
Projectile Motion in Two Dimensions: With Air

Resistance Considered

Chris Maness

January 13, 2008

Abstract

High school physics teacher makes a pet project of programing his cal-
culator to calculate ballistic drop for his .17 Cal HMR rifle considering
altitude, temperature, humidity, and a number of other local variables.
Many different techniques and approaches are tried in order to reduce the
processing time of the drop program. The scientific calculator is conve-
nient to use on the field. However, it is very limited in the scope of its
processing power.
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Initially, I tried separating the forces into X and Y coordinates, but I found
that this is not directly possible because the force of friction is proportional to
the square of the velocity. Since the X and Y components are not related as
a ratio as they are in linear systems of vectors, it is not possible to separate
the variables in a straight foreword manor. This was the greatest hurdle that I
had to overcome. As a habit of working with simpler systems, I went straight
for separating the variables into X and Y, and arrived at this incorrect result
( Fx = −kv2

x = max) where k is constant over a small range of velocities
(k = ρCdA

2m ). That haven been discovered, I was able to proceed and correctly
predict bullet trajectories by using the correct equation ~a = −k|~v|~v − gŷ. This
equation reveals that Y and X are inseparable. I had initially assumed that
Y was small and negligible, but after careful consideration I had realized that
even though the Y was so small in comparison, its presence tilts a very large
friction force vector away from the horizontal axis. Therefore the Y component
of the friction force is not negligible even though the Y component velocity is
so small in comparison to the X component. However, this is small ratio of X
to Y velocity only holds true for flat fire scenarios (trajectories that have a very
small take off angle).

I will start out by talking about the sum of the forces in the X direction
before the bullet exits the muzzle. As soon as the bullet leaves the barrel, we
are concerned with external ballistics. At this point the term Fp

(force on the bullet due to the powder burning) drops to zero.∑
~F = ~Fp − ~Fd = m~a (1)
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Where
~Fp = 0

Eq. 1 Gives:

−~Fd = m~a (2)

In typical Internet nerd fashion, I go looking to the Wikipedia for answers.
There, I find that:

Fd =
1
2
ρv2CdA (3)

In order to convert the drag term into a vector:

~Fd =
1
2
ρCdA|~v|~v (4)

Where ρ is the density of the fluid (air in our case), A is the cross sectional
area of the projectile(A = πr2), and Cd is the coefficient of drag.

from 2 and 3, and dividing both sides by m, I get:

~a =
−ρCdA|~v|~v

2m
(5)

This is a differential equation, that cannot be solved directly by integration
because of the inseparability of X and Y. Moreover, the coefficient of drag is
not constant over the range of velocities for the projectile. This function is not
well understood, and quite complex. There are only numeric empiricle functions
for this relationship. Therefore, the only possible solution is through a numeric
means.

We will find that it quite convenient to include one of the velocity terms
into the coefficient function. This allows us to separate the vector into X and Y
components and allowing the differential equation to be solved in a much simpler
manor as I will show bellow. This is done by creating a numeric function known
as the G function. It is based on the coefficient of drag for a standard Krupp
artillery projectile with a diameter of 1 inch and a weight of 1 pound. It was
found out in the late 1800’s that it was possible to measure the drag coefficient
for a standard bullet, and using a form factor, this drag function could be
extrapolated using this form factor to work for all different kinds of projectiles.
The ”G”’ function is given by:

G(M) =
π

8
CdG1(M)ρo|~v| (6)

At this point it is useful to define the ballistic coefficient. The ballistic
coefficient commonly used to quantify the ballistic properties of projectiles by
most all of the modern ammunition manufacturers. One of the conveniences of
the ballistic coefficient is that for any given projectile (regardless of its mass and
sectional density) it will fly along the same path predicted by our differential
equation. It is defined as:

BC =
w

id2
(7)
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It is assumed that Cd(M) changes proportionally to CdG1(M) Therefore, i
is the ”constant” form factor of the bullet given by:

i =
Cd(M)
CdG1(M)

(8)

and: w=weight of projectile in pounds, d=diameter of projectile in inches,
and CdG1(M)=the coefficient of drag for the standard Krupp’s bullet as a func-
tion of the Mach number of that bullet (M = Vbullet

Vsound
).

Rearranging Eq. 6 we find that:

BC =
CdG1w

Cdd2
(9)

If A = πr2, then A = 1
4πd

2, and d2 = 4
πA. Substituting this result into Eq.

