=casedrpfls
kcOn #=casedrpfls
DROP 'DoBadKeyT

;
2DROP 'DoBadKeyT

;
TRUE TRUE Key flags
{ Softkey menu

{

148 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

"KEY"
{
:: TakeOver "Primary" DISPROW3 VERYSLOW DOCLLCD ;
:: TakeOver "Left-Shift" DISPROW4 VERYSLOW DOCLLCD ;
:: TakeOver "Right-Shift" DISPROW5 VERYSLOW DOCLLCD ;

}
}

}
ONEFALSE
' LAM Running
' ERRJMP
ParOuterLoop
ABND
ClrDAsOK

;

8.8 The POL Error Trap Object

In the previous POL examples we have specified a standard error trap by leaving a pointer to ERRJMP on the
stack. Here we illustrate an error trap designed to detect and handle a specific class of errors that occur while
a key definition is being executed and pass remaining errors off to the system outer loop.

Note that this error trap does not handle errors generated during the execution of the display object.

The example POL4 below displays a value and its inverse. The key [+] is defined to increment the value and
[-] is defined to decrement the value. When the value is zero, the operation 1/value generates an error, which
is handled by the error object. The softkey |kERR| generates an error that the error object does not recognize
and passes on. The program ends when ON is pressed.

The error handler illustrated in POL4 takes advantage of the numbering of the error messages in the HP 48.
Any error that is floating-point related is in the #300h range (see the appendix Messages on page 223). The
error handler divides the error number by #100h and discards the remainder, so the result will be 3 if a floating
point error has occurred. If the error is not a floating point error, the error is passed to the system outer loop
with ERRJMP, otherwise the error handler displays the appropriate text.

This technique is similar to the scheme used by the HP 48 DRAW command, which is the core of the plotting
system. Notice that when you plot a function like SIN(1/X) no error is generated when X=0.

POL4 555 Bytes Checksum #A4C4h
(→)
DEFINE kpNoShift ONE
DEFINE kcOn FORTYFIVE
DEFINE kcMinus FORTYFOUR
DEFINE kcPlus FORTYNINE
::

0LASTOWDOB! CK0NOLASTWD Clear protection word, no
arguments

RECLAIMDISP ClrDA1IsStat Clear display, suspend clock
' :: Display object for key handlers
"Value: " LAM Value EDITDECOMP$ &$ DISPROW3
"Result: " LAM Result EDITDECOMP$ &$ DISPROW4

;
%1 %1 Initial result and initial value
FALSE Exit flag
' LAM DoDisplay
' LAM Result
' LAM Value
' LAM Running
FOUR DOBIND Create temporary environment
LAM DoDisplay EVAL Initial display of value and result
' :: DA3OK? ?SEMI DispMenu.1 SetDA3Valid ; Display handler
' :: Hardkey handler:

8.9. POL UTILITIES 149

kpNoShift #=casedrop
::

DUP#<7 casedrpfls Enable softkeys
kcMinus ?CaseKeyDef [-]
:: TakeOver

LAM Value %1- DUP ' LAM Value STO %1/
' LAM Result STO LAM DoDisplay EVAL

;
kcPlus ?CaseKeyDef [+]
:: TakeOver

LAM Value %1+ DUP ' LAM Value STO %1/
' LAM Result STO LAM DoDisplay EVAL

;
kcOn ?CaseKeyDef [ON]
:: TakeOver

TRUE ' LAM Running STO
;

DROP 'DoBadKeyT Reject other keys
;

2DROP 'DoBadKeyT Reject other planes
;
TRUE TRUE Key control flags
{ Softkey menu
{ "\8DERR" :: TakeOver "Unhandled Error" DO$EXIT ; }

}
ONEFALSE Display 1st menu row, no suspend
' LAM Running Exit object
' :: Error handler:
ERROR@ Recall the error number
100 #/ SWAPDROP THREE #<> case ERRJMP ERRJMP if not floating-point
ERRORCLR Clear the error number
"Value: " LAM Value EDITDECOMP$ &$ DISPROW3 Display the value
"Result: Undefined" DISPROW4 Display "Undefined" for result

;
ParOuterLoop Run the POL
ABND Discard temporary environment
ClrDAsOK Signal to redraw the display

;

8.9 POL Utilities

There are times when using constituent components of the object ParOuterLoop is either appropriate or re-
quired. ParOuterLoop is written as follows:

::
POLSaveUI Save the current user interface
ERRSET Increment the protection word

::
POLSetUI Set the application user interface
POLKeyUI Process keys

;
ERRTRAP POLResUI&Err If an error occurs, restore the old user interface and ERRJMP
POLRestoreUI Restore the user interface

;

There are two basic reasons for using these utilities individually:

• An application can use null-named temporary variables, saving memory and execution time.

• An application that uses or interchanges between several POLs can save the execution overhead associ-
ated with saving and restoring the original user interface.

150 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

POLSaveUI #389BCh
Save the current user interface

→
POLSetUI #38A64h
Establish the parameters for the POL

Parameters for ParOuterLoop →
POLKeyUI #38AEBh
Run the POL

→
POLResUI&Err #38B77h
Standard POL error handler

→
POLRestoreUI #38B90h
Restore the user interface saved by POLSaveUI

→

There are many possible ways to use these utilities. The browser engine from the equation library (described
in Graphic User Interfaces on page 155) presumes that the calling application has saved the user interface and
only calls POLSetUI and POLKeyUI.

One possible structure for an application using these utilities looks like this:

::
0LASTOWDOB! CK0NOLASTWD Clear protection word, no arguments
RECLAIMDISP ClrDA1IsStat Claim the display
POLSaveUI Save the user interface
ERRSET Increment the protection word

:: Process keys
ONE
TRUE
' LAM InterfaceIndex Variable to store the interface index
' LAM AppRunning Master “running” variable
TWO DOBIND
BEGIN
LAM AppRunning

WHILE
{ List of interface parameters
{ POL parameters for interface 1 }
{ POL parameters for interface 2 }
{ POL parameters for interface 3 }

}
LAM InterfaceIndex Recall index
NTHCOMPDROP Extract interface
INCOMPDROP Put parameters on the stack
POLSetUI Set the user interface
POLKeyUI Run the user interface

REPEAT
;

ERRTRAP POLResUI&Err Master error trap
POLRestoreUI Restore the user interface

;
This application uses an index stored in the local variable InterfaceIndex to decide which interface to run as
long as the flag stored in AppRunning is TRUE. In the structure, the key handlers are responsible for storing
a new index value into InterfaceIndex when signaling a switch to another interface, and storing FALSE into
AppRunning when the entire application should terminate.

8.10 Menu Utilities

The utilities InitMenu and InitMenu% are useful for applying a new menu definition to the current environment.
In combination with objects like DispMenu and DispMenu.1, you can initialize and display a menu. See also
Menu Area Control on page 104.

8.10. MENU UTILITIES 151

DispMenu #3A1E8h
Displays the current menu and freezes the menu display line

→
DispMenu.1 #3A1FCh
Displays the current menu

→
InitMenu #40F86h
Establishes a menu

{ menu definition } →
InitMenu% #41679h
Displays a built-in menu based on a menu number

% →

HP 48G/GX Menu Numbers
Menu Name # Menu Name # Menu Name
0 LAST Menu 40 PRG OUT 80 (SOLVE TVM SOLVR
1 CST 41 PRG RUN 81 (PLOT
2 VAR 42)UNITS 82 (PLOT PTYPE
3 MTH 43)UNITS LENG 83 (PLOT PPAR
4 MTH VECTR 44)UNITS AREA 84 (PLOT 3D
5 MTH MATR 45)UNITS VOL 85 (PLOT 3D PTYPE
6 MTH MATR MAKE 46)UNITS TIME 86 (PLOT 3D VPAR
7 MTH MATR NORM 47)UNITS SPEED 87 (PLOT STAT
8 MTH MATR FACTR 48)UNITS MASS 88 (PLOT STAT PTYPE
9 MTH MATR COL 49)UNITS FORCE 89 (PLOT STAT

∑
PAR

10 MTH MATR ROW 50)UNITS ENRG 90 (PLOT STAT
∑

PAR MODL
11 MTH LIST 51)UNITS POWR 91 (PLOT STAT DATA
12 MTH HYP 52)UNITS PRESS 92 (PLOT FLAG
13 MTH PROB 53)UNITS TEMP 93 (SYMBOLIC
14 MTH REAL 54)UNITS ELEC 94 (TIME
15 MTH BASE 55)UNITS ANGL 95 (TIME ALARM
16 MTH BASE LOGIC 56)UNITS LIGHT 96 (STAT
17 MTH BASE BIT 57)UNITS RAD 97 (STAT DATA
18 MTH BASE BYTE 58)UNITS VISC 98 (STAT

∑
PAR

19 MTH FFT 59 (UNITS 99 (STAT
∑

PAR MODL
20 MTH CMPL 60 PRG ERROR IFERR 100 (STAT 1VAR
21 MTH CONS 61 PRG ERROR 101 (STAT PLOT
22 PRG 62 (CHARS 102 (STAT FIT
23 PRG BRCH 63 (MODES 103 (STAT SUMS
24 PRG IF 64 (MODES FMT 104 (IO
25 PRG CASE 65 (MODES ANGL 105 (IO SRVR
26 PRG START 66 (MODES FLAG 106 (IO IOPAR
27 PRG FOR 67 (MODES KEYS 107 (IO PRINT
28 (EDIT 68 (MODES MENU 108 (IO PRINT PRTPA
29 PRG DO 69 (MODES MISC 109 (IO SERIA
30 (SOLVE ROOT SOLVR 70 (MEMORY 110 (LIBRARY
31 PRG WHILE 71 (MEMORY DIR 111 (LIBRARY PORTS
32 PRG TEST 72 (MEMORY ARITH 112 (LIBRARY
33 PRG TYPE 73 (STACK 113 (EQ LIB
34 PRG LIST 74 (SOLVE 114 (EQ LIB EQLIB
35 PRG LIST ELEM 75 (SOLVE ROOT 115 (EQ LIB COLIB
36 PRG LIST PROC 76 (SOLVE DIFFEQ 116 (EQ LIB MES
37 PRG GROB 77 (SOLVE POLY 117 (EQ LIB UTILS
38 PRG PICT 78 (SOLVE SYS
39 PRG IN 79 (SOLVE TVM

152 CHAPTER 8. THE PARAMETERIZED OUTER LOOP

HP 48S/SX Menu Numbers
Menu Name # Menu Name
0 LAST Menu 30 SOLVE SOLVR
1 CST 31 (PLOT
2 VAR 32 PLOT PTYPE
3 MTH 33 PLOT PLOTR
4 MTH PARTS 34 (ALGEBRA
5 MTH PROB 35 (TIME
6 MTH HYP 36 TIME ADJST
7 MTH MATRX 37 TIME ALRM
8 MTH VECTR 38 TIME ALRM RPT
9 MTH BASE 39 TIME SET
10 PRG 40 (STAT
11 PRG STK 41 STAT MODL
12 PRG OBJ 42 (UNITS
13 PRG DISP 43 UNITS LENG
14 PRG CTRL 44 UNITS AREA
15 PRG BRCH 45 UNITS VOL
16 PRG TEST 46 UNITS TIME
17 PRINT 47 UNITS SPEED
18 I/O 48 UNITS MASS
19 I/O SETUP 49 UNITS FORCE
20 (MODES 50 UNITS ENRG
21)MODES 51 UNITS POWR
22 (MEMORY 52 UNITS PRESS
23)MEMORY 53 UNITS TEMP
24 (LIBRARY 54 UNITS ELEC
25 LIBRARY PORT 0 55 UNITS ANGL
26 LIBRARY PORT 1 56 UNITS LIGHT
27 LIBRARY PORT 2 57 UNITS RAD
28 (EDIT 58 UNITS VISC
29 (SOLVE 59)UNITS

Chapter 9

Graphical User Interfaces

The HP 48G/GX calculators are characterized in part by the introduction of three new basic user interface tools
— message boxes, choose boxes, and input forms. The Equation Library, originally distributed on a plug-in card
for the HP 48S/SX, is now built into the HP 48G series and has its own browser.

Message Box Equation Library Browser

Choose Box Input Form

In this chapter we introduce the basic interface to each of these components. Going beyond the Parameterized
Outer Loop, the choose boxes and input forms require a blizzard of stack arguments. We suggest you read this
chapter in chronological order, since each part builds upon the previous part. Also, you might want to back up
your HP 48 memory prior to starting your explorations.

Note: The objects described in this chapter are only available in the HP 48G/GX.

EXTERNAL Declarations in Examples. Some examples have EXTERNAL declarations at the beginning
for each object that is referenced by a rompointer (XLIB name) instead of a hard address. This EXTERNAL
declaration is used by the HP RPLCOMP.EXE compiler. Other tools may have different methods of indicating
a rompointer.

Objects Used in Examples. In this chapter we presume you’ve read and understood the previous chapters
fairly well. We’ll be using objects and techniques described earlier, and the comments in the examples will
pertain more to the technique being described and less to the actions of individual objects. You may wish to
refer to previous descriptions of some of the objects used to fully understand the details of some of the examples.

9.1 Message Boxes

A message box is useful for presenting a message, waiting for the user to read it, and moving on. This object,
called DoMsgBox, is the HP 48G/GX’s tool for providing the dreaded “Press Any Key To Continue” style prompt
that computers are famous for. In this case, the message box engine is terminated by pressing | OK |,
[ENTER], or [ON]. DoMsgBox will save and restore the display, so the calling application need not worry about
the display.

153

154 CHAPTER 9. GRAPHICAL USER INTERFACES

The message box engine attempts to provide some basic text formatting within the box, so you don’t have to
worry about where word breaks will occur. Two bints specify the minimum and maximum character widths of
the box, and adjusting these gives you a little more control over the appearance of the message box.

9.1.1 Message Box Parameters

The parameters for DoMsgBox are defined as follows:

DoMsgBox #000B1h G/GX XLIB 177 0
Displays a message box with a graphics object

message #maxwidth #minwidth grob menuobject→ TRUE

“message” A string containing the message you wish to display. Carriage-returns may be embedded to
force line breaks.

#maxwidth A bint specifying the maximum character width of each text line in the message box. Message
boxes use only the medium (5x7) font.

#minwidth A bint specifying the minimum number of characters to be displayed before an automatic word
break is allowed.

grob A graphics object to be displayed in the upper-left corner of the message box. If you don’t want
to include a grob, specify the bint MINUSONE as the grob. The grob grobAlertIcon is handy
for use in message boxes:

grobAlertIcon #850B0h G/GX XLIB 176 133
The message box alert icon

→ grob

menuobject An object which, when evaluated, produces a message box menu. This is usually specified as
MsgBoxMenu, which is function 2 in library 177:

MsgBoxMenu #020B1h G/GX XLIB 177 2
The message box menu

→ {menu}

DoMsgBox returns the flag TRUE. You may wish to try different values for the character widths to adjust where
automatic word breaks occur. Neither value should exceed 15. Remember to leave room for the grob.

9.1.2 Message Box Example

The following example uses an 11x11 grob for an icon in a message box.

9.2. EQUATION LIBRARY BROWSER 155

MBOX 100 Bytes Checksum #D7D8h
(→)
EXTERNAL DoMsgBox Declares DoMsgBox is referenced by a rompointer
EXTERNAL MsgBoxMenu Declares MsgBoxMenu is referenced by a rompointer
::
0LASTOWDOB! CK0NOLASTWD Clear the protection word, no arguments
"Calculation Complete!" Message text
TWELVE Maximum character width
TEN Minimum character width

ASSEMBLE Grob
CON(5) =DOGROB
REL (5) end
CON(5) 11
CON(5) 11
NIBHEX 8F00401020201040
NIBHEX 9840104010409840
NIBHEX 272040108F00

end
RPL
' MsgBoxMenu Message box menu
DoMsgBox Execute the message box
DROP Drop the returned flag
ClrDAsOK Signal to redraw the display

;

9.2 Equation Library Browser

The browser used by the equation library dates back to the HP Solve Equation Library card originally sold for
the HP 48SX. When the Equation Library was built into the HP 48G/GX, the browser was not replaced by the
new choose box engine (described later in this chapter).

To use the browser, create a shell using Parameterized Outer Loop utilities that has the following structure:

::
...
POLSaveUI Save the user interface
ERRSET Increment the protection word
::
...
BRbrowse Call the browser
...

;
ERRTRAP POLResUI&Err If an error occurs, restore the old user interface and ERRJMP
POLRestoreUI Restore the user interface
...

;

9.2.1 Browser Parameters

The browser requires eight parameters and returns nothing to the stack. The browser can only be terminated
by executing the object BRdone.

156 CHAPTER 9. GRAPHICAL USER INTERFACES

BRbrowse #100E0h G/GX XLIB 224 16
Browse a list
{menu} $title {key defs} #first_row #focus_pos {data} :: data secondary ; {speed}→

BRdone #130E0h G/GX XLIB 224 19
Terminate the browser

→

The parameters for BRbrowse are specified as follows:

{menu} A softkey menu, specified the same way as a menu for any Parameterized Outer Loop.

$title A string for the title bar. If this string is null, seven rows of data will be displayed,
otherwise the title bar will be displayed with six rows of data.

{ [ENTER] [ON] } A list containing a procedure to execute when [ENTER] is pressed and a procedure to
execute when [ON] is pressed. These procedures take no input parameters and may
return anything.

#first_row A bint specifying the index of the first data item to be displayed.

#focus_pos A bint specifying which data item is highlighted first.

{data} A list containing the items to display. If the data secondary is going to return the data
from another location, this list may be empty.

:: data_secondary ; A secondary that accepts the data list and a bint and returns either the number of data
items (if the bint is zero) or a string (if the bint is non-zero):

{data} ZERO → #number_of data_items
{data} #index → $item

{speed} A speed table for alpha searches. The table consists of a list of 26 index bints correspond-
ing to the letters A – Z. If the user presses & [D], the fourth bint is tested. If non-zero,
this bint is assumed to be the index of the first item in the data list that starts with ’D’.
If the speed table is an empty list, it is not used.

9.2.2 Active Browser Keys

While the browser is active, the following keys are active:

kq The arrow keys move the highlight up or down one row.

(k or

(q Pressing (and an arrow key moves the highlight to the bottom of the screen or to the bottom of
the next screen if the highlight is already at the bottom of the screen.

)k or

)q Pressing) and an arrow key moves the highlight to the beginning or end of the data list.

& Press & and a letter to move to the next item starting with that letter.

[ENTER] Executes the supplied [ENTER] procedure.

[ON] Executes the supplied [ON] procedure.

|MENU| Executes a softkey definition.

9.2. EQUATION LIBRARY BROWSER 157

9.2.3 Browser Support Objects

While the browser is active, the following objects are available for use by key definitions:

BRDispItems #450E0h G/GX XLIB 224 69
Displays the items for each row and the more-data arrows

→
BRGetItem #530E0h G/GX XLIB 224 83
Gets the item for the specified index

#index → $
BRinverse #490E0h G/GX XLIB 224 73
Inverts the highlight

→
BRoutput #120E0h G/GX XLIB 224 18
Recall the index of the highlighted data item and the index of the first row

→ #first_row #focus_pos
BRRclC1 #180E0h G/GX XLIB 224 24
Recall the data list

→ { data }
BRRclCurRow #170E0h G/GX XLIB 224 23
Recall the index of the highlighted data item

→ #focus_pos
BRStoC1 #030E0h G/GX XLIB 224 24
Store the data list (must be the same length as previous list)

{ data } →
BRViewItem #520E0h G/GX XLIB 224 82
Display the highlighted item using the full display, wait for a keystroke.
Respects linefeed breaks if present. Redraws browser display after keystroke.

→

9.2.4 Browser Example

The program BRW1 displays a short list using the browser and returns a string indicating which key termi-
nated the browser. If the browser was terminated by pressing [ENTER] the highlighted data item is returned.

158 CHAPTER 9. GRAPHICAL USER INTERFACES

BRW1 265 Bytes Checksum #69DFh
(→ "ON") Terminated by pressing [ON]
(→ "QUIT") Terminated by pressing |QUIT|
(→ $item "ENTER") Terminated by pressing [ENTER]
EXTERNAL BRbrowse
EXTERNAL BRdone
EXTERNAL BRRclC1
EXTERNAL BRRclCurRow
::
0LASTOWDOB! CK0NOLASTWD" Clear saved command name, no arguments
ClrDA1IsStat RECLAIMDISP Claim the display
POLSaveUI Save the current user interface
ERRSET Increment the protection word
::
{ Menu for the browser
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
NullMenuKey
{
"QUIT" Softkey label
:: TakeOver "QUIT" BRdone ; Return "QUIT", signal to terminate the browser

}
}
"BROWSER EXAMPLE" Browser title
{ Hardkey list:
:: [ENTER]
BRRclC1 BRRclCurRow NTHCOMPDROP Returns the highlighted data item
"ENTER" Returns the string "ENTER"
BRdone Signal to terminate the browser

;
:: [ON]
"ON" Return the string "ON"
BRdone Signal to terminate the browser

;
}
ONE ONE First displayed row and highlighted row
{ "AB" "CD" "EF" "GH" "IJ" "KL" "MN" "OP" } Data list
' :: Data secondary

ZERO #=casedrop LENCOMP Return length of data list if index is 0
NTHCOMPDROP Otherwise return the item

;
NULL{} No speed list
BRbrowse Display the browser

;
ERRTRAP POLResUI&Err If error occurs, restore old interface and error
POLRestoreUI Restore the old interface
ClrDAsOK Signal to redraw the display

;

9.3. CHOOSE BOXES 159

9.3 Choose Boxes

A choose box lets the user select one or more items from a series of choices or view a series of choices. This
section describes the basic types of choose boxes and how to customize them.

9.3.1 Choose Box Styles

There are three basic types of choose boxes — single-pick, multi-pick, and view-only. A single-pick choose box
lets the user choose a single item from a list of choices. The multi-pick choose box lets the user specify one or
more choices with check marks. A choose box can occupy either a shadow-box within the display or the whole
display:

Choose Box Style Options
Single-Pick Multi-Pick

Partial Screen

Full Screen

When a choose box is active, the following keys are defined:

k Moves the highlight up one row.

q Moves the highlight down one row.

& letter Moves the highlight to the next row beginning with letter.

)k Jumps the highlight up to the first choice.

(k Displays the previous page of choices.

(q Displays the next page of choices.

)q Jumps the highlight down to the last choice.

)[OFF] Turns off the HP 48.

[+/-] Shortcut key for checking an item.

| CHK | Checks the highlighted item in a multi-pick choose box.

|CANCL| or [ON] Cancels the choose box.

| OK | or [ENTER] Terminates the choose box, selecting the highlighted or checked item(s). In a multi-pick
choose box, selects the highlighted item if no items are checked.

Any of the above choose box styles may also be used as a display-only viewing device, where no highlight bar
is shown:

When a view-only choose box is active, the arrow keys scroll the list,)[OFF] turns the HP 48 off, and [ON],
[ENTER], and | OK | terminate the choose box.

160 CHAPTER 9. GRAPHICAL USER INTERFACES

9.3.2 Choose Box Parameters

Choose boxes are specified both by stack arguments supplied to the object Choose and by responses to various
messages generated by the choose box engine. The object Choose produces the choose box, using five stack
arguments as input:

Choose #000B3h G/GX XLIB 179 00
Display a choose box
Msg-handler TitleOb DecompOb { choices } #FocusPos→ ob TRUE Single-pick input

accepted
Msg-handler TitleOb DecompOb { choices } #FocusPos→ { ob1 ... obn } TRUE Multi-pick input

accepted
Msg-handler TitleOb DecompOb { choices } #FocusPos→ FALSE Cancelled or view-only

Message Handler The message handler provides opportunities to customize the choose box and react to
specific events by responding to messages.

Title Object An object which, when evaluated, produces a string for the choose box title. If a null-
length string is provided, no title will be displayed, title related messages will not be
generated, and an extra row will be available for displaying choices.

Decompile Object Specifies the manner in which each choice will be displayed.

{ choices } A list of the choices. The choices must all have the same structure. Typical examples
include:

• A bint specifying a built-in message number

• An object

• A list containing two objects, one of which will be used to display the choice, the other of which is associ-
ated with the first for post-choosebox evaluation

#FocusPos The focus position is the position of the highlight within the data list. A bint specifies
the initial focus position. If the bint is zero, the choose box displays a view-only list.

The message handler, decompile object, and data list will be described further below.

Example: We begin by looking at a simple choose box. CHS1 displays a default choose box showing a list of
six string objects:

CHS1 101 Bytes Checksum #B027h
(→)
EXTERNAL Choose Declare Choose a rompointer
::
AtUserStack Clear saved command name, no arguments
' DROPFALSE Message handler
"Title" Choose box title string
ONE Decompile format
{ List of choices
"ONE" "TWO" "THREE"
"FOUR" "FIVE" "SIX"

}
ONE Initial focus position
Choose Display the choose box
COERCEFLAG Exit, converting the result flag to %1 or %0

;

9.3. CHOOSE BOXES 161

9.3.3 Choose Box Message Handler

At various times during the execution of the choose box, the choose box engine sends a message to the message
handler. If the message handler chooses not to handle the message, the default behavior related to that mes-
sage will occur. If the message handler does handle the message, the default behavior does not happen. If you
don’t plan to handle any messages, then the object DROPFALSE is all that’s needed, as shown above.

A message arrives at the message handler in the form of a binary integer indicating the message type with
optional stack parameters. The message handler is expected to return TRUE if the message was handled,
along with any required results on the stack, or FALSE if the message was not handled.

A message handler has the following stack diagram:

<passed objects> #message → <returned objects> TRUE
<passed objects> #message → <passed objects> FALSE

The following message handler specifies a full-screen multi-pick choose box by handling messages 60 and 61:

::
SIXTY #=casedrop :: TRUE TRUE ; Handle message 60
SIXTYONE #=casedrop :: TRUE TRUE ; Handle message 61
DROPFALSE Ignore other messages

;

There are many messages, but the messages most likely to be of interest are listed below:

Message Purpose Decimal message number
Input arguments → Objects returned by the handler

Choose Box Size 60
→ TRUE Full screen choose box
→ FALSE Partial screen choose box

Pick Type 61
→ TRUE Multi-pick
→ FALSE Single-pick

Item Count 62
→ #number_of_items_in_list

Title Grob 69
→ grob

Title String 70
→ $title

Item String 80
#item_index → $item_string

Item Grob 81
#item_index → grob

Note: Item grob may need to have standard choose item width (91 or 131)
Choose Box Menu 83

→ { menu }
Pick Event 86

→
|CANCL|Key Event 91

→ FALSE Cancel not allowed
→ TRUE Cancel allowed

| OK |Key Event 96
→ FALSE OK not allowed
→ TRUE OK allowed

Note that you might want to get control when an event happens, but still want the default action to take place.
To do this, preserve the passed objects and return FALSE, indicating that you “didn’t handle the message”.

