1. Cetting Started

SASM EXE i s an assenbler for the Saturn processor famly.

As a historical note, the Saturn processor first appeared in
the HP 71B, and has since been used in various fashions for
ot her HP cal cul ator nodels, including the HP 28 and the

HP 48.

The file SASM EXE should be installed in a directory such as
BIN, with the PATH variable set to include that directory.
An environnment variable SASM LIB should be set to point to
the file SASM OPC. For instance, if the opcode file is in
\LIB, the command "SET SASM LI B=C.\ LI B" should be added to

t he aut oexec.bat file.

A file nam ng convention extends throughout the Saturn

devel opnent environment. Sasm accepts input fromfiles with
a ".a" extension, and produces listing files with a ".I"
extension and code files with a ".o0" extension

Several options are avail abl e:

Option Descri ption
A Wite listing to stdout
alstfile Wite listing to "Istfile"
¢ colum Fields starting after "columm" are considered coments
D symrval Defines synbol "synm’ to have value "val" (default=1)
d dbgfile Wite debug information to "dbgfile"
E Wite Clike error nessages to stderr
e Wite error nmessages to stderr
f flglist Sets the flags indicated by "flglist" (comma separat ed)
H Wite object file as raw code (no object header or synbols)
h Wite object file as hexadeci mal characters (no object

header or synbol s)

N Suppress listing entirely

o objfile Wite object file to "objfile"

P pl evel Sets the processor level to "plevel™ (0, 1, 2, or 3)
p patelen Do a page break each "pagel en” |ines

t opcfile Read opcodes fromfile "opcfile"”

w wi dth Set output page width to "wi dth" colums (default 80)

Page 1

Here is an exanple to illustrate Saturn codi ng and show what
a typical Saturn source file looks like. The nane of the
source file is "exanple.a". The Saturn instructions are

expl ained later in this manual

TITLE Exanple Saturn Assenbly file

*
* External entry point: =ENTRY1l
*
* This routine shifts the Cregister right 6 digits
* without altering the sticky bit val ue
*
=ENTRY1 P= 5
C=0 WP
ENTRY2 CSR w
P=P-1
GONC ENTRY2
P= 0
RTNCC
END

Assenbling this file with the command "sasm exanpl e. a"
generates a Saturn object file (exanple.o), and a list file
(exanmple.l) which is shown on the next page.

Page 2

Saturn Assenbl er Exanple Saturn Assenbly file Tue Jul 21 16:35:38 1987

Ver. 1.40, 7/21/87 exanpl e. a Page 1
1 TITLE Exanple Saturn Assenbly file
2 *
3 * External entry point: =ENTRY1l
4 *
5 * This routine shifts the Cregister right 6 digits
6 * without altering the sticky bit val ue
7 *
8 00000 25 =ENTRY1 P= 5
9 00002 A92 C=0 WP
10 00005 BF6 ENTRY2 CSR w
11 00008 0D P=P-1
12 0000A 5AF GONC ENTRY2
13 0000D 20 P= 0
14 000OF 03 RTNCC
15 00011 END

[page break]

Saturn Assenbl er Exanple Saturn Assenbly file Tue Jul 21 16:35:38 1987

Ver. 1.40, 7/21/87 Synbol Table exanpl e. a Page 2
=ENTRY1 Rel 0 #00000000 - 8
ENTRY2 Rel 5 #00000005 - 10 12

[page break]

Saturn Assenbl er Exanple Saturn Assenbly file Tue Jul 21 16:35:38 1987
Ver. 1.40, 7/21/87 Statistics exanpl e. a Page 3

| nput Paraneters
Source file name is exanple.a
Listing file nane is exanple.l
hject file nane is exanple.o

Fl ags set on conmand |ine
None

Errors

None

Page 3

2. Saturn CPU Overvi ew

The Saturn CPU is a proprietary CPU optimnm zed for high-
accuracy BCD math and | ow power consunption. The data path
is 4 bits wide. Menory is accessed in 4-bit quantities
called ""nibbles'' or “"nibs''. Addresses are 20 bits,

yi el di ng a physical address space of 512K bytes.

2.1 Registers

There are four working 64-bit registers, five scratch 64-bit
registers, two 20-bit data pointer registers, one 4-bit

poi nter register, a 20-bit program counter, a 16-bit input
register, and a 12-bit output register. Return addresses
are stored on an eight-level hardware return stack that
accepts 20-bit addresses. |In addition, there are 4 Hardware
Status bits, a Carry bit, and 16 Program Status bits. The

| ower 12 Program Status bits can be manipul ated as a 12-bit
register.

2.2 Working and Scratch Registers

The working registers A, B, C, and D are used for data
mani pul ation. Whrking registers A and C are al so used for
menory access. The scratch registers RO, Rl, R2, R3, and R4
are used to tenporarily hold the contents of working

regi sters.

Page 4

2.3 Field Selection

Subfields of the working registers A, B, C, and D may be
accessed by the use of field selection. The possible field
sel ections range fromthe entire register to any single

ni bble of the register. Certain subfields are designed for
use in BCD calculations. Ohers are used for data access or
general data mani pul ation.

Field Sel ection Description

P N bble indicated by P register
WP Ni bbl es from ni bble P through nibble 0, inclusive
XS N bbl e 2;- Exponent sign

X N bbles 2-0;- Exponent including exponent sign

S Ni bble 15;- Mntissa sign

M N bbl es 14-3;- Mantissa

B Ni bbles 1-0;- Byte field

A Nibbles 4-0;- Address field (20 bits)

W Ni bbl es 15-0;- Wrd (entire 64-bit register)

Regi st er Ni bbl es

o m m e e e e o e e e e e e e e e e e e e e e e e eeee—oooo +
| 15| 14| 13| 12| 11| 10| 9] 8| 7| 6| 5| 4| 3| 2| 1] O]
o m m e e e e o e e e e e e e e e e e e e e e e e eeee—oooo +
| S | XS] B |
| <- M-> | <-X-> |

<- A-> |

| < W-> |

2.4 Pointer Registers

The 20 bit Data Pointer registers DO and D1 are used to
contai n addresses during nenory access, and are used in
conjunction with the working registers.

The 4 bit Pointer register Pis used in Field Sel ection
operations with the working registers.

2.5 Ilnput, Qutput, and Program Counter Registers

The input/output registers are used to comunicate with the
system bus. The program counter points to the next
instruction to be executed by the CPU. The input register
INis 16 bits, the output register QUT is 12 bits, and the
PC register is 20 bits.

Page 5

2.6 Carry, Program Status, and Hardware Status Bits

The Carry bit is adjusted when a cal cul ation or |ogical test
is performed. During a calculation, such as increnmenting or
decrementing a register, it is set if the calculation
overflows or borrows; otherwise it is cleared. During a

| ogi cal test, such as conparing two registers for equality,
it is set if the test is true; otherwise it is cleared.

The upper 4 Program Status bits are typically used to
indicate the state of the operating system The renaining
12 Program Status bits are generally available to
applications software, and may be mani pul ated col | ectively
as the ST register.

The four Hardware Status bits are set (but not cleared) by
hardware-rel ated events, and nmust therefore be cleared
beforehand in order to detect a particular occurrence. They
are individually accessible by nane. The Mddule Pulled bit
(MP) is set whenever the *NINTX CPU input is pulled I ow
(regardl ess of whether an interrupt is actually executed).
The Sticky Bit (SB) is set when a non-zero bit shifts off
the right end of a working register as the result of a shift
instruction. The Service Request (SR) bit is set as a
result of the SREQ? instruction if any hardware service
request is pending. The external Mddule Mssing bit is set
by execution of a ~"00'' opcode (RTNSXM i nstruction).

Hardware Status: 4 bits

Bit Synbol Nane
P Modul e Pulled (*NINTX pul |l ed | ow)
Servi ce Request
SB Sticky Bit
XM Ext ernal Modul e M ssi ng

OFrLrNW
wn
Py

Page 6

2.7 Arithnetic Mde

The arithnetic node is set by the SETHEX and SETDEC
instructions. When SETHEX is executed, the arithnetic node
is set so that all register arithnetic is performed in
hexadeci mal node. When SETDEC i s executed, the arithnetic
node is set so that nost register arithnmetic is perforned in
deci mal node. The follow ng instructions are *al ways*
performed i n hexadeci mal node, regardless of the arithnetic
node setting:

P=P+1

P=P- 1

C+P+1

DO=D0+ n DO=D0- n
D1=D1+ n D1=D1- n
A=A+CON fs, n A=A-CON fs, n
B=B+CON fs, n B=B- CON fs, n
C=C+CON fs, n C=C-CON fs,n
D=D+CON fs, n D=D- CON fs, n

The arithnetic node is not ~“readable'', but can be inferred

by doi ng an appropriate operation, followed by a test. For
exanpl e:

LCHEX 9
C=C+1 P

sets the carry if, and only if, the arithnmetic node is
deci mal

2.8 Loading Data from Menory

VWhen data is read fromnenory into a register, the CPU
pl aces the | owest addressed nibble in the | east significant
ni bbl e of the register

For exanple, if the data shown below in nmenory is read into
the C register using the C=DAT1 4 instruction, the data in
the register will be arranged as shown.

Menor y
Location Val ue C Regi ster
------------- e
1000 6 [| 91 8] 7| 6
1001 7 R LR +
1002 8 15 3 2 1 0
1003 9

This principle applies also to | oading constants into a CPU
regi ster such as C, DO, or D1, since the CPU nust read the
constant fromthe instruction opcode in nmenory. For
exanpl e, the instruction LCHEX 9876 produces the opcode

Page 7

336789 and the C register is |oaded as shown above (assum ng
P= 0).

2.9 Storing Data in Menory

VWhen data is witten froma register to menory, the CPU

pl aces the | east significant nibble of the register in the
| owest ni bbl e of the addressed nenory | ocation. For
exanple, if the data shown above in the C register is
witten to nmenory using the DAT1=C 4 instruction, the data
will be witten to nenory as shown.

2.10 Interrupt System

Al Saturn CPU interrupts cause a subroutine junp to address
#0000F. Determ ning the cause of the interrupt is up to the
interrupt service routine at that address.

Page 8

3. Conditional Assenbly

The assenbl er supports conditional assenbly tests to all ow
different code to be generated based on various conditions.
Condi tions which can be tested include assenbly flags set on
the conmand line or nodified with the SETFLAG or CLRFLAG

i nstructions, the value of an assenble-tine expression
conpared to zero, the presence or absence of a synbol
definition, the (guaranteed) carry state (for exanple, after
QOYES the carry is clear), the current assenbl er pass
(useful for nessages), and the presence of an opcode or
macro definition.

The structure of a conditional assenbly block is:

| abel I F

<<code if condition is true>>
| abel ELSE

<<code if condition is fal se>>
| abel ENDI F

The | abel and ELSE sections are optional

Condi ti onal assenbly bl ocks can be nested up to a maxi mum of
20 levels if a unique |abel is present for each nesting. |If
the label is onmtted or not unique, the code assenbl ed may
not nest as expected for the false block. For exanple:

1 | F 0

2 | F 1

3 * Flags 0 and 1 are set

4 ELSE

5 * Flag O is set, flag 1 is clear
6 ENDI F

7 ELSE

8 | F 1

9 * Flag O is clear, flag 1 is set
10 ELSE

11 * Flags 0 and 1 are clear

12 ENDI F

13 ENDI F

If flag O is clear, the ELSE on line 4 is found as the ELSE
mat ching the IF 0. The ELSE on line 7 and the END F on
line 13 are flagged as errors (ELSE without matching |IF,
ENDI F wi t hout matching IF). Lines 5 and 11 are both
assenbled. |If the nested |IF statenments had uni que | abel s,

t hey woul d work as expected.

For a list of the conditional assenbly opcodes, see

““Conditional Assenbly'' in the " Pseudo-Q |nstructions'
section of the "~Saturn Assenbl er Mienonics" appendi x.

Page 9

4. Using Macros

This chapter explains howto create and use macros in your
source files. The macro directives are MACRO, EXITM and
ENDM

A macro is a nanmed bl ock of source statenents. Wen a nmacro
nane is used as a statenent, it is automatically replaced by
the bl ock of source statements it represents.

Macro definitions cannot be nested; the MACRO statenent is
illegal within a macro call.

Macro lines are not listed by default; to enable listing of
the macro expansi on, use either the LI STM or SETLI ST MACRO
st at enent .

4.1 Defining a Macro

A macro definition consists of a MACRO statenent, foll owed
by the source statements to nake up the macro, followed by
an ENDM statenment. The |abel on the ENDM statenent, if any,
must match the name of the macro (the |abel on the MACRO
statenment). Text which follows the MACRO statenent on the
same line is ignored (coment only). It is suggested that
the conments indicate the paraneters which are expected when
the macro is called. Up to nine paraneters can be passed to
a macro when it is called. The statenents between the MACRO
statenent and the ENDM statenent are not assenbled until the
macro is called. Any assenbler pseudo-ops within a macro
definition are executed when the nmacro is called, not when
it is defined. An exclamation mark (!) in the first columm
is renmoved fromthe [ine when the macro is called. The rest
of the Iine is included in the expansion

Bl ank |lines and conment |ines are not normally included in
the macro expansion. To include a blank Iine or a conment
line in a nmacro expansion, add an exclamation mark in the
first colum.

The dollar sign ($) is used in macros as a text substitution
character. The character which follows the dollar sign
i ndi cates the repl acenment:

Sequence Repl acenent Text

$3 $ (one dollar sign)

$0 Li ne nunber on which the macro was call ed
$< Current source file nane

$n Paraneter reference (1_n_9)

$(n) I ndirect paraneter reference (1_n_9)

$(nf) Formatted indirect paraneter reference (1_n_9)

Par ameter references are replaced by the correspondi ng
paraneter text.

Page 10

I ndi rect paraneter references are replaced by the val ue of

t he correspondi ng paraneter when interpreted as an
expression. Formatted indirect paraneter references include
a format string f which follows the paraneter nunber. The
format string has the form[:] [length] [format char].
Lengt h i ndicates the m ni mum nunber of characters to use.
The value is zero-filled if it requires fewer than |l ength
digits. The default length is one. Format char controls
the radi x and case of the value. The table shows valid
format char val ues:

Char act er Descri ption Digit Characters
H, X Hexadeci nal 0123456789ABCDEF
h, x Hexadeci mal 0123456789abcdef
D, d Si gned deci mal 0123456789 (default)
U u Unsi gned deci mal 0123456789
0o Cct al 01234567

The maxi mum conbi ned nesting depth for macros and incl ude
files is 20 | evels.

4.2 Calling a Macro

To call a macro, specify the nane of the macro as an
instruction. The macro body will be included at this point
in the source file. Paraneters to be passed to the macro
follow the nacro nane on the line. Up to nine paraneters
may be passed to a macro.

Page 11

4.3 Paraneter Assignment Rul es

The paraneter text on the macro call line is assigned to
paranmeters in the foll ow ng way:
1. Skip all leading blanks and tabs and set the current
paraneter nunber to one.
2. If the first character is a <, all text uptoa >is
assigned to the current paranmeter nunber. |If the

first character is not a < and there is a comm (,) in
the remaining text, all text up to the comm is
assigned to the current paraneter nunber.

If the first character is a <, but there is not a > in
the remaining text, the <is considered to be a normal
t ext character.

3. If the first character is not a < and there is no
comma in the remaining text, all text up to the first
bl ank or tab is assigned to the current paraneter
numnber .

4. Increnent the paraneter nunber. |[If the paraneter
nunber is less than nine, go back to step 2.

NOTE: The comrent col um value is ignored for macro cal
lines; only characters which follow the first blank or tab
follow ng the | ast paraneter are ignored.

4.4 WNacro Exanpl e

The (sinmple) exanple belowis a macro that increnents the A
regi ster by the anmount passed as a paraneter.

ADDTOA MACRO
LC(5) $1
A=A+C A

ADDTOA ENDM

DATO=A M

ADDTCA 312
DO=D0+ 12

Page 12

5. File Access Statenents

There are three statenents which access data in other files.
RDSYMB reads the synbols froma Saturn object file, | NCLUDE
reads Saturn source statenents froma file, and CHARVAP
sinmplifies the problemof working with a non-ASCI| character
set often found in cal cul ators.

The file nane for each of the statenents can be specified
several ways. The name can be specified by itself or
surrounded by quotes ("filenane"), apostrophes ('filenane'),
or brackets (<filenane>). |If the file name contains bl anks
or tabs, it nust be quoted by one of these nethods.

Each statenent uses an environment variable to determ ne
where to search for the file (the default is the current
directory and a systemdirectory). See the "Environnment
Vari abl es” appendi x for nore information about environment
vari abl e names and defaul ts.

5.1 RDSYMB St at ement

The RDSYMB st atenent reads the synbol table froma Saturn
object file. Al external synbols which are defined in the
object file and are not rel ocatable are available for use in
the file being assenbled. Synbols defined by a RDSYMB
statenment are not included in the synbol table listing

unl ess they are actually used in the assenbly.

5.2 | NCLUDE St at ement

The I NCLUDE statenent tells the assenbler to read source
statenments fromthe specified file. The assenbler reads
fromthe file until an END statenent is processed or the end
of the file is reached.

The lines read frominclude files are not normally I|isted.
Only pseudo-op statenents and |ines containing errors are
listed by default. To enable full include file listing, use
ei ther the SETLI ST | NCLUDE statenment or the LISTM statenent.
Included lines have a - after the |line nunber in the
listing. The line nunber shown in the listing is the line
within the include file.

5.3 CHARVAP St at ement

The LAASC, LCASC, and NI BASC statenents are of limted
useful ness when the character set used in a product is not
ASCII. The CHARVAP statenent allows the ASCI| characters
specified in those statenents to be automatically converted

Page 13

to a different character set. For exanple, if a particular
product is only capable of displaying letters and digits,
the character set mapping mght be A... Z = #00 ... #19,
a... z=#A ... #35, and 0 ... 9 = #36 ... #40. Using
CHARMVAP with a file which contains all these pairings allows
the assenbler to automatically convert all references to
ASCI | characters to the correspondi ng character set
character. This pernmts source files to be independent of

t he actual character mappi ng by including a CHARVAP
statenent at the start of the file.

The mappi ng becones effective when the CHARVAP statenent is
executed; it does not affect ASCI| characters preceding the
CHARMVAP statement. The effect of multiple CHARVAP
statenents is cunul ati ve.

5.3.1 Charmap_Fil e_For mat The file indicated by the
CHARMAP statement contains a list of pairings, one pair per
line. The first character position is the ASCII character
which is used in the source file, and the second character
position is the value which is used for the generated code.
Each character position can be either an ASCI1 character or
an escape sequence simlar to those found in the C I anguage.
The follow ng table sunmarizes the escape sequences

recogni zed in a CHARMAP fil e:

Sequence ASCI | code Descri ption

ASCI | char Sane The specified ASCI| character
\a 7 BEL (alert character)
\b 8 BS (backspace)
\ t 9 HT (tab)
\n 10 LF (linefeed)
\v 11 VT (vertical tab)
\ f 12 FF (fornfeed)
\r 13 CR (carriage return)
\\ 92 Backsl ash
\ xhh Hex hh Character with hex value hh
(\xh ok if not ambi guous)
\ ddd Cctal ddd Character with oct val ue ddd

(\dd or \d ok if not ambi guous)

Page 14

6. Saturn Assenbl er Format and Mhenoni cs

Thi s chapter describes the Saturn assenbler instruction set.
The Saturn CPU has three variations used in severa

products. The 1LF2 was used in the first versions of the
HP-71B. The 1LK7 is a variation of the 1LF2 used in | ater
versions of the HP-71B, the HP-18C, and the HP-28C. The
1LR2 is an integrated CPU ROM RAM Di splay Driver IC. Each
new version of the Saturn CPU added new i nstructions to the
Saturn instruction set. Instructions available in al

Saturn CPUs are referred to as "level 0" instructions.
Instructions available in the 1LK7 and 1LR2 but not the 1LF2
are referred to as "level 1" instructions. Instructions
available only in the 1LR2 are referred to as "level 2"
instructions. In this section, "level 1" instructions are
marked with an asterisk (*), "level 2" instructions are
marked with two asterisks (**). [Instructions with no mark
are "level 0" instructions.

6.1 Instruction Syntax

The assenbler is "free format” and a space or tab is
required to delimt the different fields. A label, if
present, must start in colum one or two. The format bel ow
is a recormended columm al i gnment:

6.1.1 Comrents

A comment line begins with an asterisk (*) in columm one,
and may occur anywhere in the file. An in-line comment may
begin with any non-bl ank character and nust foll ow the
nodifier field of an instruction (or the opcode if no
nmodifier is required).

6.1.2 Synbols_and_Label s

A synbol is a nane for a nunmeric value. A synbol acquires
its value by appearing in the label field of certain
statenments. The word "synbol" is a general termfor a

| abel , and the two are used interchangeably.

Synbol s consi st of one to twelve al phanunmeric characters
with the following restrictions: the characters comma (,),
space (), and right parenthesis are prohibited, and special
care must be used if the first character is an equal sign
(=), colon (:), sharp (#), left parenthesis, or a digit (O
t hrough 9).

Page 15

A synbol may be i medi ately preceded by an equal sign (=)
whi ch decl ares the synbol to be an external synbol. An
external synmbol defined in one nodule may be referenced as
an external synbol by another nodule. Such references are
resol ved when the nodules are linked together. Certain
Saturn assenbl ers, such as the HP-71 FORTH Assenbl er ROM
have no associated |inker and therefore do not support
external symbols. |In this case, any |leading equal sign is
i gnor ed.

A synbol may instead be i mediately preceded by a colon (:)
whi ch sinply declares what follows to be a (local) synbol

Ei ther an equal sign or a colon nmust be used with any synbol
whose first character is in the special care category (=, :
#, (, 0-9).

VWhen a synbol is used as part of an expression, parentheses
are required to delineate it. That is, ADl1-10 is a synbol
but (AD1)-10 is a conputed expression

6.1.3 Expressions

VWher ever an expression may appear in the nodifier field of
an instruction, it is represented by the synbol "expr" in
the instruction descriptions below. Expressions are

eval uated using 32-bit signed integer math. [If a val ue does
not fit within 32 bits, the nost significant bits are | ost
(only the low 32 bits are saved).

Expr essi on Conponent s

Conponent Exanpl es

deci mal const ant 23434
hexadeci mal constant #1FFO (less than #100000000)
ASClI | const ant \AB\, "AB' (4 or less characters)

oper at or + addition

- subtraction

synonym for * 256 +

* multiplication

/ integer division

% nodul o (remai nder)

A integer exponentiation
& Dbitwi se AND
|

bi twi se OR
* Current assenbly program counter
symnbol Synbol defined within this file
(expression) Par ent hesi zed expression

Page 16

Two cl asses of instructions require a nodifier field which
contains a constant of a specific type that does not conform
to the above rules. These are:

1. Instructions with a string constant which can exceed
4 characters:

LAASC \ASC I\ (8 characters nmaximum **
LCASC \ASC I\ (8 characters nmaxi mum
NI BASC \ASCII. ..\ (40 characters nmaxi mum
STRING \ASCII...\ (40 characters nmaxi mum

2. Instructions with a required hexadeci mal constant:

LAHEX 0123456789ABCDEF (16 digits maxi nun) **
LCHEX 048C3 (16 digits maxi num
NI BHEX 0123456789ABCDEF (80 digits maxi mum

6.2 Explanation of Synbols

In the descriptions of the Saturn assenbl er nmenonics, these
synbol s are defined as foll ows:

a The hex ni bble used to encode the field selection in
t he assenbl ed opcode of an instruction. See the
Field Select Table in the next section for details.

b The hex ni bble used to encode the field selection in
t he assenbl ed opcode of an instruction. See the
Field Select Table in the next section for details.

d The nunber of nibbles represented by a field
selection field. Used in calculating the execution
cycle time of some instructions. See the Field
Sel ect Table in the next section for details. Wen
used in an extended field selection fsd, represents
an expression which indicates the nunber of nibbles
of the register that will be affected by the
i nstruction, proceeding fromthe | ow order nibble to
hi gher - or der ni bbl es.

expr An expression that evaluates to an absolute or
rel ocatabl e value, usually less than or equal to 5
ni bbl es in | ength.

fs Field selection synbol. See the Field Sel ect Table
in the next section for details.

fsd Extended field selection synbol. Represents either a
normal field selection synbol fs, or an expression
that gives the nunber of nibbles d of the register
that will be affected by the instruction, proceeding
fromthe | ow order nibble to higher-order nibbles.

