
 1. Getting Started

 SASM.EXE is an assembler for the Saturn processor family.
 As a historical note, the Saturn processor first appeared in
 the HP 71B, and has since been used in various fashions for
 other HP calculator models, including the HP 28 and the
 HP 48.

 The file SASM.EXE should be installed in a directory such as
 BIN, with the PATH variable set to include that directory.
 An environment variable SASM_LIB should be set to point to
 the file SASM.OPC. For instance, if the opcode file is in
 \LIB, the command "SET SASM_LIB=C:\LIB" should be added to
 the autoexec.bat file.

 A file naming convention extends throughout the Saturn
 development environment. Sasm accepts input from files with
 a ".a" extension, and produces listing files with a ".l"
 extension and code files with a ".o" extension.

 Several options are available:

 Option Description
 --------- --
 A Write listing to stdout
 a lstfile Write listing to "lstfile"
 c column Fields starting after "column" are considered comments
 D sym=val Defines symbol "sym" to have value "val" (default=1)
 d dbgfile Write debug information to "dbgfile"
 E Write C-like error messages to stderr
 e Write error messages to stderr
 f flglist Sets the flags indicated by "flglist" (comma separated)
 H Write object file as raw code (no object header or symbols)
 h Write object file as hexadecimal characters (no object
 header or symbols)
 N Suppress listing entirely
 o objfile Write object file to "objfile"
 P plevel Sets the processor level to "plevel" (0, 1, 2, or 3)
 p patelen Do a page break each "pagelen" lines
 t opcfile Read opcodes from file "opcfile"
 w width Set output page width to "width" columns (default 80)

 Page 1

 Here is an example to illustrate Saturn coding and show what
 a typical Saturn source file looks like. The name of the
 source file is "example.a". The Saturn instructions are
 explained later in this manual.

 TITLE Example Saturn Assembly file
 *
 * External entry point: =ENTRY1
 *
 * This routine shifts the C register right 6 digits
 * without altering the sticky bit value
 *
 =ENTRY1 P= 5
 C=0 WP
 ENTRY2 CSR W
 P=P-1
 GONC ENTRY2
 P= 0
 RTNCC
 END

 Assembling this file with the command "sasm example.a"
 generates a Saturn object file (example.o), and a list file
 (example.l) which is shown on the next page.

 Page 2

 Saturn Assembler Example Saturn Assembly file Tue Jul 21 16:35:38 1987
 Ver. 1.40, 7/21/87 example.a Page 1

 1 TITLE Example Saturn Assembly file
 2 *
 3 * External entry point: =ENTRY1
 4 *
 5 * This routine shifts the C register right 6 digits
 6 * without altering the sticky bit value
 7 *
 8 00000 25 =ENTRY1 P= 5
 9 00002 A92 C=0 WP
 10 00005 BF6 ENTRY2 CSR W
 11 00008 0D P=P-1
 12 0000A 5AF GONC ENTRY2
 13 0000D 20 P= 0
 14 0000F 03 RTNCC
 15 00011 END

 [page break]

 Saturn Assembler Example Saturn Assembly file Tue Jul 21 16:35:38 1987
 Ver. 1.40, 7/21/87 Symbol Table example.a Page 2

 =ENTRY1 Rel 0 #00000000 - 8
 ENTRY2 Rel 5 #00000005 - 10 12

 [page break]

 Saturn Assembler Example Saturn Assembly file Tue Jul 21 16:35:38 1987
 Ver. 1.40, 7/21/87 Statistics example.a Page 3

 Input Parameters

 Source file name is example.a

 Listing file name is example.l

 Object file name is example.o

 Flags set on command line
 None

 Errors

 None

 Page 3

 2. Saturn CPU Overview

 The Saturn CPU is a proprietary CPU optimized for high-
 accuracy BCD math and low power consumption. The data path
 is 4 bits wide. Memory is accessed in 4-bit quantities
 called ``nibbles'' or ``nibs''. Addresses are 20 bits,
 yielding a physical address space of 512K bytes.

 2.1 Registers

 There are four working 64-bit registers, five scratch 64-bit
 registers, two 20-bit data pointer registers, one 4-bit
 pointer register, a 20-bit program counter, a 16-bit input
 register, and a 12-bit output register. Return addresses
 are stored on an eight-level hardware return stack that
 accepts 20-bit addresses. In addition, there are 4 Hardware
 Status bits, a Carry bit, and 16 Program Status bits. The
 lower 12 Program Status bits can be manipulated as a 12-bit
 register.

 2.2 Working and Scratch Registers

 The working registers A, B, C, and D are used for data
 manipulation. Working registers A and C are also used for
 memory access. The scratch registers R0, R1, R2, R3, and R4
 are used to temporarily hold the contents of working
 registers.

 Page 4

 2.3 Field Selection

 Subfields of the working registers A, B, C, and D may be
 accessed by the use of field selection. The possible field
 selections range from the entire register to any single
 nibble of the register. Certain subfields are designed for
 use in BCD calculations. Others are used for data access or
 general data manipulation.

 Field Selection Description

 P Nibble indicated by P register
 WP Nibbles from nibble P through nibble 0, inclusive
 XS Nibble 2;- Exponent sign
 X Nibbles 2-0;- Exponent including exponent sign
 S Nibble 15;- Mantissa sign
 M Nibbles 14-3;- Mantissa
 B Nibbles 1-0;- Byte field
 A Nibbles 4-0;- Address field (20 bits)
 W Nibbles 15-0;- Word (entire 64-bit register)

 Register Nibbles
 +---+
 |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
 +---+
 | S| |XS| B |
 | <- M -> | <-X-> |
 | <- A -> |
 | <- W -> |

 2.4 Pointer Registers

 The 20 bit Data Pointer registers D0 and D1 are used to
 contain addresses during memory access, and are used in
 conjunction with the working registers.

 The 4 bit Pointer register P is used in Field Selection
 operations with the working registers.

 2.5 Input, Output, and Program Counter Registers

 The input/output registers are used to communicate with the
 system bus. The program counter points to the next
 instruction to be executed by the CPU. The input register
 IN is 16 bits, the output register OUT is 12 bits, and the
 PC register is 20 bits.

 Page 5

 2.6 Carry, Program Status, and Hardware Status Bits

 The Carry bit is adjusted when a calculation or logical test
 is performed. During a calculation, such as incrementing or
 decrementing a register, it is set if the calculation
 overflows or borrows; otherwise it is cleared. During a
 logical test, such as comparing two registers for equality,
 it is set if the test is true; otherwise it is cleared.

 The upper 4 Program Status bits are typically used to
 indicate the state of the operating system. The remaining
 12 Program Status bits are generally available to
 applications software, and may be manipulated collectively
 as the ST register.

 The four Hardware Status bits are set (but not cleared) by
 hardware-related events, and must therefore be cleared
 beforehand in order to detect a particular occurrence. They
 are individually accessible by name. The Module Pulled bit
 (MP) is set whenever the *NINTX CPU input is pulled low
 (regardless of whether an interrupt is actually executed).
 The Sticky Bit (SB) is set when a non-zero bit shifts off
 the right end of a working register as the result of a shift
 instruction. The Service Request (SR) bit is set as a
 result of the SREQ? instruction if any hardware service
 request is pending. The external Module Missing bit is set
 by execution of a ``00'' opcode (RTNSXM instruction).

 Hardware Status: 4 bits

 Bit Symbol Name
 --- ------ ------------------------------------
 3 MP Module Pulled (*NINTX pulled low)
 2 SR Service Request
 1 SB Sticky Bit
 0 XM External Module Missing

 Page 6

 2.7 Arithmetic Mode

 The arithmetic mode is set by the SETHEX and SETDEC
 instructions. When SETHEX is executed, the arithmetic mode
 is set so that all register arithmetic is performed in
 hexadecimal mode. When SETDEC is executed, the arithmetic
 mode is set so that most register arithmetic is performed in
 decimal mode. The following instructions are *always*
 performed in hexadecimal mode, regardless of the arithmetic
 mode setting:

 P=P+1
 P=P-1
 C+P+1
 D0=D0+ n D0=D0- n
 D1=D1+ n D1=D1- n
 A=A+CON fs,n A=A-CON fs,n
 B=B+CON fs,n B=B-CON fs,n
 C=C+CON fs,n C=C-CON fs,n
 D=D+CON fs,n D=D-CON fs,n

 The arithmetic mode is not ``readable'', but can be inferred
 by doing an appropriate operation, followed by a test. For
 example:

 LCHEX 9
 C=C+1 P

 sets the carry if, and only if, the arithmetic mode is
 decimal.

 2.8 Loading Data from Memory

 When data is read from memory into a register, the CPU
 places the lowest addressed nibble in the least significant
 nibble of the register.

 For example, if the data shown below in memory is read into
 the C register using the C=DAT1 4 instruction, the data in
 the register will be arranged as shown.

 Memory
 Location Value C Register
 -------- ----- +------------------------+
 1000 6 | | ... | 9 | 8 | 7 | 6 |
 1001 7 +------------------------+
 1002 8 15 ... 3 2 1 0
 1003 9

 This principle applies also to loading constants into a CPU
 register such as C, D0, or D1, since the CPU must read the
 constant from the instruction opcode in memory. For
 example, the instruction LCHEX 9876 produces the opcode

 Page 7

 336789 and the C register is loaded as shown above (assuming
 P= 0).

 2.9 Storing Data in Memory

 When data is written from a register to memory, the CPU
 places the least significant nibble of the register in the
 lowest nibble of the addressed memory location. For
 example, if the data shown above in the C register is
 written to memory using the DAT1=C 4 instruction, the data
 will be written to memory as shown.

 2.10 Interrupt System

 All Saturn CPU interrupts cause a subroutine jump to address
 #0000F. Determining the cause of the interrupt is up to the
 interrupt service routine at that address.

 Page 8

 3. Conditional Assembly

 The assembler supports conditional assembly tests to allow
 different code to be generated based on various conditions.
 Conditions which can be tested include assembly flags set on
 the command line or modified with the SETFLAG or CLRFLAG
 instructions, the value of an assemble-time expression
 compared to zero, the presence or absence of a symbol
 definition, the (guaranteed) carry state (for example, after
 GOYES the carry is clear), the current assembler pass
 (useful for messages), and the presence of an opcode or
 macro definition.

 The structure of a conditional assembly block is:

 label IF
 <<code if condition is true>>
 label ELSE
 <<code if condition is false>>
 label ENDIF

 The label and ELSE sections are optional.

 Conditional assembly blocks can be nested up to a maximum of
 20 levels if a unique label is present for each nesting. If
 the label is omitted or not unique, the code assembled may
 not nest as expected for the false block. For example:

 1 IF 0
 2 IF 1
 3 * Flags 0 and 1 are set
 4 ELSE
 5 * Flag 0 is set, flag 1 is clear
 6 ENDIF
 7 ELSE
 8 IF 1
 9 * Flag 0 is clear, flag 1 is set
 10 ELSE
 11 * Flags 0 and 1 are clear
 12 ENDIF
 13 ENDIF

 If flag 0 is clear, the ELSE on line 4 is found as the ELSE
 matching the IF 0. The ELSE on line 7 and the ENDIF on
 line 13 are flagged as errors (ELSE without matching IF,
 ENDIF without matching IF). Lines 5 and 11 are both
 assembled. If the nested IF statements had unique labels,
 they would work as expected.

 For a list of the conditional assembly opcodes, see
 ``Conditional Assembly'' in the ``Pseudo-Op Instructions''
 section of the ``Saturn Assembler Mnemonics" appendix.

 Page 9

 4. Using Macros

 This chapter explains how to create and use macros in your
 source files. The macro directives are MACRO, EXITM, and
 ENDM.

 A macro is a named block of source statements. When a macro
 name is used as a statement, it is automatically replaced by
 the block of source statements it represents.

 Macro definitions cannot be nested; the MACRO statement is
 illegal within a macro call.

 Macro lines are not listed by default; to enable listing of
 the macro expansion, use either the LISTM or SETLIST MACRO
 statement.

 4.1 Defining a Macro

 A macro definition consists of a MACRO statement, followed
 by the source statements to make up the macro, followed by
 an ENDM statement. The label on the ENDM statement, if any,
 must match the name of the macro (the label on the MACRO
 statement). Text which follows the MACRO statement on the
 same line is ignored (comment only). It is suggested that
 the comments indicate the parameters which are expected when
 the macro is called. Up to nine parameters can be passed to
 a macro when it is called. The statements between the MACRO
 statement and the ENDM statement are not assembled until the
 macro is called. Any assembler pseudo-ops within a macro
 definition are executed when the macro is called, not when
 it is defined. An exclamation mark (!) in the first column
 is removed from the line when the macro is called. The rest
 of the line is included in the expansion.

 Blank lines and comment lines are not normally included in
 the macro expansion. To include a blank line or a comment
 line in a macro expansion, add an exclamation mark in the
 first column.

 The dollar sign ($) is used in macros as a text substitution
 character. The character which follows the dollar sign
 indicates the replacement:

 Sequence Replacement Text
 -------- --
 $$ $ (one dollar sign)
 $0 Line number on which the macro was called
 $< Current source file name
 $n Parameter reference (1_n_9)
 $(n) Indirect parameter reference (1_n_9)
 $(nf) Formatted indirect parameter reference (1_n_9)

 Parameter references are replaced by the corresponding
 parameter text.

 Page 10

 Indirect parameter references are replaced by the value of
 the corresponding parameter when interpreted as an
 expression. Formatted indirect parameter references include
 a format string f which follows the parameter number. The
 format string has the form [:] [length] [format char].
 Length indicates the minimum number of characters to use.
 The value is zero-filled if it requires fewer than length
 digits. The default length is one. Format char controls
 the radix and case of the value. The table shows valid
 format char values:

 Character Description Digit Characters
 --------- ---------------- ---------------------
 H,X Hexadecimal 0123456789ABCDEF
 h,x Hexadecimal 0123456789abcdef
 D,d Signed decimal 0123456789 (default)
 U,u Unsigned decimal 0123456789
 O,o Octal 01234567

 The maximum combined nesting depth for macros and include
 files is 20 levels.

 4.2 Calling a Macro

 To call a macro, specify the name of the macro as an
 instruction. The macro body will be included at this point
 in the source file. Parameters to be passed to the macro
 follow the macro name on the line. Up to nine parameters
 may be passed to a macro.

 Page 11

 4.3 Parameter Assignment Rules

 The parameter text on the macro call line is assigned to
 parameters in the following way:

 1. Skip all leading blanks and tabs and set the current
 parameter number to one.

 2. If the first character is a <, all text up to a > is
 assigned to the current parameter number. If the
 first character is not a < and there is a comma (,) in
 the remaining text, all text up to the comma is
 assigned to the current parameter number.

 If the first character is a <, but there is not a > in
 the remaining text, the < is considered to be a normal
 text character.

 3. If the first character is not a < and there is no
 comma in the remaining text, all text up to the first
 blank or tab is assigned to the current parameter
 number.

 4. Increment the parameter number. If the parameter
 number is less than nine, go back to step 2.

 NOTE: The comment column value is ignored for macro call
 lines; only characters which follow the first blank or tab
 following the last parameter are ignored.

 4.4 Macro Example

 The (simple) example below is a macro that increments the A
 register by the amount passed as a parameter.

 ADDTOA MACRO
 LC(5) $1
 A=A+C A
 ADDTOA ENDM

 ...
 DAT0=A M
 ADDTOA 312
 D0=D0+ 12

 Page 12

 5. File Access Statements

 There are three statements which access data in other files.
 RDSYMB reads the symbols from a Saturn object file, INCLUDE
 reads Saturn source statements from a file, and CHARMAP
 simplifies the problem of working with a non-ASCII character
 set often found in calculators.

 The file name for each of the statements can be specified
 several ways. The name can be specified by itself or
 surrounded by quotes ("filename"), apostrophes ('filename'),
 or brackets (<filename>). If the file name contains blanks
 or tabs, it must be quoted by one of these methods.

 Each statement uses an environment variable to determine
 where to search for the file (the default is the current
 directory and a system directory). See the "Environment
 Variables" appendix for more information about environment
 variable names and defaults.

 5.1 RDSYMB Statement

 The RDSYMB statement reads the symbol table from a Saturn
 object file. All external symbols which are defined in the
 object file and are not relocatable are available for use in
 the file being assembled. Symbols defined by a RDSYMB
 statement are not included in the symbol table listing
 unless they are actually used in the assembly.

 5.2 INCLUDE Statement

 The INCLUDE statement tells the assembler to read source
 statements from the specified file. The assembler reads
 from the file until an END statement is processed or the end
 of the file is reached.

 The lines read from include files are not normally listed.
 Only pseudo-op statements and lines containing errors are
 listed by default. To enable full include file listing, use
 either the SETLIST INCLUDE statement or the LISTM statement.
 Included lines have a - after the line number in the
 listing. The line number shown in the listing is the line
 within the include file.

 5.3 CHARMAP Statement

 The LAASC, LCASC, and NIBASC statements are of limited
 usefulness when the character set used in a product is not
 ASCII. The CHARMAP statement allows the ASCII characters
 specified in those statements to be automatically converted

 Page 13

 to a different character set. For example, if a particular
 product is only capable of displaying letters and digits,
 the character set mapping might be A ... Z = #00 ... #19,
 a ... z = #1A ... #35, and 0 ... 9 = #36 ... #40. Using
 CHARMAP with a file which contains all these pairings allows
 the assembler to automatically convert all references to
 ASCII characters to the corresponding character set
 character. This permits source files to be independent of
 the actual character mapping by including a CHARMAP
 statement at the start of the file.

 The mapping becomes effective when the CHARMAP statement is
 executed; it does not affect ASCII characters preceding the
 CHARMAP statement. The effect of multiple CHARMAP
 statements is cumulative.

 5.3.1 Charmap_File_Format The file indicated by the
 CHARMAP statement contains a list of pairings, one pair per
 line. The first character position is the ASCII character
 which is used in the source file, and the second character
 position is the value which is used for the generated code.
 Each character position can be either an ASCII character or
 an escape sequence similar to those found in the C language.
 The following table summarizes the escape sequences
 recognized in a CHARMAP file:

 Sequence ASCII code Description
 ---------- ---------- ------------------------------------
 ASCII char Same The specified ASCII character
 \a 7 BEL (alert character)
 \b 8 BS (backspace)
 \t 9 HT (tab)
 \n 10 LF (linefeed)
 \v 11 VT (vertical tab)
 \f 12 FF (formfeed)
 \r 13 CR (carriage return)
 \\ 92 Backslash
 \xhh Hex hh Character with hex value hh
 (\xh ok if not ambiguous)
 \ddd Octal ddd Character with oct value ddd
 (\dd or \d ok if not ambiguous)

 Page 14

 6. Saturn Assembler Format and Mnemonics

 This chapter describes the Saturn assembler instruction set.
 The Saturn CPU has three variations used in several
 products. The 1LF2 was used in the first versions of the
 HP-71B. The 1LK7 is a variation of the 1LF2 used in later
 versions of the HP-71B, the HP-18C, and the HP-28C. The
 1LR2 is an integrated CPU/ROM/RAM/Display Driver IC. Each
 new version of the Saturn CPU added new instructions to the
 Saturn instruction set. Instructions available in all
 Saturn CPUs are referred to as "level 0" instructions.
 Instructions available in the 1LK7 and 1LR2 but not the 1LF2
 are referred to as "level 1" instructions. Instructions
 available only in the 1LR2 are referred to as "level 2"
 instructions. In this section, "level 1" instructions are
 marked with an asterisk (*), "level 2" instructions are
 marked with two asterisks (**). Instructions with no mark
 are "level 0" instructions.

 6.1 Instruction Syntax

 The assembler is "free format" and a space or tab is
 required to delimit the different fields. A label, if
 present, must start in column one or two. The format below
 is a recommended column alignment:

 1 9 17 33 ... 80

 Label Opcode Modifier Comments ...

 6.1.1 Comments

 A comment line begins with an asterisk (*) in column one,
 and may occur anywhere in the file. An in-line comment may
 begin with any non-blank character and must follow the
 modifier field of an instruction (or the opcode if no
 modifier is required).

 6.1.2 Symbols_and_Labels

 A symbol is a name for a numeric value. A symbol acquires
 its value by appearing in the label field of certain
 statements. The word "symbol" is a general term for a
 label, and the two are used interchangeably.

 Symbols consist of one to twelve alphanumeric characters
 with the following restrictions: the characters comma (,),
 space (), and right parenthesis are prohibited, and special
 care must be used if the first character is an equal sign
 (=), colon (:), sharp (#), left parenthesis, or a digit (0
 through 9).

 Page 15

 A symbol may be immediately preceded by an equal sign (=)
 which declares the symbol to be an external symbol. An
 external symbol defined in one module may be referenced as
 an external symbol by another module. Such references are
 resolved when the modules are linked together. Certain
 Saturn assemblers, such as the HP-71 FORTH/Assembler ROM,
 have no associated linker and therefore do not support
 external symbols. In this case, any leading equal sign is
 ignored.

 A symbol may instead be immediately preceded by a colon (:)
 which simply declares what follows to be a (local) symbol.
 Either an equal sign or a colon must be used with any symbol
 whose first character is in the special care category (=, :,
 #, (, 0-9).

 When a symbol is used as part of an expression, parentheses
 are required to delineate it. That is, AD1-10 is a symbol
 but (AD1)-10 is a computed expression.

 6.1.3 Expressions

 Wherever an expression may appear in the modifier field of
 an instruction, it is represented by the symbol "expr" in
 the instruction descriptions below. Expressions are
 evaluated using 32-bit signed integer math. If a value does
 not fit within 32 bits, the most significant bits are lost
 (only the low 32 bits are saved).

 Expression Components

 Component Examples
 -------------------- -----------------------------------
 decimal constant 23434

 hexadecimal constant #1FF0 (less than #100000000)

 ASCII constant \AB\, 'AB' (4 or less characters)

 operator + addition
 - subtraction
 synonym for * 256 +
 * multiplication
 / integer division
 % modulo (remainder)
 ^ integer exponentiation
 & bitwise AND
 ! bitwise OR

 * Current assembly program counter

 symbol Symbol defined within this file

 (expression) Parenthesized expression

 Page 16

 Two classes of instructions require a modifier field which
 contains a constant of a specific type that does not conform
 to the above rules. These are:

 1. Instructions with a string constant which can exceed
 4 characters:

 LAASC \ASCII\ (8 characters maximum) **
 LCASC \ASCII\ (8 characters maximum)
 NIBASC \ASCII...\ (40 characters maximum)
 STRING \ASCII...\ (40 characters maximum)

 2. Instructions with a required hexadecimal constant:

 LAHEX 0123456789ABCDEF (16 digits maximum) **
 LCHEX 048C3 (16 digits maximum)
 NIBHEX 0123456789ABCDEF (80 digits maximum)

 6.2 Explanation of Symbols

 In the descriptions of the Saturn assembler mnemonics, these
 symbols are defined as follows:

 a The hex nibble used to encode the field selection in
 the assembled opcode of an instruction. See the
 Field Select Table in the next section for details.

 b The hex nibble used to encode the field selection in
 the assembled opcode of an instruction. See the
 Field Select Table in the next section for details.

 d The number of nibbles represented by a field
 selection field. Used in calculating the execution
 cycle time of some instructions. See the Field
 Select Table in the next section for details. When
 used in an extended field selection fsd, represents
 an expression which indicates the number of nibbles
 of the register that will be affected by the
 instruction, proceeding from the low-order nibble to
 higher-order nibbles.

 expr An expression that evaluates to an absolute or
 relocatable value, usually less than or equal to 5
 nibbles in length.

 fs Field selection symbol. See the Field Select Table
 in the next section for details.

 fsd Extended field selection symbol. Represents either a
 normal field selection symbol fs, or an expression
 that gives the number of nibbles d of the register
 that will be affected by the instruction, proceeding
 from the low-order nibble to higher-order nibbles.