While the choose box is active, null-named temporary variables contain information of interest:

162 CHAPTER 9. GRAPHICAL USER INTERFACES

6GETLAM → #highlight_row_number
7GETLAM → #row_height (pixels)
8GETLAM → #row_width (pixels)
12GETLAM → #item_count
15GETLAM → { list of picked indices }
18GETLAM → #index_of highlighted_item
19GETLAM → { choice_list }

Example. To introduce some uses of message handling, the message handler in CHS2 specifies the choose box
type and choices via the message handler.

CHS2 121 Bytes Checksum #28EDh
(→ %0)
(→ { choices } %1)
EXTERNAL Choose
::

AtUserStack Clear saved command name, no arguments
' :: Message handler
SIXTYONE #=casedrop TrueTrue Specify multi-pick choose box
SIXTYTWO #=casedrop :: NINE TRUE ; Specify nine choices
80 #=casedrop Create the string for each choice:
::
UNCOERCE EDITDECOMP$ Convert index bint into real and decompile it
"Frog " SWAP&$ Prepend frog string
TRUE Signal event handled

;
DROP FALSE Do not handle other messages

;
"CHOOSE SOME FROGS" Title string
ONE Decompile object (not used in this example)
NULL{} Null data list
ONE Initial focus position
Choose COERCEFLAG Run the choose box, then exit, converting flag

;

This example will be expanded at the end of this chapter with a customized menu and a dynamic title — see
CHS6 on page 167.

9.3.4 Decompile Objects

The decompile object controls the manner in which each item is displayed, has the stack diagram (ob →$),
and may be specified three ways:

• A pointer to an object that creates a string representation of a choice, like EDITDECOMP$

• A secondary that creates a string representation of a choice, like :: CARCOMP EDITDECOMP$;

• A bint specifying the decompile procedure

The binary integer specification uses specific bits to encode the decompile procedure. These bits control the
decompile format, which part of a composite choice to decompile, and whether only the first character should
be returned.

9.3. CHOOSE BOXES 163

Bit Interpretation
0 No decompilation — expects a string and displays the contents without quote marks
1 Decompile objects as they would appear on the stack (uses the user’s numeric display format settings)
2 Decompile objects as they would appear in the editline (uses STD format for numbers)
3 Return only the first character of the string
4 Extract and display the first object of a composite
5 Extract and display the second object of a composite

Example. A bint with the decimal value 36 is supplied as the decompile object for CHS3. Each choice object
is actually a list. Bit 2 is set, specifying that objects should be decompiled using STD format. Bit 5 is set,
specifying that the second object in the choice list should be decompiled and displayed.

CHS3 146 Bytes Checksum #D930h
(→ %0)
(→ choice %1)
EXTERNAL Choose
::
AtUserStack Clear saved command name, no arguments
' DROPFALSE Message handler
"Title" Title string
THIRTYSIX Decompile object
{ Data list
{ "ONE" %1 }
{ "TWO" %2 }
{ "THREE" %3 }
{ "FOUR" %4 }
{ "FIVE" %5 }
{ "SIX" %6 }

}
ONE Initial focus position
Choose Run the choose box
COERCEFLAG Exit, converting flag to %0 or %1

;

Note: You may also include the file GUI.H to enable the use of predefined
decompile objects. For more about this file, see Input Form DEFINEs for
RPLCOMP on page 172 later in this chapter.

The real power of the ability to handle lists for choices is to be able to bundle procedures with choice strings.
The example CHS4 illustrates this concept.

164 CHAPTER 9. GRAPHICAL USER INTERFACES

CHS4 245.5 Bytes Checksum #E1FDh
(% → % ')
EXTERNAL Choose
::
0LASTOWDOB! CK1NOLASTWD Clear saved command name, require one ob
CK&DISPATCH1 real Require real number
::
' DROPFALSE Message handler
"CHOOSE AN OPERATION:" Title string
SEVENTEEN Decompile object: show first part as text
{ Data list

{ "ADD 1" %1+ }
{ "ADD 2" :: %2 %+ ; }
{ "ADD 3" :: %3 %+ ; }
{ "DIVIDE BY 4" :: %4 %/ ; }
{ "SUBTRACT 5" :: %5 %- ;)
{ "MULTIPLY BY 6" :: %6 %* ; }

}
ONE Initial focus position
Choose Run the choose box
NOT?SEMI Exit if cancelled
TWO NTHCOMPDROP Extract the procedure object
EVAL Evaluate the procedure object

;

9.3.5 Customizing Choose Box Menus

By responding to message 83 you can customize the choose box menu. Rather than duplicate the definitions of
the check, cancel, and OK keys, we’ll illustrate how you can copy, decompose, alter, and rebuild a built-in menu
definition.

There are three standard menu objects used for choose boxes:

ChooseMenu0 #050B3h G/GX XLIB 179 5
Choose menu for display-only choose boxes:
| | | | | | | | | | |QUIT|

→ menu_object
ChooseMenu1 #060B3h G/GX XLIB 179 6
Choose menu for single-pick choose boxes:
| | | | | | | | |CANCL| | OK |

→ menu_object
ChooseMenu2 #070B3h G/GX XLIB 179 7
Choose menu for multi-pick choose boxes:
| | | | | CHK | | | |CANCL| | OK |

→ menu_object

These menu objects are actually secondaries consisting of the object NoExitAction and the menu definition
itself. For example, ChooseMenu2 looks like this:

9.3. CHOOSE BOXES 165

::
NoExitAction
{
NullMenuKey
NullMenuKey
{
:: TakeOver grobCheckKey ; The grob for the label
{
DoCKeyCheck Primary key checks or unchecks an item
DoCKeyChAll Left-shift key checks all items
DoCKeyUnChAll Right-shift key unchecks all items

}
}
NullMenuKey
{ "(AN(L" DoCKeyCancel }
{ "OK" DoCKeyOK }

}
;

(Actually, the definition for the third key is a little more involved — the check grob is not displayed if the list
is empty, but if your application doesn’t present an empty data list you won’t have to take this step.)

The object NoExitAction insures that the menu won’t be saved as the last menu, so pressing)[MENU] won’t
display a menu whose context is meaningless after your application terminates.

NoExitAction #3EC58h
Ensures a menu won’t be saved as the last menu

→

Note: The new key definition must follow all the same principles as any key definition for the Parameterized
Outer Loop (the choose box engine rests atop a POL).

Choose box menu items are built using the following support objects:

grobCheckKey #860B0h G/GX XLIB 176 134
Check label grob

→ grob
DoCKeyCheck #2A0B3h G/GX XLIB 179 42
Check or uncheck the current item in a multi-pick choose box

→
DoCKeyChAll #2B0B3h G/GX XLIB 179 43
Check all items in a multi-pick choose box (typically left-shifted)

→
DoCKeyUnChAll #2C0B3h G/GX XLIB 179 44
Uncheck all items in a multi-pick choose box (typically right-shifted)

→
DoCKeyCancel #2D0B3h G/GX XLIB 179 45
Cancel the choose box

→ FALSE
DoCKeyOK #2E0B3h G/GX XLIB 179 46
Accept the choices

→ FALSE No items chosen
→ Item TRUE Single-pick
→ Items TRUE Multi-pick

Example. The technique described above is used to create a simple editor for a list of strings using a custom
choose box menu. This example begins by requiring a list, validating that the list contains at least one object,
and that all objects in the list are strings. The message handler for the choose box intercepts the following
messages:

60 Specifies a full-screen choose box
83 Creates the custom choose box menu
96 Places the list on the stack when the choose box ends

166 CHAPTER 9. GRAPHICAL USER INTERFACES

Note that in this example we use ONE for the decompile object. This means we’re guaranteeing to the choose
box engine that only string objects are being displayed. If this example were to work with arbitrary objects,
then FOUR would be better choice, but strings would be displayed with quote marks.

CHS5 320 Bytes Checksum #427h
({ $1 ... $n } → { $1 ... $n } $Highlighted %1) User pressed [ENTER] or | OK |
({ $1 ... $n } → %0) User pressed |CANCL| or [ON]
EXTERNAL Choose
EXTERNAL DoCKeyCancel
EXTERNAL DoCKeyOK
::
0LASTOWDOB! CK1NOLASTWD Clear saved command name, require one object
CK&DISPATCH1 list Require list object
::
DUPLENCOMP DUP#0= case SETSIZEERR Make sure list contains at least one object
#1+ ONE DO Loop to validate objects in list
DUP INDEX@ NTHCOMPDROP Get each item
TYPECSTR? ?SKIP SETTYPEERR Error out if not a string

LOOP
' :: Message handler
SIXTY #=casedrop :: TRUE TRUE ; 60: Full screen choose box
83 #=casedrop 83: Choose box menu

::
' :: Place secondary on stack
NoExitAction
{
{ Edit key definition
"EDIT" Label
:: TakeOver Action must begin with TakeOver
"Edit String:" Set up InputLine parameters: this is the

prompt
19GETLAM 18GETLAM Get the choose box data list and current item #
NTHCOMPDROP Extract the highlighted item
ZERO ONE ONE ONE InputLine params: alpha lock, entry, cursor

pos
{ <SkipKey >SkipKey <DelKey >DelKey TogInsertKey } Editline menu

ONE FALSE ZERO Menu row, abort action, no post-processing
InputLine Run the input line
IT If edit was accepted

::
18GETLAM 19GETLAM Get the data list and focus position
PUTLIST Replace the item
19PUTLAM Store the new list back

;
ClrDAsOK Signal the display has been altered

; End of new menu key action
} End of edit key definition
NullMenuKey 2nd menu key
NullMenuKey 3rd menu key
NullMenuKey 4th menu key
{ "(AN(L" DoCKeyCancel } Cancel key
{ "OK" DoCKeyOK } OK key

}
; End of menu secondary
TRUE Signal that message 83 has been handled

; End of handler for message 83
BINT_96d #=casedrop 96: Choose box ends

:: 19GETLAM TRUE TRUE ; Recall data list, signal end OK, signal msg
handled

DROP FALSE Ignore other messages
; End of message handler
"EDIT STRINGS" ONE Choose box title, decompile specification

9.3. CHOOSE BOXES 167

4ROLL ONE Move data list into place, specify ONE for
initial focus

Choose Display the choose box
COERCEFLAG Exit, converting choose box flag to %0 or %1

;
;

9.3.6 Choose Event Procedures

The following objects are available for use by a choose box menu key definition.

LEDispItem #360B3h G/GX XLIB 179 54
Display an item

#index #highlight_row →
LEDispList #350B3h G/GX XLIB 179 53
Display the choose box contents

→
LEDispPrompt #300B3h G/GX XLIB 179 48
Display the choose box title

→

For LEDispItem, the index of the currently highlighted item can be found by 18GETLAM and the current highlight
row number can be found by 6GETLAM.

Example. The message handler and custom menu combine in CHS6 to present a dynamic choose box in which
the title reflects the number of items chosen.

CHS6 348.5 Bytes Checksum #AE5Ch
(→ %0) User pressed |CANCL| or [ON]
(→ { choices } %1) User pressed [ENTER] or | OK |
EXTERNAL Choose
EXTERNAL grobCheckKey
EXTERNAL LEDispPrompt
EXTERNAL DoCKeyCheck
EXTERNAL DoCKeyChAll
EXTERNAL DoCKeyUnChAll
EXTERNAL DoCKeyCancel
EXTERNAL DoCKeyOK
::
AtUserStack Clear saved command name, no arguments
' :: Message handler
SIXTYONE #=casedrop TrueTrue Specify multi-pick choose box
SIXTYTWO #=casedrop :: NINE TRUE ; Specify nine choices
SEVENTY #=casedrop Create the prompt string:
::
15GETLAM LENCOMP Get the length of the list of picked indices
::
ZERO #=casedrop "NO FROGS" No choices picked
ONE #=casedrop "1 FROG" One choice picked
UNCOERCE EDITDECOMP$ " FROGS" &$ More than one choice picked

;
" PICKED" &$ Append remainder of prompt string
TRUE Signal event handled

168 CHAPTER 9. GRAPHICAL USER INTERFACES

;
80 #=casedrop Create the string for each choice:
::
UNCOERCE EDITDECOMP$ Convert index bint into real and decompile it
"Frog " SWAP&$ Prepend frog string
TRUE Signal event handled

;
83 #=casedrop Specify the choose box menu
::
' ::
NoExitAction
{
NullMenuKey
NullMenuKey
{
:: TakeOver grobCheckKey ; Check key label
{
:: TakeOver DoCKeyCheck LEDispPrompt ; Primary check key action
:: TakeOver DoCKeyChAll LEDispPrompt ; Left-shift key action
:: TakeOver DoCKeyUnChAll LEDispPrompt ; Right-shift key action

}
}
NullMenuKey
{ "(AN(L" DoCKeyCancel } Cancel key
{ "OK" DoCKeyOK } OK key

}
;
TRUE Signal menu event handled

;
DROP FALSE Signal other messages not handled

;
" " Default title string (will be replaced by msg 70)
ONE Decompile object (not used in this example)
NULL{} Null data list
ONE Initial focus position
Choose Display the choose box
COERCEFLAG Exit, converting flag

;

9.4 Input Forms

The input form engine in the HP 48G/GX has been designed to meet a very diverse set of requirements, so it
takes a little more effort to use than other interfaces. It is not possible (or reasonable) to try to document all
of the minutiae associated with input forms, but we will provide a general introduction that should satisfy the
needs of many applications. We begin by introducing a few terms, then go on to describe the parameters and
illustrate their use. As you read these terms, use the PLOT input form shown below for reference:

Title Bar Shows the title for the input form.

Field An input form field contains data that can be changed by the user.

9.4. INPUT FORMS 169

Label A label is just text, and is not associated with a field except by juxtaposition.

Help Line A prompt associated with a field.

Highlight / Focus The currently active field is shown in inverse video, and is said to have the focus of the
input form engine.

Edit Field A field that permits character editing, like the EQ field in the PLOT input form.

Choose Field A field that permits selection from a fixed set of choices, like the TYPE field in the PLOT
input form.

Check Field A field that has two states: checked and unchecked, like the AUTOSCALE field in the
PLOT input form.

9.4.1 Input Form Parameters

Like the choose box, input forms are specified by stack parameters and responses generated from a message
handler:

DoInputForm G/GX #199EBh
Display an input form

input form parameters→ ob1 ... obm TRUE Input accepted with OK
input form parameters→ FALSE Cancelled

Label_Specifier1 ... Label_SpecifierN Specifiers for N labels. Label specifiers consist of three arguments,
described in detail below.

Field_Specifier1 ... Field_SpecifierM Specifiers for M fields. Field specifiers consist of thirteen arguments,
described in detail below.

#LabelCount A binary integer N specifying the number of label specifiers.

#FieldCount A binary integer M specifying the number of field specifiers.

Input Form Message Handler A secondary that handles form-specific events.

Title A string to be displayed in the title bar.

Caution: Remember that the |CALC| softkey on the second page of the input
form menu gives the user access to the stack. You may wish to consider what

your application leaves on the stack when an input form is active.

9.4.2 Label Specifiers

Input form labels are displayed using the small font. Each label is specified with three parameters:

Label_String A string object for the text.

#X_Position A bint specifying the pixel column for the upper-left corner of the text.

#Y_Position A bint specifying the pixel row for the upper-left corner of the text.

9.4.3 Field Specifiers

Input form fields are specified with thirteen parameters:

Field_Message_Handler A message handler, usually specified as 'DROPFALSE.

#X_Position A bint specifying the pixel column for the upper-left corner of the field.

#Y_Position A bint specifying the pixel row for the upper-left corner of the field.

170 CHAPTER 9. GRAPHICAL USER INTERFACES

#Field_Width A bint specifying the pixel width of the field.

#Field_Height A bint specifying the pixel height of the field.

#Field_Type A bint specifying the field type. Common types are:

Value Field Type
1 Text field
3 Auto-algebraic field for equation entry

12 Choose field
32 Check field

Object_Types A list of one or more bints specifying the valid object types for the field. To allow
any object type, specify MINUSONE. For a check field, specify MINUSONE.

Decompile_Object An object specifying the manner in which the field’s contents are displayed. See
Decompile Objects on page 162 for a complete description. For a check field,
specify MINUSONE.

Help_String A string object containing the help text for the field.

Choose_Field_Data A list of choices for a choose field, or MINUSONE for non-choose fields.

Choose_Decompile_Fmt An object specifying the manner in which a choose field’s choices are displayed.
See Decompile Objects on page 162 for a complete description. For non-choose
fields, specify MINUSONE.

Reset_Value The value to be displayed if |RESET| is pressed. For check fields, specify TRUE
(checked) or FALSE (unchecked). For other fields, specify MINUSONE if the reset
value for the field is blank (analogous to NOVAL in User-RPL) or specify a valid
value.

Initial_Value The first value to be displayed. For check fields, specify TRUE (checked) or FALSE
(unchecked). For other fields, specify MINUSONE if the reset value for the field is
blank (analogous to NOVAL in User-RPL) or specify a valid value.

Looks easy, right? Let’s put the first example right on the next page:

9.4. INPUT FORMS 171

INF1 287 Bytes Checksum #D6D6h
(→ %0) Cancelled
(→ ob % % %1) Accepted
::
AtUserStack Clear saved command name, no arguments
"EDIT FIELD:" ONE NINETEEN Label 1 text and coordinates
"CHOOSE FIELD:" ONE TWENTYEIGHT Label 2 text and coordinates
"CHECK FIELD" EIGHT THIRTYSEVEN Label 3 text and coordinates

'DROPFALSE Field 1 message handler
FORTY SEVENTEEN Field 1 coordinates
79 Field 1 width
NINE Field 1 height
ONE Field 1 type — edit field
MINUSONE Field 1 object types allowed
TWO Field 1 decompile format user’s settings
"ENTER ANY OBJECT" Field 1 help text
MINUSONE Optional data not used
MINUSONE Optional data not used
NULL$ NULL$ Field 1 initial and reset values

'DROPFALSE Field 2 message handler
FORTYNINE TWENTYSIX Field 2 coordinates
FORTYNINE Field 2 width
NINE Field 2 height
TWELVE Field 2 type — choose list
FOUR Field 2 object types allowed
TWO Field 2 decompile format user’s settings
"CHOOSE A NUMBER" Field 2 help text
{ %1 %2 %3) Field 2 choice list
TWO Choose box decompile format
%1 %1 Field 2 initial and reset values

'DROPFALSE Field 3 message handler
ONE THIRTYFIVE Field 3 coordinates
SIX Field 3 width
NINE Field 3 height
THIRTYTWO Field 3 type — check box
MINUSONE Object types not applicable
MINUSONE Decompile format not applicable
"CHECK OR UNCHECK" Field 3 help text
MINUSONE Optional data not used
MINUSONE Optional data not used
FALSE FALSE Field 3 initial and reset values

THREE Number of labels
THREE Number of fields
'DROPFALSE input form message handler
"TEST" input form title
DoInputForm Display the input form
case :: ITE %1 %0 %1 ; If OK, convert check result and return %1
%0 If cancelled, return %0
;

172 CHAPTER 9. GRAPHICAL USER INTERFACES

9.4.4 Input Form DEFINEs for RPLCOMP

The example INF1 on the previous page is virtually unreadable unless you’re willing to remember many small
details of input form parameters. To solve this, you can use the INCLUDE feature of HP’s RPL compiler
RPLCOMP.EXE to define locations for fields and labels, field types, decompile procedures, etc. We’ve provided
a file on the disk named GUI.H that contains some standard input form definitions. If you’re using another tool
set, there may be a similar way to use DEFINEs to help make your code readable.

Note: The remaining examples in this chapter will use the DEFINEs listed in GUI.H.

Example. INF2 is slightly different from INF1. The first two fields are lined up to begin in the same pixel
column, the decompile specifications use STD instead of the user settings, and NOVAL is the default for field 1.
We trust that the mnemonic value of the DEFINEs from GUI.H makes the code a little more readable.

INF2 287 Bytes Checksum #3373h
(→ %0) Cancelled
(→ ob % % %1) Accepted
INCLUDE GUI.H Include the DEFINEs from file GUI.H
::
AtUserStack Clear saved command name, no arguments
"EDIT FIELD:" COL1 LROW2 Label 1 text and coordinates
"CHOOSE FIELD:" COL1 LROW3 Label 2 text and coordinates
"CHECK FIELD" COL1+C LROW4 Label 3 text and coordinates

'DROPFALSE Field 1 message handler
COL9 FROW2 FWIDTH12 FHEIGHT Field 1 coordinates and dimensions
FTYPE_TEXT Field 1 type: edit field
OBTYPE_ANY Field 1 object types allowed
FMT_STD Field 1 decompile format STD
"ENTER ANY OBJECT" Field 1 help text
OPTDATA_NULL Optional data not used
OPTDATA_NULL Optional data not used
NOVAL NOVAL Field 1 initial and reset values

'DROPFALSE Field 2 message handler
COL9 FROW3 FWIDTH8 FHEIGHT Field 2 coordinates and dimensions
FTYPE_CHOOSE Field 2 type: choose list
OBTYPE_NA Field 2 object types allowed
FMT_STD Field 2 decompile format STD
"CHOOSE A NUMBER" Field 2 help text
{ %1 %2 %3 } Field 2 choice list
FMT_STD Choose box decompile format
%1 %1 Field 2 initial and reset values

'DROPFALSE Field 3 message handler
COL1 FROW4 FWIDTH_C FHEIGHT Field 3 coordinates and dimensions
FTYPE_CHECK Field 3 type: check box
OBTYPE_NA Object types not applicable
FMT_NA Decompile format not applicable
"CHECK OR UNCHECK" Field 3 help text
OPTDATA_NULL Optional data not used
OPTDATA_NULL Optional data not used
FALSE FALSE Field 3 initial and reset values

THREE THREE Number of labels and fields
'DROPFALSE Input form message handler
"TEST" Input form title
DoInputForm Display the input form
case :: ITE %1 %0 %1 ; If OK, convert check result and return %1
%0 If cancelled, return %0

;

9.4. INPUT FORMS 173

9.4.5 Specifying Object Types

To allow any object to be entered into a text field, specify MINUSONE for the object type. To specify one or more
object types, use a list of bints. The table below shows the available types, bint values, and DEFINE names
from GUI.H.

Object Type DEFINE Bint
Real OBTYPE_REAL ZERO
Complex OBTYPE_CMP ONE
String OBTYPE_STR TWO
Real array OBTYPE_RARRAY THREE
Complex array OBTYPE_CARRAY FOUR
List OBTYPE_LIST FIVE
Name (ID) OBTYPE_ID SIX
User program OBTYPE_USERPRGM EIGHT
Algebraic OBTYPE_SYMB NINE
User binary integer OBTYPE_HXS TEN
Unit OBTYPE_UNIT THIRTEEN

Example: To allow programs and algebraic objects use the list { OBTYPE_USERPRGM OBTYPE_SYMB } .

9.4.6 Specifying Decompile Formats

Text and choose fields require a decompile object. The decompile object controls the manner in which each item
is displayed, has the stack diagram (ob→ $), and may be specified three ways:

• A pointer to an object that creates a string representation of a choice, like EDITDECOMP$

• A secondary that creates a string representation of a choice, like :: CARCOMP EDITDECOMP$;

• A bint specifying the decompile procedure

Note that for text fields, the first two choices must be sensitive to the possibility of undefined field contents.
For instance, if a text field’s default value is MINUSONE (NOVAL), then EDITDECOMP$ would display <FFFFFh>.
It’s more likely that a secondary would be used that would include a test for this condition.

Example: This secondary returns a null string for an undefined value, otherwise decompiles the object using
STD formatting if the object is not a string.

(ob→ $)
::
DUP MINUSONE EQUAL casedrop NULL$ Return null string for NOVAL
DUPTYPECSTR? ?SEMI Do nothing if the object is a string
EDITDECOMP$

;

The binary integer specification uses specific bits to encode the decompile procedure. These bits control the
decompile format, which part of a composite choice to decompile, and whether only the first character should
be returned. The file GUI.H contains a series of DEFINEs for commonly used decompile specifications.

Bit Interpretation
0 No decompilation — expects a string and displays the contents without quote marks
1 Decompile objects as they would appear on the stack (uses the user’s numeric display format settings)
2 Decompile objects as they would appear in the editline (uses STD format for numbers)
3 Return only the first character of the string
4 Extract and display the first object of a composite (useful for choose fields only)
5 Extract and display the second object of a composite (useful for choose fields only)

Example: The bint THIRTYSIX (FMT_P2&STD in GUI.H) specifies STD formatting for the second element in a list
(useful for choose fields).

174 CHAPTER 9. GRAPHICAL USER INTERFACES

9.4.7 Input Form Message Handlers

At various times during the execution of an input form, the input form engine sends a message to the form’s
message handler or an individual field’s message handler. If the message handler chooses not to handle the
message, the default behavior related to that message will occur. If the message handler does handle the
message, the default behavior does not happen. If you don’t plan to handle any messages, then the object
DROPFALSE is all that’s needed.

A message arrives at the message handler in the form of a binary integer indicating the message type with
optional stack parameters. The message handler is expected to return TRUE if the message was handled,
along with any required results on the stack, or FALSE if the message was not handled.

A message handler has the following stack diagram:

<passed objects> #message→ <returned objects> TRUE
<passed objects> #message→ <passed objects> FALSE

There are many messages, but the messages most likely to be of interest are documented as follows:

Message Purpose Decimal message number
Input arguments → Objects returned by the handler

Input Form Messages

These messages are processed by the main input form message handler.

Title Grob 2
→ 131x7_grob

Input Form Menu 15
→ { menu }

Three Menu Keys 16
→ { Key4 Key5 Key6 }

|CALC|Key Event 28
→ FALSE Cancel not allowed
→ TRUE Cancel allowed

| OK |Key Event 29
→ FALSE OK not allowed
→ TRUE OK allowed

Field Messages

These messages are processed by the individual field message handlers and are specific to the related field.

Check Object Type 45
→ FALSE Invalid Object Type
→ TRUE Valid Object Type

Check Object Value 46
→ FALSE Invalid Object Value
→ TRUE Valid Object Value

9.4.8 Input Form Data Access

While an input form is active the objects gFldVal and GetFieldVals may be used to recall the values for all the
fields. Fields are numbered in the order of their specification.

gFldVal #C50B0h G/GX XLIB 176 197
Recall the values for an individual field

#field_number → Field_Value
GetFieldVals #C80B0h G/GX XLIB 176 200
Recall the values for all the fields

→ Field_Values

9.4. INPUT FORMS 175

Example: :: ONE gFldVal ; returns the value of the first field.

