Formulae and Data for the Stars and Planets


Julian Date,J

This is the number of days elapsed since BC4713 Jan 1st @12:00h

Algorithm

let date = D/M/Y & time = UT

if Y<0, Y=Y+1 if M‰2, Y=Y-1 M=M+12

b=0

if D/M/YŠ15/10/1582, a=[Y/100],b=2-a+[a/4]

J=[1461Y/4]+b+D+UT/24 + [306001(M+1)/10000] + 1720994.5

Examples

Date & TimeJulian Date
1/1/2000 @12:00 2451545
9/9/1885 @17:52:31.38 2409794.24480764
8/10/2109 @3:35:49.15 2491636.64987442
4/12/3102 @23:59:59.99 2854379.49999988
29/2/2000 @00:00:01 2451603.50001157
1/3/1582 @18:30:00 2298943.27083333
15/10/1582 @12:00 2299161
4/10/1582 @12:00 2299160
1/1/0001 @12:00 1721424
31/12/0001BC @12:00 1721423
1/1/4000BC @12:00 260424
31/12/4700BC @12:00 5113
1/1/4713BC @12:00 0
31/12/4714BC @12:00 -1
31/12/9999BC @12:00 -1930347
31/12/9999 @23:59:59.99 5373484.49999988

Inversion of J

([x] = Floor(x))

Z = [J+0.5], z=[J+0.5-Z],
a = [(Z-1867216.25)/36524.25]
A = (Z<2299161) ? Z : (Z+1+a-[a/4])
B = A + 1524
C = [(B-122.1)/365.25]
D = [365.25C]
E = [(B-D)/30.6001]
DDdddddd = B - D - [30.6001E] + z DD = [DDdddddd]
dddddd = DDdddddd - DD
Hour = [24dddddd]
Min = 60(24dddddd - Hour)
Month = (E<14) ? (E-1) : (E-13)
Year = (Month>2) ? (C-4716):(C-4715)
if Year‰0, Year--

Siderial time

GAST = Greenwich apparent Siderial Time.
GMST = Greenwich Mean Siderial Time.
GAST = GMST + ›έ.cos “
= GMST + eqn. of equinox

In degrees GAST = GHA‘

To compute GHA‘

Obliquity, “

“ = 23.439291 - .0130042T - .00000016T2 + .000000504T3
T = (J-2451545)/36525

Geographical position

This is the position at which the body lies directly overhead and is given by (lat=’,long=-GHA)

Altitude & Azimuth

H = Body/Horizon angle
Z = Body/North angle

G.P.  H,Z

Heliocentric coords for the planets

orbital params


a = semi-major axis
e = eccentricity
i = inclination to ecliptic
L = mean longitude
š = longitude of perihelion
 = longitude of ascending node
M = mean anomaly
w = argument of perihelion

a=[a0 a1 a2]  a = a0 + a1.p + a2.p2
e=[e0 e1 e2]  e = e0 + e1.p + e2.p2
...
=[0 1 2]   = 0 + 1.p + 2.p2

p=(J-2450000.5)/2280
Where 0‰p‰1

N.B: parameters for earth are for the earth/moon barycentre - the resulting x may be corrected by subtracting:
.0000312[cos L, sin L, 0]
and the resulting v by subtracting:
.0000312L'[-sin L, cos L, 0]
where L = 218 + 481268T
and L' = 481268/36525