 Page 17

 hh Two-digit hex constant, such as 08 or F2. Within an
 opcode represents the hex digits used to store the
 value of the expression in the opcode in reverse
 order (see "Loading Data From Memory").

 hhhh Four-digit hex constant, such as 38FE. Within an
 opcode, represents the hex digits used to store the
 value of the expression in the opcode in reverse
 order (see "Loading Data From Memory").

 hhhhh Five-digit hex constant, such as 308FE. Within an
 opcode, represents the hex digits used to store the
 value of the expression in the opcode in reverse
 order (see "Loading Data From Memory").

 label A symbol defined in the label field of an
 instruction.

 m A one-digit decimal integer constant.

 n Represents an expression that evaluates to a 1-nibble
 value, unless specified otherwise. Within an opcode,
 represents the hex digit used to store the assembled
 value of the expression in the opcode.

 nn Represents an expression that evaluates to a 2-nibble
 value, unless specified otherwise. Within an opcode,
 represents the hex digits used to store the assembled
 value of the expression in the opcode.

 nnnn Represents an expression that evaluates to a 4-nibble
 value, unless specified otherwise. Within an opcode,
 represents the hex digits used to store the assembled
 value of the expression in the opcode.

 nnnnn Represents an expression that evaluates to a 5-nibble
 value, unless specified otherwise. Within an opcode,
 represents the hex digits used to store the assembled
 value of the expression in the opcode.

 r,s Represents a register (r alone) or a register pair (r
 and s used together). The valid combinations are
 (r,s) = { (A,B), (B,C), (C,A), (D,C) }.

 ss Represents a scratch register name (R0, R1, R2, R3,
 or R4).

 dp Represents a data pointer name (D0 or D1).

 Page 18

 6.3 Field Select Table

 The following symbols are used in the instruction
 descriptions to denote field selections.

 There are two ways in which field selection is encoded in
 the opcode of an instruction. These two patterns are shown
 in the table below, and are designated by the letters a and
 b.

 Field Select Table

 Opcode Number
 Representation of Nibs
 Field Name and Description (a) (b) (d)
 ----- ---------------------- -------------- -------
 P Pointer Field. Nibble 0 8 1
 specified by P pointer
 register.
 WP Word-Through-Pointer Field. 1 9 P+1
 Nibbles P through 0.
 XS Exponent Sign Field. Nib 2. 2 A 1
 X Exponent Field. Nibs 2-0. 3 B 3
 S Sign Field. Nibble 15. 4 C 1
 M Mantissa Field. Nibs 14-3. 5 D 12
 B Byte Field. Nibs 1-0. 6 E 2
 W Word Field. Nibs 15-0. 7 F 16
 A Address Field. Nibs 4-0. F - 5

 Some instructions have an entirely different opcode
 representation for the A field.

 Page 19

 6.4 Instruction Set Overview

 This is a summary of the Saturn instruction set, grouped by
 functional category.

 Fields of a register are indicated using the convention that
 a register name followed by a field in parentheses means
 that field of the register. For example, C(A) means the A
 field of register C, and A(3:0) means nibbles 3 through 0 of
 register A.

 6.5 Jump Instructions

 GOTO label Unconditional relative jump;
 range -2047, +2048 nibs.
 GOC label Relative jump if Carry is set;
 range -127, +128 nibs.
 GONC label Relative jump if Carry is clear;
 range -127, +128 nibs.
 GOSHORT label Generate a short jump to label.
 If the carry state cannot be
 determined at assembly time, a
 GOTO is generated. If the carry
 is known to be set, a GOC is
 generated. If the carry is known
 to be clear, a GONC is generated.
 JUMP label Alias for GOSHORT.
 GOLONG label Unconditional long relative jump;
 range -32766, +32769 nibs.
 GOVLNG label Absolute jump; range unrestricted.
 PC=(A) * Indirect jump; A(A) is the
 address of the destination address.
 PC=(C) ** Indirect jump; C(A) is the address
 of the destination address.
 PC=A ** Direct jump; A(A) is the
 destination address.
 PC=C ** Direct jump; C(A) is the
 destination address.
 APCEX ** Direct jump and save PC in A(A);
 A(A) is the destination address.
 CPCEX ** Direct jump and save PC in C(A);
 C(A) is the destination address.
 GOYES label Relative jump if test is true (second
 half of test instruction);
 range -125, +130 nibs from test.

 Page 20

 6.6 Subroutine Call Instructions

 GOSUB label Relative jump to subroutine;
 range -2044, +2051 nibs.
 GOSUBL label Long relative jump to subroutine;
 range -32762, +32773 nibs.
 GOSBVL label Absolute jump to subroutine.

 6.7 Subroutine Return Instructions

 RTN Return from subroutine.
 RTNSC Return from subroutine and set Carry.
 RTNCC Return from subroutine and clear Carry.
 RTNSXM Return from subroutine and set
 hardware status bit XM.
 RTI Return from subroutine and enable
 interrupt handling.
 RTNC Return from subroutine if Carry is set.
 RTNNC Return from subroutine if Carry is
 clear.
 RTNYES Return from subroutine if test is true
 (second half of test instruction).

 Page 21

 6.8 Test Instructions

 All test instructions must be followed with a GOYES or a
 RTNYES instruction. The test instruction and the following
 GOYES or RTNYES instruction together form a single 5-nibble
 opcode. The Carry is set when the test is true and cleared
 when the test is false. All register comparisons are
 unsigned (#FFFFF is greater than #7FFFF). The test is
 performed only on the selected field.

 6.8.1 Register_Tests

 ?r=s fs True if r(fs) and s(fs) are equal.
 ?r#s fs True if r(fs) and s(fs) are not equal.
 ?r=0 fs True if r(fs) is zero.
 ?r#0 fs True if r(fs) is non-zero.
 ?r>s fs True if r(fs) is greater than s(fs).
 ?s>r fs True if s(fs) is greater than r(fs).
 ?r<s fs True if r(fs) is less than s(fs).
 ?s<r fs True if s(fs) is less than r(fs).
 ?r>=s fs True if r(fs) is greater than or equal
 to s(fs).
 ?s>=r fs True if s(fs) is greater than or equal
 to r(fs).
 ?r<=s fs True if r(fs) is less than or equal
 to s(fs).
 ?s<=r fs True if s(fs) is less than or equal
 to r(fs).

 6.8.2 Pointer_Tests

 ?P= n True if P is equal to n.
 ?P# n True if P is not equal to n.

 6.8.3 Program_Status_Bit_Tests

 ?ST=0 n True if status bit n is clear.
 ?ST=1 n True if status bit n is set.
 ?ST#1 n Alias for ?ST=0 n.
 ?ST#0 n Alias for ?ST=1 n.

 Page 22

 6.8.4 Hardware_Status_Bit_Tests

 ?XM=0 True if XM bit (external module missing)
 is clear.
 ?SB=0 True if SB bit (sticky bit) is clear.
 ?SR=0 True if SR bit (service request) is
 clear.
 ?MP=0 True if MP bit (module pulled) is clear.
 ?HS=0 n True if all bits corresponding to n are
 clear.

 6.8.5 Register_Bit_Tests

 ?ABIT=0 n ** True if bit n of register A is clear.
 ?ABIT=1 n ** True if bit n of register A is set.
 ?CBIT=0 n ** True if bit n of register C is clear.
 ?CBIT=1 n ** True if bit n of register C is set.
 ?ABIT#1 n ** Alias for ?ABIT=0 n.
 ?CBIT#1 n ** Alias for ?CBIT=0 n.
 ?ABIT#0 n ** Alias for ?ABIT=1 n.
 ?CBIT#0 n ** Alias for ?CBIT=1 n.

 6.9 Pointer Instructions

 All arithmetic calculations on the pointer are performed in
 HEX mode.

 P= n Set register P to n.
 P=P+1 Increment P register; affects Carry.
 P=P-1 Decrement P register; affects Carry.
 C+P+1 Add P plus one to A field of C; affects
 Carry.
 C=C+P+1 Alias for C+P+1.
 CPEX n Exchange P register and nibble n of C
 register.
 P=C n Copy nibble n of C register to P register.
 C=P n Copy P register to nibble n of C register.

 6.10 Bit Manipulation Instructions

 ABIT=0 n ** Clear bit n of register A.
 ABIT=1 n ** Set bit n of register A.
 CBIT=0 n ** Clear bit n of register C.
 CBIT=1 n ** Set bit n of register C.

 Page 23

 6.11 Status Instructions

 6.11.1 Program_Status

 ST=0 n Set status bit n.
 ST=1 n Clear status bit n.
 CSTEX Exchange status bits 11-0 with C(X).
 C=ST Copy status bits 11-0 to C(X).
 ST=C Copy C(X) to status bits 11-0.
 CLRST Clear status bits 11-0.

 6.11.2 Hardware_Status

 XM=0 Clear XM bit (external module missing).
 SB=0 Clear SB bit (sticky bit).
 SR=0 Clear SR bit (service request).
 MP=0 Clear MP bit (module pulled).
 HS=0 n Clear all bits corresponding to n.
 CLRHST Clear all Hardware Status bits (XM, SB,
 SR, and MP).

 6.11.3 System_State_Instructions

 SETHEX Set arithmetic mode to hexadecimal.
 SETDEC Set arithmetic mode to decimal.
 SREQ? Set C(0) to service request response
 from bus. Set SR bit if service is
 requested.
 C=RSTK Pop subroutine return stack into C(A).
 RSTK=C Push C(A) onto subroutine return stack.
 A=PC ** Copy current PC into A(A).
 C=PC ** Copy current PC into C(A).
 CONFIG Configure a device to the address
 in C(A).
 UNCNFG Unconfigure a device at the address
 in C(A).
 RESET Send Reset command to system bus.
 BUSCB ** Issue bus command B on the system
 bus.
 BUSCC Issue bus command C on the system bus.
 BUSCD ** Issue bus command D on the system
 bus.
 SHUTDN Stop CPU here, stay in low-power state
 until wake-up requested.
 C=ID Copy chip ID from system bus to C(A).
 INTOFF Disable maskable interrupts.
 INTON Enable maskable interrupts.
 RSI * Reset interrupt detect circuitry.

 Page 24

 6.11.4 Keyscan_Instructions

 OUT=C Copy C(X) to OUT register.
 OUT=CS Copy C(0) to low 4 bits of OUT register.
 A=IN Copy IN register to A(3:0).
 C=IN Copy IN register to C(3:0).

 6.11.5 Scratch_Register_Instructions

 A=ss Copy ss to A.
 C=ss Copy ss to C.
 ss=A Copy A to ss.
 ss=C Copy C to ss.
 AssEX Exchange A with ss.
 CssEX Exchange C with ss.
 A=ss.F fs ** Copy ss(fs) to A(fs).
 C=ss.F fs ** Copy ss(fs) to C(fs).
 ss=A.F fs ** Copy A(fs) to ss(fs).
 ss=C.F fs ** Copy C(fs) to ss(fs).
 AssEX.F fs ** Exchange A(fs) with ss(fs).
 CssEX.F fs ** Exchange C(fs) with ss(fs).

 6.11.6 Data_Pointer_Instructions

 dp=A Copy A(A) to dp.
 dp=C Copy C(A) to dp.
 AdpEX Exchange A(A) with dp.
 CdpEX Exchange C(A) with dp.
 dp=AS Copy A(3:0) to (dp3:0).
 dp=CS Copy C(3:0) to (dp3:0).
 AdpXS Exchange A(3:0) with dp(3:0).
 CdpXS Exchange C(3:0) with dp(3:0).
 dp=dp+ n Increment register dp by n; alters
 Carry.
 dp=dp- n Decrement register dp by n; alters
 Carry.
 dp=HEX hh Load hh into dp(1:0).
 dp=HEX hhhh Load hhhh into dp(3:0).
 dp=HEX hhhhh Load hhhhh into dp.
 dp=(2) expr Load expr into dp(1:0); use low 2
 nibbles of expr if too big.
 dp=(4) expr Load expr into dp(3:0); use low 4
 nibbles of expr if too big.
 dp=(5) expr Load expr into dp; use low 5 nibbles
 of expr if too big.

 6.11.7 Data_Transfer_Instructions

 If fsd is an expression, the value of the expression is the
 number of nibbles to transfer. For example, if fsd is an
 expression whose value is 7, nibbles 6 through 0 will be
 transferred.

 Page 25

 A=DAT0 fsd Read data pointed to by D0 into A(fsd).
 A=DAT1 fsd Read data pointed to by D1 into A(fsd).
 C=DAT0 fsd Read data pointed to by D0 into C(fsd).
 C=DAT1 fsd Read data pointed to by D1 into C(fsd).
 DAT0=A fsd Write A(fsd) to location indicated by D0.
 DAT1=A fsd Write A(fsd) to location indicated by D1.
 DAT0=C fsd Write C(fsd) to location indicated by D0.
 DAT1=C fsd Write C(fsd) to location indicated by D1.

 6.11.8 Load_Constant_Instructions

 All constants are loaded into the target register least
 significant nibble first, with the least significant nibble
 loaded into r(P) and subsequent nibbles loaded at r(P+1),
 r(P+2), etc. until all nibbles have been loaded. A constant
 can wrap around from r(15) to r(0).

 LAHEX hhhhhhhh ** Load hex constant hhhhhhhh into A.
 LCHEX hhhhhhhh Load hex constant hhhhhhhh into C.
 LAASC \ASCII\ ** Load ASCII constant ASCII into A.
 LCASC \ASCII\ Load ASCII constant ASCII into C.
 LA(m) expr ** Load an m-nibble constant into A;
 use low m nibbles of expression if
 too big.
 LC(m) expr Load an m-nibble constant into C;
 use low m nibbles of expression if
 too big.
 LA(N) expr ** Start an expr-nibble Load Constant
 into register A. This is useful
 for Load Constants which are too
 large for LA(m) or which involve
 multiple external references.
 LC(N) expr Start an expr-nibble Load Constant
 into register C. This is useful
 for Load Constants which are too
 large for LC(m) or which involve
 multiple external references.

 6.11.9 Shift_Instructions

 The term circular shift means that the nibble shifted out
 gets shifted in at the other end of the selected field.
 NOTE: Right shift instructions set the Sticky Bit if any
 non-zero bits are shifted out.

 rSRB Shift reg r right one bit.
 rSRB.F fs ** Shift reg r(fs) right one bit.
 rSLC Shift reg r left circular one nibble.
 rSRC Shift reg r right circular one nibble.
 rSL fs Shift reg r(fs) left one nibble.
 rSR fs Shift reg r(fs) right one nibble.

 Page 26

 6.11.10 Arithmetic_Instructions

 NOTE: There is no s=r-s fs instruction. This means these
 instructions are not available on the Saturn CPU: B=A-B,
 C=B-C, A=C-A, and C=D-C.

 r=0 fs Set r(fs) to zero.
 r=r-1 fs Decrement r(fs); alters Carry.
 r=r+1 fs Increment r(fs); alters Carry.
 r=s fs Copy s(fs) to r(fs).
 s=r fs Copy r(fs) to s(fs).
 rsEX fs Exchange r(fs) and s(fs).
 srEX fs Alias for rsEX fs.
 r=r+CON fs,d ** Add d to r(fs); alters Carry.
 r=r+r fs Add r(fs) to itself; alters Carry.
 r=r+s fs Add s(fs) to r(fs); alters Carry.
 r=s+r fs Alias for r=r+s fs.
 s=r+s fs Add r(fs) to s(fs); alters Carry.
 s=s+r fs Alias for s=r+s fs.
 r=r-CON fs,d ** Subtract d to r(fs); alters Carry.
 r=r-s fs Subtract s(fs) from r(fs); alters Carry.
 s=s-r fs Subtract r(fs) from s(fs); alters Carry.
 r=s-r fs Subtract r(fs) from s(fs), put result in
 r(fs); alters Carry.
 r=-r fs 2's or 10's complement of r(fs); clear
 Carry if r(fs) was zero, else set Carry.
 r=-r-1 fs 1's or 9's complement of r(fs);
 unconditionally clear Carry.

 6.11.11 Logical_Operation_Instructions

 r=r&s fs Bit-wise AND of register r(fs) with
 register s(fs).
 r=r!s fs Bit-wise OR of register r(fs) with
 register s(fs).

 6.11.12 No-Operation_Instructions

 NOP3 Three nibble No-op.
 NOP4 Four nibble No-op.
 NOP5 Five nibble No-op.

 6.12 Pseudo-Op Instructions

 NOTE: The label field is ignored by some of the pseudo-op
 instructions. These instructions ignore the label field:
 CHARMAP, CLRCARRY, CLRFLAG, CLRLIST, EJECT, INCLUDE,
 LISTALL, LISTM, LIST, MESSAGE, NOTREACHED, RDSYMB, SETCARRY,
 SETFLAG, SETLIST, STITLE, TITLE, and UNLIST.

 Page 27

 6.12.1 Data_Storage_Allocation

 BSS nnnnn Allocate nnnnn zero nibbles here.
 CON(m) expr Generate m-nibble constant. The
 constant is stored with the least
 significant nibble at the lowest
 address. [1 _ m _ 8]
 REL(m) label Generate m-nibble relative offset.
 The offset is stored with the least
 significant nibble at the lowest
 address. [1 _ m _ 8]
 NIBASC \ASCII\ Generate ASCII characters. Each
 character is stored with the least
 significant nibble at the lowest
 address. The first character is
 placed at the lowest address.
 [40 characters maximum]
 STRING \ASCII\ Generate ASCII characters, set the
 high bit on the last character. Each
 character is stored with the least
 significant nibble at the lowest
 address. The first character is
 placed at the lowest address.
 [40 characters maximum]
 NIBHEX hhhhhhh Generate hexadecimal nibbles. The
 first nibble is placed at the lowest
 address. [80 nibbles max]
 NIBFS fs Generate the field selection nibble
 for field fs. The opcode representation
 used is from column a in the Field
 Select Table.
 LINK label Generate five nibble relative offset
 to the next LINK reference to label.
 The value of the offset is filled in
 by the linker.
 SLINK label Generate five nibble relative offset
 to the first LINK reference to label.
 The value of the offset is filled in
 by the linker.
 INC(m) label Generate an m-nibble reference to
 label which is passed to the linker.
 The label must be an external symbol.
 The linker fills in the position of
 the INC(m) reference to label. For
 example, if a file contains three
 INC(3) =label references, the first
 INC(3) will be filled in as 000, the
 second INC(3) will be filled in as
 100, and the third INC(3) will be
 filled in as 200 (least significant
 nibble of the position at the lowest
 address).

 Page 28

 6.13 Conditional Assembly

 Conditional assembly pseudo-ops allow alternate versions of
 assembly code to be assembled dependent on some specific
 conditions. An optional label on the conditional assembly
 statements allows nesting.

 Conditions which can be tested include assembly flags set on
 invocation, the value of an expression compared to zero, the
 relationship between two strings, the presence or absence of
 a symbol, the current carry state (for example, after GOYES
 or RTNYES, the carry is clear), and whether a specific
 mnemonic is available in this assembly (dependent on the
 processor level selected).

 label IF expr Assemble code only if flag expr is set.

 label IFEQ expr Assemble code only if expr is zero.
 label IFNE expr Assemble code only if expr is
 non-zero.
 label IFLT expr Assemble code only if expr is less
 than zero.
 label IFLE expr Assemble code only if expr is less
 than or equal to zero.
 label IFGT expr Assemble code only if expr is greater
 than zero.
 label IFGE expr Assemble code only if expr is greater
 than or equal to zero.

 label IFZER expr Alias for IFEQ.
 label IFNZ expr Alias for IFNE.
 label IFNEG expr Alias for IFLT.
 label IFPOS expr Alias for IFGT.

 label IFDEF symbol Assemble code only if symbol is
 defined now.
 label IFNDEF symbol Assemble code only if symbol is
 not defined now.
 label IFOPC symbol Assemble code only if symbol is
 a valid opcode mnemonic.
 label IFNOPC symbol Assemble code only if symbol is
 not a valid opcode mnemonic.
 label IFPASS1 Assemble code only if this is the
 first pass of the assembler. This
 is most useful in conjunction with
 the MESSAGE pseudo-op.
 label IFPASS2 Assemble code only if this is the
 second pass of the assembler. This
 is most useful in conjunction with
 the MESSAGE pseudo-op.
 label IFANYCARRY Assemble code only if the carry can't
 be determined at assembly time.
 label IFCARRYCLR Assemble code only if the carry can
 be determined at assembly time and
 the carry is clear.

 Page 29

 label IFCARRYSET Assemble code only if the carry can
 be determined at assembly time and
 the carry is set.
 label IFREACHED Assemble code only if the current
 statement can be reached.
 label ELSE Reverse the sense of the IF test with
 label "label".
 label ENDIF End conditional assembly started by
 IF with label "label".

 6.14 Listing Control

 When no listing file is being generated (-N option), these
 pseudo-ops have no effect on the assembly.

 TITLE text Set title to text (at most one TITLE
 instruction is permitted per file).
 STITLE text Set subtitle to text and force a new
 page in the assembly listing.
 EJECT Force a new page in the assembly listing.
 UNLIST Turn off assembly listing except for
 some pseudo-ops.
 LIST Turn on assembly listing.
 LISTM Turn on assembly listing for macro
 expansion and include files.
 LISTALL expr Unconditionally list the next expr lines.
 LISTALL is independent of LIST and
 UNLIST. If expr is less than or equal
 to zero or is not a legal expression,
 disable LISTALL mode.
 CLRLIST type Turn off assembly listing of type, where
 type is one or more of { CODE, MACRO,
 INCLUDE, PSEUDO, ALL }. If the type
 includes NOLIST, the CLRLIST line is
 not listed.
 SETLIST type Turn on assembly listing of type, where
 type is one or more of { CODE, MACRO,
 INCLUDE, PSEUDO, ALL }. If the type
 includes NOLIST, the SETLIST line is
 not listed.

 LIST is an alias for SETLIST CODE. LISTM is an alias for
 SETLIST MACRO,INCLUDE. UNLIST is an alias for
 CLRLIST CODE,MACRO,INCLUDE.

 6.15 Symbol Definition

 symbol EQU expr Assigns the value expr to symbol. If
 symbol is already defined, EQU
 generates an error.
 symbol = expr Assigns the value expr to symbol. If
 symbol is already defined, it is given

 Page 30

 the new value expr.

 6.16 Macro Definition

 label MACRO Start definition of macro label.
 label ENDM End definition of macro label.
 EXITM If reached while interpreting a macro,
 terminate that macro interpretation
 immediately. EXITM has no effect
 during the definition of a macro.

 6.17 Assembly Mode

 symbol ABS nnnnn Specify an absolute assembly starting
 at address nnnnn.
 symbol REL nnnnn Specify a relocatable assembly
 starting at address nnnnn.
 END Terminate assembly with this line.
 Any lines following the END instruction
 are ignored.

 6.18 File Access

 These pseudo-ops allow access to other files. This allows
 commonly-used symbols, macros, etc. to be defined in a file
 shared by several assembly files.

 RDSYMB file Read the symbol table from the Saturn
 file named file. Each symbol which is
 defined, external, and not relocatable
 is made available for the duration of
 this assembly.
 INCLUDE file Read assembly source statements from file
 until either an END instruction is read
 or an End-of-File condition occurs.
 CHARMAP file Read a set of character mappings from
 file. Each line in the file consists of
 an ASCII character, followed by the
 character which should be assembled when
 the character is used in an ASCII string.
 (See "Charmap File Format").

 6.19 Assembly Flag Modification

 CLRFLAG expr Clear assembly flag expr.
 SETFLAG expr Set assembly flag expr.

 Page 31

 6.20 Carry State Modification

 CLRCARRY Indicate to the assembler that the carry
 is always clear at this point.
 SETCARRY Indicate to the assembler that the carry
 is always set at this point.
 NOTREACHED Indicate to the assembler that this point
 is never reached by assembly code.

 6.21 Miscellaneous

 MESSAGE text Write text to the standard error location.
 The message is written once for each
 assembler pass. This is most useful when
 tracking down symbols which change between
 passes.

 Page 32

 7. Saturn Assembly Tips

 This chapter summarizes some general advice accumulated over
 many many man-years of Saturn programming in Corvallis.
 While no doubt incomplete, these should spare some agony.

