Computer Algebra Commands For HP48 Version 3.3 revision 3
oct 20,2001 By: Jaime Fernando Meza meza
http://www.geocities.com/hp4x/cashp48/computeralgebracommandshp48g.htm |
CAShp48.LIB alone works jointly with:
(Library
909 Algebra48 version 4.2),
(Library
913 Symbolic integration version 0.1)
(Library
1494 PolySymbolic version 6.6) and
(Library
905 QPI version 5.3)
CASHP48.LIB
Contains a large number of computer algebra commands similar to those in the
(HP49 version 1.19-5), (DERIVE version 5.04)(www.derive.com), Texas
Instruments(TI89/TI92plus) AND (MATLAB version 6.0)
Algebra:
{
SIMPLIFY CSIMPLIFY FACTOR EXACT APPROXIMATE SUBST SOLVE SOLVEVX TABVAL }
___________________________________
Arithmetic:
{ PROPFRAC FACTORS PROPFRAC2}
___________________________________
Arithmetic
integer:
{
ISPRIME? PREVPRIME NEXTPRIME MOEBIUS DIVISORS PRIMEDIVIS
PERFEC? }
___________________________________
Arithmetic
Modulo:
{
MODSTO ADDTMOD SUBTMOD MULTMOD DIVMOD POWMOD INVMOD }
___________________________________
Calculus:
{
INTGRS DERIVS GRADIENT DIV CURL LAPLACIAN POTENTIAL VPOTENTIAL HESS LAGRANGE JACOBIAN
DERIVN WRONSKYAN ARCLEN FMATRIX MCOS MSIN MEXP BESSEL
}
___________________________________
Polynomial
Function:
{
FXND PCOEF CPOL
CFRAT REORDER PROOT
RPOL PMROOT
MULT2POL DIV2POL QUOT REMAINDER PROPFRAC PARTFRAC CPARTFRAC FACTOR GCD LCM PCAR
RANDPOLY PTCHEBYCHEV PUCHEBYCHEV PLEGENDRE PALEGENDRE PHERMITE PLAGUERRE
PGLAGUERRE PSPHERICALHARM POLEVALM HORNER }
___________________________________
Matrices,
vector and Linear Algebra
Create:
{
NEWMAT NEWVECTOR RANDMAT RANDVECTOR RANDCMAT RANDCVECTOR RANDSYSMAT RANDASYSMAT RANDUPPERMAT RANDLOWERMAT RANDSTOCMAT AUGMENT
APPENDCOL MDIAG LCXM MAKEMAT
HILBERT MVANDERMONDE VECTOR }
___________________________________
Operations:
{
LISTMAT MATLIST
AXL TRAN DIMMAT MAPRG XNUM XEVAL AXM DIST ANGLE DANGLE VPRBA PRYBA HADAMARD .*
MDIV ./ .^ MADD .+ MSUB .- MULT POWMAT INVS MINV ADJOINT NORMAT i_ j_ k_ }
___________________________________
Quadratic
form: AXQ QXA
___________________________________
Vector:
{ ABS2 DOTP CROSSP PRODH UNITV COSDIR DIST }
___________________________________
Factr:
{ lu qr CHOLESKY }
___________________________________
Linear
Systems: { LINSOLVE REF oref CRAMER MINOR COFACT }
___________________________________
Eigenvector:
{ PCAR PMINI IMAGE KER EGBS JORDAN }
___________________________________
Col
AND Row: { COLDIM -COL COL-2 ROW-2 ROWSAWP }
___________________________________
Complex:
{
RE2 IM2 CR2 RC2
ABS2 ARG2 SIGN2 NEG2 CONJ2 CRxy
CEILING }
___________________________________
Statistics:
{
SORTA SORTD CUMSUM CUMPROD %TILE MEAN2 MEDIAN ONETWOVAR FACTORIAL }
___________________________________
Differencial
equations: { DESOLVE LAPLACE ILAPLACE }
___________________________________
List:
LAND LOR LXOR LDIFFERENCE LSAME LDEL LSWAP LDELMULT
___________________________________
Misc:
MAKEVX CATALOG CASCMD AUTHOR ARPN
pi FIBONACCI PRg OBj
Id BZIP UNZIP PREFIXES TYPE? VXPURGE CRCASDIR TMENU2
PROMPT2 VER up EXIT }
______________________________________________________________
Objects:
[
Left vector/matrix delimiter
]
right vector/matrix delimiter
{
Left vector/matrix delimiter
}
right vector/matrix delimiter
{
Left list delimiter
}
right list delimiter
'
Left and right expression delimiter
"Left and right string
delimiter to represent long precision floating point numbers or unlimited
precision binary integer (hexstring).
A*X=b
[[ x11 x12 ... x1n ] [[ X1 ]
[[ X1 ]
[ x21 x22 ... x2n ] * [ Xi ] = [ Xi ]
[ xm1 xm2 ... xmn ]] [ Xn ]]
[ Xn ]]
MATRIZ(A) Vector
columns(X,b)
A:
Numeric Vector
a
vector with elements numeric can be entered by typing delimiters of the form:
where
the Xi are the elements numeric of the vector. The elements must be separated
by spaces, and the vector must be delimited using square brackets [ Xi ], or
using square braces { Xi }.
A1:
vector column
[
X1 X2 Xi ... Xn ] or [[ X1 ]
[ Xi ]
[ Xn ]]
Example #1: [ 18 24 4 ] (vector column)
Example
#2: [[ 18 ]
[ 24 ]
[ 4 ]] (vector column)
Example
#3: { 18 24 4 } (vector column)
Example
#4: {{ 18 }
{ 24 }
{ 4 }} (vector column)
A2:
vector row
[[
X1 X2 Xi ... Xn ]]
Example
#5: [[ 18 24 4 ]] (vector row)
B:
Symbolic Vector
A
vector with elements symbolic or numeric can be entered by typing delimiters of
the form:
where
the 'Xi' are the elements symbolic or numeric of the vector. The elements must
be separated by spaces, and the vector must be delimited using square braces {
'Xi' }.
A1:
vector column
{ 'X1' 'X2' 'Xi' ... 'Xn' } or {{ 'X1' }
{ 'X2' }
{ 'Xn' }}
Example
#1: { '2*x' –5 '' 1.5 'x^2'}
Example
#2: { X Y Z } or {{ x }
{ y }
{ z }}
A2: vector row
{{
'X1' 'X2' 'Xi' ... 'Xn' }}
Example
#3: {{ X Y Z }}
C:
Numeric Array
A
matrix with elements numeric can be entered by typing delimiters of the form:
[[
x11 x12 ... x1n ]
[ x21 x22 ... x2n ]
...
[ xm1 xm2 ... xmn ]]
where
the xij are the elements numeric of the matrix. The elements of a row must be
separated by spaces, and the matrix must be delimited square brackets [ xij ],
or using square braces { xij }.
Internally
matrices are stored as vectors of vectors row.
Example
#1: [[ 2 4 6 ]
[ 4 5 6 ]
[ 3 1 -2 ]]
Example
#2: {{ 2 4 6 }
{ 4 5 6 }
{ 3 1 -2 }}
D:
Symbolic Array
A
matrix with elements symbolic or numeric can be entered by typing delimiters of
the form:
{{
'x11' 'x12' ... 'x1n' }
{ 'x21' 'x22' ... 'x2n' }
...
{ 'xm1' 'xm2' ... 'xmn' }}
where
the xij are the elements numeric of the matrix. The elements of a row must be
separated by spaces, and the matrix must be delimited square brackets [ xij ],
or using square braces { xij }.
Internally
matrices are stored as vectors of vectors row.
Example
#1: {{ a 4 }
{ b e }
{ c 5 }}
E: Algebraic expression: '(X^2+2*X+1)/(X+1)'
F: Variables: 'X' 'S' 't' 'XY' ... etc
G: To represent long precision floating point
numbers "130529377836972488251268578591"
_____________________________________________________________
EXPAND
or SIMPLIFY are similar to expand of the (TI92+) or SIMPLIFY of the HP49
Description:
Expands and simplifies an object or a list of objects.
Access:
Library 697: CAS48 SIMPLIFY
Example
#1: Simplify the following algebraic expression:
Input:
Level
1: '(X^2+2*X+1)/(X+1)' SIMPLIFY [ENTER]
Output:
Level
1: 'X+1'
input: output:
___________________________________
Example
#2: Simplify the following algebraic expression:
Input:
Level
1: '3*X*(X^2-3*X+1)*(X^4+X-5)*(5*X-7)^2' SIMPLIFY [ENTER]
Output:
Level
1: '75*X^9-435*X^8+852*X^7-576*X^6-663*X^5+3027*X^4-4911*X^3+3402*X^2-735*X'
___________________________________
Example
#3: Simplify the following Symbolic
Matrix of expressions:
Input:
Level
1: {{ '(X+1)^2' }
{ 'COS()'
}} RAD SIMPLIFY [ENTER]
Output:
Level
1: {{ 'X^2+2*X+1' }
{ -1 }}
input: output:
___________________________________
Example
#4:
input: output:
___________________________________
'-b*d+a*d*(0,1)+b*i*c+a*c'
CSIMPLIFY
'a*c-b*d+(a*d+b*c)*i'
'INV(a+b*i)'
CSIMPLIFY
'a/(a^2+b^2)-b/(a^2+b^2)*i'
_____________________________________________________________
FACTOR
similar to factor of the (TI92+) or FACTOR of the HP49
Description:
Factorizes a polynomial or Symbolic Matrix.
Access:
Library 697: CAS48 FACTOR
Example
#1: Factorize the following polynomial:
Input:
Level
1: 'X^2+5*X+6' FACTOR
Output:
Level
1: '(X+2)*(X+3)'
___________________________________
Example
#2: Factorize the following expression:
Input:
Level
1: '75*X^9-435*X^8+852*X^7-576*X^6-663*X^5+3027*X^4-4911*X^3+3402*X^2-735*X'
FACTOR
Output:
Level
1: '3*X*(X^2-3*X+1)*(X^4+X-5)*(5*X-7)^2'
___________________________________
Example
#3: Factorize the following integer:
___________________________________
Example
#4: Factorize the following long precision numbers:
"130529377836972488251268578591"
FACTOR
'2647*3691*5113*11779*398609*556517681'
APPROXIMATE
'a^3*X^2+a*X^2+a^3+a'
FACTOR
'a*(a^2+1)*(X^2+1)'
___________________________________
'a^3*X^2-a*X^2-a^3+a'
FACTOR
'a*(a-1)*(a+1)*(X-1)*(X+1)'
___________________________________
'P*T^2-P+1-T^2'
FACTOR
'(T-1)*(T+1)*(P-1)'
_____________________________________________________________
EXACT
similar to exact of the (TI92+) or XQ of the HP49
Description:
Uses Exact mode arithmetic
Access:
Library 697: CAS48 EXACT
Example
#1: Express in exact format.
Input:
Level
1: .25 EXACT
Output:
Level
1: '1/4'
___________________________________
Example
#2: Express in exact format.
Input:
Level
1: {{ 2.5 2.71828182846 1.5707963268 }
{ (0,1) 1.41421356237 0.33 }} EXACT
Output:
Level
1: {{ '5/2' 'EXP(1)' '1/2*' }
{ 'i' '2'
'33/100' }}
See
also: XQ APPROXIMATE XQ ~~ XNUM
_____________________________________________________________
APPROXIMATE
similar to approx of the (TI92+)
Description:
Returns the evaluation of expression as a decimal value
where
each element has been evaluated to a decimal value.
Access:
Library 697: CAS48 APPROXIMATE
Example #1:
Input:
Level
1: '1/4'
Output:
Level
1: .25
___________________________________
Example
#2:
Input:
Level
1: {{ '5/2' 'EXP(1)' '1/2*' }
{ 'i' '2'
'33/100' }} APPROXIMATE
Output:
Level
1: {{ 2.5 2.71828182846 1.5707963268 }
{ (0,1) 1.41421356237 0.33 }}
See
also: XQ ~~ XQ
_____________________________________________________________
AXL
similar to listmat or matlist
of the (TI92+)or AXL of the HP49
Description: Converts a Symbolic/numeric Matrix {{ xi }}
to a numeric Matrix [[ xij ]].
Access:
Library 697: CAS48 AXL
Example
#1: Convert the following numeric
Matrix [[ xij ]] to a numeric Matrix {{ xij }}
Input:
Level
1: [[ 2 4 6 ]
[ 4 5 6 ]
[ 3 1 -2 ]] AXL
Output:
Level
1: {{ 2 4 6 }
{ 4 5 6 }
{ 3 1 -2 }}
Example
#2: Convert the following numeric
Vector [ xi ] to a numeric Vector { xi }
Input:
Level
1: [ 18 24 4 ] AXL
Output:
Level
1: { 18 24 4 }
Example
#3: Convert the following numeric
Matrix {{ xi }}to a numeric Matrix [[ xij ]]
Input:
Level
1: {{ 2 4 6 }
{ 4 '10/2' 6 }
{ 3 1 -2 }} AXL
Output:
Level
1: [[ 2 4 6 ]
[ 4 5 6 ]
[ 3 1 -2 ]]
Example
#4:
Convert
the following numeric Vector { xi } to a Vector[ xi ]
Input:
Level
1: { '5/2' '7/2' '' } AXL
Output:
Level
1: [ 2.5 3.5 3.14159265359 ]
See
also: LISTMAT MATLIST
_____________________________________________________________
TRAN
similar to T of the (TI92+) or TRN of the(HP48 but TRAN accepts symbolic
arguments) or TRAN of the HP49
Description:
Returns the transpose of matrix1.