Page 17

hh

hhhh

hhhhh

| abel

nn

nnnn

nnnnn

SS

dp

Two-digit hex constant, such as 08 or F2. Wthin an
opcode represents the hex digits used to store the
val ue of the expression in the opcode in reverse
order (see "Loading Data From Menory").

Four-digit hex constant, such as 38FE. Wthin an
opcode, represents the hex digits used to store the
val ue of the expression in the opcode in reverse
order (see "Loading Data From Menory").

Five-digit hex constant, such as 308FE. Wthin an
opcode, represents the hex digits used to store the
val ue of the expression in the opcode in reverse
order (see "Loading Data From Menory").

A synbol defined in the label field of an
i nstruction.

A one-digit decimal integer constant.

Represents an expression that evaluates to a 1-nibble
val ue, unl ess specified otherwise. Wthin an opcode,
represents the hex digit used to store the assenbl ed

val ue of the expression in the opcode.

Represents an expression that evaluates to a 2-nibble
val ue, unl ess specified otherwise. Wthin an opcode,
represents the hex digits used to store the assenbl ed
val ue of the expression in the opcode.

Represents an expression that evaluates to a 4-nibble
val ue, unl ess specified otherwise. Wthin an opcode,
represents the hex digits used to store the assenbl ed
val ue of the expression in the opcode.

Represents an expression that evaluates to a 5-nibble
val ue, unless specified otherwise. Wthin an opcode,
represents the hex digits used to store the assenbl ed
val ue of the expression in the opcode.

Represents a register (r alone) or a register pair (r
and s used together). The valid conbinations are
(r,s) ={ (AB), (BO, (CA), (DO }.

Represents a scratch register name (RO, Rl, R2, R3,
or R4).

Represents a data pointer nane (DO or D1).

Page 18

6.3 Field Select Table

The following synbols are used in the instruction
descriptions to denote field sel ections.

There are two ways in which field selection is encoded in

t he opcode of an instruction. These two patterns are shown
in the table below, and are designated by the letters a and
b

Field Sel ect Table

Opcode Nunber
Representation of N bs
Field Name and Description (a) (b) (d)
P Pointer Field. Nibble 0 8 1
specified by P pointer
register.
WP Wor d- Thr ough- Poi nter Fi el d. 1 9 P+1
Ni bbl es P t hrough O.

XS Exponent Sign Field. Nib 2. 2 A 1
X Exponent Field. N bs 2-0. 3 B 3
S Sign Field. N bble 15. 4 C 1
M Mantissa Field. N bs 14-3. 5 D 12
B Byte Field. N bs 1-0. 6 E 2
w Wrd Field. N bs 15-0. 7 F 16
A Address Field. N bs 4-0. F - 5

Some instructions have an entirely different opcode
representation for the A field.

Page 19

6.4 Instruction Set Overview

This is a summary of the Saturn instruction set, grouped by
functional category.

Fields of a register are indicated using the convention that
a register name followed by a field in parentheses neans
that field of the register. For exanple, C(A) nmeans the A
field of register C, and A(3:0) neans ni bbles 3 through 0 of
register A

6.5 Junp Instructions

&oro | abel Uncondi tional relative junp;
range -2047, +2048 ni bs.

aoC | abel Rel ative jump if Carry is set;
range -127, +128 ni bs.

GONC | abel Rel ative jump if Carry is clear

range -127, +128 ni bs.

GOSHORT | abel Cenerate a short junp to | abel
If the carry state cannot be
determ ned at assenbly tine, a
GOTO is generated. |If the carry
is known to be set, a GCOCis

generated. If the carry is known
to be clear, a GONC i s generated.
JUWP | abel Alias for GOSHORT.

GOLONG | abel Uncondi tional long relative junp;
range -32766, +32769 ni bs.
GOVLNG | abel Absol ute junp; range unrestricted.

PC=(A) * Indirect junp; A(A) is the
address of the destination address.

PC=(O ** Indirect junp; C(A) is the address
of the destination address.

PC=A ** Direct junmp; A(A) is the
destinati on address.

PC=C ** Direct junmp; C(A) is the
destinati on address.

APCEX ** Direct junp and save PCin A(A
A(A) is the destination address.

CPCEX ** Direct junp and save PCin C(A
C(A) is the destination address.

GOYES | abel Rel ative jump if test is true (second

hal f of test instruction);
range -125, +130 nibs fromtest.

Page 20

6.6 Subroutine Call Instructions

6.

7

GOsUB | abel Rel ative junp to subroutine;
range -2044, +2051 ni bs.

GOSUBL | abel Long rel ative junmp to subroutine;
range -32762, +32773 ni bs.

GOSBVL | abel Absol ute junp to subroutine.

Subroutine Return Instructions

RTN Return from subroutine
RTNSC Return from subroutine and set Carry.
RTNCC Return from subroutine and clear Carry.
RTNSXM Return from subroutine and set

hardware status bit XM
RTI Return from subrouti ne and enabl e

i nterrupt handling.
RTNC Return fromsubroutine if Carry is set.
RTNNC Return fromsubroutine if Carry is

cl ear.
RTNYES Return fromsubroutine if test is true

(second half of test instruction).

Page 21

6.8 Test Instructions

Al'l test instructions nust be followed with a GOYES or a
RTNYES instruction. The test instruction and the follow ng
GOYES or RTNYES instruction together forma single 5-nibble
opcode. The Carry is set when the test is true and cl eared
when the test is false. Al register comparisons are

unsi gned (#FFFFF is greater than #7FFFF). The test is
performed only on the selected field.

6.8.1 Register_Tests

?r=s fs True if r(fs) and s(fs) are equal
?r#s fs True if r(fs) and s(fs) are not equal
?r=0 fs True if r(fs) is zero.
?2r #0 fs True if r(fs) is non-zero.
?r>s fs True if r(fs) is greater than s(fs).
?2s>r fs True if s(fs) is greater than r(fs).
?r<s fs True if r(fs) is less than s(fs).
?s<r fs True if s(fs) is less than r(fs).
?r>=s fs True if r(fs) is greater than or equa
to s(fs).
?2s>=r fs True if s(fs) is greater than or equa
to r(fs).
?r<=s fs True if r(fs) is less than or equa
to s(fs).
?2s<=r fs True if s(fs) is less than or equa
to r(fs).

6.8.2 Pointer_Tests

?2P= n True if Pis equal to n.
?P# n True if Pis not equal to n.

6.8.3 Program Status_Bit_Tests

?ST=0 n True if status bit nis clear
?ST=1 n True if status bit n is set.
?ST#1 n Alias for ?ST=0 n.

?ST#0 n Alias for ?ST=1 n.

Page 22

6.8.4 Hardware Status Bit_ Tests

2XM=0 True if XMbit (external nodul e m ssing)
is clear.
?SB=0 True if SB bit (sticky bit) is clear.
?SR=0 True if SR bit (service request) is
cl ear.
?MP=0 True if MP bit (nodule pulled) is clear.
?HS=0 n True if all bits corresponding to n are
cl ear.

6.8.5 Register Bit_Tests

?ABlI T=0 n ** True if bit n of register Ais clear.
?ABlI T=1 n ** True if bit n of register Ais set.
?CBI T=0 n ** True if bit n of register Cis clear.
?CBI T=1 n ** True if bit n of register Cis set.
?ABI T#1 n ** Alias for ?ABI T=0 n.

?CBI T#1 n ** Alias for ?CBIT=0 n

?ABI T#0 n ** Alias for ?ABIT=1 n

?CBI T#0 n ** Alias for ?CBIT=1 n

6.9 Pointer Instructions

Al arithmetic cal culations on the pointer are performed in
HEX node.

P= n Set register Pto n.

P=P+1 Increnent P register; affects Carry.

P=P-1 Decrenent P register; affects Carry.

C+P+1 Add P plus one to Afield of C affects
Carry.

C=C+P+1 Alias for C+P+1.

CPEX n Exchange P register and nibble n of C
register.

P=C n Copy nibble n of Cregister to P register.

C=P n Copy P register to nibble n of Cregister.

6.10 Bit Manipulation Instructions

ABIT=0 n ** Clear bit n of register A
ABI T=1 n ** Set bit n of register A
CBIT=0 n ** Clear bit n of register C
CBIT=1 n ** Set bit n of register C

Page 23

6.11 Status Instructions

6.11.1 Program Status

ST=0
ST=1
CSTEX
C=ST
ST=C
CLRST

n
n

Set status bit n.

Clear status bit n.

Exchange status bits 11-0 with C(X).
Copy status bits 11-0 to C(X).

Copy C(X) to status bits 11-0.

Clear status bits 11-0.

6.11.2 Hardware_ Status

XM=0
SB=0
SR=0
MP=0
HS=0
CLRHST

Clear XM bit (external nodule m ssing).
Clear SB bit (sticky bit).

Clear SR bit (service request).

Clear MP bit (nodule pulled).

Clear all bits corresponding to n.
Clear all Hardware Status bits (XM SB,
SR, and MP).

6.11.3 System State_lnstructions

SETHEX
SETDEC
SREQ?

C=RSTK
RSTK=C
A=PC
C=PC
CONFI G

UNCNFG

RESET
BUSCB

BUSCC
BUSCD

SHUTDN

CID

| NTOFF
I NTON
RSI

Set arithnetic node to hexadeci mal .
Set arithmetic node to decinal.

Set C(0) to service request response
frombus. Set SR bit if service is
request ed.

Pop subroutine return stack into C(A).
Push C(A) onto subroutine return stack.
** Copy current PCinto A(A).

** Copy current PCinto C(A).
Configure a device to the address

in C(A.

Unconfigure a device at the address
in C(A.

Send Reset command to system bus.

** | ssue bus command B on the system
bus.

| ssue bus command C on the system bus.
** | ssue bus command D on the system
bus.

Stop CPU here, stay in | owpower state
until wake-up requested.

Copy chip ID fromsystembus to C(A).
Di sabl e maskabl e interrupts.

Enabl e maskabl e interrupts.

* Reset interrupt detect circuitry.

Page 24

6.11.4 Keyscan_lnstructions

aur=C Copy C(X) to OUT register.
QUT=CS Copy C(0) to low 4 bits of QUT register.
A=I N Copy IN register to A(3:0).
C=IN Copy IN register to C(3:0).

6.11.5 Scratch_Regi ster_lnstructions

A=ss Copy ss to A

C=ss Copy ss to C.

SS=A Copy Ato ss.

ss=C Copy Cto ss.

AssEX Exchange A with ss.

CssEX Exchange C with ss.

A=ss.F fs ** Copy ss(fs) to A(fs).
C=ss.F fs ** Copy ss(fs) to C(fs).
ss=A.F fs ** Copy A(fs) to ss(fs).
ss=C.F fs ** Copy C(fs) to ss(fs).
ASsSEX. F fs ** Exchange A(fs) with ss(fs).
CsseEX. F fs ** Exchange C(fs) with ss(fs).

6.11.6 Data Pointer_lnstructions

dp=A Copy A(A) to dp.

dp=C Copy C(A) to dp.

AdpEX Exchange A(A) with dp.

CdpEX Exchange C(A) with dp.

dp=AS Copy A(3:0) to (dp3:0).

dp=CS Copy C(3:0) to (dp3:0).

AdpXS Exchange A(3:0) with dp(3:0).

CdpXS Exchange C(3:0) with dp(3:0).

dp=dp+ n Increnent register dp by n; alters
Carry.

dp=dp- n Decrenent register dp by n; alters
Carry.

dp=HEX hh Load hh into dp(1l:0).

dp=HEX hhhh Load hhhh into dp(3:0).

dp=HEX hhhhh Load hhhhh into dp

dp=(2) expr Load expr into dp(1l:0); use low 2
ni bbl es of expr if too big.

dp=(4) expr Load expr into dp(3:0); use |low 4
ni bbl es of expr if too big.

dp=(5) expr Load expr into dp; use low 5 nibbles
of expr if too big.

6.11.7 Data Transfer _Instructions
If fsd is an expression, the value of the expression is the
nunber of nibbles to transfer. For exanple, if fsd is an

expression whose value is 7, nibbles 6 through O will be
transferred.

Page 25

A=DATO
A=DAT1
C=DATO
C=DAT1
DATO=A
DAT1=A
DATO=C
DAT1=C

fsd Read data pointed to by DO into A(fsd).
fsd Read data pointed to by D1 into A(fsd).
fsd Read data pointed to by DO into C(fsd).
fsd Read data pointed to by D1 into C(fsd).
fsd Wite A(fsd) to location indicated by DO.
fsd Wite A(fsd) to location indicated by D1.
fsd Wite C(fsd) to location indicated by DO.
fsd Wite C(fsd) to location indicated by D1.

6.11.8 Load Constant Instructions

All
significant

| oaded into r(P) and subsequent

r(P+2), etc.

constants are | oaded into the target

ni bble first,

until al

can wrap around from r(15)

LAHEX
LCHEX
LAASC
LCASC

LA(M

LC(m

LACN)

LC(N)

hhhhhhhh *x
hhhhhhhh

\ ASCI I\ *x
\ ASCI I\

expr *x
expr

expr *x
expr

6.11.9 Shift _Instructions

The termcircul ar

shift

ni bbl es have been | oaded.

regi ster |east

with the | east significant nibble
ni bbl es | oaded at r(P+1),

A const ant
to r(0).

hhhhhhhh into A
hhhhhhhh into C

Load hex const ant
Load hex const ant

Load ASCI|I constant ASCI|I into A
Load ASCI|I constant ASCI|I into C
Load an mni bble constant into A;

use | ow m ni bbl es of expression if
too big.

Load an mni bble constant into C
use | ow m ni bbl es of expression if
too big.

Start an expr-ni bbl e Load Const ant
into register A/ This is usefu
for Load Constants which are too
large for LA(n) or which involve
mul tiple external references.
Start an expr-ni bbl e Load Const ant
into register C. This is usefu
for Load Constants which are too
large for LC(n) or which involve
mul ti ple external references.

neans that the nibble shifted out

gets shifted in at the other end of the selected field.

NOTE: Ri ght shift

i nstruct

ions set the Sticky Bit if any

non-zero bits are shifted out.

r SRB
rSRB. F
rSLC

r SRC

r SL

r SR

Shi
fs ** Shi
Shi
Shi
fs Shi
fs Shi

ft reg r right one bit.

ft reg r(fs) right one bit.

ft reg r left circular one nibble.
ft reg r right circular one nibble.
ft reg r(fs) left one nibble.

ft reg r(fs) right one nibble.

Page 26

6.11.10 Arithnetic_Instructions

NOTE: There is no s=r-s fs instruction. This neans these
instructions are not avail able on the Saturn CPU. B=A-B,
C=B-C, A=C-A, and C=D-C.

r=0 fs Set r(fs) to zero.

r=r-1 fs Decrenent r(fs); alters Carry

r=r+1 fs Increnent r(fs); alters Carry.

r=s fs Copy s(fs) to r(fs).

S=r fs Copy r(fs) to s(fs).

r sex fs Exchange r(fs) and s(fs).

sr EX fs Alias for rsgX fs.

r=r+CON fs, d ** Add d to r(fs); alters Carry.

r=r+r fs Add r(fs) to itself; alters Carry.

r=r+s fs Add s(fs) to r(fs); alters Carry.

r=s+r fs Alias for r=r+s fs.

S=r+s fs Add r(fs) to s(fs); alters Carry.

S=S+r fs Alias for s=r+s fs.

r=r-CON fs,d ** Subtract d to r(fs); alters Carry.

r=r-s fs Subtract s(fs) fromr(fs); alters Carry.

S=S-r fs Subtract r(fs) froms(fs); alters Carry.

r=s-r fs Subtract r(fs) froms(fs), put result in
r(fs); alters Carry.

r=-r fs 2's or 10's conplement of r(fs); clear
Carry if r(fs) was zero, else set Carry.

=r-1 fs 1's or 9's conplenment of r(fs);

uncondi tionally clear Carry.

6.11.11 Logical _Operation_Instructions

r=r&s fs Bit-wise AND of register r(fs) with
regi ster s(fs).
r=r!s fs Bit-wise OR of register r(fs) with

regi ster s(fs).

6.11.12 No-Qperation_Instructions

NOP3 Three ni bbl e No- op.
NOP4 Four ni bbl e No- op
NOP5 Fi ve ni bbl e No- op.

6.12 Pseudo-Op Instructions

NOTE: The | abel field is ignored by sonme of the pseudo-op
instructions. These instructions ignore the |abel field:
CHARVAP, CLRCARRY, CLRFLAG CLRLI ST, EJECT, | NCLUDE

LI STALL, LISTM LIST, MESSAGE, NOTREACHED, RDSYMB, SETCARRY
SETFLAG SETLI ST, STITLE, TITLE, and UNLI ST.

Page 27

6.12.1 Data_Storage_Allocation

BSS
CON(m

REL(m

NI BASC

STRI NG

NI BHEX

NI BFS

LI NK

SLI NK

nnnnn
expr

| abel

\ ASCI I\

\ ASCI I\

hhhhhhh

fs

| abel

| abel

| abel

Al |l ocate nnnnn zero ni bbl es here.
Cenerate mni bble constant. The
constant is stored with the | east
significant nibble at the | owest
address. [1 _ m_ 8]

Cenerate mni bble rel ative of fset.
The offset is stored with the | east
significant nibble at the | owest
address. [1 _ m_ 8]

Cenerate ASCI| characters. Each
character is stored with the | east
significant nibble at the | owest
address. The first character is

pl aced at the | owest address.

[40 characters nmaxi munj

Cenerate ASCI| characters, set the
high bit on the | ast character. Each
character is stored with the | east
significant nibble at the | owest
address. The first character is

pl aced at the | owest address.

[40 characters nmaxi munj

Cener at e hexadeci mal ni bbles. The
first nibble is placed at the | owest
address. [80 nibbl es max]

Cenerate the field selection nibble
for field fs. The opcode representation
used is fromcolum a in the Field
Sel ect Tabl e.

Cenerate five nibble relative offset
to the next LINK reference to | abel
The value of the offset is filled in
by the |inker.

Cenerate five nibble relative offset
to the first LINK reference to | abel
The value of the offset is filled in
by the |inker.

Cenerate an mni bble reference to

| abel which is passed to the |inker
The | abel must be an external synbol.
The linker fills in the position of
the INC(m reference to |abel. For
exanple, if a file contains three
INC(3) =label references, the first
INC(3) will be filled in as 000, the
second INC(3) will be filled in as
100, and the third INC(3) will be
filled in as 200 (least significant
ni bbl e of the position at the | owest
addr ess) .

Page 28

6.13 Conditional Assenbly

Condi tional assenbly pseudo-ops allow alternate versions of
assenbly code to be assenbl ed dependent on sone specific
conditions. An optional |abel on the conditional assenbly
statenments all ows nesting.

Condi tions which can be tested include assenbly flags set on
i nvocation, the value of an expression conpared to zero, the
rel ati onship between two strings, the presence or absence of
a synbol, the current carry state (for exanple, after GOYES
or RTNYES, the carry is clear), and whether a specific
menonic is available in this assenbly (dependent on the
processor |evel selected).

| abel I F expr Assenbl e code only if flag expr is set.

| abel | FEQ expr Assenbl e code only if expr is zero.

| abel | FNE expr Assenbl e code only if expr is
non- zer o.

| abel | FLT expr Assenbl e code only if expr is less
t han zero.

| abel | FLE expr Assenbl e code only if expr is less
than or equal to zero.

| abel | FGT expr Assenbl e code only if expr is greater
t han zero.

| abel | FGE expr Assenbl e code only if expr is greater
than or equal to zero.

| abel | FZER expr Alias for |FEQ

| abel | FNz expr Alias for IFNE

| abel | FNEG expr Alias for IFLT.

| abel | FPOS expr Alias for |FGT.

| abel | FDEF synbol Assenble code only if synbol is
defined now.

| abel | FNDEF synmbol Assenble code only if synbol is
not defined now.

| abel | FOPC synbol Assenble code only if synbol is
a valid opcode mmenoni c.

| abel | FNOPC synmbol Assenble code only if synbol is
not a valid opcode menoni c.

| abel | FPASS1 Assenbl e code only if this is the

first pass of the assenbler. This
is most useful in conjunction with
t he MESSAGE pseudo- op.

| abel | FPASS2 Assenbl e code only if this is the
second pass of the assenbler. This
is most useful in conjunction with
t he MESSAGE pseudo- op.

| abel | FANYCARRY Assenbl e code only if the carry can't
be determ ned at assenbly tine.
| abel | FCARRYCLR Assenbl e code only if the carry can

be determ ned at assenbly tine and
the carry is clear.

Page 29

| abel | FCARRYSET Assenbl e code only if the carry can
be determ ned at assenbly tine and
the carry is set.

| abel | FREACHED Assenbl e code only if the current
st atenent can be reached.

| abel ELSE Reverse the sense of the IF test with
| abel "I abel".

| abel ENDI F End conditional assenbly started by
IF with | abel "I abel".

6.14 Listing Control

VWhen no listing file is being generated (-N option), these
pseudo- ops have no effect on the assenbly.

TITLE text Set title to text (at nobst one TITLE
instruction is permtted per file).

STITLE text Set subtitle to text and force a new
page in the assenbly listing.

EJECT Force a new page in the assenbly listing

UNLI ST Turn of f assenbly listing except for
some pseudo- ops.

LI ST Turn on assenbly listing.

LI STM Turn on assenbly listing for macro
expansi on and include files.

LI STALL expr Unconditionally list the next expr lines.
LI STALL i s i ndependent of LIST and
UNLI ST. If expr is less than or equa

to zero or is not a |l egal expression
di sabl e LI STALL node

CLRLI ST type Turn of f assenbly listing of type, where
type is one or nore of { CODE, MACROQ,
| NCLUDE, PSEUDO, ALL }. If the type
i ncl udes NCLIST, the CLRLIST line is
not |isted.

SETLI ST type Turn on assenbly listing of type, where
type is one or nore of { CODE, MACROQ,
| NCLUDE, PSEUDO, ALL }. If the type
i ncl udes NCLI ST, the SETLIST line is
not |isted.

LIST is an alias for SETLIST CODE. LISTMis an alias for
SETLI ST MACRO, | NCLUDE. UNLIST is an alias for
CLRLI ST CODE, MACRO, | NCLUDE.

6.15 Synbol Definition

synmbol EQU expr Assigns the value expr to synbol. If
synbol is already defined, EQU
generates an error.

expr Assigns the value expr to synbol. If
synbol is already defined, it is given

synbol

Page 30

t he new val ue expr.

6.16 Macro Definition

| abel MACRO
| abel ENDM
EXI T™M

6.17 Assenbly Mde

synmbol ABS nnnnn
synmbol REL nnnnn
END

6.18 File Access

Start definition of macro | abel.

End definition of macro | abel.

If reached while interpreting a macro,
termnate that macro interpretation

i mediately. EXITM has no effect
during the definition of a macro.

Speci fy an absol ute assenbly starting
at address nnnnn.

Specify a relocatable assenbly

starting at address nnnnn.

Term nate assenbly with this line.

Any lines followi ng the END i nstruction
are ignored.

These pseudo-ops all ow access to other files. This allows
commonl y-used synbols, macros, etc. to be defined in a file
shared by several assenbly files.

RDSYMB file

I NCLUDE file

CHARMAP file

6.19 Assenbly Flag

CLRFLAG expr
SETFLAG expr

Read t he synbol table fromthe Saturn
file named file. Each synbol which is
defined, external, and not relocatable
is made avail able for the duration of
this assenbly.

Read assenbly source statenents fromfile
until either an END instruction is read
or an End-of-File condition occurs.

Read a set of character mappings from
file. Each line in the file consists of
an ASCI| character, followed by the
character which shoul d be assenbl ed when
the character is used in an ASCII string.
(See "Charmap File Format").

Modi fi cation

Cl ear assenbly flag expr.
Set assenbly flag expr.

Page 31

6.20 Carry State Modification

CLRCARRY

SETCARRY

NOTREACHED

6.21 M scel |l aneous

MESSAGE t ext

Indicate to the assenbler that the carry
is always clear at this point.

Indicate to the assenbler that the carry
is always set at this point.
Indicate to the assenbler that this point
i s never reached by assenbly code.

Wite text to the standard error |ocation
The message is witten once for each
assenbl er pass. This is nost useful when
tracki ng down synbol s whi ch change between
passes.

Page 32

7. Saturn Assenbly Tips

This chapter summari zes sonme general advice accunul ated over
many many nan-years of Saturn progranming in Corvallis.
VWil e no doubt inconplete, these should spare sonme agony.

7.1 Three Warnings

The following three "gotcha's" are | essons that have been
| earned repeatedly by every Saturn progranmer. You have
been war ned.