 7.1 Three Warnings

 The following three "gotcha's" are lessons that have been
 learned repeatedly by every Saturn programmer. You have
 been warned.

 7.1.1 Return_Levels

 If you have experience with standard processors, be aware
 that this one has a fixed number of return stack levels (8).
 As the interrupt system uses two of these whenever an
 interrupt occurs (which generally can be any time), HP 48
 programmers are limited to a maximum of 6 levels. If code
 you write is called, you will be further limited. The
 symptoms of violation will include a Warmstart, but may
 include more severe effects. ...So watch those levels.

 7.1.2 Mode

 One of the big features of the Saturn processor, is also the
 programmers bane. The processor supports both DEC and HEX
 modes. Code designed to run in HEX mode can behave very
 badly if invoked from a DEC mode state and vice versa.
 ...So watch the mode.

 7.1.3 Remember_P=0!

 Many routines require P=0 as an entry condition (this
 includes the RPL inner loop by the way). Quite frequently
 other routines don't care about the value of P on entry, but
 use it as a resource and exit with it in various states (eg;
 most of the floating point math routines). This could be
 generalized to simply "watch entry and exit conditions", but
 this one seems to happen frequently. ...So watch P=0.

 Page 33

 7.2 Code Packing Tips

 7.2.1 A-Field_Operations

 Frequently, use of the A field for register operations that
 require only the P,B,X or XS fields is a code saving. Eg;
 Replace "A=C X" with "A=C A" field to save a nibble
 if you don't care about nibbles 3 and 4 of A.

 7.2.2 Loading_Constants

 For loading small constants into a larger field, it is
 frequently cheaper to clear the field and generate only the
 "digits" required. For example if kfactor < 256, than you
 will save a nibble of ROM and get the same effect with

 C=0 A
 LC(2) kfactor

 instead of
 LC(5) kfactor

 7.2.3 The_3-Branches

 There are 3 varieties of "GOTO" and "GOSUB" that require
 4,6, and 7 nibbles of code. Two of these are "relative"
 branches, and the long one is "absolute". The assembler
 takes care of all the details, informing you if a branch is
 out of range, so there is really no drawback to using the
 shorter versions when appropriate (they also execute faster
 by the way). As a general rule, references to external
 routines (routines in the HP 48) should use the long
 version, and references to routines in your application
 should use relative branches. The neumonics for the three
 varieties are:

 GOTO GOSUB (4 nibs)
 GOLONG GOSUBL (6 nibs)
 GOVLNG GOSBVL (7 nibs)

 Numerous references to an external routine may be shortened
 by means of a "jump table". Eg; Replace all "GOSBVL
 =GETPTR" by calls to the local version ("GOSUB getptr")
 below.

 getptr GOVLNG =GETPTR

 Page 34

 7.2.4 GOSUB/RTN

 Code that might naturally end with something like
 ...
 ...
 GOSUB dotask8
 RTN

 will run faster, save 2 nibs, and may make your routine take
 less stack levels by replacing that combination with
 ...
 ...
 GOTO dotask8

 7.2.5 Use_Expressions

 Use the Saturn Assembler to evaluate certain expressions
 instead of at run time.

 Example

 LC(5) (=TBLADRS)+5*t2

 instead of

 LC(5) =TBLADRS
 A=C A
 LC(5) 5*t2
 C=C+A A

 7.2.6 Count_Up

 Frequently P is used as the control variable for loops that
 require no more than 16 passes. If the loop is structured
 so that P is decremented until a carry test causes an exit,
 the value of P on exit will be 15 (generally not a very
 useful value). Often the code which follows will reset P to
 0. Optionally you can avoid the need to reset P to 0 (save
 2 nibs) by counting up. In this way, when the carry occurs,
 P will have become 0.

 Example
 P= 16-5 Compute x-5*y; A:x, C:y
 arglp A=A-C A
 P=P+1
 GONC arglp

 Page 35

 7.2.7 Before_you_leap

 One of the advantages of assembly language programming is
 the plethora of methods available to the innovator. Often
 the first solution you think of will not be the most code
 efficient, time efficient, resource efficient, reliable, or
 easiest to implement.

 Speaking of time efficient - this document tells you about
 execution time. Instruction execution time varies depending
 on instruction type and the fields that it operates on.

 In addition, when executing code out of standard 8-bit wide
 devices (ala HP 48 256 KByte ROM), instruction timing will
 vary depending on whether the instruction occurs on an even
 or odd address. If one measures instruction timing on some
 sort of consistent scale, you find that instruction times
 will vary from 2 to 33 units of time. The most time
 expensive instructions are those which access data in
 memory. Also expensive are full word (16-nibble)
 operations. The least expensive are operations on P.

 Page 36

 7.3 Some Common Operations

 7.3.1 A_nibble_from_here_to_there

 This type of operation is usually accomplished by one or
 more of the following 3 types of CPU instructions. The
 "Thru P" variety can only be used in the C register.

 Register Transfer:
 ==================
 Example - Transfer nibble from C[P] to A[P]
 A=C P

 Nibble Shifts:
 ==============
 Example - Shift B field of A into nibs 1 and 2 of A
 ASL.F X

 Thru P:
 =======
 Example - Copy Sign field of C into nib 4 of C
 P=C 15
 C=P 4

 7.3.2 Testing_a_Bit

 This type of operation may be accomplished in a variety of
 ways depending on where the bit to be tested is located, the
 state of the CPU, and what CPU resources may be used.

 Direct Bit Test:
 ================
 Generally this is the best choice when it's available (only
 in nibbles 0-3 of A and C registers), as this is destructive
 only to the CARRY and depends only on the thing being
 tested. It also has the advantage of working with symbolic
 arguments (which makes it easy when the location of the bit
 is changed).

 Example:
 bEDIT EQU 6
 ...
 ...
 ?ABIT=1 bEDIT
 GOYES doEDIT

 Page 37

 Left (Arithmetic) bit shifts in a field:
 ==
 Left bit shifts require HEX Mode, and are often used in
 cases where the bit lives in a location other than A[0-3] or
 C[0-3] and it is too expensive or otherwise undesirable to
 copy it there. The shift is done arithmetically via HEX
 mode arithmetic, and is destructive to the field in which
 the operation is performed. Your code is also dependent on
 the bit# being tested (not symbolic).

 Example - Test bit 2 in A[S]
 SETHEX
 A=A+A S Shift it to msb
 A=A+A S CS iff bit 2 was originally set.
 GOC bit2_on

 Right bit shifts in a field:
 ============================
 Right arithmetic shifts are accomplished by provided CPU
 shift instructions. When a non-zero bit is shifted out the
 right side of a field, a bit in the CPU known as the "sticky
 bit" (SB) is set. This bit is "sticky" and must be
 explicitly cleared before it is used for a bit test. The
 same example above could be done in either HEX or DEC mode
 by:

 ASRB.F S Move bit to position 1
 ASRB.F S position 0
 SB=0 Prepare for test
 ASRB.F S SB=1 iff bit 2 originally set.
 ?SB=0
 GOYES bit2_off

 The placement of the "SB=0" instruction is important. There
 is no instruction to test SB=1, hence the test sense
 reversal.

 Mask it out:
 ============

 P= 15
 LCHEX 4 C[S]: 0100 (Mask)
 A=A&C S Mask out all bits of non-interest.
 ?A#0 S bit2 set?
 GOYES bit2_on Yes.

 Page 38

 7.3.3 Saving/Testing_a_State

 Frequently it is advantage to record a condition that may
 later be tested. The 12 CPU (Local) Status Bits (S0-S11)
 are frequently used for this purpose. The (Global) Status
 bits (S12-S15) are reserved for recording operating system
 status. There is a functional difference also. The Global
 Status bits cannot be swapped in and out of the C-Register
 like the others. Be careful to document your usage of the
 status bits, as failure to exercise care here can result in
 contention for the same status bit and a "Gotcha". As far
 as usage goes it's quite simple. Use a symbolic name for
 the status bit (The symbol should be global if the status
 bit will be referenced in other files).

 Example:
 =sDMY EQU 8 Day-Month-Year Date Format if Set.
 ...
 ...
 ?ST=1 sDMY DD.MMYYYY Date Format?
 GOYES date10 Yes.
 CDEX B No. - Swap DD, MM
 date10

 7.3.4 Memory_Access

 The Saturn Processor Reads (Writes) from (to) low order
 memory nibble wise into (from) the low order nibs of either
 the A or C registers. You will stay out of trouble if you
 remember low order of the register to low order memory.
 Thus an ASCII "A" stored in the B-field of CPU register A
 will appear as A[B]: 41. If this same value is written out
 to address #82000, you will see

 #82000 1
 #82001 4

 If memory is displayed from left to right in increasing
 addresses (as it is on our development systems), the data
 will appear as

 82000:14...

 making it appear backwards. But all is well. If the 2
 nibbles starting at address #82000 are read back into A[B]
 you will get what you expect (A[B]: 41). The transfers take
 place by using one of the "Data Pointers" D0, D1 to specify
 the address.

 Example: Write ASCII "A" to address #82000:

 P= 0
 LC(2) A
 D0=(5) #82000
 DAT0=C B #82000: "A"

 Page 39

 7.4 Some Other Tips

 7.4.1 Labels

 Nothing prohibits you from using global labels on all
 routines. Don't. Use global labels only on routines that
 are referenced externally (ie; those that require them) or
 which might reasonably be called externally in the future.
 Use "global references" only where required. This permits a
 code reviewer to know whether or not a routine that is being
 called is in the same file or not w/o referring to the
 symbol table. (ie; if I see "GOSUBL =PADDER", I assume
 that PADDER is in another file - otherwise, why the "=" ?).

 7.4.2 Status_Bits

 All status bit usage should be symbolic. That is; never
 write something like "ST=0 5". Instead, this can be
 "ST=0 sLOAN" where sLOAN has been equated to 5 elsewhere.
 In addition to the obvious advantage of self documenting
 status bit usage, this permits relativelty safe changes to
 the actual status bit in use at a later time. The symbol
 table identifies all references to sLOAN for the purposes of
 making changes, avoiding status bit clash, etc.

 7.4.3 Entry_Points

 I find it is best to not have more than one Global entry in
 a given routine. The main reason is that such a routine is
 frequently difficult to maintain. Invariably the entry
 points will have different entry conditions (else why the
 separate entry). This tenet may be violated in the interest
 of code conservation, but always balance it against the
 maintenence cost. If you do it, and it's not completely
 obvious from a casual glance what the entry conditions need
 to be, insert a "mini-header" consisting of a few comment
 lines explaining what the entry conditions are. Something
 like

 ** Here: A: Last Arg Count *
 ** C: Loop Counter *
 ** P: 14 *

 =ARG50

 Page 40

 7.4.4 Exits

 Good "style" suggests that routines should not have more
 than one normal (non-error) exit. This is something that
 gets violated with impunity in the interest of code saving.
 It is not unusual to find cases where use of a common exit
 actually saves code. It's best to let code cost be the
 judge. When it is a "push", use a common exit.

 7.5 Documentation

 7.5.1 Comments_on_Comments

 Any line beginning with an "*" is a comment line. Comments
 are also inserted on the same line as code (no "*"
 required). Comments can be grouped into one of 3 types:

 Module level:
 =============
 These comments generally describe the nature of the code in
 the file, perhaps providing a list of the major routines,
 general conventions and notation that will be used in
 subsequent documentation, etc. This should appear at the
 front of the file (before code).

 Depending on your style, you may choose to place symbolic
 equates (eg; status bits, various constants, etc;) at the
 front of a file (These generate no code, but effect the code
 that references the symbols). This makes it easy for a
 reviewer to find their values.

 Routine level:
 ==============
 These comments describe the general nature of a routine,
 it's inputs and outputs, and CPU and RAM resources altered
 by invocation. These should appear in a header at the front
 of the routine. Begin the coding process by inserting a
 standard blank header. Fill in certain fields immediately
 (eg; name, abstract, implementation date) and others as soon
 as the code is reasonably stable.

 Line level:
 ===========
 Line by line comments will help the reviewer (which often
 will be you) wade thru the code later. These should appear
 on the same line as the code or on separate lines near the
 code being documented.

 Page 41

 Guidelines:
 ===========
 1) How Much? Generally, the more the better. However not
 every line needs a comment, and some short, simple, local
 routines don't require a header. If a routine has an
 external entry, it deserves a header.

 2) Avoid no content comments (A=C A Copy C[A] to A[A])

 3) Avoid comments that document unimportant register
 contents. This seems to help my focus. For example,
 reviewers usually prefer #1 over #2:

 #1 #2
 C=D A C[A]: Last Arg Ptr
 A=C A A[A]: Last Arg Ptr A[A]: Last Arg Ptr
 P= 0
 LC(5) PROC5 C[A]: Exec Adrs C[A]: Exec Adrs

 4) Put content into your comments. They should be easily
 decipherable, but grammar is unimportant. Don't permit
 comment lines to be longer than what will be printed on
 the list (.l) files.

 5) The Saturn Assembler is free format allowing you to be
 quite flexible in your placement of code. DON'T OVERUSE
 THIS FEATURE. Employ standard fields. The header on the
 next page has reasonable fields marked (1,9,17,28). The
 important thing is consistency.

 Page 42

 7.5.2 A_Standard_Assembly_Language_Header

 Some version of this header is in use by all of the software
 people generating Saturn Assembly Language Code. There is
 no law saying you have to use this one, or use one at all.
 This one works, and has passed the test of time.

 EJECT

 ** Name: XXXXXXXXXXXX -
 **
 ** Category:
 **
 ** Abstract:
 **
 ** Entry:
 **
 ** Exit:
 **
 ** Error Exits:
 **
 ** Alters: CPU -
 ** RAM -
 **
 ** Calls:
 **
 ** Stack Levels:
 **
 ** Notes:
 **
 ** Date Prog Modification
 ** -------- ---- --
 ** 04/../91 XX Implemented.
 **===
 =XXXXXX XXXXX XXXXX CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 12345678901234567890123456789012345678901234567890123456789012345

 Page 43

 Here is how we use the various fields:

 NAME: Routine Name and a 1-Line description of the routine.

 CATEGORY: General grouping (eg; MATH, CLKUTL, MEM, etc;)

 ABSTRACT: Purpose of the routine, with perhaps minimal
 details regarding how it does it.

 ENTRY: Exactly what CPU entry conditions must be satisfied.
 Sometimes worthwhile mentioning other required
 conditions as well (eg; RAM values, Timer State,
 interrupts disabled, etc.).

 EXIT: What conditions can be depended upon for a normal
 (non error) exit (Eg; where are the results? Does
 the routine always exit CC? Is there a particular
 value in P? What about HEX/DEC Mode?)

 ERROR EXITS: Same as EXIT, but for the error exits.

 ALTERS: What does the routine change (WORST CASE!) for
 a non-error exit. If no RAM is altered, eliminate
 that line and just list all CPU registers altered.
 This includes CARRY, P, MODE, SB, etc. The caller
 generally doesn't care what resources you use,
 just what you may have altered. So, do not list
 resources used, but always restored to their entry
 state before exit.

 CALLS: Names of the routines called before exit back to
 the caller. It is often useful to indicate the
 stack levels of the called routine here as well.
 This assists in filling out the Stack Levels field.

 STACK LEVELS: The number of stack levels used by this
 routine. If this routine has no GOSUB's, and does
 not employ C=RSTK or RSTK=C, then this will be 0.

 NOTES: The place for additional documentation, perhaps
 an algorithm description, or certain CAVEATS.

 HISTORY: Indicate date, programmers initials, and
 reason for changes. Don't start really using
 this until you feel the code is stable.

 Page 44

 7.5.3 Some_Header_Examples

 ** Name(S): PKDATE - Pack Date Components (YYYYMMDD order)
 **
 ** Category: DATEUTL
 **
 ** Purpose: Facilitates storage of date components in a single
 ** CPU register. Also useful for comparing two dates to
 ** determine which occurrs first in time. Entry conditions
 ** are designed so that this routine may easily be called
 ** after CKDATE.
 **
 ** Entry: A[A]: 0YYYY
 ** B[B]: MM
 ** D[B]: DD
 **
 ** Exit: C: 00000000YYYYMMDD; CC; P=7
 **
 ** Alters: C; P; CARRY
 **
 ** Calls: None
 **
 ** Stack Levels: 0
 **
 ** Notes:
 **
 ** Date Prog Modification
 ** -------- ---- --
 ** 08/23/85 SB Implemented.

 =PKDATE C=0 W Initialize Result
 C=A A Copy YYYY and shift left twice
 CSL A
 P= 7
 CSL WP
 C=B B Copy MM and shift left twice
 CSL WP
 CSL WP
 C=D B C: 00000000YYYYMMDD
 RTNCC

 Page 45

 EJECT

 ** Name(S): LEAPYR? - Determine if specified year is leap yr.
 **
 ** Category: DATEUTL
 **
 ** Purpose: Determine if specified year is a leap year.
 **
 ** Entry: A[A]: YYYY; DEC Mode.
 **
 ** Exit: CS - YYYY is a Leap Year
 ** CC - YYYY is not a Leap Year
 **
 ** Alters: C[A]; SB; Carry
 **
 ** Calls: None
 **
 ** Stack Levels: 1
 **
 ** Notes: Y is a leap year iff both of the following:
 ** 1) Y MOD 4 = 0
 ** -AND- 2) (Y MOD 100 # 0) or (Y MOD 400 =0)
 **
 ** Date Prog Modification
 ** -------- ---- --
 ** 07/12/85 SB Implemented.

 =LEAPYR?
 C=A A Init X=Y
 RSTK=C Save Y
 ?A#0 B Y divisible by 100 ?
 GOYES LEAP10 No. Leap yr iff X div by 4
 ASR A Yes. Leap yr iff Y div by 400
 ASR A
 C=A A C[A]=A[A]: X=Y/100

 * Reduced to testing whether X divisible by 4.
 LEAP10 SB=0 Init SB=0
 C=C+C A
 C=C+C A
 C=C+A A 5*X
 CSR A C[A]: X/2; Sets SB if X odd.
 CSRB Set SB if X/2 odd
 C=RSTK
 A=C A Restore Y
 ?SB=0 Leap Year?
 RTNYES Yes. CS
 RTN No. CC

 Page 46

 EJECT

 **
 *R Name: Ticks>DOW - Make Day of Week from Time in Ticks
 **
 ** Category: TIMESYS
 **
 ** Abstract: From Time in Ticks (since 0), return a real number
 ** integer (1-7) that identifies the day of week.
 **
 ** Stack: hxs --> % (Day of Week)
 **
 ** Error Exits: Insufficient Memory
 **
 ** Date Prog Modification
 ** -------- ---- --
 ** 03/18/88 SB Implemented.
 **===
 =Ticks>DOW
 CON(5) (*)+5

 * Pop Time(ticks) from stack
 A=DAT1 A
 AD1EX Save D1* in A[A]; D1:->hxs
 D1=D1+ 10 Skip over prologue and length
 C=0 W
 C=DAT1 13
 R0=C R0: Time (Ticks)
 D1=A Restore D1
 D1=D1+ 5
 D=D+1 A Pop hxs and save new pointers
 GOSBVL =SAVPTR

 * Convert to Day of Week and put in float form
 C=R0
 GOSBVL =dowutil A: Day of Week Index (1-7)
 C=A A
 P=C 0
 C=0 W
 C=P 14
 A=C W A: % (DOW: 1-7; 1=SUN)

 * Push % on stack and loop.
 GOTO push%lp

 Page 47

 8. Mnemonic Dictionary

 This section contains a description of each Saturn assembler
 instruction or pseudo-op. The description shows the binary
 opcode generated by the mnemonic, if any, as well as the
 execution cycle time required if the mnemonic is an
 executable instruction.

 ?A#0 fs - Test for A not equal to 0

 fs = A opcode: 8ACyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9aCyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is not equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 ?A#B fs - Test for A not equal to B

 fs = A opcode: 8A4yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a4yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is not equal to the fs field
 of B. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 48

 ?A#C fs - Test for A not equal to C

 fs = A opcode: 8A6yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a6yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is not equal to the fs field
 of C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?A<=B fs - Test for A less than or equal to B

 fs = A opcode: 8BCyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9bCyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is less than or equal to the
 fs field of B. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 ?A<B fs - Test for A less than B

 fs = A opcode: 8B4yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b4yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is less than the fs field of
 B. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 49

 ?A=0 fs - Test for A equal to 0

 fs = A opcode: 8A8yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a8yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 ?A=B fs - Test for A equal to B

 fs = A opcode: 8A0yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a0yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is equal to the fs field of
 B. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?A=C fs - Test for A equal to C

 fs = A opcode: 8A2yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a2yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is equal to the fs field of
 C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 50

 ?A>=B fs - Test for A greater than or equal to B

 fs = A opcode: 8B8yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b8yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is greater than or equal to
 the fs field of B. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 ?A>B fs - Test for A greater than B

 fs = A opcode: 8B0yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b0yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of A is greater than the fs field
 of B. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?B#0 fs - Test for B not equal to 0

 fs = A opcode: 8ADyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9aDyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is not equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 Page 51

 ?B#A fs - Test for B not equal to A

 fs = A opcode: 8A4yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a4yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is not equal to the fs field
 of A. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?B#C fs - Test for B not equal to C

 fs = A opcode: 8A5yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a5yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is not equal to the fs field
 of C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 52

 ?B<=C fs - Test for B less than or equal to C

 fs = A opcode: 8BDyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9bDyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is less than or equal to the
 fs field of C. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 ?B<C fs - Test for B less than C

 fs = A opcode: 8B5yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b5yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is less than the fs field of
 C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?B=0 fs - Test for B equal to 0

 fs = A opcode: 8A9yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a9yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 Page 53

 ?B=A fs - Test for B equal to A

 fs = A opcode: 8A0yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a0yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is equal to the fs field of
 A. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?B=C fs - Test for B equal to C

 fs = A opcode: 8A1yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a1yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is equal to the fs field of
 C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?B>=C fs - Test for B greater than or equal to C

 fs = A opcode: 8B9yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b9yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is greater than or equal to
 the fs field of C. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 Page 54

 ?B>C fs - Test for B greater than C

 fs = A opcode: 8B1yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b1yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of B is greater than the fs field
 of C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?C#0 fs - Test for C not equal to 0

 fs = A opcode: 8AEyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9aEyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is not equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 ?C#A fs - Test for C not equal to A

 fs = A opcode: 8A6yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a6yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is not equal to the fs field
 of A. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 55

 ?C#B fs - Test for C not equal to B

 fs = A opcode: 8A5yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a5yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is not equal to the fs field
 of B. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?C#D fs - Test for C not equal to D

 fs = A opcode: 8A7yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a7yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is not equal to the fs field
 of D. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?C<=A fs - Test for C less than or equal to A

 fs = A opcode: 8BEyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9bEyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is less than or equal to the
 fs field of A. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 Page 56

 ?C<A fs - Test for C less than A

 fs = A opcode: 8B6yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b6yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is less than the fs field of
 A. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?C=0 fs - Test for C equal to 0

 fs = A opcode: 8AAyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9aAyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 ?C=A fs - Test for C equal to A

 fs = A opcode: 8A2yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a2yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is equal to the fs field of
 A. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 57

 ?C=B fs - Test for C equal to B

 fs = A opcode: 8A1yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a1yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is equal to the fs field of
 B. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?C=D fs - Test for C equal to D

 fs = A opcode: 8A3yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a3yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is equal to the fs field of
 D. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?C>=A fs - Test for C greater than or equal to A

 fs = A opcode: 8BAyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9bAyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is greater than or equal to
 the fs field of A. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 Page 58

 ?C>A fs - Test for C greater than A

 fs = A opcode: 8B2yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b2yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of C is greater than the fs field
 of A. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?D#0 fs - Test for D not equal to 0

 fs = A opcode: 8AFyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9aFyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is not equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 ?D#C fs - Test for D not equal to C

 fs = A opcode: 8A7yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a7yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is not equal to the fs field
 of C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 59

 ?D<=C fs - Test for D less than or equal to C

 fs = A opcode: 8BFyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9bFyy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is less than or equal to the
 fs field of C. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 ?D<C fs - Test for D less than to C

 fs = A opcode: 8B7yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b7yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is less than the fs field of
 C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?D=0 fs - Test for D equal to 0

 fs = A opcode: 8AByy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9aByy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is equal to 0. Must be
 followed by a GOYES or RTNYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 Page 60

 ?D=C fs - Test for D equal to C

 fs = A opcode: 8A3yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9a3yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is equal to the fs field of
 C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 ?D>=C fs - Test for D greater than or equal to C

 fs = A opcode: 8BByy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9bByy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is greater than or equal to
 the fs field of C. Must be followed by a GOYES or RTNYES
 mnemonic. yy is determined by the following RTNYES or GOYES.
 Adjusts Carry.