8 yields:

BC =
πCdG1w

4CdA
(10)

This is a rather ugly result, but when the G function is divided by this result
we find that:

G

BC
=
ρCdA

2w
|~v| (11)

This is almost the same factor as our original constant k with an additional
|~v| term, and instead of mass, we have weight. It turns out that the mass
is referring to the bullet (measured in grains), and the weight in pounds is
used for the dimensions of BC also referring to the mass/weight of the bullet.
1pound = 7000grains, so if we are careful to convert the bullet mass into pounds
before we do any calculations, we find that the ρ (air density) in the G function
is in units of lb

ft3 , and therefore cancels out quite nicely – even though these
crazy English seem to use mass and weight interchangeably.

In the beginning of our discussion I wrote the differential equation as ~a =
−k|~v|~v − gŷ where k = ρCdA

2m .

k|~v| = G

BC
(12)

We can redefine k using the G function and the ballistic coefficient. Absorb-
ing the |~v| term into k just like the G function. We call this new constant k′.
Therefore:

k′ = k|~v| = G

BC
(13)

As we shall see later, this is a very convenient because this constant shows
up all over the place. With this simplification we can now proceed to break up
the vector equations (1) into X and Y components. For the acceleration in the
X direction we get:

ax = −k′v cos θ (14)

Where θ is the angle the projectile is traveling with respect to the horizontal
at any given instant. Since cos θ = vx

v .
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ax = −k′vx (15)

For small changes in velocities we can treat G is constant. Therefore:

− 1
k′

∫ vx

vxo

1
vx
dvx =

∫ t

0

dt (16)

Integrating gives:

1
k′
ln(

vxo

vx
) = t (17)

Solving for vx yields:

vx = vxo
e(−k′t) (18)

This is all we need to find how the velocity is affected by time. This equation
can be used with an iterator changing the G in small steps so that it imitates
a smooth function. These are useful equations, but it turns out that it is more
valuable to determine the change in velocity as a function of distance so the
distance the bullet travels in each segment of the range can be plugged in to
find the velocity as a function of range, not time. Substitution of variables can
be used so the distance the bullet travels in each segment of the range can be
plugged in to find the velocity as a function of range, not time. Substitution of
variables can be used.

ax
dx

dx
=
dvx
dx

dx

dt
=
dvx
dx

vx = −k′vx (19)

Cross canceling vx yields:

dvx
dx

= −k′ (20)

This is a very simple and elegant solution that when integrated gives the
result:

vx − vxo = −k′x (21)

Plugging values into Eq. 21 and substituting the velocities back into Eq. 17
will give us the time of flight for the projectile. This in turn can be used to
determine the drop of the bullet.

Now let us consider the differential equation in the y direction:

ay = −k′vy − g (22)

Then: ∫ vy

vyo

1
(k′vy + g)

dvy =
∫ t

0

dt (23)

Solving for vy we get the nasty but useful result:

vy =
1
k′

[e−k′t(k′vyo + g)− g] (24)
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This equation can be used with the small time of flight interval in an iterator
that adjust for G the same as in the x differential equation. Note that G is a
function of v not vy. I ran this out to 400 yards and received good data (under 1
inch of error as compared to two known reliable ballistics programs). The next
obstacle to overcome is finding ways to do this calculation more efficiently. The
next step we shall take is to find y as a function of t as this would be the drop
of the bullet. This can be found by integrating the last equation.∫ y

yo

dy =
∫ t

0

1
k′

[e−k′t(k′vyo
+ g)− g]dt (25)

This produces:

y =
1
k′

(vyo +
g

k′
)(1− e−k′t)− g

k′
t+ yo (26)

The t used is the TOF of the bullet, and yo is the distance from the scope
LOS (line of site) to the barrel of the rifle. Also, this equation could be solved
to find the initial vy of the bullet using the TOF for the zero distance (in my
example I am using 100 yards). The zero distance is an imaginary point down
range the the bullet will pass through y=0. This is also the distance that the
scope was calibrated to. Setting y = 0 and letting t = TOF for 100 yards. We
can do a little algebra and solve for vy.

vyo =
gt− k′yo
1− e−k′t

− g

k′
(27)

This has been a long hard journey, but it has been very rewarding in terms
of my understanding ballistics. I believe this approach is a little different than
others have treated the subject. I have successfully incorporated these equations
into a program that produces good output. Also, using these equations have
reduced the processing time it takes for my calculator to produce results. I was
able to bring the time down from 7 minutes to less than a minute.
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