While an input form is active, state information is saved in null-named temporary variables. A few contain
basic information that might be useful:

4GETLAM → #current_field_number
5GETLAM → #focus_position
12GETLAM → $title
14GETLAM → #number_of_fields
15GETLAM → #number_of_labels

9.4.9 Customizing Input Form Menus

There are twelve standard input form softkeys:

Key 1 Key 2 Key 3 Key 4 Key 5 Key 6
Row 1 |EDIT | |CHOOS| | CHK | | | |CANCL| | OK |
Row 2 |RESET| |CALC | |TYPES| | | |CANCL| | OK |

In row 1, the first three keys are reserved for field support. The last three are available for customization
by responding to message 16. If an application doesn’t need the second row (the |CALC| key represents a
potential landmine for a robust application), the entire menu can be customized by responding to message 15.

Two built-in key objects are available to help build custom input form menus: DoKeyCancel and DoKeyOK:

DoKeyCancel #590B0h G/GX XLIB 176 89
Process a “CANCEL” keystroke, terminating an input form

→ FALSE
DoKeyOK #5A0B0h G/GX XLIB 176 90
Process an “OK” keystroke, terminating an input form

→ Field_Values TRUE

Customizing Three Menu Keys. By responding to message 16, you can supply your own keys for row 1
positions four, five, and six. You must supply a list of exactly three key definitions and TRUE (in addition to
the TRUE indicating that the message has been handled).

The following input form message handler creates a new key |ALERT| in position four and supplies the stan-
dard |CANCL| and | OK | keys in positions five and six:

(#msg → FALSE Not handled)
(#16 → { Key1 Key2 Key3 } TRUE TRUE)
::
SIXTEEN #<> case FALSE Respond only to message 16
{ List of 3 key definitions:
{ Key 1:
"ALERT" Label
:: Procedure:
TakeOver MUST be a TakeOver secondary
"Alert!" Text for message box
NINE FIFTEEN Min and max character widths
MINUSONE No grob
' MsgBoxMenu Message box menu
DoMsgBox Display the message box
DROP Discard the returned flag

;
}
{ "(AN(L" :: TakeOver DoKeyCancel ; } Standard |CANCL| key
{ "OK" :: TakeOver DoKeyOK ; } Standard | OK | key

}
TRUE Flag needed by menu builder
TRUE Indicates message handled

;

176 CHAPTER 9. GRAPHICAL USER INTERFACES

The program INF3 (supplied on the disk but not listed here) uses this message handler to extend the INF2
example.

Customizing the Entire Input Form Menu. There are two principal motivations for customizing the entire
input form menu:

• You can rename a standard key, like | OK | to a verb, like |DRAW| in the PLOT input form.

• You can eliminate keys that are either distracting or dangerous. Keys like |RESET| and |TYPES| are
distracting in a well-confined application, but |CALC| is quite dangerous, since this key gives the user
access to the entire calculator.

By responding to message 15, you can supply a unique menu definition. The menu definition must be supplied
as a secondary consisting of two parts — NoExitAction and the menu list:

:: NoExitAction { menu keys } ;

To help build the menu, you can use the standard first three keys that are available in the list IFMenuRowl, and
the standard second menu row which is available in the list IFMenuRow2.

IFMenuRow1 #050B0h G/GX XLIB 176 5
A list containing the standard first three input form softkeys

→ { EDIT CHOOSE CHK }
IFMenuRow2 #060B0h G/GX XLIB 176 6
A list containing the standard second row of input form softkeys

→ { RESET CALC TYPES NullMenuKey CANCEL OK }

The following input form message handler creates a new key |ALERT| in position four and supplies the stan-
dard |CANCL| and | OK | keys in positions five and six:

(#msg → FALSE Not handled)
(#16 → { Key1 Key2 Key3 } TRUE TRUE)
::
FIFTEEN #<> case FALSE Respond only to message 15
' NoExitAction Place NoExitAction on the stack
IFMenuRowl Get the first three standard keys
{ List of 3 key definitions:

{ Key 1:
"ALERT" Label
:: Procedure:
TakeOver MUST be a TakeOver secondary
"Alert!" Text for message box
NINE FIFTEEN Min and max character widths
MINUSONE No grob
' MsgBoxMenu Message box menu
DoMsgBox Display the message box
DROP Discard the returned flag

;
}
{ "(AN(L" TakeOver DoKeyCancel ; } Standard |CANCL| key
{ "OK" TakeOver DoKeyOK ; } Standard | OK | key

}
&COMP Concatenate the two lists
TWO ::N Build the secondary
TRUE Indicates message handled

;

The program INF4 (supplied on the disk but not listed here) uses this message handler to extend the INF3
example. Note that INF3 and INF4 are identical except that INF4 does not have the second row of standard
input form keys.

9.4. INPUT FORMS 177

9.4.10 ORBIT Example

This program is a System-RPL implementation of an example by the same name in The HP48 Handbook (also
provided on the disk in the USERRPL directory). ORBIT models a particle in a chaotic orbit. This program
was inspired by the program MIRA in the book Fractals — Endlessly Repeated Geometrical Figures (Princeton,
New Jersey: Princeton University Press, 1991) by Hans Lauwerier.

The successive iterates are calculated by:

xn+1 = yn − F (xn)

yn+1 = −bxn + F (xn+1)

where:

F (x) = ax+ 2(1−a)x2

1+x2

The value for a controls the chaotic behavior (orbits are stable when a is 1). The value of b controls the spiral
nature of the orbit. If b is just slightly less than 1, the orbit spirals inward.

An input form is used to enter and verify the input parameters n (the number of iterates), initial values for a
and b, the starting position x and y, and the scaling coordinates. There are two message handlers:

• The field message handler for n verifies a positive number of iterates.

• The form message handler provides a custom menu that adds a |SHOW|, renames | OK | to |DRAW|,
verifies that all fields have data when |DRAW| is pressed, and omits the standard second menu row.

To get acquainted with ORBIT, begin with a somewhat stable orbit. Reduce a to see its effect on the orbit and
adjust the scale to keep the picture large, then reduce b to make the orbit spiral inward:

n a b x y PMIN PMAX
700 .95 1 0 7.5 (-25,-10) (27,10)
700 .9 1 0 7.5 (-20,-8) (22,8)
2200 .9 .998 0 7.5 (-20,-8) (22,8)

Here’s some more to try. Remember that very small variations in initial conditions can result in dramatic
changes to the orbit. For instance, try the third example below with values for a of -.24, -.25, and -.26.

n a b x y PMIN PMAX
600 -.4 .99 4 0 (-12,-10) (13,10)
900 -.48 .935 4.1 0 (-11,-10) (14,7)
500 -.05 .985 9.8 0 (-13,-11) (17,11)

1000 -.24 .998 3 0 (-12,-10) (14,10)
1000 .2 1 11 0 (-20,-16) (22,17)
400 .3 1 8 0 (-35,-19) (35,19)
500 .4 1 0 5 (-13,-8) (16,8)

ORBIT 1278.5 Bytes Checksum #E440h
(→)

178 CHAPTER 9. GRAPHICAL USER INTERFACES

INCLUDE GUI.H Include input form DEFINEs

EXTERNAL DoKeyCancel External declarations for objects that are
EXTERNAL DoKeyOK referenced by rompointer
EXTERNAL IFMenuRow1
EXTERNAL gFldVal
EXTERNAL GetFieldVals
EXTERNAL grobAlertIcon
EXTERNAL DoMsgBox
EXTERNAL MsgBoxMenu

::
AtUserStack No arguments, clear saved command name

Specify the input form labels:

"ITERATES:" COL1 LROW1 input form labels
"A:" COL1 LROW2
"B:" COL12 LROW2
"X:" COL1 LROW3
"Y:" COL12 LROW3
"PMIN:" COL1 LROW4
"PMAX:" COL12 LROW4

Specify the input form fields:

' :: Message handler for ITERATES field
FORTYSIX #<> case FALSE Respond only to message 46
%0 %> Test to see if number is greater than zero
TRUE Signal that the message has been handled

;
COL7 FROW1 FWIDTH8 FHEIGHT Field dimensions
FTYPE_TEXT Field type
{ OBTYPE_REAL } Allow only real numbers
' :: Decompile object
DUP MINUSONE EQUAL casedrop NULL$ Show null string if no data has been entered
EDITDECOMP$ Else display in STD format (similar to

FMT_STD)
;
"ENTER THE NUMBER OF ITERATES" Help text
OPTDATA_NULL OPTDATA_NULL No choose box data for a text field
NOVAL NOVAL No value for reset and initial values

'DROPFALSE Default message handler for A field
COL2 FROW2 FWIDTH8 FHEIGHT Field dimensions
FTYPE_TEXT Field type
{ OBTYPE_REAL } Allow only real numbers
FMT_STD Use STD display formatting
"'A' CONTROLS THE CAOTIC BEHAVIOR" Help text
OPTDATA_NULL OPTDATA_NULL No choose box data for a text field
NOVAL NOVAL No value for reset and initial values

'DROPFALSE Default message handler for B field
COL13 FROW2 FWIDTH8 FHEIGHT Field dimensions
FTYPE_TEXT Field type
{ OBTYPE_REAL } Allow only real numbers
FMT_STD Use STD display formatting
"'B' CONTROLS THE SPIRAL" Help text
OPTDATA_NULL OPTDATA_NULL No choose box data for a text field
NOVAL NOVAL No value for reset and initial values

9.4. INPUT FORMS 179

'DROPFALSE Default message handler for X field
COL2 FROW3 FWIDTH8 FHEIGHT Field dimensions
FTYPE_TEXT Field type
{ OBTYPE_REAL } Allow only real numbers
FMT_STD Use STD display formatting
"'X' IS THE STARTING POSITION X" Help text
OPTDATA_NULL OPTDATA_NULL No choose box data for a text field
NOVAL NOVAL No value for reset and initial values

'DROPFALSE Default message handler for Y field
COL13 FROW3 FWIDTH8 FHEIGHT Field dimensions
FTYPE_TEXT Field type
{ OBTYPE_REAL } Allow only real numbers
FMT_STD Use STD display formatting
"'Y' IS THE STARTING POSITION Y" Help text
OPTDATA_NULL OPTDATA_NULL No choose box data for a text field
NOVAL NOVAL No value for reset and initial values

'DROPFALSE Default message handler for PMIN
COL4.5 FROW4 FWIDTH7 FHEIGHT Field dimensions
FTYPE_TEXT Field type
{ OBTYPE_CMP } Allow only complex numbers
FMT_STD Use STD display formatting
"LOWER LEFT DISPLAY COORDINATE" Help text
OPTDATA_NULL OPTDATA_NULL No choose box data for a text field
NOVAL NOVAL No value for reset and initial values

'DROPFALSE Default message handler for PMAX
COL15.5 FROW4 FWIDTH7 FHEIGHT Field dimensions
FTYPE_TEXT Field type
{ OBTYPE_CMP } Allow only complex numbers
FMT_STD Use STD display formatting
"UPPER RIGHT DISPLAY COORDINATE" Help text
OPTDATA_NULL OPTDATA_NULL No choose box data for a text field
NOVAL NOVAL No value for reset and initial values

Now specify the remaining input form parameters

SEVEN Seven labels
SEVEN Seven fields
' :: Message handler:
FIFTEEN #=casedrop Message 15: input form menu
::
' NoExitAction Put NoExitAction on the stack
IFMenuRow1 List of first three standard keys
{ List of last three custom keys:
{
"SHOW" Label for SHOW key
::
TakeOver Must be a TakeOver secondary
DOCLLCD Clear the display
TURNMENUOFF Turn off the menu
5GETLAM gFldVal Get the value for the current field
DUP MINUSONE EQUAL Test to see if the field is undefined
ITE If undefined,
:: DROP "Undefined" ; display “Undefined”
EDITDECOMP$ else decompile the value

DISPROW4 Display the string
"Press any key to continue\1F"
$>grob Build the prompt grob
HARDBUFF ZERO FIFTYSIX GROB! Display the prompt grob
WaitForKey 2DROP Wait for a key, discard the location

180 CHAPTER 9. GRAPHICAL USER INTERFACES

TURNMENUON Turn the menu back on
;

}
{
"(AN(L" Standard CANCEL key
:: TakeOver DoKeyCancel ;

}
{
"DRAW" Standard OK key with different label
:: TakeOver DoKeyOK ;

}
}
&COMP Concatenate the two lists of key definitions
TWO ::N Build the secondary with NoExitAction
TRUE Signal the message was handled

;
TWENTYNINE #<> case FALSE Reject all messages other than 29
GetFieldVals Get the field values
15GETLAM Get the number of field values
TRUE 1LAMBIND Bind TRUE in a temporary variable
ZERO_DO (DO) Loop to test each value
MINUSONE EQUAL IT :: FALSE 1PUTLAM ; If a value is undefined, store FALSE in temp

var
LOOP
1GETABND Recall flag, abandon temporary environment
DUP ?SKIP If there was an undefined value
::
"Undefined\0AValue" Display a message box
NINE FIFTEEN
grobAlertIcon
MsgBoxMenu
DoMsgBox
DROP

;
TRUE Signal that message 29 was handled

;
"ORBIT" Title for the input form

Now display the input form

DoInputForm Display the input form
NOT?SEMI Quit if cancelled

The user pressed DRAW, the parameters were verified, and now we’re ready to go. The stack at this point contains:
(#Iterates %a %b %x %y C%PMIN C%PMAX →)

C%>% PUTYMAX PUTXMAX Store PMIN
C%>% PUTYMIN PUTXMIN Store PMAX
BINT_131d SIXTYFOUR MAKEPICT# Create blank PICT
TOGDISP ZEROZERO WINDOWXY TURNMENUOFF Display PICT with no menu
%2 5PICK %2 %* %- Calculate intermediate value
3PICK DUP %* DUP Calculate initial value for w
3PICK %*
7PICK 6PICK %* %+
SWAP %1 %+ %/
%0 Initial value for z
{ LAM a LAM b LAM x LAM y LAM c LAM w LAM z)
BIND Create local variables
COERCE ZERO DO Loop for n iterations
ATTN? IT ZEROISTOPSTO Quit if ATTN pressed
LAM x INDEX@ TEN #> IT Plot only after 1st 10 points
:: DUP LAM y %>C% C%># PIXON3 ;

9.4. INPUT FORMS 181

' LAM z STO Save old x in z
LAM b LAM y %* LAM w %+ Calculate new x
DUP ' LAM x STO
LAM a OVER %* SWAP DUP %* Calculate new w
DUP LAM c %* SWAP %1 %+ %/ %+
DUP ' LAM w STO
LAM z %- ' LAM y STO Complete new value for y

LOOP
ABND Abandon temporary environment when done
ATTNFLGCLR FLUSHKEYS Clear the attention flag and flush the key buffer

;

182 CHAPTER 9. GRAPHICAL USER INTERFACES

Chapter 10

Introducing Saturn

There are times in application development when System-RPL simply won’t do the job or is too inefficient,
so you want to write some code in assembly language. We summarize the CPU and instruction set here, but
we also encourage you to review the document SASM.DOC supplied by Hewlett-Packard (on the disk). In
particular, SASM.DOC provides some detailed information about each instruction (opcode, cycles to execute,
etc.) that we omit here.

Hewlett-Packard has used the Saturn CPU since the early 1980s for the core of all calculators and the HP-71B
handheld BASIC computer. Several variations of ICs using this CPU have evolved over the years, but the chip
used in the HP 48 family represents the most mature implementation. The CPU is optimized for BCD math
and low power consumption, traits which have helped characterize HP calculators for many years.

We begin by introducing the CPU, the instruction set. The basic mechanics of the RPL/assembler interface
from the programmer’s perspective are then introduced in the next chapter.

The Saturn architecture is based on a 4-bit bus, thus data is accessed a half byte at a time (these quantities are
called “nibbles”). The physical address space is 512K bytes — addresses are represented as 20-bit quantities.
Programs written in assembly language should be written so as to be completely relocatable in the address
space.

10.1 The Saturn CPU

The CPU has four working registers (A–D) and five scratch registers (R0–R4), each 64 bits wide. The data
pointer registers, program counter, and return stack are all 20 bits wide. A four-bit pointer register P is used
to point into the working registers. The input register is 16 bits wide, and the output register is 12 bits wide.
The low-order 12 status bits are called register ST.

183

184 CHAPTER 10. INTRODUCING SATURN

10.1.1 The Working and Scratch Registers

The working registers A–D, the pointer register P, and the scratch registers are the workbench of the CPU.
The 64-bit (16-nibble) working registers A–D are used for data manipulation, and are divided into 9 fields as
follows:

Field Description
W Word (all 16 nibbles)
A Address field (nibbles 0–4)
B Byte (nibbles 0 & 1)
X Exponent (nibbles 0–2)
XS Exponent sign (nibble 2)
M Mantissa (nibbles 3–14)
S Mantissa sign
P Nibble referenced by the P register
WP Nibbles 0 — the nibble referenced by the P register

As mentioned earlier, the CPU has been optimized for BCD math, and the fields S, M, XS, and X are commonly
used in BCD math routines. The A field is most frequently used for address and object size calculations.

The A and C registers are used for memory access via the data pointers and can also exchange data with the
five 64- bit scratch registers. Instructions like A=R0 move the entire contents of R0 into A, but instructions like
R0=A.F X permit field specific data exchange between working and scratch registers. In the latter example, the
X field of register R0 gets the contents of the X field of register A.

A note about notation: sometimes we refer to a specific field in a specific register by enclosing the field in
brackets. For instance, C[A] refers to the A field of the C register.

10.1. THE SATURN CPU 185

10.1.2 The Status Bits

Carry. The carry bit is affected by calculation or logical test operations.

Carry is set if:

• A register or data pointer is incremented and overflows

• A register or data pointer is decremented and underflows

• An add operation overflows

• A subtract operation borrows

• A test is true

Carry is cleared if:

• A register or data pointer is incremented and does not overflow

• A register or data pointer is decremented and does not underflow

• An add operation does not overflow

• A subtract operation does not borrow

• A test is false

Status Bits. There are 16 status bits referred to collectively as “status bits” (not to be confused with hardware
status bits). The lower 12 bits compose register ST. Information in register ST can be swapped with the X field
of the C register. The upper four bits are reserved for use by the operating system, but for most applications
the lower 12 are available.

Bit Name
12 Deep Sleep override
13 Indicates interrupt service occurred
14 Indicates interrupt system active
15 Disable interrupts

Hardware Status Bits. The hardware status bits are:

Bit Symbol Name
0 XM External Module Missing
1 SB Sticky Bit
2 SR Service Request
3 MP Module Pulled

The Sticky Bit (SB) is the only one of these of interest to programmers writing applications for the HP 48. This
bit is set when a non-zero bit is shifted off the right end (least significant) of a register. SB is only cleared by a
SB=0 instruction. There is a ?SB=0 instruction to test if the Sticky Bit is zero, but there is not a corresponding
?SB=1 test to see if the SB is set.

10.1.3 Input and Output Registers

The 16-bit input (IN) register and the 12-bit output (OUT) register are used to exchange data with the system
bus. They will be used for key scanning in an example shown later. Key scanning and sound effects are the
only uses you’ll likely have for these registers when writing code objects for the HP 48.

10.1.4 The Return Stack

Note that two levels of the hardware return stack are reserved for the interrupt system — applications should
never use more than 6 levels of the return stack.

186 CHAPTER 10. INTRODUCING SATURN

10.1.5 Arithmetic Mode

The Saturn CPU can perform register arithmetic in either hexadecimal (HEX) or decimal (DEC) modes. The
default mode for most operations in the HP 48 is HEX mode, however the math routines frequently use DEC
mode. The instructions SETHEX and SETDEC set these modes. If you write a code object that uses DEC mode,
be certain to execute SETHEX before returning to RPL, otherwise the HP 48 will crash. There are no test
instructions or status bits for the arithmetic mode, but the two instructions

LCHEX 9
C=C+1 P

or

LAHEX 9
A=A+1 P

will set the carry bit if the CPU is in decimal mode.

Instructions which increment or decrement P, D0, or D1 are always performed in HEX mode. Also, instructions
which add or subtract a constant from a specific field will be performed in HEX mode.

10.1.6 The Pointer Register

The pointer register P is a four-bit register used in field selections with the working registers. The pointer
register is also useful as a tiny counter register. P may be set, incremented, decremented, or exchanged with
the C register.

10.2 Instruction Set Summary

The following instruction section summarizes the Saturn instruction set. For detailed information about each
instruction, see the HP document SASM.DOC.

The SASM assembler defines four fields for each instruction which contain an optional label, an opcode, the
optional modifier, and optional comments: Standard practice for SASM usage is for the opcode field to begin in
column 9, the modifier field to begin in column 17, and comments to begin in column 33:

Columns: 1 9 17 33
Fields: label opcode modifier Comments
Example: NextLevel D1=D1+ 5 Point D1 to next stack level

Any source code line beginning with * will be treated as a comment.

10.2.1 Memory Access Instructions

Data Pointer Instructions.

In the following instructions,

• r = A or C

• ss = D0 or D1

• n is an expression whose hex value is from 0 through F

• nnnnn is an expression whose hex value is from 0 through FFFFF

During those operations that involve a calculation, the carry flag is set if the calculation overflows or borrows,
otherwise the carry flag is cleared.

10.2. INSTRUCTION SET SUMMARY 187

Instruction Description Examples
rss EX Exchange A field in r with ss AD0EX
rss XS Exchange nibbles 0 through 3 with ss AD0XS
ss =r Copy A field in r into ss D1=C
ss =r S Copy nibbles 0 through 3 in r into ss D1=AS
ss =ss + n Increment ss by n D1=D1+ 5
ss =ss - n Decrement ss by n D0=D0- 16
ss =(2) nnnnn Load ss with two nibbles from nnnnn D0=(2) A3
ss =(4) nnnnn Load ss with four nibbles from nnnnn D0=(4) FFC7
ss =(5) nnnnn Load ss with nnnnn D0=(5) =DSKTOP

Data Transfer Instructions.

In the following instructions,

• r = A or C

• fs = A, P, WP, XS, X, S, M, B, W, or a number n from 1 through 16

Instruction Description Examples
r =DAT 0 fs Copy data at address contained in D0 into fs field in r (or nibble 0 through C=DAT0 A

nibble n -1 in r) A=DAT0 5
r =DAT1 fs Copy data at address contained in D1 into fs field in r (or nibble 0 through C=DAT1 B

nibble n -1 in r) A=DAT1 1
DAT0=r fs Copy data of fs field in r (or in nibble 0 through nibble n -1 in r) to address DAT0=C A

contained in D0 DAT0=A 3
DAT1=r fs Copy data of fs field in r (or in nibble 0 through nibble n -1 in r) to address DAT1=C A

contained in D1 DAT1=A 3

10.2.2 Load Constant Instructions

In the following instructions,

• h is a hex digit

• i is an integer from 1 through 5

• nnnnn is an expression with hex value from 0 through FFFFF

• c is an ASCII character

During a load constant operation, the nibbles are loaded beginning at r(P), least significant nibble first. Load
operations can wrap from r(15) to r(0). A common coding mistake is to forget the setting of P during a load
constant operation.

Instruction Description Examples
LAHEX h ... h Load up to 16 hex digits into A. LCASC F247
LA(i) nnnnn Load i hex digits from the value of nnnnn into A. LAHEX 4142
LAASC 'c ... c ' Load up to eight ASCII characters into A. LAHEX 'AB'
LCHEX h ... h Load up to 16 hex digits into C. LAASC F247
LC(i) nnnnn Load i hex digits from the value of nnnnn into C. LCHEX 4142
LCASC 'c ... c ' Load up to eight ASCII characters into C. LCHEX 'AB'

10.2.3 P Register Instructions

In the following instructions,

• n is an expression whose hex value is from 0 through F

188 CHAPTER 10. INTRODUCING SATURN

The C register is the only working register used with the P register. All arithmetic calculations on the pointer
are performed in HEX mode. During calculation operations, the carry flag will be set if the calculation overflows
or borrows, otherwise the carry flag will be cleared.

Instruction Description Examples
P= n Set P register to n P= 6
P=P+1 Increment P register P=P+1
P=P-1 Decrement P register P=P-1
C+P+1 Add P register plus one to A field in C C+P+1
CPEX n Exchange P register with nibble n in C CPEX 15
P=C n Copy nibble n in C to P register P=C 2
C=P n Copy P register to nibble n in C C=P 0

10.2.4 Scratch Register Instructions

In the following instructions,

• r = A or C

• ss = R0, R1, R2, R3, or R4

• fs = A, P, WP, XS, X, S, M, B, W, or a number n from 1 through 16

Instruction Description Examples
r =ss Copy ss into r C=R4
ss =r Copy r into ss R0=A
rss EX Exchange r and ss AR1EX
r =ss .F fs Copy ss (fs) to r (fs) A=R0.F A
ss =r .F fs Copy r (fs) to ss (fs) R3=C.F M
rss EX.F fs Exchange r (fs) with ss (fs) CR2EX.F B

10.2.5 Shift Instructions

In the following instructions,

• r = A, B, C, or D

• fs = A, P, WP, XS, X, S, M, B, or W

Non-circular shift operations shift in zeros. If any shift-right operation, circular or non-circular, moves a non-
zero nibble or bit from the right end of a register or field, the Sticky Bit SB is set. The Sticky Bit is cleared only
by a SB=0 or CLRHST instruction.

Instruction Description Examples
r SRB Shift r right by one bit ASRB
r SRB.F fs Shift fs field in r right by one bit CSRB.F A
r SLC Shift r left by one nibble (circular) BSLC
r SRC Shift r right by one nibble (circular) CSRC
r SL fs Shift fs field in r left by one nibble DSL M
r SR fs Shift fs field in r right by one nibble ASR A

10.2.6 Logical Instructions

In the following instructions,

• (r , s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C)

• fs = A, P, WP, XS, X, S, M, B, or W

10.2. INSTRUCTION SET SUMMARY 189

Instruction Description Examples
r =r &s fs fs field in r AND fs field in s into fs field in r A=A&C A
r =r !s fs fs field in r OR fs field in s into fs field in r D=D!C XS

Note that XOR is missing. The following four instructions implement A XOR C in the A field:

B=A A Save a copy of A
B=B&C A A AND C
A=A!C A A OR C
A=A-B A A XOR C = (A OR C) - (A AND C)

10.2.7 Arithmetic Instructions

Arithmetic results depend on the current arithmetic mode. In HEX mode (set by SETHEX), nibble values range
from 0 through F. In decimal mode (set by SETDEC), nibble values range from 0 through 9, and arithmetic is
BCD arithmetic.