 ?D>C fs - Test for D greater than C

 fs = A opcode: 8B3yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 fs = (P,WP,XS,X,S,M,B,W) opcode: 9b3yy
 cycles: 13 + d (GO/RTNYES)
 6 + d (NO)

 Test whether the fs field of D is greater than the fs field
 of C. Must be followed by a GOYES or RTNYES mnemonic. yy is
 determined by the following RTNYES or GOYES. Adjusts Carry.

 Page 61

 ?MP=0 - Test Module Pulled bit (MP)

 opcode: 838yy
 cycles: 13 (GO/RTNYES)
 6 (NO)

 Test whether the Module Pulled bit (MP) is zero. This
 hardware status bit is set whenever a module-pulled
 interrupt occurs (the *INT line of the CPU is pulled high),
 and must be explictly cleared by the MP=0 mnemonic. See the
 "HP-71 Hardware Specification" for more information. Must
 be followed by a RTNYES or GOYES mnemonic. yy is determined
 by the following RTNYES or GOYES. Adjusts Carry.

 ?P# n - Test if P pointer not equal to n

 opcode: 88nyy
 cycles: 13 (GO/RTNYES)
 6 (NO)

 Test whether the P pointer is not equal to n. Must be
 followed by a RTNYES or GOYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 ?P= n - Test if P pointer is equal to n

 opcode: 89nyy
 cycles: 13 (GO/RTNYES)
 6 (NO)

 Test whether the P pointer is equal to n. Must be followed
 by a RTNYES or GOYES mnemonic. yy is determined by the
 following RTNYES or GOYES. Adjusts Carry.

 ?SB=0 - Test Sticky Bit (SB)

 opcode: 832yy
 cycles: 13 (GO/RTNYES)
 6 (NO)

 Test whether the Sticky Bit (SB) is zero. This hardware
 status bit is set on right shifts when a non-zero nibble or
 bit is shifted off the end of the field. The Sticky Bit
 must be cleared explicitly. Must be followed by a RTNYES or
 GOYES mnemonic. yy is determined by the following RTNYES or
 GOYES. Adjusts Carry.

 Page 62

 ?SR=0 - Test Service Request bit (SR) for zero

 opcode: 834yy
 cycles: 13 (GO/RTNYES)
 6 (NO)

 Test whether the Service Request bit (SR) is zero. This
 hardware status bit is set by the SREQ? mnemonic, and must
 be cleared explicitly by the SR=0 instruciton. Must be
 followed by a RTNYES or GOYES mnemonic. yy is determined by
 the following RTNYES or GOYES. Adjusts Carry.

 ?ST#0 n - Test status bit n not equal to 0

 opcode: 87nyy
 cycles: 14 (GO/RTNYES)
 7 (NO)

 Test whether Program Status bit n is set. Must be followed
 by a RTNYES or GOYES mnemonic. yy is determined by the
 following RTNYES or GOYES. Adjusts Carry.

 ?ST#1 n - Test status bit n not equal to 1

 opcode: 86nyy
 cycles: 14 (GO/RTNYES)
 7 (NO)

 Test whether Program Status bit n is clear. Must be followed
 by a RTNYES or GOYES mnemonic. yy is determined by the
 following RTNYES or GOYES. Adjusts Carry.

 ?ST=0 n - Test status bit n equal to 0

 opcode: 86nyy
 cycles: 14 (GO/RTNYES)
 7 (NO)

 Test whether Program Status bit n is clear. Must be followed
 by a RTNYES or GOYES mnemonic. yy is determined by the
 following RTNYES or GOYES. Adjusts Carry.

 Page 63

 ?ST=1 n - Test status bit n equal to 1

 opcode: 87nyy
 cycles: 14 (GO/RTNYES)
 7 (NO)

 Test whether Program Status bit n is set. Must be followed
 by a RTNYES or GOYES mnemonic. yy is determined by the
 following RTNYES or GOYES. Adjusts Carry.

 ?XM=0 - Test External Module Missing bit (XM)

 opcode: 831yy
 cycles: 13 (GO/RTNYES)
 6 (NO)

 Test the whether the External Module Missing bit (XM) is
 zero. This hardware status bit is set by the RTNSXM
 mnemonic, and must be explicitly cleared by the XM=0
 mnemonic. Must be followed by a RTNYES or GOYES mnemonic.
 yy is determined by the following RTNYES or GOYES. Adjusts
 Carry.

 A=-A fs - Two's complement of A into A

 fs = A opcode: F8
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb8
 cycles: 3 + d

 Complement the specified fs field of A. Complement is two's
 complement if in HEX mode, ten's complement if in DEC mode.
 Carry is set if the field is not zero, else Carry is
 cleared.

 A=-A-1 fs - One's complement of A into A

 fs = A opcode: FC
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BbC
 cycles: 3 + d

 Perform a one's complement on the specified fs field of A.
 Carry is always cleared.

 Page 64

 A=0 fs - Set A equal to 0

 fs = A opcode: D0
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab0
 cycles: 3 + d

 Set the specified fs field of A to zero. Carry is not
 affected.

 A=A!B fs - A OR B into A

 fs = A opcode: 0EF8
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea8
 cycles: 4 + d

 Set the fs field of register A to its logical OR with the
 corresponding field of register B. Carry is not affected.

 A=A!C fs - A OR C into A

 fs = A opcode: 0EFE
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0EaE
 cycles: 4 + d

 Set the fs field of register A to its logical OR with the
 corresponding field of register C. Carry is not affected.

 A=A&B fs - A AND B into A

 fs = A opcode: 0EF0
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea0
 cycles: 4 + d

 Set the fs field of register A to its logical AND with the
 corresponding field of register B. Carry is not affected.

 Page 65

 A=A&C fs - A AND C into A

 fs = A opcode: 0EF6
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea6
 cycles: 4 + d

 Set the fs field of register A to its logical AND with the
 corresponding field of register C. Carry is not affected.

 A=A+1 fs - Increment A

 fs = A opcode: E4
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba4
 cycles: 3 + d

 Increment the specified fs field of register A by one.
 Adjusts Carry.

 A=A+A fs - Sum of A and A into A

 fs = A opcode: C4
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa4
 cycles: 3 + d

 Double the specified fs field of register A. Adjusts Carry.

 A=A+B fs - Sum of A and B into A

 fs = A opcode: C0
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa0
 cycles: 3 + d

 Set the specified fs field of register A to the sum of
 itself and the corresponding field of register B. Adjusts
 Carry.

 Page 66

 A=A+C fs - Sum of A and C into A

 fs = A opcode: CA
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AaA
 cycles: 3 + d

 Set the specified fs field of register A to the sum of
 itself and the corresponding field of register C. Adjusts
 Carry.

 A=A-1 fs - Decrement A

 fs = A opcode: CC
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AaC
 cycles: 3 + d

 Decrement the specified fs field of register A by one.
 Adjusts Carry.

 A=A-B fs - A minus B into A

 fs = A opcode: E0
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba0
 cycles: 3 + d

 Set the specified fs field of register A to the difference
 between itself and the corresponding field of register B.
 Adjusts Carry.

 A=A-C fs - A minus C into A

 fs = A opcode: EA
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BaA
 cycles: 3 + d

 Set the specified fs field of register A to the difference
 between itself and the corresponding field of register C.
 Adjusts Carry.

 Page 67

 A=B fs - Copy B to A

 fs = A opcode: D4
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab4
 cycles: 3 + d

 Copy the fs field of register B into the corresponding field
 of register A. Carry is not affected.

 A=B-A fs - B minus A into A

 fs = A opcode: EC
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BaC
 cycles: 3 + d

 Set the specified fs field of register A to the inverse
 difference between itself and the corresponding field of
 register B. Adjusts Carry.

 A=C fs - Copy C to A

 fs = A opcode: DA
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbA
 cycles: 3 + d

 Copy the fs field of register C into the corresponding field
 of register A. Carry is not affected.

 Page 68

 A=DAT0 fsd - Load A from memory

 fs = A opcode: 142
 cycles: 18

 fs = B opcode: 14A
 cycles: 15

 fs = (P,WP,XS,X,S,M,W) opcode: 152a
 cycles: 17 + d

 fs = d opcode: 15Ax (x=d-1)
 cycles: 16 + d

 The amount of data (d nibbles) specified by fsd will be
 transferred from the memory address pointed to by D0 into
 the specified field of register A. The lowest-addressed
 nibble will be transferred into the lowest-order nibble of
 the register field, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are transferred into the
 register starting at nibble 0. See the section on "Loading
 Data From Memory".

 A=DAT1 fsd - Load A from memory

 fs = A opcode: 143
 cycles: 18

 fs = B opcode: 14B
 cycles: 15

 fs = (P,WP,XS,X,S,M,W) opcode: 153a
 cycles: 17 + d

 fs = d opcode: 15Bx (x=d-1)
 cycles: 16 + d

 The amount of data (d nibbles) specified by fsd will be
 transferred from the memory address pointed to by D1 into
 the specified field of register A. The lowest-addressed
 nibble will be transferred into the lowest-order nibble of
 the register field, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are transferred into the
 register starting at nibble 0. See the section on "Loading
 Data From Memory".

 Page 69

 A=IN - Load A with IN

 opcode: 802
 cycles: 7

 Load the low-order 4 nibbles of the A register with the
 contents of the Input register.

 A=R0 - Copy R0 to A

 opcode: 110
 cycles: 19

 The contents of the scratch register R0 is copied to the
 working register A.

 A=R1 - Copy R1 to A

 opcode: 111
 cycles: 19

 The contents of the scratch register R1 is copied to the
 working register A.

 A=R2 - Copy R2 to A

 opcode: 112
 cycles: 19

 The contents of the scratch register R2 is copied to the
 working register A.

 A=R3 - Copy R3 to A

 opcode: 113
 cycles: 19

 The contents of the scratch register R3 is copied to the
 working register A.

 Page 70

 A=R4 - Copy R4 to A

 opcode: 114
 cycles: 19

 The contents of the scratch register R4 is copied to the
 working register A.

 ABEX fs - Exchange Registers A and B

 fs = A opcode: DC
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbC
 cycles: 3 + d

 Exchange the fs fields of registers of A and B. Carry is not
 affected.

 ACEX fs - Exchange Registers A and C

 fs = A opcode: DE
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbE
 cycles: 3 + d

 Exchange the fs fields of registers of A and C. Carry is not
 affected.

 AD0EX - Exchange A and D0 (nibs 0-4)

 opcode: 132
 cycles: 8

 Exchange the A field of register A with Data pointer D0.
 Carry is not affected.

 Page 71

 AD0XS - Exchange A and D0 short (nibs 0-3)

 opcode: 13A
 cycles: 7

 Exchange the lower 4 nibbles of A with the lower 4 nibbles
 of Data pointer D0. Carry is not affected.

 AD1EX - Exchange A and D1 (nibs 0-4)

 opcode: 133
 cycles: 8

 Exchange the A field of register A with Data pointer D1.
 Carry is not affected.

 AD1XS - Exchange A and D1 short (nibs 0-3)

 opcode: 13B
 cycles: 7

 Exchange the lower 4 nibbles of A with the lower 4 nibbles
 of Data pointer D1. Carry is not affected.

 AR0EX - Exchange A and R0

 opcode: 120
 cycles: 19

 Exchange the contents of the working register A and the
 scratch register R0.

 AR1EX - Exchange A and R1

 opcode: 121
 cycles: 19

 Exchange the contents of the working register A and the
 scratch register R1.

 Page 72

 AR2EX - Exchange A and R2

 opcode: 122
 cycles: 19

 Exchange the contents of the working register A and the
 scratch register R2.

 AR3EX - Exchange A and R3

 opcode: 123
 cycles: 19

 Exchange the contents of the working register A and the
 scratch register R3.

 AR4EX - Exchange A and R4

 opcode: 124
 cycles: 19

 Exchange the contents of the working register A and the
 scratch register R4.

 ASL fs - A Shift Left

 fs = A opcode: F0
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb0
 cycles: 3 + d

 Shift the contents of the specified fs field of register A
 left one nibble, without affecting the rest of the register.
 The nibble shifted off the left end of the field is lost.
 The new low-order nibble of the field is zero. The Sticky
 Bit (SB) is not affected.

 Page 73

 ASLC - A Shift Left Circular

 opcode: 810
 cycles: 21

 Circular shift register A left one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is not affected.

 ASR fs - A Shift Right

 fs = A opcode: F4
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb4
 cycles: 3 + d

 Shift the contents of the specified fs field of register A
 right one nibble, without affecting the rest of the
 register. The nibble shifted off the right end of the field
 is lost, but the Sticky Bit (SB) is set if the nibble was
 non-zero. The new high-order nibble of the field is zero.

 ASRB - A Shift Right Bit

 opcode: 81C
 cycles: 20

 Shift register A right one bit. Operates on all 16 digits.
 The bit shifted off the end is lost, but the Sticky Bit (SB)
 is set if it was non-zero. The new high-order bit of the
 register is zero.

 ASRC - A Shift Right Circular

 opcode: 814
 cycles: 21

 Circular shift register A right one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is set if the nibble shifted
 from low-order around to high-order position was non-zero.

 Page 74

 B=-B fs - Two's complement of B into B

 fs = A opcode: F9
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb9
 cycles: 3 + d

 Complement the specified fs field of B. Complement is two's
 complement if in HEX mode, ten's complement if in DEC mode.
 Carry is set if the field is not zero, else Carry is
 cleared.

 B=-B-1 fs - One's complement of B into B

 fs = A opcode: FD
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BbD
 cycles: 3 + d

 Perform a one's complement on the specified fs field of B.
 Carry is always cleared.

 B=0 fs - Set B equal to 0

 fs = A opcode: D1
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab1
 cycles: 3 + d

 Set the specified fs field of B to zero. Carry is not
 affected.

 B=A fs - Copy A to B

 fs = A opcode: D8
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab8
 cycles: 3 + d

 Copy the fs field of register A into the corresponding field
 of register B. Carry is not affected.

 Page 75

 B=B!A fs - B OR A into B

 fs = A opcode: 0EFC
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0EaC
 cycles: 4 + d

 Set the fs field of register B to its logical OR with the
 corresponding field of register A. Carry is not affected.

 B=B!C fs - B OR C into B

 fs = A opcode: 0EF9
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea9
 cycles: 4 + d

 Set the fs field of register B to its logical OR with the
 corresponding field of register C. Carry is not affected.

 B=B&A fs - B AND A into B

 fs = A opcode: 0EF4
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea4
 cycles: 4 + d

 Set the fs field of register B to its logical AND with the
 corresponding field of register A. Carry is not affected.

 B=B&C fs - B AND C into B

 fs = A opcode: 0EF1
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea1
 cycles: 4 + d

 Set the fs field of register B to its logical AND with the
 corresponding field of register C. Carry is not affected.

 Page 76

 B=B+1 fs - Increment B

 fs = A opcode: E5
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba5
 cycles: 3 + d

 Increment the specified fs field of register B by one.
 Adjusts Carry.

 B=B+A fs - Sum of B and A into B

 fs = A opcode: C8
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa8
 cycles: 3 + d

 Set the specified fs field of register B to the sum of
 itself and the corresponding field of register A. Adjusts
 Carry.

 B=B+B fs - Sum of B and B into B

 fs = A opcode: C5
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa5
 cycles: 3 + d

 Double the specified fs field of register B. Adjusts Carry.

 B=B+C fs - Sum of B and C into B

 fs = A opcode: C1
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa1
 cycles: 3 + d

 Set the specified fs field of register B to the sum of
 itself and the corresponding field of register C. Adjusts
 Carry.

 Page 77

 B=B-1 fs - Decrement B

 fs = A opcode: CD
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AaD
 cycles: 3 + d

 Decrement the specified fs field of register B by one.
 Adjusts Carry.

 B=B-A fs - B minus A into B

 fs = A opcode: E8
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba8
 cycles: 3 + d

 Set the specified fs field of register B to the difference
 between itself and the corresponding field of register A.
 Adjusts Carry.

 B=B-C fs - B minus C into B

 fs = A opcode: E1
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba1
 cycles: 3 + d

 Set the specified fs field of register B to the difference
 between itself and the corresponding field of register C.
 Adjusts Carry.

 B=C fs - Copy C to B

 fs = A opcode: D5
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab5
 cycles: 3 + d

 Copy the fs field of register C into the corresponding field
 of register B. Carry is not affected.

 Page 78

 B=C-B fs - C minus B into B

 fs = A opcode: ED
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BaD
 cycles: 3 + d

 Set the specified fs field of register B to the inverse
 difference between itself and the corresponding field of
 register C. Adjusts Carry.

 BAEX fs - Exchange Registers B and A

 fs = A opcode: DC
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbC
 cycles: 3 + d

 Exchange the fs fields of registers of B and A. Carry is not
 affected.

 BCEX fs - Exchange Registers B and C

 fs = A opcode: DD
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbD
 cycles: 3 + d

 Exchange the fs fields of registers of B and C. Carry is not
 affected.

 BSL fs - B Shift Left

 fs = A opcode: F1
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb1
 cycles: 3 + d

 Shift the contents of the specified fs field of register B
 left one nibble, without affecting the rest of the register.
 The nibble shifted off the left end of the field is lost.
 The new low-order nibble of the field is zero. The Sticky
 Bit (SB) is not affected.

 Page 79

 BSLC - B Shift Left Circular

 opcode: 811
 cycles: 21

 Circular shift register B left one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is not affected.

 BSR fs - B Shift Right

 fs = A opcode: F5
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb5
 cycles: 3 + d

 Shift the contents of the specified fs field of register B
 right one nibble, without affecting the rest of the
 register. The nibble shifted off the right end of the field
 is lost, but the Sticky Bit (SB) is set if the nibble was
 non-zero. The new high-order nibble of the field is zero.

 BSRB - B Shift Right Bit

 opcode: 81D
 cycles: 20

 Shift register B right one bit. Operates on all 16 digits.
 The bit shifted off the end is lost, but the Sticky Bit (SB)
 is set if it was non-zero. The new high-order bit of the
 register is zero.

 BSRC - B Shift Right Circular

 opcode: 815
 cycles: 21

 Circular shift register B right one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is set if the nibble shifted
 from low-order around to high-order position was non-zero.

 Page 80

 BUSCC - Bus Command "C"

 opcode: 80B
 cycles: 6

 Enters the Saturn bus command "C" onto the system bus (this
 command is reserved for later use). No other operation is
 performed. See the "HP-71 Hardware Specification" for more
 information.

 C+P+1 - Increment C by One Plus P Pointer

 opcode: 809
 cycles: 8

 The A field of the C register is incremented by one plus the
 value of the P pointer. This instruction is always executed
 in HEX mode. Adjusts Carry.

 C=-C fs - Two's complement of C into C

 fs = A opcode: FA
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BbA
 cycles: 3 + d

 Complement the specified fs field of C. Complement is two's
 complement if in HEX mode, ten's complement if in DEC mode.
 Carry is set if the field is not zero, else Carry is
 cleared.

 C=-C-1 fs - One's complement of C into C

 fs = A opcode: FE
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BbE
 cycles: 3 + d

 Perform a one's complement on the specified fs field of C.
 Carry is always cleared.

 Page 81

 C=0 fs - Set C equal to 0

 fs = A opcode: D2
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab2
 cycles: 3 + d

 Set the specified fs field of C to zero. Carry is not
 affected.

 C=A fs - Copy A to C

 fs = A opcode: D6
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab6
 cycles: 3 + d

 Copy the fs field of register A into the corresponding field
 of register C. Carry is not affected.

 C=A-C fs - A minus C into C

 fs = A opcode: EE
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BaE
 cycles: 3 + d

 Set the specified fs field of register C to the inverse
 difference between itself and the corresponding field of
 register A. Adjusts Carry.

 C=B fs - Copy B to C

 fs = A opcode: D9
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab9
 cycles: 3 + d

 Copy the fs field of register B into the corresponding field
 of register C. Carry is not affected.

 Page 82

 C=C!A fs - C OR A into C

 fs = A opcode: 0EFA
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0EaA
 cycles: 4 + d

 Set the fs field of register C to its logical OR with the
 corresponding field of register A. Carry is not affected.

 C=C!B fs - C OR B into C

 fs = A opcode: 0EFD
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0EaD
 cycles: 4 + d

 Set the fs field of register C to its logical OR with the
 corresponding field of register B. Carry is not affected.

 C=C!D fs - C OR D into C

 fs = A opcode: 0EFF
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0EaF
 cycles: 4 + d

 Set the fs field of register C to its logical OR with the
 corresponding field of register D. Carry is not affected.

 C=C&A fs - C AND A into A

 fs = A opcode: 0EF2
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea2
 cycles: 4 + d

 Set the fs field of register C to its logical AND with the
 corresponding field of register A. Carry is not affected.

 Page 83

 C=C&B fs - C AND B into C

 fs = A opcode: 0EF5
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea5
 cycles: 4 + d

 Set the fs field of register C to its logical AND with the
 corresponding field of register B. Carry is not affected.

 C=C&D fs - C AND D into C

 fs = A opcode: 0EF7
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea7
 cycles: 4 + d

 Set the fs field of register C to its logical AND with the
 corresponding field of register D. Carry is not affected.

 C=C+1 fs - Increment C

 fs = A opcode: E6
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba6
 cycles: 3 + d

 Increment the specified fs field of register C by one.
 Adjusts Carry.

 C=C+A fs - Sum of C and A into C

 fs = A opcode: C2
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa2
 cycles: 3 + d

 Set the specified fs field of register C to the sum of
 itself and the corresponding field of register A. Adjusts
 Carry.

 Page 84

 C=C+B fs - Sum of C and B into C

 fs = A opcode: C9
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa9
 cycles: 3 + d

 Set the specified fs field of register C to the sum of
 itself and the corresponding field of register B. Adjusts
 Carry.

 C=C+C fs - Sum of C and C into C

 fs = A opcode: C6
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa6
 cycles: 3 + d

 Double the specified fs field of register C. Adjusts Carry.

 C=C+D fs - Sum of C and D into C

 fs = A opcode: CB
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AaB
 cycles: 3 + d

 Set the specified fs field of register C to the sum of
 itself and the corresponding field of register D. Adjusts
 Carry.

 C=C-1 fs - Decrement C

 fs = A opcode: CE
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AaE
 cycles: 3 + d

 Decrement the specified fs field of register C by one.
 Adjusts Carry.

 Page 85

 C=C-A fs - C minus A into C

 fs = A opcode: E2
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba2
 cycles: 3 + d

 Set the specified fs field of register C to the difference
 between itself and the corresponding field of register A.
 Adjusts Carry.

 C=C-B fs - C minus B into C

 fs = A opcode: E9
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba9
 cycles: 3 + d

 Set the specified fs field of register C to the difference
 between itself and the corresponding field of register B.
 Adjusts Carry.

 C=C-D fs - C minus D into C

 fs = A opcode: EB
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BaB
 cycles: 3 + d

 Set the specified fs field of register C to the difference
 between itself and the corresponding field of register D.
 Adjusts Carry.

 C=D fs - Copy D to C

 fs = A opcode: DB
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbB
 cycles: 3 + d

 Copy the fs field of register D into the corresponding field
 of register C. Carry is not affected.