Access:
Library 697: CAS48 TRAN
Example
#1: Transpose the following Matrix
Input:
Level
1: {{ a b }
{ c d }} TRAN
Output:
Level
1: {{ a c }
{ b d }}
___________________________________
Example
#2: Transpose the following vector row.
Input:
Level
1: {{ 18 24 4 }} TRAN
Output:
Level
1: {{ 18 }
{ 24 }
{ 4 }}
___________________________________
Example
#3: Transpose the following vector column.
Input:
Level
1: { 18 24 4 } TRAN
Output:
Level
1: {{ 18 24 4 }}
___________________________________
Example
#4: Transpose the following vector column.
Input:
Level
1: {{ A }
{ B }
{ C }} TRAN
Output:
Level
1: {{ A B C }}
___________________________________
Example
#5: Transpose the following vector column.
Input:
Level
1: [ 18 24 4 ] TRAN
Output:
Level
1: {{ 18 24 4 }}
_____________________________________________________________
ROWSWAP
similar to rowSwap of the (TI92+) or RSWP of the(HP48 but RSWP2 accepts
symbolic arguments)
Description:
Returns the ROW SWAP. Permutation of a Matrix, the rowi and rowj rows are interchanged
Access:
Library 697: CAS48 RSWP2
Example
#1:
Input:
Level
3: {{ a d }
{ b e }
{ c f }}
Level
2: 2
Level
1: 3 ROWSWAP
Output:
Level
1: {{ a d }
{ c f }
{ b e }}
See
also: RSWP
_____________________________________________________________
CRxy
similar to P>Rx of the (TI92+) or P>Ry of the (TI92+) or CR of the HP48 (but CRxy
accepts symbolic arguments)
Returns
the equivalent x coordinate and y coordinate of a complex number.
Example
#1: in polar form
angle
mode: 1: « DEG CYLIN » [ENTER]
Input:
Level
1: (4,60) CRxy
Output:
Level
1: { 2 '2*3' }
___________________________________
Example
#2: in rectangular form
angle
mode 1: « DEG RECT » [ENTER]
Input:
Level
1: (3,4) CRxy
Output:
Level
1: { 3 4 }
___________________________________
Example
#3: in symbolic form
Input:
Level
1: '3+4*i' CRxy
Output:
Level
1: { 3 4 }
___________________________________
Example
#4: in vector form
angle
mode 1: « DEG RECT » [ENTER]
Input:
Level
1: [ 3 4 ] CRxy
Output:
Level
1: { 3 4 }
___________________________________
Example
#5: number real
Input:
Level
1: 3 CRxy
Output:
Level
1: { 3 0 }
___________________________________
Example
#6: number complex
Input:
Level
1: '4*i' CRxy
Output:
Level
1: { 0 4 }
___________________________________
Example
#7: in form of symbolic expression
Input:
Level
1: 'i^2+2*i+i+3+i' CRxy
Output:
Level
1: { 2 4 }
___________________________________
Example
#8: lists of complex expressions
To
calculate this command in each element you should apply successively << CRxy
>> with the command MAPRG.
{(-3,
/3) (10, /4)
(3,0)}
angle
mode 1: « RAD CYLIN » [ENTER]
Input:
Level
1: { (3,-2.09439510239) (10,-.785398163398)
1.3 }
«
CRxy » MAPRG
Output:
Level
1: {{ '-3/2' '-(3/2*3)'}
{ '5*2'
'-(5*2)' }
{ '13/10' 0 }}
___________________________________
Example
#9: in form of complex matrix
To
calculate this command in each element you should apply successively << CRxy
>> with the command MAPRG.
Input:
Level
1: {{ 'a+i*b' 3 }
{
c 'i' }} « CRxy
» MAPRG
Output:
Level
1: { {{ a b }
{ 3 0 }}
{{ c 0 }
{ 0 1 }}}
___________________________________
Example
#10:
'(a+b*i)/(c+d*i)'
CRxy
{
'(a*c+b*d)/(c^2+d^2)' '(-(a*d)+b*c)/(c^2+d^2)' }
___________________________________
Example
#11:
'(a+b*i)*(c+d*i)'
CRxy
{
'a*c-b*d' 'a*d+b*c' }
See
also: CR2
_____________________________________________________________
CR2
similar to CR of the (HP48) or CRxy
but CR2 accepts symbolic arguments
Example
#1: in polar form
angle
mode: « DEG CYLIN »
Input:
Level
1: (4,60) CR2
Output:
Level
2: 2
Level
1: '2*3'
___________________________________
Example
#2: in symbolic form
Input:
Level
1: '3+4*i' CR2
Output:
Level
2: 3
Level
1: 4
___________________________________
Example
#3: in form of symbolic expression
Input:
Level
1: 'i^2+2*i+i+3+i' CR2
Output:
Level
2: 2
Level
1: 4
See
also: CR
_____________________________________________________________
RC2
Description:
similar to RC of the (HP48) but RC2
accepts symbolic arguments
process
inverse to the previous one
See
also: RC
_____________________________________________________________
RE2
Description:
similar to P>Rx of the (TI92+) or real of the (TI92+) or RE of the (HP48 but
it accepts symbolic arguments)
returns
the real part of the argument or returns the equivalent x coordinate of a
complex number.
Access:
Library 696: LINEAL DOTS CATALOG
___________________________________
(rExpression
Expression)
expression
Example
#1: in polar form
angle
mode: « DEG CYLIN »
Input:
Level
1: (4,60) RE2
Output:
Level
1: 2
___________________________________
expression
expression
Example
#2: in symbolic form
Input:
Level
1: 'z' RE2
Output:
Level
1: z
___________________________________
expression
expression
Example
#3: in symbolic form
Input:
Level
1: 'x+y*i' RE2
Output:
Level
1: x
___________________________________
list
list
Example
#4: lists of complex expressions
To
calculate this command in each element you should apply successively <<
RE2 >> with the command MAPRG.
Input:
Level
1: { 'a+b*i' 3 i } « RE2 » MAPRG
Output:
Level
1: { a 3 0 }
___________________________________
matrix
matrix
Example
#5: in form of complex matrix
To
calculate this command in each element you should apply successively <<
RE2 >> with the command MAPRG.
Input:
Level
1: {{ 'a+i*b' 3 }
{
c 'i' }} « RE2 » MAPRG
Output:
Level
1: {{ a 3 }
{ c 0 }}
___________________________________
list
list
Example
#6: lists of complex expressions
To
calculate this command in each element you should apply successively <<
RE2 >> with the command MAPRG.
{(-3,
/3) (10, /4)
(3,0)}
angle
mode: « RAD CYLIN »
Input:
Level
1: { (3,-2.09439510239) (10,-.785398163398)
1.3 } « RE2 » MAPRG
Output:
Level
1: { '-3/2' '5*2' '13/10' }
See
also: RE
_____________________________________________________________
IM2
similar to P>Ry of the (TI92+) or imag of the (TI92+) or IM of the (HP48 but
it accepts symbolic arguments)
returns
the imaginary part of the argument or returns the equivalent y coordinate of a
complex number.
Example
#1: in polar form
angle
mode: « DEG CYLIN »
Input:
Level
1: (4,60) IM2
Output:
Level
1: '2*3'
___________________________________
Example
#2: in symbolic form
Input:
Level
1: '3+4*i' IM2
Output:
Level
1: 4
___________________________________
Example
#3: lists of complex expressions
To
calculate this command in each element you should apply successively <<
IM2 >> with the command MAPRG.
Input:
Level
1: { 'a+b*i' 3 i } « IM2 » MAPRG
Output:
Level
1: { b 0 1 }
___________________________________
Example
#4: in form of complex matrix
To
calculate this command in each element you should apply successively <<
IM2 >> with the command MAPRG.
Input:
Level
1: {{ 'a+i*b' 3 }
{
c 'i' }} « IM2 » MAPRG
Output:
Level
1: {{ b 0 }
{ 0 1 }}
See
also: IM
_____________________________________________________________
MULT
Description:
similar to * of the (TI92+)
___________________________________
matrix1(
m1 x n1 ) MULT matrix2( m2 x n2 ) matrix
Returns
the matrix product of matrix1 and
matrix2.
The
number of columns in matrix1 must equal
the
number of rows in matrix2. (n1 = m2)
Note: e=2.71828182846
Example
#1:
Input:
Level2:
{{ 1 2 3 }
{ 4 5 6 }}
Level1:
{{ a d }
{ b E }
{ c f }}
Output:
Level1:
{{ 'a+2*b+3*c' 'd+3*f+2*E' }
{ '4*a+5*b+6*c' '4*d+6*f+5*E' }}
___________________________________
expression
MULT list1 list
list1
MULT expression list
Returns
a list containing the products of
expression
and each element in list1.
Example
#3:
Input:
Level2:
''
Level1:
{ 4 5 6 } MULT
Output:
Level1:
{ '4*' '5*'
'6*' }
___________________________________
expression
MULT matrix1 matrix
matrix
MULT expression matrix
Returns
a matrix containing the products of
expression
and each element in matrix1.
Example
#4:
Input:
Level2:
{{ 1 0 0 }
{ 0 1 0 }
{ 0 0 1 }}
Level1:
x MULT
Output:
Level1:
{{ x 0 0 }
{ 0 x 0 }
{ 0 0 x }}
___________________________________
list
MULT list expression
Returns
the dot product of two lists.
Both
must be column vectors.
Example
#5: See also: DOTP
Input:
Level2:
{ a b c }
Level1:
{ d E f } MULT
Output:
Level1:
'E*b+a*d+c*f'
___________________________________
Example
#6: See also: DOTP
Input:
Level2:
{ 2 a 5 }
Level1:
{ '2*a' 3 -1 } MULT
Output:
Level1:
'7*a-5'
_____________________________________________________________
DOTP
Description: similar to DOTP of the (TI92+) or DOT of the
(HP48 but DOTP accepts symbolic arguments).
The
dot product of two vectors (also called the scalar product) is the sum of the
products of corresponding elements of the vectors. The dimensions of the vectors must be the same. Note that the result is a scalar.
Access:
Library 696: LINEAL DOTP CATALOG
___________________________________
list
DOTP list expression
Returns
the dot product of two lists.
Both
must be column vectors.
Example
#1:
Input:
Level2:
{ 1 2 }
Level1:
{ 5 6 } DOTP
Output:
Level1:
17
___________________________________
Example
#2
Input:
Level2:
{{ a b }
{ c d }}
Level1:
{ 2 3 } DOTP
Output:
Level1:
{ '2*a+3*b' '2*c+3*d' }
__________________________________
Example
#3: See also: PRODH
Input:
Level2:
{ (1,0) (2,-1) }
Level1:
{ (4,-1) (0,2) } DOTP
Output:
Level1:
'6+3*i'
__________________________________
Example
#4:
Input:
Level2:
{ (1,0) (2,-1) }
Level1:
{ (4,-1) (0,2) } PRODH
Output:
Level1:
'2+3*i'
_____________________________________________________________
CROSS2
Description:
Returns the cross product of two vectors C = A × B
Access:
Library 696: LINEAL CROSS2
___________________________________
list1
CROSS2 list2 list
Returns
the cross product of list1 and list2
list1
and list2 must have equal dimension, and
the
dimension must be either 3.
Example
#1:
Input:
Level2:
{ 1 3 4 }
Level1:
{ 2 7 -5 } CROSS2
Output:
Level1:
[ -43 13 1 ]
___________________________________
Example
#2:
Input:
Level2:
{ 1 3 4 }
Level1:
{ a b c } CROSS2
Output:
Level1:
{ '-(3*b)+2*c' '3*a-c' '-(2*a)+b' }
___________________________________
Example
#3
Input:
Level2:
{ 1 2 0 }
Level1:
{ a b 0 } CROSS2
Output:
Level1:
{ 0 0 '-(2*a)+b' }
___________________________________
vector1
CROSS2 vector2 vector
Returns
the cross product of vector1 and vector2
list1
and list2 must have equal dimension, and
the
dimension must be either 3.
Example
#4
Input:
Level2:
[ 1 2 3 ]
Level1:
[ 4 5 6 ] CROSS2
Output:
Level1:
[ -3 6 -3 ]
_____________________________________________________________
ABS2
Description:
Similar to abs of the (TI92+) or ABS of the (HP48 but ABS2 accepts symbolic
arguments).