There are two groups of arithmetic instructions. In the first group (general), almost all combinations of the
four working registers are possible; in the second group (restricted), only a few combinations are possible.
During those operations that involve a calculation, the carry flag is set if the calculation overflows or borrows;
otherwise the carry flag is cleared.

General Arithmetic Instructions.

In the following instructions,

• (r , s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C)

• fs = A, P, WP, XS, X, S, M, B, or W

Instruction Description Examples
r =0 fs Set fs field in r to zero C=0 W
r =s fs Copy fs field in s into fs field in r A=C A
s =r fs Copy fs field in r into fs field in s C=A A
rs EX fs Exchange fs field in r and fs field in s ACEX A
r =r +r fs Double fs field in r (shift left by one bit) A=A+A A
r=r +1 fs Increment fs field in r by 1 C=C+1 B
r =r -1 fs Decrement fs field in r by 1 C=C-1 B
r =r +CON fs ,d Add constant d to field fs in r A=A+CON A,5
r =r -CON fs ,d Subtract constant d from field fs in r C=C-CON A,10
r =-r fs Tens complement or twos complement, depending on arithmetic

mode, of fs field in r . Clears carry if r (fs) was zero, otherwise
sets carry.

C=-C S

r =-r -1 fs Nines complement or ones complement, depending on arithmetic
mode, of fs field in r . Clears carry unconditionally.

C=-C-1 S

r =r +s fs Sum fs field in r and fs field in s into fs field in r C=C+A A
s =r +s fs Sum fs field in r and fs field in s into fs field in s A=C+A A

Restricted Arithmetic Instructions.

In the following instructions,

• (r , s) = (A, B), (B, C), (C, A), or (D, C)

• fs = A, P, WP, XS, X, S, M, B, or W

Instruction Description Examples
r =r -s fs Difference of fs field in r and fs field in s into fs field in r A=A-B A
r =s -r fs Difference of fs field in s and fs field in r into fs field in r B=C-B A
s =s -r fs Difference of fs field in s and fs field in r into fs field in s A=A-C A

190 CHAPTER 10. INTRODUCING SATURN

10.2.8 Branching Instructions

GOTO and GOSUB Instructions.

In the following instructions,

• label is a symbol defined in the label field of an instruction within the current code object

• =label is an entry in the lower 256K of the HP 48 operating system

• offset is the distance in nibbles to the specified label

• r = A or C

Instruction Description Examples
GOTO label Short relative jump (–2047 ≤ offset ≤ 2048) GOTO LBL01
GOYES label Short relative jump if test is true (–125 ≤ offset ≤ 130) ?A=C A

GOYES DoEqual
GOC label Short relative jump if carry set (–127 ≤ offset ≤ 128) GOC Done
GONC label Short relative jump if carry clear (–127 ≤ offset ≤ 128) GONC NotDone
GOLONG label Long relative jump (–32762 ≤ offset ≤ 32768) GOLONG End
GOVLNG =label Absolute jump GOVLNG =PUSH#ALOOP
GOSUB label Short relative subroutine jump (–2044 ≤ offset ≤ 2051) GOSUB parse
GOSUBL label Long relative subroutine jump (–32762 ≤ offset ≤ 32773) GOSUBL output
GOSBVL =label Absolute subroutine jump GOSBVL =POP#A
PC=r Direct jump to address in r [A] PC=A
r =PC Copies the PC to r [A] C=PC
r PCEX Direct jump to r [A], saving PC in r [A] APCEX
PC=(r) Indirect jump: r [A] points to the address to jump to PC=(C)

Note: All calls to HP 48 entries from code objects should use GOVLNG or GOSBVL.

Return Instructions

Instruction Description Examples
RTN Return RTN
RTNSC Return and set carry RTNSC
RTNCC Return and clear carry RTNCC
RTNSXM Return and set XM status bit RTNSXM
RTI Return from interrupt (enable interrupts) RTI
RTNC Return if carry set RTNC
RTNNC Return if no carry set RTNNC
RTNYES Return if test is true (used only with test instructions) ?ST=0 1

RTNYES

Return Stack Instructions

Instruction Description Examples
RSTK=C Push A field in C onto return stack RSTK=C
C=RSTK Pop return stack into A field in C C=RSTK

10.2.9 Test Instructions

Each test instruction must be followed by a GOYES or a RTNYES instruction. The test instruction and the GOYES
or RTNYES instruction combine to generate a single opcode. Each test will set the carry flag if true, or clear the
carry flag if false. All tests are unsigned and performed only on the selected field.

10.2. INSTRUCTION SET SUMMARY 191

Register Tests.

In the following instructions,

• (r , s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C)

• fs = A, P, WP, XS, X, S, M, B, or W

Instruction Description Examples
?r =s fs Is fs field in requal to fs field of s ? ?B=C A

GOYES ItIs
?r #s fs Is fs field in r not equal to fs field of s ? ?C#D S

GOYES CDSNotEqual
?r =0 fs Is fs field in r equal to zero? ?B=0 P

RTNYES
?r #0 fs Is fs field in r not equal to zero? ?B#0 P

RTNYES
?r >s fs Is fs field in r greater than fs field of s ? ?A>C A

GOYES Bigger
?r <s fs Is fs field in r less than fs field of s ? ?A<C A

GOYES Smaller
?r =s fs Is fs field in r greater than or equal to fs field of s ? ?B>=C WP

GOYES GThanE
?r <=s fs Is fs field in r less than or equal to fs field of s ? ?B<=C WP

GOYES LThanE

Register Bit Tests.

In the following instructions,

• n is an expression whose hex value is from 0 through F

• r = A or C

Instruction Description Examples
?r BIT=0 n Is bit n in r equal to 0? ?ABIT=0 2

RTNYES
?r BIT=1 n Is bit n in r equal to 1? ?CBIT=1 15

RTNYES

Pointer Tests.

In the following instructions,

• n is an expression whose hex value is from 0 through F

Instruction Description Examples
?P= n Is P register equal to n ? ?P= 0

GOYES Done
?P# n Is P register not equal to n ? ?P# 0

GOYES NotDone

192 CHAPTER 10. INTRODUCING SATURN

Program Status Bit Tests.

In the following instructions,

• n is an expression whose hex value is from 0 through F

Instruction Description Examples
?ST=0 n Is bit n in ST equal to 0? ?ST=0 0

RTNYES
?ST=1 n Is bit n in ST equal to 1? ?ST=1 1

GOYES TryAgain
?ST#0 n Is bit n in ST not equal to 0? ?ST#0 6

GOYES TryOver
?ST#1 n Is bit n in ST not equal to 1? ?ST#1 3

RTNYES

Hardware Status Bit Tests.

Instruction Description Examples
?XM=0 Is the External Module Missing bit clear? ?XM=0

RTNYES
?SB=0 Is the Sticky Bit clear? ?SB=0

GOYES NotShifted
?SR=0 Is the Service Request bit clear? ?SR=0

RTNYES
?MP=0 Is the Module Pulled bit clear? ?MP=0

GOYES MPClear

10.2.10 Register & Status Bit Instructions

Register Bit Instructions.

In the following instructions,

• n is an expression whose hex value is from 0 through F

• r = A or C

Instruction Description Examples
r BIT=0 n Clear bit n in r ABIT=0 0
r BIT=1 n Set bit n in r CBIT=1 9

Program Status Bit Instructions.

In the following instructions,

• n is an expression whose hex value is from 0 through F

Instruction Description Examples
ST=0 n Clear bit n in ST ST=0 0
ST=1 n Set bit n in ST ST=1 4
CSTEX Exchange X field in C and bits 0 through 11 in ST CSTEX
C=ST Copy bits 0 through 11 in ST into X field in C C=ST
ST=C Copy X field in C into bits 0 through 11 in ST ST=C
CLRST Clear bits 0 through 11 in ST CLRST

10.2. INSTRUCTION SET SUMMARY 193

Hardware Status Bit Instructions.

Instruction Description Examples
SB=0 Clear Sticky Bit (SB) SB=0
SR=0 Clear Service Request (SR) bit SR=0
MP=0 Clear Module Pulled (MP) bit MP=0
XM=0 Clear External Module (XM) bit XM=0
CLRHST Clear SB, SR, MP, and XM bits CLRHST

10.2.11 System Control Instructions

Instruction Description Examples
SETHEX Set arithmetic mode to hexadecimal SETHEX
SETDEC Set arithmetic mode to decimal SETDEC
CONFIG Configure a device to the address in C(A) CONFIG
UNCNFG Unconfigure a device at address in C(A) UNCNFG
RESET Send Reset command to the system bus RESET
BUSCB Issue bus command B BUSCB
BUSCC Issue bus command C BUSCC
BUSCD Issue bus command D BUSCD
SHUTDN Stop CPU, stay in low-power mode until wake-up SHUTDN
C=ID Copy chip ID from system bus to C(A) C=ID
SREQ? Set C(0) to service request response from bus, set SR if service

requested
SREQ?

INTOFF Disable maskable interrupts INTOFF
INTON Enable maskable interrupts INTON

10.2.12 Keyscan Instructions

Instruction Description Examples
OUT=C Copy X field in C into OUT OUT=C
OUT=CS Copy nibble 0 of C into OUT OUT=CS
A=IN Copy IN into nibbles 0 through 3 in A A=IN
C=IN Copy IN into nibbles 0 through 3 in C C=IN

Note that A=IN and C=IN must be executed on an even address. An reliable way to do this is to call the entries
AINRTN and CINRTN, illustrated in Keyboard Scanning on page 211.

10.2.13 NOP Instructions

Instruction Description Examples
NOP3 Three-nibble no-op NOP3
NOP4 Four-nibble no-op NOP4
NOP5 Five-nibble no-op NOP5

10.2.14 Assembler Pseudo-Op Instructions

The following pseudo-ops are a few of the pseudo-ops available in the SASM assembler.

Data Storage and Allocation.

In the following instructions,

• nnnnn is an expression whose hex value is from 0 through FFFFF

194 CHAPTER 10. INTRODUCING SATURN

• expr is an expression that evaluates to a constant from 0 through FFFFF

• m is a one digit decimal integer constant

• label is a symbol defined in the label field of an instruction within the current code object

• h is a hex digit

Instruction Description Examples
BSS nnnnn Allocate nnnnn zero nibbles here. Note: Do not write self-modifying

code objects that will be used in a library in the HP 48! (The library
checksums will become invalid.)

BSS 4

CON(m) expr Generate an m nibble constant CON(5) =DOCOL
REL(m) label Generate an m nibble relative offset REL(5) =EndGrob
NIBASC \ascii\ Generate up to 40 ASCII characters. Each character has the

nibbles reversed.
NIBASC \Fred\

NIBHEX h ... h Generate up to 80 hex digits NIBHEX 1424FC

Symbol Definition.

In the following instructions,

• symbol is a name for an address, defined in the label field of an instruction (global if preceded with =)

• expr is an expression that evaluates to a constant from 0 through FFFFF

Instruction Description Examples
symbol EQU expr Assigns the value expr to symbol. If symbol is already defined, an

error is generated.
size EQU 232

=SEMI EQU #0312B
symbol = expr Assigns the value expr to symbol . Replaces any existing value. size = 233

Chapter 11

Writing Your Own Code Objects

Assembly language code is encapsulated in a code object (type 25), which is one of the object types that the HP
48 recognizes. In this chapter we’ll introduce a few ways to write your own code objects.

11.1 Code Object Execution

When a code object begins to execute, it must account for information vital to System-RPL execution that
resides in the CPU. Four registers in the CPU contain this information, usually known as the “RPL pointers”:

D0 The instruction pointer

D1 The data stack pointer

B[A] The return stack pointer

D[A] (Available memory) DIV 5

In addition to the information in the registers described above, P is guaranteed to be 0 and the CPU is in HEX
mode. Both of these conditions must also be true when the code object terminates and the system returns to
RPL execution. There are two common ways to terminate code object execution and resume execution of the
RPL inner loop:

195

196 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

• Resume execution at the pointee of the top of the return stack:

A=DAT0 A Read the pointer to the next RPL object to be executed
D0=D0+ 5 Advance the instruction pointer
PC=(A) Branch to the next instruction

The example programs SWP and DRP9 illustrate this technique.

• Resume execution via another object. This example returns to RPL via TRUE:

LC(5) =TRUE Load the address of the object to execute
A=C A Copy to A
PC=(A) Branch to TRUE

The example program ABSF illustrates this technique.

Many code objects will take their arguments from the stack (via D1), save the RPL pointers, perform their
task, then restore the RPL pointers before returning to RPL execution. The entries SAVPTR and GETPTR may
be used to save the contents of D0, D1, B[A], and D[A] in reserved RAM locations and restore them later, thus
freeing the entire CPU for use by an application.

11.2 Stack Access

Stack manipulation tasks provide one way to introduce some simple tasks that do not require SAVPTR and
GETPTR, so we begin by illustrating some simple stack operations. We begin by illustrating the pointer path
from CPU register D1 to the actual object in memory:

The contents of D1 point to a series of 5-nibble stack pointers, each of which in turn point to the actual objects.
Note that TEMPOB is not the only place a stack pointer can point to — user variable memory is another
possible destination, and the differences are important. Stack pointers can also point to objects like the display
grobs and temporary environments.

11.2. STACK ACCESS 197

11.2.1 Example: SWAP Two Objects

The program SWP is the first example — it swaps the top two objects on the stack in exactly the same manner
as the built-in SWAP command. Notice that A and C are used (so B and D are not disturbed), and that D1 is
restored to its original value. Notice that only the pointers are shifted — the objects themselves do not move.

SWP 26.5 Bytes Checksum #D1C0h
(ob1 ob2 → ob2 ob1)

NIBASC /HPHP48-A/ This is a download header for binary transfer to the HP 48
CON(5) =DOCODE This is the prologue for a code object
REL(5) end The length field — indicates the size of the code object
A=DAT1 A Copy the stack level 1 pointer to A[A]
D1=D1+ 5 Advance D1 to stack level 2
C=DAT1 A Copy the stack level 2 pointer to C[A]
DAT1=A A Replace stack level 2 with the original stack level 1 pointer
D1=D1- 5 Move D1 back to stack level 1
DAT1=C A Replace stack level 1 with the original stack level 2 pointer

The next three instructions embody the RPL inner loop:
A=DAT0 A Read the pointer to the next RPL object to be executed
D0=D0+ 5 Advance the instruction pointer
PC=(A) Branch to the next instruction

end

11.2.2 Example: DROP Nine Objects

The program DRP9 drops nine objects from the stack very quickly. Dropping an object is very simple —
simply increment the top-of-stack pointer D1 by five nibbles and update the available memory stored in D[A].
Assuming there are no other stack pointers to the discarded object and the discarded object is in temporary
memory (TEMPOB), the object is effectively “orphaned” and its memory will be recovered during the next
garbage collection.

DRP9 also illustrates the use of a counter and the GONC instruction. We use the P register for the counter in
this example for several reasons:

• P is optimal for counting applications where no more than 16 repetitions are required. (Be sure that a
non-zero value of P during the loop won’t adversely affect data loading instructions like LCHEX.)

• Incrementing P is fast — taking only 3 cycles.

• When P is used for the counter, it is not neccessary to consume part of a working register for the counter.

This example could also be coded using P as a countdown counter, but the value of P would be 15 at the end,
then a P=0 instruction would have to be added for a safe exit back to RPL.

DRP9 24.5 Bytes Checksum #8093h
(ob1 ... ob9 →)

NIBASC /HPHP48-A/ This is a download header for binary transfer to the HP 48
CON(5) =DOCODE This is the prologue for a code object
REL(5) end The length field — indicates the size of the code object
P= 16-9 P will be used as a counter — we’ll count “up to 0”

LoopTop This label marks the top of the drop loop
D1=D1+ 5 Advance D1 to the next stack level
D=D+1 A Increment available memory
P=P+1 Increment the counter
GONC LoopTop If no carry, there’s more stack levels to do so branch to LoopTop

If carry is set, we’re done and P=0 (wrapped from F)
The next three instructions embody the RPL inner loop:

A=DAT0 A Read the pointer to the next RPL object to be executed
D0=D0+ 5 Advance the instruction pointer
PC=(A) Branch to the next instruction

end

198 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

11.3 Reading Assembly Language Entry Descriptions

The entries described here require specific conditions to be met in order to be used successfully. The entry and
exit conditions refer to the following criteria:

• The location of the RPL pointers — either in the CPU or saved in RAM.

• The arithmetic mode — HEX or DEC.

• Contents of various registers

• The state of the carry flag — CS = carry set, CC = carry clear

• The number of stack levels used by the routine (you should never use more than 6)

Unless stated otherwise, it is always assumed that the CPU is in HEX mode and register P is 0.

Most entries are called with GOSBVL, but some entries (like GETPTRLOOP) never return, since they restart the
RPL inner loop. The “Call with” entry in these descriptions suggests which type of call to use.

11.4 Saving and Restoring the RPL Pointers

The RPL pointers can be saved in reserved RAM locations by calling SAVPTR and restored by calling GETPTR.

SAVPTR #0679Bh
Saves D0, D1, B[A], and D[A] in reserved memory
Entry: RPL pointers in the CPU
Call with: GOSBVL
Exit: RPL pointers saved. D1, A[A], B[A], and D[A] are unchanged
Uses: D0, D1, B[A], C[A], D[A]
Stack Levels: 0
GETPTR #067D2h
Restores D0, D1, B[A], and D[A] from reserved memory
Entry: RPL pointers saved
Call with: GOSBVL
Exit: RPL pointers in CPU.
Uses: D0, D1, B[A], C[A], D[A]
Stack Levels: 0

There are several entry points which combine the process of restoring the RPL pointers and returning to
RPL execution, sometimes returning objects to the stack in the process. The most basic of these entries is
GETPTRLOOP, which has the following entry and exit conditions:

GETPTRLOOP #05143h
Restores D0, D1, B[A], and D[A] from reserved memory, then restarts the RPL inner loop
Entry: RPL pointers saved
Call with: GOVLNG
Exit: To RPL
Uses: D0, D1, B[A], C[A], D[A]
Stack Levels: 0

11.4.1 Example: Reversing Objects on the Stack

The program RVRSO reverses N objects on the stack, where N is a real number indicating the number of
objects to reverse. The source code illustrates a typical mix of System-RPL and assembler code to accomplish a
task. The System-RPL shell validates the input arguments, while the assembly language code does the actual
work of reversing a series of stack pointers.

11.4. SAVING AND RESTORING THE RPL POINTERS 199

RVRSO 75.5 Bytes Checksum #8501h
(ob1 ... obn N → obn ... ob1 N)
ASSEMBLE

NIBASC /HPHP48-A/ This is a download header for binary transfer to the
HP 48

RPL
::
0LASTOWDOB! CKNNOLASTWD Validate the number of arguments on the stack
ONE OVER #< IT If there’s at least two objects on the stack, execute the

code object
CODE

GOSBVL =SAVPTR Save the RPL pointers in RAM
GOSBVL =POP# A[A] = number of objects on the stack
C=A A #items in C[A]
C=C+C A #items * 2
C=C+C A #items * 4
C=C+A A C[A] = #items*5
B=0 W Zero out entire B register
B=A A B[A] = count
BSRB A Divide #items by 2
AD1EX A→ first item on stack
D1=A D1→ first item on stack
A=A+C A A[A] → past last item
DO=A D0→ past last item
DO=D0- 5 D0→ last item

RvrTop
B=B-1 A Decrement counter
GOC RvrBot If carries, no more pairs to reverse
A=DAT0 A Read first item
C=DAT1 A Read last item
DAT0=C A Write last item in first item’s original location
DAT1=A A Write first item in last item’s original location
D1=D1+ 5 Move D1 to next pointer location
D0=D0- 5 Move D0 to previous pointer location
GONC RvrTop (BET) Branch every time to RvrTop

*
RvrBot

GOVLNG =GETPTRLOOP Restore pointers, return to RPL
ENDCODE
UNCOERCE Convert #objects back into real number

;

There are two notation habits used in this listing to help understand the code. The first is the use of “(BET)” in
the branch to RvrTop. (BET) stands for “Branch Every Time” an unconditional branch. This tells a reader that
you intend this to be an unconditional branch, and is usually used where a branch is dependent on the state
of the carry flag. There is no need to use (BET) for a GOTO instruction. The other notation is the placement of
an asterisk (*) above the label RvrBot. This is used to indicate that control flow to the following label must be
from a jump instruction, and cannot flow from previous instructions.

11.4.2 Example: Clearing A Grob

This example might also live in a graphics discussion, but it’s a good way to get some practice with counters
and a simple way to save just one of the RPL pointers. The following code object uses D1, A[W], C[A], and one
level of the return stack to clear a grob.

To understand this code object, note the structure of a grob object:

Prologue Length Height Width Body

The prologue, length, height, and width fields are 5 nibbles each. The length field contains a self-relative
length to the end of the body. This means the length field is always at least 15, to account for the size of the
length, height, and width fields.

200 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

Notice that this object drops the grob pointer from the stack. If you don’t want the pointer dropped, just leave
out the two instructions that increment D1 and update D[A].

CLGRB 56.5 Bytes Checksum #E4D0h
(grob →)
NIBASC /HPHP48-A/
CON(5) =DOCODE
REL(5) end

A=DAT1 A A→ grob
*
* Optional: The next two instructions pop the grob pointer
*

D1=D1+ 5 Pop grob: first advance stack pointer
D=D+1 A then increment available mem DIV 5

*
CD1EX C[A] = updated stack pointer
D1=A D1→ grob prologue
RSTK=C Save D1 on return stack
D1=D1+ 5 D1→ grob length
A=DAT1 A A[A] = grob length
LC(5) 15 Length of length field, height, width
C=A-C A C[A] = number of nibbles to clear
D1=D1+ 15 Point D1 to first nibble of grob body
C=C-1 A Decrement length to option base 0
GOC quit If zero length, quit
A=0 W Clear A to write zeros
P=C 0 P = (length MOD 16)-1
CSR A Divide length by 16 to create block counter

nxtblk
C=C-1 A Decrement block counter
GOC rest If carries here, no more blocks to write
DAT1=A W Write a block of 16 zeros
D1=D1+ 16 Advance write pointer
GONC nxtblk (BET) Go see if there’s more blocks to do

*
rest

DAT1=A WP Write partial block
P= 0 Reset P

quit
C=RSTK Recover stack pointer
D1=C and put it back into D1
A=DAT0 A Read pointer to next object in runstream
D0=D0+ 5 Advance instruction pointer
PC=(A) Branch to next instruction

end

11.5 Stack Utilities

The entries described here are useful for popping objects from the stack or pushing objects on the stack.

11.5.1 Pop Utilities

While you can follow the stack pointer to the object directly in memory, remember that small bint values and
some real numbers can be represented by pointers to objects in ROM. It’s safer to pop the values into the CPU.

11.5. STACK UTILITIES 201

POP# #06641h
Pops a bint from the stack
Entry: (#→) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[A]=#, updated RPL pointers in the CPU
Uses: C[A]
Stack Levels: 0
POP2# #03F5Dh
Pops two bints from the stack
Entry: (#2 #1 →) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[A]=#2, C[A]=#1, updated RPL pointers in the CPU
Uses: C[A]
Stack Levels: 1
POP1% #29FDAh
Pops a real number from the stack
Entry: (%→) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[W]=%, RPL pointers saved, DEC mode
Uses: C[A], D[A], D0, D1
Stack Levels: 0
POP2% #2A002h
Pops two real numbers from the stack
Entry: (%2 %1 →) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[W]=#2, C[W]=#1, RPL pointers saved, DEC mode
Uses: D[A], D0, D1
Stack Levels: 0
popflag #61A02h
Pops a flag from the stack, sets carry if flag was TRUE
Entry: (FLAG→) RPL pointers in the CPU
Call with: GOSBVL
Exit: CS if flag=TRUE, RPL pointers in the CPU
Uses: A[A], C [A]
Stack Levels: 0
PopASavptr #3251Ch
Pops an object from the stack, saves pointers
Entry: (ob→) RPL pointers in the CPU
Call with: GOSBVL
Exit: A[A]→ob, RPL pointers saved
Uses: A[A], C[A]
Stack Levels: 0

11.5.2 Push Utilities

The push utilities execute fairly quickly and use few registers unless a garbage collection is needed. The
register usage and stack level usage below reflects the worst-case scenario — a trip through garbage collection.
There are a wide variety of flag utilities — there should be one to suit every need.