 Page 86

 C=DAT0 fsd - Load C from memory

 fs = A opcode: 146
 cycles: 18

 fs = B opcode: 14E
 cycles: 15

 fs = (P,WP,XS,X,S,M,W) opcode: 156a
 cycles: 17 + d

 fs = d opcode: 15Ex (x=d-1)
 cycles: 16 + d

 The amount of data (d nibbles) specified by fsd will be
 transferred from the memory address pointed to by D0 into
 the specified field of register C. The lowest-addressed
 nibble will be transferred into the lowest-order nibble of
 the register field, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are transferred into the
 register starting at nibble 0. See the section on "Loading
 Data From Memory".

 C=DAT1 fsd - Load C from memory

 fs = A opcode: 147
 cycles: 18

 fs = B opcode: 14F
 cycles: 15

 fs = (P,WP,XS,X,S,M,W) opcode: 157a
 cycles: 17 + d

 fs = d opcode: 15Fx (x=d-1)
 cycles: 16 + d

 The amount of data (d nibbles) specified by fsd will be
 transferred from the memory address pointed to by D1 into
 the specified field of register C. The lowest-addressed
 nibble will be transferred into the lowest-order nibble of
 the register field, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are transferred into the
 register starting at nibble 0. See the section on "Loading
 Data From Memory".

 Page 87

 C=ID - Request chip ID

 opcode: 806
 cycles: 11

 The chip which has its DAISY-IN line high and its
 configuration flag low will send its 5 nibble ID register to
 the system bus which will be loaded into the low-order 5
 nibbles (A field) of the C register.

 C=IN - Load C with IN

 opcode: 803
 cycles: 7

 Load the low-order 4 nibbles of the C register with the
 contents of the Input register.

 C=P n - Copy P Pointer into Nibble n of C

 opcode: 80Cn
 cycles: 6

 Copy P pointer into C register at digit position specified
 by n.

 C=R0 - Copy R0 to C

 opcode: 118
 cycles: 19

 The contents of the scratch register R0 is copied to the
 working register C.

 C=R1 - Copy R1 to C

 opcode: 119
 cycles: 19

 The contents of the scratch register R1 is copied to the
 working register C.

 Page 88

 C=R2 - Copy R2 to C

 opcode: 11A
 cycles: 19

 The contents of the scratch register R2 is copied to the
 working register C.

 C=R3 - Copy R3 to C

 opcode: 11B
 cycles: 19

 The contents of the scratch register R3 is copied to the
 working register C.

 C=R4 - Copy R4 to C

 opcode: 11C
 cycles: 19

 The contents of the scratch register R4 is copied to the
 working register C.

 C=RSTK - Pop stack to C

 opcode: 07
 cycles: 8

 Pop the top-most address off of the hardware return stack,
 placing the address in the lower 5 nibbles (A field) of
 register C. The high-order nibbles of C are unchanged. As
 the address is popped from the return stack, a zero address
 is inserted at the bottom of the stack. Compare with the
 RTN mnemonic.

 Page 89

 C=ST - Status to C

 opcode: 09
 cycles: 6

 Copy the low-order 12 bits of the status register into the
 low-order 12 bits (X field) of the C register.

 CAEX fs - Exchange Registers C and A

 fs = A opcode: DE
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbE
 cycles: 3 + d

 Exchange the fs fields of registers of C and A. Carry is not
 affected.

 CBEX fs - Exchange Registers C and B

 fs = A opcode: DD
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbD
 cycles: 3 + d

 Exchange the fs fields of registers of C and B. Carry is not
 affected.

 CD0EX - Exchange C and D0 (nibs 0-4)

 opcode: 136
 cycles: 8

 Exchange the A field of register C with Data pointer D0.
 Carry is not affected.

 Page 90

 CD0XS - Exchange C and D0 short (nibs 0-3)

 opcode: 13E
 cycles: 7

 Exchange the lower 4 nibbles of C with the lower 4 nibbles
 of Data pointer D0. Carry is not affected.

 CD1EX - Exchange C and D1 (nibs 0-4)

 opcode: 137
 cycles: 8

 Exchange the A field of register C with Data pointer D1.
 Carry is not affected.

 CD1XS - Exchange C and D1 short (nibs 0-3)

 opcode: 13F
 cycles: 7

 Exchange the lower 4 nibbles of C with the lower 4 nibbles
 of Data pointer D1. Carry is not affected.

 CDEX fs - Exchange Registers C and D

 fs = A opcode: DF
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbF
 cycles: 3 + d

 Exchange the fs fields of registers of C and D. Carry is not
 affected.

 Page 91

 CLRHST - Clear Hardware Status bits

 opcode: 82F
 cycles: 3

 Clears the 4 Hardware Status bits XM, SB, SR and MP. Note
 that the opcode is actually 82x, where x is merely a mask
 for which Hardware Status bits to clear, as follows:

 bit 0 - External Module Missing bit (see XM=0 mnemonic)
 bit 1 - Sticky Bit (see SB=0 mnemonic)
 bit 2 - Service Request bit (see SR=0 mnemonic)
 bit 3 - Module Pulled bit (see MP=0 mnemonic)

 For example opcode 829 clears XM and MP. Although there is
 no mnemonic for this, the opcode can be inserted into the
 code by using, for example, NIBHEX 829.

 CLRST - Clear Program Status

 opcode: 08
 cycles: 6

 Clear the low-order 12 bits (S0 through S11) of the Program
 Status register ST.

 CONFIG - Configure

 opcode: 805
 cycles: 11

 Copy the low-order 5 nibbles (A field) of the C register
 into the Configuration register of the chip which has its
 DAISY-IN line high and its configuration flag low. See the
 "HP-71 Hardware Specification" for information.

 CPEX n - Exchange Nibble n of C With P Pointer

 opcode: 80Fn
 cycles: 6

 Exchange the P pointer with digit n of the C register.

 Page 92

 CR0EX - Exchange C and R0

 opcode: 128
 cycles: 19

 Exchange the contents of the working register C and the
 scratch register R0.

 CR1EX - Exchange C and R1

 opcode: 129
 cycles: 19

 Exchange the contents of the working register C and the
 scratch register R1.

 CR2EX - Exchange C and R2

 opcode: 12A
 cycles: 19

 Exchange the contents of the working register C and the
 scratch register R2.

 CR3EX - Exchange C and R3

 opcode: 12B
 cycles: 19

 Exchange the contents of the working register C and the
 scratch register R3.

 Page 93

 CR4EX - Exchange C and R4

 opcode: 12C
 cycles: 19

 Exchange the contents of the working register C and the
 scratch register R4.

 CSL fs - C Shift Left

 fs = A opcode: F2
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb2
 cycles: 3 + d

 Shift the contents of the specified fs field of register C
 left one nibble, without affecting the rest of the register.
 The nibble shifted off the left end of the field is lost.
 The new low-order nibble of the field is zero. The Sticky
 Bit (SB) is not affected.

 CSLC - C Shift Left Circular

 opcode: 812
 cycles: 21

 Circular shift register C left one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is not affected.

 Page 94

 CSR fs - C Shift Right

 fs = A opcode: F6
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb6
 cycles: 3 + d

 Shift the contents of the specified fs field of register C
 right one nibble, without affecting the rest of the
 register. The nibble shifted off the right end of the field
 is lost, but the Sticky Bit (SB) is set if the nibble was
 non-zero. The new high-order nibble of the field is zero.

 CSRB - C Shift Right Bit

 opcode: 81E
 cycles: 20

 Shift register C right one bit. Operates on all 16 digits.
 The bit shifted off the end is lost, but the Sticky Bit (SB)
 is set if it was non-zero. The new high-order bit of the
 register is zero.

 CSRC - C Shift Right Circular

 opcode: 816
 cycles: 21

 Circular shift register C right one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is set if the nibble shifted
 from low-order around to high-order position was non-zero.

 CSTEX - Exchange Status

 opcode: 0B
 cycles: 6

 Exchange the low-order 12 bits (S0 through S11) of the
 Program Status register ST with the low-order 12 bits of the
 C register.

 Page 95

 D0=(2) nn - Load 2 Nibbles Into D0

 opcode: 19nn
 cycles: 4

 Load the low-order two nibbles of D0 with nn. The upper
 nibbles of D0 remain unchanged. Any overflow is ignored by
 the assembler. The assembled digits of nn are stored in the
 opcode in reverse order so that when the instruction is
 executed the data will be loaded into the register with the
 intended orientation. See the section on "Loading Data From
 Memory".

 D0=(4) nnnn - Load 4 Nibbles Into D0

 opcode: 1Annnn
 cycles: 6

 Load the low-order four nibbles of D0 with nnnn. The upper
 nibble of D0 remains unchanged. Any overflow is ignored by
 the assembler. The assembled digits of nnnn are stored in
 the opcode in reverse order so that when the instruction is
 executed the data will be loaded into the register with the
 intended orientation. See the section on "Loading Data From
 Memory".

 D0=(5) nnnnn - Load 5 Nibbles Into D0

 opcode: 1Bnnnnn
 cycles: 7

 Load all five nibbles of D0 with nnnnn. Any overflow is
 ignored by the assembler. The assembled digits of nnnnn are
 stored in the opcode in reverse order so that when the
 instruction is executed the data will be loaded into the
 register with the intended orientation. See the section on
 "Loading Data From Memory".

 Page 96

 D0=A - Copy A to D0 (nibs 0-4)

 opcode: 130
 cycles: 8

 The A field of register A is copied into Data pointer
 register D0. Carry is not affected.

 D0=AS - Copy A to D0 short (nibs 0-3)

 opcode: 138
 cycles: 7

 The lower 4 nibbles of A are copied into the lower 4 nibbles
 of Data pointer register D0. Carry is not affected.

 D0=C - Copy C to D0 (nibs 0-4)

 opcode: 134
 cycles: 8

 The A field of register C is copied into Data pointer
 register D0. Carry is not affected.

 D0=CS - Copy C to D0 short (nibs 0-3)

 opcode: 13C
 cycles: 7

 The lower 4 nibbles of C are copied into the lower 4 nibbles
 of Data pointer register D0. Carry is not affected.

 Page 97

 D0=D0+ n - Add n to D0 (1<=n<=16)

 opcode: 16x (x=n-1)
 cycles: 7

 Increment D0 by n. This instruction is always executed in
 HEX mode. Adjusts Carry.

 D0=D0- n - Subtract n from D0 (1<=n<=16) ---------
 opcode: 18x (x=n-1)
 cycles: 7

 Decrement D0 by n. This instruction is always executed in
 HEX mode. Adjusts Carry.

 D0=HEX hh - Load D0 with hex constant hh

 opcode: 19hh
 cycles: 4

 Load the low-order two nibbles of D0 with the hex constant
 hh. The upper nibbles of D0 remain unchanged. The digits of
 hh are stored in the opcode in reverse order so that when
 the instruction is executed the data will be loaded into the
 register with the intended orientation. See the section on
 "Loading Data From Memory".

 D0=HEX hhhh - Load D0 with hex constant hhhh

 opcode: 1Ahhhh
 cycles: 6

 Load the low-order four nibbles of D0 with the hex constant
 hhhh. The upper nibble of D0 remains unchanged. The digits
 of hhhh are stored in the opcode in reverse order so that
 when the instruction is executed the data will be loaded
 into the register with the intended orientation. See the
 section on "Loading Data From Memory".

 Page 98

 D0=HEX hhhhh - Load D0 with hex constant hhhhh

 opcode: 1Bhhhhh
 cycles: 7

 Load all five nibbles of D0 with the hex constant hhhhh.
 The digits of hhhhh are stored in the opcode in reverse
 order so that when the instruction is executed the data will
 be loaded into the register with the intended orientation.
 See the section on "Loading Data From Memory".

 D1=(2) nn - Load 2 Nibbles Into D1

 opcode: 1Dnn
 cycles: 4

 Load the low-order two nibbles of D1 with nn. The upper
 nibbles of D1 remain unchanged. Any overflow is ignored by
 the assembler. The assembled digits of nn are stored in the
 opcode in reverse order so that when the instruction is
 executed the data will be loaded into the register with the
 intended orientation. See the section on "Loading Data From
 Memory".

 D1=(4) nnnn - Load 4 Nibbles Into D1

 opcode: 1Ennnn
 cycles: 6

 Load the low-order four nibbles of D1 with nnnn. The upper
 nibble of D1 remains unchanged. Any overflow is ignored by
 the assembler. The assembled digits of nnnn are stored in
 the opcode in reverse order so that when the instruction is
 executed the data will be loaded into the register with the
 intended orientation. See the section on "Loading Data From
 Memory".

 Page 99

 D1=(5) nnnnn - Load 5 Nibbles Into D1

 opcode: 1Fnnnnn
 cycles: 7

 Load all five nibbles of D1 with nnnnn. Any overflow is
 ignored by the assembler. The assembled digits of nnnnn are
 stored in the opcode in reverse order so that when the
 instruction is executed the data will be loaded into the
 register with the intended orientation. See the section on
 "Loading Data From Memory".

 D1=A - Copy A to D1 (nibs 0-4)

 opcode: 131
 cycles: 8

 The A field of register A is copied into Data pointer
 register D1. Carry is not affected.

 D1=AS - Copy A to D1 short (nibs 0-3)

 opcode: 139
 cycles: 7

 The lower 4 nibbles of A are copied into the lower 4 nibbles
 of Data pointer register D1. Carry is not affected.

 D1=C - Copy C to D1 (nibs 0-4)

 opcode: 135
 cycles: 8

 The A field of register C is copied into Data pointer
 register D1. Carry is not affected.

 Page 100

 D1=CS - Copy C to D1 short (nibs 0-3)

 opcode: 13D
 cycles: 7

 The lower 4 nibbles of C are copied into the lower 4 nibbles
 of Data pointer register D1. Carry is not affected.

 D1=D1+ n - Add n to D1 (1<=n<=16)

 opcode: 17x (x=n-1)
 cycles: 7

 Increment D1 by n. This instruction is always executed in
 HEX mode. Adjusts Carry.

 D1=D1- n - Subtract n from D1 (1<=n<=16)

 opcode: 1Cx (x=n-1)
 cycles: 7

 Decrement D1 by n. This instruction is always executed in
 HEX mode. Adjusts Carry.

 D1=HEX hh - Load D1 with hex constant hh

 opcode: 1Dhh
 cycles: 4

 Load the low-order two nibbles of D1 with the hex constant
 hh. The upper nibbles of D1 remain unchanged. The digits of
 hh are stored in the opcode in reverse order so that when
 the instruction is executed the data will be loaded into the
 register with the intended orientation. See the section on
 "Loading Data From Memory".

 Page 101

 D1=HEX hhhh - Load D1 with hex constant hhhh

 opcode: 1Ehhhh
 cycles: 6

 Load the low-order four nibbles of D1 with the hex constant
 hhhh. The upper nibble of D1 remains unchanged. The digits
 of hhhh are stored in the opcode in reverse order so that
 when the instruction is executed the data will be loaded
 into the register with the intended orientation. See the
 section on "Loading Data From Memory".

 D1=HEX hhhhh - Load D1 with hex constant hhhhh

 opcode: 1Fhhhhh
 cycles: 7

 Load all five nibbles of D1 with the hex constant hhhhh.
 The digits of hhhhh are stored in the opcode in reverse
 order so that when the instruction is executed the data will
 be loaded into the register with the intended orientation.
 See the section on "Loading Data From Memory".

 D=-D fs - Two's complement of D into D

 fs = A opcode: FB
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BbB
 cycles: 3 + d

 Complement the specified fs field of D. Complement is two's
 complement if in HEX mode, ten's complement if in DEC mode.
 Carry is set if the field is not zero, else Carry is
 cleared.

 Page 102

 D=-D-1 fs - One's complement of D into D

 fs = A opcode: FF
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BbF
 cycles: 3 + d

 Perform a one's complement on the specified fs field of D.
 Carry is always cleared.

 D=0 fs - Set D equal to 0

 fs = A opcode: D3
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab3
 cycles: 3 + d

 Set the specified fs field of D to zero. Carry is not
 affected.

 D=C fs - Copy C to D

 fs = A opcode: D7
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ab7
 cycles: 3 + d

 Copy the fs field of register C into the corresponding field
 of register D. Carry is not affected.

 Page 103

 D=C-D fs - C minus D into D

 fs = A opcode: ED
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: BaD
 cycles: 3 + d

 Set the specified fs field of register D to the inverse
 difference between itself and the corresponding field of
 register C. Adjusts Carry.

 D=D!C fs - D OR C into D

 fs = A opcode: 0EFB
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0EaB
 cycles: 4 + d

 Set the fs field of register D to its logical OR with the
 corresponding field of register C. Carry is not affected.

 D=D&C fs - D AND C into D

 fs = A opcode: 0EF3
 cycles: 4 + d

 fs = (P,WP,XS,X,S,M,B,W) opcode: 0Ea3
 cycles: 4 + d

 Set the fs field of register D to its logical AND with the
 corresponding field of register C. Carry is not affected.

 Page 104

 D=D+1 fs - Increment D

 fs = A opcode: E7
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba7
 cycles: 3 + d

 Increment the specified fs field of register D by one.
 Adjusts Carry.

 D=D+C fs - Sum of D and C into D

 fs = A opcode: C3
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa3
 cycles: 3 + d

 Set the specified fs field of register D to the sum of
 itself and the corresponding field of register C. Adjusts
 Carry.

 D=D+D fs - Sum of D and D into D

 fs = A opcode: C7
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Aa7
 cycles: 3 + d

 Double the specified fs field of register D. Adjusts Carry.

 Page 105

 D=D-1 fs - Decrement D

 fs = A opcode: CF
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AaF
 cycles: 3 + d

 Decrement the specified fs field of register D by one.
 Adjusts Carry.

 D=D-C fs - D minus C into D

 fs = A opcode: E3
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Ba3
 cycles: 3 + d

 Set the specified fs field of register D to the difference
 between itself and the corresponding field of register C.
 Adjusts Carry.

 DAT0=A fsd - Load memory from A

 fs = A opcode: 140
 cycles: 17

 fs = B opcode: 148
 cycles: 14

 fs = (P,WP,XS,X,S,M,W) opcode: 150a
 cycles: 16 + d

 fs = d opcode: 158x (x=d-1)
 cycles: 15 + d

 The amount of data (d nibbles) specified by fsd will be
 written to the memory address pointed to by D0 from the
 specified field of register A. The lowest-order nibble of
 the register field will be written to the lowest-addressed
 nibble of memory, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are written to memory starting
 from nibble 0 of the register. See the section on "Storing
 Data Into Memory".

 Page 106

 DAT0=C fsd - Store into memory from C

 fs = A opcode: 144
 cycles: 17

 fs = B opcode: 14C
 cycles: 14

 fs = (P,WP,XS,X,S,M,W) opcode: 154a
 cycles: 16 + d

 fs = d opcode: 15Cx (x=d-1)
 cycles: 15 + d

 The amount of data (d nibbles) specified by fsd will be
 written to the memory address pointed to by D0 from the
 specified field of register C. The lowest-order nibble of
 the register field will be written to the lowest-addressed
 nibble of memory, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are written to memory starting
 from nibble 0 of the register. See the section on "Storing
 Data Into Memory".

 DAT1=A fs - Store into memory from A

 fs = A opcode: 141
 cycles: 17

 fs = B opcode: 149
 cycles: 14

 fs = (P,WP,XS,X,S,M,W) opcode: 151a
 cycles: 16 + d

 fs = d opcode: 159x (x=d-1)
 cycles: 15 + d

 The amount of data (d nibbles) specified by fsd will be
 written to the memory address pointed to by D1 from the
 specified field of register A. The lowest-order nibble of
 the register field will be written to the lowest-addressed
 nibble of memory, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are written to memory starting
 from nibble 0 of the register. See the section on "Storing
 Data Into Memory".

 Page 107

 DAT1=C fsd - Store into memory from C

 fs = A opcode: 145
 cycles: 17

 fs = B opcode: 14D
 cycles: 14

 fs = (P,WP,XS,X,S,M,W) opcode: 155a
 cycles: 16 + d

 fs = d opcode: 15Dx (x=d-1)
 cycles: 15 + d

 The amount of data (d nibbles) specified by fsd will be
 written to the memory address pointed to by D1 from the
 specified field of register C. The lowest-order nibble of
 the register field will be written to the lowest-addressed
 nibble of memory, proceeding toward the higher-order
 nibbles. If fs = d, d nibbles are written to memory starting
 from nibble 0 of the register. See the section on "Storing
 Data Into Memory".

 DCEX fs - Exchange Registers D and C

 fs = A opcode: DF
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: AbF
 cycles: 3 + d

 Exchange the fs fields of registers of D and C. Carry is not
 affected.

 DSL fs - D Shift Left

 fs = A opcode: F3
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb3
 cycles: 3 + d

 Shift the contents of the specified fs field of register D
 left one nibble, without affecting the rest of the register.
 The nibble shifted off the left end of the field is lost.
 The new low-order nibble of the field is zero. The Sticky
 Bit (SB) is not affected.

 Page 108

 DSLC - D Shift Left Circular

 opcode: 813
 cycles: 21

 Circular shift register D left one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is not affected.

 DSR fs - D Shift Right

 fs = A opcode: F7
 cycles: 7

 fs = (P,WP,XS,X,S,M,B,W) opcode: Bb7
 cycles: 3 + d

 Shift the contents of the specified fs field of register D
 right one nibble, without affecting the rest of the
 register. The nibble shifted off the right end of the field
 is lost, but the Sticky Bit (SB) is set if the nibble was
 non-zero. The new high-order nibble of the field is zero.

 DSRB - D Shift Right Bit

 opcode: 81F
 cycles: 20

 Shift register D right one bit. Operates on all 16 digits.
 The bit shifted off the end is lost, but the Sticky Bit (SB)
 is set if it was non-zero. The new high-order bit of the
 register is zero.

 DSRC - D Shift Right Circular

 opcode: 817
 cycles: 21

 Circular shift register D right one nibble. Operates on all
 16 digits. The Sticky Bit (SB) is set if the nibble shifted
 from low-order around to high-order position was non-zero.

 Page 109

 GOC label - Go relative on carry

 opcode: 4aa (Carry=0)
 cycles: 10 (GO)
 3 (NO)

 Short relative jump to label if Carry is set. label must be
 in the range:

 addr - 128 <= label <= addr + 127

 where addr is the address of the second nibble of the
 opcode. The address offset aa is in two's complement form
 and is relative to addr.

 GOLONG label - Go Long

 opcode: 8Caaaa
 cycles: 14

 Long relative jump to label unconditionally. label must be
 in the range:

 addr - 32768 <= label <= addr + 32767

 where addr is the address of the third nibble of the opcode.
 The address offset aaaa is in two's complement form and is
 relative to addr.

 GONC label - Go relative on no carry

 opcode: 5aa (Carry=1)
 cycles: 10 (GO)
 3 (NO)

 Short relative jump to label if Carry is clear. label must
 be in the range:

 addr - 128 <= label <= addr + 127

 where addr is the address of the second nibble of the
 opcode. The address offset aa is in two's complement form
 and is relative to addr.

 Page 110

 GOSBVL label - Gosub very long to label

 opcode: 8Faaaaa
 cycles: 15

 Absolute subroutine jump to aaaaa, which is the absolute
 address of label. See the GOSUB mnemonic.

 GOSUB label - Gosub to label

 opcode: 7aaa
 cycles: 12

 Relative subroutine jump to label. label must be in the
 range:

 addr - 2048 <= label <= addr + 2047

 where addr is the starting address of the next instruction.
 The address offset aaa is in two's complement form and is
 relative to addr.

 As with all subroutine jumps, the address (addr) of the
 instruction following the gosub opcode is pushed onto the
 hardware return stack, so that when a corresponding return
 is executed, control resumes with the instruction at address
 addr.

 As the return address is pushed onto the return stack, the
 bottom-most address on the stack is discarded. Therefore,
 the return stack always contains 8 addresses, and if pushes
 exceed pops by 8 levels, the bottom-most return addresses
 are lost. Since the interrupt system requires one level to
 process interrupts, only 7 levels of the return stack can be
 used by code which must execute when interrupts are enabled.
 See the RTN mnemonic for further information.