Returns
the absolute value of the argument.
If
the argument is a complex number, returns
the
magnitude (modulos).
Access:
Library 697: CAS48/ABS2 or CATALOG
___________________________________
expression
expression
Example
#1: in polar form
angle
mode: « DEG CYLIN »
Input:
Level
1: (5,53.1301023542) DEG CYLIN ABS2
Output:
Level
1: 5
___________________________________
Example
#2: in rectangular form
angle
mode: « DEG RECT »
Input:
Level
1: (3,4) ABS2
Output:
Level
1: 5
___________________________________
Example
#3: in symbolic form
Input:
Level
1: '3+4*i' ABS2
Output:
Level
1: 5
___________________________________
Example
#4: in vector form
angle
mode: « DEG RECT »
Input:
Level
1: [ 3 4 ] ABS2
Output:
Level
1: 5
___________________________________
Example
#5: number real
Input:
Level
1: -3 ABS2
Output:
Level
1: 3
___________________________________
Example
#6: in form of symbolic expression
Input:
Level
1: 'i^2+2*i+i+3+i' ABS2
Output:
Level
1: '2*5'
___________________________________
Example
#7:
Input:
Level
1: '3*x+4*i' ABS2
Output:
Level
1: '(9*x^2+16)'
___________________________________
list
list
Example
#8:
Input:
Level
1: { 3 4 } ABS2
Output:
Level
1: 5
___________________________________
Example
#9:
Input:
Level
1: { 'COS(t)' 'SIN(t)' } ABS2
Output:
Level
1: 1
___________________________________
Example
#10:
Input:
Level
1: { 3 4 '11' '13'
} ABS2
Output:
Level
1: 7
_____________________________________________________________
SIGN2
Access: Library 697: CAS48 SING2 / CATALOG
Description:
Returns the sing of the argument.
If
the argument is a real expression:
Returns
1 if expression1 is positive.
Returns
-1 if expression1 is negative.
SING2(0)
returns 0
___________________________________
expression
vector
For
a expression returns A row -unit vector,
expression1/(abs(expression1)).
depending
on the form of the expression.
Example
#1:
Input:
Level
1: (3,4) SIGN2
Output:
Level
1: { '3/5' '4/5' }
___________________________________
Example
#2:
Input:
Level
1: { 3 4 } SIGN2
Output:
Level
1: { '3/5' '4/5' }
___________________________________
Example
#3:
Input:
Level
1: [ 3 4 ] SIGN2
Output:
Level
1: { '3/5' '4/5' }
___________________________________
Example
#4:
Input:
Level
1: 'X+Y*i' SIGN2
Output:
Level
1: { 'X/(X^2+Y^2)' 'Y/(X^2+Y^2)'
}
___________________________________
Example
#5:
Input:
Level
1: '3*z+4*i' SIGN2
Output:
Level
1: { '3*z/(9*z^2+16)' 'INV(1/4*(9*z^2+16))'
}
___________________________________
Example
#6:
Input:
Level
1: { 'COS(t)' 'SIN(t)' } SIGN2
Output:
Level
1: { 'COS(t)' 'SIN(t)' }
___________________________________
Example
#7:
Input:
Level
1: { 3 4 '11' '13'
} SIGN2
Output:
Level
1: { '3/7' '4/7' '1/7*11' '1/7*13'
}
___________________________________
Example
#8:
Input:
Level
1: 'i^2+2*i+i+3+i' SIGN2
Output:
Level
1: { '1/5*5' '2/5*5' }
___________________________________
Example
#9:
Input:
Level
1: { a b c } SIGN2
Output:
Level
1: { 'a/(a^2+b^2+c^2)' 'b/(a^2+b^2+c^2)'
'c/(a^2+b^2+c^2)' }
___________________________________
CONJ2
Description:
Returns the complex conjugate of the
argument.
To
calculate this command in each element you should apply successively « CONJ2 »
with the command MAPRG.
___________________________________
Example
#1:
Input:
Level
1: Z CONJ2
Output:
Level
1: Z
___________________________________
Example
#2:
Input:
Level
1: 'X-Y*i' CONJ2
Output:
Level
1: 'X+Y*i'
___________________________________
Example
#3:
Input:
Level
1: {{ 2 '1-3*i' }
{ '-i' -7 }} « CONJ2 » MAPRG
Output:
Level
1: {{ 2 '1+3*i' }
{ 'i' -7 }}
_____________________________________________________________
'2*i'
RAD ANGLE
'/2'
___________________________________
'1+i'
RAD ANGLE
'1/4*'
___________________________________
'x+y*i'
RAD ANGLE
'1/2**SIGN(y)-ATAN(x/y)'
_____________________________________________________________
{{
a b }
{ c d }} NORMAT
'(a^2+b^2+c^2+d^2)'
___________________________________
{{
1 2 }
{ 3 4 }} NORMAT
'30'
_____________________________________________________________
{
'EXP(3*t)' 'EXP(-3*t)' t }
t
WRONSKYAN
{{
'EXP(3*t)' 'EXP(-3*t)' t }
{ '3*EXP(3*t)' 'INV(-(1/3*EXP(3*t)))' 1 }
{ '9*EXP(3*t)' 'INV(1/9*EXP(3*t))' 0 }}
:DET=:
'54*t'
___________________________________
{
'EXP(t)' 'EXP(2*t)' 'EXP(3*t)' }
t
WRONSKYAN
{{
'EXP(t)' 'EXP(2*t)' 'EXP(3*t)' }
{ 'EXP(t)' '2*EXP(2*t)' '3*EXP(3*t)' }
{ 'EXP(t)' '4*EXP(2*t)' '9*EXP(3*t)' }}
:DET=:
'2*EXP(6*t)'
_____________________________________________________________
.+
similar to .+ of the (TI92+)
{
1.9 'EXP(1)' 'COS(t)^2' }
{
0.1 'i' 'SIN(t)^2' } .+
{
3 'i+EXP(1)' 1 }
___________________________________
{{
a b }
{ c E }}
[[
1 0 ]
[ 0 1 ]] MADD or .+
{{
'a+1' b }
{ c 'E+1' }}
_____________________________________________________________
{{
a 2 }
{ b 3 }}
{{
c 4 }
{ d 5 }} MSUB or .-
{{
'a-c' -2 }
{ 'b-d' -2 }}
___________________________________
{
'EXP(X)' 'i' '' }
{
'INV(EXP(X))' 'i' .5 } .*
{
1 -1 '1/2*' }
___________________________________
{{
a 2 }
{ b 3 }}
{{
c 4 }
{ d 5 }} HADAMARD or .*
{{
'a*c' 8 }
{ 'b*d' 15 }}
_____________________________________________________________
{
'X' X }
{
X 'X' } ./
{
'INV(X)' 'X'
}
___________________________________
{{
a 2 }
{ b 3 }}
{{
c 4 }
{ d 5 }} MDIV or ./
{{
'a/c' '1/2' }
{ 'b/d' '3/5' }}
_____________________________________________________________
{
'x+y' 'e' 'EXP(y)' }
{
2 'LN(z)' 'LN(x)' } .^
{
'x^2+2*x*y+y^2' z 'x^y' }
___________________________________
{{
a 2 }
{ b 3 }}
{{
c 4 }
{ 5 d }} .^
{{
'a^c' 16 }
{ 'b^5' '3^d' }}
_____________________________________________________________
AUGMENT
similar to AUGMENT of the (TI92+)
{{
1 2 3 }}
{
X } AUGMENT
{{
1 2 3 X }}
___________________________________
{{
1 2 }
{ 3 X }}
{
5 6 } AUGMENT
{{
1 2 5 }
{ 3 X 6 }}
___________________________________
{{
1 2 }
{ 3 X }}
{{
5 }
{ 6 }} AUGMENT
{{
1 2 5 }
{ 3 X 6 }}
___________________________________
{{
1 2 }
{ 3 X }}
{{
1 0 }
{ 0 1 }} APPENDCOL
{{
1 2 }
{ 3 X }
{ 1 0 }
{ 0 1 }}
_____________________________________________________________
2
RANDMAT
[[
3 -4 ]
[ 6 -1 ]]
___________________________________
3
RANDVECTOR
[
3 -8 -5 ]
___________________________________
RANDPOLY
similar to RANDPOLY of the (TI92+)
5
RANDPOLY
'7*X^5-X^4+7*X^3-5*X^2+2*X+2'
_____________________________________________________________
{{
1 2 }
{ a b }} 2 POWMATRIX
{{
'2*a+1' '2*b+2' }
{ 'a*b+a' '2*a+b^2' }}
___________________________________
{{
1 2 }
{ a b }} -1 POWMATRIX
{{
'-b/(2*a-b)' 'INV(a-1/2*b)' }
{ 'a/(2*a-b)' 'INV(-(2*a)+b)' }}
___________________________________
{{
1 2 }
{ a b }} INVS
{{
'-b/(2*a-b)' 'INV(a-1/2*b)' }
{ 'a/(2*a-b)' 'INV(-(2*a)+b)' }}
___________________________________
[[
1 2 ]
[ 3 4 ]] -2 POWMATRIX
{{
'11/2' '-(5/2)' }
{ '-(15/4)' '7/4' }}
_____________________________________________________________
CUMSUM
similar to CUMSUM() of the (TI92+)
{
1 2 3 4 } CUMSUM
{
1 3 6 10 }
___________________________________
{
a b c } CUMSUM
{
a 'a+b' 'a+(b+c)' }
_____________________________________________________________
{
X Y Z } MDIAG
{{
X 0 0 }
{ 0 Y 0 }
{ 0 0 Z }}
_____________________________________________________________
VECTOR
similar to VECTOR of the (DERIVE V5.02)
VECTOR(u,
k, n) simplifies to a vector of n elements
generated
by simplifying the expression u(k)
with
the variable k stepping from begin through n
in
steps of size m.
example
#1:
VECTOR(x^2,x,1,5,1)
where
level
5: x^2 expression
level
4: x variable
level
3: 1 begin
level
2: 5 end(n)
level
1: 1 step(m)
'x^2'
x 1 5 1 VECTOR
{{
1 }
{ 4 }
{ 9 }
{ 16 }
{ 25 }}
___________________________________
example
#2:
VECTOR(j!,j,0,4,1)
'j!'
j 0 4 1 VECTOR
[[
1 ]
[ 1 ]
[ 2 ]
[ 6 ]
[ 24 ]]
___________________________________
VECTOR(SIN(z),z,0,
/4,0.2)
'SIN(z)'
z 0 '/4' .2 VECTOR
[[
0 ]
[ .198669330795 ]
[ .389418342309 ]
[ .564642473395 ]]
{{
0 }
{ 'SIN(1/5)' }
{ 'SIN(2/5)' }
{ '3/5' } }
___________________________________
example
#4:
VECTOR({x,x^2,x^3},x,1,4,1)
{
x 'x^2' 'x^3' } x 1 4 1 VECTOR
[[
1 1 1 ]
[ 2 4 8 ]
[ 3 9 27 ]
[ 4 16 64 ]]
___________________________________
example
#5:
VECTOR({x+y,x^2},x,1,4,1.5)
{
'x+y' 'x^2' } x 1 4 1.5 VECTOR
{{
'1+y' 1 }
{ '2.5+y' 6.25 }
{ '4+y' 16 }}
___________________________________
'GAMMA(X)'
X
1
10
1
VECTOR
[[
1 ]
[ 1 ]
[ 2 ]
[ 6 ]
[ 24 ]
[ 120 ]
[ 720 ]
[ 5040 ]
[ 40320 ]
[ 362880 ]]
___________________________________
{
X «X FIBONACCI» }
X
1
9
1
VECTOR
[[
1 1 ]
[ 2 1 ]
[ 3 2 ]
[ 4 3 ]
[ 5 5 ]
[ 6 8 ]
[ 7 13 ]
[ 8 21 ]
[ 9 34 ]]
____________________________________
{
X «X FACTOR» }
X
1
10
1
VECTOR
{{
1 1 }
{ 2 2 }
{ 3 3 }
{ 4 '2^2' }
{ 5 5 }
{ 6 '2*3' }
{ 7 7 }
{ 8 '2^3' }
{ 9 '3^2' }
{ 10 '2*5' }}
____________________________________________________________
SORTA similar to
SortA() of the (TI92+)
Sorts
the elements of the first argument in
ascending
order.
[
2 1 4 3 ] SORTA
{
1 2 3 4 }
___________________________________
{
e '' '2'
3 } SORTA
{
'2' 'EXP(1)' 3 ''
}
___________________________________
[[
2 3 ]
[ 3 1 ]
[ 2 1 ]
[ 1 5 ]] SORTA
{{
1 5 }
{ 2 3 }
{ 2 1 }
{ 3 1 }}
___________________________________
SORTD
similar to SortD() of the (TI92+) Identical to SORTA, except SORTD sorts the
elements in descending order.