Bints

PUSHA #03A86h
Pushes a pointer to an object on the stack and restarts the RPL inner loop. Note: The pointer
must not reference an object in TEMPOB.
Entry: A[A]→ object, RPL pointers in the CPU
Call with: GOVLNG
Exit: (→ ob) To RPL

202 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

PUSH# #06537h
Pushes a bint on the stack
Entry: R0[A]=#, RPL pointers saved
Call with: GOSBVL
Exit: (→ #), updated RPL pointers in the CPU
Uses: A[W], B[W], C[W], D[W], ST[0], ST[10]
Stack Levels: 3
PUSH#LOOP #0357Fh
Pushes a bint on the stack, restarts the RPL inner loop
Entry: R0[A]=#, RPL pointers saved
Call with: GOVLNG
Exit: (→ #) To RPL
PUSH#ALOOP #0357Ch
Pushes a bint on the stack, restarts the RPL inner loop
Entry: A[A]=#, RPL pointers saved
Call with: GOVLNG
Exit: (→ #) To RPL
PUSH2# #06529h
Pushes two bints on the stack
Entry: R0 [A] =#1, R1 [A] =#2 RPL pointers saved
Call with: GOSBVL
Exit: (→ #1 #2), updated RPL pointers in the CPU
Uses: A[W], B[W], C[W], D[W], ST[0], ST[10]
Stack Levels: 4

Real Numbers

PUSH% #2A188h
Sets HEX mode, pushes a real number on the stack
Entry: A[W]=%, RPL pointers saved
Call with: GOSBVL
Exit: (→ %), updated RPL pointers in the CPU
Uses: A[W], B[W], C[W], D[W], ST[0], ST[10]
Stack Levels: 3
PUSH%LOOP #2A23Dh
Sets HEX mode, pushes a real number on the stack, restarts the RPL inner loop
Entry: A[W]=%, RPL pointers saved
Call with: GOSBVL
Exit: (→ %), To RPL
Uses: A[W], B[W], C[W], D[W], ST[0], ST[10]
Stack Levels: 3

Flags

GPOverWrTLp #62076h
Restores the RPL pointers, overwrites stack level 1 with TRUE, restarts the RPL inner loop
Entry: (ob→) RPL pointers saved
Call with: GOVLNG
Exit: (→ TRUE), To RPL
GPOverWrFLp #62096h
Restores the RPL pointers, overwrites stack level 1 with FALSE, restarts the RPL inner loop
Entry: (ob→) RPL pointers saved
Call with: GOVLNG
Exit: (→ FALSE), To RPL
GPOverWrT/FL #62073h
Restores the RPL pointers, overwrites stack level 1 with carry-specified flag, restarts the RPL
inner loop
Entry: (ob→) RPL pointers saved, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG
Exit: (→ FLAG), To RPL

11.5. STACK UTILITIES 203

GPPushTLoop #620B9h
Restores the RPL pointers, pushes TRUE on the stack, restarts the RPL inner loop
Entry: RPL pointers saved
Call with: GOVLNG
Exit: (→ TRUE), To RPL
GPPushFLoop #620D2h
Restores the RPL pointers, pushes FALSE on the stack, restarts the RPL inner loop
Entry: RPL pointers saved
Call with: GOVLNG
Exit: (→ FALSE), To RPL
GPPushT/FLp #620B6h
Restores the RPL pointers, pushes carry-specified flag on the stack, restarts the RPL inner loop
Entry: RPL pointers saved, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG
Exit: (→ FLAG), To RPL
OverWrTLoop #62080h
Overwrites stack level 1 with TRUE, restarts the RPL inner loop
Entry: (ob→) RPL pointers in CPU
Call with: GOVLNG
Exit: (→ TRUE), To RPL
OverWrFLoop #620A0h
Overwrites stack level 1 with FALSE, restarts the RPL inner loop
Entry: (ob→) RPL pointers in CPU
Call with: GOVLNG
Exit: (→ FALSE), To RPL
OverWrT/FLp #6209Dh
Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop
Entry: (ob→) RPL pointers in CPU, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG
Exit: (→ FLAG), To RPL
OverWrF/TLp #6207Dh
Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop
Entry: (ob→) RPL pointers in CPU, Carry: set=FALSE, clear=TRUE
Call with: GOVLNG
Exit: (→ FLAG), To RPL
PushTLoop #620C3h
Pushes TRUE, restarts the RPL inner loop
Entry: RPL pointers in CPU
Call with: GOVLNG
Exit: (→ TRUE), To RPL
PushFLoop #620DCh
Pushes FALSE, restarts the RPL inner loop
Entry: RPL pointers in CPU
Call with: GOVLNG
Exit: (→ FALSE), To RPL
PushT/FLoop #620D9h
Pushes carry-specified flag, restarts the RPL inner loop
Entry: RPL pointers in CPU, Carry: set=TRUE, clear=FALSE
Call with: GOVLNG
Exit: (→ FLAG), To RPL
PushF/TLoop #62000h
Overwrites stack level 1 with carry-specified flag, restarts the RPL inner loop
Entry: RPL pointers in CPU, Carry: set=FALSE, clear=TRUE
Call with: GOVLNG
Exit: (→ FLAG), To RPL

Arbitrary Objects

204 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

GPOverWrR0Lp #0366Fh
Restores the RPL pointers, overwrites stack level 1 with R0[A], restarts the RPL inner loop
Entry: (obany →) RPL pointers saved
Call with: GOVLNG
Exit: (→ obR0[A]), To RPL
GPOverWrALp #03672h
Restores the RPL pointers, overwrites stack level 1 with A[A], restarts the RPL inner loop
Entry: (obany →) RPL pointers saved
Call with: GOVLNG
Exit : (→ obA[A]) , To RPL

11.5.3 Examples: Indicated ABS

The code object ABSF pops a real number from the stack and tests the sign nibble. If the number is negative,
the sign nibble is changed to indicate a positive number. The number is pushed back on the stack, along with
a real number 0 or 1 to indicate whether the sign changed.

ABSF 40 Bytes Checksum #A901h
(% → |%| %flag)

CON(5) =DOCODE Code object prologue
REL(5) end The length field — indicates the size of the code object
GOSBVL =POP1% Pop a real number to A[W]
ST=0 1 Clear status bit 1
?A=0 S Test the sign nibble
GOYES Positive If zero, the number is positivesign nibble
A=0 S Otherwise set the sign nibble to zero (positive)
ST=1 1 Set status bit I to indicate sign change

Positive GOSBVL =PUSH% Push the number back on the stack
LC(5) =%0 Prepare to push %0
?ST=0 1 Did the sign get changed?
GOYES PushIt No, just push %0
LC(5) =%1 Yes, load address of %1

PushIt A=C A Copy the address to A
PC=(A) Branch to the real number object

end

The code object ABSF1 does the same job, but returns TRUE or FALSE, using PushT/FLoop:

ABSF1 34.5 Bytes Checksum #9448h
(% → |%| %flag)

CON(5) =DOCODE Code object prologue
REL(5) end The length field — indicates the size of the code object
GOSBVL =POP1% Pop a real number to A[W]
ST=0 1 Clear status bit 1
?A=0 S Test the sign nibble
GOYES Positive If zero, the number is positivesign nibble
A=0 S Otherwise set the sign nibble to zero (positive)
ST=1 1 Set status bit I to indicate sign change

Positive GOSBVL =PUSH% Push the number back on the stack
?ST=0 1 Did the sign get changed?
GOYES PushIt This test asserts the carry flag

PushIt GOVLNG =PushT/FLoop Push the flag
end

11.6 Memory Utilities

When the RPL pointers are in the CPU, available memory can be calculated by subtracting B[A] (the end of
the return stack) from the address in D1 (the first level of the data stack). If you’re just pushing a pointer on
the stack, just check that D[A] is non-zero.

11.6. MEMORY UTILITIES 205

11.6.1 Allocating Memory

Three entries are handy for allocating memory when a code object will be creating and returning a new object.

MAKE$ #05B79h
Creates a string object in TEMPOB with the specified number of characters. Generates an
error exit if there isn’t enough memory available to create the string and push it on the stack.
Object not pushed on stack if error exit.
Entry: C[A]=desired number of characters, RPL pointers saved
Call with: GOSBVL
Exit: R0[A]→ String, D0→ String body
Uses: A[W], B[W], C[W], D[W], D0, D1, ST[0], ST[10]
Stack Levels: 3
MAKE$N #05B7Dh
Creates a string object in TEMPOB with a length specified in nibbles. Generates an error exit
if there isn’t enough memory available to create the string and push it on the stack. Object
not pushed on stack if error exit.
Entry: C[A]=string body length in nibbles, RPL pointers saved
Call with: GOSBVL
Exit: R0[A]→ String, D0→ String body
Uses: A[W], B[W], C[W], D[W], D0, D1, ST[0], ST[10]
Stack Levels: 3
GETTEMP #039BEh
Allocates space in TEMPOB for an object
Entry: C[A]=number of nibbles to allocate, RPL pointers saved
Call with: GOSBVL
Exit: D0→ hole in TEMPOB
Uses: A[W], B[W], C[W], D[W], D0, D1, ST[0], ST[10]
Stack Levels: 3

Notes:

• GETTEMP does not account for the room needed to push the object on the stack.

• If your code object is part of a library and if merged memory is in port 1 and the library is being executed
out of a bank in port 2, the code object (or the secondary in which the code object is embedded) will be
copied to TEMPOB and executed from there. In unusual circumstances, the object being executed can
be deleted and overwritten by a garbage collection. It has been observed that when a garbage collection
happens, no problems occur if the “ghost copy” of the object is not overwritten by a new object after
garbage collection. You may wish to call MAKE$N with the assurance that a garbage collection will not
happen. To do this, do a garbage collect first, or set status bit 10 and GOSBVL ((=MAKE$N)+3). This
technique is illustrated in MKSTR below.

Example: Create a String

MKSTR is a secondary containing a code object that creates a string of spaces given a bint. Note that this
example has no type or range check code — a positive non-zero real number 1 is expected on the stack.

206 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

MKSTR 66 Bytes Checksum #E8F4h
(%characters → $)
:: Code object prologue
COERCE Convert real number character count into a bint

CODE
GOSBVL =POP# Pop the bint into A[A]
GOSBVL =SAVPTR Save the RPL pointers
C=A A Copy character count into C[A]
R1=C.F A Save character count in R1[A]
C=C+C A Double C[A] to make string body size in nibbles
ST=1 10 Flag garbage collected
GOSBVL ((=MAKE$N)+3) Create the string object, error if not enough memory
A=R1.F A Recover character count
LCHEX 20 Character value for a space

WrtChr
DAT0=C B Write space character
D0=D0+ 2 Advance the pointer
A=A-1 A Decrement the character count
?A#0 A If there are more characters,
GOYES WrtChr go write them
GOSBVL =GETPTR Restore the RPL pointers to the CPU
D1=D1- 5 Retard the stack pointer
D=D-1 A Decrement the available memory count
A=R0.F A A[A]-string prologue
DAT1=A A Write pointer to stack
A=DAT0 A Read pointer to next object in runstream
D0=D0+ 5 Advance return stack pointer
PC=(A) Branch to next object in runstream

ENDCODE
;

11.6.2 Memory Move Utilities

The following memory utilities are available for moving memory.

MOVEDOWN #0670Ch
Moves a block of memory from higher address to lower address
Entry: D0→ start of source, D1→ start of destination

C[A]=number of nibbles to move
RPL pointers saved

Call with: GOSBVL
Exit: D0→ end of source + 1, D1→ end of destination + 1, P=0
Uses: A[W], C[A], D0, D1, P
Stack Levels: 0
MOVEUP #066B9h
Moves a block of memory from lower address to higher address
Entry: D0→ end of source + 1, D1→ end of destination + 1

C[A]=number of nibbles to move
RPL pointers saved

Call with: GOSBVL
Exit: D0→ start of source, D1→ start of destination, P=0
Uses: A[W], C[A], D0, D1, P
Stack Levels: 0

11.6. MEMORY UTILITIES 207

ECUSER #039EFh
Expand/contract an object in user memory
Entry: A[A]→ insertion/deletion point

C[A]=number of nibbles to expand/contract
ST[5]=1 (expand) or ST[5]=0 (contract)
D0→ Object prologue
RPL pointers saved

Call with: GOSBVL
Exit: B[A]→ start of new block or just above deleted block

R0[A] = number of nibbles expanded/contracted
Interrupts disabled (call SysRPL object InitEnab to re-enable)
Garbage may be collected

Uses: A, B, C, D, D0, D1, R0, R1,R2, P, ST[0], ST[2], ST[10]
Stack Levels: 4

Note that ECUSER cannot be called from a code object that’s in TEMPOB or in USEROB, since TEMPOB may be
adjusted during garbage collection, and USEROB will be altered. The safest places from which to use ECUSER
are from port 0 or port 1.

Since ECUSER disables interrupts, you need to call InitEnab to restore interrupts.

InitEnab #0970Ah
Enable interrupts after using ECUSER

→

Example: Expanding a String in UserOb

EXSTR (listed on the next page) illustrates the use of ECUSER by inserting the characters “AB” at the beginning
of a string stored in a user variable. To try out EXSTR, do the following:

1. Download EXSTR to the HP 48.

2. Store it into a variable in port 0: e cEXSTRc RCL 0:EXSTR STO f

3. Store a string into variable TEST, put its name on the stack, and execute EXSTR from port 0, then view
the string:

e cTESTc "12345" OVER STO 0:EXSTR EVAL TEST f

→"AB12345"

Note that you now have all the tools to write a small database application that stores data in Library Objects.
Library objects are structured the same way as strings, except the prologue is different.

208 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

EXSTR 93.5 Bytes Checksum #F5CEh (When stored in USEROB variable EXSTR)
(ID →)
::
0LASTOWDOB! CK1NOLASTWD Clear saved command name, one argument
CK&DISPATCH1 idnt Require a global name object
::

@ NOTcase SETNONEXTERR Try to recall the variable, error if nonexistent
DUPTYPECSTR? NOTcase SETTYPEERR Generate error if variable does not contain a string

CODE
A=DAT1 A A[A]→string prologue
D1=D1+ 5 Pop the string
D=D+1 A
GOSBVL =SAVPTR Save RPL pointers
D0=A D0→string prologue
LC(5) 10 C[A] = size of prologue and length field
A=A+C A A[A]→start of string body
LC(5) 4 C[A]=number of nibbles to expand
ST=1 5 Signal to expand
GOSBVL =ECUSER Expand string object
A=B A
D1=A D1→expanded block start
LCASC \BA\ Load characters to write in C
DAT1=A 4 Write new characters
D1=D1- 5 D1→string length field
A=DAT1 A A[A]=old string length
C=R0.F A C[A]=expansion size
A=A+C A Add expansion size
DAT1=A A Write new string length
GOVLNG =GETPTRLOOP

ENDCODE
InitEnab Re-enable interrupts
;

;

11.6.3 Display Memory Addresses

The following techniques are useful for acquiring the addresses of display grobs in a version independent
manner.

ADISP

Point D1 at the prologue of ABUFF

D1=(5) (=addrADISP)+2
C=DAT1 A
D1=C

VDISP

Point D1 at the prologue of the currently displayed grob

D1=(5) (=addrVDISP)+2
C=DAT1 A
D1=C

VIDSP2

Point D1 at the prologue of the menu grob

D1=(5) (=addrVDISP2)+2
C=DAT1 A
D1=C

11.7. REPORTING ERRORS 209

11.7 Reporting Errors

The assembly language analogue to the System-RPL object ERRJMP is the entry Errjmp. If you wish to generate
an error using one of the built-in messages, load the message number in C[A] and go to Errjmp. There are two
entries available for this:

Errjmp #05023h
Stores the error number, restarts RPL at ERRJMP
Entry: A[A] = error#, RPL pointers in CPU
Call with: GOVLNG
Exit: To RPL
GPErrjmpC #10F40h
Sets P=0, HEXMODE, restores RPL pointers, stores the error number, restarts RPL at ERRJMP
Entry: C[A] = error#, RPL pointers saved
Call with: GOVLNG
Exit: To RPL

The following code object pops a real number off the stack and generates a Bad Argument Value error if
the number is negative.

ERR 30 Bytes Checksum #A915h
(% →)

CON(5) =DOCODE
REL(5) end
GOSBVL =POP1% Pop a real number (sets DEC mode)
SETHEX Reset HEX mode
?A=0 S Test the sign nibble
GOYES Positive If zero, just return to RPL
LCHEX 00203 Otherwise load error message number
GOVLNG =GPErrjmpC and generate the error

Positive
GOVLNG =GETPTRLOOP

11.8 Checking Batteries

If you’re writing a code object that will be executing for a long time (like a game), you may wish to check the
battery condition from time to time The entry ChkLowBat does this:

ChkLowBat #325AAh
Checks for low battery
Entry: ST15=0 (interrupts disabled), RPL pointers saved
Call with: GOSBVL
Exit: CS: Low Battery and C[A]=LowBatErr#; CC: Battery OK
Uses: A[A], B[A], C[A], D[A], D0, ST[7-0]
Stack Levels: 3

The following code object disables interrupts, checks the batteries using ChkLowBat, re-enables interrupts, and
returns with a flag indicating the condition of the batteries.

CKBAT 28 Bytes Checksum #4297h
(→ FLAG)

CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR Save the RPL pointers
ST=0 15 Disable interrupts
GOSBVL =ChkLowBat Check the batteries, assert the carry flag
ST=1 15 Re-enable interrupts
GOVLNG =GPPushT/FLp Push the flag based on carry

end

210 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

11.9 Warmstart & Coldstart

There may be times when you get into real trouble and a safe return to normal calculator execution is required.
Perhaps you detect that memory isn’t in good shape, something is missing, or a pointer is unreasonable. Three
“last resort” options are available, listed in order of increasing severity:

• GOVLNG =norecPWLseq (#01FBDh) Warmstarts without recording an entry in the warmstart log.

• GOVLNG =Coldstart (#01FD3h) Branches to “Try To Recover Memory?” prompt.

• GOVLNG =norecCSseq (#01FDAh) Unconditional memory clear (total coldstart).

The first option, a warmstart, may be used when you think TEMPOB is corrupt or other easily repairable
system problems can be handled without risking the loss of USEROB. The second option may be required if
you think USEROB is corrupt. It is impossible to imagine any use for the third “nuclear” option in a well-
designed application. We discourage people who would use either the second or third option as a joke or prank
— please confine your coding practices to those of responsible people.

11.10 Tone Generation

The entry makebeep can be used to generate steady tones at a specific frequency and duration, or you can
generate your own sound effects by oscillating the beeper yourself.

11.10.1 Steady Tones

The entry makebeep respects the system beeper flag (-56) and checks the CPU speed to make as accurate a tone
as possible.

makebeep #017A6h
Generates a beep
Entry: C[A]=delay (msec) D[A]=frequency (Hz), RPL pointers saved
Call with: GOSBVL
Exit: Interrupts ON (INTON)
Uses: A, B, C, D, R0, R1, R2, R3, D0, D1, P, Carry
Stack Levels: 1

TOOT 32 Bytes Checksum #21F1h
(→)

CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR
LC(5) 400
D=C A
LC(5) 1000
GOSBVL =makebeep
GOVLNG =GETPTRLOOP

end

11.10.2 Rising and Falling Tones

The beeper is a piezoelectric element wired to bit 11 of the OUT register. You can click the beeper “on” by
setting bit 11 and click it back “off” by clearing bit 11. Remember to leave it off! The example TONE shows
how to generate sweeping tones by oscillating the beeper bit. As a courtesy to people who might use your code,
please respect the status of the system beeper flag as shown below.

11.11. KEYBOARD SCANNING 211

TONE 95.5 Bytes Checksum #534Ah
(→)
::
56 TestSysFlag ?SEMI Exit if flag –56 is set

CODE
GOSBVL =SAVPTR Save RPL pointers
GOSUB SweepUp Generate rising sound
LC(5) 8048 Wait

Wait C=C-1 A
GONC Wait
GOSUB SweepDn Generate falling sound
GOVLNG =GETPTRLOOP Restore RPL pointers and exit

**
* Subroutine SweepUp *
**
SweepUp LA(2) 130 Starting tone (must be > ending tone)
UpLoop LC(2) 3 Intermediate delay

GOSUB Tone Generate the tone
A=A-1 B Decrement tone value
LC(2) 40 Ending tone (must be < starting tone)
?A>C B More tones to do?
GOYES UpLoop
RTN

**
* Subroutine SweepDn *
**
SweepDn LA(2) 40 Starting tone (must be < ending tone)
DnLoop LC(2) 1 Intermediate delay

GOSUB Tone Generate the tone
A=A+1 B Increment the tone value
LC(2) 130 Ending tone (must be > starting tone)
?A<C B More tones to do?
GOYES DnLoop
RTN

**
* Subroutine Tone: A[B] = Frequency C[B] = Intermediate delay *
**
Tone D=C B Copy intermediate delay to D[B]
ToneLp LCHEX 800 Set bit 11

OUT=C B Click speaker ON
C=A B Copy tone value

Dec1 C=C-1 B Delay
GONC Dec1
C=0 A Clear bit 11
OUT=C Click speaker OFF
C=A B Copy tone value

Dec2 C=C-1 B Delay
GONC Dec2
D=D-1 B Decrement tone length counter
GONC ToneLp Loop
RTN

end
ENDCODE
;

11.11 Keyboard Scanning

The HP 48 keyboard is wired to the IN and OUT registers. During normal operation, the CPU scans the
keyboard every millisecond and generates an interrupt when a key is pressed. Once the interrupt has been
generated, the keyboard handler scans the keyboard to see which keys have been pressed. While a key is down,
timer interrupts are scheduled to wake up the CPU every 1/16 of a second. This permits scans to see which key

212 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

or keys are down, and lets the handler update the key buffer when a key is released. An application can scan
the keyboard directly at full CPU speed, or shut down to save power between keystrokes. The former technique
might be appropriate for a game where objects are moving; the latter might be better if the application is just
waiting for user input.

To look for a particular key, set the appropriate bits of the OUT register, then AND the value from the IN
register with an input mask. The table below shows the mask values for each key. For instance, the OUT mask
for [CST] is 080 and the IN mask is 0008. The [ON] is mapped to bit 15 of IN only and generates a nonmaskable
interrupt. To prevent the interrupt system from intercepting keys, you’ll need to disable interrupts.

[A] [B] [C] [D] [E] [F]
002/0010 100/0010 100/0008 100/0004 100/0002 100/0001
[MTH] [PRG] [CST] [VAR] k [NXT]

004/0010 080/0010 080/0008 080/0004 080/0022 080/0001
['] [STO] [EVAL] p q r

001/0010 040/0010 040/0008 040/0004 040/0002 040/0001
[SIN] [COS] [TAN] [

√
x] [yx] [1/x]

008/0010 020/0010 020/0008 020/0004 020/0002 020/0001
[ENTER] [+/−] [EEX] [DEL] <
010/0010 010/0008 010/0004 010/0002 010/0001

& [7] [8] [9] [÷]
008/0020 008/0008 008/0004 008/0002 008/0001

([4] [5] [6] [X]
004/0020 004/0008 004/0004 004/0002 004/0001

) [1] [2] [3] [-]
002/0020 002/0008 002/0004 002/0002 002/0001

[ON] [0] [.] [SPC] [+]
/8000 001/0008 001/0004 001/0002 001/0001

The following subroutine tests the keyboard and returns with carry set if q is down. Note that the C=IN
instruction must be executed from an even address. To do this reliably, call CINRTN, which just does C=IN and
returns.

LCHEX 00040
OUT=C
GOSBVL =CINRTN
LAHEX 00002
C=A&C A
?A#0 A
RTNYES
RTN

11.11.1 Managing Interrupts

If you’re going to look for keys yourself, it’s best to disable keyboard scanning. This frees up CPU time for
your application and avoids unwanted keystrokes wandering into the key buffer. There are three methods of
disabling interrupts, listed in order of decreasing severity:

• Call the entry DisableIntr to disable all interrupts, and AllowIntr to enable interrupts. This shuts off
all I/O, and carries the risk that if your code goes astray only a “paperclip reset” is possible (pushing a
paperclip in the hole under the upper-right rubber foot).

DisableIntr #01115h
Disable interrupts
Entry: Interrupts enabled
Call with: GOSBVL
Exit: Interrupts disabled
Uses: C[A], Carry
Stack Levels: 1

11.11. KEYBOARD SCANNING 213

AllowIntr #010E5h
Re-enable interrupts
Entry: Interrupts disabled
Call with: GOSBVL
Exit: Interrupts enabled
Uses: C[A] , Carry
Stack Levels : 1

• Clear bit 15 of the status register. This shuts off all I/O, and carries the risk that if your code goes astray
only a “paperclip reset” is possible.

• Execute the INTOFF instruction. This prevents only keyboard interrupts except for [ON], which always
generates an interrupt. This has the advantage that you can use [ON] — [C] to recover from code bugs.
The disadvantage is that the [ON] key can’t be detected reliably and will be processed by the interrupt
system. Note that makebeep, the ticking clock display, or alarms can lead to an INTON instruction being
executed.

11.11.2 Rapid Keyboard Scans

The example KEY1 scans the keyboard at full speed, exiting only when either [ON] or [F] have been pressed
and released.

KEY1 50.5 Bytes Checksum #FD27h
(→)

CON(5) =DOCODE
REL(5) end
ST=0 15 Turn off interrupts
LAHEX 08001 Input mask for [F] and [ON]

Top LCHEX 00100 Output mask for [F]
OUT=C Set keyboard lines to look for [F]
GOSBVL =CINRTN Read back the keyboard lines
C=A&C A Mask off lines for [F] and [ON]
?C=0 A Were either of our keys pressed?
GOYES Top No, go scan again

StillDn LCHEX 001FF Output mask for all rows
OUT=C
GOSBVL =CINRTN Read back keyboard state
?C#0 A Are there still keys down?
GOYES StillDn Yes, go scan again
ST=1 15 No, re-enable interrupts
A=DAT0 A Back to RPL
D0=D0+ 5
PC=(A)

end

The example KEY2 scans the keyboard until [ON] is pressed. During the scan [A] turns on a small line in the
display, and [B] turns the line off.

KEY2 125.5 Bytes Checksum #57E1h
(→)

CON(5) =DOCODE
REL(5) end
GOSBVL =SAVPTR Save RPL pointers
D1=(5) (=addrADISP) +2 Point D1 at the address of ABUFF’s address
A=DAT1 A Load the ABUFF address’s address into A[A]
D1=A Copy to D1
A=DAT1 A Read the address of ABUFF
D1=A D1→ABUFF prologue
D1=D1+ 15 Skip past prologue, length, dimensions
D1=D1+ 5 D1→First nibble of ABUFF data
ST=0 15 Turn off interrupts

214 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

GOSUB StillDn? Wait for no keys pressed

Top LCHEX 001FF Load mask for all rows
OUT=C Set keyboard lines
GOSBVL =CINRTN Read keyboard state
?C=0 A Any keys pressed?
GOYES Top No, go wait for a key

LCHEX 002 Look for [A] — first load row mask
OUT=C
GOSBVL =CINRTN
LAHEX 010 Load column mask for [A]
C=A&C X
?C=0 X Did we get [A]?
GOYES TryB No, go test for [B]
GOSUB StillDn? Yes, wait for key up
LAHEX FFFFF Load pattern to write to display
DAT1=A A Write pattern
GOTO Top Go back for another key

TryB LCHEX 100 Load row mask for [B]
OUT=C
GOSBVL =CINRTN
LAHEX 010 Load column mask for [B]
C=A&C X
?C=0 X Did we get [B]?
GOYES TryON No, go test for [ON]
GOSUB StillDn? Yes, wait for key up
A=0 A Load pattern to write to display
DAT1=A A Write pattern
GOTO Top Go back for another key

TryON LAHEX 08000 Load mask for [ON]
C=A&C A
?C#0 A Did we get [ON]?
GOYES GotON Yes, go quit
GOTO Top No, go look for another key

GotON GOSUB StillDn? Wait for key up
GOTO Done Go finish

StillDn? LCHEX 001FF Load row mask for all keys
OUT=C
GOSBVL =CINRTN
?C#0 A Was a key down?
GOYES StillDn? Yes, loop until no keys are down
RTN No, return

Done ST=1 15 Re-enable interrupts
GOVLNG =GETPTRLOOP Back to RPL

end

11.11.3 Low Power Keyboard Scans

You can save power by putting the calculator into a low power state between keystrokes. We’ll describe some
of the basic pieces, then put them all together in the example KEY3.

The Basic Timer Loop. In the basic low power loop a timer is set to wake the calculator up after a small
interval, then the SHUTDN instruction is executed, putting the calculator in a low power state. The calculator

11.11. KEYBOARD SCANNING 215

can wake up for several reasons, including a timer expiring or a key being pressed. The technique we show
here ignores other reasons for wakeup. When the calculator wakes up the keyboard is scanned and if no keys
are down the timer is reset and the calculator goes to sleep again.