 GOSUBL label - Gosub long to label

 opcode: 8Eaaaa
 cycles: 15

 Long relative subroutine jump to label. label must be in
 the range:

 addr - 32768 <= label <= addr + 32767

 where addr is the starting address of the next instruction.
 The address offset aaaa is in two's complement form and is
 relative to addr. See the GOSUB mnemonic.

 Page 111

 GOTO label - Jump relative

 opcode: 6aaa
 cycles: 11

 Relative jump to label unconditionally. label must be in the
 range:

 addr - 2048 <= label <= addr + 2047

 where addr is the address of the second nibble of the
 opcode. The address offset aaa is in two's complement form
 and is relative to addr.

 GOVLNG label - Jump very long

 opcode: 8Daaaaa
 cycles: 14

 Unconditional jump to aaaaa, which is the absolute address
 of label.

 GOYES label - Jump if Test is True

 opcode: yy
 cycles: included in the accompaning
 Test mnemonic cycle time.

 GOYES is a mnemonic to specify part of a CPU test opcode.
 GOYES must always follow a test mnemonic. If the condition
 of the test is met, a jump is performed to label with Carry
 set. label must be in the range

 addr - 128 <= label <= addr + 127

 where addr is the starting address of the jump offset yy. If
 the test condition is not met, Carry is cleared and control
 passes to the next instruction. Compare with RTNYES.

 Page 112

 INTOFF - Interrupt Off

 opcode: 808F
 cycles: 5

 Disable the keyboard interrupt system.

 INTON - Interrupt On

 opcode: 8080
 cycles: 5

 Enable the keyboard interrupt system. See the "Hp-71
 Hardware Specification" for more information.

 LC(m) n..n - Load C with constant (1<=m<=6)

 opcode: 3xn..n (x=m-1)
 cycles: 3+m

 Load m digits of the expression n..n to the C register
 beginning at the P pointer position, and proceeding toward
 higher-order nibbles, with the ability to wrap around the
 register. See the section on "Loading Data From Memory".

 LCASC A..A - Load C with ASCII constant

 opcode: 3mc..c
 (m = 2*(# of chars)-1;
 c..c = ASCII codes)
 cycles: 3+2*(# of chars)

 Load up to 8 ASCII characters to the C register beginning at
 the P pointer position, and proceeding toward higher-order
 nibbles, with the ability to wrap around the register. Each
 A represents an ASCII character. The ASCII characters are
 stored in the opcode in reverse order so that when the
 instruction is executed the data will be loaded into the
 register with the intended orientation. See the section on
 "Loading Data From Memory".

 Page 113

 LCHEX h..h - Load C with hex constant

 opcode: 3nh..h (n=# of digits-1)
 cycles: 4+n

 Load up to 16 hex digits into the C register beginning at
 the P pointer position, and proceeding toward higher-order
 nibbles, with the ability to wrap around the register. The
 hex digits are stored in the opcode in reverse order so that
 when the instruction is executed the data will be loaded
 into the register with the intended orientation. See the
 section on "Loading Data From Memory".

 MP=0 - Clear Module Pulled bit (MP)

 opcode: 828
 cycles: 3

 Clears the Module Pulled bit (MP) and pulls the Module
 Pulled Interrupt line low. See CLRHST mnemonic.

 NOP3 - Three nibble No-op

 opcode: 420
 cycles: 10 (GO/RTNYES)
 3 (NO)

 This mnemonic generates a GOC to the next instruction,
 effectively skiping three nibbles.

 Page 114

 NOP4 - Four nibble No-op

 opcode: 6300
 cycles: 11

 This mnemonic generates a GOTO to the next instruction,
 efectively skiping four nibbles.

 NOP5 - Five nibble No-op

 opcode: 64000
 cycles: 11

 This mnemonic generates a relative GOTO to +4 nibbles. The
 fifth nibble in the opcode is a place holder and is jumped
 over. The mnemonic effectively skips five nibbles.

 OUT=C - Load 3 nibbles of OR -----
 opcode: 801
 cycles: 6

 All nibbles of the Output register are loaded with the low-
 order three nibbles of C (X field).

 OUT=CS - Load 1 nibble of OR

 opcode: 800
 cycles: 4

 The least significant nibble of the Output register is
 loaded with the least significant nibble of the C register.

 Page 115

 PC=(A) - Jump (Set PC) indirectly thru A field of A register

 opcode: 808C
 cycles: 23

 This instruction causes the CPU to jump to the address
 pointed to by memory at the address specified by the A field
 of the A register. In symbolic form, the operation is
 PC=mem(A[A]). This opcode is not available on the 1LF2
 version of the Saturn CPU.

 P=C n - Copy P pointer into C at Nibble n

 opcode: 80Dn
 cycles: 6

 Copy nibble n of register C into the P pointer.

 P=P+1 - Increment P Pointer

 opcode: 0C
 cycles: 3

 Increment the P pointer. If P is incremented past F it will
 automatically wrap around to 0. This instruction is always
 executed in HEX mode. Adjusts carry.

 P=P-1 - Decrement P Pointer

 opcode: 0D
 cycles: 3

 Decrement the P pointer. If P is decremented past 0 it
 automatically wraps around to F. This instruction is always
 executed in HEX mode. Adjusts Carry.

 Page 116

 P= n - Set P Pointer to n

 opcode: 2n
 cycles: 2

 Set the P pointer to n.

 R0=A - Copy A to register R0

 opcode: 100
 cycles: 19

 The contents of the working register A is copied to the
 scratch register R0.

 R0=C - Copy C to register R0

 opcode: 108
 cycles: 19

 The contents of the working register C is copied to the
 scratch register R0.

 R1=A - Copy A to register R1

 opcode: 101
 cycles: 19

 The contents of the working register A is copied to the
 scratch register R1.

 Page 117

 R1=C - Copy C to register R1

 opcode: 109
 cycles: 19

 The contents of the working register C is copied to the
 scratch register R1.

 R2=A - Copy A to register R2

 opcode: 102
 cycles: 19

 The contents of the working register A is copied to the
 scratch register R2.

 R2=C - Copy C to register R2

 opcode: 10A
 cycles: 19

 The contents of the working register C is copied to the
 scratch register R2.

 R3=A - Copy A to register R3

 opcode: 103
 cycles: 19

 The contents of the working register A is copied to the
 scratch register R3.

 Page 118

 R3=C - Copy C to register R3

 opcode: 10B
 cycles: 19

 The contents of the working register C is copied to the
 scratch register R3.

 R4=A - Copy A to register R4

 opcode: 104
 cycles: 19

 The contents of the working register A is copied to the
 scratch register R4.

 R4=C - Copy C to register R4

 opcode: 10C
 cycles: 19

 The contents of the working register C is copied to the
 scratch register R4.

 RESET - System reset

 opcode: 80A
 cycles: 6

 The System Reset Bus Command is issued with all chips
 performing a local reset. The reset function will vary
 according to the chip type.

 Page 119

 RSI - Reset Interrupt System

 opcode: 80810
 cycles: 6

 This instruction causes CPU to consider any input line (ie
 input register bits) presently high as a new interrupt. If
 the CPU is presently in the interrupt routine it will wait
 for an RTI before vectoring, otherwise the CPU will vector
 immediately following the RSI instruction. For a complete
 discussion on the interrupt system see the CPU Hardware
 Specification (A-1LK7-9005-1). This instruction is not
 available on the 1LF2 version of the Saturn CPU.

 RSTK=C - Push C to Return Stack

 opcode: 06
 cycles: 8

 Push the low-order 5 nibbles (A field) of the C register
 onto the Return Stack. See the GOSUB mnemonic.

 RTI - Return from interrupt

 opcode: 0F
 cycles: 9

 Return and re-enable the interrupt system. See the RTN
 mnemonic.

 RTN - Return

 opcode: 01
 cycles: 9

 Return control to the top address on the hardware return
 stack. The top address on the hardware return stack is
 popped off and placed in the program counter PC. As the
 address is popped off the stack, a zero address is inserted
 at the bottom of the stack.

 Page 120

 Therefore the the hardware return stack always contains 8
 addresses, and if more pops (returns) than pushes (gosubs)
 are performed, zeros will be read off the stack. Such an
 attempt to "return" to address 0 results in a memory reset,
 since the memory reset code of the operating system resides
 at address 0.

 RTNC -Return on carry

 opcode: 400
 cycles: 10 (RTN)
 3 (NO)

 Return if Carry is set. See RTN mnemonic.

 RTNCC - Return, clear carry

 opcode: 03
 cycles: 9

 Return and set Carry. See RTN mnemonic.

 RTNNC - Return on no carry

 opcode: 500 (Carry=1)
 cycles: 10 (RTN)
 3 (NO)

 Return if Carry is not set. See RTN mnemonic.

 Page 121

 RTNSC - Return, set carry

 opcode: 02
 cycles: 9

 Return and set Carry. See RTN mnemonic.

 RTNSXM - Return, set External Module Missing bit (XM)

 opcode: 00
 cycles: 9

 Return and set the External Module Missing bit (XM). Since
 the opcode is zero, this mnemonic is executed on a jump to a
 non-existent memory device. See the "HP-71 Hardware
 Specification" for more information. See also the RTN
 mnemonic.

 RTNYES - Return if Test is True

 opcode: 00
 cycles: included in the accompaning
 mnemonic cycle time.

 RTNYES is a mnemonic to specify part of a CPU test opcode.
 RTNYES must always follow a test mnemonic. If the test
 condition is met, Carry is set and a return is executed. If
 the test condition is not met, control passes to the
 instruction following the RTNYES. Compare with the RTN and
 GOYES mnemonics.

 Page 122

 SB=0 - Clear Sticky Bit (SB)

 opcode: 822
 cycles: 3

 Clear the Sticky Bit (SB). See CLRHST mnemonic.

 SETDEC - Set decimal

 opcode: 05
 cycles: 3

 Set CPU arithmetic mode to decimal.

 SETHEX - Set hexadecimal mode

 opcode: 04
 cycles: 3

 Set CPU arithmetic mode to hexadecimal.

 SHUTDN - System Shutdown

 opcode: 807
 cycles: 5

 When this mnemonic is executed the CPU sends out the
 Shutdown Bus Command and stops its clock. Issuing the
 SHUTDN command with the output register=000 (see OUT=C or
 OUT=CS) will cause the PC to be set to zero, causing an
 automatic cold-start in some systems, or a system halt
 in the HP 48.

 Page 123

 SR=0 - Clear Service Request bit (SR)

 opcode: 824
 cycles: 3

 Clear the Service Request bit (SR). See the CLRHST
 mnemonic.

 SREQ? - Service Request

 opcode: 80E
 cycles: 7

 This mnemonic sets the Service Request bit (SR) if any chip
 on the system bus requests service. When it is executed, a
 Service Request Bus Command is issued on the system bus to
 poll all chips for a Service Request. If any chip requests
 service, a bus line will be pulled high during the next
 strobe following the Service Request Bus Command. This
 value of the bus will be latched into the least significant
 nibble of the C register. The bus line pulled high
 determines the device type according to the following table.

 Bit Device
 --- ------------------------
 3 Unused
 2 Card Reader
 1 HP-IL Mailbox
 0 Display Driver (timer)

 If any bus line is high, the Service Request bit (SR) will
 be set. See the "HP-71 Hardware Specification" for more
 information. See also the ?SREQ and SR=0 mnemonics.

 Page 124

 ST=0 n - Clear Program Status bit n

 opcode: 84n
 cycles: 4

 Clear the Program Status bit selected by n.

 ST=1 n - Set Program Status bit n

 opcode: 85n
 cycles: 4

 Set the Program Status bit selected by n.

 ST=C - C to Status

 opcode: 0A
 cycles: 6

 Copy the low-order 12 bits of the Status register (X field)
 into the low-order 12 bits of the C register.

 UNCNFG - Unconfigure

 opcode: 804
 cycles: 12

 Load the low-order 5 nibbles (A field) of the C register
 into each Data pointer with the device addressed by the Data
 pointer unconfiguring. See the "HP-71 Hardware
 Specification" for more information.

 XM=0 - Clear External Module Missing bit (XM)

 opcode: 821
 cycles: 3

 Clear the External Module Missing bit (XM). This hardware
 status bit is set by the RTNSXM mnemonic. See the CLRHST
 mnemonic.

 Page 125

 9. Alphabetic Mnemonic List

 This chapter contains all the code-generating instructions
 which are recognized by SASM.EXE. Instructions found in the
 HP 28 and HP 48 but not the HP 71 are marked with **.

 Symbols used in modifier field:

 fs Field Select character.
 rfs Restricted Field Selection (S,P,WP, and XS not allowed).
 d Single-nibble field.
 expr Expression.
 hh Two-digit hexadecimal value.
 hhhh Four-digit hexadecimal value.
 hhhhh Five-digit hexadecimal value.
 label Label destination.
 ASCII ASCII character string.

 Symbols used in code field:

 tt Code included in test instruction.
 a Field select in the range 0-7.
 b Field select in the range 8-F.
 c Single-nibble length field (Load Constant).
 f Field select including A field.
 h...h Hexadecimal value.
 n Nibble whose value is d.
 n...n Nibbles whose value is expr.
 m Nibble whose value is d - 1.
 x...x Nibbles corresponding to ASCII characters.
 y Reference to a symbol (relative or absolute).

 Instruction Code Comments

 ?A#0 A 8ACyy Requires GOYES or RTNYES; Affects Carry
 ?A#0 fs 9aCyy Requires GOYES or RTNYES; Affects Carry
 ?A#B A 8A4yy Requires GOYES or RTNYES; Affects Carry
 ?A#B fs 9a4yy Requires GOYES or RTNYES; Affects Carry
 ?A#C A 8A6yy Requires GOYES or RTNYES; Affects Carry
 ?A#C fs 9a6yy Requires GOYES or RTNYES; Affects Carry
 ?A<=B A 8BCyy Requires GOYES or RTNYES; Affects Carry
 ?A<=B fs 9bCyy Requires GOYES or RTNYES; Affects Carry
 ?A<=C A 8BAyy Requires GOYES or RTNYES; Affects Carry
 ?A<=C fs 9bAyy Requires GOYES or RTNYES; Affects Carry
 ?A<B A 8B4yy Requires GOYES or RTNYES; Affects Carry
 ?A<B fs 9b4yy Requires GOYES or RTNYES; Affects Carry
 ?A<C A 8B2yy Requires GOYES or RTNYES; Affects Carry
 ?A<C fs 9b2yy Requires GOYES or RTNYES; Affects Carry
 ?A=0 A 8A8yy Requires GOYES or RTNYES; Affects Carry
 ?A=0 fs 9a8yy Requires GOYES or RTNYES; Affects Carry
 ?A=B A 8A0yy Requires GOYES or RTNYES; Affects Carry
 ?A=B fs 9a0yy Requires GOYES or RTNYES; Affects Carry
 ?A=C A 8A2yy Requires GOYES or RTNYES; Affects Carry
 ?A=C fs 9a2yy Requires GOYES or RTNYES; Affects Carry
 ?A>=B A 8B8yy Requires GOYES or RTNYES; Affects Carry
 ?A>=B fs 9b8yy Requires GOYES or RTNYES; Affects Carry

 Page 126

 ?A>=C A 8BEyy Requires GOYES or RTNYES; Affects Carry
 ?A>=C fs 9bEyy Requires GOYES or RTNYES; Affects Carry
 ?A>B A 8B0yy Requires GOYES or RTNYES; Affects Carry
 ?A>B fs 9b0yy Requires GOYES or RTNYES; Affects Carry
 ?A>C A 8B6yy Requires GOYES or RTNYES; Affects Carry
 ?A>C fs 9b6yy Requires GOYES or RTNYES; Affects Carry
 ?ABIT=0 d 8086nyy ** Requires GOYES or RTNYES; Affects Carry
 ?ABIT=1 d 8087nyy ** Requires GOYES or RTNYES; Affects Carry
 ?B#0 A 8ADyy Requires GOYES or RTNYES; Affects Carry
 ?B#0 fs 9aDyy Requires GOYES or RTNYES; Affects Carry
 ?B#A A 8A4yy Requires GOYES or RTNYES; Affects Carry
 ?B#A fs 9a4yy Requires GOYES or RTNYES; Affects Carry
 ?B#C A 8A5yy Requires GOYES or RTNYES; Affects Carry
 ?B#C fs 9a5yy Requires GOYES or RTNYES; Affects Carry
 ?B<=A A 8B8yy Requires GOYES or RTNYES; Affects Carry
 ?B<=A fs 9b8yy Requires GOYES or RTNYES; Affects Carry
 ?B<=C A 8BDyy Requires GOYES or RTNYES; Affects Carry
 ?B<=C fs 9bDyy Requires GOYES or RTNYES; Affects Carry
 ?B<A A 8B0yy Requires GOYES or RTNYES; Affects Carry
 ?B<A fs 9b0yy Requires GOYES or RTNYES; Affects Carry
 ?B<C A 8B5yy Requires GOYES or RTNYES; Affects Carry
 ?B<C fs 9b5yy Requires GOYES or RTNYES; Affects Carry
 ?B=0 A 8A9yy Requires GOYES or RTNYES; Affects Carry
 ?B=0 fs 9a9yy Requires GOYES or RTNYES; Affects Carry
 ?B=A A 8A0yy Requires GOYES or RTNYES; Affects Carry
 ?B=A fs 9a0yy Requires GOYES or RTNYES; Affects Carry
 ?B=C A 8A1yy Requires GOYES or RTNYES; Affects Carry
 ?B=C fs 9a1yy Requires GOYES or RTNYES; Affects Carry
 ?B>=A A 8BCyy Requires GOYES or RTNYES; Affects Carry
 ?B>=A fs 9bCyy Requires GOYES or RTNYES; Affects Carry
 ?B>=C A 8B9yy Requires GOYES or RTNYES; Affects Carry
 ?B>=C fs 9b9yy Requires GOYES or RTNYES; Affects Carry
 ?B>A A 8B4yy Requires GOYES or RTNYES; Affects Carry
 ?B>A fs 9b4yy Requires GOYES or RTNYES; Affects Carry
 ?B>C A 8B1yy Requires GOYES or RTNYES; Affects Carry
 ?B>C fs 9b1yy Requires GOYES or RTNYES; Affects Carry
 ?C#0 A 8AEyy Requires GOYES or RTNYES; Affects Carry
 ?C#0 fs 9aEyy Requires GOYES or RTNYES; Affects Carry
 ?C#A A 8A6yy Requires GOYES or RTNYES; Affects Carry
 ?C#A fs 9a6yy Requires GOYES or RTNYES; Affects Carry
 ?C#B A 8A5yy Requires GOYES or RTNYES; Affects Carry
 ?C#B fs 9a5yy Requires GOYES or RTNYES; Affects Carry
 ?C#D A 8A7yy Requires GOYES or RTNYES; Affects Carry
 ?C#D fs 9a7yy Requires GOYES or RTNYES; Affects Carry
 ?C<=A A 8BEyy Requires GOYES or RTNYES; Affects Carry
 ?C<=A fs 9bEyy Requires GOYES or RTNYES; Affects Carry
 ?C<=B A 8B9yy Requires GOYES or RTNYES; Affects Carry
 ?C<=B fs 9b9yy Requires GOYES or RTNYES; Affects Carry
 ?C<=D A 8BByy Requires GOYES or RTNYES; Affects Carry
 ?C<=D fs 9bByy Requires GOYES or RTNYES; Affects Carry
 ?C<A A 8B6yy Requires GOYES or RTNYES; Affects Carry
 ?C<A fs 9b6yy Requires GOYES or RTNYES; Affects Carry
 ?C<B A 8B1yy Requires GOYES or RTNYES; Affects Carry
 ?C<B fs 9b1yy Requires GOYES or RTNYES; Affects Carry
 ?C<D A 8B3yy Requires GOYES or RTNYES; Affects Carry
 ?C<D fs 9b3yy Requires GOYES or RTNYES; Affects Carry

 Page 127

 ?C=0 A 8AAyy Requires GOYES or RTNYES; Affects Carry
 ?C=0 fs 9aAyy Requires GOYES or RTNYES; Affects Carry
 ?C=A A 8A2yy Requires GOYES or RTNYES; Affects Carry
 ?C=A fs 9a2yy Requires GOYES or RTNYES; Affects Carry
 ?C=B A 8A1yy Requires GOYES or RTNYES; Affects Carry
 ?C=B fs 9a1yy Requires GOYES or RTNYES; Affects Carry
 ?C=D A 8A3yy Requires GOYES or RTNYES; Affects Carry
 ?C=D fs 9a3yy Requires GOYES or RTNYES; Affects Carry
 ?C>=A A 8BAyy Requires GOYES or RTNYES; Affects Carry
 ?C>=A fs 9bAyy Requires GOYES or RTNYES; Affects Carry
 ?C>=B A 8BDyy Requires GOYES or RTNYES; Affects Carry
 ?C>=B fs 9bDyy Requires GOYES or RTNYES; Affects Carry
 ?C>=D A 8BFyy Requires GOYES or RTNYES; Affects Carry
 ?C>=D fs 9bFyy Requires GOYES or RTNYES; Affects Carry
 ?C>A A 8B2yy Requires GOYES or RTNYES; Affects Carry
 ?C>A fs 9b2yy Requires GOYES or RTNYES; Affects Carry
 ?C>B A 8B5yy Requires GOYES or RTNYES; Affects Carry
 ?C>B fs 9b5yy Requires GOYES or RTNYES; Affects Carry
 ?C>D A 8B7yy Requires GOYES or RTNYES; Affects Carry
 ?C>D fs 9b7yy Requires GOYES or RTNYES; Affects Carry
 ?CBIT=0 d 808Anyy ** Requires GOYES or RTNYES; Affects Carry
 ?CBIT=1 d 808Bnyy ** Requires GOYES or RTNYES; Affects Carry
 ?D#0 A 8AFyy Requires GOYES or RTNYES; Affects Carry
 ?D#0 fs 9aFyy Requires GOYES or RTNYES; Affects Carry
 ?D#C A 8A7yy Requires GOYES or RTNYES; Affects Carry
 ?D#C fs 9a7yy Requires GOYES or RTNYES; Affects Carry
 ?D<=C A 8BFyy Requires GOYES or RTNYES; Affects Carry
 ?D<=C fs 9bFyy Requires GOYES or RTNYES; Affects Carry
 ?D<C A 8B7yy Requires GOYES or RTNYES; Affects Carry
 ?D<C fs 9b7yy Requires GOYES or RTNYES; Affects Carry
 ?D=0 A 8AByy Requires GOYES or RTNYES; Affects Carry
 ?D=0 fs 9aByy Requires GOYES or RTNYES; Affects Carry
 ?D=C A 8A3yy Requires GOYES or RTNYES; Affects Carry
 ?D=C fs 9a3yy Requires GOYES or RTNYES; Affects Carry
 ?D>=C A 8BByy Requires GOYES or RTNYES; Affects Carry
 ?D>=C fs 9bByy Requires GOYES or RTNYES; Affects Carry
 ?D>C A 8B3yy Requires GOYES or RTNYES; Affects Carry
 ?D>C fs 9b3yy Requires GOYES or RTNYES; Affects Carry
 ?HS=0 d 83nyy Requires GOYES or RTNYES; Affects Carry
 ?MP=0 838yy Requires GOYES or RTNYES; Affects Carry
 ?P# d 88nyy Requires GOYES or RTNYES; Affects Carry
 ?P= d 89nyy Requires GOYES or RTNYES; Affects Carry
 ?SB=0 832yy Requires GOYES or RTNYES; Affects Carry
 ?SR=0 834yy Requires GOYES or RTNYES; Affects Carry
 ?ST=0 d 86nyy Requires GOYES or RTNYES; Affects Carry
 ?ST=1 d 87nyy Requires GOYES or RTNYES; Affects Carry
 ?XM=0 831yy Requires GOYES or RTNYES; Affects Carry
 A=-A A F8 Affects Carry
 A=-A fs Bb8 Affects Carry
 A=-A-1 A FC Clears Carry
 A=-A-1 fs BbC Clears Carry
 A=0 A D0
 A=0 fs Ab0
 A=A!B fs 0Ef8
 A=A!C fs 0EfE
 A=A&B fs 0Ef0
 A=A&C fs 0Ef6
 A=A+1 A E4 Affects Carry