aeiLš
Earth [1.000003 -.000003 .000001] [.016744 -.000082 .000031] [-.00056 .00046 .00049] [18.19185 2247.18581 .00081] [102.85504 .45924 -.40148] [158.2536 72.11722 -52.90426]
Mercury [.387098 .000002 -.000001] [.205642 -.000061 .000059] [7.00517 -.00016 -.00016] [51.63104 9330.54846 -.01681] [77.45291 -.00585 .01362] [48.33696 -.01165 .00344]
Venus [.723329 .000002 -.000001] [.006775 .000001 -.000001] [3.39486 -.00078 .00058] [227.49013 3652.85655 -.00004] [131.60805 .02706 -.01524] [76.69269 -.01562 -.00421]
Mars [1.523684 -.000039 .000035] [.093323 .000109 -.000041] [1.84992 .00032 -.00076] [266.08046 1194.79883 -.00049] [336.02066 .19987 -.25415] [49.57328 -.02987 .01681]
Jupiter [5.20187 .00398 -.00175] [.04837 .00034 .00028] [1.3045 .0012 -.0018] [266.0411 189.5709 -.1863] [15.6975 .4078 -.9751] [100.471 -.0194 .0692]
Saturn [9.55205 .07835 -.04718] [.05201 .00386 .00211] [2.4854 -.0011 .0014] [358.2207 76.0747 .54] [91.0058 -10.6803 12.4994] [113.6365 .0266 -.0367]
Uranus [19.30151 .03889 -.19958] [.04489 -.01074 .01447] [.7735 0 -.0018] [295.012 27.6628 -.6092] [177.6743 -8.4452 -1.6997] [74.0971 .0472 -.2865]
Neptune [30.2808 -.00052 -.34749] [.00808 .00885 -.00603] [1.7703 -.0106 .0105] [295.5181 14.9356 -.9686] [-.9818 22.5291 44.9834] [131.776 .0712 -.0618]
Pluto [39.86362 -1.25752 .62251] [.25564 -.02496 .01424] [17.1158 .0159 .0464] [232.9418 9.7148 -.953] [224.7949 .2691 -1.8207] [110.4043 -.0758 -.1188]

R*SD - Semidiameters at unit distance

PlanetSD*R
SUN .2666
Mercury .0009333
Venus .002317
Mars .0013
Jupiter .02646
Saturn .02175
Uranus .009728
Neptune .009306
Pluto .000575

Computing [x y z]

  1. Compute a,e,i,L,š, from a,e,i,L,š,
  2. M=L-š
    w=š-

  3. Solve Keplers equation for eccentric anomaly, Ζ from:

    Ζ - e.sin Ζ = M rads

  4. Coords in plane of orbit are then:

    x = a*[cos Ζ - e, ƒ(1-e2)sin Ζ, 0]

    v = .0172021ƒa/r*[-sin Ζ, ƒ(1-e2)cos Ζ, 0]

    Where r=|x|

  5. Use ,i,w to transform to a fixed Heliocentric coord system.
    1. rotate thru w about z-axis.
      Rz(w) =
      [[cos w -sin w 0]
      [sin w cos w 0]
      [0 0 1]]

    2. rotate thru i about x-axis
      Rx(i) =
      [[1 0 0 ]
      [0 cos i -sin i]
      [0 sin i cos i]]

    3. rotate thru  about z-axis
      Rz() =
      [[cos  -sin  0]
      [sin  cos  0]
      [0 0 1]]

    X=Rz().Rx(i).Rz(w).x
    V=Rz().Rx(i).Rz(w).v

Geocentric coords of the Planets

  1. Calculate X & V for the Earth for the current time. - Remember to correct for barycentre.
    let E=X, E'=V

  2. Set ™=0.

  3. Calculate X(J-™) for a chosen Planet. In the case of the Sun this will be a zero vector.
    let Q(J-™)=X(J-™)
    J-™ = p-™/2280

  4. Form P=Q(J-™)-E(J)

  5. Compute ™ from:
    c™=P+2΅/c2.ln[(E+P+Q)/(E-P+Q)]

    Where,
    E=|E(J)|,
    P=|P(J)|,
    Q=|Q(J-™)|
    ΅/c2=0.00000000987 au
    c=173.1446 au/day

  6. Follow steps 3. to 5. using the new ™ to calc. a more accurate ™. If ™ is has converged sufficiently stop iterating.

  7. keeping the most recent values for E=E(J), Q=Q(J-™), & P=Q-E compute the unit vectors:
    e=E/E
    q=Q/Q
    p=P/P

  8. Correct p for gravitational deflection

    p=p + 2΅/c2E((p.q)e-(e.p)q)/(1+q.e)

  9. Correct for aberration using:

    p=(p/ί + (1+p.V/(1+1/ί))V)/(1+p.V)

    Where V=E'/c = .0057755E',
    ί=1/ƒ(1-V2)

  10. Convert p to Geocentric coords by matrix mult. with Rx(“).

  11. Correct for precession by mult. with:

    Rz(zA).Ry(•A).Rz(”A)

    Where,
    ”A = .6406161T + .0000839T2 + .0000050T3,
    •A = .5567530T + -.0001185T2 - .0000116T3,
    zA = .6406161T +.0003041T2 + .0000051T3.