7.1.1 Return_Levels

If you have experience with standard processors, be aware
that this one has a fixed nunber of return stack |evels (8).
As the interrupt systemuses two of these whenever an

i nterrupt occurs (which generally can be any tine), HP 48

programmers are limted to a maximumof 6 levels. [If code
you wite is called, you will be further limted. The
synmptons of violation will include a Warnstart, but may

i ncl ude nore severe effects. ...So watch those |evels.
7.1.2 Mode

One of the big features of the Saturn processor, is also the
programers bane. The processor supports both DEC and HEX
nodes. Code designed to run in HEX node can behave very
badly if invoked froma DEC node state and vice versa

...So watch the node

7.1.3 Renenber P=0!

Many routines require P=0 as an entry condition (this

i ncludes the RPL inner |loop by the way). Quite frequently
other routines don't care about the value of P on entry, but
use it as a resource and exit with it in various states (eg;
nost of the floating point math routines). This could be
generalized to sinply "watch entry and exit conditions", but
this one seens to happen frequently. ...So watch P=0.

Page 33

7.2 Code Packing Tips
7.2.1 A-Field_Operations

Frequently, use of the Afield for register operations that
require only the P,B,X or XS fields is a code saving. Eg;
Repl ace "A=C X' with "A=C A" field to save a nibble
if you don't care about nibbles 3 and 4 of A

7.2.2 Loadi ng_Constants

For loading small constants into a larger field, it is
frequently cheaper to clear the field and generate only the
"digits" required. For exanple if kfactor < 256, than you
will save a nibble of ROM and get the same effect with

C=0 A
LC(2) kf act or

i nst ead of
LC(5) kf act or

7.2.3 The_3-Branches

There are 3 varieties of "GOTO' and "GOSUB" that require
4,6, and 7 nibbles of code. Two of these are "relative"
branches, and the long one is "absolute". The assenbler
takes care of all the details, informng you if a branch is
out of range, so there is really no drawback to using the
shorter versions when appropriate (they al so execute faster
by the way). As a general rule, references to externa
routines (routines in the HP 48) should use the |ong
version, and references to routines in your application
shoul d use relative branches. The neunonics for the three
varieties are:

GOTO GOSUB (4 nibs)
GOLONG GOSUBL (6 nibs)
GOVLNG GOSBVL (7 nibs)

Nunerous references to an external routine may be shortened
by means of a "junp table". Eg; Replace all "GOSBVL
=CETPTR" by calls to the I ocal version ("GOSUB getptr")
bel ow.

getptr GOVLNG =GETPTR

Page 34

7.2.4 (GOsSUB/ RTN
Code that mght naturally end with sonmething |ike
CfSUB dot ask8
RTN
will run faster, save 2 nibs, and may nmake your routine take
| ess stack |l evels by replacing that conbination with

étﬁo dot ask8

7.2.5 Use_Expressions

Use the Saturn Assenbler to evaluate certain expressions
instead of at run tine.

Exampl e

LC(5) (=TBLADRS) +5*t 2

i nst ead of
LC(5) =TBLADRS
A=C A
LC(5) 5%t 2
C=C+A A

7.2.6 Count_Up

Frequently P is used as the control variable for |oops that
require no nore than 16 passes. |If the loop is structured
so that P is decrenented until a carry test causes an exit,
the value of P on exit will be 15 (generally not a very
useful value). Oten the code which follows will reset Pto
0. Optionally you can avoid the need to reset Pto 0 (save
2 nibs) by counting up. In this way, when the carry occurs,
P will have becone 0.

Exampl e

P= 16-5 Compute x-5*y; Ax, Cy
arglp A=A-C A

P=P+1

GONC arglp

Page 35

7.2.7 Before_you_leap

One of the advantages of assenbly | anguage progranmng is
the plethora of nethods available to the innovator. Oten
the first solution you think of will not be the nbst code
efficient, tinme efficient, resource efficient, reliable, or
easiest to inplenent.

Speaking of tine efficient - this docunent tells you about
execution tine. Instruction execution tine varies depending
on instruction type and the fields that it operates on

I n addition, when executing code out of standard 8-bit w de
devices (ala HP 48 256 KByte ROM), instruction timng will
vary dependi ng on whether the instruction occurs on an even
or odd address. If one measures instruction timng on sone
sort of consistent scale, you find that instruction tines
will vary from2 to 33 units of tinme. The nost tine
expensi ve instructions are those which access data in
menory. Al so expensive are full word (16-nibble)
operations. The | east expensive are operations on P

Page 36

7.3 Sone Conmon Operations
7.3.1 A nibble fromhere to there

This type of operation is usually acconplished by one or
nore of the following 3 types of CPU instructions. The
"Thru P* variety can only be used in the C register

Regi ster Transfer:

Exampl e - Transfer nibble fromCP] to AP
A=C P

N bbl e Shifts:

Example - Shift B field of Ainto nibs 1 and 2 of A

ASL. F X

Thru P

Example - Copy Sign field of Cinto nib 4 of C
P=C 15
C=P 4

7.3.2 Testing_a Bit

This type of operation may be acconplished in a variety of
ways dependi ng on where the bit to be tested is |ocated, the
state of the CPU, and what CPU resources may be used.

Direct Bit Test:

Cenerally this is the best choice when it's available (only

in nibbles 0-3 of A and C registers), as this is destructive
only to the CARRY and depends only on the thing being

t est ed. It also has the advantage of working with synbolic
argunents (which nakes it easy when the |ocation of the bit

i s changed).

Exanpl e:
bEDIT EQU 6

2ABI T=1 bEDI T
GOYES doEDI T

Page 37

Left (Arithmetic) bit shifts in a field:

Left bit shifts require HEX Mbde, and are often used in
cases where the bit lives in a location other than A[0-3] or
C0-3] and it is too expensive or otherw se undesirable to
copy it there. The shift is done arithnetically via HEX
node arithmetic, and is destructive to the field in which
the operation is performed. Your code is al so dependent on
the bit# being tested (not synbolic).

Example - Test bit 2 in A]

SETHEX

A=A+A S Shift it to nsb

A=A+A S CSiff bit 2 was originally set.
[co o bit2 on

Right bit shifts in a field:

Right arithmetic shifts are acconplished by provided CPU
shift instructions. When a non-zero bit is shifted out the
right side of a field, a bit in the CPU known as the "sticky
bit" (SB) is set. This bit is "sticky" and nust be
explicitly cleared before it is used for a bit test. The
sanme exanpl e above could be done in either HEX or DEC node

by:

ASRB.F S Move bit to position 1

ASRB.F S position O

SB=0 Prepare for test

ASRB.F S SB=1 iff bit 2 originally set.
?SB=0

GOYES hit2 off

The pl acenent of the "SB=0" instruction is inportant. There
is noinstruction to test SB=1, hence the test sense
reversal .

Mask it out:
= 15
LCHEX 4 ds]: 0100 (Mask)
A=A&C S Mask out all bits of non-interest.
?AH#0 S bit2 set?

QOYES bit2 on Yes.

Page 38

7.3.3 Saving/Testing a_State

Frequently it is advantage to record a condition that may

| ater be tested. The 12 CPU (Local) Status Bits (SO-S11)
are frequently used for this purpose. The (G obal) Status
bits (S12-S15) are reserved for recordi ng operating system
status. There is a functional difference also. The d obal
Status bits cannot be swapped in and out of the C Register
like the others. Be careful to docunent your usage of the
status bits, as failure to exercise care here can result in
contention for the sanme status bit and a "Gotcha". As far
as usage goes it's quite sinple. Use a synbolic nane for
the status bit (The synbol should be global if the status
bit will be referenced in other files).

Exanpl e:

=sDW EQU 8 Day- Mont h- Year Date Format if Set.
?ST=1 sDWY DD. MWYYYY Dat e For mat ?
QOYES dat el0 Yes.
CDEX B No. - Swap DD, MM

dat el0

7.3.4 Menory_Access

The Saturn Processor Reads (Wites) from (to) | ow order
menory ni bble wise into (fronm) the | ow order nibs of either
the A or Cregisters. You will stay out of trouble if you
renenber | ow order of the register to | ow order nenory.
Thus an ASCI1 "A" stored in the B-field of CPU register A
will appear as A[B]: 41. If this sane value is witten out
to address #82000, vyou will see

#82000 1
#82001 4

If menory is displayed fromleft to right in increasing
addresses (as it is on our devel opnent systens), the data
wi || appear as

82000: 14. ..

maki ng it appear backwards. But all is well. If the 2

ni bbl es starting at address #82000 are read back into Al B]
you will get what you expect (A B]: 41). The transfers take
pl ace by using one of the "Data Pointers" DO, Dl to specify
t he address.

Example: Wite ASCII "A" to address #82000:

P= 0
LC(2) A

DO=(5) #82000

DATO=C B #82000: " A"

Page 39

7.4 Sonme O her Tips

7.4.1 Labels

Not hi ng prohibits you fromusing gl obal |abels on al
routines. Don't. Use global |abels only on routines that
are referenced externally (ie; those that require them or
whi ch m ght reasonably be called externally in the future.
Use "gl obal references"” only where required. This permts a
code reviewer to know whether or not a routine that is being
called is in the same file or not wo referring to the
synmbol table. (ie; if | see "GOSUBL =PADDER', | assune
that PADDER is in another file - otherwi se, why the "=" ?).

7.4.2 Status Bits

Al status bit usage should be synbolic. That is; never
wite sonething Iike "ST=0 5". Instead, this can be
"ST=0 SLOAN' where sLOAN has been equated to 5 el sewhere.
In addition to the obvious advantage of self docunenting
status bit usage, this permts relativelty safe changes to
the actual status bit in use at a later tinme. The synbol
table identifies all references to sLOAN for the purposes of
maki ng changes, avoiding status bit clash, etc.

7.4.3 Entry_Points

I find it is best to not have nore than one d obal entry in
a given routine. The main reason is that such a routine is
frequently difficult to maintain. Invariably the entry
points will have different entry conditions (el se why the
separate entry). This tenet may be violated in the interest
of code conservation, but always bal ance it against the

mai nt enence cost. If you do it, and it's not conpletely
obvi ous from a casual glance what the entry conditions need
to be, insert a "mni-header” consisting of a few coment

i nes explaining what the entry conditions are. Sonething
i ke

hkhkhkkhkhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhdhhhhdhhhdhhhdhhhdhhhdhdhdddhdddrxdx*x

** Here: A: Last Arg Count *
*x C. Loop Counter *
*x P: 14 *

hkhkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhdhhhdhhdhhhhdhhhdhhhdhhhdhhhddhddxhdddrxdx*x

=ARGE0

Page 40

7.4.4 Exits

Good "style" suggests that routines should not have nore
than one normal (non-error) exit. This is sonething that
gets violated with inpunity in the interest of code saving.
It is not unusual to find cases where use of a conmon exit
actually saves code. |It's best to |let code cost be the
judge. Wen it is a "push", use a comon exit.

7.5 Docunentation
7.5.1 Comrents_on_Comments

Any line beginning with an "*" is a comment line. Comments
are also inserted on the sane |line as code (no "*"
requi red). Comments can be grouped into one of 3 types:

Modul e | evel :

These coments general |y describe the nature of the code in
the file, perhaps providing a list of the major routines,
general conventions and notation that will be used in
subsequent docunentation, etc. This should appear at the
front of the file (before code).

Dependi ng on your style, you may choose to place synbolic
equates (eg; status bits, various constants, etc;) at the
front of a file (These generate no code, but effect the code
that references the synbols). This nmakes it easy for a
reviewer to find their val ues.

Routi ne | evel :

These coments describe the general nature of a routine,
it's inputs and outputs, and CPU and RAM resources altered
by invocation. These should appear in a header at the front
of the routine. Begin the coding process by inserting a
standard bl ank header. Fill in certain fields inmediately
(eg; nane, abstract, inplenentation date) and others as soon
as the code is reasonably stable.

Li ne | evel:

Line by Iine conments will help the reviewer (which often
will be you) wade thru the code later. These shoul d appear
on the sane line as the code or on separate |lines near the
code bei ng docunent ed

Page 41

CGui del i nes:

1) How Much? Cenerally, the nore the better. However not
every line needs a comment, and some short, sinple, |ocal
routines don't require a header. |If a routine has an
external entry, it deserves a header.

2) Avoid no content coments (A=C A Copy JA] to AlA])
3) Avoid comments that docunment uninportant register

contents. This seens to help ny focus. For exanple,
reviewers usually prefer #1 over #2:

#1 #2
C=D A CAl: Last Arg Ptr
=C A A[A]: Last Arg Ptr A[A]: Last Arg Ptr
= 0
LC(5) PROC5 C Al: Exec Adrs C Al: Exec Adrs

4) Put content into your conments. They should be easily
deci pherabl e, but grammar is uninportant. Don't perm:t
comment lines to be longer than what will be printed on
the list (.1) files.

5) The Saturn Assenbler is free format allowi ng you to be
quite flexible in your placenment of code. DON T OVERUSE
TH'S FEATURE. Enploy standard fields. The header on the
next page has reasonable fields marked (1,9, 17,28). The
i mportant thing is consistency.

Page 42

7.5.2 A Standard_Assenbl y_Language_ Header

Sonme version of this header is in use by all of the software
peopl e generating Saturn Assenbly Language Code. There is
no | aw sayi ng you have to use this one, or use one at all
This one works, and has passed the test of tine.

EJECT

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhdhkhdhhkhddhhhdhhhhhhdhhhdhhhddhdddhdddrxdx*x
khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhdhdhhhdhhhhhhhhhdhhhdhhhdhhhdhdhddhdddrxdx*x

** Name: XXOKKKXKXXXX - o

* %

** Category:

* *

** Abstract:
* %

** Entry: ...

* *

**OBXit: ...

* *

** BError Exits:
* %

** Alters: CPU-
* % RAM -

* *

** Calls: ...,

* *

** Stack Levels:
* %

** Notes:

* *

*x Dat e Pr og Modi fi cation

* *

*x 04/../91 XX | mpl enent ed.
* %
XXX XRXXX XXXXX CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeee
12345678901234567890123456789012345678901234567890123456789012345

Page 43

Here is how we use the various fields:

NAMVE: Routine Name and a 1-Line description of the routine.

CATEGORY: General grouping (eg; MATH, CLKUTL, MEM etc;)

ABSTRACT: Purpose of the routine, with perhaps m ni mal

ENTRY:

EXIT:

details regarding how it does it.

Exactly what CPU entry conditions nmust be satisfied.
Sonetimes worthwhil e nmentioning other required
conditions as well (eg; RAM values, Tiner State,
interrupts disabled, etc.).

VWhat conditions can be depended upon for a normal
(non error) exit (Eg; where are the results? Does
the routine always exit CC? Is there a particular
val ue in P? \Wat about HEX/ DEC Mode?)

ERROR EXITS: Sane as EXIT, but for the error exits.

ALTERS

CALLS:

VWhat does the routine change (WORST CASE!) for

a non-error exit. If no RAMis altered, elimnate
that line and just list all CPU registers altered.
Thi s includes CARRY, P, MODE, SB, etc. The caller
general |y doesn't care what resources you use

just what you nmay have altered. So, do not |ist
resources used, but always restored to their entry
state before exit.

Nanes of the routines called before exit back to

the caller. It is often useful to indicate the
stack levels of the called routine here as well.
This assists in filling out the Stack Levels field.

STACK LEVELS: The nunber of stack |levels used by this

NOTES:

H STORY:

routine. |If this routine has no GOSUB's, and does
not enpl oy C=RSTK or RSTK=C, then this will be O.

The place for additional docunentation, perhaps
an al gorithm description, or certain CAVEATS.

I ndi cate date, progranmers initials, and

reason for changes. Don't start really using
this until you feel the code is stable.

Page 44

7.5.3 Sone_Header Exanpl es

khkhkkhkhkhhkhkhhhkhhhhhhhhhhhhhhdhhhdhdhhddhkhdhhhdhhhhhhdhhhdhhhddhddhdxdrxdx*x

hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhdhhhdhhdhdhhhdhhhdhhhdhhhdhhhddhddhdxdrxdx*x

* *
* %
* %
* *
* *
* *
* *
* %
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

Nane(S): PKDATE - Pack Date Conponents (YYYYMVDD order)
Cat egory: DATEUTL

Purpose: Facilitates storage of date components in a single
CPU register. Also useful for conparing two dates to
determ ne which occurrs first in time. Entry conditions
are designed so that this routine may easily be called
after CKDATE.

Entry: AlA: 0YYYY
B[B]: MM
O Bl: DD
Exit: C. 00000000YYYYMVDD;, CC, P=7

Al ters: C P, CARRY

Cal I s: None
Stack Levels: O
Not es:
Dat e Pr og Modi fi cation
08/23/85 SB Inplemented.

khkhkkhkhkhhhkhhhhhhhhhhhhhhdhhhhhhdhdhhddhhdhhhhdhhhdhhhdhhhdhhhdhdhdddhdddrxdx*x

khkhkkhkhkhkhkhhhhhhhhhhhhhhhhhdhhhdhdhhddhhdhhhhdhhhdhhhdhhhdhhhhdhddhdddrxdx*x

=PKDATE C=0 W Initialize Result
C=A A Copy YYYY and shift left twce
CsL A
= 7
CsL WP
C=B B Copy MM and shift left twce
CsL WP
WP
B

C. 00000000YYYYMVDD

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhdhhdhkhddhhhdhhhdhhhdhhhdhhhddhddxhdddrxdx*x

Page 45

EJECT

khkhkkhkhkhhkhkhhhkhhhhhhhhhhhhhhdhhhdhdhhddhkhdhhhdhhhhhhdhhhdhhhddhddhdxdrxdx*x

hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhdhhhdhhdhdhhhdhhhdhhhdhhhdhhhddhddhdxdrxdx*x

* *
* %
* %
* *
* *
* *
* *
* %
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

Nane(S): LEAPYR? - Determine if specified year is |eap yr.
Cat egory: DATEUTL

Purpose: Determine if specified year is a |l eap year.

Entry: Al A YYYY; DEC Mode.
Exit: CS - YYYY is a Leap Year
CC - YYYY is not a Leap Year

Al ters: CAl; SB, Carry
Cal I s: None
Stack Levels: 1
Notes: Y is a leap year iff both of the foll ow ng:
1) YMD4 =0
- AND- 2) (Y MOD 100 # 0) or (Y MOD 400 =0)
Dat e Pr og Modi fi cation

07/ 12/ 85 SB | mpl enent ed.

hkhkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhdhhhdhhdhhhdhhhdhhhdhhhdhhhdhdhdddhdddrxdx*x

khkhkkhkhkhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhdhddxdhdddrxdx*x

=LEAPYR?
C=A A Init X=Y
RSTK=C Save Y
?A#0 B Y divisible by 100 ?
GOYES LEAP10 No. Leap yr iff X div by 4
ASR A Yes. Leap yr iff Y div by 400
ASR A
C=A A T A=Al Al : X=Y/ 100
* Reduced to testing whether X divisible by 4.
LEAP10 SB=0 Init SB=0
CC+C A
CC+C A
C=C+tA A 5*X
CSR A gA: X2 Sets SB if X odd.
CSRB Set SBif X/ 2 odd
C=RSTK
=C A Restore Y
?SB=0 Leap Year?
RTNYES Yes. CS
RTN No. CcC

hkhkhkkhkhkhkhkhhhhhhhhhhhhhhhhhdhhhdhdhdhddhhdhhhhdhhhdhhhdhhhdhhhdhdhdddhdddrxdx*x

Page 46

EJECT

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhdhhhdhhddhhhdhhhhhhdhhhdhhhddhddhdddrxdx*x
khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhdhhhdhhddhhhdhhhhhhdhhhdhhhddhdddhdddrxdx*x
* *

*R Nane: Ticks>DOWN - ©Make Day of Week from Tine in Ticks

* *

** Category: Tl MESYS

* %

** Abstract: From Tine in Ticks (since 0), return a real nunber
*x integer (1-7) that identifies the day of week.

* *

** Stack: hxs --> % (Day of Wek)

* *

** Error Exits: I nsufficient Menory
* %
*x Dat e Pr og Modi fi cation
** L e e - - e . e -
*x 03/ 18/ 88 SB | npl enent ed.
* %
=Ti cks>DOW
CON(5) (*)+5
* Pop Time(ticks) from stack
A=DAT1 A
AD1EX Save D1* in AlA]l; Dl:->hxs
D1=D1+ 10 Ski p over prologue and | ength
C=0 W
C=DAT1 13
RO=C RO: Time (Ticks)
D1=A Restore D1
D1=D1+ 5
D=D+1 A Pop hxs and save new pointers

GOSBVL =SAVPTR

* Convert to Day of Wek and put in float form

C=RO

GOSBVL =dowut i | A: Day of Week Index (1-7)
C=A A

P=C 0

C=0 w

C=P 14

A=C w A % (DOWN 1-7; 1=SUN)

* Push % on stack and | oop.
GOTO push%p

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhdhhdhkhddhhhdhhhdhhhdhhhdhhhddhddxhdddrxdx*x

Page 47

8. Menonic Dictionary

This section contains a description of each Saturn assenbl er
i nstruction or pseudo-op. The description shows the binary
opcode generated by the menonic, if any, as well as the
execution cycle time required if the menonic is an

execut abl e instruction.

?2A#0 fs - Test for A not equal to O
fs = A opcode: 8ACyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S MB W opcode: 9aCyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Ais not equal to 0. Mist be
foll owed by a GOYES or RTNYES mmenonic. yy is determ ned by
the followi ng RTNYES or GOYES. Adjusts Carry.

?2A#B fs - Test for A not equal to B
fs = A opcode: 8Adyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S,MB, W opcode: 9adyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Ais not equal to the fs field
of B. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

Page 48

?2A#C fs - Test for A not equal to C
fs = A opcode: 8AByy
cycl es: 13 +
6 +
fs = (P, W, XS, X, S,MB, W opcode: 9abyy
cycl es: 13 +
6 +

Test whether the fs field of Ais not equa
of C. Must be followed by a GOYES or RTNYES

determ ned by the foll ow ng RTNYES or GOYES

?A<=B fs - Test for A less than or equal
fs = A opcode: 8BCyy
cycl es: 13 +

6 +

fs = (P, W, XS, X, SMB W opcode: 9bCyy
cycl es: 13 +

6 +

Test whether the fs field of Ais less than
fs field of B. Mist be foll owed by a GOYES
menoni c. yy is determ ned by the foll ow ng
Adj usts Carry.

?A<B fs - Test for Aless than B
fs = A opcode: 8Bdyy
cycl es: 13 +
6 +
fs = (P,W, XS, X, S,MB, W opcode: 9bdyy
cycl es: 13 +
6 +

Test whether the fs field of Ais |less than
B. Mist be foll owed by a GOYES or

Page 49

RTNYES mmenoni c.
determ ned by the foll ow ng RTNYES or GOYES

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

to the fs field
menonic. yy is
Adj usts Carry.

to B

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

or equal to the
or RTNYES

RTNYES or GOYES

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

the fs field of
yy is
Adj usts Carry.

?A=0 fs - Test for A equal to O

fs = A opcode: 8A8yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S, MB W opcode: 9a8yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Ais equal to 0. Mist be
foll owed by a GOYES or RTNYES mmenonic. yy is determ ned by
the following RTNYES or GOYES. Adjusts Carry.

?A=B fs - Test for A equal to B
fs = A opcode: 8AOyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P,W, XS, X S, MB, W opcode: 9alyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Ais equal to the fs field of
B. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?A=C fs - Test for Aequal to C
fs = A opcode: 8A2yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P,W, XS, X, S,MB, W opcode: 9a2yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Ais equal to the fs field of
C. Must be followed by a GOYES or RTNYES mmenpnic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

Page 50

?A>=B fs - Test for A greater than or equal to B

fs = A opcode: 8B8yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S, MB W opcode: 9b8yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Ais greater than or equal to
the fs field of B. Miust be foll owed by a GOYES or RTNYES
menoni c. yy is determ ned by the foll owi ng RTNYES or GOYES.
Adj usts Carry.

?A>B fs - Test for A greater than B
fs = A opcode: 8BOyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S,MB, W opcode: 9bOyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Ais greater than the fs field
of B. Must be foll owed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?B#0 fs - Test for B not equal to O
fs = A opcode: 8ADyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S MB W opcode: 9aDyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Bis not equal to 0. Mist be
foll owed by a GOYES or RTNYES mmenonic. yy is determ ned by
the followi ng RTNYES or GOYES. Adjusts Carry.