LiteSlp D1=(5) =TIMERCTRL.1 Set timer 1 to wake up CPU
LC(1) 4
DAT1=C P
D1=(2) =TIMER1 Set a 5/16 second delay
LC(1) 5
DAT1=C P
LCHEX 1FF Preload the keyboard row lines
OUT=C

Wait SHUTDN WAIT FOR INTERRUPTS
LC(3) 1FF Load the row lines
OUT=C
GOSBVL =CINRTN Read the column lines
LAHEX 0803F Mask for all column lines
A=A&C A
?A#0 A Was a key pressed?
GOYES GetKey Yes, go see which one(s) are down
D1=(2) =TIMERCTRL.1 No, so look at timer control
C=DAT1 X Read timer status
?CBIT=0 3 Was timer expired?
GOYES Wait No, go back to sleep
GOSUB Blink Yes, blink the cursor
GOTO LiteSlp Then go back to sleep

Keyboard Debounce. The entry Debounce scans the keyboard until it has been stable for at least one timer
tick:

Debounce #009A5h
Scan the keyboard until stable, return bitmap of pressed keys
Entry: Interrupts disabled
Call with: GOSBVL
Exit: A[12-0]=Key bitmap
Uses: A, B, C, D[A], D0, D1, P, SB, Carry
Stack Levels: 0

The bits returned in A[12-0] encode keys as shown in the table below. Note that more than one key may be
down.

Nibble Bit 3 Bit 2 Bit 1 Bit 0
12 [B]
11 [C] [D] [E] [F]
10 [PRG] [CST] [VAR] k
9 [NXT] [STO] [EVAL] p
8 q r [COS] [TAN]
7 [

√
x] [yx] [1/x] [ENTER]

6 [+/−] [EEX] [DEL] <
5 & [SIN] [7] [8]
4 [9] [÷] ([MTH]
3 [4] [5] [6] [X]
2) [A] [1] [2]
1 [3] [-] ['] [0]
0 [.] [SPC] [+] [ON]

The Key Bitmap. After obtaining the bitmap, you can either load a 13 nibble mask to look for one or more
specific keys, or you can generate a number corresponding to the key that was down. In the latter case, you
may wish to ensure that just one key is down. The following code fragment (not used in the KEY3 example)
returns the number of keys pressed in C[B] given a key bitmap in B[W]:

216 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

Entry: B[W] = key bitmap
Call with: GOSUB CountKeys
Exit: C[B] = # of keys down, Carry set
CountKeys C=0 B Clear the key counter
AnySet? ?B=0 W Are all bits clear?

RTNYES Return if so
TstNib ?B#0 P Is the least significant nibble clear?

GOYES TstBit No, go check the bits in that nibble
BSR W Yes, shift in next nibble
GONC AnySet? Go see if there’s more to test

*
TstBit B=B+B P Shift nibble left, set carry if high bit was set

GONC TstBit If the high bit was clear, shift again
C=C+1 B Increment key counter
GONC TstNib Go see if more bits are set in this nibble

The following code fragment returns in B[A] the option-base-1 number of the least significant set bit in a
keymap in A[W]. The key number ranges from 1 ([ON]) to 49 ([B]).

Entry: A[W] = key bitmap with at least one bit set
Call with: GOSUB KeyNum
Exit: B[A] = key number
KeyNum B=0 A Clear the key number
NextNib ?A#0 P Is the least significant nibble clear?

GOYES TestBits No, go find which bit is set
B=B+CON B,4 Yes, add four to the key number,
ASR W shift the next nibble in,
GONC NextNib (BET) and go test the next nibble

TestBits B=B+1 B Increment the key number
SB=0 Clear the sticky bit
ASRB.F P Shift off a bit
?SB=0 Was it set?
GOYES TestBits No, go test the next bit
RTN Yes, return with key number in B[A]

Putting it All Together. The example KEY3 blinks a cursor line in the display while waiting for a key in
light sleep. When a key is pressed, the keycode is returned to the stack as a real number.

KEY3 201.5 Bytes Checksum #28B2h
(→ %keycode)
::
CLEARVDISP

CODE
GOSBVL =SAVPTR
D1=(5) (=addrADISP)+2
A=DAT1 A
D1=A
A=DAT1 A
LC(5) 20
A=A+C A
R1=A
GOSUB WaitKeyUp
GOSBVL =DisableIntr
GOSUB BusyOff
ST=0 1

LiteSlp D1=(5) =TIMERCTRL.1 Set timer 1 to wake up CPU
LC(1) 4
DAT1=C P
D1=(2) =TIMER1 Set a 5/16 second delay
LC(1) 5
DAT1=C P
LCHEX 1FF Preload the keyboard row lines
OUT=C

11.11. KEYBOARD SCANNING 217

Wait SHUTDN WAIT FOR INTERUPTS
LC(3) 1FF Load the row lines
OUT=C
GOSBVL =CINRTN Read the column lines
LAHEX 0803F Mask for all column lines
A=A&C A
?A#0 A Was a key pressed?
GOYES GetKey Yes, go see which one(s) are down
D1=(2) =TIMERCTRL.1 No, so look at timer control
C=DAT1 X Read timer status
?CBIT=0 3 Was timer expired?
GOYES Wait No, go back to sleep
GOSUB Blink Yes, blink the cursor
GOTO LiteSlp Then go back to sleep

GetKey GOSBVL =Debounce Debounce the keyboard, create bitmap in A
?A#0 W Was a key pressed?
GOYES GotKey Yes, go create a keycode
GOTO LiteSlp No, go wait again

GotKey GOSUB KeyNum Get the key number
A=0 A Clear A[A]
A=B B Copy to A,
R0=A.F A Save in R0 for PUSH#
GOSUB WaitKeyUp Wait for the key to be released
GOSBVL =AllowIntr Re-enable interrupts
GOSUB BusyOn Turn on the busy annunciator
GOSBVL =PUSH# Push the key number, restore RPL pointers
LC(5) =UNCOERCE Return to RPL, executing UNCOERCE
A=C A
PC=(A)

Subroutine to wait for keys to be released:

WaitKeyUp LCHEX 1FF Set row lines
OUT=C
GOSBVL =CINRTN Read column lines
LAHEX 0803F Mask for column lines
A=A&C A
?A#0 A Were any keys down?
GOYES WaitKeyUp Yes, go scan again
RTN No, return

Subroutine to blink cursor:

Blink C=0 A Clear C[A] to clear cursor
?ST=0 1 Was cursor off?
GOYES TurnOn Yes, go turn it on
ST=0 1 Turn off cursor status bit
GONC Write Go write the cursor

TurnOn
ST=1 1 Turn on cursor status bit
C=C-1 A Set C[A] to FFFFF

Write A=R1.F A Recover pointer to display
D1=A Copy to D1
DAT1=C A Write cursor
RTN

Subroutine to turn off busy annunciator:

BusyOff D0=(5) (=ANNCTRL)+1 Point at the annunciator nibble
C=DAT0 P Read nibble

218 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

CBIT=0 0 Clear annunciator bit
WrtRtn DAT0=C P Write nibble back

RTN

Subroutine to turn on the busy annunciator:

BusyOn D0=(5) (=ANNCTRL)+1 Point at the annunciator nibble
C=DAT0 P Read nibble
CBIT=1 0 Set annunciator bit
DAT0=C P Write nibble back
RTN

Subroutine to calculate the key number:

KeyNum B=0 A Clear the key number
NextNib ?A#0 P Is the least significant nibble clear?

GOYES TestBits No, go find which bit is set
B=B+CON B,4 Yes, add four to the key number,
ASR W shift the next nibble in,
GONC NextNib (BET) and go test the next nibble

*
TestBits B=B+1 B Increment the key number

SB=0 Clear the sticky bit
ASRB.F P Shift off a bit
?SB=0 Was it set?
GOYES TestBits No, go test the next bit
RTN Yes, return with key number in B[A]

ENDCODE
;

Processing Keycodes. Once you have a keycode from the KeyNum subroutine, there are several ways to
branch to the corresponding code. The first is best if your application defines only a few keys — just compare
individual key codes. The second is best if your application defines many keys. Both examples assume a key
number in B[A], and that the return to get another key is at the label LiteSlp.

The first example looks for [ENTER], p, and r:

LC(2) 29 Key number for [ENTER]
?B#C B
GOYES TryLeft
GOTO DoEnter

*
TryLeft LC(2) 37 Key number for p

?B#C B
GOYES TryRight
GOTO DoLeft

*
TryRight LC(2) 35 Key number for r

?B=C B
GOYES GoDoRight
GOTO LiteSlp Go for another key if not r

GoDoRight GOTO DoRight
*
DoEnter Process [ENTER]

GOTO LiteSlp
*
DoLeft Process p

GOTO LiteSlp
*
DoRight Process r

GOTO LiteSlp

The second example uses a table of 3-nibble offsets to the key subroutines. (Note that if your application is very

11.12. THE RVIEW DEBUGGING TOOL 219

large, you may need to use 4-nibble offsets.) The trick is to GOSUB around the table, which puts the table’s
starting address on the return stack.

Note that the references to the subroutines must be forward references, meaning that the key subroutines must
come after the table. If the subroutine was before the table, each table entry would have to be 5 nibbles to make
the address calculation correct.

GOSUB SendKey
REL(3) DoON Pointer for [ON]
REL(3) DoPlus Pointer for [+] (1)
...
REL(3) LiteSlp Pointer for undefined key
...
REL(3) DoB Pointer for [B] (49)

SendKey B=B-1 A Make option base 0 key number
C=RSTK Get address of key table
C=C+B A Add keynumber*3 to start of table
C=C+B A
C=C+B A
D0=C D0→key entry
A=0 A
A=DAT0 X Read offset to key routine
C=A+C A Add offset to table entry location
PC=C Branch to key routine

The example KEY4 (on the disk, but not listed here) uses this technique.

11.12 The RVIEW Debugging Tool

The subroutine RVIEW (Register VIEWer) has been provided to provide an additional example of various
techniques for writing code in assembly language and as a simple debugging aid that you can use as you
develop your programs. RVIEW is small, just a few thousand bytes in size, so you don’t have to allocate a lot
of memory to use it. RVIEW is in the RVIEW directory on the disk.

RVIEW will run on either S or G series calculators, but has three restrictions:

• The stack grob ABUFF must be full height — 64 rows. Note that by default ABUFF is 56 rows high, so
you may need to enlarge ABUFF (see Graphics on page 103).

• RVIEW is self-modifying, so you cannot run RVIEW from a write-protected card.

• RVIEW consumes three stack levels, so be sure they’re available.

11.12.1 The RVIEW User Interface

When RVIEW is executed, it saves the state of the CPU, displays the CPU register contents and windows into
memory, then restores the CPU and ABUFF to their original state upon exit. RVIEW has two screens, selected
with the |MORE| softkey:

In the first screen, the pointer arrow r refers to the active memory window — D0, D1, or M.

While RVIEW is active, the following keys are active:

[On] < Quits RVIEW

220 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

k q Moves the pointer arrow between the three memory windows

p r Increments or decrements the address of the active memory window

|MORE| Switches the display between the two screens

|ADDR| Lets you type a new address for the active memory window

| -1 | Decrements the address of the active memory window

| +1 | Increments the address of the active memory window

| -5 | Subtracts 5 from the address of the active memory window

| +5 | Adds 5 to the address of the active memory window

From the first screen, you can press [NXT] to display additional menu labels for address modification:

|-100| Subtracts #100h from the address of the active memory window

|+100| Adds #100h to the address of the active memory window

|-1000| Subtracts #1000h from the address of the active memory window

|+1000| Adds #1000h to the address of the active memory window

11.12.2 Using RVIEW

To use RVIEW in your code, just add the RVIEW source to your code and call RVIEW with a GOSUB. For
instance, if you were going to include RVIEW in the SWP example to see the stack before and after the swap
operation, the code would look like this:

NIBASC /HPHP48-A/ This is a download header for binary transfer to the
HP 48

CON(5) =DOCODE This is the prologue for a code object
REL(5) end The length field — indicates the size of the code object
GOSUB RVIEW
A=DAT1 A Copy the stack level 1 pointer to A[A]
D1=D1+ 5 Advance D1 to stack level 2
C=DAT1 A Copy the stack level 2 pointer to C[A]
DAT1=A A Replace stack level 2 with the original stack level 1

pointer
D1=D1- 5 Move D1 back to stack level 1
DAT1=C A Replace stack level 1 with the original stack level 2

pointer
GOSUB RVIEW
A=DAT0 A Read the pointer to the next RPL object to be executed
D0=D0+ 5 Advance the instruction pointer
PC=(A) Branch to the next instruction

*
RVIEW

RVIEW source code here
end

11.13 The PONG Game

The directory PONG on the disk contains an HP 48 implementation of the classic PONG game, implemented
as a compiled secondary including the game as a code object. To run the game transfer the file PONG to your
HP 48 and execute PONG.

11.13. THE PONG GAME 221

When PONG is running, the following keys are active:

[ON] < Quits PONG

[A] Moves the left player’s paddle up

[G] Moves the left player’s paddle down

[F] Moves the right player’s paddle up

[L] Moves the right player’s paddle down

The file MAKEPONG.BAT is a DOS batch file that will make the game based on the files PONG.S and
PONG.M.

We hope this will inspire some more games!

222 CHAPTER 11. WRITING YOUR OWN CODE OBJECTS

Appendix A

Messages

Hex Dec General Messages
001 1 Insufficient Memory
002 2 Directory Recursion
003 3 Undefined Local Name
004 4 Undefined XLIB Name
005 5 Memory Clear
006 6 Power Lost
007 7 Warning:
008 8 Invalid Card Data
009 9 Object In Use
00A 10 Port Not Available
00B 11 No Room in Port
00C 12 Object Not in Port
00D 13 Recovering Memory
00E 14 Try To Recover Memory?
00F 15 Replace RAM, Press ON
010 16 No Mem To Config All
101 257 No Room to Save Stack
102 258 Can’t Edit Null Char.
103 259 Invalid User Function
104 260 No Current Equation
106 262 Invalid Syntax

223

224 APPENDIX A. MESSAGES

Hex Dec Object Types
107 263 Real Number
108 264 Complex Number
109 265 String
10A 266 Real Array
10B 267 Complex Array
10C 268 List
10D 269 Global Name
10E 270 Local Name
10F 271 Program
110 272 Algebraic
111 273 Binary Integer
112 274 Graphic
113 275 Tagged
114 276 Unit
115 277 XLIB Name
116 278 Directory
117 279 Library
118 280 Backup
119 281 Function
11A 282 Command
11B 283 System Binary
11C 284 Long Real
11D 285 Long Complex
11E 286 Linked Array
11F 287 Character
120 288 Code
121 289 Library Data
122 290 External

Hex Dec General Messages
123 291 Null message
124 292 LAST STACK Disabled
125 293 LAST CMD Disabled
126 294 HALT Not Allowed
127 295 Array
128 296 Wrong Argument Count
129 297 Circular Reference
12A 298 Directory Not Allowed
12B 299 Non-Empty Directory
12C 300 Invalid Definition
12D 301 Missing Library
12E 302 Invalid PPAR
12F 303 Non-Real Result
130 304 Unable to Isolate

Hex Dec Low Memory
131 305 No Room to Show Stack
132 306 Warning
133 307 Error:
134 308 Purge?
135 309 Out of Memory
136 310 Stack
137 311 Last Stack
138 312 Last Commands
139 313 Key Assignments
13A 314 Alarms
13B 315 Last Arguments
13C 316 Name Conflict
13D 317 Command Line

225

Hex Dec Stack Operations
201 513 Too Few Arguments
202 514 Bad Argument Type
203 515 Bad Argument Value
204 516 Undefined Name
205 517 LASTARG Disabled

Hex Dec EquationWriter
206 518 Incomplete Subexpression
207 519 Implicit () off
208 520 Implicit () on

Hex Dec Floating Point Errors
301 769 Positive Underflow
302 770 Negative Underflow
303 771 Overflow
304 772 Undefined Result
305 773 Infinite Result

Hex Dec Array
501 1281 Invalid Dimension
502 1282 Invalid Array Element
503 1283 Deleting Row
504 1284 Deleting Column
505 1285 Inserting Row
506 1286 Inserting Column

Hex Dec Statistics
601 1537 Invalid

∑
Data

602 1538 Nonexistent
∑

DAT
603 1539 Insufficient

∑
Data

604 1540 Invalid
∑

PAR
605 1541 Invalid

∑
Data LN(Neg)

606 1542 Invalid
∑

Data LN(0)

Hex Dec Plot, Solve, Stat
607 1543 Invalid EQ
608 1544 Current equation:
609 1545 No current equation.
60A 1546 Enter eqn, press NEW
60B 1547 Name the equation, press ENTER
60C 1548 Select plot type
60D 1549 Empty catalog
60E 1550 undefined
60F 1551 No stat data to plot
610 1552 Autoscaling
611 1553 Solving for
612 1554 No current data. Enter
613 1555 data point, press

∑
+

614 1556 Select a model

Hex Dec Alarms
615 1557 No alarms pending.
616 1558 Press ALRM to create
617 1559 Next alarm:
618 1560 Past due alarm:
619 1561 Acknowledged
61A 1562 Enter alarm, press SET
61B 1563 Select repeat interval

226 APPENDIX A. MESSAGES

Hex Dec I/O, Plot, Solve, Stat
61C 1564 I/O setup menu
61D 1565 Plot type:
61E 1566 " "
61F 1567 (OFF SCREEN)
620 1568 Invalid PTYPE
621 1569 Name the stat data, press ENTER
622 1570 Enter value (zoom out if >1), press

ENTER

Hex Dec I/O, Plot, Solve, Stat
623 1571 Copied to stack
624 1572 x axis zoom w/AUTO.
625 1573 x axis zoom.
626 1574 y axis zoom.
627 1575 x and y-axis zoom.
628 1576 IR/wire:
629 1577 ASCII/binary:
62A 1578 baud:
62B 1579 parity:
62C 1580 checksum type:
62D 1581 translate code:
62E 1582 Enter matrix, then NEW
A01 2561 Bad Guess(es)
A02 2562 Constant?
A03 2563 Interrupted
A04 2564 Root
A05 2565 Sign Reversal
A06 2566 Extremum
A07 2567 Left
A08 2568 Right
A09 2569 Expr

Hex Dec Unit Management
B01 2817 Invalid Unit
B02 2818 Inconsistent Units

Hex Dec I/O and Printing
C01 3073 Bad Packet Block Check
C02 3074 Timeout
C03 3075 Receive Error
C04 3076 Receive Buffer Overrun
C05 3077 Parity Error
C06 3078 Transfer Failed
C07 3079 Protocol Error
C08 3080 Invalid Server Cmd.
C09 3081 Port Closed
C0A 3082 Connecting
C0B 3083 Retry #
C0C 3084 Awaiting Server Cmd.
C0D 3085 Sending
C0E 3086 Receiving
C0F 3087 Object Discarded
C10 3088 Packet #
C11 3089 Processing Command
C12 3090 Invalid IOPAR
C13 3091 Invalid PRTPAR
C14 3092 Low Battery
C15 3093 Empty Stack
C16 3094 Row
C17 3095 Invalid Name

227

Hex Dec Time
D01 3329 Invalid Date
D02 3330 Invalid Time
D03 3331 Invalid Repeat
D04 3332 Nonexistent Alarm

Hex Dec Polynomial Root Finder
0001 49153 Unable to find root

Hex Dec Multiple Equation Solver
E401 58369 Invalid Mpar
E402 58370 Single Equation
E403 58371 EQ Invalid for MINIT
E404 58372 Too Many Unknowns
E405 58373 All Variables Known
E406 58374 Illegal During MROOT
E407 58375 Solving for
E408 58376 Searching

Start End Unlisted Message Numbers
B901 B99B Miscellaneous
BA01 BA43 I/O operations
BB01 BB3F Statistics
BC01 BC3B Time system
BD01 BD27 Symbolic operations
BE01 BE77 Plotting
BF01 BF56 Solver
E101 E129 Constants Library
E301 E304 Equation Library
E601 E60D TVM Library
E701 E706 Minehunt game

228 APPENDIX A. MESSAGES

Appendix B

Character Codes

DEC HEX CHR DEC HEX CHR DEC HEX CHR DEC HEX CHR
0 00 q 32 20 64 40 @ 96 60 6
1 01 q 33 21 ! 65 41 A 97 61 a
2 02 q 34 22 " 66 42 B 98 62 b
3 03 q 35 23 # 67 43 C 99 63 c
4 04 q 36 24 $ 68 44 D 100 64 d
5 05 q 37 25 % 69 45 E 101 65 e
6 06 q 38 26 & 70 46 F 102 66 f
7 07 q 39 27 c 71 47 G 103 67 g
8 08 q 40 28 (72 48 H 104 68 h
9 09 q 41 29) 73 49 I 105 69 i

10 0A q 42 2A * 74 4A J 106 6A j
11 0B q 43 2B + 75 4B K 107 6B k
12 0C q 44 2C , 76 4C L 108 6C l
13 0D q 45 2D - 77 4D M 109 6D m
14 0E q 46 2E . 78 4E N 110 6E n
15 0F q 47 2F / 79 4F O 111 6F o
16 10 q 48 30 0 80 50 P 112 70 p
17 11 q 49 31 1 81 51 Q 113 71 q
18 12 q 50 32 2 82 52 R 114 72 r
19 13 q 51 33 3 83 53 S 115 73 s
20 14 q 52 34 4 84 54 T 116 74 t
21 15 q 53 35 5 85 55 U 117 75 u
22 16 q 54 36 6 86 56 V 118 76 v
23 17 q 55 37 7 87 57 W 119 77 w
24 18 q 56 38 8 88 58 X 120 78 x
25 19 q 57 39 9 89 59 Y 121 79 y
26 1A q 58 3A : 90 5A Z 122 7A z
27 1B q 59 3B ; 91 5B [123 7B {
28 1C q 60 3C < 92 5C \ 124 7C |
29 1D q 61 3D = 93 5D] 125 7D }
30 1E q 62 3E > 94 5E g 126 7E 7
31 1F 8 63 3F ? 95 5F _ 127 7F 9

229

230 APPENDIX B. CHARACTER CODES

DEC HEX CHR DEC HEX CHR DEC HEX CHR DEC HEX CHR
128 80 ~ 160 A0 192 C0 A 224 E0 a
129 81 a 161 A1 A 193 C1 B 225 E1 b
130 82 b 162 A2 B 194 C2 C 226 E2 c
131 83 a 163 A3 C 195 C3 D 227 E3 d
132 84 n 164 A4 D 196 C4 E 228 E4 e
133 85 s 165 A5 E 197 C5 F 229 E5 f
134 86 r 166 A6 F 198 C6 G 230 E6 g
135 87 p 167 A7 G 199 C7 H 231 E7 h
136 88 c 168 A8 H 200 C8 I 232 E8 i
137 89 l 169 A9 I 201 C9 J 233 E9 j
138 8A m 170 AA J 202 CA K 234 EA k
139 8B t 171 AB e 203 CB L 235 EB l
140 8C d 172 AC L 204 CC M 236 EC m
141 8D k 173 AD M 205 CD N 237 ED n
142 8E j 174 AE N 206 CE O 238 EE o
143 8F e 175 AF O 207 CF P 239 EF p
144 90 f 176 B0 P 208 D0 Q 240 F0 q
145 91 g 177 B1 Q 209 D1 R 241 F1 r
146 92 h 178 B2 R 210 D2 S 242 F2 s
147 93 i 179 B3 S 211 D3 T 243 F3 t
148 94 j 180 B4 T 212 D4 U 244 F4 u
149 95 u 181 B5 U 213 D5 V 245 F5 v
150 96 k 182 B6 V 214 D6 W 246 F6 w
151 97 l 183 B7 W 215 D7 x 247 F7 y
152 98 m 184 B8 X 216 D8 X 248 F8 x
153 99 n 185 B9 Y 217 D9 Y 249 F9 y
154 9A o 186 BA Z 218 DA Z 250 FA z
155 9B v 187 BB f 219 DB 0 251 FB 5
156 9C q 188 BC s 220 DC 1 252 FC 6
157 9D p 189 BD t 221 DD 2 253 FD 7
158 9E q 190 BE u 222 DE 3 254 FE 8
159 9F r 191 BF v 223 DF 4 255 FF 9

Appendix C

Flags

User flags are numbered 1 through 64. System flags are numbered from –1 through –64. By convention,
application developers are encouraged to restrict their use of user flags to the range 31–64. All flags are clear
by default, except for the wordsize (flags –5 to –10).