  12. Correct for nutation.

    d = J - 2449352.5,
    ›έ = -.0048 sin (241.1 - .053d) - .0004 sin (198.9 + 1.971d),
    ›“ = .0026 cos (241.1 - .053d) + .0002 cos (198.9 + 1.971d).

    rotation matrix,N =
    [[1 -›έcos“ -›έsin“]
    [›έcos“ 1 -›“ ]
    [›έsin“ ›“ 1 ]]

  13. Convert to spherical polar coords, [r ’ Œ]

    where
    x = r cos ’ cos Œ,
    y = r cos ’ sin Œ,
    z = r sin ’

Geocentric coords of the Sun.

  1. Obtain E(J)
  2. Q = 0
  3. P = -E
  4. p = P/P
  5. Correct for aberration with the same formula used for the Planets.
  6. mult. by Rx(“)
  7. correct for precession & nutation.
  8. convert to sperical polar coords.

Example
Date: 1/1/1999 @12:00
Planet: Mars
J = 2451180 T = -.009993155373
“ = 23.439420953
p = .517324561404
UT = 12
Earth:
a = 1.00000171565
e = .0167098757517
i = -.000190894597857
L = 1180.71648033
š = 102.985170166
 = 181.403122398
M = 1077.73131016
w = -78.417952232
Kepler:
E = 1077.692767
E = [.982481130768 -.0402523784359 0]
E' = [.0174941737308 .000703610028595 0]
w Rotation:
E = [.157820936952 -.970557560449 0]
E' = [.0042016057623 -.0169966964618 0]
i Rotation:
E = [.157820936952 -.970557560443 .0000032336447252]
E' = [.0042016057623 -.0169966964617 .0000000566285608389]
 Rotation:
E = [-.18153932645 -.966402038091 .0000032336447252]
E' = [-.00461653823249 .0168887168353 .0000000566285608389]
Barycentre correction:
L = -4591.38590007
›E' = [.000410983412134 -.000009943019451 0]
›E = [-.000000754608212 -.0000311908731273 0]
E = [-.181540081058 -.966370847218 .0000032336447252]
E' = [-.00420555482036 .0168787738158 .0000000566285608389]
GHA‘ = 280.69688732
E = 0.983274842246
Mars:
™ = 0:
a = 1.52367319121
e = .0933684157644
i = 1.84988214909
L = 884.179109559
š = 336.056040842
 = 49.5623262866
M = L-š = 548.123068717
w = š- = 286.493714555
Q = [-1.58989550847 .491078700057 .0493707475428]
P = Q-E = [-1.40835542741 -.475292147161 .0493675138981]
P = 1.48721376624
Q = 1.66474126765
 ™ = .00858943213545
™ = .00858943213545:
a = 1.52367319122
e = .0933684155136
i = 1.84988215084
L = 884.1746084
š = 336.05604108
 = 49.5623263336
Q = [-1.58986454062 .491183287029 .0493721773397]
P = [-1.40832445956 -.475187560189 .049368943695]
P = 1.48715106608
Q = 1.66474258997
 ™ = .00858907000946
™ = .00858907000946:
a = 1.52367319122
e = .0933684155136
i = 1.84988215084
L = 884.17460859
š = 336.05604108
 = 49.5623263336
Q = [-1.58986454191 .491183282608 .04937217729]
P = [-1.40832446085 -.47518756461 .0493689436343]
P = 1.48715106872
Q = 1.6647425899
 ™ = .00858907002471
Grav. defl.
e = [-.184628013713 .982808473988 .00000328864787979]
q = [-.955021245661 .295050589556 .0296575444093]
p = [-.946994888732 -.319528778619 .0331969930108]
p = [-.946994892474 -.319528767523 .0331969930655]
aberration
p = [-.947026901759 -.319433888601 .033197264018]
Geocentric coords
p = [-.947026901759 -.306279757148 -.0966063035518]
Precession
p = [-.947104696981 -.306068122538 -.0965143383236]
Nutation
p = [-.947119528467 -.306031616354 -.096484564604]
Polar coords
’ = -5.5367715964
Œ = 197.906592189
R = 1.4871510938