Page 51

?B#A fs - Test for B not equal to A
fs = A opcode: 8Adyy
cycl es: 13 +
6 +
fs = (P,W, XS, X, S,MB, W opcode: 9adyy
cycl es: 13 +
6 +

Test whether the fs field of Bis not equa
of A. Must be followed by a GOYES or RTNYES
determ ned by the foll ow ng RTNYES or GOYES

?B#C fs - Test for B not equal to C
fs = A opcode: 8Abyy
cycl es: 13 +
6 +
fs = (P, W, XS, X, S,MB, W opcode: 9a5yy
cycl es: 13 +
6 +

Test whether the fs field of Bis not equa
of C. Must be followed by a GOYES or RTNYES
determ ned by the foll ow ng RTNYES or GOYES

Page 52

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

to the fs field
menonic. yy is
Adj usts Carry.

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

tothe fs field
menonic. yy is
Adj usts Carry.

?B<=C fs - Test for B less than or equa
fs = A opcode: 8BDyy
cycl es: 13 +

6 +

fs = (P, W, XS, X, S MB W opcode: 9bDyy
cycl es: 13 +

6 +

Test whether the fs field of Bis less than
fs field of C. Mist be foll owed by a GOYES
menoni c. yy is determ ned by the foll ow ng
Adj usts Carry.

?B<C fs - Test for Bless than C
fs = A opcode: 8Bb5yy
cycl es: 13 +
6 +
fs = (P, W, XS, X, S,MB, W opcode: 9b5yy
cycl es: 13 +
6 +

Test whether the fs field of Bis |ess than
C. Mist be followed by a GOYES or

RTNYES mmenoni c.
determ ned by the foll ow ng RTNYES or GOYES

to C

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

or equal to the
or RTNYES

RTNYES or GOYES

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

the fs field of
yy is
Adj usts Carry.

?B=0 fs - Test for B equal to O
fs = A opcode: 8A9yy
cycl es: 13 + d (GO RTNYES)
6 + d (NO
fs = (P,W, XS, X, S,MB, W opcode: 9a9yy
cycl es: 13 + d (GO RTNYES)
6 + d (NO
Test whether the fs field of Bis equal to 0. Mist be

foll owed by a GOYES or RTNYES mmenoni c.
the foll owi ng RTNYES or GOYES

Page 53

yy is determ ned by
Adj usts Carry.

?B=A fs - Test for B equal to A
fs = A opcode:
cycl es:
fs = (P,W, XS, X, S,MB, W opcode
cycl es:

Test whether the fs field of B is equa
RTNYES mmenoni c.
determ ned by the foll ow ng RTNYES or GOYES

A. Must be foll owed by a GOYES or

?B=C fs - Test for B equal to C
fs = A opcode:
cycl es:
fs = (P,W, XS, X, S,MB, W opcode
cycl es:

Test whether the fs field of B is equa
RTNYES mmenoni c.
determ ned by the foll ow ng RTNYES or GOYES

C. Must be followed by a GOYES or

?B>=C fs - Test for

fs = A opcode:
cycl es:

fs = (P,W, XS, X, S,MB, W opcode
cycl es:

8A0yy
13 + d (GO RTNYES)
6 + d (NO

9alyy
13 + d (GO RTNYES)
6 + d (NO

to the fs field of
yy is
Adj usts Carry.

8Alyy
13 + d (GO RTNYES)
6 + d (NO

9alyy
13 + d (GO RTNYES)
6 + d (NO

to the fs field of
yy is
Adj usts Carry.

B greater than or equal to C

8B9yy
13 + d (GO RTNYES)
6 + d (NO

9b9yy
13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Bis greater than or equal to

the fs field of C. Must
mmenoni C.
Adj usts Carry.

Page 54

be foll owed by a GOYES or
yy is determ ned by the foll owi ng RTNYES or GOYES

RTNYES

?B>C fs - Test for B greater than C

fs = A opcode: 8Blyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S, MB W opcode: 9blyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Bis greater than the fs field
of C. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?2CH#O fs - Test for C not equal to O
fs = A opcode: 8AEyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S,MB, W opcode: 9aEyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis not equal to 0. Mist be
foll owed by a GOYES or RTNYES mmenonic. yy is determ ned by
the followi ng RTNYES or GOYES. Adjusts Carry.

?2C#A fs - Test for C not equal to A
fs = A opcode: 8A6yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P,W, XS, X, S,MB, W opcode: 9abyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis not equal to the fs field
of A. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

Page 55

?2C#B fs - Test for C not equal to B
fs = A opcode: 8Abyy
cycl es: 13 +
6 +
fs = (P,W, XS, X, S,MB, W opcode: 9a5yy
cycl es: 13 +
6 +

Test whether the fs field of Cis not equa
of B. Must be followed by a GOYES or RTNYES

determ ned by the foll ow ng RTNYES or GOYES

?2C#D fs - Test for C not equal to D
fs = A opcode: 8A7yy
cycl es: 13 +
6 +
fs = (P, W, XS, X, S,MB, W opcode: 9a7yy
cycl es: 13 +
6 +

Test whether the fs field of Cis not equa
of D. Must be followed by a GOYES or RTNYES

determ ned by the foll ow ng RTNYES or GOYES

?2C<=A fs - Test for Cless than or equa
fs = A opcode: 8BEyy
cycl es: 13 +

6 +

fs = (P,W, XS, X, S,MB, W opcode: 9bEyy
cycl es: 13 +

6 +

Test whether the fs field of Cis less than
fs field of AA Mist be foll owed by a GOYES
menoni c. yy is determ ned by the foll ow ng
Adj usts Carry.

Page 56

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

to the fs field
menonic. yy is
Adj usts Carry.

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

tothe fs field
menonic. yy is
Adj usts Carry.

to A

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

or equal to the
or RTNYES

RTNYES or GOYES

?C<A fs - Test for Cless than A

fs = A opcode: 8B6yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S, MB W opcode: 9b6yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis less than the fs field of
A. Mist be followed by a GOYES or RTNYES mmenopnic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?2C=0 fs - Test for Cequal to O
fs = A opcode: 8AAyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S,MB, W opcode: 9aAyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis equal to 0. Mist be
foll owed by a GOYES or RTNYES mmenonic. yy is determ ned by
the followi ng RTNYES or GOYES. Adjusts Carry.

?C=A fs - Test for Cequal to A
fs = A opcode: 8A2yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P,W, XS, X, S,MB, W opcode: 9a2yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis equal to the fs field of
A. Must be followed by a GOYES or RTNYES menonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

Page 57

?2C=B fs - Test for Cequal to B

fs = A opcode: 8Alyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S, MB W opcode: 9alyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis equal to the fs field of
B. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?C=D fs - Test for Cequal to D
fs = A opcode: 8A3yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S,MB, W opcode: 9a3yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis equal to the fs field of
D. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?C=A fs - Test for C greater than or equal to A
fs = A opcode: 8BAyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P,W, XS, X S, MB, W opcode: 9bAyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis greater than or equal to
the fs field of A Mist be foll owed by a GOYES or RTNYES
menoni c. yy is determ ned by the foll owi ng RTNYES or GOYES.
Adj usts Carry.

Page 58

?2CA fs - Test for C greater than A

fs = A opcode: 8B2yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S, MB W opcode: 9b2yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Cis greater than the fs field
of A. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?D#0 fs - Test for D not equal to O
fs = A opcode: 8AFyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S,MB, W opcode: 9aFyy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Dis not equal to 0. Mist be
foll owed by a GOYES or RTNYES mmenonic. yy is determ ned by
the followi ng RTNYES or GOYES. Adjusts Carry.

?D#C fs - Test for D not equal to C
fs = A opcode: 8A7yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P,W, XS, X, S,MB, W opcode: 9a7yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Dis not equal to the fs field
of C. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

Page 59

?D<=C fs - Test for D less than or equal
fs = A opcode: 8BFyy
cycl es: 13 +

6 +

fs = (P,W, XS, X, S,MB, W opcode: 9bFyy
cycl es: 13 +

6 +

Test whether the fs field of Dis less than
fs field of C. Mist be foll owed by a GOYES
menoni c. yy is determ ned by the foll ow ng
Adj usts Carry.

?D<C fs - Test for Dless than to C
fs = A opcode: 8B7yy
cycl es: 13 +
6 +
fs = (P, W, XS, X, S,MB, W opcode: 9b7yy
cycl es: 13 +
6 +

Test whether the fs field of Dis |ess than
C. Mist be followed by a GOYES or

RTNYES mmenoni c.
determ ned by the foll ow ng RTNYES or GOYES

to C

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

or equal to the
or RTNYES

RTNYES or GOYES

d (GO RTNYES)
d (NO

d (GO RTNYES)
d (NO

the fs field of
yy is
Adj usts Carry.

?D=0 fs - Test for Dequal to O
fs = A opcode: 8AByy
cycl es: 13 + d (GO RTNYES)
6 + d (NO
fs = (P,W, XS, X, S,MB, W opcode: 9aByy
cycl es: 13 + d (GO RTNYES)
6 + d (NO
Test whether the fs field of Dis equal to 0. Mist be

foll owed by a GOYES or RTNYES mmenoni c.
the foll owi ng RTNYES or GOYES

Page 60

yy is determ ned by
Adj usts Carry.

?D=C fs - Test for Dequal to C

fs = A opcode: 8A3yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S, MB W opcode: 9a3yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Dis equal to the fs field of
C. Must be followed by a GOYES or RTNYES mmenpnic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

?D>=C fs - Test for D greater than or equal to C
fs = A opcode: 8BByy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P, W, XS, X, S,MB, W opcode: 9bByy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Dis greater than or equal to
the fs field of C. Mist be foll owed by a GOYES or RTNYES
menoni c. yy is determ ned by the foll owing RTNYES or GOYES.
Adj usts Carry.

?D>C fs - Test for D greater than C
fs = A opcode: 8B3yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO
fs = (P,W, XS, X, S,MB, W opcode: 9b3yy
cycl es: 13 + d (GO RTNYES)
6 +d (NO

Test whether the fs field of Dis greater than the fs field
of C. Must be followed by a GOYES or RTNYES mmenonic. yy is
determ ned by the follow ng RTNYES or GOYES. Adjusts Carry.

Page 61

?MP=0 - Test Module Pulled bit (M)
opcode: 838yy
cycl es: 13 (GO RTNYES)
6 (NO

Test whether the Module Pulled bit (MP) is zero. This
hardware status bit is set whenever a nodul e-pulled
interrupt occurs (the *INT line of the CPUis pulled high),
and nust be explictly cleared by the MP=0 menoni c. See the
"HP-71 Hardware Specification" for nore information. Mist
be foll owed by a RTNYES or GOYES mmenonic. yy is determ ned
by the foll owi ng RTNYES or GOYES. Adjusts Carry.

?

Test if P pointer not equal to n

opcode: 88nyy

cycl es: 13 (GO0 RTNYES)
6 (NO

Test whether the P pointer is not equal to n. Mist be
foll owed by a RTNYES or GOYES mmenonic. yy is determ ned by
the followi ng RTNYES or GOYES. Adjusts Carry.

)
)
1
=)

Test if P pointer is equal to n

opcode: 89nyy

cycl es: 13 (GO RTNYES)
6 (NO

Test whether the P pointer is equal to n. Mist be foll owed
by a RTNYES or GOYES mmenonic. yy is determ ned by the
foll owi ng RTNYES or GOYES. Adjusts Carry.

?SB=0 - Test Sticky Bit (SB)
opcode: 832yy
cycl es: 13 (GO RTNYES)
6 (NO

Test whether the Sticky Bit (SB) is zero. This hardware
status bit is set on right shifts when a non-zero nibble or
bit is shifted off the end of the field. The Sticky Bit
must be cleared explicitly. Mist be foll owed by a RTNYES or
GOYES menonic. yy is determned by the foll owi ng RTNYES or
GOYES. Adjusts Carry.

Page 62

?SR=0 - Test Service Request bit (SR) for zero
opcode: 834yy
cycl es: 13 (GO RTNYES)
6 (NO

Test whether the Service Request bit (SR) is zero. This
hardware status bit is set by the SREQ? menoni c, and nust
be cleared explicitly by the SR=0 instruciton. Mist be
foll owed by a RTNYES or GOYES mmenonic. yy is determ ned by
the following RTNYES or GOYES. Adjusts Carry.

?ST#0 n - Test status bit n not equal to O
opcode: 87nyy
cycl es: 14 (GO RTNYES)
7 (NO

Test whether Program Status bit n is set. Mist be foll owed
by a RTNYES or GOYES mmenonic. yy is determ ned by the
foll owi ng RTNYES or GOYES. Adjusts Carry.

?ST#1 n - Test status bit n not equal to 1
opcode: 86nyy
cycl es: 14 (GO RTNYES)
7 (NO

Test whether Program Status bit n is clear. Miust be foll owed
by a RTNYES or GOYES mmenonic. yy is determ ned by the
foll owi ng RTNYES or GOYES. Adjusts Carry.

?ST=0 n - Test status bit n equal to O
opcode: 86nyy
cycl es: 14 (GO RTNYES)
7 (NO

Test whether Program Status bit n is clear. Miust be foll owed

by a RTNYES or GOYES mmenonic. yy is determ ned by the
foll owi ng RTNYES or GOYES. Adjusts Carry.

Page 63

?ST=1 n - Test status bit n equal to 1
opcode: 87nyy
cycl es: 14 (GO RTNYES)
7 (NO

Test whether Program Status bit n is set. Mist be foll owed
by a RTNYES or GOYES mmenonic. yy is determ ned by the
foll owi ng RTNYES or GOYES. Adjusts Carry.

2XM=0 - Test External Mdule Mssing bit (XM
opcode: 831lyy
cycl es: 13 (GO RTNYES)
6 (NO

Test the whether the External Mddule Mssing bit (XM is
zero. This hardware status bit is set by the RTNSXM
menoni ¢, and nust be explicitly cleared by the XM=0
menoni ¢c. Must be followed by a RTNYES or GOYES mmenoni c.
yy is determned by the foll owi ng RTNYES or GOYES. Adjusts
Carry.

A=-A fs - Two's conplenent of Ainto A
fs = A opcode: F8
cycl es: 7
fs = (P,W, XS, X, S,MB W opcode: Bb8
cycl es: 3 +d

Conpl ement the specified fs field of A. Conplenent is two's
conplenment if in HEX node, ten's conplenment if in DEC node
Carry is set if the field is not zero, else Carry is

cl eared.

A=-A-1 fs - One's conplenent of Ainto A
fs = A opcode: FC
cycl es: 7
fs = (P,W, XS, X, S,MB, W opcode: BbC
cycl es: 3 +d

Performa one's conplenent on the specified fs field of A
Carry is always cl eared.

Page 64

=0 fs - Set Aequal toO

fs = A opcode: DO
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AbO
cycl es: 3 +d

Set the specified fs field of Ato zero. Carry is not
af f ect ed.

A=AIB fs - AORBinto A

fs = A opcode: OEF8
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEa8
cycl es: 4 +d

Set the fs field of register Ato its logical ORwth the
corresponding field of register B. Carry is not affected.

A=AIC fs - AORCinto A

fs = A opcode: OEFE
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEaE
cycl es: 4 +d

Set the fs field of register Ato its logical ORwth the
corresponding field of register C. Carry is not affected.

A=A&B fs - A ANDBinto A

fs = A opcode: OEFO
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEaO
cycl es: 4 +d

Set the fs field of register Ato its logical ANDwith the
corresponding field of register B. Carry is not affected.

Page 65

A=A&C fs - AANDCinto A

fs = A opcode: OEF6
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEa6
cycl es: 4 +d

Set the fs field of register Ato its logical ANDwith the
corresponding field of register C. Carry is not affected.

A=A+1 fs - Increment A

fs = A opcode: E4
cycl es: 7

fs = (P,W, XS, X S, MB W opcode: Ba4
cycl es: 3 +d

Increnent the specified fs f
Adj usts Carry.

eld of register A by one.

A=A+A fs - Sumof A and Ainto A

fs = A opcode: 4
cycl es: 7

fs = (P,W, XS X, S, MB, W opcode: Aa4
cycl es: 3 +d

Doubl e the specified fs field of register A Adjusts Carry.

A=A+B fs - Sumof A and Binto A

fs = A opcode: Q0
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: Aa0
cycl es: 3 +d

Set the specified fs field of register Ato the sum of
itself and the corresponding field of register B. Adjusts
Carry.

Page 66

A=A+C fs - Sumof A and Cinto A

fs = A opcode: CA
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AaA
cycl es: 3 +d

Set the specified fs field of register Ato the sum of
itself and the corresponding field of register C Adjusts
Carry.

A=A-1 fs - Decrenent A

fs = A opcode: CC
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AaC
cycl es: 3 +d

Decrenent the specified fs field of register A by one.
Adj usts Carry.

A=A-B fs - Amnmnus Binto A

fs = A opcode: EO
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: BaO
cycl es: 3 +d

Set the specified fs field of register Ato the difference
between itself and the corresponding field of register B
Adj usts Carry.

A=A-C fs - Amnus Cinto A

fs = A opcode: EA
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: BaA
cycl es: 3 +d

Set the specified fs field of register Ato the difference
between itself and the corresponding field of register C
Adj usts Carry.

Page 67

fs = A opcode: D4
cycl es: 7

fs = (P,W, XS X, S, MB, W opcode: Ab4
cycl es: 3 +d

Copy the fs field of register Binto the corresponding field
of register A Carry is not affected.

A=B-A fs - Bmnus Ainto A

fs = A opcode: EC
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: BaC
cycl es: 3 +d

Set the specified fs field of register Ato the inverse
di fference between itself and the corresponding field of
regi ster B. Adjusts Carry.

=C fs - Copy Cto A
fs = A opcode: DA
cycl es: 7
fs = (P,W, XS, X, S,MB W opcode: AbA
cycl es: 3 +d

Copy the fs field of register Cinto the corresponding field
of register A Carry is not affected.

Page 68

A=DATO fsd - Load A from nenory

fs = A opcode: 142
cycl es: 18

fs =B opcode: 14A
cycl es: 15
fs = (P,W, XS, X, S MW opcode: 152a
cycl es: 17 + d
fs =d opcode: 15Ax (x=d-1)

cycl es: 16 + d

The anmount of data (d nibbles) specified by fsd will be
transferred fromthe nenory address pointed to by DO into
the specified field of register A The | owest-addressed
nibble will be transferred into the | owest-order nibble of
the register field, proceeding toward the higher-order
nibbles. If fs =d, d nibbles are transferred into the
regi ster starting at nibble 0. See the section on "Loading
Data From Menory".

A=DAT1 fsd - Load A from nenory

fs = A opcode: 143
cycl es: 18

fs =B opcode: 14B
cycl es: 15
fs = (P,W, XS, X, S MW opcode: 153a
cycl es: 17 + d
fs =d opcode: 15Bx (x=d-1)

cycl es: 16 + d

The anmount of data (d ni bbles) specified by fsd will be
transferred fromthe nenory address pointed to by Dl into
the specified field of register A The | owest-addressed
nibble will be transferred into the | owest-order nibble of
the register field, proceeding toward the higher-order
nibbles. If fs =d, d nibbles are transferred into the
regi ster starting at nibble 0. See the section on "Loading
Data From Menory".

Page 69

A=I N - Load Awith IN

opcode: 802
cycl es: 7

Load the | oworder 4 nibbles of the A register with the
contents of the Input register.

=R0O - Copy RO to A

opcode: 110
cycl es: 19

The contents of the scratch register RO is copied to the
wor ki ng regi ster A

=R1 - Copy RL to A

opcode: 111
cycl es: 19

The contents of the scratch register RL is copied to the
wor ki ng register A

~R2 - Copy RR to A

opcode: 112
cycl es: 19

The contents of the scratch register R2 is copied to the
wor ki ng regi ster A

=R3 - Copy RBto A

opcode: 113
cycl es: 19

The contents of the scratch register R3 is copied to the
wor ki ng register A

Page 70

A=R4 - Copy R4 to A
opcode: 114
cycl es: 19

The contents of the scratch register R4 is copied to the
wor ki ng register A

ABEX fs - Exchange Registers A and B

fs = A opcode: DC
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AbC
cycl es: 3 +d

Exchange the fs fields of registers of Aand B. Carry is not
af f ect ed.

ACEX fs - Exchange Registers A and C

fs = A opcode: DE
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: AbE
cycl es: 3 +d

Exchange the fs fields of registers of Aand C. Carry is not
af f ect ed.

ADOEX - Exchange A and DO (ni bs 0-4)

opcode: 132
cycl es: 8

Exchange the A field of register A with Data pointer DO.
Carry is not affected.

Page 71

ADOXS - Exchange A and DO short (nibs 0-3)

opcode: 13A
cycl es: 7

Exchange the Iower 4 nibbles of Awith the |ower 4 nibbles
of Data pointer DO. Carry is not affected.

AD1EX - Exchange A and D1 (nibs 0-4)

opcode: 133
cycl es: 8

Exchange the A field of register A with Data pointer DI1.
Carry is not affected.

AD1XS - Exchange A and D1 short (nibs 0-3)

opcode: 13B
cycl es: 7

Exchange the ower 4 nibbles of Awith the | ower 4 nibbles
of Data pointer DL. Carry is not affected.

AROEX - Exchange A and RO

opcode: 120
cycl es: 19

Exchange the contents of the working register A and the
scratch register RO

AR1EX - Exchange A and R1

opcode: 121
cycl es: 19

Exchange the contents of the working register A and the
scratch regi ster R1.

Page 72

AR2EX - Exchange A and R2

opcode: 122
cycl es: 19

Exchange the contents of the working register A and the
scratch regi ster R2.

AR3EX - Exchange A and R3

opcode: 123
cycl es: 19

Exchange the contents of the working register A and the
scratch regi ster R3.

ARAEX - Exchange A and R4

opcode: 124
cycl es: 19

Exchange the contents of the working register A and the
scratch regi ster R4.

ASL fs - A Shift Left

fs = A opcode: FO
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: BbO
cycl es: 3 +d

Shift the contents of the specified fs field of register A
left one nibble, without affecting the rest of the register
The nibble shifted off the left end of the field is |ost.
The new | ow order nibble of the field is zero. The Sticky
Bit (SB) is not affected.

Page 73

ASLC - AShift Left Crcul ar

opcode: 810
cycl es: 21

Circular shift register Aleft one nibble. Operates on al
16 digits. The Sticky Bit (SB) is not affected.

ASR fs - A Shift Right
fs = A opcode: F4
cycl es: 7
fs = (P,W, XS, X S, MB W opcode: Bb4
cycl es: 3 +d

Shift the contents of the specified fs field of register A
right one nibble, without affecting the rest of the

regi ster. The nibble shifted off the right end of the field
is lost, but the Sticky Bit (SB) is set if the nibble was
non-zero. The new hi gh-order nibble of the field is zero.

ASRB - A Shift Right Bit

opcode: 81C
cycl es: 20

Shift register Aright one bit. Operates on all 16 digits.
The bit shifted off the end is lost, but the Sticky Bit (SB)
is set if it was non-zero. The new high-order bit of the
register is zero.

ASRC - AShift Right Grecular

opcode: 814
cycl es: 21

Circular shift register A right one nibble. Operates on al

16 digits. The Sticky Bit (SB) is set if the nibble shifted
froml ow order around to high-order position was non-zero.

Page 74

B=-B fs - Two's conplenent of Binto B

fs = A opcode: F9
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Bb9
cycl es: 3 +d

Conpl ement the specified fs field of B. Conplenent is two's
conplerment if in HEX node, ten's conplenment if in DEC node
Carry is set if the field is not zero, else Carry is

cl eared.

B=-B-1 fs - One's conplenent of Binto B

fs = A opcode: FD
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: BbD
cycl es: 3 +d

Performa one's conpl enment on the specified fs field of B
Carry is always cl eared.

=0 fs - Set Bequal to O
fs = A opcode: D1
cycl es: 7
fs = (P,W, XS, X, S,MB, W opcode: Abl
cycl es: 3 +d

Set the specified fs field of Bto zero. Carry is not
af f ect ed.

=A fs - Copy Ato B

fs = A opcode: D3
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: Ab8
cycl es: 3 +d

Copy the fs field of register Ainto the corresponding field
of register B. Carry is not affected.

Page 75

B=BIA fs - BORAInto B

fs = A opcode: OEFC
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEaC
cycl es: 4 +d

Set the fs field of register Bto its logical ORwith the
corresponding field of register AL Carry is not affected.

B=BIC fs - BORCinto B

fs = A opcode: OEF9
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEa9
cycl es: 4 +d

Set the fs field of register Bto its logical ORwth the
corresponding field of register C. Carry is not affected.

=B&A fs - B AND A into B
fs = A opcode: OEF4
cycl es: 4 + d
fs = (P,W, XS, X S, MB W opcode: OEa4
cycl es: 4 + d

Set the fs field of register Bto its logical ANDwith the
corresponding field of register AL Carry is not affected.