[
2 1 4 3 ] SORTD
{
4 3 2 1 }
___________________________________
{
A a E C F } SORTD
{
a F E C A }
_____________________________________________________________
'COS(x)'
'x'
0
''
ARCLEN
3.82019778903
_____________________________________________________________
[[
1 5 3 ]
[ 4 2 1 ]
[ 6 -2 1 ]] MCOS
[[
.212493123035 .205063658269 .12138913931 ]
[ .160870605001 .259041970092
3.71256719027E-2 ]
[ .248078814643 -9.01529518783E-2
.218971555953 ]]
___________________________________
[[
1 5 3 ]
[ 4 2 1 ]
[ 6 -2 1 ]] MEXP
[[
782.208648399 559.616918461 456.508698092 ]
[ 680.546446868 488.795481398 396.521387369 ]
[ 524.929209349 371.221785757 307.878642269
]]
___________________________________
[[
.2 0 ]
[ 1 -.3 ]
[ .4 -.5 ]] MEDIAN
[
.4 -.3 ]
___________________________________
[[
18 12 ]
[ 4 7 ]
[ 3 2 ]
[ 11 1 ]
[ 31 48 ]
[ 20 17 ]] MEDIAN
[
14.5 9.5 ]
___________________________________
[
8 3 1 5 2 ]
50
%TILE
3
___________________________________
[[
0 0 ]
[ 1 2 ]
[ 2 3 ]
[ 3 4 ]
[ 4 3 ]
[ 5 4 ]
[ 6 6 ]] ONETWOVAR
{{
:STAT: { X Y }}
{ :
: { 21 22 }}
{ :nStat:{ 7 7 } }
{ :: { 3 3.14285714286 }}
{ :
²: { 91 90 }}
{ :
xy: { 88 88 }}
{ :min:
{ 0 0 }}
{ :max:
{ 6 6 }}
{ :SDEV: { 2.16024689947 1.86445447147 }}
{ :VAR:
{ 4.66666666667 3.47619047619 }}
{ :PSDEV:{ 2 1.7261494248 }}
{ :PVAR: { 4 2.97959183673 }}}
_____________________________________________________________
PTCHEBYCHEV
similar to CHEBYCHEV_T(n, x) of the (DERIVE V5.02)
0
X
PTCHEBYCHEV
1
___________________________________
1
X
PTCHEBYCHEV
X
___________________________________
6
X
PTCHEBYCHEV
'32*X^6-48*X^4+18*X^2-1'
___________________________________
PUCHEBYCHEV
similar to CHEBYCHEV_U(n, x) of the (DERIVE V5.02)
0
X
PUCHEBYCHEV
1
___________________________________
1
X
PUCHEBYCHEV
'2*X'
___________________________________
6
X
PUCHEBYCHEV
'64*X^6-80*X^4+24*X^2-1'
___________________________________
5
'COS(X)'
PUCHEBYCHEV
'32*COS(X)^5-32*COS(X)^3+6*COS(X)'
___________________________________
PLEGENDRE
similar to LEGENDRE_P(n, x) of the (DERIVE V5.02)
0
X
PLEGENDRE
1
___________________________________
1
X
PLEGENDRE
X
___________________________________
6
X
PLEGENDRE
'1/16*(231*X^6-315*X^4+105*X^2-5)'
___________________________________
PALEGENDRE
similar to ASSOCIATED_LEGENDRE_P(n, m, x) of (DERIVE V5.02)
4
2
X
PALEGENDRE
'15/2*(7*X^2-1)*(1-SQ(X))'
___________________________________
0
X
PHERMITE
1
___________________________________
1
X
PHERMITE
'2*X'
___________________________________
6
X
PHERMITE
'64*X^6-480*X^4+720*X^2-120'
___________________________________
PLAGUERRE
similar to LAGUERRE_L(n, x) of the (DERIVE V5.02)
0
X
PLAGUERRE
1
___________________________________
1
X
PLAGUERRE
'-X+1'
___________________________________
4
X
PLAGUERRE
'1/24*(X^4-16*X^3+72*X^2-96*X+24)'
SIMPLIFY
'1/24*X^4-2/3*X^3+3*X^2-4*X+1'
___________________________________
PGLAGUERRE
similar to GENERALIZED_LAGUERRE(n, a, x) of (DERIVE V5.02)
5
2
X
PGLAGUERRE
'-(1/120)*(X^5-35*X^4+420*X^3-2100*X^2+4200*X-2520)'
___________________________________
2
1
'COS(X)'
PALEGENDRE
'3*COS(X)*SIN(X)'
___________________________________
2
1
Ø
PSPHERICALHARM
'-((5/(24*))*(3*COS()*SIN()*EXP(i*Ø)))'
_____________________________________________________________
100
MODSTO 2 500 POWMOD
76
___________________________________
2.3
ERF .998856823403
___________________________________
2.3
ERFC 1.14317659736E-3
____________________________________________________________
PARTFRAC
Description: Performs partial fraction decomposition on a
partial fraction.
Access: Library 697: CAS48 PARTFRAC
Input:
Level 2: An algebraic expression.
Level 1: A variable(s)
Output:
The partial fraction decomposition of the expression.
Example
#1: Perform a partial fraction decomposition of the following expression:
Input:
Level
2: '1/(X^2-1)'
Level
1: 'X' PARTFRAC
Output:
Level
1: '1/(2*(X-1))-1/(2*(X+1))'
Input: Output:
Example
#2: Perform a partial fraction
decomposition of the following expression:
Input:
Level
2: '(10*S+20)/(S^3+4*S^2+5*S)'
Level
1: 'S' PARTFRAC
Output:
Level
1:'4/S-(4*S+6)/(S^2+4*S+5)''4/S+(-2-i)/(S-i+2)+(-2+i)/(S+i+2)'
Input: Output: real complex
'(10*S+20)/(S^3+4*S^2+5*S)'
'S'
CPARTFRAC
Output:
Level
1: '4/S+(-2-i)/(S+2-i)+(-2+i)/(S+2+i)'
____________________________________________________________
SUBST
Description: Substitutes value(s) for a variable in an
expression. The value can be numeric or an expression.
Access:
Library 697: CAS48 SUBST
Input: Level
2: An expression(s).
Level
1: The value or expression to be
substituted.
Output:
The expression with the substitution made.
Example
#1: Substitute x=z+1 for x in the
following expression, and apply the EXPAND command to simplify the result:
Input:
Level
2: 'X^2+3*X+7'
Level
1: 'X=Z+1' SUBST
Output
1:
Level
1: '(Z+1)^2+3*(Z+1)+7' SIMPLIFY
Output
2:
Level
1: 'Z^2+5*Z+11'
Example
#2:
Input:
Level
2: { 'X-2*COS(t)' 'Y-2*SIN(t)' 'Z=t' }
Level
1: 't=0' SUBST
Level
1: { 'X-2*COS(0)' 'Y-2*SIN(0)' 'Z=0' } SIMPLIFY
Level
1: { 'X-2' 'Y-0' 'Z=0' }
Example
#3:
Input:
Level
2: {{ 'X-2*COS(t)' }
{ 'Y-2*SIN(t)' }
{ 'Z=t' }
{ 'R^2=a^2+b^2' }}
Level
1: { 't=0' 'a=3' 'b=4' } SUBST
Output:
Level
1: {{ 'X-2*COS(0)' }
{ 'Y-2*SIN(0)' }
{ 'Z=0' }
{'R=3^2+4^2' }} SIMPLIFY
{{
'X-2' }
{ 'Y-0' }
{ 'Z=0' }
{ 'R^2=25' }}
_____________________________________________________________
PROOT
Description: For a rational polynomial, returns an
Vector(list) of PROOT
Access:
Library 697: CAS48 PROOT
Input:
Level 2: A Vector { xi }, Matrix {{ xi }}or rationalpolynomial.
Level 1: A variable
Output:
A Vector { xi } of the form {Root1
Root2 . . .}
{
a b c }
X
PROOT
{
:X1: '-(b/(a*2))+ (SQ(-(b/(a*2)))-c/a)'
:X2: '-(b/(a*2))- (SQ(-(b/(a*2)))-c/a)'
}
___________________________________
{
1 (-12,-4) (73,36) (-232,-184) (363,376) (-268,-324) (75,100) }
X
PROOT
{
1 1 1 '3-4*i' '3+4*i' '3+4*i' }
See
also: PROOT
______________________________________________________________
{
1 1 1 '3-4*i' '3+4*i' '3+4*i' }
X
RPOL
'X^6+(-12,-4)*X^5+(73,36)*X^4+(-232,-184)*X^3+(363,376)*X^2+(-268,-324)*X+(75,100)'
___________________________________
{
1 (-12,-4) (73,36) (-232,-184) (363,376) (-268,-324) (75,100) }
X
PMROOT
{{
1 3 }
{ '3-4*i' 1 }
{ '3+4*i' 2 }}
___________________________________
{
2 '1/3' 'A+B' }
X
RPOL
'X^3+(-7/3-(A+B))*X^2+(2/3-7/3*-(A+B))*X+2/3*-(A+B)'
___________________________________
'X^3+(-7/3-(A+B))*X^2+(2/3-7/3*-(A+B))*X+2/3*-(A+B)'
SOLVEVX
{{
'X-2=0' }
{ '3*X-1=0' }
{ 'X-(A+B)=0' }}
_____________________________________________________________
LINSOLVE
Description:
Solves a system of linear equations A*X=b.
Access:
Library 697: CAS48 LINSOLVE
Example
#1: Solve:
Input(Levels):
3:
[[ 2 4 6 ]
[ 4 5 6 ]
[ 3 1 -2 ]]
2:
[ 18 24 4 ]
1:
{ X Y Z } LINSOLVE [ENTER]
Output(Levels):
1:
{ :X: 4 :Y: -2 :Z: 3 }
___________________________________
[[
2 4 6 ]
[ 4 5 6 ]
[ 3 1 -2 ]] (3*3)
[[
18 ]
[ 24 ]
[ 4 ]] (3*1)
{{
X }
{ Y }
{ Z }} (3*1) LINSOLVE [ENTER]
A(3*3)*x(3*1)=b(3*1)
(3*1)=(3*1)
{
:X: 4 :Y: -2 :Z: 3 }
___________________________________
[[
1 2 ]
[ 3 4 ]]
[[
1 2 ]
[ -1 -3 ]]
{
X Y } LINSOLVE
{
:X: { -3 -7 }
:Y: { 2 4.5 } }
See
also: AX=B
Input: Output:
___________________________________
Example
#2:
Solve:
ax + by = 1
cx + dy = 2
Input(Levels):
3:
{{ a b }
{ c d }}
2:
{{ 1 }
{ 2 }}
1:
{ x y } LINSOLVE [ENTER]
Output(Levels):
1:
{
:x: '(-(2*b)+d)/(a*d-b*c)'
:y: '(2*a-c)/(a*d-b*c)' }
___________________________________
{{
a b }
{ c d }}
{{
1 u }
{ 2 3 }}
{
x y } LINSOLVE [ENTER]
{
:x: { '(-(2*b)+d)/(a*d-b*c)' '(-(3*b)+d*u)/(a*d-b*c)' }
:y: { '(2*a-c)/(a*d-b*c)'
'(3*a-c*u)/(a*d-b*c)' }
_____________________________________________________________
DETS
Description: Returns the determinant of a square matrix
with or without symbolic elements.
Access:
Library 697: CAS48 DETS
Example
#1:
Input(Levels):
1:
{{ 'X-5' -8 -16 }
{ -4 'X-1' -8 }
{ 4 4 'X+11' }} DETS
Output(Levels):
1:
'X^3+5*X^2+3*X-9'
Input: Output:
_____________________________________________________________
SOLVE
Description: Solution of systems of nonlinear polynomial
equations.
Access:
Library 697: CAS48 SOLVE
Input:
Level
2: A Vector { xi } of equations.
Level
1: A Vector { xi } of variables.