The Stars

  1. Compute – = –0 + ΅–0T; ί = ί0 + ΅ί0T

  2. Form p = [cos ί cos –, cos ί sin –, sin ί]

  3. correct for grav. deflection

    p = p+2΅/c2(e-(p.e)p)/(1+p.e)

  4. correct for aberration using same formula as for the planets.
  5. mult. by matrix, Rx(“)
  6. correct for precession & nutation.
  7. transform to spherical polar coords.
Example
Date: 23/8/1997

–0 = 23.2723278109 ΅–0 = -.00152001801857
ί0 = -53.741327814 –ί0 = .00141433773382

p = [.543310652902 .233675928572 -.806355439524]
E = [.881322847377 -.495552333534 -.00000276291474868]
E = 1.01108954924
e = [.871656568935 -.490117155208 -.00000273261132088]
Gravity:
p = [.543310662838 .233675920142 -.806355435272]
Aberration:
p = [.543316319931 .233771557759 -.806323902212]
Geocentric coords:
p = [.543316319931 .53522189779 -.646795869361]
Precession:
p = [.54345016702 .534935542807 -.646920304989]
Nutation:
p = [.543452033612 .53490385534 -.646944939171]
Polar coords:
’ = -40.311657402
Œ = 44.5458231516

–, ί for bright stars

Star–0΅–0ί0΅ί0
Acamar • Eri 23.2723274931 -1.52002111589E-3 -53.740227815 1.41435154174E-3
Achernar Œ Eri 345.311703996 2.84938087517E-3 -59.37825935 -1.8786533815E-3
Acrux Œ Cru 221.870138544 -4.71733389092E-4 -52.878638427 -7.74328291725E-5
Adhara “ CMa 110.762937237 2.52724456036E-4 -51.360159136 7.49606793186E-5
Aldebaran Œ Tau 69.7892519526 1.03575092172E-3 -5.4673621744 -5.47147943664E-3
Alioth “ UMa 158.933445653 4.16705192731E-3 54.3187947623 2.83194121942E-4
Alkaid ” UMa 176.933159354 -4.29617751111E-3 54.38806071 -2.07660815371E-3
Al nair Œ Gru 315.907009922 1.83273027835E-3 -32.913310788 -2.99234490181E-3
Alnilam “ Ori 83.4635400129 -2.45601026999E-5 -24.506403199 -4.63963313306E-5
Alphard Œ Hya 147.279235203 -7.37621682614E-4 -22.382501416 3.83419730328E-4
Alphecca Œ CrB 222.29591595 5.68298900217E-3 44.323612588 2.16973165556E-3
Alpheratz Œ And 14.3085806371 1.61670434378E-3 25.6803857155 -5.31811104644E-3
Altair Œ Aql 301.776471029 1.93777159198E-2 29.3034875421 -2.61353495346E-3
Ankaa Œ Phe 345.493813719 -1.00252149408E-3 -40.633166371 -1.19560876261E-2
Antares Œ Sco 249.762249804 -6.82250666453E-5 -4.5699912333 -6.04050673367E-4
Arcturus Œ Boo 204.233733929 -7.67679027389E-3 30.7362730159 -.0598615795
Atria Œ TrA 260.896142468 1.23065774141E-3 -46.151304398 -1.81515183474E-4
Avior “ Car 173.129481754 -2.50299856874E-3 -72.679883004 -2.98159791706E-4
Bellatrix ‘ Ori 80.9464516187 -3.15788960106E-4 -16.816070541 -2.81999778414E-4
Betelgeu. Œ Ori 88.7546439839 8.02498333675E-4 -16.026949944 2.10436085131E-4
Canopus Œ Car 104.961391946 3.08630870136E-3 -75.823867726 -2.1401860265E-4
Capella Œ Aur 81.8579065019 1.26571532504E-3 22.8643442124 -8.25653447336E-3
Deneb Œ Cyg 335.329336728 2.88913399081E-4 59.9061772882 -1.06361887037E-4