B=B&C fs - B AND Cinto B

fs = A opcode: OEF1
cycl es: 4 +d

fs = (P,W, XS, X, S,MB, W opcode: OEal
cycl es: 4 +d

Set the fs field of register Bto its logical ANDwith the
corresponding field of register C. Carry is not affected.

Page 76

B=B+1 fs - Increnent B

fs = A opcode: E5
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Bab
cycl es: 3 +d

Increnent the specified fs field of register B by one.
Adj usts Carry.

B=B+A fs - Sumof B and Ainto B

fs = A opcode: C8
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Aa8
cycl es: 3 +d

Set the specified fs field of register Bto the sum of
itself and the corresponding field of register A Adjusts
Carry.

B=B+B fs - Sumof B and Binto B

fs = A opcode: C5
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Aab5
cycl es: 3 +d

Doubl e the specified fs field of register B. Adjusts Carry.

B=B+C fs - Sumof Band Cinto B

fs = A opcode: C1
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: Aal
cycl es: 3 +d

Set the specified fs field of register Bto the sum of
itself and the corresponding field of register C Adjusts
Carry.

Page 77

B=B-1 fs - Decrenent B

fs = A opcode: CD
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AaD
cycl es: 3 +d

Decrenent the specified fs field of register B by one.
Adj usts Carry.

B=B-A fs - Bmnus Ainto B

fs = A opcode: E8
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ba8
cycl es: 3 +d

Set the specified fs field of register Bto the difference
between itself and the corresponding field of register A
Adj usts Carry.

B=B-C fs - Bmnus Cinto B

fs = A opcode: E1
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Bal
cycl es: 3 +d

Set the specified fs field of register Bto the difference
between itself and the corresponding field of register C
Adj usts Carry.

=C fs - Copy Cto B
fs = A opcode: D5
cycl es: 7
fs = (P,W, XS, X, S,MB, W opcode: Ab5
cycl es: 3 +d

Copy the fs field of register Cinto the corresponding field
of register B. Carry is not affected.

Page 78

B=CB fs - Cmnus Binto B

fs = A opcode: ED
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: BaD
cycl es: 3 +d

Set the specified fs field of register B to the inverse
di fference between itself and the corresponding field of
register C. Adjusts Carry.

BAEX fs - Exchange Registers B and A

fs = A opcode: DC
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AbC
cycl es: 3 +d

Exchange the fs fields of registers of B and A. Carry is not
af f ect ed.

BCEX fs - Exchange Registers B and C

fs = A opcode: DD
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AbD
cycl es: 3 +d

Exchange the fs fields of registers of B and C. Carry is not
af f ect ed.

BSL fs - B Shift Left

fs = A opcode: F1
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: Bbil
cycl es: 3 +d

Shift the contents of the specified fs field of register B
left one nibble, without affecting the rest of the register
The nibble shifted off the left end of the field is |ost.
The new | oworder nibble of the field is zero. The Sticky
Bit (SB) is not affected.

Page 79

BSLC - B Shift Left Crcul ar

opcode: 811
cycl es: 21

Circular shift register Bleft one nibble. Operates on al
16 digits. The Sticky Bit (SB) is not affected.

BSR fs - B Shift Right

fs = A opcode: F5
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Bb5
cycl es: 3 +d

Shift the contents of the specified fs field of register B
right one nibble, without affecting the rest of the

regi ster. The nibble shifted off the right end of the field
is lost, but the Sticky Bit (SB) is set if the nibble was
non-zero. The new hi gh-order nibble of the field is zero.

BSRB - B Shift Right Bit

opcode: 81D
cycl es: 20

Shift register B right one bit. Operates on all 16 digits.
The bit shifted off the end is lost, but the Sticky Bit (SB)
is set if it was non-zero. The new high-order bit of the
register is zero.

BSRC - B Shift Right Grecular

opcode: 815
cycl es: 21

Circular shift register B right one nibble. Operates on al

16 digits. The Sticky Bit (SB) is set if the nibble shifted
froml ow order around to high-order position was non-zero.

Page 80

BUSCC - Bus Command "C'

opcode: 80B
cycl es: 6

Enters the Saturn bus command "C' onto the systembus (this
command is reserved for later use). No other operation is
performed. See the "HP-71 Hardware Specification” for nore
i nformati on.

C+P+1 - Increnment C by One Plus P Pointer
opcode: 809
cycl es: 8

The A field of the Cregister is incremented by one plus the
value of the P pointer. This instruction is always executed
in HEX node. Adjusts Carry.

C=-C fs - Two's conplenment of Cinto C
fs = A opcode: FA
cycl es: 7
fs = (P,W, XS, X, S,MB, W opcode: BbA
cycl es: 3 +d

Conpl ement the specified fs field of C. Conplenent is two's
conplenment if in HEX node, ten's conplenment if in DEC node
Carry is set if the field is not zero, else Carry is

cl eared.

C=-C1lfs - One's conplement of Cinto C
fs = A opcode: FE
cycl es: 7
fs = (P,W, XS, X, S,MB, W opcode: BbE
cycl es: 3 +d

Performa one's conplenent on the specified fs field of C
Carry is always cl eared.

Page 81

c=0 fs - Set Cequal to O

fs = A opcode: D2
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ab2
cycl es: 3 +d

Set the specified fs field of Cto zero. Carry is not
af f ect ed.

C=A fs - Copy Ato C

fs = A opcode: D6
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ab6
cycl es: 3 +d

Copy the fs field of register Ainto the corresponding field
of register C Carry is not affected.

C-A-C fs - Amnus Cinto C

fs = A opcode: EE
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: BaE
cycl es: 3 +d

Set the specified fs field of register Cto the inverse
di fference between itself and the corresponding field of
register A. Adjusts Carry.

C=B fs - Copy Bto C

fs = A opcode: D9
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ab9
cycl es: 3 +d

Copy the fs field of register Binto the corresponding field
of register C Carry is not affected.

Page 82

CCA fs - CORAInto C

fs = A opcode: OEFA
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEaA
cycl es: 4 +d

Set the fs field of register Cto its logical ORwth the
corresponding field of register AL Carry is not affected.

cCB fs - COrRBinto C

fs = A opcode: OEFD
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEaD
cycl es: 4 +d

Set the fs field of register Cto its logical ORwth the
corresponding field of register B. Carry is not affected.

cCCadD fs - CORDinto C

fs = A opcode: OEFF
cycl es: 4 + d

fs = (P,W, XS, X S, MB W opcode: OEaF
cycl es: 4 + d

Set the fs field of register Cto its logical ORwith the
corresponding field of register D. Carry is not affected.

CCA fs - CANDAiInto A

fs = A opcode: OEF2
cycl es: 4 +d

fs = (P,W, XS, X, S,MB, W opcode: OEa2
cycl es: 4 +d

Set the fs field of register Cto its logical ANDwith the
corresponding field of register A Carry is not affected.

Page 83

CC8B fs - CANDBinto C

fs = A opcode: OEF5
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEa5
cycl es: 4 +d

Set the fs field of register Cto its logical ANDwith the
corresponding field of register B. Carry is not affected.

CC&D fs - CANDDiInto C

fs = A opcode: OEF7
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEa7
cycl es: 4 +d

Set the fs field of register Cto its logical ANDwith the
corresponding field of register D. Carry is not affected.

C=C+tl1 fs - Increment C

fs = A opcode: E6
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ba6
cycl es: 3 +d

Increnent the specified fs field of register C by one.
Adj usts Carry.

C=C+tA fs - Sumof Cand Ainto C

fs = A opcode: C2
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: Aa2
cycl es: 3 +d

Set the specified fs field of register Cto the sum of
itself and the corresponding field of register A Adjusts
Carry.

Page 84

C=C+tB fs - Sumof Cand Binto C

fs = A opcode: 9
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Aa9
cycl es: 3 +d

Set the specified fs field of register Cto the sum of
itself and the corresponding field of register B. Adjusts
Carry.

C=C+C fs - Sumof Cand Cinto C

fs = A opcode: C6
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Aab
cycl es: 3 +d

Doubl e the specified fs field of register C. Adjusts Carry.

CCtD fs - Sumof Cand Dinto C

fs = A opcode: CB
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AaB
cycl es: 3 +d

Set the specified fs field of register Cto the sum of
itself and the corresponding field of register D. Adjusts
Carry.

CC1 fs - Decrenment C

fs = A opcode: CE
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AaE
cycl es: 3 +d

Decrenent the specified fs field of register C by one.
Adj usts Carry.

Page 85

C=CA fs - Cmnus Ainto C

fs = A opcode: E2
cycl es: 7

fs = (P,W, XS, X S, MB W opcode: Ba2
cycl es: 3 +d

Set the specified fs field of register Cto the difference
between itself and the corresponding field of register A
Adj usts Carry.

CCB fs - Cmnus Binto C

fs = A opcode: E9
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ba9
cycl es: 3 +d

Set the specified fs field of register Cto the difference
between itself and the corresponding field of register B
Adj usts Carry.

CCD fs - Cmnus Dinto C

fs = A opcode: EB
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: BaB
cycl es: 3 +d

Set the specified fs field of register Cto the difference
between itself and the corresponding field of register D
Adj usts Carry.

C=D fs - Copy Dto C

fs = A opcode: DB
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: AbB
cycl es: 3 +d

Copy the fs field of register Dinto the corresponding field
of register C Carry is not affected.

Page 86

C=DATO fsd - Load C from nmenory

fs = A opcode: 146
cycl es: 18

fs =B opcode: 14E
cycl es: 15
fs = (P,W, XS, X, S MW opcode: 156a
cycl es: 17 + d
fs =d opcode: 15Ex (x=d-1)

cycl es: 16 + d

The anmount of data (d nibbles) specified by fsd will be
transferred fromthe nenory address pointed to by DO into
the specified field of register C The | owest-addressed
nibble will be transferred into the | owest-order nibble of
the register field, proceeding toward the higher-order
nibbles. If fs =d, d nibbles are transferred into the
regi ster starting at nibble 0. See the section on "Loading
Data From Menory".

C=DAT1 fsd - Load C from nmenory

fs = A opcode: 147
cycl es: 18

fs =B opcode: 14F
cycl es: 15
fs = (P,W, XS, X, S MW opcode: 157a
cycl es: 17 + d
fs =d opcode: 15Fx (x=d-1)

cycl es: 16 + d

The anmount of data (d ni bbles) specified by fsd will be
transferred fromthe nenory address pointed to by Dl into
the specified field of register C The | owest-addressed
nibble will be transferred into the | owest-order nibble of
the register field, proceeding toward the higher-order
nibbles. If fs =d, d nibbles are transferred into the
regi ster starting at nibble 0. See the section on "Loading
Data From Menory".

Page 87

C=ID - Request chip ID

opcode: 806
cycl es: 11

The chip which has its DAISY-IN line high and its
configuration flag loww |l send its 5 nibble IDregister to
the system bus which will be |oaded into the | oworder 5

ni bbles (A field) of the C register

CIN - Load Cwith IN

opcode: 803
cycl es: 7

Load the | oworder 4 nibbles of the Cregister with the
contents of the Input register.

C=P n - Copy P Pointer into Nibble n of C

opcode: 80Cn
cycl es: 6

Copy P pointer into Cregister at digit position specified
by n.

C=RO - Copy RO to C

opcode: 118
cycl es: 19

The contents of the scratch register RO is copied to the
wor ki ng register C.

C=R1 - Copy Rl to C

opcode: 119
cycl es: 19

The contents of the scratch register RL is copied to the
wor ki ng register C.

Page 88

C-R2 - Copy R to C
opcode: 11A
cycl es: 19

The contents of the scratch register R2 is copied to the
wor ki ng register C.

C=-R3 - Copy RBto C
opcode: 11B
cycl es: 19

The contents of the scratch register R3 is copied to the
wor ki ng register C.

C=R4 - Copy R4 to C
opcode: 11C
cycl es: 19

The contents of the scratch register R4 is copied to the
wor ki ng register C.

C=RSTK - Pop stack to C
opcode: 07
cycl es: 8

Pop the top-nost address off of the hardware return stack
pl acing the address in the lower 5 nibbles (A field) of

regi ster C. The hi gh-order nibbles of C are unchanged. As
the address is popped fromthe return stack, a zero address
is inserted at the bottomof the stack. Conpare with the
RTN mmenoni c.

Page 89

C=ST - Status to C

opcode: 09
cycl es: 6

Copy the |l oworder 12 bits of the status register into the
| oworder 12 bits (X field) of the Cregister

CAEX fs - Exchange Registers C and A

fs = A opcode: DE
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: AbE
cycl es: 3 +d

Exchange the fs fields of registers of Cand AL Carry is not
af f ect ed.

CBEX fs - Exchange Registers C and B

fs = A opcode: DD
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: AbD
cycl es: 3 +d

Exchange the fs fields of registers of Cand B. Carry is not
af f ect ed.

CDOEX - Exchange C and DO (ni bs 0-4)

opcode: 136
cycl es: 8

Exchange the A field of register Cwth Data pointer DO.
Carry is not affected.

Page 90

CDOXS - Exchange C and DO short (nibs 0-3)

opcode: 13E
cycl es: 7

Exchange the Iower 4 nibbles of Cwith the | ower 4 nibbles
of Data pointer DO. Carry is not affected.

CD1EX - Exchange C and D1 (ni bs 0-4)

opcode: 137
cycl es: 8

Exchange the A field of register Cwth Data pointer DI1.
Carry is not affected.

CD1XS - Exchange C and D1 short (nibs 0-3)
opcode: 13F
cycl es: 7

Exchange the ower 4 nibbles of Cwith the | ower 4 nibbles
of Data pointer DL. Carry is not affected.

CDEX fs - Exchange Registers C and D

fs = A opcode: DF
cycl es: 7

fs = (P,W, XS X, S, MB, W opcode: AbF
cycl es: 3 +d

Exchange the fs fields of registers of Cand D. Carry is not
af f ect ed.

Page 91

CLRHST - Clear Hardware Status bits

opcode: 82F
cycl es: 3

Clears the 4 Hardware Status bits XM SB, SR and MP. Note
that the opcode is actually 82x, where x is nerely a nmask
for which Hardware Status bits to clear, as foll ows:

bit 0 - External Mdule Mssing bit (see XM=0 mmenoni c)

bit 1 - Sticky Bit (see SB=0 mmenoni c)
bit 2 - Service Request bit (see SR=0 mmenoni c)
bit 3 - Mdule Pulled bit (see MP=0 mmenoni c)

For exanpl e opcode 829 clears XM and MP. Although there is
no mmenoni c for this, the opcode can be inserted into the
code by using, for exanple, N BHEX 829.

CLRST - Clear Program Status

opcode: 08
cycl es: 6

Clear the loworder 12 bits (SO through S11) of the Program
Status register ST.

CONFI G - Configure

opcode: 805
cycl es: 11

Copy the |l oworder 5 nibbles (A field) of the C register
into the Configuration register of the chip which has its
DAl SY-IN line high and its configuration flag | ow. See the
"HP-71 Hardware Specification" for information

CPEX n - Exchange Nibble n of C Wth P Pointer

opcode: 80Fn
cycl es: 6

Exchange the P pointer with digit n of the C register.

Page 92

CROEX - Exchange C and RO

opcode: 128
cycl es: 19

Exchange the contents of the working register C and the
scratch register RO

CR1EX - Exchange C and R1

opcode: 129
cycl es: 19

Exchange the contents of the working register C and the
scratch regi ster R1.

CR2EX - Exchange C and R2

opcode: 12A
cycl es: 19

Exchange the contents of the working register C and the
scratch regi ster R2.

CR3EX - Exchange C and R3

opcode: 12B
cycl es: 19

Exchange the contents of the working register C and the
scratch regi ster R3.

Page 93

CRAEX - Exchange C and R4

opcode: 12C
cycl es: 19

Exchange the contents of the working register C and the
scratch regi ster R4.

CSL fs - C Shift Left

fs = A opcode: F2
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Bb2
cycl es: 3 +d

Shift the contents of the specified fs field of register C
left one nibble, without affecting the rest of the register
The nibble shifted off the left end of the field is |ost.
The new | oworder nibble of the field is zero. The Sticky
Bit (SB) is not affected.

CsLC - CShift Left Crcular

opcode: 812
cycl es: 21

Circular shift register Cleft one nibble. Operates on al
16 digits. The Sticky Bit (SB) is not affected.

Page 94

CSR fs - Cshift Right

fs = A opcode: F6
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Bb6
cycl es: 3 +d

Shift the contents of the specified fs field of register C
right one nibble, without affecting the rest of the

regi ster. The nibble shifted off the right end of the field
is lost, but the Sticky Bit (SB) is set if the nibble was
non-zero. The new hi gh-order nibble of the field is zero.

CSRB - Cshift Right Bit
opcode: 81E
cycl es: 20

Shift register Cright one bit. Operates on all 16 digits.
The bit shifted off the end is lost, but the Sticky Bit (SB)
is set if it was non-zero. The new high-order bit of the
register is zero.

CSRC - CShift Right Grecular

opcode: 816
cycl es: 21

Circular shift register Cright one nibble. Operates on al
16 digits. The Sticky Bit (SB) is set if the nibble shifted
froml ow order around to high-order position was non-zero.

CSTEX - Exchange Status

opcode: 0B
cycl es: 6

Exchange the | oworder 12 bits (SO through S11) of the

Program Status register ST with the |loworder 12 bits of the
Cregister.

Page 95

D0=(2) nn - Load 2 N bbles Into DO
opcode: 19nn
cycl es: 4

Load the | oworder two nibbles of DO with nn. The upper

ni bbl es of DO remai n unchanged. Any overflow is ignored by
the assenbler. The assenbled digits of nn are stored in the
opcode in reverse order so that when the instruction is
executed the data will be |loaded into the register with the

i ntended orientation. See the section on "Loading Data From
Menmor y" .

DO=(4) nnnn - Load 4 N bbles Into DO
opcode: 1Annnn
cycl es: 6

Load the | ow order four nibbles of DO with nnnn. The upper
ni bbl e of DO remai ns unchanged. Any overflow is ignored by
the assenbler. The assenbled digits of nnnn are stored in

t he opcode in reverse order so that when the instruction is
executed the data will be |loaded into the register with the

i ntended orientation. See the section on "Loading Data From
Menmor y".

DO=(5) nnnnn - Load 5 Ni bbles Into DO
opcode: 1Bnnnnn
cycl es: 7

Load all five nibbles of DO with nnnnn. Any overflow is

i gnored by the assenbler. The assenbled digits of nnnnn are
stored in the opcode in reverse order so that when the
instruction is executed the data will be | oaded into the
register with the intended orientation. See the section on
"Loadi ng Data From Menory".

Page 96

DO=A - Copy Ato DO (nibs 0-4)
opcode:
cycl es:

The A field of register Ais copied
register DO. Carry is not affected.

130
8

into Data pointer

DO=AS - Copy Ato DO short (nibs 0-3)
opcode: 138
cycl es: 7

The | ower 4 nibbles of A are copied
of Data pointer register DO. Carry

DO=C - Copy Cto DO (nibs 0-4)
opcode:
cycl es:

The A field of register Cis copied
register DO. Carry is not affected.

into the |ower 4 nibbles
is not affected.

134
8

into Data pointer

DO=CS - Copy Cto DO short (nibs 0-3)
opcode: 13C
cycl es: 7

The | ower 4 nibbles of C are copied
of Data pointer register DO. Carry

Page 97

into the |ower 4 nibbles
is not affected.

DO=D0+ n - Add n to DO (1<=n<=16)

opcode: 16x (x=n-1)
cycl es: 7

Increnent DO by n. This instruction is always executed in
HEX nmode. Adjusts Carry.

DO=D0- n - Subtract n fromDO (1<=n<=16) ---------
opcode: 18x (x=n-1)
cycl es: 7

Decrenent DO by n. This instruction is always executed in
HEX nmode. Adjusts Carry.

DO=HEX hh - Load DO with hex constant hh
opcode: 19hh
cycl es: 4

Load the | oworder two nibbles of DO with the hex constant
hh. The upper nibbles of DO remai n unchanged. The digits of
hh are stored in the opcode in reverse order so that when
the instruction is executed the data will be |oaded into the
register with the intended orientation. See the section on
"Loadi ng Data From Menory".

DO=HEX hhhh - Load DO wi th hex constant hhhh
opcode: 1Ahhhh
cycl es: 6

Load the | oworder four nibbles of DO with the hex constant
hhhh. The upper ni bble of DO remai ns unchanged. The digits
of hhhh are stored in the opcode in reverse order so that
when the instruction is executed the data will be | oaded
into the register with the intended orientation. See the
section on "Loadi ng Data From Menory".

Page 98

DO=HEX hhhhh - Load DO with hex constant hhhhh
opcode: 1Bhhhhh
cycl es: 7

Load all five nibbles of DO with the hex constant hhhhh

The digits of hhhhh are stored in the opcode in reverse
order so that when the instruction is executed the data wll
be | oaded into the register with the intended orientation
See the section on "Loadi ng Data From Menory".

D1=(2) nn - Load 2 Nibbles Into D1
opcode: 1Dnn
cycl es: 4

Load the | oworder two nibbles of D1 with nn. The upper

ni bbl es of D1 remain unchanged. Any overflow is ignored by
the assenbler. The assenbled digits of nn are stored in the
opcode in reverse order so that when the instruction is
executed the data will be |loaded into the register with the

i ntended orientation. See the section on "Loading Data From
Menmor y".

D1=(4) nnnn - Load 4 N bbles Into D1
opcode: 1Ennnn
cycl es: 6

Load the | ow order four nibbles of DI with nnnn. The upper

ni bbl e of D1 remai ns unchanged. Any overflow is ignored by
the assenbler. The assenbled digits of nnnn are stored in
the opcode in reverse order so that when the instruction is
executed the data will be |loaded into the register with the

i ntended orientation. See the section on "Loading Data From
Menmor y".

Page 99

D1=(5) nnnnn - Load 5 N bbles Into D1
opcode: 1Fnnnnn
cycl es: 7

Load all five nibbles of DI with nnnnn. Any overflow is

i gnored by the assenbler. The assenbled digits of nnnnn are
stored in the opcode in reverse order so that when the
instruction is executed the data will be | oaded into the
register with the intended orientation. See the section on
"Loadi ng Data From Menory".

D1=A - Copy Ato D1 (nibs 0-4)

opcode: 131
cycl es: 8

The A field of register Ais copied into Data pointer
register DL. Carry is not affected.

D1=AS - Copy Ato D1 short (nibs 0-3)

opcode: 139
cycl es: 7

The | ower 4 nibbles of A are copied into the |ower 4 nibbles
of Data pointer register DI. Carry is not affected.

D1=C - Copy Cto D1 (nibs 0-4)

opcode: 135
cycl es: 8

The A field of register Cis copied into Data pointer
register DL. Carry is not affected.

Page 100

D1=CS - Copy Cto D1 short (nibs 0-3)
opcode: 13D
cycl es: 7

The I ower 4 nibbles of C are copied into the |ower 4 nibbles
of Data pointer register DI. Carry is not affected.

D1=D1+ n - Add n to D1 (1<=n<=16)
opcode: 17x (x=n-1)
cycl es: 7

Increnent D1 by n. This instruction is always executed in
HEX nmode. Adjusts Carry.

D1=D1- n - Subtract n from Dl (1<=n<=16)
opcode: 1Cx (x=n-1)
cycl es: 7

Decrenent D1 by n. This instruction is always executed in
HEX nmode. Adjusts Carry.

D1=HEX hh - Load D1 with hex constant hh
opcode: 1Dhh
cycl es: 4

Load the | oworder two nibbles of DL with the hex constant
hh. The upper nibbles of D1 remain unchanged. The digits of
hh are stored in the opcode in reverse order so that when
the instruction is executed the data will be |oaded into the
register with the intended orientation. See the section on
"Loadi ng Data From Menory".

Page 101

D1=HEX hhhh - Load D1 with hex constant hhhh
opcode: 1Ehhhh
cycl es: 6

Load the | oworder four nibbles of DI with the hex constant
hhhh. The upper ni bble of D1 remai ns unchanged. The digits
of hhhh are stored in the opcode in reverse order so that
when the instruction is executed the data will be | oaded
into the register with the intended orientation. See the
section on "Loadi ng Data From Menory".

D1=HEX hhhhh - Load D1 with hex constant hhhhh
opcode: 1Fhhhhh
cycl es: 7

Load all five nibbles of D1 with the hex constant hhhhh

The digits of hhhhh are stored in the opcode in reverse
order so that when the instruction is executed the data wll
be | oaded into the register with the intended orientation
See the section on "Loadi ng Data From Menory".