 Page 128

 A=A+1 fs Ba4 Affects Carry
 A=A+A A C4 Affects Carry
 A=A+A fs Aa4 Affects Carry
 A=A+B A C0 Affects Carry
 A=A+B fs Aa0 Affects Carry
 A=A+C A CA Affects Carry
 A=A+C fs AaA Affects Carry
 A=A+CON rfs,d 818f0m ** Affects Carry
 A=A-1 A CC Affects Carry
 A=A-1 fs AaC Affects Carry
 A=A-B A E0 Affects Carry
 A=A-B fs Ba0 Affects Carry
 A=A-C A EA Affects Carry
 A=A-C fs BaA Affects Carry
 A=A-CON rfs,d 818f8m ** Affects Carry
 A=B A D4
 A=B fs Ab4
 A=B!A fs 0Ef8
 A=B&A fs 0Ef0
 A=B+A A C0 Affects Carry
 A=B+A fs Aa0 Affects Carry
 A=B-A A EC Affects Carry
 A=B-A fs BaC Affects Carry
 A=C A DA
 A=C fs AbA
 A=C!A fs 0EfE
 A=C&A fs 0Ef6
 A=C+A A CA Affects Carry
 A=C+A fs AaA Affects Carry
 A=DAT0 A 142
 A=DAT0 B 14A
 A=DAT0 fs 152a
 A=DAT0 d 15Am
 A=DAT1 A 143
 A=DAT1 B 14B
 A=DAT1 fs 153a
 A=DAT1 d 15Bm
 A=IN 802
 A=PC 81B4 **
 A=R0 110
 A=R0.F W 110 **
 A=R0.F fs 81Af10 **
 A=R1 111
 A=R1.F W 111 **
 A=R1.F fs 81Af11 **
 A=R2 112
 A=R2.F W 112 **
 A=R2.F fs 81Af12 **
 A=R3 113
 A=R3.F W 113 **
 A=R3.F fs 81Af13 **
 A=R4 114
 A=R4.F W 114 **
 A=R4.F fs 81Af14 **
 ABEX A DC
 ABEX fs AbC
 ABIT=0 d 8084n ** Clears bit d of A register
 ABIT=1 d 8085n ** Sets bit d of A register

 Page 129

 ACEX A DE
 ACEX fs AbE
 AD0EX 132
 AD0XS 13A
 AD1EX 133
 AD1XS 13B
 APCEX 81B6 ** Continues elsewhere
 AR0EX 120
 AR0EX.F fs 81Af20 **
 AR1EX 121
 AR1EX.F fs 81Af21 **
 AR2EX 122
 AR2EX.F fs 81Af22 **
 AR3EX 123
 AR3EX.F fs 81Af23 **
 AR4EX 124
 AR4EX.F fs 81Af24 **
 ASL A F0
 ASL fs Bb0
 ASLC 810
 ASR A F4
 ASR fs Bb4
 ASRB 81C
 ASRB.F fs 819f0 **
 ASRC 814
 B=-B A F9 Affects Carry
 B=-B fs Bb9 Affects Carry
 B=-B-1 A FD Clears Carry
 B=-B-1 fs BbD Clears Carry
 B=0 A D1
 B=0 fs Ab1
 B=A A D8
 B=A fs Ab8
 B=A!B fs 0EfC
 B=A&B fs 0Ef4
 B=A+B A C8 Affects Carry
 B=A+B fs Aa8 Affects Carry
 B=B!A fs 0EfC
 B=B!C fs 0Ef9
 B=B&A fs 0Ef4
 B=B&C fs 0Ef1
 B=B+1 A E5 Affects Carry
 B=B+1 fs Ba5 Affects Carry
 B=B+A A C8 Affects Carry
 B=B+A fs Aa8 Affects Carry
 B=B+B A C5 Affects Carry
 B=B+B fs Aa5 Affects Carry
 B=B+C A C1 Affects Carry
 B=B+C fs Aa1 Affects Carry
 B=B+CON rfs,d 818f1m ** Affects Carry
 B=B-1 A CD Affects Carry
 B=B-1 fs AaD Affects Carry
 B=B-A A E8 Affects Carry
 B=B-A fs Ba8 Affects Carry
 B=B-C A E1 Affects Carry
 B=B-C fs Ba1 Affects Carry
 B=B-CON rfs,d 818f9m ** Affects Carry
 B=C A D5

 Page 130

 B=C fs Ab5
 B=C!B fs 0Ef9
 B=C&B fs 0Ef1
 B=C+B A C1 Affects Carry
 B=C+B fs Aa1 Affects Carry
 B=C-B A ED Affects Carry
 B=C-B fs BaD Affects Carry
 BAEX A DC
 BAEX fs AbC
 BCEX A DD
 BCEX fs AbD
 BSL A F1
 BSL fs Bb1
 BSLC 811
 BSR A F5
 BSR fs Bb5
 BSRB 81D
 BSRB.F W 81D **
 BSRB.F fs 819f1 **
 BSRC 815
 BUSCB 8083 **
 BUSCC 80B
 BUSCD 808D **
 C+P+1 809 Affects Carry
 C=-C A FA Affects Carry
 C=-C fs BbA Affects Carry
 C=-C-1 A FE Clears Carry
 C=-C-1 fs BbE Clears Carry
 C=0 A D2
 C=0 fs Ab2
 C=A A D6
 C=A fs Ab6
 C=A!C fs 0EfA
 C=A&C fs 0Ef2
 C=A+C A C2 Affects Carry
 C=A+C fs Aa2 Affects Carry
 C=A-C A EE Affects Carry
 C=A-C fs BaE Affects Carry
 C=B A D9
 C=B fs Ab9
 C=B!C fs 0EfD
 C=B&C fs 0Ef5
 C=B+C A C9 Affects Carry
 C=B+C fs Aa9 Affects Carry
 C=C!A fs 0EfA
 C=C!B fs 0EfD
 C=C!D fs 0EfF
 C=C&A fs 0Ef2
 C=C&B fs 0Ef5
 C=C&D fs 0Ef7
 C=C+1 A E6 Affects Carry
 C=C+1 fs Ba6 Affects Carry
 C=C+A A C2 Affects Carry
 C=C+A fs Aa2 Affects Carry
 C=C+B A C9 Affects Carry
 C=C+B fs Aa9 Affects Carry
 C=C+C A C6 Affects Carry
 C=C+C fs Aa6 Affects Carry

 Page 131

 C=C+CON rfs,d 818f2m ** Affects Carry
 C=C+D A CB Affects Carry
 C=C+D fs AaB Affects Carry
 C=C+P+1 809 Affects Carry
 C=C-1 A CE Affects Carry
 C=C-1 fs AaE Affects Carry
 C=C-A A E2 Affects Carry
 C=C-A fs Ba2 Affects Carry
 C=C-B A E9 Affects Carry
 C=C-B fs Ba9 Affects Carry
 C=C-CON rfs,d 818fAm ** Affects Carry
 C=C-D A EB Affects Carry
 C=C-D fs BaB Affects Carry
 C=D A DB
 C=D fs AbB
 C=D!C fs 0EfF
 C=D&C fs 0Ef7
 C=D+C A CB Affects Carry
 C=D+C fs AaB Affects Carry
 C=DAT0 A 146
 C=DAT0 B 14E
 C=DAT0 fs 156a
 C=DAT0 d 15Em
 C=DAT1 A 147
 C=DAT1 B 14F
 C=DAT1 fs 157a
 C=DAT1 d 15Fm
 C=ID 806
 C=IN 803
 C=P d 80Cn
 C=PC 81B5 **
 C=R0 118
 C=R0.F fs 81Af18 **
 C=R1 119
 C=R1.F fs 81Af19 **
 C=R2 11A
 C=R2.F fs 81Af1A **
 C=R3 11B
 C=R3.F fs 81Af1B **
 C=R4 11C
 C=R4.F fs 81Af1C **
 C=RSTK 07
 C=ST 09
 CAEX A DE
 CAEX fs AbE
 CBEX A DD
 CBEX fs AbD
 CBIT=0 d 8088n ** Clears bit d of C register
 CBIT=1 d 8089n ** Sets bit d of C register
 CD0EX 136
 CD0XS 13E
 CD1EX 137
 CD1XS 13F
 CDEX A DF
 CDEX fs AbF
 CLRHST 82F
 CLRST 08
 CON(1) expr n

 Page 132

 CON(2) expr nn
 CON(3) expr nnn
 CON(4) expr nnnn
 CON(5) expr nnnnn
 CON(6) expr nnnnnn
 CON(7) expr nnnnnnn
 CON(8) expr nnnnnnnn
 CONFIG 805
 CPCEX 81B7 ** Continues elsewhere
 CPEX d 80Fn
 CR0EX 128
 CR0EX.F fs 81Af28 **
 CR1EX 129
 CR1EX.F fs 81Af29 **
 CR2EX 12A
 CR2EX.F fs 81Af2A **
 CR3EX 12B
 CR3EX.F fs 81Af2B **
 CR4EX 12C
 CR4EX.F fs 81Af2C **
 CSL A F2
 CSL fs Bb2
 CSLC 812
 CSR A F6
 CSR fs Bb6
 CSRB 81E
 CSRB.F fs 819f2 **
 CSRC 816
 CSTEX 0B
 D0=(2) expr 19nn
 D0=(4) expr 1Annnn
 D0=(5) expr 1Bnnnnn
 D0=A 130
 D0=AS 138
 D0=C 134
 D0=CS 13C
 D0=D0+ d 16m Affects Carry
 D0=D0- d 18m Affects Carry
 D0=HEX hh 19hh
 D0=HEX hhhh 1Ahhhh
 D0=HEX hhhhh 1Bhhhhh
 D1=(2) expr 1Dnn
 D1=(4) expr 1Ennnn
 D1=(5) expr 1Fnnnnn
 D1=A 131
 D1=AS 139
 D1=C 135
 D1=CS 13D
 D1=D1+ d 17m Affects Carry
 D1=D1- d 1Cm Affects Carry
 D1=HEX hh 1Dhh
 D1=HEX hhhh 1Ehhhh
 D1=HEX hhhhh 1Fhhhhh
 D=-D A FB Affects Carry
 D=-D fs BbB Affects Carry
 D=-D-1 A FF Clears Carry
 D=-D-1 fs BbF Clears Carry
 D=0 A D3

 Page 133

 D=0 fs Ab3
 D=C A D7
 D=C fs Ab7
 D=C!D fs 0EfB
 D=C&D fs 0Ef3
 D=C+D A C3 Affects Carry
 D=C+D fs Aa3 Affects Carry
 D=C-D A EF Affects Carry
 D=C-D fs BaF Affects Carry
 D=D!C fs 0EfB
 D=D&C fs 0Ef3
 D=D+1 A E7 Affects Carry
 D=D+1 fs Ba7 Affects Carry
 D=D+C A C3 Affects Carry
 D=D+C fs Aa3 Affects Carry
 D=D+CON rfs,d 818f3m ** Affects Carry
 D=D+D A C7 Affects Carry
 D=D+D fs Aa7 Affects Carry
 D=D-1 A CF Affects Carry
 D=D-1 fs AaF Affects Carry
 D=D-C A E3 Affects Carry
 D=D-C fs Ba3 Affects Carry
 D=D-CON rfs,d 818fBm ** Affects Carry
 DAT0=A A 140
 DAT0=A B 148
 DAT0=A fs 150a
 DAT0=A d 158m
 DAT0=C A 144
 DAT0=C B 14C
 DAT0=C fs 154a
 DAT0=C d 15Cm
 DAT1=A A 141
 DAT1=A B 149
 DAT1=A fs 151a
 DAT1=A d 159m
 DAT1=C A 145
 DAT1=C B 14D
 DAT1=C fs 155a
 DAT1=C d 15Dm
 DCEX A DF
 DCEX fs AbF
 DSL A F3
 DSL fs Bb3
 DSLC 813
 DSR A F7
 DSR fs Bb7
 DSRB 81F
 DSRB.F fs 819f3 **
 DSRC 817
 GOC label 4yy Continues elsewhere if Carry set
 GOLONG label 8Cyyyy Continues elsewhere
 GONC label 5yy Continues elsewhere if Carry clear
 GOSBVL label 8Fyyyyy Affects Carry
 GOSUB label 7yyy Affects Carry
 GOSUBL label 8Eyyyy Affects Carry
 GOTO label 6yyy Continues elsewhere
 GOVLNG label 8Dyyyyy Continues elsewhere
 GOYES label tt Must follow a test instruction

 Page 134

 HS=0 d 82n Clears (MP SR SB XM) according to d
 Example: 823 Clears SB and XM
 INTOFF 808F
 INTON 8080
 LA(1) expr 80820n ** Load A register
 LA(2) expr 80821nn ** Load A register
 LA(3) expr 80822nnn ** Load A register
 LA(4) expr 80823nnnn ** Load A register
 LA(5) expr 80824nnnnn ** Load A register
 LA(6) expr 80825nnnnnn ** Load A register
 LA(7) expr 80826nnnnnnn ** Load A register
 LA(8) expr 80827nnnnnnnn ** Load A register
 LC(1) expr 30n Load C register
 LC(2) expr 31nn Load C register
 LC(3) expr 32nnn Load C register
 LC(4) expr 33nnnn Load C register
 LC(5) expr 34nnnnn Load C register
 LC(6) expr 35nnnnnn Load C register
 LC(7) expr 36nnnnnnn Load C register
 LC(8) expr 37nnnnnnnn Load C register
 MP=0 828
 NIBASC ASCII x...x
 NIBFS fs f
 NIBHEX hhhhhhh hhhhhhh Affects Carry
 NOP3 820
 NOP4 6300
 NOP5 64000
 OUT=C 801
 OUT=CS 800
 P= d 2n
 P=C d 80Dn
 P=P+1 0C Affects Carry
 P=P-1 0D Affects Carry
 PC=(A) 808C ** Continues elsewhere
 PC=(C) 808E ** Continues elsewhere
 PC=A 81B2 ** Continues elsewhere
 PC=C 81B3 ** Continues elsewhere
 R0=A 100
 R0=A.F fs 81Af00 **
 R0=C 108
 R0=C.F fs 81Af08 **
 R1=A 101
 R1=A.F fs 81Af01 **
 R1=C 109
 R1=C.F fs 81Af09 **
 R2=A 102
 R2=A.F fs 81Af02 **
 R2=C 10A
 R2=C.F fs 81Af0A **
 R3=A 103
 R3=A.F fs 81Af03 **
 R3=C 10B
 R3=C.F fs 81Af0B **
 R4=A 104
 R4=A.F fs 81Af04 **
 R4=C 10C
 R4=C.F fs 81Af0C **
 REL(1) label y

 Page 135

 REL(2) label yy
 REL(3) label yyy
 REL(4) label yyyy
 REL(5) label yyyyy
 REL(6) label yyyyyy
 REL(7) label yyyyyyy
 REL(8) label yyyyyyyy
 RESET 80A
 RSI 80810 **
 RSTK=C 06
 RTI 0F Continues elsewhere
 RTN 01 Continues elsewhere
 RTNC 400 Continues elsewhere if Carry set
 RTNCC 03 Continues elsewhere clearing Carry
 RTNNC 500 Continues elsewhere if Carry clear
 RTNSC 02 Continues elsewhere setting Carry
 RTNSXM 00 Continues elsewhere setting XM bit
 RTNYES ** Must follow a test instruction
 SB=0 822
 SETDEC 05
 SETHEX 04
 SHUTDN 807
 SLINK label yyyyy
 SR=0 824
 SREQ? 80E
 ST=0 d 84n
 ST=1 d 85n
 ST=C 0A
 STRING ASCII x...x
 UNCNFG 804
 XM=0 821

 Page 136

 10. Error Messages

 This is a list of all errors which are generated by the
 assembler and explanations of what causes that error message
 to be printed.

 Non-fatal error messages are lines of the form
 *** ERROR: message *** which are followed by the source line
 containing the error. These messages indicate errors in the
 code, but the assembly continues to subsequent lines. For a
 few error messages, the message follows the line containing
 the error. Those error messages are noted in the list.

 Fatal error messages are lines of the form SASM.EXE: message
 (details). These messages indicate errors encountered
 during the assembly process which are not code-related and
 which terminate the assembly. The list and object files for
 the assembly, if any, may not be complete.

 Command line messages are messages related to options
 specified on the command line. The messages indicate
 problems with options. If any command line messages have
 been printed when all options have been processed, the
 assembly stops. No files have been altered (except the d
 option, which takes effect immediately).

 Some explanations include suggestions to help track down the
 cause of the error.

 10.1 Non-Fatal Error Messages

 ERROR: ABS/REL must be at beginning

 The ABS and REL statements, if present, must precede all
 code-generating statements.

 ERROR: Branch out of range

 The distance to the target label is too far for the size of
 this field.

 ERROR: Can't add two external expressions

 Both sides of + are external expressions. At most one
 external reference is allowed with the + operator.

 Page 137

 ERROR: Can't define a new macro within a macro

 Executed a MACRO statement while expanding a macro. A new
 macro cannot be defined while expanding a macro.

 Suggestion: A missing ENDM at the end of a macro definition
 might cause this if another macro follows the one currently
 being expanded.

 ERROR: Can't have external reference on left side of

 The left side of is an external reference. An external
 reference is allowed only on the right side of the
 operator.

 ERROR: Can't have external reference on right side of -

 The right side of - is an external reference. An external
 reference is allowed only on the left side of the -
 operator.

 ERROR: Can't redefine an existing macro

 A MACRO statement was executed to define a macro which has
 already been defined.

 ERROR: Can't redefine an existing opcode

 A MACRO statement was executed to define a macro, but the
 macro name is the same as an opcode.

 ERROR: Can't use !,&,*,/,%, or ^ with external reference

 At least one of the operands is an external expression. An
 external reference is not allowed with these operators.

 ERROR: Conditional assembly stack overflow

 IF statements are nested more than 20 levels. Simplify the
 logic of the IF tests, or use the SETFLAG and CLRFLAG
 statements to indicate combinations of IF tests.

 ERROR: Divide by zero (result set to 0)

 The expression on the right side of the / operator is zero.

 ERROR: Duplicate ELSE statement

 More than one ELSE statement was executed for a given test.

 Page 138

 ERROR: Duplicate symbol

 The symbol being defined on this line has already been
 defined in this file.

 Suggestion: Check the cross reference to find the previous
 definition; line 0 means the symbol was defined on the
 command line with -D.

 ERROR: ELSE without matching IF

 An ELSE statement was executed without a corresponding IF
 statement.

 Suggestion: Check for a typing error in the label field of
 the IF and ELSE statements.

 ERROR: ENDIF without matching IF

 An ENDIF statement was executed without a corresponding IF
 statement.

 Suggestion: Check for a typing error in the label field of
 the IF and ENDIF statements.

 ERROR: ENDM and EXITM not permitted outside of a macro

 Executed an ENDM or EXITM while not in a macro.

 Suggestion: Check for an error in the preceding MACRO
 statement, if present.

 ERROR: End of file while defining macro

 The end of a file containing a macro definition was reached
 while defining a macro.

 Suggestion: Check for an error in an ENDM statement or a
 missing ENDM statement.

 ERROR: Error reading CHARMAP file (filespec)

 A file system error occurred while reading the CHARMAP file.

 Page 139

 ERROR: Error reading RDSYMB file (filespec)

 The RDSYMB file is not a Saturn object file, or a file
 system error occurred while reading the header of the RDSYMB
 file.

 Three things must be true for the file to be considered a
 valid Saturn object file:

 1. There is a 256-byte header in the file.

 2. The first six bytes of the header are ``Saturn''.

 3. The offset to the start of the symbol records
 indicated in the header is contained in this file.

 ERROR: Error reading from RDSYMB file (filespec)

 The RDSYMB file is not a Saturn object file, or a file
 system error occurred while reading the RDSYMB file.

 ERROR: Expanded macro line too long (truncated)

 The line resulting from macro expansion is more than 255
 characters long. Only the first 255 characters are used.

 ERROR: Exponent less than zero (result set to 0)

 The expression on the right side of the ^ operator is less
 than zero.

 ERROR: Expression can not be external

 The expression for the EQU or = statement contains an
 external reference. Only absolute or relocatable symbols
 are allowed for these statements.

 ERROR: Expression must be absolute

 The expression in the ABS, REL, BSS, or LISTALL statement
 contains a relocatable or external reference. Only absolute
 symbols are allowed for these statements.

 ERROR: Expression not allowed as target of branch

 The modifier is not a label reference, and the -x option was
 not specified on the command line.

 The label is not a valid label because it contains a right
 parenthesis ')'

 Suggestion: If this is a REL(n) statement, an expression can
 be used without specifying the -x option by subtracting (*)
 from the expression and using a CON(n) statement.

 Page 140

 ERROR: Expression not allowed for INC(x), LINK, and SLINK

 The modifier is not a label reference. INC(n), LINK, and
 SLINK require a label reference.

 The label is not a valid label because it contains a right
 parenthesis ')'

 ERROR: Expression out of range

 A digit expression is less than zero or greater than 15
 after applying the statement's adjustment factor (usually 0
 or -1).

 ERROR: Expression stack overflow

 The expression is too complicated. There can be no more
 than 20 pending data items.

 Suggestion: Simplify the expression by splitting it into
 several smaller expressions. Assign each of the smaller
 expressions to a symbol and combine them for the final
 expression.

 ERROR: Expression stack underflow

 An expression was not present when expected.

 Suggestion: This usually indicates a missing data item
 following an operator. This can be caused by a blank or tab
 within the expression, as they indicate the end of the
 field.

 ERROR: Field too long

 A field is longer than the maximum length allowed. There
 should be another message following this one which gives
 more detailed information about the error.

 ERROR: Flag value out of range

 The flag expression in the IF, CLRFLAG, or SETFLAG statement
 is less than zero or greater than 99.

 ERROR: GOYES/RTNYES without test instruction

 A GOYES or RTNYES statement was executed, but the preceding
 instruction was not a test instruction.

 ERROR: IF expression must be absolute

 The flag expression in the IF, CLRFLAG, or SETFLAG statement
 contains a relocatable or external reference. Only absolute
 symbols are allowed for these statements.

 Page 141

 ERROR: INCLUDE or MACRO nested too deeply

 The number of nested INCLUDE and MACRO expansions is greater
 than 20.

 Suggestion: Check for a macro calling itself, or an include
 file including itself.

 ERROR: Illegal field select

 The field select is not a valid field select indicator (P,
 WP, XS, X, S, M, B, W, or A).

 ERROR: Illegal mnemonic

 The instruction was not found in the opcode table, or a
 macro was used before it was defined.

 Suggestion: Check that the processor command-line option (-
 P) is correct, and that the label, if any, starts in either
 the first or second column.

 ERROR: Input line too long (extra characters ignored)

 An input line is more than 255 characters long. Only the
 first 255 characters are used.

 ERROR: Instruction not allowed with this CPU

 A statement was executed which is not permitted by the
 current value of the -P command-line option. This message
 indicates a probable assembler defect, and should be
 reported as such.

 ERROR: Invalid ASC constant

 An ASCII constant in an expression is improperly formed.
 The terminating character must match the beginning character
 (\, ', or ").

 This message also indicates an ASCII constant containing
 more than 40 characters.

 ERROR: Invalid ASC constant (too large)

 More than 8 characters were specified for LAASC or LCASC, or
 more than 4 characters were specified in an ASCII constant
 in an expression.

 ERROR: Invalid HEX constant

 A character which is not a hexadecimal digit was specified
 for LAHEX, LCHEX, D0=HEX, D1=HEX, or NIBHEX, or than 40
 hexadecimal digits were specified for NIBHEX.