Denebola ί Leo 171.617559445 -1.15326016058E-2 12.2669140659 -7.78602252267E-3
Diphda ί Cet 2.58348395455 6.72672147408E-3 -20.783521361 -2.11644242312E-3
Dubhe Œ UMa 135.197588273 -2.39066537661E-3 49.6802439433 -2.70959792509E-4
Elnath ί Tau 82.5749090883 3.70236776222E-4 5.3850600285 -4.81199355075E-3
Eltanin ‘ Dra 267.968658026 -7.98165172442E-4 74.9222265861 4.65901142928E-4
Enif “ Peg 331.884934126 8.98504578136E-4 22.0999129678 -5.33892608283E-4
Fomalhaut Œ PsA 333.860433946 7.16186633733E-3 -21.135692148 -5.7136003275E-3
Gacrux ‘ Cru 216.739671286 7.36973628006E-3 -47.831176052 -6.8059406715E-3
Gienah ‘ Crv 190.725570888 -4.48535189767E-3 -14.500979654 -8.815824295E-4
Hadar ί Cen 233.792526441 -3.57021252097E-4 -44.137580973 -1.10225555454E-4
Hamal Œ Ari 37.6624740259 3.6387657515E-3 9.9651204553 -4.96019548936E-3
Kaus Aus. “ Sgr 275.078726063 -1.05434819036E-3 -11.051868334 -3.24680136736E-3
Kochab ί UMi 133.319496982 -1.13083992701E-3 72.9875858742 2.87533403769E-4
Markab Œ Peg 353.485705453 1.24810776221E-3 19.4060321592 -.001899543017
Menkar Œ Cet 44.3201010087 -9.04847702158E-4 -12.585560382 -1.69297439714E-3
Menkent • Cet 222.308621 -8.72945644467E-3 -22.079942876 -1.32874582269E-2
Miaplaci. ί Car 211.969201739 -1.25503137608E-2 -72.235711402 1.65712471764E-3
Mirfac Œ Per 62.0809130375 5.12346241136E-4 30.1255344622 -3.27153653694E-4
Nunki ˜ Sgr 282.385281876 2.54405511434E-4 -3.44952424 -1.54435270865E-3
Peacock Œ Pav 293.817626756 -4.08976157053E-4 -36.267652161 -1.1540201021E-3
Pollux ί Gem 113.21560515 -1.70025579305E-2 6.6842010755 -2.82919380131E-3
Procyon Œ CMi 115.785482046 -1.50461923725E-2 -16.019585974 -3.06774244778E-2
Rasalhag. Œ Oph 262.448701845 4.59002687542E-3 35.8352571039 -1.42054672277E-3
Regulus Œ Leo 149.829183703 -6.48850256172E-3 .4649122809 -2.18374645489E-3
Rigel ί Ori 76.829526474 -2.57481475353E-5 -31.122763067 -2.90529644611E-5
Rigil ke. Œ Cen 239.479439138 -.13497760231 -42.595903924 5.11097405256E-2
Sabik ” Oph 257.969555039 8.29288721808E-4 7.1978101302 2.70627414781E-3
Schedar Œ Cas 37.7838047984 1.05304515948E-3 46.6221432285 -4.36567483172E-4
Shaula – Sco 264.585847015 6.86323141942E-5 -13.788425434 -7.03328278172E-4
Sirius Œ Cma 104.081585629 -1.52360381513E-2 -39.605274123 -1.17586685572E-2
Spica Œ Vir 203.841382604 -7.50128029319E-4 -2.054487943 -1.15473168587E-3
Suhail – Vel 161.187750766 -1.15541089747E-3 -55.870798775 -2.32177676267E-4
Vega Œ Lyr 285.316347248 1.40272456538E-2 61.7328040051 -6.12371993506E-3
Zubenubi Œ2 Lib 225.082692139 -2.25760560228E-3 .3329960609 -2.68735493126E-3
Polaris Œ UMi 88.5675958479 9.83697150064E-4 66.1014079608 8.04191073467E-4
Octantis ˜ Oct 271.870374062 1.17627694566E-3 -65.840314294 3.11815683375E-4