D=-D fs - Two's conplenent of Dinto D
fs = A opcode: FB
cycl es: 7
fs = (P,W, XS, X S, MB W opcode: BbB
cycl es: 3 +d

Conpl ement the specified fs field of D. Conplenent is two's
conplenment if in HEX node, ten's conplenment if in DEC node
Carry is set if the field is not zero, else Carry is

cl eared.

Page 102

D=-D-1fs - One's conplenent of Dinto D

fs = A opcode: FF
cycl es: 7

fs = (P,W, XS, X S, MB W opcode: BbF
cycl es: 3 +d

Performa one's conpl ement on the specified fs field of D
Carry is always cl eared.

D=0 fs - Set Dequal to O

fs = A opcode: D3
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ab3
cycl es: 3 +d

Set the specified fs field of Dto zero. Carry is not
af f ect ed.

D=C fs - Copy Cto D

fs = A opcode: D7
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ab7
cycl es: 3 +d

Copy the fs field of register Cinto the corresponding field
of register D. Carry is not affected.

Page 103

D=CD fs - Cmnus Dinto D

fs = A opcode: ED
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: BaD
cycl es: 3 +d

Set the specified fs field of register Dto the inverse
di fference between itself and the corresponding field of
register C. Adjusts Carry.

D=DIC fs - DORCinto D

fs = A opcode: OEFB
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEaB
cycl es: 4 +d

Set the fs field of register Dto its logical ORwith the
corresponding field of register C. Carry is not affected.

D=D&C fs - DANDCinto D

fs = A opcode: OEF3
cycl es: 4 +d

fs = (P,W, XS, X, S,MB W opcode: OEa3
cycl es: 4 +d

Set the fs field of register Dto its logical ANDwith the
corresponding field of register C. Carry is not affected.

Page 104

D=D+1 fs - Increnent D

fs = A opcode: E7
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ba7
cycl es: 3 +d

Increnent the specified fs field of register D by one.
Adj usts Carry.

D=D+C fs - Sumof Dand Cinto D

fs = A opcode: C3
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Aa3
cycl es: 3 +d

Set the specified fs field of register Dto the sum of
itself and the corresponding field of register C Adjusts
Carry.

D=D+D fs - Sumof Dand Dinto D

fs = A opcode: C7
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Aa7
cycl es: 3 +d

Doubl e the specified fs field of register D. Adjusts Carry.

Page 105

D=D-1 fs - Decrenent D

fs = A opcode: CF
cycl es: 7

fs = (P,W, XS X, S, MB, W opcode: AaF
cycl es: 3 +d

Decrenent the specified fs field of register D by one.
Adj usts Carry.

D=D-C fs - Dmnmnus Cinto D

fs = A opcode: E3
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Ba3
cycl es: 3 +d

Set the specified fs field of register Dto the difference
between itself and the corresponding field of register C
Adj usts Carry.

DATO=A fsd - Load nenory from A

fs = A opcode: 140
cycl es: 17

fs =B opcode: 148
cycl es: 14
fs = (P,W, XS, X, S MW opcode: 150a
cycl es: 16 + d
fs =d opcode: 158x (x=d-1)

cycl es: 15 +d

The anmount of data (d ni bbles) specified by fsd will be
witten to the menory address pointed to by DO fromthe
specified field of register A. The | owest-order nibble of
the register field will be witten to the | owest-addressed
ni bbl e of nenory, proceeding toward the higher-order

nibbles. If fs =d, d nibbles are witten to nmenory starting
fromnibble O of the register. See the section on "Storing
Data Into Menory".

Page 106

DATO=C fsd - Store into nenory fromC

fs = A opcode: 144
cycl es: 17

fs =B opcode: 14C
cycl es: 14
fs = (P,W, XS, X, S MW opcode: 154a
cycl es: 16 + d
fs =d opcode: 15Cx (x=d-1)

cycl es: 15 +d

The anmount of data (d nibbles) specified by fsd will be
witten to the menory address pointed to by DO fromthe
specified field of register C. The |owest-order nibble of
the register field will be witten to the | owest-addressed
ni bbl e of nenory, proceeding toward the higher-order

nibbles. If fs =d, d nibbles are witten to nmenory starting
fromnibble O of the register. See the section on "Storing
Data Into Menory".

DAT1=A fs - Store into nenory fromA

fs = A opcode: 141
cycl es: 17

fs =B opcode: 149
cycl es: 14
fs = (P,W, XS, X, S MW opcode: 151a
cycl es: 16 + d
fs =d opcode: 159x (x=d-1)

cycl es: 15 +d

The anmount of data (d ni bbles) specified by fsd will be
witten to the menory address pointed to by DI fromthe
specified field of register A. The | owest-order nibble of
the register field will be witten to the | owest-addressed
ni bbl e of nenory, proceeding toward the higher-order

nibbles. If fs =d, d nibbles are witten to nmenory starting
fromnibble O of the register. See the section on "Storing
Data Into Menory".

Page 107

DAT1=C fsd - Store into nenory fromC

fs = A opcode: 145
cycl es: 17

fs =B opcode: 14D
cycl es: 14
fs = (P,W, XS, X, S MW opcode: 155a
cycl es: 16 + d
fs =d opcode: 15Dx (x=d-1)

cycl es: 15 +d

The anmount of data (d nibbles) specified by fsd will be
witten to the menory address pointed to by DI fromthe
specified field of register C. The |owest-order nibble of
the register field will be witten to the | owest-addressed
ni bbl e of nenory, proceeding toward the higher-order

nibbles. If fs =d, d nibbles are witten to nmenory starting
fromnibble O of the register. See the section on "Storing
Data Into Menory".

DCEX fs - Exchange Registers D and C

fs = A opcode: DF
cycl es: 7

fs = (P,W, XS X, S, MB, W opcode: AbF
cycl es: 3 +d

Exchange the fs fields of registers of Dand C. Carry is not
af f ect ed.

DSL fs - D Shift Left

fs = A opcode: F3
cycl es: 7

fs = (P,W, XS, X, S,MB, W opcode: Bb3
cycl es: 3 +d

Shift the contents of the specified fs field of register D
left one nibble, without affecting the rest of the register
The nibble shifted off the left end of the field is |ost.
The new | oworder nibble of the field is zero. The Sticky
Bit (SB) is not affected.

Page 108

DSLC - DShift Left Crcul ar

opcode: 813
cycl es: 21

Circular shift register DIleft one nibble. Operates on al
16 digits. The Sticky Bit (SB) is not affected.

DSR fs - D Shift Right

fs = A opcode: F7
cycl es: 7

fs = (P,W, XS, X, S,MB W opcode: Bb7
cycl es: 3 +d

Shift the contents of the specified fs field of register D
right one nibble, without affecting the rest of the

regi ster. The nibble shifted off the right end of the field
is lost, but the Sticky Bit (SB) is set if the nibble was
non-zero. The new hi gh-order nibble of the field is zero.

DSRB - Dshift Right Bit
opcode: 81F
cycl es: 20

Shift register Dright one bit. Operates on all 16 digits.
The bit shifted off the end is lost, but the Sticky Bit (SB)
is set if it was non-zero. The new high-order bit of the
register is zero.

DSRC - D Shift Right Grecular

opcode: 817
cycl es: 21

Circular shift register D right one nibble. Operates on al

16 digits. The Sticky Bit (SB) is set if the nibble shifted
froml ow order around to high-order position was non-zero.

Page 109

aoC | abel - Go relative on carry
opcode: 4aa (Carry=0)
cycl es: 10 (&0
3 (NO

Short relative junp to label if Carry is set. |abel must be
in the range:

addr - 128 <= label <= addr + 127
where addr is the address of the second ni bble of the

opcode. The address offset aa is in two's conplenent form
and is relative to addr.

GOLONG | abel - Go Long
opcode: 8Caaaa
cycl es: 14
Long relative junp to | abel unconditionally. |abel nust be

in the range:
addr - 32768 <= label <= addr + 32767

where addr is the address of the third ni bble of the opcode.
The address offset aaaa is in tw's conplenment formand is
relative to addr.

GONC label - Go relative on no carry

opcode: b5aa (Carry=1)
cycl es: 10 (&0
3 (NO

Short relative junp to label if Carry is clear. |abel mnust
be in the range:

addr - 128 <= label <= addr + 127
where addr is the address of the second ni bble of the

opcode. The address offset aa is in two's conplenent form
and is relative to addr.

Page 110

GOSBVL | abel - CGosub very long to | abel
opcode: 8Faaaaa
cycl es: 15

Absol ute subroutine junp to aaaaa, which is the absol ute
address of label. See the GOSUB mmenoni c.

GOSUB | abel - Gosub to | abel
opcode: 7aaa
cycl es: 12

Rel ative subroutine junp to label. |abel must be in the
range:

addr - 2048 <= | abel <= addr + 2047

where addr is the starting address of the next instruction
The address offset aaa is in tw's conplenment formand is
relative to addr.

As with all subroutine junps, the address (addr) of the
instruction follow ng the gosub opcode is pushed onto the
hardware return stack, so that when a corresponding return
is executed, control resumes with the instruction at address
addr.

As the return address is pushed onto the return stack, the
bott om nost address on the stack is discarded. Therefore,
the return stack always contains 8 addresses, and if pushes
exceed pops by 8 levels, the bottom nost return addresses
are lost. Since the interrupt systemrequires one level to
process interrupts, only 7 levels of the return stack can be
used by code which nmust execute when interrupts are enabl ed.
See the RTN menonic for further information.

GOSUBL | abel - CGosub long to | abel

opcode: 8Eaaaa
cycl es: 15

Long rel ative subroutine junp to label. |abel nust be in
t he range:

addr - 32768 <= |abel <= addr + 32767
where addr is the starting address of the next instruction

The address offset aaaa is in two's conplenment formand is
relative to addr. See the GOSUB mmenoni c.

Page 111

GOTO label - Junp relative

opcode: 6aaa
cycl es: 11

Rel ative junmp to | abel unconditionally. |abel must be in the
range:

addr - 2048 <= label <= addr + 2047
where addr is the address of the second ni bble of the

opcode. The address offset aaa is in tw's conpl enent form
and is relative to addr.

GOVLNG | abel

Jump very | ong

opcode: 8Daaaaa
cycl es: 14

Uncondi tional junp to aaaaa, which is the absol ute address
of | abel

GOYES Ilabel - Jump if Test is True

opcode: vyy
cycl es: i ncluded in the acconpani ng
Test menonic cycle tine.

GOYES is a menonic to specify part of a CPU test opcode

GOYES nmust always follow a test menonic. [f the condition
of the test is net, a junp is perforned to |label with Carry
set. |abel must be in the range

addr - 128 <= | abel <= addr + 127
where addr is the starting address of the junp offset yy. If

the test condition is not nmet, Carry is cleared and control
passes to the next instruction. Conpare wth RTNYES.

Page 112

| NTOFF - Interrupt Of

opcode: 808F
cycl es: 5

Di sabl e the keyboard interrupt system

I NTON - Interrupt On

opcode: 8080
cycl es: 5

Enabl e the keyboard interrupt system See the "Hp-71
Har dwar e Specification" for nore information

LC(mM n..n - Load C with constant (1<=nk=6)
opcode: 3xn..n (x=m1)
cycl es: 3+m

Load mdigits of the expression n..n to the C register

begi nning at the P pointer position, and proceedi ng toward
hi gher-order nibbles, with the ability to wap around the
register. See the section on "Loading Data From Menory".

LCASC A..A - Load Cwith ASCI| constant

opcode: 3nt..c

(m = 2*(# of chars)-1
c..c = ASClI I codes)
cycl es: 3+2*(# of chars)

Load up to 8 ASCII characters to the C register begi nning at
the P pointer position, and proceedi ng toward hi gher-order

ni bbles, with the ability to wap around the register. Each
A represents an ASCI| character. The ASCI|I characters are
stored in the opcode in reverse order so that when the
instruction is executed the data will be | oaded into the
register with the intended orientation. See the section on
"Loadi ng Data From Menory".

Page 113

LCHEX h..h - Load C with hex constant
opcode: 3nh..h (n=# of digits-1)
cycl es: 4+n

Load up to 16 hex digits into the C register beginning at
the P pointer position, and proceedi ng toward hi gher-order
ni bbles, with the ability to wap around the register. The
hex digits are stored in the opcode in reverse order so that
when the instruction is executed the data will be | oaded
into the register with the intended orientation. See the
section on "Loadi ng Data From Menory".

=0 - Clear Mdule Pulled bit (M)

opcode: 828
cycl es: 3

Clears the Module Pulled bit (MP) and pulls the Mdul e
Pulled Interrupt line |low. See CLRHST menonic.

NOP3 - Three ni bble No-op

opcode: 420
cycles: 10 (GO RTNYES)
3 (NO

Thi s menoni c generates a GOC to the next instruction
ef fectively skiping three nibbles.

Page 114

NOP4 - Four nibble No-op

opcode: 6300
cycl es: 11

Thi s menoni c generates a GOTO to the next instruction
efectively skiping four nibbles.

NOP5 - Five nibble No-op
opcode: 64000
cycl es: 11

Thi s menoni c generates a relative GOTO to +4 ni bbles. The
fifth nibble in the opcode is a place holder and is junped
over. The menonic effectively skips five nibbles.

aut=C - Load 3 nibbles of OR -----
opcode: 801
cycl es: 6

Al'l nibbles of the Qutput register are | oaded with the | ow
order three nibbles of C (X field).

QUT=CS - Load 1 nibble of OR

opcode: 800
cycl es: 4

The | east significant nibble of the Qutput register is
| oaded with the | east significant nibble of the C register

Page 115

PC=(A) - Junp (Set PC) indirectly thru Afield of A register

opcode: 808C
cycl es: 23

This instruction causes the CPU to junp to the address
pointed to by nenory at the address specified by the A field
of the Aregister. 1In synbolic form the operation is
PC=men{A[A]). This opcode is not available on the 1LF2
version of the Saturn CPU

=C n - Copy P pointer into C at Nibble n

opcode: 80Dn
cycl es: 6

Copy nibble n of register Cinto the P pointer.

P=P+1 - Increnent P Pointer
opcode: O0C
cycl es: 3
Increnent the P pointer. If Pis increnented past Fit wll

automatically wap around to 0. This instruction is always
executed in HEX node. Adjusts carry.

P=P-1 - Decrenent P Pointer
opcode: 0D
cycl es: 3

Decrenent the P pointer. If P is decrenmented past O it
automatically waps around to F. This instruction is always
executed in HEX node. Adjusts Carry.

Page 116

P= n - Set P Pointer to n

opcode: 2n
cycl es: 2

Set the P pointer to n.

RO=A - Copy Ato register RO

opcode: 100
cycl es: 19

The contents of the working register Ais
scratch register RO

RO=C - Copy Cto register RO

opcode: 108
cycl es: 19

The contents of the working register Cis
scratch register RO

R1=A - Copy Ato register R1

opcode: 101
cycl es: 19

The contents of the working register Ais
scratch regi ster R1.

Page 117

copied to the

copied to the

copied to the

R1=C - Copy Cto register R1

opcode: 109
cycl es: 19

The contents of the working register Cis
scratch regi ster R1.

R2=A - Copy Ato register R2

opcode: 102
cycl es: 19

The contents of the working register Ais
scratch regi ster R2.

R2=C - Copy Cto register R2

opcode: 10A
cycl es: 19

The contents of the working register Cis
scratch regi ster R2.

R3=A - Copy Ato register R3

opcode: 103
cycl es: 19

The contents of the working register Ais
scratch regi ster R3.

Page 118

copied to the

copied to the

copied to the

copied to the

R3=C - Copy Cto register R3

opcode: 10B
cycl es: 19

The contents of the working register Cis copied to the
scratch regi ster R3.

R4=A - Copy Ato register R4

opcode: 104
cycl es: 19

The contents of the working register Ais copied to the
scratch regi ster R4.

R4=C - Copy Cto register R4

opcode: 10C
cycl es: 19

The contents of the working register Cis copied to the
scratch regi ster R4.

RESET - Systemreset

opcode: 80A
cycl es: 6

The System Reset Bus Command is issued with all chips

performng a local reset. The reset function will vary
according to the chip type.

Page 119

RSI - Reset Interrupt System
opcode: 80810
cycl es: 6

This instruction causes CPU to consider any input line (ie
i nput register bits) presently high as a new interrupt. |If
the CPUis presently in the interrupt routine it wll wait
for an RTlI before vectoring, otherwise the CPU will vector
i mediately following the RSI instruction. For a conplete
di scussion on the interrupt system see the CPU Hardware
Speci fication (A-1LK7-9005-1). This instruction is not
avai l abl e on the 1LF2 version of the Saturn CPU

RSTK=C - Push Cto Return Stack
opcode: 06
cycl es: 8

Push the loworder 5 nibbles (A field) of the C register
onto the Return Stack. See the GOSUB mmenoni c.

RTI - Return frominterrupt
opcode: OF
cycl es: 9

Return and re-enable the interrupt system See the RIN
mmenoni c.

opcode: 01
cycl es: 9

Return control to the top address on the hardware return
stack. The top address on the hardware return stack is
popped off and placed in the programcounter PC. As the
address i s popped off the stack, a zero address is inserted
at the bottom of the stack.

Page 120

Therefore the the hardware return stack always contains 8
addresses, and if nore pops (returns) than pushes (gosubs)
are performed, zeros will be read off the stack. Such an
attenpt to "return” to address O results in a nenory reset,
since the nmenory reset code of the operating systemresides
at address O.

RTNC -Return on carry

opcode: 400
cycl es: 10 (RTN)

3 (NO
Return if Carry is set. See RTN mmenoni c.
RTNCC - Return, clear carry
opcode: 03
cycl es: 9

Return and set Carry. See RTN menoni c.

RTNNC - Return on no carry

opcode: 500 (Carry=1)
cycl es: 10 (RTN)
3 (NO

Return if Carry is not set. See RTN menoni c.

Page 121

RTNSC - Return, set carry

opcode: 02
cycl es: 9

Return and set Carry. See RTN mmenoni c.

RTNSXM - Return, set External Mdule Mssing bit (XM
opcode: 00
cycl es: 9

Return and set the External Mdule Mssing bit (XM. Since
the opcode is zero, this menonic is executed on a junp to a
non-exi stent nenory device. See the "HP-71 Hardware
Specification" for nore information. See also the RTN
mmenoni c.

RTNYES - Return if Test is True
opcode: 00
cycles: included in the acconpaning
menoni ¢ cycl e tine.

RTNYES is a menonic to specify part of a CPU test opcode.
RTNYES nust always follow a test menonic. |If the test
condition is met, Carry is set and a return is executed. If
the test condition is not met, control passes to the
instruction followi ng the RTNYES. Conpare with the RTN and
GOYES mmenoni cs.

Page 122

SB=0 - Clear Sticky Bit (SB)

opcode: 822
cycl es: 3

Clear the Sticky Bit (SB). See CLRHST mmenoni c.

SETDEC - Set deci nal
opcode: 05
cycl es: 3

Set CPU arithnetic node to deci nal

SETHEX - Set hexadeci nal node
opcode: 04
cycl es: 3

Set CPU arithnetic node to hexadeci nal

SHUTDN - Syst em Shut down
opcode: 807
cycl es: 5

VWhen this menonic is executed the CPU sends out the

Shut down Bus Conmand and stops its clock. [Issuing the
SHUTDN command with the out put register=000 (see OQUT=C or
QUT=CS) will cause the PCto be set to zero, causing an
automatic cold-start in some systenms, or a system halt

in the HP 48.

Page 123

SR=0 - Clear Service Request bit (SR
opcode: 824
cycl es: 3

Clear the Service Request bit (SR). See the CLRHST
mmenoni c.

SREQ? - Service Request
opcode: 80E
cycl es: 7

Thi s menonic sets the Service Request bit (SR) if any chip
on the system bus requests service. When it is executed, a
Servi ce Request Bus Conmmand is issued on the systembus to
poll all chips for a Service Request. |If any chip requests
service, a bus line will be pulled high during the next
strobe follow ng the Service Request Bus Command. This

val ue of the bus will be latched into the | east significant
ni bble of the Cregister. The bus line pulled high

determ nes the device type according to the follow ng table.

Bi t Devi ce

3 Unused

2 Card Reader

1 HP-1L Mil box

0 Di splay Driver (tiner)

If any bus line is high, the Service Request bit (SR wll
be set. See the "HP-71 Hardware Specification" for nore
informati on. See al so the ?SREQ and SR=0 menoni cs.

Page 124

ST=0 n - Clear Program Status bit n

opcode: 84n
cycl es: 4

Clear the Program Status bit sel ected by n.

ST=1 n - Set Program Status bit n

opcode: 85n
cycl es: 4

Set the Program Status bit selected by n

ST=C - Cto Status
opcode: 0A
cycl es: 6

Copy the |l oworder 12 bits of the Status register (X field)
into the loworder 12 bits of the Cregister

UNCNFG - Unconfigure
opcode: 804
cycl es: 12

Load the loworder 5 nibbles (A field) of the C register
into each Data pointer with the device addressed by the Data
poi nter unconfiguring. See the "HP-71 Hardware
Specification" for nore information

XM=0 - Clear External Mdule Mssing bit (XM

opcode: 821
cycl es: 3

Clear the External Mbdule Mssing bit (XM. This hardware

status bit is set by the RTNSXM mmenonic. See the CLRHST
mmenoni c.

Page 125

9. Al phabetic Menonic List

This chapter contains all the code-generating instructions
whi ch are recogni zed by SASM EXE. Instructions found in the
HP 28 and HP 48 but not the HP 71 are marked with **.

Synbol s used in nodifier field:

fs Field Sel ect character.

rfs Restricted Field Selection (S, P, W, and XS not all owed).
d Single-nibble field.

expr Expr essi on.

hh Two- di git hexadeci mal val ue.

hhhh Four-di git hexadeci mal val ue.

hhhhh Five-di git hexadeci mal val ue.

| abel Label destination.

ASCl | ASClI | character string.

Synbol s used in code field:

Code included in test instruction.

—
—

a Field select in the range 0-7.

b Field select in the range 8-F.

c Single-nibble length field (Load Constant).

f Field select including A field.

h...h Hexadeci mal val ue.

n Ni bbl e whose val ue is d.

n...n Ni bbl es whose val ue is expr.

m Ni bbl e whose value is d - 1.

X...X Ni bbl es corresponding to ASCI|1 characters.

y Ref erence to a synbol (relative or absolute).