Flag Description Clear Set Default
Symbolic Math

–1 Principal Solution General solutions Principal solutions Clear
–2 Symbolic Constants Symbolic form Numeric form Clear
–3 Numeric Results Symbolic results Numeric results Clear
–4 Not used

Binary Integer Math
–5 Binary integer wordsize n + 1: 0 ≤ n ≤ 63 64

–10 Flag –10 is the most significant bit
Base –11 –12 DEC

–11 DEC Clear Clear
and BIN Clear Set
–12 OCT Set Clear

HEX Set Set
–13 Not used

Finance
–14 TVM Payment Mode End of Period Beginning of Period End

Coordinate System –15 –16 Rect.
–15 Rectangular Clear Clear
and Cylindrical Polar Clear Set
–16 Spherical Polar Set Set

Trigonometric Mode –17 –18 Degrees
–17 Degrees Clear Clear
and Radians Set Clear
–18 Grads Clear Set

Math Exception
–19 Vector/complex Vector Complex Vector
–20 Underflow Exception Return 0, set flag –23 or –24 Error Clear
–21 Overflow Exception Return ±MAXR, set flag –25 Error Clear
–22 Infinite Result Error Return ±MAXR, set flag –26 Error
–23 Pos. Underflow Indicator No Exception Exception Clear
–24 Neg. Underflow Indicator No Exception Exception Clear
–25 Overflow Indicator No Exception Exception Clear
–26 Infinite Result Indicator No Exception Exception Clear
–27 Symbolic Decompilation 'X+Y*i'->'(X,Y)' 'X+Y*i'->'X+Y*i' Clear

Plotting and Graphics
–28 Plotting Multiple Functions Plotted serially Plotted simultaneously Clear
–29 Trace mode Trace off Trace on Off
–30 Not used
–31 Curve Filling Filling enabled Filling disabled Enabled
–32 Graphics Cursor Visible light bkgnd Visible dark bkgnd Light

231

232 APPENDIX C. FLAGS

Flag Description Clear Set Default
I/O and Printing
–33 I/O Device Wire IR Wire
–34 Printing Device IR Wire IR
–35 I/O Data Format ASCII Binary ASCII
–36 RECV Overwrite New variable Overwrite New
–37 Double-spaced Print Single Double Single
–38 Linefeed Inserts LF Suppresses LF Inserts
–39 Kermit Messages Msg displayed Msg suppressed Clear

Time Management
–40 Clock Display TIME menu only All times Clear
–41 Clock Format 12 hour 24 hour 12 hour
–42 Date Format MM/DD/YY DD.MM.YY Clear
–43 Rpt. Alarm Resched. Rescheduled Not rescheduled Clear
–44 Acknowledged Alarms Deleted Saved Deleted

Notes: If flag -43 is set, unacknowledged repeat alarms are not rescheduled.
If flag -44 is set, acknowledged alarms are saved in the alarm catalog.
Display Format
–45→ Set the number of digits in Fix, Scientific, and Engineering modes 0
–48

Number Display Format –49 –50 STD
–49 STD Clear Clear
and FIX Clear Set
–50 SCI Set Clear

ENG Set Set
–51 Fraction Mark Decimal Comma Decimal
–52 Single Line Display Multi-line Single-line Multi
–53 Precedence () suppressed () displayed Clear

Miscellaneous
–54 Tiny Array Elements Replaces “tiny” pivots with 0 No replacement Replaces
–55 Last Arguments Saved Not saved Saved
–56 Beep On Off On
–57 Alarm Beep On Off On
–58 Verbose Messages On Off On
–59 Fast Catalog Display Off On Off
–60 Alpha Key Action Twice to lock Once to lock Twice
–61 USR Key Action Twice to lock Once to lock Twice
–62 User Mode Not Active Active Clear
–63 Vectored Enter Off On Off
–64 Set by GETI or PUTI when their element indices wrap around

Equation Library
60 Units Type SI units English units SI
61 Units Usage Units used Units not used Used

Multiple Equation Solver
63 Variable State Change)recalls variable)toggles variable state Recalls

Appendix D

Object Structures

This appendix describes the structure of some HP 48 objects. It is beyond the scope of this book to address the
detailed structure of directories and libraries, so they are omitted here.

Sizes are expressed in nibbles. Prologues are always 5 nibbles, and unless otherwise noted field sizes (like a
length or dimension count) are 5 nibbles. Length fields are self-relative lengths in nibbles. A length field for a
3 character string is 5 (length of length field) + 6 (number of nibbles in the string body) = 11.

D.1 Binary Integer

Atomic Size = 10
Prologue Body
DOBINT 5 nibbles

D.2 Real Number

Atomic Size = 21
Prologue Exponent Mantissa Sign
DOREAL 3 nibbles 12 nibbles 1 nibble

The exponent is encoded in tens complement form. A decimal point is implied between the first and second
digits of the mantissa. The sign nibble is 0 for positive numbers or 9 for negative numbers.

D.3 Extended Real Number

Atomic Size = 26
Prologue Exponent Mantissa Sign
DOREAL 5 nibbles 15 nibbles 1 nibble

The exponent is encoded in tens complement form. A decimal point is implied between the first and second
digits of the mantissa. The sign nibble is 0 for positive numbers or 9 for negative numbers.

D.4 Complex Number

Atomic Size = 37
Prologue Real Part Imaginary Part
DOCMP 16 nibble real number body 16 nibble real number body

The real and imaginary parts are encoded using the format of the body of a real number object.

233

234 APPENDIX D. OBJECT STRUCTURES

D.5 Extended Complex Number

Atomic Size = 47
Prologue Real Part Imaginary Part
DOCMP 21 nibble real number body 21 nibble real number body

The real and imaginary parts are encoded using the format of the body of a real number object.

D.6 Character
Atomic Size = 7

Prologue Body
DOCHAR 2 nibbles

D.7 String

Atomic Size = 10+2*number_of_characters
Prologue Length Body
DOCSTR 5 nibbles Characters

D.8 Hex String

User binary integers (type 10) are implemented as hex strings.
Atomic Size = 10+body_size

Prologue Length Body
DOHSTR 5 nibbles Nibbles

D.9 Arrays

While array objects are structured to support an arbitrary number of dimensions, the kernel support is only
meaningful for one or two dimension arrays. Arrays can be composed of most atomic object types.

D.9.1 One-Dimension Array

Atomic Size = 25+
∑

(object body sizes)
Prologue Length Type

Prologue
Dimension

Count
Dimension

Size
Object
Bodies

DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles ...

D.9.2 Two-Dimension Array

Atomic Size = 30+
∑

(object body sizes)
Prologue Length Type

Prologue
Dimension

Count
1st

Dimension
Size

2nd
Dimension

Size

Object
Bodies (row

order)
DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles 5 nibbles ...

D.9.3 Linked Array

A linked array is structured like the arrays above, but includes a table of pointers to object bodies. A one
dimensional linked array looks like this:

Atomic Size = 25+5*(number of objects)+
∑

(object body sizes)
Prologue Length Type

Prologue
Dimension

Count
Dimension

Size
Pointer
Table

Object
Bodies

DOARRY 5 nibbles 5 nibbles 5 nibbles 5 nibbles 5*(#obs) ...

D.10. NAME OBJECTS 235

D.10 Name Objects

D.10.1 Global Name

Atomic Size = 7+2*number_of_characters
Prologue Character

Count
Body

DOIDNT 2 nibbles Characters

D.10.2 Local Name

Atomic Size = 7+2*number_of_characters
Prologue Character

Count
Body

DOLAM 2 nibbles Characters

D.10.3 XLIB Name

Atomic Size = 11
Prologue Library Number Object Number
DOROMP 3 nibbles 3 nibbles

D.11 Graphic Object

Atomic Size = 20+Height*CEIL(Width/8)
Prologue Length Pixel Height Pixel Width Grob data

in row order
DOGROB 5 nibbles 5 nibbles 5 nibbles ...

Graphic objects store data in row order, and the rows must have even byte widths. The bits in each nibble are
reversed — the most significant bit represents the rightmost pixel.

D.12 Code Object

Atomic Size = 10+body_size
Prologue Length Body
DOCODE 5 nibbles Nibbles

D.13 Secondary

Composite Size = 10+
∑

(object sizes)
Prologue Body SEMI
DOCOL ... objects ... 5 nibbles

D.14 Tagged

Atomic Size = 12+2*number_of_characters+object_size
Prologue Tag Length Tag Object SEMI
DOTAG 2 nibbles Characters ... 5 nibbles

NOTE: A tagged object is considered atomic, and cannot be decomposed with INNERCOMP.

D.15 List

Composite Size = 10+
∑

(object sizes)
Prologue Body SEMI
DOLIST ... objects ... 5 nibbles

D.16 Symbolic

Composite Size = 10+
∑

(object sizes)
Prologue Body SEMI
DOSYMB ... objects ... 5 nibbles

D.17 Unit

Composite Size = 31+
∑

(object sizes)
Prologue Real

Number
Body umEND

DOEXT 21 nibbles ... objects ... 5 nibbles

D.18 Library Data Objects

A Library Data object is a “generic bucket” into which an arbitrary set of data may be stored. This object
type is used by Equation Library applications, like the Multiple Equation Solver, the MineHunt game, and the
Periodic Table application.

Atomic Size = 10+body_size
Prologue Length Body
DOEXT0 5 nibbles Nibbles

To avoid conflicts between applications, HP uses a convention for storing a list of information into a library
data object. The information stored is actually a list consisting of a bint and another object, typically a list.
The first five nibbles of the body encode the ROMID of the parent application. To illustrate this, consider Mpar,
a library data object used by the Multiple Equation Solver. Mpar looks like this:

Prologue Length RomId Rest of Body
DOEXT0 5 nibbles 5 nibbles DOLIST Mpar Objects SEMI SEMI

When Mpar is recalled by the Multiple Equation solver, it is copied to TEMPOB. If the ROMID matches the
ROMID of the Multiple Equation Solver the first part of the object is overwritten with the prologue for a list
and bint as follows:

DOLIST DOBINT RomId (5
nibbles)

DOLIST Mpar Objects SEMI SEMI

The object MESRclEqn does this job for the Multiple Equation Solver:

MESRclEqn #E4012h G/GX XLIB 228 18
Recalls the contents of the reserved variable Mpar

→ { equation list }

Index
::N, 90
::NEVAL, 90
<DelKey, 128
<SkipKey, 128
>DelKey, 128
>HCOMP, 91

>H$, 84
>R, 46
>SkipKey, 128
>TAG, 82
>TCOMP, 91
>T$, 84

?CaseKeyDef, 143
?DispMenu, 104
?DispStack, 104
?DispStatus, 104
?PURGE_HERE, 98
?SEMI, 34

236

INDEX 237

?SKIP, 35
?SKIPSWAP, 36
#*, 23
#+, 23
#+-1, 24
#+DUP, 24
#+OVER, 24
#+PICK, 62
#+ROLL, 24, 61
#+SWAP, 24
#+UNROLL, 61
#-, 23
#-+1, 24
#-ROLL, 61
#-SWAP, 24
#-UNROLL, 24, 61
#-#2/, 24
#/, 23
#0<>, 29
#0=, 29
#0=?SEMI, 34
#0=?SEKIP, 36
#0=ITE, 36
#1+, 23
#1+DUP, 24
#1+LAST$, 84
#1+NDROP, 24, 61
#1+PICK, 24, 61
#1+ROLL, 24, 61
#1+ROT, 25
#1+SWAP, 25
#1+UNROLL, 25, 61
#1+_ONE_DO, 44
#1-, 23
#1-1SWAP, 25
#1-DUP, 25
#1-ROT, 25
#1-SUB$, 84
#1-SWAP, 25
#1-UNROT, 25
#10*, 23
#10+, 23
#12+, 23
#1<>, 29
#1=, 29
#1=?SKIP, 36
#2*, 23
#2+, 23
#2+PICK, 25, 62
#2+ROLL, 25, 62
#2+UNROLL, 25, 62
#2-, 23
#2/, 23
#2<>, 30
#2=, 30
#3+, 23
#3+PICK, 25, 62
#3-, 23
#3=, 30
#4+, 23
#4+PICK, 25, 62
#4-, 23

#5+, 23
#5-, 23
#5=, 30
#8*, 23
#8+, 23
#:>$, 84
#<, 29
#<>, 29
#<ITE, 36
#=, 29
#=ITE, 36
#=casedrop, 39, 141
#=casedropfls, 142
#>, 29
#>?SKIP, 36
#>CHR, 82
#>HXS, 87
#>$, 84
#FIVE#FOUR, 22
#NAME?, 43
#ONE#2, 22
#THREE#FOUR, 22
#TWO#FOUR, 22
#TWO#ONE, 22
#TWO#TWO, 22
#ZERO#ONE, 22
#ZERO#SEVEN, 22
$>BIGGROB, 114
$>GROB, 114
$>ID, 84, 98
$>grob, 114
$_2DQ, 84
$_::, 84
$_<�<>�>, 84
$_ECHO, 84
$_EXIT, 84
$_GRAD, 84
$_LRParens, 84
$_R<Z, 84
$_R<�<, 84
$_RAD, 84
$_Undefined, 84
$_XYZ, 84
$_[], 84
$_'', 84
$_{}, 84
%, 72
%-1, 71
%-2, 71
%-3, 71
%-4, 71
%-5, 71
%-6, 71
%-7, 71
%-8, 71
%-9, 71
%-MAXREAL, 71
%-MINREAL, 71
%.1, 71
%.5, 71
%0, 71
%0<, 30

%0<>, 27, 31
%0=, 31
%0=case, 40
%0>, 31
%0>=, 31
%1, 71
%1+, 72
%1-, 72
%1/, 72
%10, 71
%10*, 72
%100, 71
%11, 71
%12, 71
%13, 71
%14, 71
%15, 71
%16, 71
%17, 71
%18, 71
%180, 71
%19, 71
%1=case, 40
%2, 71
%20, 71
%21, 71
%22, 71
%23, 71
%24, 71
%25, 71
%26, 71
%27, 71
%3, 71
%360, 71
%4, 71
%5, 71
%6, 71
%7, 71
%8, 71
%9, 71
%<, 30
%<=, 30
%<>, 30
%=, 30
%>, 30
%>=, 30
%>C%, 77
%>HMS, 73
%>TAG, 82
%>#, 87
%>%%, 71
%>%%1/, 75
%ABS, 72
%ASIN, 72
%ASINH, 72
%ATAN, 72
%ATANH, 72
%CEIL, 72
%CH, 72
%CHS, 73
%COMB, 73
%COS, 73

238 INDEX

%COSH, 73
%D>R, 73
%EXP, 73
%EXPM1, 73
%EXPONENT, 73
%FACT, 73
%FLOOR, 73
%FP, 73
%HMS+, 73
%HMS-, 73
%HMS>, 73
%IP, 73
%LN, 73
%LNP1, 73
%LOG, 73
%MANTISSA, 74
%MAX, 74
%MAXREAL, 71
%MAXorder, 30
%MIN, 74
%MINREAL, 71
%MOD, 74
%NFACT, 74
%NROOT, 74
%OF, 74
%PERM, 74
%PI, 71
%POL>%REC, 74
%R>D, 74
%RAN, 74
%RANDOMIZE, 74
%REC>%POL, 74
%SGN, 74
%SIN, 74
%SINH, 74
%SPH>%REC, 74
%SQRT, 74
%T, 74
%TAN, 75
%TANH, 75
%%, 75
%%*, 75
%%*ROT, 75
%%*SWAP, 75
%%+, 75
%%-, 75
%%.1, 71
%%.4, 71
%%.5, 71
%%/, 75
%%/>%, 75
%%0, 71
%%0<, 31
%%0<=, 31
%%0<>, 31
%%0=, 31
%%0>, 31
%%0>=, 31
%%1, 71
%%1/, 75
%%10, 71
%%12, 71

%%2, 71
%%2PI, 71
%%3, 71
%%4, 71
%%5, 71
%%60, 71
%%7, 71
%%<, 31
%%<=, 31
%%>, 31
%%>=, 31
%%>C%, 77
%%>%, 71
%%ABS, 75
%%ACOSRAD, 76
%%ANGLE, 76
%%ANGLEDEG, 76
%%ANGLERAD, 76
%%ASINRAD, 76
%%CHS, 76
%%COS, 76
%%COSDEG, 76
%%COSH, 76
%%COSRAD, 76
%%EXP, 76
%%FLOOR, 76
%%H>HMS, 76
%%INT, 76
%%LN, 76
%%LNP1, 76
%%MAX, 76
%%P>R, 76
%%PI, 71
%%R>P, 76
%%SIN, 77
%%SINDEG, 77
%%SINH, 77
%%SQRT, 77
%%TANRAD, 77
%%^, 75
%^, 75
%e, 71
&COMP, 91
&HXS, 88
&$, 84
&$SWAP, 84
', 46
'DoBadKey, 144
'DoBadKeyT, 144
'R, 46
append$, 84
append$SWAP, 84
{}N, 90
0LASTOWDOB, 48
10GETLAM, 56
10PUTLAM, 56
10UNROLL, 62
11GETLAM, 56
11PUTLAM, 56
12GETLAM, 56
12PUTLAM, 56
13GETLAM, 56

13PUTLAM, 56
14GETLAM, 56
14PUTLAM, 56
15GETLAM, 56
15PUTLAM, 56
16GETLAM, 56
16PUTLAM, 56
17GETLAM, 56
17PUTLAM, 56
18GETLAM, 56
18PUTLAM, 56
19GETLAM, 56
19PUTLAM, 56
1ABNDSWAP, 58
1GETABND, 58
1GETLAM, 56
1GETSWAP, 58
1LAMBIND, 58
1NULLLAM{}, 58
1PUTLAM, 56
1_#1-SUB$, 84
20GETLAM, 56
20PUTLAM, 56
21GETLAM, 56
21PUTLAM, 56
22GETLAM, 56
22PUTLAM, 56
2DROP, 62
2DROP00, 24, 62
2DROPFALSE, 62
2DUP, 62
2DUP5ROLL, 62
2DUPEQ, 29
2DUPSWAP, 62
2DUP#+, 24
2DUP#<, 29
2DUP#=, 29
2DUP#>, 29
2EXT, 51
2GETEVAL, 58
2GETLAM, 56
2GROB, 51
2HXSLIST?, 87, 110
2LIST, 51
2OVER, 62
2Ob>Seco, 90
2PUTLAM, 56
2RDROP, 47
2REAL, 51
2SWAP, 62
2%>%%, 72
2%%>%, 72
3DROP, 62
3GETLAM, 56
3PICK, 62
3PICK3PICK, 62
3PICKOVER, 62
3PICKSWAP, 62
3PICK#+, 24
3PUTLAM, 56
3RDROP, 47
3REAL, 51

INDEX 239

3UNROLL, 62
4DROP, 62
4GETLAM, 56
4NULLLAM{}, 58
4PICK, 62
4PICKOVER, 62
4PICKSWAP, 62
4PICK#+, 24
4PICK#+SWAP, 24
4PUTLAM, 56
4ROLL, 62
4ROLLDROP, 62
4ROLLOVER, 62
4ROLLROT, 62
4ROLLSWAP, 63
4UNROLL, 63
4UNROLL3DROP, 63
4UNROLLDUP, 63
4UNROLLROT, 63
5DROP, 63
5GETLAM, 56
5PICK, 63
5PUTLAM, 56
5ROLL, 63
5ROLLDROP, 63
5UNROLL, 63
6DROP, 63
6GETLAM, 56
6PICK, 63
6PUTLAM, 56
6ROLL, 63
6UNROLL, 63
7DROP, 63
7GETLAM, 56
7PICK, 63
7PUTLAM, 56
7ROLL, 63
7UNROLL, 63
8GETLAM, 56
8PICK, 63
8PUTLAM, 56
8ROLL, 63
8UNROLL, 63
9GETLAM, 56
9PUTLAM, 56

a%>$, 86
a%>$,, 87
ABND, 53
ABORT, 60
ABUFF, 106
AGAIN, 45
AllowIntr, 213
AND, 28
AND$, 85
ANDcase, 40
ANDITE, 36
ANDNOTcase, 40
any, 51
apndvarlst, 91
arry, 51
ARSIZE, 80

ATTN?, 122
ATTNFLGCLR, 122
AtUserStack, 48

BEGIN, 45
BigCursor, 118
BIGDISPN, 113
BIGDISPROW1, 113
BIGDISPROW2, 113
BIGDISPROW3, 113
BIGDISPROW4, 113
BIND, 53
BINT255d, 22
BINT_131d, 22
bit*, 89
bit+, 89
bit-, 89
bit/, 89
bit#%*, 88
bit#%+, 88
bit#%-, 88
bit#%/, 88
bit%#*, 88
bit%#+, 88
bit%#-, 88
bit%#/, 89
bitAND, 89
bitASR, 89
bitNOT, 89
bitOR, 89
bitRL, 89
bitRLB, 89
bitRR, 89
bitRRB, 89
bitSL, 89
bitSLB, 89
bitSR, 89
bitSRB, 89
bitXOR, 89
Blank$, 85
BlankDA1, 105
BlankDA12, 105
BlankDA2, 105
BLANKIT, 105
Box/StdLabel, 117
BRbrowse, 156
BRDispItems, 157
BRdone, 156
BRGetItem, 157
BRinverse, 157
BRoutput, 157
BRRclC1, 157
BRRclCurRow, 157
BRStoC1, 157
BRViewItem, 157

C>Im%, 78
C>Re%, 78
C%0=, 32
C%1/, 78
C%>#, 111
C%>%, 78

C%>%%, 78
C%>%%SWAP, 78
C%%0=, 32
C%%>%%, 77
C%%>C%, 78
C%%CHS, 79
C%%CONJ, 79
C%ABS, 78
C%ACOS, 78
C%ACOSH, 78
C%ALOG, 78
C%ARG, 78
C%ASIN, 79
C%ASINH, 79
C%ATAN, 79
C%ATANH, 79
C%C^C, 79
C%C^R, 79
C%CHS, 79
C%CONJ, 79
C%COS, 79
C%COSH, 79
C%EXP, 79
C%LN, 79
C%LOG, 79
C%R^C, 79
C%SGN, 79
C%SIN, 79
C%SINH, 79
C%SQRT, 80
C%TAN, 80
C%TANH, 80
CACHE, 58
CAR$, 85
CARCOMP, 91
case, 37
case2DROP, 42
case2drpfls, 43
caseDoBadKey, 42
caseDROP, 39, 42
casedrop, 38, 41
caseDrpBadKy, 42
casedrpfls, 43
casedrptru, 43
caseERRJMP, 42
caseFALSE, 42
caseSIZEERR, 42
caseTRUE, 43
CDR$, 85
CDRCOMP, 91
char, 51
CHECKHEIGHT, 107
CHECKKEY, 121
CHECKPVARS, 111
ChkLowBat, 209
Choose, 160
ChooseMenu0, 164
ChooseMenu1, 164
ChooseMenu2, 164
CHR>$, 82
CHR>#, 82
CHR>$, 85

240 INDEX

CHR_*, 83
CHR_+, 83
CHR_,, 83
CHR_-, 83
CHR_->, 83
CHR_., 83
CHR_..., 83
CHR_/, 83
CHR_0, 83
CHR_00, 83
CHR_1, 83
CHR_2, 83
CHR_3, 83
CHR_4, 83
CHR_5, 83
CHR_6, 83
CHR_7, 83
CHR_8, 83
CHR_9, 83
CHR_:, 83
CHR_;, 83
CHR_<, 83
CHR_«, 83
CHR_<=, 83
CHR_<>, 83
CHR_=, 83
CHR_>, 83
CHR_>=, 83
CHR_», 83
CHR_[, 83
CHR_#, 83
CHR_{, 83
CHR_}, 83
CHR_], 83
CHR_A, 83
CHR_a, 83
CHR_Angle, 83
CHR_B, 83
CHR_b, 83
CHR_C, 83
CHR_c, 83
CHR_D, 83
CHR_d, 83
CHR_DblQuote, 83
CHR_Deriv, 83
CHR_E, 83
CHR_e, 83
CHR_F, 83
CHR_f, 83
CHR_G, 83
CHR_g, 83
CHR_H, 83
CHR_h, 83
CHR_I, 83
CHR_i, 83
CHR_Integral, 83
CHR_J, 83
CHR_j, 83
CHR_K, 83
CHR_k, 83
CHR_L, 83
CHR_l, 83

CHR_LeftPar, 83
CHR_M, 83
CHR_m, 83
CHR_N, 83
CHR_n, 83
CHR_Newline, 83
CHR_O, 83
CHR_o, 83
CHR_P, 83
CHR_p, 83
CHR_Pi, 83
CHR_Q, 83
CHR_q, 83
CHR_R, 83
CHR_r, 83
CHR_RightPar, 83
CHR_S, 83
CHR_s, 83
CHR_Sigma, 83
CHR_Space, 83
CHR_T, 83
CHR_t, 83
CHR_U, 83
CHR_u, 83
CHR_UndScore, 83
CHR_V, 83
CHR_v, 83
CHR_W, 83
CHR_w, 83
CHR_X, 83
CHR_x, 83
CHR_Y, 83
CHR_y, 83
CHR_Z, 83
CHR_z, 83
CK0, 48
CK0NOLASTWD, 48
CK1, 48
CK1&Dispatch, 50
CK1NOLASTWD, 48
CK2, 48
CK2&Dispatch, 50
CK2NOLASTWD, 48
CK3, 48
CK3&Dispatch, 50
CK3NOLASTWD, 48
CK4, 48
CK4&Dispatch, 50
CK4NOLASTWD, 48
CK5, 48
CK5&Dispatch, 50
CK5NOLASTWD, 48
Ck&DecKeyLoc, 126
CK&DISPATCH0, 49
CK&DISPATCH1, 49
CKGROBFITS, 115
CKN, 48
CKNNOLASTWD, 48
CKREF, 92, 101
CLEARMENU, 108
CLEARVDISP, 105
Clr16, 106

Clr8, 106
Clr8-15, 106
ClrDA1IsStat, 103, 106
ClrDAsOK, 105
cmp, 51
CodePl>%rc.p, 125
COERCE, 23
COERCE2, 23
COERCE$22, 85
COERCEFLAG, 27
COLA, 46
CONTEXT, 99
CREATE, 98
CREATEDIR, 99
CROSSGROB, 118
CURSOR1, 118
CURSOR2, 118

Date>d$, 85
DDAYS, 75
Debounce, 215
DECOMP$, 85
DEPTH, 63
DisableIntr, 212
Disp5x7, 112
DispEditLine, 104
DispMenu, 104, 108, 151
DispMenu.1, 104, 108, 151
DISPN, 112
DISPROW1, 112
DISPROW1*, 112
DISPROW2, 112
DISPROW2*, 112
DISPROW3, 112
DISPROW4, 112
DISPROW5, 112
DISPROW6, 112
DISPROW7, 112
DispStatus, 104
DISPSTATUS2, 112
DO, 43
DO$EXIT, 61
DO>LCD, 106
DO#EXIT, 61
DoBadKey, 143
DOBIND, 53
DOC>PX, 111
DoCKeyCancel, 165
DoCKeyChAll, 165
DoCKeyCheck, 165
DoCKeyOK, 165
DoCKeyUnChAll, 165
DOCLLCD, 106
DoInputForm, 169
DoKeyCancel, 175
DoKeyOK, 175
DOLCD>, 106
DoMsgBox, 154
DoNewMatrix, 81
DoOldMatrix, 82
DOPX>C, 111
DOVARS, 99

INDEX 241

DROP, 63
DROP#1-, 25
DROPDUP, 63
DROPFALSE, 27, 63
DROPNDROP, 63
DROPNULL$, 63
DROPNULL$, 85
DROPONE, 25, 63
DROPOVER, 63
DROPROT, 64
DROPSWAP, 64
DROPSWAPDROP, 64
DROPTRUE, 27, 64
DROPZERO, 64
DUMP, 58
DUP, 64
DUP1LAMBIND, 58
DUP3PICK, 64
DUP3PICK#+, 25
DUP4PUTLAM, 58
DUP4UNROLL, 64
DUP#0<>, 30
DUP#0=, 30
DUP#0=case, 40
DUP#0=csDROP, 41
DUP#0=csedrp, 38, 40
DUP#0=IT, 36
DUP#0=ITE, 36
DUP#0_DO, 44
DUP#1+, 25
DUP#1+PICK, 25, 64
DUP#1-, 25
DUP#1=, 30
DUP#7<, 30
DUP$>ID, 85, 98
DUP%0=, 31
DUPDUP, 64
DUPGROBDIM, 114
DUPINCOMP, 91
DUPLEN$, 85
DUPLENCOMP, 90
DUPNULL$?, 33
DUPNULL$?, 85
DUPONE, 64
DUPPICK, 64
DUPROLL, 64
DUPROT, 64
DUPTEMPENV, 58
DUPTWO, 26, 64
DUPTYPEARRY?, 52
DUPTYPEBINT?, 52
DUPTYPECHAR?, 52
DUPTYPECMP?, 52
DUPTYPECOL?, 52
DUPTYPECSTR?, 52
DUPTYPEEXT?, 52
DUPTYPEGROB?, 52
DUPTYPEHSTR?, 52
DUPTYPEIDNT?, 52
DUPTYPELAM?, 52
DUPTYPELIST?, 52
DUPTYPEREAL?, 52