Example
#1:
{
'X+Y=3' 'X*Y=2' }
{
X Y } SOLVE
{
'X-1=0' 'Y-2=0' }
{
'X-2=0' 'Y-1=0' }
___________________________________
Example
#2:
{
'X+Y+Z=6' 'X*Y+X*Z+Y*Z=11' 'X*Y*Z=6' }
{
X Y Z } SOLVE
{
'X-1=0' 'Y-2=0' 'Z-3=0' }
{
'X-2=0' 'Y-1=0' 'Z-3=0' }
{
'X-1=0' 'Y-3=0' 'Z-2=0' }
{
'X-3=0' 'Y-1=0' 'Z-2=0' }
{
'X-2=0' 'Y-3=0' 'Z-1=0' }
{
'X-3=0' 'Y-2=0' 'Z-1=0' }
___________________________________
Example
#3:
{
'X+Y=-b' 'X*Y=c' }
{
X Y } SOLVE
{
'X+Y+b=0' 'Y^2+b*Y+c=0' }
___________________________________
Example
#4: Solve:
Input:
Level
2: {'1/9*X^2+1/16*Y^2-1' '4*Y=2/9*X*ß' 4*X=1/8*Y*ß'}
Level
1: { X Y ß } 20 CF SOLVE
Output
Level
1: { '4*X-3*Y=0' 'Y^2-8=0' 'ß-24=0' }
{
'4*X+3*Y=0' 'Y^2-8=0' 'ß+24=0' }
Level
1: { 'X=s1*(3*Y/4)' 'Y=s1*2.82842712475' 'ß=s1*124' } *s1=±
___________________________________
Example
#5: Solve:
Input:
Level
2: { '2*X-3*Y-4*Z-49' '4*X=2*ß' '2*Y=-(3*ß)' '6*Z=-(4*ß)' }
Level
1: { X ß Y Z } SOLVE
Output #1:
{ 'ß-6=0' 'X-3=0' 'Y+9=0' 'Z+4=0' }
Output #2:
{ 'ß=6' 'X=3' 'Y=-9' 'Z=-4' }
___________________________________
Example
#6: Solve:
Input:
Level
2:{ 'X^2+Y^2-2' 'X+Z-1' '1=2*X*ß+µ' '1=2*Y*ß' '1=µ' }
Level
1:{ X Y Z ß µ } SOLVE
Output
#1: { 'X=0' 'Y-4*ß=0' 'Z-1=0' '-µ+1=0' '8*ß^2-1=0' }
Output
#2: { 'X=0' 'Y=4*ß' 'Z=1' 'µ=1' 'ß^2=1/8' }
___________________________________
{
'X^2+Y^2=r^2' '(X-r)^2+Y^2=r^2' }
{
X Y } SOLVE
{{
'X^2+Y^2=0' 'r=0' }
{ '2*X-r=0' '4*Y^2-3*r^2=0' }} EVAL {X Y}
ISOL
{
'X=r/2' 'Y=s1*(3*r^2/4)' }
See
also: LINSOLVE
_____________________________________________________________
TABVAL
similar to TABLE of the (DERIVE V5.02)
Description:
For an Algebraic Expression or Equations and a List of Values, returns the
results of substituting the values for the Variable in the Algebraic Expression
or Equations.
Access:
Library 697: CAS48 TABVAL
Input:
Level
3: A Vector { xi } of Equations or an Algebraic expression.
Level
2: A Variable to be evaluated
Level
1: A Vector { xi } of values for which the expression is to be evaluated.
Output:
Level
1: A Matrix of values evaluated.
Example
#1: Substitute 1, 2, and 3 into 'X^2+1'
Input:
Level
3: 'X^2+1'
Level
2: X
Level
1: { 1 2 3 } TABVAL [ENTER]
Output:
Level
2:
Input: Output:
Example
#2: Substitute 0, ,
/2,
/4, 2* for t
Input:
Level
3: { 'X=2*COS(t)' 'Y=2*SIN(t)' 'Z=t' }
Level
2: t
Level
1: { 0 '' '/2'
'/4' '2*' }TABVAL
[ENTER]
Output:
Level
1:
{{
t 'X=2*COS(t)' 'Y=2*SIN(t)' 'Z=t' }
{ 0 'X=2' 'Y=0' 'Z=0' }
{ ''
'X=-2' 'Y=0' 'Z=' }
{ '/2'
'X=0' 'Y=2' 'Z=1/2*' }
{ '/4'
'X=2' 'Y=2'
'Z=1/4*' }
{ '2*'
'X=2' 'Y=0' 'Z=2*' }}
See
also: WTABVAL
Input: Output:
___________________________________
{
'x^2' 'x^3' 'x^4' }
x
5
TABVAL
{{
x 'x^2' 'x^3' 'x^4' }
{ 1 1 1 1 }
{ 2 4 8 16 }
{ 3 9 27 81 }
{ 4 16 64 256 }
{ 5 25 125 625 }}
___________________________________
'J!'
J
«
J 0 4 1 » TABVAL
{{
J 'J!' }
{ 0 1 }
{ 1 1 }
{ 2 2 }
{ 3 6 }
{ 4 24 }}
___________________________________
'k^2'
k
{
2 3 5 7 11 } TABVAL
{{
k 'k^2' }
{ 2 4 }
{ 3 9 }
{ 5 25 }
{ 7 49 }
{ 11 121 }}
___________________________________
{
'SIN(z)' 'COS(z)' }
z
«
'z' 0 '/4' .2 » TABVAL APPROXIMATE
{{
z 'SIN(z)' 'COS(z)' }
{ 0 0 1 }
{ .2 .198669330795 .98006657843 }
{ .4 .389418342387 .921060994074 }
{ .6 .564642473398 .825335614254 }}
____________________________________________________________
DERIVS
Description: Returns the partial derivative of a function
(Algebraic expression), with respect to the specified variable.
Access:
Library 697: CAS48 DERIVS
Input:
Level
2: A function or a Vector { xi }.
Level
1: variable.
Output:
The derivative, or a vector of the derivatives, of the function or functions.
Example
#1: Find the derivative of the following function:
Input:
Level
2: '2*LN(TAN(0.5*X))'
Level
1: 'X' DERIVS
Output:
Level
1: '(TAN(1/2*X)^2+1)/(2*X*TAN(1/2*X))'
Input: Output:
Example
#2: Find the derivative of the
following function:
Input:
Level
2: { 'X^2*Y+Z^2*Y' 'SIN(X)' }
Level
1: 'X' DERIVS
Output:
Level
1: { '2*X*Y' 'COS(X)' }
___________________________________
'F(X)*G(X)'
X
DERIVS
'X(F(X))*G(X)+X(G(X))*F(X)'
___________________________________
'F(X)/G(X)'
X
DERIVS
'(X(F(X))*G(X)-X(G(X))*F(X))/G(X)^2'
___________________________________
'F(X)^N'
X
DERIVS
'N*F(X)^(N-1)*X(F(X))'
___________________________________
'3*X^3-X+7'
X
2
DERIVN
'18*X'
___________________________________
'X^2'
X
-1
DERIVN
'1/3*X^3'
_____________________________________________________________
INTGRS
Description:
Calculates symbolically and Evaluate a definite or indefinite integral.
Access:
Library 697: CAS48 INTGRS
Input:
Level
4: An Algebraic Expression
Level
3: A Variable
Level
2: The lower limit. NOVAL for out value
or indefinite.
Level
1: The upper limit. NOVAL for out value
or indefinite.
Output:
Level
2: The result symbolic.
Level
1: The result of the evaluation if you
limit.
Example
#1: Evaluate 0 3'X^3+3*X' dX
Input:
Level
4: 'X^3+3*X'
Level
3: 'X'
Level
2: 0
Level
1: 3
INTGRS
[ENTER]
Output:
Level
2: '1/4*X^4+3/2*X^2'
Level
1: '135/4'
See
also: WINTGR
Input: Output:
Example
#2: Calculate '1/(X^2-2)'
Input:
Level
4: '1/(X^2-2)'
Level
3: 'X'
Level
2: NOVAL
Level
1: NOVAL
INTGRS
[ENTER]
Output:
Level
1: '-(1/4*2*LN(X+2))+1/4*2*LN(X-2)'
Input: Output:
_____________________________________________________________
GRADIENT
Description:
Returns the GRADIENT of an Algebraic
Expression.
compute
the general form of the gradient in the Cartesian coordinate system
Access:
Library 697: CAS48 GRADIENT
Input:
Level
2: An Algebraic Expression.
Level
1: A list containing the Variables.
Output:
Level
1: The GRADIENT of the Algebraic
Expression with respect to the specified Variables.
Example
#1: Find the gradient of the following
algebraic expression of the spatial variables x, y, and z:
Input:
Level
2: '2*X^2*Y+3*Y^2*Z+Z*X'
Level
1: { X Y Z } GRADIENT [ENTER]
Output:
Level
1: { '4*X*Y+Z' '2*X^2+6*Y*Z' 'X+3*Y^2' }
Input: Output:
Example
#2: Find the gradient of the following algebraic expression of the spatial
variables x, y, and z:
Input:
Level
2: 'X^2*Y+Z^2*Y'
Level
1: { X Y Z } GRADIENT [ENTER]
Output:
Level
1: { '2*X*Y' 'X^2+Z^2' '2*Y*Z' }
Input: Output:
___________________________________
Example
#3:
'x*y^2*z^3'
{
x y z } GRADIENT
{
'y^2*z^3' '2*x*y*z^3' '3*x*y^2*z^2' }
___________________________________
Example
#4:
'c*w+x^2+y^3+z^4'
{
w x y z } GRADIENT
{
c '2*x' '3*y^2' '4*z^3' }
___________________________________
Example
#5:
'x*y'
{
x y } GRADIENT
{
y x }
___________________________________
{
y x }
{
x y } POTENTIAL
'x*y'
___________________________________
{
'y^2*z^3' '2*x*y*z^3' '3*x*y^2*z^2' }
{
x y z } POTENTIAL
'x*y^2*z^3'
See
also: WDIV
_____________________________________________________________
DIV
Description:
Returns the DIVERGENCE of an Vector Function.
Access:
Input:
Level
2: A Vector Function: Vector { xi }.
Level
1: A list containing the Variables (n<=3)
Output:
Level
1: The DIVERGENCE of the Vectorial Function with respect to the specified
variables.
Example
#1: Find the divergence of the
following Vectorial Function.
Input:
Level
2: { 'X^2*Y' 'X^2*Y' 'Y^2*Z' }
Level
1: { X Y Z } DIV [ENTER]
Output:
Level
1: 'X^2+2*X*Y+Y^2'
See
also: WDIV
Input: Output:
Example
#2: Find the divergence of the following Vectorial Function
Input:
Level
2: { 'Y*COS(X)' 'X*SIN(Y)' }
Level
1: { X Y } DIV [ENTER]
Output:
Level
1: 'X*COS(Y)-Y*SIN(X)'
See
also: WDIV
Input: Output:
_____________________________________________________________
CURL
Type:
Command
Description:
Returns the ROTATIONAL of an Vector Function.
Access:
Library 697: CAS48 CURL
Input:
Level
2: A Vector Function: Vector { xi }.
Level
1: A list containing the Variables
(n<=3)
Output:
Level
1: The ROTATIONAL of the Vector Function with respect to the specified
variables.
Example
#1: Find the rotation of the following
Vector Function.
Input:
Level
2: { 'X^2*Y' 'X^2*Y' 'Y^2*Z' }
Level
1: { X Y Z } CURL [ENTER]
Output:
Level
1: { '2*Y*Z' 0 '-X^2+2*X*Y' }
Input: Output:
Example
#2: Find the rotation of the following Vector Function
Input:
Level
2: { 'X^3*Y^2*Z' 'X^2*Z' 'X^2*Y' }
Level
1: { X Y Z } CURL [ENTER]
Output:
Level
1: { 0 'X^3*Y^2-2*X*Y' '-(2*X^3*Y*Z)+2*X*Z' }
Input: Output:
See
also: WDIV
_____________________________________________________________
LAPLACIAN
'x*y^2*z^3'
{
x y z } LAPLACIAN
'6*x*y^2*z+2*x*z^3'
___________________________________
'X^2+2*X*Y'
{
X Y } LAPLACIAN
2
_____________________________________________________________
MAPRG
Description:
Applies a specified program to a list of objects or matrix.
Access:
Library 697: CAS48 MAPRG
Input:
An object or Vector { xi }of objects.
Output:
The new applied object the program.
Example
#1: Find the approximate value of
/2, 3*e, and 4cos(2).
Input:
Level
2: { '/2' '3*e' '4*COS(2)' }
Level
1: « NUM » MAPRG
Output:
Level
1: { 1.5707963268 8.15484548538 -1.66458734619 }
Example
#2: Evaluates.
Input:
Level
2: {{ '4*3_N' 'SIN(/2)'
'X(X^2*Y)' }}
Level
1: « EVAL » MAPRG
Output
1: {{ '6_N' 1 'X(X^2)*Y+X^2*X(Y)'}}
«EVAL» MAPRG
Output
2: {{ '6_N' 1 'X(X)*2*X^(2-1)*Y' }} «EVAL» MAPRG
Output
3: {{ '6_N' 1 '2*X*Y' }}
_____________________________________________________________
XNUM
Description: Converts an object or a Vector { xi } to
approximate numeric format.
Access:
Library 697: CAS48 XNUM
Input:
An object or Vector { xi } of objects.
Output:
The objects in numeric format.
Example
#1: Find the approximate value of /2,
3*e, and 4cos(2).
Input:
Level
1: { '/2' '3*e' '4*COS(2)' } XNUM
Output:
Level
1: { 1.5707963268 8.15484548538 3.99756330808 }
Example
#2:
Input:
{{
'LN(e)' 'EXP(1)' 'i' '2' MAXR
'0.5*' }} XNUM
Output:
{{
1 2.71828182846 (0,1) 1.41421356237 9.99999999999E499 1.5707963268 }}
See
also: XQ XQ AXM XEVAL MAPRG
_____________________________________________________________
XEVAL
Description: Evaluates an object or a Vector { xi } of
objects.