I nstruction Code Comment s

?2A#0 A 8ACyy Requi res GOYES or RINYES; Affects Carry
?2A#0 fs 9aCyy Requi res GOYES or RTINYES; Affects Carry
?A#B A 8Adyy Requi res GOYES or RTINYES; Affects Carry
?A#B fs 9adyy Requi res GOYES or RINYES; Affects Carry
2A#C A 8A6YyYy Requi res GOYES or RINYES; Affects Carry
2A#C fs 9abyy Requi res GOYES or RTINYES; Affects Carry
?2A<=B A 8BCyy Requi res GOYES or RTINYES; Affects Carry
?2A<=B fs 9bCyy Requi res GOYES or RTINYES; Affects Carry
?2A<=C A 8BAyy Requi res GOYES or RTINYES; Affects Carry
?2A<=C fs 9bAyy Requi res GOYES or RTINYES; Affects Carry
?A<B A 8B4yy Requi res GOYES or RTINYES; Affects Carry
?A<B fs 9b4yy Requi res GOYES or RTINYES; Affects Carry
?2A<C A 8B2yy Requi res GOYES or RINYES; Affects Carry
?2A<C fs 9b2yy Requi res GOYES or RINYES; Affects Carry
?A=0 A 8A8yy Requi res GOYES or RTINYES; Affects Carry
?A=0 fs 9a8yy Requi res GOYES or RTINYES; Affects Carry
?A=B A 8AQyy Requi res GOYES or RTINYES; Affects Carry
?A=B fs 9alyy Requi res GOYES or RTINYES; Affects Carry
?2A=C A 8A2yy Requi res GOYES or RTINYES; Affects Carry
?2A=C fs 9a2yy Requi res GOYES or RINYES; Affects Carry
?2A>=B A 8B8yy Requi res GOYES or RTINYES; Affects Carry
?2A>=B fs 9b8yy Requi res GOYES or RTINYES; Affects Carry

Page 126

?2A>=C A 8BEyy Requi res GOYES or RTINYES; Affects Carry
?2A>=C fs 9bEyy Requi res GOYES or RTINYES; Affects Carry
?A>B A 8BOyy Requi res GOYES or RINYES; Affects Carry
?A>B fs 9b0yy Requi res GOYES or RTINYES; Affects Carry
2A>C A 8B6yy Requi res GOYES or RINYES; Affects Carry
2A>C fs 9b6yy Requi res GOYES or RINYES; Affects Carry
?ABI T=0 d 8086nyy ** Requires GOYES or RTNYES; Affects Carry
?ABI T=1 d 8087nyy ** Requires GOYES or RTINYES; Affects Carry
?B#0 A 8ADyy Requi res GOYES or RINYES; Affects Carry
?B#0 fs 9aDyy Requi res GOYES or RINYES; Affects Carry
?B#A A 8Adyy Requi res GOYES or RINYES; Affects Carry
?B#A fs 9adyy Requi res GOYES or RINYES; Affects Carry
?B#C A 8A5yy Requi res GOYES or RINYES; Affects Carry
?B#C fs 9ab5yy Requi res GOYES or RINYES; Affects Carry
?B<=A A 8B8yy Requi res GOYES or RINYES; Affects Carry
?B<=A fs 9b8yy Requi res GOYES or RINYES; Affects Carry
?B<=C A 8BDyy Requi res GOYES or RTINYES; Affects Carry
?B<=C fs 9bDyy Requi res GOYES or RINYES; Affects Carry
?B<A A 8BOyy Requi res GOYES or RTINYES; Affects Carry
?B<A fs 9b0yy Requi res GOYES or RTINYES; Affects Carry
?B<C A 8B5yy Requi res GOYES or RTINYES; Affects Carry
?B<C fs 9b5yy Requi res GOYES or RINYES; Affects Carry
?B=0 A 8A9yy Requi res GOYES or RINYES; Affects Carry
?B=0 fs 9a9yy Requi res GOYES or RINYES; Affects Carry
?B=A A 8AQyy Requi res GOYES or RINYES; Affects Carry
?B=A fs 9alyy Requi res GOYES or RTINYES; Affects Carry
?B=C A 8Alyy Requi res GOYES or RTINYES; Affects Carry
?B=C fs 9alyy Requi res GOYES or RINYES; Affects Carry
?B>=A A 8BCyy Requi res GOYES or RTINYES; Affects Carry
?B>=A fs 9bCyy Requi res GOYES or RINYES; Affects Carry
?B>=C A 8B9yy Requi res GOYES or RTINYES; Affects Carry
?B>=C fs 9b9yy Requi res GOYES or RINYES; Affects Carry
?B>A A 8B4yy Requi res GOYES or RINYES; Affects Carry
?B>A fs 9b4yy Requi res GOYES or RINYES; Affects Carry
?B>C A 8Blyy Requi res GOYES or RTINYES; Affects Carry
?B>C fs 9blyy Requi res GOYES or RINYES; Affects Carry
?2CH#0O A 8AEyy Requi res GOYES or RINYES; Affects Carry
?2CH#0O fs 9akyy Requi res GOYES or RTINYES; Affects Carry
2CHA A 8A6YyYy Requi res GOYES or RTINYES; Affects Carry
2CHA fs 9abyy Requi res GOYES or RTINYES; Affects Carry
?CHB A 8A5yy Requi res GOYES or RTINYES; Affects Carry
?CHB fs 9ab5yy Requi res GOYES or RTINYES; Affects Carry
?CH#D A 8ATyy Requi res GOYES or RTINYES; Affects Carry
?CH#D fs 9a7yy Requi res GOYES or RINYES; Affects Carry
?2Ck=A A 8BEyy Requi res GOYES or RINYES; Affects Carry
?2C=A fs 9bEyy Requi res GOYES or RTINYES; Affects Carry
?2Ck=B A 8B9yy Requi res GOYES or RTINYES; Affects Carry
?2C=B fs 9b9yy Requi res GOYES or RINYES; Affects Carry
?2C=D A 8BByy Requi res GOYES or RTINYES; Affects Carry
?2C=D fs 9bByy Requi res GOYES or RTINYES; Affects Carry
?2C<A A 8B6yy Requi res GOYES or RTINYES; Affects Carry
?2C<A fs 9b6yy Requi res GOYES or RTINYES; Affects Carry
?C<B A 8Blyy Requi res GOYES or RTINYES; Affects Carry
?C<B fs 9blyy Requi res GOYES or RTINYES; Affects Carry
?2C<D A 8B3yy Requi res GOYES or RTINYES; Affects Carry
?2C<D fs 9b3yy Requi res GOYES or RTINYES; Affects Carry

Page 127

?2C=0 A 8AAyy Requi res GOYES or RTINYES; Affects Carry
?2C=0 fs 9aAyy Requi res GOYES or RINYES; Affects Carry
?2C=A A 8A2yy Requi res GOYES or RINYES; Affects Carry
?2C=A fs 9a2yy Requi res GOYES or RINYES; Affects Carry
?C=B A 8Alyy Requi res GOYES or RINYES; Affects Carry
?C=B fs 9alyy Requi res GOYES or RTINYES; Affects Carry
?C=D A 8A3yy Requi res GOYES or RINYES; Affects Carry
?C=D fs 9a3yy Requi res GOYES or RINYES; Affects Carry
?2CG=A A 8BAyy Requi res GOYES or RINYES; Affects Carry
?2CG=A fs 9bAyy Requi res GOYES or RINYES; Affects Carry
?2CG=B A 8BDyy Requi res GOYES or RINYES; Affects Carry
?2C=B fs 9bDyy Requi res GOYES or RINYES; Affects Carry
?2CG=D A 8BFyy Requi res GOYES or RINYES; Affects Carry
?CG=D fs 9bFyy Requi res GOYES or RINYES; Affects Carry
2CA A 8B2yy Requi res GOYES or RINYES; Affects Carry
2CA fs 9b2yy Requi res GOYES or RTINYES; Affects Carry
?2CB A 8B5yy Requi res GOYES or RTINYES; Affects Carry
?2CB fs 9b5yy Requi res GOYES or RINYES; Affects Carry
?2CD A 8B7yy Requi res GOYES or RINYES; Affects Carry
?2CD fs 9b7yy Requi res GOYES or RINYES; Affects Carry
?CBI T=0 d 808Anyy ** Requires GOYES or RTINYES; Affects Carry
?CBIT=1 d 808Bnyy ** Requires GOYES or RTNYES; Affects Carry
?D#0 A 8AFyy Requi res GOYES or RTINYES; Affects Carry
?D#0 fs 9aFyy Requi res GOYES or RINYES; Affects Carry
?D#C A 8ATyy Requi res GOYES or RINYES; Affects Carry
?D#C fs 9a7yy Requi res GOYES or RTINYES; Affects Carry
?2D<=C A 8BFyy Requi res GOYES or RTINYES; Affects Carry
?D<=C fs 9bFyy Requi res GOYES or RINYES; Affects Carry
?D<C A 8B7yy Requi res GOYES or RINYES; Affects Carry
?D<C fs 9b7yy Requi res GOYES or RINYES; Affects Carry
?D=0 A 8AByy Requi res GOYES or RTINYES; Affects Carry
?D=0 fs 9aByy Requi res GOYES or RINYES; Affects Carry
?D=C A 8A3yy Requi res GOYES or RINYES; Affects Carry
?D=C fs 9a3yy Requi res GOYES or RTINYES; Affects Carry
?D>=C A 8BByy Requi res GOYES or RTINYES; Affects Carry
?D>=C fs 9bByy Requi res GOYES or RTINYES; Affects Carry
?D>C A 8B3yy Requi res GOYES or RINYES; Affects Carry
?D>C fs 9b3yy Requi res GOYES or RTINYES; Affects Carry
?HS=0 d 83nyy Requi res GOYES or RTINYES; Affects Carry

’:?I\/P=O 838yy Requi res GOYES or RTINYES; Affects Carry

?2P# d 88nyy Requi res GOYES or RINYES; Affects Carry
?2P= d 89nyy Requi res GOYES or RINYES; Affects Carry
?SB=0 832yy Requi res GOYES or RTINYES; Affects Carry
?SR=0 834yy Requi res GOYES or RTINYES; Affects Carry
?2ST=0 d 86nyy Requi res GOYES or RINYES; Affects Carry
?2ST=1 d 87nyy Requi res GOYES or RINYES; Affects Carry
2XM=0 831lyy Requi res GOYES or RINYES; Affects Carry
A=-A A F8 Affects Carry

= A fs Bb8 Affects Carry

A=-A-1 A FC Clears Carry

A=-A-1 fs BbC Clears Carry

=0 A DO

=0 fs AbO

=AlB fs OEf 8

A=AIC fs OEf E

A=A&B fs OEf O

A=A&C fs OEf 6

A=A+1 A E4 Affects Carry

Page 128

A=A+1
A=A+A
A=A+A
A=A+B
A=A+B
A=A+C
A=A+C
A=A+CON

m T m T m T m T m T

Ba4
Aad

AaO

818f Om

81Af 10

81Af 11
112
112
81Af 12
113
113
81Af 13
114
114
81Af 14

AbC
8084n
8085n

Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry

* *

Affects Carry

Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry

* *

Affects Carry

Affects Carry
Affects Carry
Affects Carry
Affects Carry

Affects Carry
Affects Carry

* *
* *

* *
* *

* *
* *

* *
* *

* *

* *

* *
* *

Clears bit d of Aregister
Sets bit d of A register

Page 129

ACEX A DE

ACEX fs AbE

ADOEX 132

ADOXS 13A

ADLEX 133

ADLXS 13B

APCEX 81B6 ** Continues el sewhere

AROEX 120

AROEX. F fs 81Af20 **

ARLEX 121

ARLEX. F fs 81Af21 **

AR2EX 122

ARZEX. F fs 81Af 22 **

AR3EX 123

AR3EX. F fs 81Af 23 **

AR4AEX 124

ARAEX. F fs 81Af 24 **

ASL A FO

ASL fs BbO

ASLC 810

ASR A F4

ASR fs Bb4

ASRB 81C

ASRB.F fs 819f0 **

ASRC 814

B=-B A F9 Affects Carry
=- B fs Bb9 Affects Carry
B=-B-1 A FD Clears Carry
B=-B-1 fs BbD Clears Carry
=0 A D1
=0 fs Abl
=A A D8
=A fs Ab8

B=AIB fs OEf C

B=A&B fs OEf 4

B=A+B A c8 Affects Carry
B=A+B fs Aa8 Affects Carry
B=B'A fs OEf C

B=B!IC fs OEf 9
=B&A fs OEf 4

B=B&C fs OEf 1

B=B+1 A E5 Affects Carry
=B+1 fs Ba5 Affects Carry
=B+A A Cc8 Affects Carry
B=B+A fs Aa8 Affects Carry
B=B+B A c5 Affects Carry
B=B+B fs Aa5 Affects Carry
=B+C A c1 Affects Carry
=B+C fs Aal Affects Carry
B=B+CON rfs, d 818f1m ** Affects Carry
B=B- 1 A D Affects Carry
=B- 1 fs AaD Affects Carry
=B-A A E8 Affects Carry
=B-A fs Ba8 Affects Carry
B=B-C A E1 Affects Carry
B=B-C fs Bal Affects Carry

B=B-CON rfs,d 818f9m ** Affects Carry
=C A D5

Page 130

OEf D
OEf 5

Aa9

OEf A
OEf D
OEf F
OEf 2
OEf 5
OEf 7

Ba6
Aa2
Aa9

Aab

Affects Carry
Affects Carry
Affects Carry
Affects Carry

* *
* *

* *

Affects Carry
Affects Carry
Affects Carry
Clears Carry
Clears Carry

Affects Carry
Affects Carry
Affects Carry
Affects Carry

Affects Carry
Affects Carry

Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry

Page 131

C=C+CON
C=C+D
C=C+D
C=C+P+1
cC=C1
cC=C1
C=C A
C=C A
C=CB
C=CB
C=C- CON
C=C-D

rfs,d
A
fs

fs
fs
fs
fs

fs

fs

fs

oo

expr

818f 2m
CB
AaB
809
CE
AaE
E2
Ba2
E9
Ba9
818f Am
EB
BaB
DB
AbB
OEf F
OEf 7
CB
AaB
146
14E
156a
15Em
147
14F
157a
15Fm
806
803

n

* *

Af
Af
Af
Af
Af
Af
Af
Af
Af
* %
Af
Af

Af

Affects Carry
fects Carry
fects Carry
fects Carry
fects Carry
fects Carry
fects Carry
fects Carry
fects Carry
fects Carry

Affects Carry
fects Carry
fects Carry

fects Carry

Affects Carry

* *
* *

Clears bit d of Cregister
Sets bit d of C register

Page 132

TEERETS

m M M M T

expr
expr
expr
expr
expr
expr
expr

expr
expr
expr

hh
hhhh
hhhhh
expr
expr
expr

nn
nnn
nnnn
nnnnn
nnnnnn
nnnnnnn
nnnnnnnn
805
81B7
80Fn
128
81Af 28
129
81Af 29
12A
81Af 2A
12B
81Af 2B
12C
81Af 2C
F2

Bb2

812

F6

Bb6
81E
819f 2
816

0B

19nn
1AnNNnN
1Bnnnnn
130

138

134
13C
16m
18m
19hh
1Ahhhh
1Bhhhhh
1Dnn
1Ennnn
1Fnnnnn
131

139

135
13D
17m
1Cm
1Dhh
1Ehhhh
1Fhhhhh
FB

BbB

FF

BbF

D3

** Continues el sewhere

* *

Affects Carry
Affects Carry

Affects Carry
Affects Carry

Affects Carry
Affects Carry
Clears Carry
Clears Carry

Page 133

_,,
n n

)>Q-;‘UJ)>Q-_"U?)>Q-

—h —h
U)>U)

a >

_,,
"

o
o
@

| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel

Ba3
818f Bm
140
148
150a
158m
144
14C
154a
15Cm
141
149
151a
159m
145
14D
155a
15Dm
DF
AbF
F3
Bb3
813
F7
Bb7

Affects Carry
Affects Carry
Affects Carry
Affects Carry

Affects Carry
Affects Carry
Affects Carry
Affects Carry
** Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
Affects Carry
** Affects Carry

* *

Conti nues el sewhere if Carry set
Conti nues el sewhere

Conti nues el sewhere if Carry clear
Affects Carry

Affects Carry

Affects Carry

Conti nues el sewhere

Conti nues el sewhere

Must follow a test instruction

Page 134

=0 d 82n Clears (MP SR SB XM according to d
Exampl e: 823 Cears SB and XM

| NTOFF 808F

| NTON 8080

LA(1) expr 80820n ** Load A register
LA(2) expr 80821nn ** Load A register
LA(3) expr 80822nnn ** Load A register
LA(4) expr 80823nnnn ** Load A register
LA(5) expr 80824nnnnn ** Load A register
LA(6) expr 80825nnnnnn ** Load A register
LA(7) expr 80826nnnnnnn ** Load A register
LA(8) expr 80827nnnnnnnn ** Load A register
LC(1) expr 30n Load C register
LC(2) expr 31nn Load C register
LC(3) expr 32nnn Load C register
LC(4) expr 33nnnn Load C register
LC(5) expr 34nnnnn Load C register
LC(6) expr 35nnnnnn Load C register
LC(7) expr 36nnnnnnn Load C register
LC(8) expr 37nnnnnnnn Load C register
MP=0 828

NI BASC ASCI| x...X

NIBFS fs f

NI BHEX hhhhhhh hhhhhhh Affects Carry

NOP3 820

NOP4 6300

NOP5 64000

auT=C 801

QuT=CS 800

= d 2n

P=C d 80Dn

P=P+1 0oC Affects Carry

P=P-1 0D Affects Carry

PC=(A) 808C ** Continues el sewhere
PC=(Q) 808E ** Continues el sewhere
PC=A 81B2 ** Continues el sewhere
PC=C 81B3 ** Continues el sewhere
RO=A 100

RO=A.F fs 81Af00 **

R0=C 108

RO=C.F fs 81Af 08 **

R1=A 101

Rl1=A.F fs 81Af01 **

R1=C 109

R1=C.F fs 81Af09 **

R2=A 102

R2=A.F fs 81Af 02 **

R2=C 10A

R2=C.F fs 81Af OA **

R3=A 103

R3=A.F fs 81Af 03 **

R3=C 10B

R3=C.F fs 81Af0OB **

R4=A 104

RA=A.F fs 81Af04 **

R4=C 10C

R4=C.F fs 81Af0C **

REL(1) | abel y

Page 135

REL(2) | abel vy
REL(3) | abel yyy
REL(4) | abel yyyy
REL(5) | abel YYYyy
REL(6) label yyyyyy
REL(7) label yyyyyyy
REL(8) label yyyyyyyy
80A

RESET

RSI 80810 **

RSTK=C 06

RTI OF Conti nues el sewhere

RTN 01 Conti nues el sewhere

RTNC 400 Conti nues el sewhere if Carry set
RTNCC 03 Conti nues el sewhere clearing Carry
RTNNC 500 Conti nues el sewhere if Carry clear
RTNSC 02 Conti nues el sewhere setting Carry
RTNSXM 00 Conti nues el sewhere setting XM bit
RTNYES *x Must follow a test instruction
SB=0 822

SETDEC 05

SETHEX 04

SHUTDN 807

SLINK | abel YYYyyy

SR=0 824

SREQ? 80E

ST=0 d 84n

ST=1 d 85n

ST=C 0A

STRING ASCII x...Xx

UNCNFG 804

XM=0 821

Page 136

10. Error Messages

This is a list of all errors which are generated by the
assenbl er and expl anati ons of what causes that error nessage
to be printed.

Non-fatal error messages are lines of the form

*** ERROR nessage *** which are followed by the source |ine
containing the error. These nessages indicate errors in the
code, but the assenbly continues to subsequent lines. For a
few error nessages, the nessage follows the |line containing
the error. Those error nessages are noted in the |ist.

Fatal error nmessages are lines of the form SASM EXE: mnessage
(details). These nessages indicate errors encountered
during the assenbly process which are not code-rel ated and
which termi nate the assenbly. The list and object files for
the assenbly, if any, may not be conplete.

Command |ine nmessages are nmessages related to options
specified on the conmand |ine. The nessages indicate
problenms with options. |f any command |ine nessages have
been printed when all options have been processed, the
assenbly stops. No files have been altered (except the d
option, which takes effect inmmediately).

Sonme expl anations include suggestions to help track down the
cause of the error.

10.1 Non-Fatal Error Messages

ERROR: ABS/ REL nust be at begi nni ng

The ABS and REL statenents, if present, nust precede al
code-generating statenents.

ERROR: Branch out of range

The distance to the target label is too far for the size of
this field.

ERROR: Can't add two external expressions

Both sides of + are external expressions. At nobst one
external reference is allowed with the + operator

Page 137

ERROR: Can't define a new nmacro within a nacro

Executed a MACRO statenent while expanding a macro. A new
macro cannot be defined whil e expanding a macro.

Suggestion: A missing ENDM at the end of a macro definition
m ght cause this if another nacro follows the one currently
bei ng expanded.

ERROR Can't have external reference on left side of

The left side of is an external reference. An external
reference is allowed only on the right side of the
operator.

ERROR: Can't have external reference on right side of -

The right side of - is an external reference. An external
reference is allowed only on the left side of the -
operator.

ERROR: Can't redefine an existing nmacro

A MACRO statenent was executed to define a macro whi ch has
al ready been defi ned.

ERROR: Can't redefine an existing opcode

A MACRO st atenent was executed to define a nmacro, but the
macro nanme i s the sane as an opcode.

ERROR: Can't use !, & *,/,% or » with external reference

At | east one of the operands is an external expression. An
external reference is not allowed with these operators.

ERROR: Condi tional assenbly stack overfl ow

| F statenents are nested nore than 20 levels. Sinplify the
logic of the IF tests, or use the SETFLAG and CLRFLAG
statenents to indicate conbinations of IF tests.

ERROR: Divide by zero (result set to 0)

The expression on the right side of the / operator is zero.

ERROR: Duplicate ELSE statenent

More than one ELSE statement was executed for a given test.

Page 138

ERROR: Dupl i cate synbol

The synbol being defined on this Iine has al ready been
defined in this file.

Suggestion: Check the cross reference to find the previous
definition; line O nmeans the synbol was defined on the
command line with -D

ERROR: ELSE wi thout matching IF

An ELSE statenent was executed without a corresponding IF
st at enent .

Suggestion: Check for a typing error in the | abel field of
the I F and ELSE statenents.

ERROR: ENDI F wi t hout matching IF

An ENDI F statenment was executed wi thout a corresponding |IF
st at enent .

Suggestion: Check for a typing error in the | abel field of
the I F and ENDI F statenents.

ERROR: ENDM and EXI TM not permtted outside of a macro
Executed an ENDM or EXITM while not in a nacro.

Suggestion: Check for an error in the precedi ng MACRO
statenment, if present.

ERROR: End of file while defining nmacro

The end of a file containing a macro definition was reached
whi | e defining a macro.

Suggestion: Check for an error in an ENDM statenment or a
m ssi ng ENDM st at enent .

ERROR: Error reading CHARMAP file (fil espec)

A file systemerror occurred while reading the CHARVAP file.

Page 139

ERROR: Error reading RDSYMB file (fil espec)

The RDSYMB file is not a Saturn object file, or afile
systemerror occurred while reading the header of the RDSYMB
file.

Three things nmust be true for the file to be considered a
valid Saturn object file:

1. There is a 256-byte header in the file.
2. The first six bytes of the header are "~ Saturn''

3. The offset to the start of the synbol records
indicated in the header is contained in this file.

ERROR: Error reading fromRDSYMB file (fil espec)

The RDSYMB file is not a Saturn object file, or afile
systemerror occurred while reading the RDSYMB file.

ERROR: Expanded macro line too long (truncated)

The Iine resulting frommacro expansion is nore than 255
characters long. Only the first 255 characters are used.

ERROR: Exponent | ess than zero (result set to 0)

The expression on the right side of the ® operator is |ess
t han zero.

ERROR: Expression can not be externa

The expression for the EQU or = statenent contains an
external reference. Only absolute or rel ocatabl e synbols
are allowed for these statenents.

ERROR: Expressi on nust be absol ute

The expression in the ABS, REL, BSS, or LISTALL statenent
contains a relocatable or external reference. Only absolute
synbol s are allowed for these statenents.

ERROR: Expression not allowed as target of branch

The nodifier is not a | abel reference, and the -x option was
not specified on the conmand |i ne.

The | abel is not a valid | abel because it contains a right
parent hesis ')’

Suggestion: If this is a REL(n) statenment, an expression can

be used without specifying the -x option by subtracting (*)
fromthe expression and using a CON(n) statenent.

Page 140

ERROR: Expression not allowed for INC(x), LINK, and SLINK

The nodifier is not a | abel reference. [1NC(n), LINK and
SLINK require a | abel reference.

The | abel is not a valid | abel because it contains a right
parent hesis ')’

ERROR: Expression out of range

A digit expression is |less than zero or greater than 15
after applying the statenment's adjustnment factor (usually O
or -1).

ERROR: Expression stack overfl ow

The expression is too conplicated. There can be no nore
than 20 pending data itens.

Suggestion: Sinplify the expression by splitting it into
several smaller expressions. Assign each of the snaller
expressions to a synbol and conbine themfor the fina
expr essi on.

ERROR: Expression stack underfl ow

An expression was not present when expect ed.

Suggestion: This usually indicates a mssing data item
followi ng an operator. This can be caused by a blank or tab
within the expression, as they indicate the end of the
field.

ERROR: Field too |ong

A field is longer than the maxi mum |l ength allowed. There
shoul d be anot her nessage follow ng this one which gives
nore detailed informati on about the error

ERROR: Fl ag val ue out of range

The flag expression in the IF, CLRFLAG or SETFLAG st at ement
is less than zero or greater than 99.

ERROR: GOYES/ RTNYES wi t hout test instruction

A GOYES or RTNYES st atenent was executed, but the preceding
instruction was not a test instruction

ERROR: | F expression nmust be absol ute
The flag expression in the IF, CLRFLAG or SETFLAG st at enent

contains a relocatable or external reference. Only absolute
synbol s are allowed for these statenents.

Page 141

ERROR: | NCLUDE or MACRO nested too deeply

The nunber of nested | NCLUDE and MACRO expansions is greater
t han 20.

Suggestion: Check for a macro calling itself, or an include
file including itself.

ERROR: Illegal field select

The field select is not a valid field select indicator (P
W, XS, X, S M B, W or A.

ERROR: Il egal mmenonic

The instruction was not found in the opcode table, or a
macro was used before it was defined.

Suggestion: Check that the processor comrand-line option (-

P) is correct, and that the label, if any, starts in either
the first or second col um.

ERROR: Input line too long (extra characters ignored)

An input line is nore than 255 characters long. Only the
first 255 characters are used.

ERROR Instruction not allowed with this CPU

A statement was executed which is not permtted by the
current value of the -P command-line option. This nessage
i ndi cates a probabl e assenbl er defect, and should be
reported as such.