 Page 142

 ERROR: Invalid HEX constant (not 2, 4, or 5 digits)

 The hexadecimal constant for D0=HEX and D1=HEX must consist
 of two, four, or five digits.

 ERROR: Invalid HEX constant (not HEX digit)

 A character which is not a hexadecimal digit follows a # in
 an expression.

 ERROR: Invalid HEX constant (too large)

 More than 16 hexadecimal digits were specified for LAHEX or
 LCHEX.

 ERROR: Invalid HEX constant (too many digits)

 More than eight hexadecimal digits follow a # in an
 expression.

 ERROR: Invalid expression

 The expression is not a valid expression or an expression is
 not present. There may be another message following this
 one which gives more detailed information about the error.

 Suggestion: Any field which starts after column 30 is
 considered to be a comment unless overridden with the -c
 option.

 ERROR: Invalid field select/digit

 The modifier is neither an expression nor a valid field
 select indicator (P, WP, XS, X, S, M, B, W, or A).

 Suggestion: This message occurs whenever the expression is
 not valid. There may be another message printed which gives
 more detailed information about the error.

 ERROR: Invalid file specifier

 The file specifier for RDSYMB, CHARMAP, or INCLUDE does not
 include a terminator character, or the file specifier is not
 present.

 Suggestion: Any field which starts after column 30 is
 considered to be a comment unless overridden with the -c
 option.

 ERROR: Invalid flag expression

 The flag expression is not a valid expression or it is not
 present. There may be another message following this one
 which gives more detailed information about the error.

 Suggestion: Any field which starts after column 30 is
 considered to be a comment unless overridden with the -c
 option.

 Page 143

 ERROR: Invalid format character

 The indirect macro parameter reference ``$(...)'' contains
 an invalid character. The characters within the parentheses
 must be a digit, colon, or one of the characters
 ``HhXxDdOoUu''.

 ERROR: Invalid parameter indirection

 The indirect macro parameter reference ``$('' was found, but
 the closing right parenthesis is missing.

 ERROR: Invalid symbol

 No symbol name was specified with the = or EQU statement, or
 an equals sign (=) in columns one or two is followed by a
 blank or tab.

 ERROR: Invalid symbol name

 No symbol was specified for IFDEF, IFNDEF, IFOPC, or IFNOPC.

 Suggestion: Any field which starts after column 30 is
 considered to be a comment unless overridden with the -c
 option.

 ERROR: Label not allowed on GOYES/RTNYES statement

 A line containing a GOYES or RTNYES statement has a label.
 This is not allowed because GOYES and RTNYES are the second
 part of a test operation.

 ERROR: List type not CODE,MACRO,INCLUDE,PSEUDO,ALL, or
 NOLIST

 The modifier(s) for CLRLIST and SETLIST must start with
 letters C, M, I, P, or A for Code, Macro, Include, Pseudo,
 or All, respectively.

 ERROR: Missing expression

 An expression is required, but no expression was found.

 Suggestion: Check that the expression starts before the
 comment column, which defaults to 30 (use the c option to
 change the column).

 ERROR: Missing separator character

 The string separator character for an IFSTR?? test was not
 found.

 Suggestion: The first non-blank character after the IFSTR??
 statement is used as the separator character to delineate
 the two strings. The character must appear a total of three
 times (start of first string, separator between strings, end
 of second string).

 Page 144

 ERROR: Modulo zero (result set to 0)

 The expression on the right side of the % operator is equal
 to zero.

 ERROR: More data than operators in expression

 The expression is incomplete. This message can occur as the
 result of an incorrect operator (another error message
 should be printed).

 Suggestion: Check for blanks within the expression, or a
 symbol which is not contained within parentheses.

 ERROR: Name on ENDM doesn't match MACRO name

 The label on the ENDM statement is not the same as the label
 on the most recent MACRO statement.

 Suggestion: A missing ENDM statement can cause this message
 if there is another macro defined after the missing ENDM.

 ERROR: Number of nibbles must be non-negative

 The number of nibbles expression in BSS is less than zero.

 ERROR: Number of nibbles too big for file

 The number of nibbles requested by BSS would overflow the
 address space of the Saturn CPU.

 ERROR: Only one TITLE statement allowed per file

 A TITLE statement was executed, but the title given does not
 match the current title.

 Suggestion: Check included files for TITLE statements.

 ERROR: Operator left on stack

 There is not enough data for the number of operators given.
 This message indicates a probable assembler defect, and
 should be reported as such.

 ERROR: Operator stack overflow

 The expression is too complicated. There can be no more
 than 20 pending operators, including right parentheses.

 Suggestion: Simplify the expression by splitting it into
 several smaller expressions. Assign each of the smaller
 expressions to a symbol and combine them for the final
 expression.

 ERROR: Operator stack underflow

 This message indicates a probable assembler defect, and
 should be reported as such.

 Page 145

 ERROR: PC changed (use old value)

 The value of the label on the ABS or REL statement changed.

 Suggestion: Look in the cross reference for another
 reference to the label which changes its value.

 ERROR: PC wrapped around to 00000

 The number of nibbles in the file exceeds the address space
 of the Saturn CPU. The current PC is decremented by
 #100000.

 ERROR: Parameter too big (truncated)

 The size of an indirect macro parameter reference field
 would cause the line resulting from macro expansion to be
 more than 255 characters long. The reference size is
 reduced so it fits.

 ERROR: Relocatable offset not allowed here

 A digit expression is relocatable. The digit expression
 must either be absolute or external.

 ERROR: Single nibble field not allowed here

 A field select which could evaluate to a single-nibble field
 (P, XS, S, or WP) was requested for r=r+CON or r=r-CON.

 Suggestion: This restriction is due to a limitation in the
 1LR2 processor which causes these instructions to fail for
 single-nibble fields.

 ERROR: Symbol changed (use old value)

 The current value of a symbol is different than the value in
 pass 2.

 Suggestion: Check for conditional assembly which uses the
 IFPASS1 or IFPASS2 statements incorrectly. This can also be
 caused by an error in code generated before this line.

 ERROR: Symbol was not defined in pass 1

 A symbol which is defined in pass 2 was not defined in pass
 1.

 Suggestion: Check for conditional assembly which uses the
 IFPASS1 or IFPASS2 statements incorrectly.

 ERROR: Test instruction without GOYES/RTNYES

 The previous line was a test instruction, but this line is
 neither GOYES or RTNYES.

 Page 146

 ERROR: Too many relocatable/external references

 More than one external or relocatable reference is present.
 At most one external or net relocatable reference is
 allowed.

 ERROR: Unable to open CHARMAP file (filespec)

 An error occurred opening the file indicated by the file
 specifier provided.

 Suggestion: Check that the file specifier is correct and the
 file is readable. Also check the value of the SASM_CHARMAP
 environment variable.

 ERROR: Unable to open INCLUDE file (filespec)

 An error occurred opening the file indicated by the file
 specifier provided. This message follows the line
 containing the error.

 Suggestion: Check that the file specifier is correct and the
 file is readable. Also check the value of the SASM_INCLUDE
 environment variable.

 ERROR: Unable to open RDSYMB file (filespec)

 An error occurred opening the file indicated by the file
 specifier provided.

 Suggestion: Check that the file specifier is correct and the
 file is readable. Also check the value of the SASM_RDSYMB
 environment variable.

 ERROR: Undefined symbol

 The symbol used is not defined within this file and the
 symbol is not an external symbol reference.

 ERROR: Unknown PSEUDO-OP

 The internal code for this instruction is not a code which
 is known to the assembler.

 Suggestion: If the opcode file (sasm.opc) has been modified
 more recently than the assembler, it may contain new codes
 which are not recognized in the older assembler.

 ERROR: Unlabeled MACRO statement (*MACRO used)

 The MACRO statement does not have a label. The default name
 *MACRO is used to avoid attempting to assemble the macro
 instructions without macro expansion.

 ERROR: Unmatched '(' in expression

 More right parentheses (() than left parentheses ())
 occurred in an expression.

 Page 147

 ERROR: Unmatched ')' in expression

 More left parentheses ()) than right parentheses (()
 occurred in an expression.

 ERROR: Unrecognized operator

 A character which is not a valid operator character was
 found when an operator character was expected.

 Suggestion: This error message may be caused by other errors
 in the expression. The character is ignored as if it wasn't
 there, which may cause other error messages.

 ERROR: Value too big

 The value of the expression for ABS or REL is larger than
 the maximum address for the Saturn CPU.

 10.2 Fatal Error Messages

 The name preceding the colon in these messages is the
 current assembler name.

 SASM.EXE: filename is not an opcode table file

 The specified filename does not have the correct format for
 an opcode table file.

 SASM.EXE: can't back up objfile

 The assembler attempted to write a nibble at a location in
 the file which has already been used. This message
 indicates a probable assembler defect, and should be
 reported as such.

 SASM.EXE: corrupt opcode table entry (mnemonic not in table)

 The opcode table file contains an indirect reference to
 mnemonic, but mnemonic is not in the opcode table. This
 message indicates a defect in the opcode table.

 Suggestion: If mnemonic is not a level 0 instruction, the
 mnemonic which makes the indirect reference should have the
 same level as mnemonic.

 SASM.EXE: error creating a temporary file

 Creation of a temporary file failed. Temporary files are
 used for input from standard input and for macros.

 Page 148

 SASM.EXE: error creating file description for writing

 Creation of the specified file failed.

 Suggestion: Verify that the directory for the file is
 writable, and if the file already exists, check that it is
 writable.

 SASM.EXE: error getting memory for reason

 A request for memory was rejected by the operating system.

 Suggestion: Remove RAM-resident utilities to free up memory.

 SASM.EXE: error opening filename for access

 The specified filename could not be opened for access.

 Suggestion: For writing, if the file already exists, check
 that it is writable.

 SASM.EXE: error reading from file description

 A read from the file failed. The file may be corrupt, or a
 system error may have occurred.

 SASM.EXE: error reading location from macro file

 An attempt to read the current location failed. The file
 may be corrupt, or a system error may have occurred.

 SASM.EXE: error setting location in file description

 An attempt to set the current location failed. The file may
 be corrupt, or a system error may have occurred.

 SASM.EXE: error writing to file description

 An attempt to write to the specified file failed.

 Suggestion: Check for a full disc, a write-protected file,
 or other operating system limitations.

 SASM.EXE: macro macro_name was not defined in pass 1

 A macro definition was encountered in pass 2 which was not
 found in pass 1.

 Suggestion: Check for incorrect usage of the IFPASS1 or
 IFPASS2 statements.

 SASM.EXE: object file cannot be [stdout]

 The object file name is ``-'', but neither the h nor the H
 option was specified on the command line.

 Page 149

 SASM.EXE: operand type (value) is not valid

 An invalid operand type was encountered.

 Suggestion: Check that the opcode table file is not
 corrupted, and that the version of the assembler matches
 that of the opcode table file.

 SASM.EXE: too many nibbles in output file filename

 The output file already contained 1048576 nibbles when an
 attempt was made to add another nibble.

 Suggestion: Check for erroneous BSS statements.

 SASM.EXE: unable to read current time

 A request to the operating system for the current time
 failed.

 10.3 Command Line Messages

 Code field width must be greater than 0 (nn invalid)

 The n option has a width less than or equal to zero.

 Code field width must be less than nn (nn invalid)

 The n option has a width greater than the maximum
 allowed. The exact value of the maximum depends on the
 line width field, which defaults to four, and is set to
 five with the s option.

 Comment column must be non-negative (nn)

 The c option has a negative value. The value must be
 greater than or equal to zero. A value of zero means
 there is no comment column.

 Flag number out of range (nn)

 The f option argument contains a flag number which is
 not between zero and 99, inclusive.

 Invalid code generation level (string)

 The P option argument is not between zero and three,
 inclusive.

 Invalid flag digit (char)

 The f option argument contains a character which is
 neither a digit nor a separator character. Valid
 separator characters are ',', ' ' (blank), (;), and
 (:).

 Page 150

 List and code files both [stdout] (list disabled)

 The A option is specified with the o - option. The A
 option is ignored (with the same results as specifying
 the N option).

 Non-numeric code field width (string)

 The n option argument is not a valid integer.

 Non-numeric comment column (string)

 The c option argument is not a valid integer.

 Non-numeric expression for -D (string)

 For the D option, the expression following the equals
 sign (=) is not a valid integer.

 Suggestion: If the symbol to be defined contains an
 equals sign and the default value is to be used, append
 another equals sign to the symbol. This forces the
 default value to be used.

 Non-numeric page length (string)

 The p option argument is not a valid integer.

 Non-numeric page width (string)

 The w option argument is not a valid integer.

 Options -A, -a, and -o not allowed with multiple files

 Multiple file names are specified in conjunction with
 the A, a, or o options. Multiple file names are
 allowed only when the default list and object file
 names are used.

 Suggestion: This error can also be caused by trying to
 specify options after a file name. All options must
 precede the first file name on the command line.

 Page length must be at least 4 (n)

 The p option length is less than four. At least four
 lines must be printed per page (three for the header,
 one for program data).

 Page width must be at least 44 (nn)

 The w option width is less than 44. The minimum width
 is big enough to allow a symbol reference and one line
 number to fit on the line.

 Page 151

 11. Saturn Object File Format

 A Saturn object file consists of the following three
 components:

 + A 256-byte header

 + Zero or more 256-byte blocks containing code

 + Zero or more 256-byte blocks containing symbols.

 All two-byte and four-byte quantities in the header and
 symbol records are stored with the most significant byte of
 the quantity in the first byte of the field and the least
 significant byte of the quantity in the last byte of the
 field.

 11.1 Saturn Object Header Record

 Object Size
 Name Bytes Description [Contents]
 --
 ID 6 File identifier [``Saturn'']
 Filesize 2 Number of 256-byte blocks in this file
 [16-bit unsigned value]
 Codesize 4 Number of nibbles of code
 Symbols 2 Number of symbols [16-bit unsigned value]
 Refs 2 Number of symbol references [16-bit unsigned value]
 Start 4 Code start address
 Absolute 1 Absolute/Relocatable [1 means ABS, 0 means REL]
 Reserved 1 Reserved byte [fill to 16-bit boundary]
 Date 26 Date of creation [``Day Mon DD HH:MM:SS YYYY '']
 Title 40 Title, if any; default = blanks
 Reserved 20 Reserved bytes [Softkeys]
 Version 26 Version of program creating file
 Reserved 4 Reserved bytes [ROM ID]
 Reserved 118 Reserved bytes [00]

 11.2 Saturn Object Code Record

 The code nibbles are stored two per byte in the code record.
 The first nibble of code is in the most significant nibble
 of the first code record byte, and the second nibble is in
 the least significant nibble of that byte.

 11.3 Saturn Object Symbol Block

 Symbols are stored in alphabetical order. The most
 significant bit of the SymInfo field is the RESOLVED bit.
 If the RESOLVED bit is set, the symbol is resolved, and has
 value Value. If the RESOLVED bit is not set, this is an
 external symbol whose value is unknown.

 Page 152

 The second most significant bit of the SymInfo field is the
 RELOCATABLE bit. If the RELOCATABLE bit is set, this symbol
 should be adjusted (relocated) if the starting address of
 the module is changed. If the RELOCATABLE bit is not set,
 this is an absolute symbol which should not be relocated.

 The remaining 14 bits of the SymInfo field indicate the
 number of external references to the symbol. Reference
 records for the symbol follow the symbol record.

 Object Size
 Name Bytes Description [Contents]

 SymbID 4 Symbol record identifier [``Symb'']
 Record 18 Symbol record or reference record
 (14 records per block)

 Symbol Record
 Name 12 Symbol name [blank-filled]
 SymInfo 2 Symbol information and reference count
 Value 4 Symbol value

 Reference Record
 Class 1 Fill reference class
 Subclass 1 Fill reference subclass
 Address 4 Fill address
 Adjust 4 Adjustment to fill value
 [32-bit signed value]
 Fillsize 2 Size of fill reference in nibbles
 [16-bit unsigned value]
 Reserved 6 Reserved bytes [pad to 18 bytes]

 Page 153

 11.4 Fill Reference Types

 Class Subclass Description
 --
 0 0 Direct reference
 0 1 Direct reference **
 1 0 Reference relative to start of
 reference * **
 1 1 Reference relative to nibble past
 end of reference * **
 1 2 Reference relative to start of
 reference [REL(n)] *
 2 0 SLINK reference
 2 1 LINK reference
 3 0 INC(n) reference

 * Loader checks that this reference is within range
 ** Loader may report shortenable references for this
 reference

 Page 154

 CONTENTS

 1. Getting Started................................... 1

 2. Saturn CPU Overview............................... 4
 2.1 Registers................................... 4
 2.2 Working and Scratch Registers............... 4
 2.3 Field Selection............................. 5
 2.4 Pointer Registers........................... 5
 2.5 Input, Output, and Program Counter
 Registers................................... 5
 2.6 Carry, Program Status, and Hardware Status
 Bits.. 6
 2.7 Arithmetic Mode............................. 7
 2.8 Loading Data from Memory.................... 7
 2.9 Storing Data in Memory...................... 8
 2.10 Interrupt System............................ 8

 3. Conditional Assembly.............................. 9

 4. Using Macros...................................... 10
 4.1 Defining a Macro............................ 10
 4.2 Calling a Macro............................. 11
 4.3 Parameter Assignment Rules.................. 12
 4.4 Macro Example............................... 12

 5. File Access Statements............................ 13
 5.1 RDSYMB Statement............................ 13
 5.2 INCLUDE Statement........................... 13
 5.3 CHARMAP Statement........................... 13
 5.3.1 Charmap File Format................ 14

 6. Saturn Assembler Format and Mnemonics............. 15
 6.1 Instruction Syntax.......................... 15
 6.1.1 Comments........................... 15
 6.1.2 Symbols and Labels................. 15
 6.1.3 Expressions........................ 16
 6.2 Explanation of Symbols...................... 17
 6.3 Field Select Table.......................... 19
 6.4 Instruction Set Overview.................... 20
 6.5 Jump Instructions........................... 20
 6.6 Subroutine Call Instructions................ 21
 6.7 Subroutine Return Instructions.............. 21
 6.8 Test Instructions........................... 22
 6.8.1 Register Tests..................... 22
 6.8.2 Pointer Tests...................... 22
 6.8.3 Program Status Bit Tests........... 22
 6.8.4 Hardware Status Bit Tests.......... 23
 6.8.5 Register Bit Tests................. 23
 6.9 Pointer Instructions........................ 23
 6.10 Bit Manipulation Instructions............... 23
 6.11 Status Instructions......................... 24
 6.11.1 Program Status..................... 24
 6.11.2 Hardware Status.................... 24
 6.11.3 System State Instructions.......... 24

 - i -

 6.11.4 Keyscan Instructions............... 25
 6.11.5 Scratch Register Instructions...... 25
 6.11.6 Data Pointer Instructions.......... 25
 6.11.7 Data Transfer Instructions......... 25
 6.11.8 Load Constant Instructions......... 26
 6.11.9 Shift Instructions................. 26
 6.11.10 Arithmetic Instructions............ 27
 6.11.11 Logical Operation
 Instructions....................... 27
 6.11.12 No-Operation Instructions.......... 27
 6.12 Pseudo-Op Instructions...................... 27
 6.12.1 Data Storage Allocation............ 28
 6.13 Conditional Assembly........................ 29
 6.14 Listing Control............................. 30
 6.15 Symbol Definition........................... 30
 6.16 Macro Definition............................ 31
 6.17 Assembly Mode............................... 31
 6.18 File Access................................. 31
 6.19 Assembly Flag Modification.................. 31
 6.20 Carry State Modification.................... 32
 6.21 Miscellaneous............................... 32

 7. Saturn Assembly Tips.............................. 33
 7.1 Three Warnings.............................. 33
 7.1.1 Return Levels...................... 33
 7.1.2 Mode............................... 33
 7.1.3 Remember P=0!...................... 33
 7.2 Code Packing Tips........................... 34
 7.2.1 A-Field Operations................. 34
 7.2.2 Loading Constants.................. 34
 7.2.3 The 3-Branches..................... 34
 7.2.4 GOSUB/RTN.......................... 35
 7.2.5 Use Expressions.................... 35
 7.2.6 Count Up........................... 35
 7.2.7 Before you leap.................... 36
 7.3 Some Common Operations...................... 37
 7.3.1 A nibble from here to there........ 37
 7.3.2 Testing a Bit...................... 37
 7.3.3 Saving/Testing a State............. 39
 7.3.4 Memory Access...................... 39
 7.4 Some Other Tips............................. 40
 7.4.1 Labels............................. 40
 7.4.2 Status Bits........................ 40
 7.4.3 Entry Points....................... 40
 7.4.4 Exits.............................. 41
 7.5 Documentation............................... 41
 7.5.1 Comments on Comments............... 41
 7.5.2 A Standard Assembly Language
 Header............................. 43
 7.5.3 Some Header Examples............... 45

 8. Mnemonic Dictionary............................... 48

 9. Alphabetic Mnemonic List.......................... 126

 10. Error Messages.................................... 137
 10.1 Non-Fatal Error Messages.................... 137
 10.2 Fatal Error Messages........................ 148

 - ii -

 10.3 Command Line Messages....................... 150

 11. Saturn Object File Format......................... 152
 11.1 Saturn Object Header Record................. 152
 11.2 Saturn Object Code Record................... 152
 11.3 Saturn Object Symbol Block.................. 152
 11.4 Fill Reference Types........................ 154

 - iii -

	CONTENTS
	Getting Started
	Saturn CPU Overview
	Registers
	Working and Scratch Registers
	Field Selection
	Pointer Registers
	Input, Output, and Program Counter Registers
	Carry, Program Status, and Hardware Status Bits
	Arithmetic Mode
	Loading Data from Memory
	Storing Data in Memory
	Interrupt System

	Conditional Assembly
	Using Macros
	Defining a Macro
	Calling a Macro
	Parameter Assignment Rules
	Macro Example

	File Access Statements
	RDSYMB Statement
	INCLUDE Statement
	CHARMAP Statement
	Charmap_File_Format

	Saturn Assembler Format and Mnemonics
	Instruction Syntax
	Comments
	Symbols_and_Labels
	Expressions

	Explanation of Symbols
	Field Select Table
	Instruction Set Overview
	Jump Instructions
	Subroutine Call Instructions
	Subroutine Return Instructions
	Test Instructions
	Register_Tests
	Pointer_Tests
	Program_Status_Bit_Tests
	Hardware_Status_Bit_Tests
	Register_Bit_Tests

	Pointer Instructions
	Bit Manipulation Instructions
	Status Instructions
	Program_Status
	Hardware_Status
	System_State_Instructions
	Keyscan_Instructions
	Scratch_Register_Instructions
	Data_Pointer_Instructions
	Data_Transfer_Instructions
	Load_Constant_Instructions
	Shift_Instructions
	Arithmetic_Instructions
	Logical_Operation_Instructions
	No-Operation_Instructions

	Pseudo-Op Instructions
	Data_Storage_Allocation

	Conditional Assembly
	Listing Control
	Symbol Definition
	Macro Definition
	Assembly Mode
	File Access
	Assembly Flag Modification
	Carry State Modification
	Miscellaneous

	Saturn Assembly Tips
	Three Warnings
	Return_Levels
	Mode
	Remember_P=0!

	Code Packing Tips
	A-Field_Operations
	Loading_Constants
	The_3-Branches
	GOSUB/RTN
	Use_Expressions
	Count_Up
	Before_you_leap

	Some Common Operations
	A_nibble_from_here_to_there
	Testing_a_Bit
	Saving/Testing_a_State
	Memory_Access

	Some Other Tips
	Labels
	Status_Bits
	Entry_Points
	Exits

	Documentation
	Comments_on_Comments
	A_Standard_Assembly_Language_Header
	Some_Header_Examples

	Mnemonic Dictionary
	Alphabetic Mnemonic List
	Error Messages
	Non-Fatal Error Messages
	Fatal Error Messages
	Command Line Messages

	Saturn Object File Format
	Saturn Object Header Record
	Saturn Object Code Record
	Saturn Object Symbol Block
	Fill Reference Types