Access: Library 697: CAS48 XEVAL
Input:
An object or Vector { xi } of objects.
Output:
The objects evaluated.
Example:
Evaluate.
{{'4*3_N'
'X(X^2*Y)' }} XEVAL
Output
1: {{ '6_N' 'X(X^2)*Y+X^2*X(Y)'
}} XEVAL
2:
{{ '6_N' 'X(X)*2*X^(2-1)*Y'}}
XEVAL
3:
{{ '6_N' '2*X*Y' }}
See
also: MAP XNUM
_____________________________________________________________
PCOEF
Description:
Returns a list of coefficients of a polynomial expression.
Access: Library 697: CAS48 PCOEF
Input:
Level 2: The polynomial expression.
Level 1: The variable of polynomial.
Output:
A Vector { xi } of the coefficient that the polynomial contains.
Example
#1: To find the coefficients of the
following polynomial
Input:
Level
2: 'X^2+5*X+6'
Level
1: 'X' PCOEF
Output:
Level 1: {
1 5 6 }
Example
#2: To find the coefficients of the
following polynomial
Input:
Level
2: 'u*Y^5+ß*Y^3+C'
Level
1: 'Y' PCOEF
Output
:
Level
1: { u 0 ß 0 0 C }
Example
#3: To find the coefficients of the
following polynomial
Input:
Level
2: '2*C*L*R*S^2+C*R^2*S+3*L*S+2*R'
Level
1: 'S' PCOEF
Output
:
Level
1: { '2*C*L*R' 'C*R^2+3*L' '2*R' }
Example
#4: To find the coefficients of the
following polynomial
Input:
Level
2: '2*X^3/(X^2+2)'
Level
1: 'X' PCOEF
Output
:
Level
2: { 2 0 0 0 }
Level
1: { 1 0 2 }
See
also: CPOL CFRAT
FXND
_____________________________________________________________
CPOL
& CFRAT
Example
#1: To find the coefficients of the
following polynomial
Input:
Level
2: { 1 5 6 }
Level
1: X CPOL
Output
:
Level
1: 'X^2+5*X+6'
Example
#2: To find the coefficients of the
following polynomial
Input:
Level
3: { 2 0 0 0 }
Level
2: { 1 0 2 }
Level
1: X CFRAT
Output
:
Level
1: '2*X^3/(X^2+2)'
_____________________________________________________________
REORDER
Description:
Given a polynomial expression and a variable, reorders the variables in the
expression in decreasing order.
Access:
Library 697: CAS48 REORDER
Input: Level 2:
The polynomial expression.
Level 1: The variable with respect to which the reordering is performed.
Output:
The reordered expression.
Example
#1: Reordered expression.
Input:
Level
2: '2*R+2*C*L*R*S^2+C*R^2*S+3*L*S'
Level
1: 'S' REORDER
Output:
Level 1:
'2*R*C*L*S^2+(R^2*C+3*L)*S+2*R'
Example
#2: Reordered expression.
Input: Output:
_____________________________________________________________
Obj
Description: Object to Stack Command:
Separates
an object into its components
Access:
Library 697: CAS48 Obj
Input:
Level
1: An object.
Output:
Level
1: Object separate.
Example
#1: To Separate.
Input:
Level
1: «« 'X^Y' DUP »» Obj
[ENTER]
Output:
Level
5: «
Level
4: 'X^Y'
Level
3: DUP
Level
2: »
Level
1: 4
See
also: Prg
_____________________________________________________________
Prg
Description: process inverse to OBj
Access:
Library 697: CAS48 Prg
Input:
Level
1: Objects.
Output:
Level
1: An Object.
Example
#1: To join
Input:
Level
5: «
Level
4: 'X^Y'
Level
3: DUP
Level
2: »
Level
1: 4 Prg
[ENTER]
Output:
Level
1: « 'X^Y' DUP »
See
also: Obj
_____________________________________________________________
Id
Description:
Create a name of special variable.
Access:
Library 697: CAS48 Id
Input:
Level
1: A string.
Output:
Level
1: A varible.
Example
#1:
Input:
Level
1: "CAS49 Var"
Id [ENTER]
Output:
Level
1: 'CAS48 Var'
Example
#2:
Input:
Level
1: " @ "
Id [ENTER]
Output:
Level
1: ' @ '
_____________________________________________________________
VER
Description: Returns the Computer Algebra System version
number, and date of release.
Access:
Library 697: CAS48 VER
Input:
No input required.
Output:
The version and release date of the Computer Algebra System software.
_____________________________________________________________
HESS
Description:
Returns the Hessian matrix, determinant of Hessian matrix, critical points, and
the gradient of an expression with respect to the specified variables.
Access: Library 697: CAS48 HESS
Input:
Level
2: Algebraic expression or variable.
Level
1: A Vector { xi } containing the variables.
Output:
Level
4: The gradient with respect to the variables.
Level
3: Critical points: Solution of the level 4:
Level
2: The Hessian matrix
Level
1: Determinant of Hessian matrix
Example
#1:
Input:
Level
2: '-X^3+4*X*Y-2*Y^2+1'
Level
1: { X Y } HESS
Output:
Level
4: { '-(3*X^2)+4*Y' '4*X-4*Y' }
Level
3: {{ 'X=0' 'Y=0' }
{ '3*X-4=0' '3*Y-4=0' }}
Level
2: {{ '-(6*X)' 4 }
{ 4 -4 }}
Level
1: :DET=: '24*X-16'
Input: Output:
Example
#2:
Input:
'X^2*Y^2'
{
X Y } HESS
Output:
Level
4: { '2*X*Y^2' '2*X^2*Y' }
Level
3: {{ 'X=0' }
{ 'Y=0' }}
Level
2: {{ '2*Y^2' '4*X*Y' }
{ '4*X*Y' '2*X^2' }}
Level
1: :DET=: '-(12*X^2*Y^2)'
Input: Output:
See
also: WHESS
_____________________________________________________________
MLAGRANGE
Description:
Returns the Multipliers of Lagrange.
Access:
Library 697: CAS48 MLAGRANGE
Input:
Level
3: Algebraic expression or variable.
Level
2: A Vector { xi } containing the variables.
Level
1: Restrictions.
Output:
Level
2: The gradient with respect to the variables and restrictions.
Level
1: Solution of the level 2:
Example
#1:
Input:
'4*X*Y'
{
'X^2/9+Y^2/16-1' }
{
X Y } MLAGRANGE
Output:
Level
3: { '4*Y' '4*X' }
Level
2:
{{
'1/9*X^2+1/16*Y^2-1' }
{ '4*Y=2/9*X*ß' }
{ '4*X=1/8*Y*ß' }}
Level 1:
{{
'4*X-3*Y=0' 'Y^2-8=0' 'ß-24=0' }
{ '4*X+3*Y=0' 'Y^2-8=0' 'ß+24=0' }}
Input: Output 2: Output 1:
See
also: WLAGRANGE
_____________________________________________________________
JACOBIAN
similar to JACOBIAN of the (DERIVE V5.02)
Description: Returns the Jacobian matrix of a parametric
function.
simplifies
to the Jacobian matrix of the above transformation, where
= { 1 2
m } and Jacobian . The Jacobian is the n by m matrix
of partial derivatives of u, with ui/j
located at row i and column j. For
example, the transformation from parabolic to Cartesian coordinates is x =
(w²-v²)/2 and y = w·v and
Access:
Library 697: CAS48
Input:
level
2: A vector { xi } representing a
parametric function.
level
1: A vector { xi } containing the
variables.
Output:
Level
2: The Jacobian matrix
Level
1: DET(#2)
Example
#1:
Input:
{
'(w^2-v^2)/2' 'w*v' }
{
w v } JACOBIAN
Output:
Level
2: {{ w '-v' }
{ v w }}
Level
1: :DET=: 'v^2+w^2'
___________________________________
Example
#2:
Input:
{
'r*COS(ß)' 'r*SIN(ß)' ß }
{
r ß } JACOBIAN
Output:
Level
2: {{ I J K }
{ 'COS(ß)' 'SIN(ß)' 0 }
{ '-(r*SIN(ß))' 'r*COS(ß)' 1 }}
Level
1: :DET=: { 'SIN(ß)' '-COS(ß)' r }
See
also: WJACOBI
_____________________________________________________________
REF
similar to ref() of the (TI92+) or REF of the HP49 (but it accepts symbolic
arguments and not squared martix )
Description:
subdiagonal reduction. Reduces a matrix to echelon form.
Access:
Library 696: LINEAL REF
Flags: Solution of echelon. if (flag 23 SF).
Input:
Level
1: A(m × n) Symbolic/numeric Matrix.
Output:
Level
2: A list of solutions of the echelon. if (flag 23 SF).
Level
1: The equivalent matrix in echelon form.
Example
#1: Reduces the following matrix m × m
Input:
Level
1: [[ 2 4 6 ]
[ 4 5 6 ]
[ 3 1 -2 ]] REF [ENTER]
Output:
Level
2: {{ 'R1=Row1/2' }
{ 'R2=Row2+Row1*-4' }
{ 'R3=Row3+Row1*-3' }
{ 'R2=Row2/-3' }
{ 'R3=Row3+Row2*5' }
{ 'R3=Row3/-1' }}
Level
1: [[ 1 2 3 ]
[ 0 1 2 ]
[ 0 0 1 ]]
Input: Output:
A
u
___________________________________
Example
#2: Reduces the following matrix m × m
Input:
Level
1: [[ (.5,-60) (.5,0) (0,0) ]
[ (0,0) (.5,-60) (.5,0) ]
[ (.5,0) (0,0) (.5,-60) ]] REF
[ENTER]
Output:
Level
2:
{{
'R1=Row1/(1/2-60*i)' }
{ 'R3=Row3+Row1*(-1/2)' }
{ 'R2=Row2/(1/2-60*i)' }
{ 'R3=Row3+Row2*-(-(60/14401*i)-1/28802)' }
{
'R3=Row3/(-(12443327940/207388801*i)+103687201/207388801)' }}
Level
1: [[ (1,0) (6.94396222485E-5,8.33275466981E-3) (0,0) ]
[ (0,0) (1,0)
(6.94396222485E-5,8.33275466981E-3) ]
[ (0,0) (0,0) (1,0) ]]
Input: Output:
A
u
___________________________________
Example
#3: Reduces the following symbolic
matrix m × n
Input:
Level
1: {{ 0 1 -1 2 b1 }
{ 1 -2 3 0 b2 }
{ 1 -1 2 2 b3 }
{ -1 3 -4 2 b4 }} REF [ENTER]
Output:
Level
2: {{ 'Exchange(R1,R2)' }
{ 'R3=Row3+Row1*-1' }
{ 'R4=Row4+Row1*1' }
{ 'R3=Row3+Row2*-1' }
{ 'R4=Row4+Row2*-1' }
{ 'R3=Row3/(-b1-b2+b3)' }
{ 'R4=Row4+Row3*-(-b1+b2+b4)' }}
Level
1: {{ 1 -2 3 0 b2 }
{ 0 1 -1 2 b1 }
{ 0 0 0 0 1 }
{ 0 0 0 0 0 }
Input: Output:
A
u
___________________________________
Example
#4: {{ a b c }
{ E f g }} REF
{{
'R1=Row1/a' }
{ 'R2=Row2+Row1*-E' }
{
'R2=Row2/((-(E*b)+a*f)/a)' }}
{{
1 'b/a' 'c/a' }
{ 0 1 '(E*c-a*g)/(E*b-a*f)' }}
See
also: RREF2 oref
_____________________________________________________________
lu
similar to LU() of the (TI92+) or lu of the HP49 (but it accepts symbolic
arguments and not squared martix )
Description:
lu Decomposition of a Matrix Command.
Returns
the lu decomposition of a m × n Symbolic/numeric Matrix.
Access:
Library 696: LINEAL lu
Input:
Level
1: A Matrix[[ brackets ]] or Symbolic
Matrix {{ xi }}.
Output:
Level
3: P is a permutation matrix. Output:
Level
2: l is an upper-triangular matrix.
Level
1: u is a matrix in echelon.