ERROR Invalid ASC const ant

An ASCI| constant in an expression is inproperly fornmed.
The term nating character nmust match the begi nni ng character
(\, ', or ").

Thi s message al so indicates an ASCI| constant contai ning
nore than 40 characters.

ERROR: Invalid ASC constant (too | arge)

More than 8 characters were specified for LAASC or LCASC, or
nmore than 4 characters were specified in an ASCI| constant

i n an expression.

ERROR Invalid HEX constant

A character which is not a hexadecimal digit was specified

for LAHEX, LCHEX, DO=HEX, Dl1=HEX, or NI BHEX, or than 40
hexadeci mal digits were specified for N BHEX

Page 142

ERROR: Invalid HEX constant (not 2, 4, or 5 digits)

The hexadeci mal constant for DO=HEX and D1=HEX nust consi st
of two, four, or five digits.

ERROR: Invalid HEX constant (not HEX digit)

A character which is not a hexadecimal digit follows a # in
an expression.

ERROR: Invalid HEX constant (too |arge)

More than 16 hexadecimal digits were specified for LAHEX or
LCHEX.

ERROR: Invalid HEX constant (too many digits)

More than ei ght hexadecimal digits followa # in an
expr essi on.

ERROR: Invalid expression

The expression is not a valid expression or an expression is
not present. There may be anot her nmessage followi ng this
one which gives nore detailed information about the error

Suggestion: Any field which starts after colum 30 is
consi dered to be a conment unl ess overridden with the -c¢
option.

ERROR: Invalid field select/digit

The nodifier is neither an expression nor a valid field
select indicator (P, W, XS, X, S, M B, W or A.

Suggestion: This nessage occurs whenever the expression is
not valid. There may be another nessage printed which gives
nore detailed informati on about the error

ERROR: Invalid file specifier

The file specifier for RDSYMB, CHARMVAP, or | NCLUDE does not
i nclude a term nator character, or the file specifier is not
present.

Suggestion: Any field which starts after colum 30 is
consi dered to be a conment unl ess overridden with the -c¢
option.

ERROR: Invalid flag expression

The flag expression is not a valid expression or it is not
present. There may be anot her nessage followi ng this one
whi ch gives nore detailed information about the error
Suggestion: Any field which starts after colum 30 is

considered to be a conment unl ess overridden with the -c¢
option.

Page 143

ERROR: Invalid format character

The indirect nacro paraneter reference " "$(...)"'"' contains
an invalid character. The characters within the parentheses
must be a digit, colon, or one of the characters

T HhXxDdGoWu' ' .

ERROR: Invalid paraneter indirection

The indirect nmacro paraneter reference " "$('' was found, but
the closing right parenthesis is m ssing.

ERROR: Invalid synbo
No synbol nane was specified with the = or EQU statenent, or

an equals sign (=) in colums one or two is followed by a
bl ank or tab.

ERROR: Invalid synmbol name
No synbol was specified for | FDEF, |FNDEF, |FOPC, or | FNOPC.

Suggestion: Any field which starts after colum 30 is
consi dered to be a conment unl ess overridden with the -c¢
option.

ERROR: Label not all owed on GOYES/ RTNYES st at enent

A line containing a GOYES or RTNYES statenment has a | abel
This is not all owed because GOYES and RTNYES are the second
part of a test operation.

ERROR List type not CCDE, MACRO, | NCLUDE, PSEUDO, ALL, or
NCLI ST

The nodifier(s) for CLRLIST and SETLI ST nust start with
letters C M I, P, or Afor Code, Macro, Include, Pseudo
or All, respectively.

ERROR: M ssi ng expression

An expression is required, but no expression was found.
Suggestion: Check that the expression starts before the
comrent col umm, which defaults to 30 (use the c option to
change the col um).

ERROR: M ssing separator character

The string separator character for an |IFSTR?? test was not
found.

Suggestion: The first non-blank character after the |IFSTR??
statement is used as the separator character to delineate
the two strings. The character nust appear a total of three
times (start of first string, separator between strings, end
of second string).

Page 144

ERROR: Mbdul o zero (result set to 0)

The expression on the right side of the % operator is equa
to zero.

ERROR: Mdre data than operators in expression

The expression is inconplete. This nessage can occur as the
result of an incorrect operator (another error nmessage
shoul d be printed).

Suggestion: Check for blanks within the expression, or a
synmbol which is not contained within parentheses.

ERROR: Nane on ENDM doesn't match MACRO nane

The | abel on the ENDM statenent is not the sane as the | abe
on the nost recent MACRO st at enent.

Suggestion: A m ssing ENDM st atenment can cause this nmessage
if there is another macro defined after the m ssing ENDM

ERROR: Number of nibbles must be non-negative
The nunber of nibbles expression in BSS is | ess than zero.
ERROR: Number of nibbles too big for file

The nunber of nibbles requested by BSS woul d overfl ow t he
address space of the Saturn CPU

ERROR: Only one TITLE statenent all owed per file

A TITLE statenent was executed, but the title given does not
match the current title.

Suggestion: Check included files for TITLE statenents.
ERROR: (perator left on stack

There is not enough data for the nunber of operators given.
Thi s message indi cates a probabl e assenbl er defect, and
shoul d be reported as such

ERROR: (perator stack overfl ow

The expression is too conplicated. There can be no nore
than 20 pendi ng operators, including right parentheses.

Suggestion: Sinplify the expression by splitting it into
several smaller expressions. Assign each of the snaller
expressions to a synbol and conbine themfor the fina
expr essi on.

ERROR: (Operator stack underfl ow

Thi s message indi cates a probabl e assenbl er defect, and
shoul d be reported as such

Page 145

ERROR: PC changed (use ol d val ue)
The value of the | abel on the ABS or REL statenment changed.

Suggestion: Look in the cross reference for another
reference to the | abel which changes its val ue.

ERROR: PC wr apped around to 00000

The nunber of nibbles in the file exceeds the address space
of the Saturn CPU. The current PCis decrenented by
#100000.

ERROR: Parameter too big (truncated)

The size of an indirect macro paraneter reference field
woul d cause the line resulting frommacro expansion to be
nore than 255 characters long. The reference size is
reduced so it fits.

ERROR Rel ocatabl e offset not allowed here

A digit expression is relocatable. The digit expression
nmust either be absol ute or external

ERROR: Single nibble field not allowed here

A field select which could evaluate to a single-nibble field
(P, XS, S, or WP) was requested for r=r+CON or r=r-CON.

Suggestion: This restriction is due to a limtation in the
1LR2 processor which causes these instructions to fail for
single-nibble fields.

ERROR: Synmbol changed (use ol d val ue)

The current value of a synmbol is different than the value in
pass 2.

Suggestion: Check for conditional assenbly which uses the

| FPASS1 or | FPASS2 statenments incorrectly. This can also be
caused by an error in code generated before this |line.

ERROR: Synmbol was not defined in pass 1

A synbol which is defined in pass 2 was not defined in pass
1

Suggestion: Check for conditional assenbly which uses the
| FPASS1 or | FPASS2 statenents incorrectly.

ERROR: Test instruction w thout GOYES/ RTNYES

The previous line was a test instruction, but this line is
nei t her GOYES or RTNYES.

Page 146

ERROR: Too many rel ocat abl e/ external references

More than one external or relocatable reference is present.
At nost one external or net relocatable reference is

al | oned.

ERROR: Unable to open CHARMAP file (fil espec)

An error occurred opening the file indicated by the file
speci fier provided.

Suggestion: Check that the file specifier is correct and the
file is readable. Al so check the value of the SASM CHARVAP
envi ronnent vari abl e.

ERROR: Unable to open INCLUDE file (fil espec)

An error occurred opening the file indicated by the file
specifier provided. This nmessage follows the line
contai ning the error.

Suggestion: Check that the file specifier is correct and the
file is readable. Al so check the value of the SASM | NCLUDE
envi ronnent vari abl e.

ERROR: Unable to open RDSYMB file (fil espec)

An error occurred opening the file indicated by the file
speci fier provided.

Suggestion: Check that the file specifier is correct and the
file is readable. Al so check the value of the SASM RDSYMB
envi ronnent vari abl e.

ERROR: Undefi ned synbo

The synbol used is not defined within this file and the
synbol is not an external synbol reference.

ERROR Unknown PSEUDO- OP

The internal code for this instruction is not a code which
is known to the assenbl er.

Suggestion: If the opcode file (sasmopc) has been nodified
nore recently than the assenbler, it may contain new codes
whi ch are not recognized in the ol der assenbler.

ERROR: Unl abel ed MACRO st at enent (* MACRO used)

The MACRO statenment does not have a |abel. The default nane
*MACRO is used to avoid attenpting to assenble the macro
instructions w thout macro expansi on

ERROR: Unmatched ' (' in expression

More right parentheses (() than left parentheses ())
occurred in an expression

Page 147

ERROR: Unmatched ')' in expression

More | eft parentheses ()) than right parentheses (()
occurred in an expression

ERROR: Unr ecogni zed oper at or

A character which is not a valid operator character was
found when an operator character was expected.

Suggestion: This error nmessage may be caused by other errors
in the expression. The character is ignored as if it wasn't
there, which may cause other error nessages.

ERROR: Val ue too big

The value of the expression for ABS or REL is |larger than

t he maxi num address for the Saturn CPU

10.2 Fatal Error Messages

The nane preceding the colon in these nmessages is the
current assenbl er nane.

SASM EXE: filenane is not an opcode table file

The specified fil ename does not have the correct format for
an opcode table file.

SASM EXE: can't back up objfile

The assenbler attenpted to wite a nibble at a location in
the file which has already been used. This nmessage

i ndi cates a probabl e assenbl er defect, and should be
reported as such.

SASM EXE: corrupt opcode table entry (mmenonic not in table)
The opcode table file contains an indirect reference to
menoni ¢, but menonic is not in the opcode table. This
message indicates a defect in the opcode table.

Suggestion: If menonic is not a level O instruction, the
menoni ¢ whi ch nakes the indirect reference should have the
sanme | evel as mmenonic.

SASM EXE: error creating a tenporary file

Creation of a tenporary file failed. Tenporary files are
used for input fromstandard input and for macros.

Page 148

SASM EXE: error creating file description for witing
Creation of the specified file fail ed.

Suggestion: Verify that the directory for the file is
witable, and if the file already exists, check that it is
writable.

SASM EXE: error getting nmenory for reason

A request for menory was rejected by the operating system
Suggestion: Renove RAMresident utilities to free up nenory.
SASM EXE: error opening fil enane for access

The specified filename could not be opened for access.

Suggestion: For witing, if the file already exists, check
that it is witable.

SASM EXE: error reading fromfile description

Aread fromthe file failed. The file may be corrupt, or a
system error may have occurred.

SASM EXE: error reading location frommacro file

An attenpt to read the current location failed. The file
may be corrupt, or a systemerror may have occurred.

SASM EXE: error setting location in file description

An attenpt to set the current location failed. The file may
be corrupt, or a systemerror may have occurred.

SASM EXE: error witing to file description
An attenpt to wite to the specified file failed.

Suggestion: Check for a full disc, a wite-protected file,
or other operating systemlinitations.

SASM EXE: macro macro_nanme was not defined in pass 1

A macro definition was encountered in pass 2 which was not
found in pass 1.

Suggestion: Check for incorrect usage of the |IFPASSl1 or
| FPASS2 st at enent s.

SASM EXE: object file cannot be [stdout]

The object file nane is ~"-'', but neither the h nor the H
option was specified on the conmand |i ne.

Page 149

SASM EXE: operand type (value) is not valid

An invalid operand type was encountered.

Suggestion: Check that the opcode table file is not
corrupted, and that the version of the assenbl er matches
that of the opcode table file.

SASM EXE: too many nibbles in output file fil enane

The output file already contai ned 1048576 ni bbl es when an
attenpt was nade to add anot her ni bbl e.

Suggestion: Check for erroneous BSS statenents.
SASM EXE: unable to read current tine
A request to the operating systemfor the current tine
failed.
10.3 Command Li ne Messages
Code field width nust be greater than O (nn invalid)
The n option has a width | ess than or equal to zero.
Code field width nust be |l ess than nn (nn invalid)
The n option has a width greater than the maxi mum
al l owed. The exact val ue of the nmaxi mum depends on the
line width field, which defaults to four, and is set to
five with the s option.
Comment col umm nust be non-negative (nn)
The ¢ option has a negative value. The value nmust be
greater than or equal to zero. A value of zero neans
there is no conment col um.

Fl ag nunber out of range (nn)

The f option argunment contains a flag nunber which is
not between zero and 99, inclusive.

Invalid code generation |evel (string)

The P option argunent is not between zero and three,
i ncl usi ve.

Invalid flag digit (char)

The f option argunent contains a character which is
neither a digit nor a separator character. Valid

separator characters are ',", (blank), (;), and

(:).

Page 150

Li st

Non-

Non-

Non-

Non-

Non-

pt i

Page

Page

and code files both [stdout] (list disabled)

The A option is specified with the o - option. The A
option is ignored (with the sane results as specifying
the N option).

nuneric code field width (string)

The n option argunment is not a valid integer

nuneric conment col um (string)

The c¢ option argunment is not a valid integer

nuneric expression for -D (string)

For the D option, the expression follow ng the equals
sign (=) is not a valid integer

Suggestion: If the synbol to be defined contains an
equal s sign and the default value is to be used, append
anot her equals sign to the synbol. This forces the
default value to be used.
nuneric page length (string)

The p option argunment is not a valid integer

nuneric page width (string)

The w option argunment is not a valid integer
ons -A, -a, and -o not allowed with nultiple files
Multiple file names are specified in conjunction wth
the A, a, or o options. Miltiple file names are

all owed only when the default |ist and object file
nanes are used

Suggestion: This error can also be caused by trying to
specify options after a file name. Al options nust
precede the first file nanme on the command |ine.

| ength nust be at |east 4 (n)

The p option length is less than four. At |east four
lines nmust be printed per page (three for the header
one for program data).

wi dt h must be at |east 44 (nn)

The w option width is less than 44. The m ni num w dth

is big enough to allow a synbol reference and one |line
nunber to fit on the |ine.

Page 151

11. Saturn Object File Format

A Saturn object file consists of the follow ng three
conponent s:

+ A 256- byt e header

+ Zero or nore 256-byte bl ocks containing code

+ Zero or nore 256-byte bl ocks containing synbols.
Al two-byte and four-byte quantities in the header and
synmbol records are stored with the nost significant byte of
the quantity in the first byte of the field and the |east

significant byte of the quantity in the |last byte of the
field.

11.1 Saturn Object Header Record

hj ect Si ze

Nane Byt es Descri ption [Contents]
ID 6 File identifier [Saturn'']
Fil esi ze 2 Nunber of 256-byte blocks in this file

[16-bit unsigned val ue]

Codesi ze 4 Nurber of ni bbl es of code

Synbol s 2 Nunber of synbols [16-bit unsigned val ue]

Ref s 2 Nunber of synbol references [16-bit unsigned val ue]
Start 4 Code start address

Absol ut e 1 Absol ut e/ Rel ocatable [1 neans ABS, 0 neans REL]
Reser ved 1 Reserved byte [fill to 16-bit boundary]

Dat e 26 Date of creation [Day Mon DD HH MM SS YYYY '']
Title 40 Title, if any; default = blanks

Reserved 20 Reserved bytes [Softkeys]

Ver si on 26 Version of programcreating file
Reser ved 4 Reserved bytes [ROM I D]

Reserved 118 Reserved bytes [00]

11.2 Saturn Object Code Record

The code ni bbles are stored two per byte in the code record.
The first nibble of code is in the nobst significant nibble
of the first code record byte, and the second nibble is in
the | east significant nibble of that byte.

11.3 Saturn Object Synmbol Bl ock

Synbol s are stored in al phabetical order. The nost
significant bit of the Syminfo field is the RESOLVED bit.

If the RESOLVED bit is set, the synbol is resolved, and has
value Value. |If the RESOLVED bit is not set, this is an
ext ernal synmbol whose val ue i s unknown.

Page 152

The second nost significant bit of the Syminfo field is the
RELOCATABLE bit. |If the RELOCATABLE bit is set, this synbol
shoul d be adjusted (relocated) if the starting address of
the nmodule is changed. |If the RELOCATABLE bit is not set,
this is an absol ute synbol which should not be rel ocated.

The remaining 14 bits of the Syminfo field indicate the
nunber of external references to the synbol. Reference
records for the synbol follow the synbol record

hj ect Si ze
Nane Byt es Descri ption [Contents]

Synbl D 4 Synbol record identifier [Synmb'']
Record 18 Synbol record or reference record
(14 records per bl ock)

Synbol Record

Nane 12 Synbol nane [Dbl ank-fill ed]
Sym nf o 2 Synbol information and reference count
Val ue 4 Synbol val ue
Ref erence Record
d ass 1 Fill reference cl ass
Subcl ass 1 Fill reference subcl ass
Addr ess 4 Fill address
Adj ust 4 Adjustnent to fill value
[32-bit signed val ue]
Fillsize 2 Size of fill reference in nibbles

[16-bit unsigned val ue]
Reser ved 6 Reserved bytes [pad to 18 bytes]

Page 153

11.4 Fill Reference Types

G ass Subcl ass Descri ption

0 Direct reference
0 1 Direct reference **
0

1 Ref erence relative to start of
reference * **

1 1 Ref erence rel ative to nibble past
end of reference * **

1 2 Ref erence relative to start of

reference [REL(n)] *
2 0 SLINK reference
2 1 LI NK ref erence
3 0 I NC(n) reference

* Loader checks that this reference is within range

** Loader may report shortenable references for this
ref erence

Page 154

CONTENTS

Getting Started.
Saturn CPU OVerVi BW.ot e
2.1 Regi sters.
2.2 Working and Scratch Registers...............
2.3 Field Selection...........
2.4 Pointer Registers..........
2.5 I nput, CQutput, and Program Counter
Regi sters.
2.6 Carry, Program Status, and Hardware Status
BitS. .
2.7 Arithnetic Mode.
2.8 Loading Data from Menory....................
2.9 Storing Data in Memory.
2.10 Interrupt System............
Conditional Assenbly.........
USinNg MACIOS. ..o e
4.1 Defining a Macro..........
4.2 Calling a Macro. ...,
4.3 Par ameter Assignment Rules..................
4.4 Macro Exanple......
File Access Statements...............
5.1 RDSYMB Statenment...............
5.2 INCLUDE Statement..............
5.3 CHARVAP Statenment...........................
5.3.1 Charmap File Format................
Saturn Assenbl er Format and Mienonics.............
6.1 Instruction Syntax.............
6.1.1 Comments...........,
6.1.2 Synbol s and Labels.................
6.1.3 Expressions...........
6.2 Expl anation of Symbols......................
6.3 Field Select Table..........................
6.4 Instruction Set Overview.
6.5 Junmp Instructions..........
6.6 Subroutine Call Instructions................
6.7 Subroutine Return Instructions..............
6.8 Test Instructions...........
6.8.1 Register Tests.....................
6.8.2 Pointer Tests......................
6.8.3 Program Status Bit Tests...........
6.8.4 Hardware Status Bit Tests..........
6.8.5 Register Bit Tests.................
6.9 Pointer Instructions........................
6.10 Bit Manipulation Instructions...............
6.11 Status Instructions.........................
6.11.1 Program Status.....................
6.11.2 Hardware Status....................
6.11.3 System State Instructions..........

)] bbb =

0O ~NNO

10.

6.11.4 Keyscan Instructions............... 25
6.11.5 Scratch Register Instructions...... 25
6.11.6 Data Pointer Instructions.......... 25
6.11.7 Data Transfer Instructions......... 25
6.11.8 Load Constant Instructions......... 26
6.11.9 Shift Instructions................. 26
6.11.10 Arithnetic Instructions............ 27
6.11.11 Logical Operation
Instructions. 27
6.11.12 No-Operation Instructions.......... 27
6.12 Pseudo-Op Instructions...................... 27
6.12.1 Data Storage Allocation............ 28
6.13 Conditional Assenbly........................ 29
6.14 Listing Control........ 30
6.15 Synbol Definition........... 30
6.16 Macro Definition.......... 31
6.17 Assenbly Mode........ 31
6.18 File ACCeSS. 31
6.19 Assenbly Flag Modification.................. 31
6.20 Carry State Moddification.................... 32
6.21 Mscellaneous........... 32
Saturn Assenmbly TipS...... .., 33
7.1 Three VWArnings. 33
7.1.1 Return Levels...................... 33
7.1.2 Mode. 33
7.1.3 Remenber P=0!...................... 33
7.2 Code Packing TipsS....... ..., 34
7.2.1 A-Field Operations................. 34
7.2.2 Loading Constants.................. 34
7.2.3 The 3-Branches..................... 34
7.2.4 GOSUB/RTN. 35
7.2.5 Use Expressions.................... 35
7.2.6 Count Up.......... 35
7.2.7 Before you leap.................... 36
7.3 Some Conmon Operations...................... 37
7.3.1 A nibble fromhere to there........ 37
7.3.2 Testing a Bit...................... 37
7.3.3 Saving/ Testing a State............. 39
7.3.4 Memory ACCEeSS., 39
7.4 Some O her TipS. 40
7.4.1 Labels....... 40
7.4.2 Status Bits..........., 40
7.4.3 Entry Points....................... 40
7.4.4 EXits. ... 41
7.5 Docunmentation................ ... 41
7.5.1 Comments on Comments............... 41
7.5.2 A Standard Assenbly Language
Header......... 43
7.5.3 Some Header Examples............... 45
Miemonic Dictionary. 48
Al phabetic Mienmonic List.......... 126
Error MeSsages. 137
10.1 Non-Fatal Error Messages.................... 137
10.2 Fatal Error MessagesS.............couuiinaun.. 148

10.3 Command Line Messages. 150

Saturn Object File Format......................... 152
11.1 Saturn Object Header Record................. 152
11.2 Saturn Object Code Record................... 152
11.3 Saturn Object Synbol Block.................. 152
11.4 Fill Reference Types.......... 154

	CONTENTS
	Getting Started
	Saturn CPU Overview
	Registers
	Working and Scratch Registers
	Field Selection
	Pointer Registers
	Input, Output, and Program Counter Registers
	Carry, Program Status, and Hardware Status Bits
	Arithmetic Mode
	Loading Data from Memory
	Storing Data in Memory
	Interrupt System

	Conditional Assembly
	Using Macros
	Defining a Macro
	Calling a Macro
	Parameter Assignment Rules
	Macro Example

	File Access Statements
	RDSYMB Statement
	INCLUDE Statement
	CHARMAP Statement
	Charmap_File_Format

	Saturn Assembler Format and Mnemonics
	Instruction Syntax
	Comments
	Symbols_and_Labels
	Expressions

	Explanation of Symbols
	Field Select Table
	Instruction Set Overview
	Jump Instructions
	Subroutine Call Instructions
	Subroutine Return Instructions
	Test Instructions
	Register_Tests
	Pointer_Tests
	Program_Status_Bit_Tests
	Hardware_Status_Bit_Tests
	Register_Bit_Tests

	Pointer Instructions
	Bit Manipulation Instructions
	Status Instructions
	Program_Status
	Hardware_Status
	System_State_Instructions
	Keyscan_Instructions
	Scratch_Register_Instructions
	Data_Pointer_Instructions
	Data_Transfer_Instructions
	Load_Constant_Instructions
	Shift_Instructions
	Arithmetic_Instructions
	Logical_Operation_Instructions
	No-Operation_Instructions

	Pseudo-Op Instructions
	Data_Storage_Allocation

	Conditional Assembly
	Listing Control
	Symbol Definition
	Macro Definition
	Assembly Mode
	File Access
	Assembly Flag Modification
	Carry State Modification
	Miscellaneous

	Saturn Assembly Tips
	Three Warnings
	Return_Levels
	Mode
	Remember_P=0!

	Code Packing Tips
	A-Field_Operations
	Loading_Constants
	The_3-Branches
	GOSUB/RTN
	Use_Expressions
	Count_Up
	Before_you_leap

	Some Common Operations
	A_nibble_from_here_to_there
	Testing_a_Bit
	Saving/Testing_a_State
	Memory_Access

	Some Other Tips
	Labels
	Status_Bits
	Entry_Points
	Exits

	Documentation
	Comments_on_Comments
	A_Standard_Assembly_Language_Header
	Some_Header_Examples

	Mnemonic Dictionary
	Alphabetic Mnemonic List
	Error Messages
	Non-Fatal Error Messages
	Fatal Error Messages
	Command Line Messages

	Saturn Object File Format
	Saturn Object Header Record
	Saturn Object Code Record
	Saturn Object Symbol Block
	Fill Reference Types