DUPTYPEROMP?, 52
DUPTYPERRP?, 52
DUPTYPESYMB?, 52
DUPTYPETAG?, 52
DUPUNROT, 64
DUPZERO, 26, 64

ECUSER, 207
EDITDECOMP$, 85
EditMenu, 128
EIGHT, 22
EIGHTEEN, 22
EIGHTY, 22
EIGHTYONE, 22
ELEVEN, 22
Embedded?, 93
EQ, 29
EQcase, 41
EQIT, 36
EQITE, 36
EQOR, 29
EQOVER, 29
EQUAL, 29
EQUALcase, 40
EQUALcasedrp, 40
EQUALNOT, 29
EQUALNOTcase, 40
EQUALOR, 29
EQUALPOSCOMP, 92
ERRBEEP, 61
ERRJMP, 59
Errjmp, 209
ERRORCLR, 60
ERROROUT, 61
ERRORSTO, 60
ERRSET, 59
ERRTRAP, 59
EXITMSGSTO, 60
EXTN, 90, 94
EXTOBOB, 51
EXTREAL, 51
EXTSYM, 51

FALSE, 27
FalseFalse, 27
FALSETRUE, 27
FIFTEEN, 22
FIFTY, 22
FIFTYEIGHT, 22
FIFTYFIVE, 22
FIFTYFOUR, 22
FIFTYNINE, 22
FIFTYONE, 22
FIFTYSEVEN, 22
FIFTYSIX, 22
FIFTYTHREE, 22
FIFTYTWO, 22
FIVE, 22
FlashMsg, 113
FlashWarning, 113
FLUSHKEYS, 121
FORTY, 22

FORTYEIGHT, 22
FORTYFIVE, 22
FORTYFOUR, 22
FORTYNINE, 22
FORTYONE, 22
FORTYSEVEN, 22
FORTYSIX, 22
FORTYTHREE, 22
FORTYTWO, 22
FOUR, 22
FOURTEEN, 22

GARBAGE, 101
GBUFF, 106
GBUFFGROBDIM, 106, 114
GDISP, 106
GETATELN, 81
GETEXITMSG, 60
GetFieldVals, 174
GETLAM, 55
GETLAMPAIR, 58
getnibs, 101
GETPMIN&MAX, 111
GETPTR, 198
GETPTRLOOP, 198
GETSCALE, 111
GETTEMP, 205
GETTOUCH, 121
GETXMAX, 111
GETXMIN, 111
GETYMAX, 111
GETYMIN, 111
gFldVal, 174
GPErrjmpC, 209
GPOverWrALp, 204
GPOverWrFLp, 202
GPOverWrR0Lp, 204
GPOverWrT/FL, 202
GPOverWrTLp, 202
GPPushFLoop, 203
GPPushT/FLp, 203
GPPushTLoop, 203
grob, 51
GROB+#, 115
Grob>Menu, 117
GROB, 115
GROBZERO, 115
GROBZERODRP, 115
grobAlertIcon, 154
grobCheckKey, 165
GROBDIM, 114
GROBDIMw, 114

HARDBUFF, 105
HARDBUFF2, 108
HEIGHTENGROB, 107
hxs, 51
HXS<=HXS, 33, 88
HXS<HXS, 33, 88
HXS==HXS, 33, 88
HXS>=HXS, 33, 88
HXS>#, 87

242 INDEX

HXS>$, 87
hxs>$, 87
HXS>%, 87
HXS>HXS, 33, 88
HXS#HXS, 33, 88

ID>$, 85, 98
Id>Menu, 117
ID>TAG, 82
idnt, 51
IDREAL, 51
IDUP, 46
IFMenuRow1, 176
IFMenuRow2, 176
INCOMPDROP, 91
INDEXSTO, 44
InitEnab, 207
InitMenu, 151
InitMenu%, 151
INNERCOMP, 91
INNERDUP, 91
InputLine, 127
INTEMNOTREF?, 101
INVGROB, 115
IStackKey, 128
ISTOPSTO, 44
IT, 35
ITE, 35

JINDEXSTO, 44
JstGETTHEMESG, 85
JstGETTHEMSG, 61
JSTOPSTO, 45
JUMPBOT, 108
JUMPLEFT, 108
JUMPRIGHT, 108
JUMPTOP, 108

KEYINBUFFER?, 121

lam, 51
LAST$, 85
LEDispItem, 167
LEDispList, 167
LEDispPrompt, 167
LEN$, 85
LENCOMP, 90
LENHXS, 88
LINECHANGE, 109
LINEOFF, 116
LINEOFF3, 116
LINEON, 116
LINEON3, 116
list, 51
LISTCMP, 51
LISTLAM, 51
LISTREAL, 51
LOOP, 43

MABS, 94
MAKE$, 205
MAKE$N, 205
MAKEARRY, 81

makebeep, 210
MakeBoxLabel, 117
MakeDirLabel, 117
MAKEGROB, 114
MakeInvLabel, 117
MAKEPICT#, 107
MakeStdLabel, 117
MARKGROB, 118
matchob?, 92
MATCON, 81
MATREDIM, 81
MATTRN, 81
MDIMS, 81
MDIMSDROP, 81
MediumCursor, 118
MEM, 101
MENUOFF?, 109
MESRclEqn, 236
MINUSONE, 22
MOVEDOWN, 206
MOVEUP, 206
MsgBoxMenu, 154

N+1DROP, 64
NcaseSIZEERR, 42
NcaseTYPEERR, 42
NDROP, 64
NDROPFALSE, 64
NDUP, 64
NDUPN, 64
NEWLINE$, 84
NEWLINE$&$, 85
NINE, 22
NINETEEN, 22
NoExitAction, 165
NOT, 28
NOT?SEMI, 34
NOT_IT, 35
NOTAND, 28
NOTcase, 41
NOTcase2DROP, 41
NOTcase2drop, 41
NOTcasedrop, 41
NOTcaseFALSE, 42
NOTcaseTRUE, 42
NTHCOMDDUP, 92
NTHCOMPDROP, 92
NTHELCOMP, 92
NTHOF, 92
NULL$?, 33
NULL::, 90
NULL$, 86
NULL$?, 86
NULL$TEMP, 86
NULL{}, 90
NULLHXS, 88
NULLLAM, 55
NullMenuKey, 128, 145
NULL$SWAP, 86

Ob>Seco, 90
OCRC, 101

OCRC%, 101
ONE, 22
ONE{}N, 90
ONEFALSE, 64
ONEHUNDRED, 22
ONEONE, 22
ONESWAP, 64
OR$, 86
ORcase, 41
ORDERXY#, 116
ORNOT, 28
OVER, 64
OVER5PICK, 64
OVER#+, 26
OVER#-, 26
OVER#0=, 30
OVER#2+UNROL, 26
OVER#=case, 41
OVERARSIZE, 81
OVERDUP, 64
OVERLEN$, 86
OVERSWAP, 64
OVERUNROT, 64
OverWrF/TLp, 203
OverWrFLoop, 203
OverWrT/FLp, 203
OverWrTLoop, 203

palparse, 87
ParOuterLoop, 133
PATHDIR, 100
PICK, 65
PIXOFF, 116
PIXOFF3, 116
PIXON, 116
PIXON3, 116
PIXON?, 116
PIXON?3, 116
POLKeyUI, 150
POLRestoreUI, 150
POLResUI&Err, 150
POLSaveUI, 150
POLSetUI, 150
POP1%, 201
POP2#, 201
POP2%, 201
POP#, 201
PopASavptr, 201
popflag, 201
POS$, 86
POS$REV, 86
POSCOMP, 92
PromptIdUtil, 86
PuHiddenVar, 100
PULLCMPEL, 81
PULLREALEL, 81
PURGE, 98
PUSH2#, 202
PUSH#, 202
PUSH#ALOOP, 202
PUSH#LOOP, 202
PUSH%, 202

INDEX 243

LOOPPUSH%LOOP, 202
PUSHA, 201
PushF/TLoop, 203
PushFLoop, 203
PushT/FLoop, 203
PushTLoop, 203
PUTCMPEL, 81
PUTEL, 81
PUTLAM, 55
PUTLIST, 91
putnibs, 101
PUTREALEL, 81
PUTSCALE, 111
PUTXMAX, 111
PUTXMIN, 111
PUTYMAX, 112
PUTYMIN, 111

R>, 47
RclHiddenVar, 100
RDROP, 47
RDUP, 47
Re>C%, 78
real, 51
REALEXT, 51
REALOB, 51
REALOBOB, 51
REALREAL, 51
REALSYM, 51
RECLAIMDISP, 106
REPEAT, 45
REPEATER, 126
REPEATERCH, 126
reversym, 66
RNDXY, 75
ROLL, 65
ROLLDROP, 65
ROLLSWAP, 65
ROMPANY, 51
ROT, 65
ROT2DROP, 65
ROT2DUP, 65
ROT#+, 26
ROT#+SWAP, 26
ROT#-, 26
ROT#1+, 26
ROTAND, 28
ROTDROP, 65
ROTDROPSWAP, 65
ROTDUP, 65
ROTOVER, 65
ROTROT2DROP, 65
ROTSWAP, 65
RPIT, 35
RPITE, 35
RSWAP, 47

SAFESTO, 99
SAVPTR, 198
SCROLLDOWN, 108
SCROLLLEFT, 108
SCROLLRIGHT, 108

SCROLLUP, 108
seco, 51
Seco>Menu, 117
SEP$NL, 86
SetDA12Temp, 105
SetDA1Bad, 104
SetDA1Temp, 103
SetDA2aBad, 104
SetDA2aTemp, 104
SetDA2bBad, 104
SetDA2bTemp, 104
SetDA2OKTemp, 104
SetDA3Bad, 105
SetDA3Temp, 105
SetDAsTemp, 105
SETIVLERR, 61
SETMEMERR, 61
SETNONEXTERR, 61
SETSIZEERR, 61
SETSTACKERR, 61
SETTYPEERR, 61
SEVEN, 22
SEVENTEEN, 22
SEVENTY, 22
SEVENTYFOUR, 22
SEVENTYNINE, 22
SIX, 22
SIXTEEN, 22
SIXTY, 22
SIXTYEIGHT, 22
SIXTYFOUR, 22
SIXTYONE, 22
SIXTYTHREE, 22
SIXTYTWO, 22
SmallCursor, 117
SPACE$, 84
Std/BoxLabel, 117
STO, 53, 99
StoHiddenVar, 100
str, 51
Str>Menu, 117
STRIPTAGS, 82
STRIPTAGSl2, 82
SUB$, 86
SUB$1#, 86
SUB$SWAP, 86
SUBCOMP, 92
SUBGROB, 115
SUBHXS, 88
SWAP, 65
SWAP2DUP, 65
SWAP3PICK, 65
SWAP4PICK, 65
SWAP4ROLL, 65
SWAP#-, 26
SWAP#1+, 26
SWAP#1+SWAP, 26
SWAP#1-, 26
SWAP#1-SWAP, 26
SWAP%>C%, 78
SWAP&$, 86
SWAPCKREF, 101

SWAPDROP, 65
SWAPDROPDUP, 65
SWAPDROPSWAP, 65
SWAPDROPTRUE, 65
SWAPDUP, 65
SWAPINCOMP, 92
SWAPONE, 65
SWAPOVER, 65
SWAPOVER#-, 26
SWAPROT, 65
SWAPTRUE, 65
sym, 51
symb, 51
Symb>HBuff, 114
SYMBN, 90
SYMBUNIT, 51
SYMEXT, 51
SYMID, 51
SYMLAM, 51
SYMOB, 51
SYMREAL, 51
SYMSYM, 51
SYSCONTEXT, 100
SysDisplay, 103
SysITE, 37
SysSTO, 99

TAGGED, 51
TAGGEDANY, 51
TAGOBS, 82
TakeOver, 143
TEN, 22
THIRTEEN, 22
THIRTY, 22
THIRTYEIGHT, 22
THIRTYFIVE, 22
THIRTYFOUR, 22
THIRTYNINE, 22
THIRTYONE, 22
THIRTYSEVEN, 22
THIRTYSIX, 22
THIRTYTHREE, 22
THIRTYTWO, 22
THREE, 22
THREE{}N, 90
ticR, 47
TIMESTR, 86
TOADISP, 106
TOD>t$, 86
TOGDISP, 107
TogInsertKey, 128
TOGLINE, 116
TOGLINE3, 116
TOTEMPOB, 101
TRCXY, 75
TRUE, 27
TrueFalse, 27
TrueTrue, 27
TURNMENUOFF, 109
TURNMENUON, 109
TWELVE, 22
TWENTY, 22

244 INDEX

TWENTYEIGHT, 22
TWENTYFIVE, 22
TWENTYFOUR, 22
TWENTYNINE, 22
TWENTYONE, 22
TWENTYSEVEN, 22
TWENTYSIX, 22
TWENTYTHREE, 22
TWENTYTWO, 22
TWO, 22
TWO{}N, 90
TYPEARRY?, 52
TYPEBINT?, 52
TYPECARRY?, 52
TYPECHAR?, 52
TYPECMP?, 52
TYPECOL?, 52
TYPECSTR?, 52
TYPEEXT?, 52
TYPEGROB?, 52
TYPEHSTR?, 52
TYPEIDNT?, 52
TYPELAM?, 52
TYPELIST?, 52
TYPERARRY?, 52
TYPEREAL?, 52
TYPEROMP?, 52
TYPERRP?, 52
TYPESYMB?, 52
TYPETAGGED?, 52

UM*, 94
um*, 93
UM+, 94
UM-, 94
UM/, 94
um/, 93
UM<=?, 33

UM<?, 33
UM=?, 33
UM>=?, 33
UM>?, 33
UM>U, 94
UM#?, 33
UM%, 94
UM%CH, 94
UM%T, 94
um^, 93
UMCEIL, 94
UMCHS, 94
UMCONV, 94
UMCOS, 94
umEND, 93
UMFLOOR, 94
UMFP, 94
UMIP, 95
UMMAX, 95
UMMIN, 95
umP, 93
UMRND, 95
UMSI, 95
UMSIGN, 95
UMSIN, 95
UMSQ, 95
UMSQRT, 95
UMTAN, 95
UMTRC, 95
UMU>, 95
UMXROOT, 95
UNCOERCE, 23
UNCOERCE2, 23
UNIT>$, 95
unitob, 51
UNROLL, 65
UNROT, 65
UNROT2DROP, 66

UNROTDROP, 66
UNROTDUP, 66
UNROTOVER, 66
UNROTSWAP, 66
UNROTSWAPDRO, 66
UNTIL, 45
UPDIR, 100
USER$>TAG, 82
UserITE, 37

WaitForKey, 125
WHILE, 45
WIDENGROB, 107
WINDOW#, 107
WINDOWCORNER, 107
WINDOWDOWN, 108
WINDOWLEFT, 108
WINDOWRIGHT, 108
WINDOWUP, 108
WINDOWXY, 107
WORDSIZE, 87

XEQORDER, 100
XEQPGDIR, 100
XEQSTOID, 99
XOR, 28
XOR$, 86
XYGROBDISP, 115

ZERO, 22
ZERO_DO, 44
ZEROISTOPSTO, 45
ZEROOVER, 26, 66
ZEROSWAP, 26, 66
ZEROZERO, 22
ZEROZEROONE, 22
ZEROZEROTWO, 22
ZEROZEROZERO, 22

	1 Introduction
	2 Getting Started
	2.1 Terminology
	2.1.1 User-RPL vs. System-RPL vs. Assembler
	2.1.2 Stack Diagrams
	2.1.3 Object Notation
	2.1.4 Fonts

	2.2 Installing the HP Tools
	2.3 Example Programs
	2.4 Introducing System-RPL
	2.4.1 A First Example
	2.4.2 Creating the Example With the HP Tools

	2.5 Introducing Assembly Language
	2.6 Example File Structures
	2.6.1 User-RPL Examples
	2.6.2 System-RPL Examples
	2.6.3 Assembly Examples

	3 Basic Programming Tools
	3.1 Binary Integers
	3.1.1 Internal Binary Integers in the HP 48 Display
	3.1.2 Internal Binary Integers in System-RPL Source Code
	3.1.3 Type Conversions
	3.1.4 Internal Binary Integer Operations

	3.2 Flags
	3.2.1 Flag Conversions
	3.2.2 Flag Utilities

	3.3 Tests
	3.3.1 Object Equality
	3.3.2 Binary Integer Tests
	3.3.3 Real Number Tests
	3.3.4 Extended Real Number Tests
	3.3.5 Complex Number Tests
	3.3.6 Advanced Topic: Missing Extended Real Test Objects
	3.3.7 Unit Object Tests
	3.3.8 Character String Tests
	3.3.9 Hex String Tests

	3.4 Program Flow Control
	3.4.1 Early Exits From a Secondary
	3.4.2 IF – THEN – ELSE Structures
	3.4.3 CASE Objects

	3.5 Loop Structures
	3.5.1 Definite Loops
	3.5.2 Indefinite Loops

	3.6 Runstream Operators
	3.7 Argument Validation
	3.7.1 Attributing Errors
	3.7.2 Number of Arguments
	3.7.3 Type Dispatching
	3.7.4 Object Type Tests

	3.8 Temporary Variables
	3.8.1 Using Named Temporary Variables
	3.8.2 Using Null-Named Temporary Variables
	3.8.3 Programming Hint for Temporary Variables
	3.8.4 Additional Temporary Variable Utilities

	3.9 Error Trapping
	3.9.1 Error Trapping Mechanics
	3.9.2 Generating an Error
	3.9.3 Handling an Error
	3.9.4 Additional Error Objects

	3.10 Stack Operations
	3.11 Control Structure Examples
	3.11.1 PLIST Example
	3.11.2 SEMI Example
	3.11.3 ticR Example

	4 Objects & Object Utilities
	4.1 Real & Extended Real Numbers
	4.1.1 Compiling Real Numbers
	4.1.2 Built-In Real Numbers
	4.1.3 Real Number Conversions
	4.1.4 Real Number Functions
	4.1.5 Extended Real Number Functions

	4.2 Complex Numbers
	4.2.1 Compiling Complex Numbers
	4.2.2 Complex Number Conversions
	4.2.3 Built-In Complex Numbers
	4.2.4 Complex Number Functions

	4.3 Arrays
	4.3.1 Compiling Arrays
	4.3.2 Array Utilities
	4.3.3 The MatrixWriter

	4.4 Tagged Objects
	4.5 Characters and Character Strings
	4.5.1 Built-In Character Objects
	4.5.2 Built-In String Objects
	4.5.3 String Manipulation Objects

	4.6 Hex Strings
	4.6.1 Hex String Conversions
	4.6.2 Wordsize Control
	4.6.3 Basic Hex String Utilities
	4.6.4 Hex String Math Utilities

	4.7 Composite Objects
	4.7.1 Building Composite Objects
	4.7.2 Finding the Number of Objects in a Composite Object
	4.7.3 Adding Objects to a Composite
	4.7.4 Decomposing Composite Objects
	4.7.5 Searching Composite Objects
	4.7.6 Detecting Embedded Objects

	4.8 Unit Objects
	4.8.1 Dimensional Consistency
	4.8.2 Building and Decomposing Unit Objects
	4.8.3 Unit Object Utilities

	5 Memory Utilities
	5.1 Name Objects
	5.2 User Variables
	5.3 Directory Utilities
	5.4 Temporary Memory
	5.4.1 Use of Temporary Memory
	5.4.2 Garbage Collection

	5.5 Memory Utilities

	6 Graphics, Text, and the LCD
	6.1 LCD Display Regions
	6.1.1 Status Area Control
	6.1.2 Stack Area Control
	6.1.3 Menu Area Control
	6.1.4 Combined Area Controls

	6.2 Basic Display Memory Principles
	6.2.1 The Current Display Grob
	6.2.2 The Stack Grob
	6.2.3 The Graphics Grob
	6.2.4 Verifying Display Grob Height
	6.2.5 Enlarging ABUFF or GBUFF
	6.2.6 Scrolling ABUFF or GBUFF
	6.2.7 The Menu Grob
	6.2.8 Display Pointer Examples

	6.3 Graphics Coordinates
	6.3.1 Subgrob Coordinates
	6.3.2 User Pixel Coordinate - Bint Conversion
	6.3.3 User-Unit to Pixel Conversion
	6.3.4 Accessing PPAR

	6.4 Displaying TextPICT
	6.4.1 Medium Font Display Objects
	6.4.2 Displaying Temporary Messages
	6.4.3 Large Font Display Objects

	6.5 Basic Grob Tools
	6.5.1 Creating Grobs
	6.5.2 Finding Grob Dimensions
	6.5.3 Extracting a Subgrob
	6.5.4 Inverting a Grob
	6.5.5 Combining Graphics Objects
	6.5.6 Clearing a Grob Region

	6.6 Drawing Tools
	6.6.1 Line Drawing
	6.6.2 Pixel Control

	6.7 Menu Grob Utilities
	6.8 Built-in Grobs
	6.9 Graphics Examples
	6.9.1 Drawing a Grid
	6.9.2 A Rocket Launch

	7 Keyboard Utilities
	7.1 Key Buffer Utilities
	7.2 Checking The Keyboard While Running
	7.2.1 Detecting the [ON] Key
	7.2.2 Detecting Any Key

	7.3 Waiting For a Key
	7.4 Keycodes
	7.5 Repeating Keys
	7.6 InputLine
	7.6.1 Input Parameters
	7.6.2 InputLine Results
	7.6.3 InputLine Examples

	8 The Parameterized Outer Loop
	8.1 Introducing ParOuterLoop Parameters
	8.2 Temporary Environments and the POL
	8.3 The Exit Object
	8.4 The Error Object
	8.5 Display Objects
	8.6 Hardkey Handlers
	8.6.1 Key and Plane Codes
	8.6.2 Hardkey Handler Structure

	8.7 Softkey Definitions
	8.7.1 Null Menu Keys
	8.7.2 Softkey Label Objects
	8.7.3 Softkey Action Object

	8.8 The POL Error Trap Object
	8.9 POL Utilities
	8.10 Menu Utilities

	9 Graphical User Interfaces
	9.1 Message Boxes
	9.1.1 Message Box Parameters
	9.1.2 Message Box Example

	9.2 Equation Library Browser
	9.2.1 Browser Parameters
	9.2.2 Active Browser Keys
	9.2.3 Browser Support Objects
	9.2.4 Browser Example

	9.3 Choose Boxes
	9.3.1 Choose Box Styles
	9.3.2 Choose Box Parameters
	9.3.3 Choose Box Message Handler
	9.3.4 Decompile Objects
	9.3.5 Customizing Choose Box Menus
	9.3.6 Choose Event Procedures

	9.4 Input Forms
	9.4.1 Input Form Parameters
	9.4.2 Label Specifiers
	9.4.3 Field Specifiers
	9.4.4 Input Form DEFINEs for RPLCOMP
	9.4.5 Specifying Object Types
	9.4.6 Specifying Decompile Formats
	9.4.7 Input Form Message Handlers
	9.4.8 Input Form Data Access
	9.4.9 Customizing Input Form Menus
	9.4.10 ORBIT Example

	10 Introducing Saturn
	10.1 The Saturn CPU
	10.1.1 The Working and Scratch Registers
	10.1.2 The Status Bits
	10.1.3 Input and Output Registers
	10.1.4 The Return Stack
	10.1.5 Arithmetic Mode
	10.1.6 The Pointer Register

	10.2 Instruction Set Summary
	10.2.1 Memory Access Instructions
	10.2.2 Load Constant Instructions
	10.2.3 P Register Instructions
	10.2.4 Scratch Register Instructions
	10.2.5 Shift Instructions
	10.2.6 Logical Instructions
	10.2.7 Arithmetic Instructions
	10.2.8 Branching Instructions
	10.2.9 Test Instructions
	10.2.10 Register & Status Bit Instructions
	10.2.11 System Control Instructions
	10.2.12 Keyscan Instructions
	10.2.13 NOP Instructions
	10.2.14 Assembler Pseudo-Op Instructions

	11 Writing Your Own Code Objects
	11.1 Code Object Execution
	11.2 Stack Access
	11.2.1 Example: SWAP Two Objects
	11.2.2 Example: DROP Nine Objects

	11.3 Reading Assembly Language Entry Descriptions
	11.4 Saving and Restoring the RPL Pointers
	11.4.1 Example: Reversing Objects on the Stack
	11.4.2 Example: Clearing A Grob

	11.5 Stack Utilities
	11.5.1 Pop Utilities
	11.5.2 Push Utilities
	11.5.3 Examples: Indicated ABS

	11.6 Memory Utilities
	11.6.1 Allocating Memory
	11.6.2 Memory Move Utilities
	11.6.3 Display Memory Addresses

	11.7 Reporting Errors
	11.8 Checking Batteries
	11.9 Warmstart & Coldstart
	11.10 Tone Generation
	11.10.1 Steady Tones
	11.10.2 Rising and Falling Tones

	11.11 Keyboard Scanning
	11.11.1 Managing Interrupts
	11.11.2 Rapid Keyboard Scans
	11.11.3 Low Power Keyboard Scans

	11.12 The RVIEW Debugging Tool
	11.12.1 The RVIEW User Interface
	11.12.2 Using RVIEW

	11.13 The PONG Game

	A Messages
	B Character Codes
	C Flags
	D Object Structures
	D.1 Binary Integer
	D.2 Real Number
	D.3 Extended Real Number
	D.4 Complex Number
	D.5 Extended Complex Number
	D.6 Character
	D.7 String
	D.8 Hex String
	D.9 Arrays
	D.9.1 One-Dimension Array
	D.9.2 Two-Dimension Array
	D.9.3 Linked Array

	D.10 Name Objects
	D.10.1 Global Name
	D.10.2 Local Name
	D.10.3 XLIB Name

	D.11 Graphic Object
	D.12 Code Object
	D.13 Secondary
	D.14 Tagged
	D.15 List
	D.16 Symbolic
	D.17 Unit
	D.18 Library Data Objects