Where
P x A = l × u
Example
#1: Factor the following matrix m×m
[[
0 1 0 0 ]
[ 1 0 0 0 ]
[ 0 0 1 0 ]
[ 0 0 0 1 ]]P
[[
0 1 -1 2 ]
[ 1 -2 3 0 ]
[ 1 -1 2 2 ]
[ -1 3 -4 2 ]]A
[[
1 0 0 0 ]
[ 0 1 0 0 ]
[ 1 1 1 0 ]
[ -1 1 0 1 ]]l
[[
1 -2 3 0 ]
[ 0 1 -1 2 ]
[ 0 0 0 0 ]
[ 0 0 0 0 ]]u Where P x A = l × u
Input: Output:
PA
l
u
___________________________________
Example
#3: Factor the following symbolic matrix 3 × 4
[[
0 1 0 ]
[ 1 0 0 ]
[ 0 0 1 ]] P
[[
0 1 -1 2 ]
[ 1 -2 3 0 ]
[ 1 -1 2 2 ]] A
[[
1 0 0 ]
[ 0 1 0 ]
[ 1 1 1 ]] l
[[
1 -2 3 0 ]
[ 0 1 -1 2 ]
[ 0 0 0 0 ]] u
___________________________________
Example
#2: Factor the following symbolic matrix m × n
[[
1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]] P
[[
6 12 18 ]
[ 5 14 31 ]
[ 3 8 18 ]] A
[[
1 0 0 ]
[ .833333333333 1 0 ]
[ .5 .5 1 ]] l
[[
6 12 18 ]
[ 0 4 16 ]
[ 0 0 1 ]] u
___________________________________
Example
#3:
[[
1 0 ]
[ 0 1 ]] P
{{
m n }
{ q p }} A
{{
1 0 }
{ 'q/m' 1 }} l
{{
m n }
{ 0 '(m*p-n*q)/m' }} u
See
also: LU
_____________________________________________________________
qr
similar to QR() of the (TI92+) or qr of the (HP49)
Description:
qr Factorization of a Matrix Command: Returns the qr factorization of a m × n
numeric Matrix.
Access:
Library 696: LINEAL qr
Input:
Level
1: A
Matrix [[ xij ]] or Matrix {{ xij }}.
Output:
Level
2: q is an m × m orthogonal matrix.
Level
1: r is an m × n upper trapezoidal
matrix.
Where
A = q × r
q*TRAN(q)=IDN(m)
Example
#1: Factor the following matrix m×m
Input:
Level
1: [[ -.5 -1 1 ]
[ 1 0 .5 ]
[ 0 -1 1 ]] qr [ENTER]
Output:
Level
2: {{ '-(1/5*5)' '-(4/15*5)'
'2/3' }
{ '2/5*5'
'-(2/15*5)' '1/3' }
{ 0 '-(1/3*5)'
'-(2/3)' }}
Level
1: {{ '1/2*5' '1/5*5'
0 }
{ 0 '3/5*5' '-(2/3*5)'
}
{ 0 0 '1/6' }} MULT
Input: Output:
A
q
r
Example
#2: Factor the following matrix m×m
Input:
Level
1: {{ m n }
{ k p }} qr [ENTER]
Output:
Level
2: {{ 'm/(k^2+m^2)' 'k/(k^2+m^2)'
}
{ 'k/(k^2+m^2)'
'-m/(k^2+m^2)' }}
Level
1: {{ '(k^2+m^2)' '(k*p+m*n)/(k^2+m^2)'
}
{ 0 '(k*n-m*p)/(k^2+m^2)'
}}
See
also: QR
_____________________________________________________________
PCAR
similar to PCAR of the HP49
Description:
Returns the characteristic polynomial of a m×m matrix.
Access:
Library 696: LINEAL PCAR
Input:
Level
1: A square Matrix [[ xij ]] or square Symbolic Matrix {{ xi }}
Output:
Level
2: The characteristic polynomial of the matrix.
Level
1: A Vector { xi } of the eigenvalues form {Root1 Root2 . . .}
Example
#1: Find the characteristic polynomial
of the following matrix:
Input:
Level
1: [[ 5 8 16 ]
[ 4 1 8 ]
[ -4 -4 -11 ]] PCAR [ENTER]
Output:
Level
2: 'X^3+5*X^2+3*X-9'
Level
1: { :X1: -3 :X2: -3 :X3: 1 }
Input: Output:
___________________________________
Example
#2: Find the characteristic polynomial
of the following matrix:
Input:
Level
1: [[ 4 1 ]
[ 0 4 ]] PCAR [ENTER]
Output:
Level
2: 'X^2-8*X+16'
Level
1: { :X1: 4 :X2: 4 }
Input: Output:
___________________________________
Example
#3: Find the characteristic polynomial of the following matrix:
Input:
Level
1: [[ .5 .5 0 ]
[ 0 .5 .5 ]
[ .5 0 .5 ]] 'X' PCAR [ENTER]
Output:
Level
2: 'X^3-3/2*X^2+3/4*X-1/4'
Level
1: { :X1: 1 :X2: (.25,.433012701892) :X3: (.25,-.433012701892) }
Input: Output 1:
___________________________________
Example
#4:
_____________________________________________________________
{{
2 X }
{ 1 3 }} ADJOINT
{{
3 '-X' }
{ -1 2 }}
_____________________________________________________________
Polynomial
Function
FXND similar to comDenom() of the (TI92+) or FXND
of the HP49
returns
a reduced ratio of a fully expanded numerator and a fully
expanded
denominator.
'(Y^2+Y)/(1+X)^2+Y^2+Y'
FXND
numerator:
'X^2*Y^2+X^2*Y+2*X*Y^2+2*X*Y+2*Y^2+2*Y'
denominator:
'X^2+2*X+1'
___________________________________
'(X^2+X+1)/(X+1)+(Y^2+Y+1)/(Y+1)=0'
FXND
numerator:
'X^2*Y+X^2+X*Y^2+2*X*Y+2*X+Y^2+2*Y+2'
denominator:
'X*Y+X+Y+1'
___________________________________
3.58333333333
FXND
43
12
_____________________________________________________________
MULT2POL
similar to conv of MATLAB VERSION 6.0
[
1 2 3 ]
[
4 5 6 ]
'X'
MULT2POL
'4*X^4+13*X^3+28*X^2+27*X+18'
'X'
PCOEF AXL
[
4 13 28 27 18 ]
___________________________________
[
1 2 3 ]
{
4 5 k }
'X'
MULT2POL
'4*X^4+13*X^3+(22+k)*X^2+(15+2*k)*X+3*k'
FACTOR
'(X^2+2*X+3)*(4*X^2+5*X+k)'
___________________________________
'X^2+2*X+3'
'4*X^2+5*X+k'
'X'
MULT2POL
'4*X^4+13*X^3+(22+k)*X^2+(15+2*k)*X+3*k'
'k=6'
SUBST SIMPLIFY
'4*X^4+13*X^3+28*X^2+27*X+18'
_____________________________________________________________
DIV2POL
similar to propFrac() of the (TI89) or DIV2 of the HP49 or deconv of MATLAB
VERSION 6.0
N/D=Q+R/D
'2*X^3'
'X^2+2'
'X'
DIV2POL
quotient:
'2*X'
remainder:
'-(4*X)'
___________________________________
[
4 13 28 27 18 ]
[
1 2 3 ]
'X'
DIV2POL
quotient:
'4*X^2+5*X+6'
remainder:
0
___________________________________
'5*X^4+4*X^3+3*X^2+2*X+1'
'X+i'
'X'
DIV2POL
quotient:
'5*X^3+(4-5*i)*X^2+(-2-4*i)*X+(-2,2)'
remainder:
'3+2*i'
___________________________________
'X^3+(-1-A-B)*X^2+(A*B+A+B)*X-A*B'
'X-(1+C/3)'
'X'
DIV2POL
quotient:
'X^2+(-1+1/3*(3+C)-A-B)*X+(1/3*(-1+1/3*(3+C)-A-B)*(3+C)+A*B+A+B)'
remainder:
'1/3*(1/3*(-1+1/3*(3+C)-A-B)*(3+C)+A*B+A+B)*(3+C)-A*B'
FACTOR
'1/27*C*(3*B-C-3)*(3*A-C-3)'
_____________________________________________________________
PROPFRAC
similar to propFrac() of the (TI92+) or PROPFRACT of the HP49
Q+R/D
'2*X^3/(X^2+2)'
'X'
PROPFRAC
'2*X-4*X/(X^2+2)'
_________________________________
'43/12'
'X'
PROPFRAC
'3+7/12'
___________________________________
'(X^2+X+1)/(X+1)+(Y^2+Y+1)/(Y+1)'
'X'
PROPFRAC
'(X*Y+X+Y^2+Y+1)/(Y+1)+(Y+1)/(X*Y+X+Y+1)'
_____________________________________________________________
GCD
similar to GCD of the HP49
'X^2+2*X+1'
'X^2-1'
GCD
'X+1'
___________________________________
18
33
GCD
3
_____________________________________________________________
LCM
similar to LCM of the HP49
'X^2+2*X+1'
'X^2-1'
LCM
'X^3+X^2-X-1'
___________________________________
18
33
LCM
198
_____________________________________________________________
POLEVALM
similar to polyvalm of MATLAB VERSION 6.0
[[
2 4 5 ]
[ -1 0 3 ]
[ 7 1 5 ]]
[
1 0 -2 -5 ]
X
POLEVALM
[[
377 179 439 ]
[ 111 81 136 ]
[ 490 253 639 ]]
___________________________________
{{
2 4 5 }
{ -1 0 3 }
{ 7 1 a }}
[
1 0 -2 -5 ]
X
POLEVALM
{{
'35*a+202' '5*a+154' '5*a^2+22*a+204' }
{ '21*a+6' '3*a+66' '3*a^2-5*a+86' }
{ '7*a^2+13*a+250' 'a^2+28*a+88'
'a^3+74*a+144' }}
_____________________________________________________________
'1.3-3.2*i'
CEILING
'2-3*i'
_____________________________________________________________
LCXM
similar to LCXM of the HP49
2
3
«
I J 'I+2*J' » LCXM
[[
3 5 7 ]
[ 4 6 8 ]]
___________________________________
3
3
«
X Y '1/(X+Y-1)' » LCXM EXACT
{{ 1 '1/2' '1/3' }
{ '1/2' '1/3'
'1/4' }
{ '1/3' '1/4'
'1/5' }}
_____________________________________________________________
3 HILBERT
{{ 1 '1/2' '1/3' }
{ '1/2' '1/3'
'1/4' }
{ '1/3' '1/4'
'1/5' }}
_____________________________________________________________
'X^2+1'
1
X HORNER
quotient (P/X-a): 'X+1'
P(a): 2
___________________________________
'5*X^4+4*X^3+3*X^2+2*X+1'
'-i'
X HORNER
quotient (P/X-a):
'5*X^3+(4,-5)*X^2+(-2,-4)*X+(-2,2)'
P(a): '3+2*i'
___________________________________
'EXP(X)'
X
s LAPLACE
'1/(s-1)'
___________________________________
't^2'
t
S LAPLACE
'2/S^3'
___________________________________
't^2*EXP(5*t)'
t
S LAPLACE
'2/(S^3-15*S^2+75*S-125)'
FACTOR
'INV(1/2*(S-5)^3)'
___________________________________
'X*COS(a*X+b)'
X
S LAPLACE
'(COS(b)*S^2-2*SIN(b)*a*S-COS(b)*a^2)/(S^4+2*a^2*S^2+a^4)'
S PCOEF
{ 'COS(b)'
'-(2*SIN(b)*a)' '-(COS(b)*a^2)' }
{ 1 0
'2*a^2' 0 'a^4' }
___________________________________
'1/(s-1)'
s
X ILAPLACE
'e^X'
___________________________________
'2/S^3'
S
t ILAPLACE
't^2'
___________________________________
'INV(1/2*(S-5)^3)'
S
t ILAPLACE
't^2*e^(5*t)'
___________________________________
'1/(S^4+6*S^3+14*S^2+16*S+8)'
S
t ILAPLACE
EXACT
'1/2*e^-(2*t)+1/2*t*e^-(2*t)-1/2*EXP(1)^-t*COS(t)'
'(X^4+3.414*X^2+1)/(2.613*X^3+2.613*X)'
X
PROPFRAC2
'.382701875239*X+1/(1.08243579122*X+1/(1.57719616481*X+1
/(1.53056420907*X)))'
___________________________
[[ 2 4 7 ]
[ 1 2 3 ]
[ 1 5 3 ]]
{ 3 2 }
MINOR
{{ 2 7 }
{ 1 3 }}
___________________________
[[ 2 4 7 ]
[ 1 2 3 ]
[ 1 5 3 ]]
{ 3 2 }
COFACT
1
___________________________
{{ a b c }
{ d E f }
{ g h I }}
{ 3 1 } MINOR
{{ b c }
{ E f }}
___________________________
{{ 3 2 1 }
{ 1 -1 3 }
{ 5 4 -2 }}
{{ 7 }
{ 3 }
{ 1 }}
{ X Y Z } CRAMER
{ :X: -3 :Y: 6 :Z: 4 }
___________________________
Input(Levels
A b X):
3: {{ a b
}
{ c d }}
2: {{ 1 }
{ 2 }}
1: {{ x1 }
{ x2 }} CRAMER [ENTER]
Output(Levels):
1:
{ :x1:
'(-(2*b)+d)/(a*d-b*c)'
:x2: '(2*a-c)/(a*d-b*c)' }
___________________________
3
RANDSYSMAT
{{ -5 -1
'-(3/2)' }
{ -1 1 -2 }
{ '-(3/2)' -2 -9 }}
___________________________
3 RANDASYSMAT
{{ 0
9/2' '9/2' }
{ '-(9/2)' 0 '9/2' }
{ '-(9/2)' '-(9/2)' 0 }}
___________________________
{ 3 4 }
RANDUPPERMAT
{{ 9 -9 -8
9 }
{ 0 -2 '-65/9' 2 }
{ 0 0 '-53/3' 6 }}
___________________________
{ 3 4 }
RANDLOWERMAT
{{ 7 0 0 0
}
{ -6 '23/7' 0 0 }
{ -1 '5/7' '-36/23' 0 }}
___________________________
{ 2 4 }
RANDSTOCMAT
{{ '4/31'
'5/14' }
{ '7/31' '3/7' }
{ '11/31' '1/7' }
{ '9/31' '1/14' }}
SUMA(COL)=1
___________________________
[[ .5 .5 0
]
[ 0 .5 .5 ]
[ .5 0 .5 ]]
'Y'PMINI
'Y^3-3/2*Y^2+3/4*Y-1/4'
___________________________
[[ 1 2 3 ]
[ 4 5 6 ]] IMAGE
[[ 1 0 ]
[ 0 1 ]]
___________________________
[[ 1 2 3 ]
[ 4 5 6 ]] KER
[[ -1 2 -1
]]
___________________________
[[ 1 2 3 ]
[ 4 5 6 ]
[ 7 8 9 ]]
[[ 1 2 3 ]
[ 4 5 6 ]
[ 7 5 6 ]] EGBS
[[ 1 -1 0
]
[ 1 0 -1 ]]
___________________________
{ 1 3 5 7
9 }
{ 2 3 5 8
13 } LINTERSECTION or LAND
{ 3 5 }
___________________________
DEL
ELEMENTS OF 2 IN LIST 1
{ 1 2 3 4
5 6 7 8 9 10 }
{ 2 3 5 7
} LDIFFERENCE
{ 1 4 6 8
9 10 }
___________________________
{ 1 3 5 7
9 }
{ 2 3 5 8
13 } LOR or LUNION
{ 1 3 5 7
9 2 8 13 }
___________________________
{ 1 3 5 7
9 }
{ 2 3 5 8
13 } LXOR
{ 1 7 9 2
8 13 }
___________________________
{ 1 3 5 7
9 } 1 3 LSUB
{ 7 9 }
___________________________
{ 'COS(X)'
'EXP(X)' 'pi' 'SQ(Y)' }
{ 'pi' 'i'
'LN(X)' 'EXP(X)' } LAND
{ 'EXP(X)'
'pi' }
___________________________
{ 'COS(X)'
'EXP(X)' 'pi' 'SQ(Y)' }
{ 'pi' 'i'
'LN(X)' 'EXP(X)' } LDIFFERENCE
{ 'COS(X)'
'SQ(Y)' }
___________________________
{ 'COS(X)'
'EXP(X)' 'pi' 'SQ(Y)' }
{ 'pi' 'i'
'LN(X)' 'EXP(X)' } LOR
{ 'COS(X)'
'EXP(X)' 'pi' 'SQ(Y)' 'i' 'LN(X)' }
___________________________
{ 'COS(X)'
'EXP(X)' 'pi' 'SQ(Y)' }
{ 'pi' 'i'
'LN(X)' 'EXP(X)' } LXOR
{ 'COS(X)'
'SQ(Y)' 'i' 'LN(X)' }
___________________________
{ 1 1 0 0
}
{ 1 0 1 1
} LAND
{ 1 1 0 }
___________________________
{ 1 1 0 0
}
{ 1 0 1 1
} LOR
{ 1 1 0 0
1 }
___________________________
{ 1 1 0 0
}
{ 1 0 1 1
} LDIFFERENCE
{ 0 }
___________________________
{ 1 1 0 0
}
{ 1 0 1 1
} LXOR
{ 0 1 }
___________________________
{ 1 1 0 0
} LDELMULT
{ 1 0 }
___________________________
{ 1 0 1 1
}
1
2 LSWAP
{ 0 1 1 1
}
___________________________
{ 1 0 1 1
}
{ 1 0 1 1
} LSAME
1
___________________________
{ X « X ISPRIME?
» }
X 1 16 1
VECTOR
[[ 1 0 ]
[ 2 1 ]
[ 3 1 ]
[ 4 0 ]
[ 5 1 ]
[ 6 0 ]
[ 7 1 ]
[ 8 0 ]
[ 9 0 ]
[ 10 0 ]
[ 11 1 ]
[ 12 0 ]
[ 13 1 ]
[ 14 0 ]
[ 15 0 ]
[ 16 0 ]]
___________________________
{ X « X
DIVISORS » }
X 1 16 1
VECTOR
{
{ 1 { 1 }}
{ 2 { 1 2
}}
{ 3 { 1 3
}}
{ 4 { 1 2
4 }}
{ 5 { 1 5
}}
{ 6 { 1 2
3 6 }}
{ 7 { 1 7
}}
{ 8 { 1 2
4 8 }}
{ 9 { 1 3
9 }}
{ 10 { 1 2
5 10 }
{ 11 { 1
11 }}
{ 12 { 1 2
3 4 6 12 }}
{ 13 { 1
13 }}
{ 14 { 1 2
7 14 }}
{ 15 { 1 3
5 15 } }
{ 16 { 1 2
4 8 16 }}
}
___________________________
{ X « X
PRIMEDIVIS » }
X 1 16 1
VECTOR
{
{ 1 { } }
{ 2 { 2 }
}
{ 3 { 3 }
}
{ 4 { 2 }
}
{ 5 { 5 }
}
{ 6 { 2 3
} }
{ 7 { 7 }
}
{ 8 { 2 }
}
{ 9 { 3 }
}
{ 10 { 2 5
} }
{ 11 { 11
}}
{ 12 { 2
3 }}
{ 13 { 13
}}
{ 14 { 2 7
}}
{ 15 { 3 5
} }
{ 16 {
2 }}
}
___________________________
{ X « X
PERFEC? » }
X 6 30 1
VECTOR
[[ 6 1 ]
[ 7 0 ]
[ 8 0 ]
[ 9 0 ]
[ 10 0 ]
[ 11 0 ]
[ 12 0 ]
[ 13 0 ]
[ 14 0 ]
[ 15 0 ]
[ 16 0 ]
[ 17 0 ]
[ 18 0 ]
[ 19 0 ]
[ 20 0 ]
[ 21 0 ]
[ 22 0 ]
[ 23 0 ]
[ 24 0 ]
[ 25 0 ]
[ 26 0 ]
[ 27 0 ]
[ 28 1 ]
[ 29 0 ]
[ 30 0 ]]
___________________________
{ X « X
FACTOR » }
X -1 20 1
VECTOR
{{ -1 -1 }
{ 0 0 }
{ 1 1 }
{ 2 2 }
{ 3 3 }
{ 4 '2^2' }
{ 5 5 }
{ 6 '2*3' }
{ 7 7 }
{ 8 '2^3' }
{ 9 '3^2' }
{ 10 '2*5' }
{ 11 11 }
{ 12 '2^2*3' }
{ 13 13 }
{ 14 '2*7' }
{ 15 '3*5' }
{ 16 '2^4' }
{ 17 17 }
{ 18 '2*3^2' }
{ 19 19 }
{ 20 '2^2*5' }}
___________________________
{ X « X
FACTORS » }
X -1 20 1
VECTOR
{{-1 {{ -1 1 }} }
{ 0
{{ 0 1 }} }
{ 1
{{ 1 1 }} }
{ 2
{{ 2 1 }} }
{ 3
{{ 3 1 }} }
{ 4
{{ 2 2 }} }
{ 5
{{ 5 1 }} }
{ 6
{{ 2 1 } { 3 1 }} }
{ 7
{{ 7 1 }} }
{ 8
{{ 2 3 }} }
{ 9
{{ 3 2 }} }
{ 10
{{ 2 1 } { 5 1 } } }
{ 11
{{ 11 1 }} }
{ 12
{{ 2 2 } { 3 1 }} }
{ 13
{{ 13 1 }} }
{ 14
{{ 2 1 } { 7 1 }} }
{ 15
{{ 3 1 } { 5 1 }} }
{ 16
{{ 2 4 }} }
{ 17
{{ 17 1 }} }
{ 18
{{ 2 1 } { 3 2 }} }
{ 19
{{ 19 1 }} }
{ 20
{{ 2 2 } { 5 1 } }}
}
___________________________
{{ 5 '8/2'
'4/2' }
{ '8/2' 5 2 }
{ '4/2' 2 2 }}
{ X Y Z } AXQ
'5*X^2+8*X*Y+4*X*Z+5*Y^2+4*Y*Z+2*Z^2=100'
___________________________
{{ 5
'-3/2' 4 '-1/2' }
{ '-3/2' 4 '9/2' '7/2' }
{ 4 '9/2' 2 3 }
{ '-1/2' '7/2' 3 9 }}
DIMMAT 1
GET MAKEVX AXQ
'5*W^2-3*W*X+8*W*Y-W*Z+4*X^2+9*X*Y+7*X*Z+2*Y^2+6*Y*Z+9*Z^2'
___________________________
13300
FACTORS
MULT->1LIST
{ 2 2 5 2
7 1 19 1 }
___________________________
EJEMPLO DE
MATLABV6.0 SISTEMA
[[ 1 1 ]
[ 1 .7408 ]
[ 1 .4493 ]
[ 1 .3329 ]
[ 1 .2019 ]
[ 1 .1003 ]] A(6x2)
[[ .82 ]
[ .72 ]
[ .63 ]
[ .6 ]
[ .55 ]
[ .5 ]] b(6x1)
{ X Y }
x(2x1) LINSOLVE
:X: .475943892709
:Y: .341333938746
* SOL->
(TRAN(A)*A)*X=(TRAN(A)*b)
___________________________
6 PASCAL
[[ 1 1 1 1
1 1 ]
[ 1 2 3 4 5 6 ]
[ 1 3 6 10 15 21 ]
[ 1 4 10 20 35 56 ]
[ 1 5 15 35 70 126 ]
[ 1 6 21 56 126 252 ]]
CHOLESKY
[[ 1 1 1 1
1 1 ]
[ 0 1 2 3 4 5 ]
[ 0 0 1 3 6 10 ]
[ 0 0 0 1 4 10 ]
[ 0 0 0 0 1 5 ]
[ 0 0 0 0 0 1 ]]
___________________________
6 MAKEVX
MVANDERMONDE
{{ 1 1 1 1 1 1 }
{ U V W X Y Z }
{ 'U^2' 'V^2' 'W^2' 'X^2' 'Y^2' 'Z^2' }
{ 'U^3' 'V^3' 'W^3' 'X^3' 'Y^3' 'Z^3' }
{ 'U^4' 'V^4' 'W^4' 'X^4' 'Y^4' 'Z^4' }
{ 'U^5' 'V^5' 'W^5' 'X^5' 'Y^5' 'Z^5' }}
___________________________
'1/(X*(X+1))'
X 'Ÿ' 1 INTGMAX
.693147180555
'1/(X^2+4)'
X 'Ÿ' 0 INTGMAX
.785398163398
XQ '1/4*‡'
'1/(EXP(X)+EXP(-X))'
X 'Ÿ' 'Ÿ' INTGMAX
'‡/2'
'EXP(2)^X'
X 0 'Ÿ' INTGMAX
0.5
___________________________
'X^9+(-191/10-16*i)*X^8+(518/5,2651/10)*X^7+(291/10,-21431/10)*X^6+(-123880898/28569,10145)*X^5+(256059/10,-129071/5)*X^4+(-66412,65216915/1917)*X^3+(868493/10,-215983/10)*X^2+(-279806/5,15604397/3252)*X+(70698/5,1/4*ƒ1880189)'
{ (2,8)
(3,-5) (3.1,5) (3,4) (2,0) (1,0) (1,0) (1,0) (3,4) }
___________________________
'Y^4+Y^3-Y-1'
'Y(X)' DESOLVE1
'c1*e^-X+c2*e^X+EXP(-(1/2*X))*(c3*COS(1/2*ƒ3*X)+c4*SIN(1/2*ƒ3*X))'
'Y^7+8*Y^6+28*Y^5+56*Y^4+69*Y^3+52*Y^2+22*Y+4'
'Y(X)'
DESOLVE1
'c1*e^-(2*X)+c2*e^-X+c3*(X*e^-X)+c4*(X^2*e^-X)+c5*(X^3*e^-X)+EXP(-X)*(c6*COS(X)+c7*SIN(X))'
___________________________________
|
AUTHOR: Jaime Fernando Meza Meza E-MAIL: jaimeza@hotmail.com Visit our Web site at: http://www.unalmed.edu.co/~ameza
or http://www.geocities.com/hp4x/ Software and information about the HP49,HP48 at: http://www.hpcalc.org/ |
Version: 3.3 revision 1 |
Please excuse all the linguistic errors in this
Pocket.
English is
not my native language.