Basic Calculus with the HP49G
Volume 1

By Nick Karagiaouroglou

Many, many special thanks to: Key pressing conventions
Thomas Rast for hisideas about formulae layout and font Right shifted key
usage for program listings and for the Left shifted key
humour. .
Unshifted key
Veli-PekkaNousiainen for hisideas about key pressing conventions Menu key (Soft key)

and also for the humour. @ Select the command from the
command catalog of the HP49G
or typeit in the command line
and enter it

R Alpha shifted key

- Press blue shift, hold it pressed,
il press F1, and then release both
keys
F3-[F Press red shift, hold it pressed,
press key 6, and then release
both keys

And to al guys out there who still keep on wanting the marathons after so
many adventures.

Before you start working you should set your flags.
Enter the list { #A003008D8103F0h #0h #190101402000028h #0h } and press STOF

Basic Calculus with the HP49G - Volume 1 - Part

Hi again everybody!

This marathon comes indeed with a long delay. Many reasons have
unfortunately made its completion avery hard job. It isasif problems
suddenly decided to appear all together. The worst of them is that
specia kind of problem, because of which | exploded in the group. |
can hardly keep myself calm and sit down and write, but it seems that
mathematics has a calming influence on me. (Which can be used as
evidence that | can't be normal. ;-))

Anyway, before we start, some words and thoughts about
mathematics and the world. After some thousands of years of history
of humans, we have some real achievements and many mistakes.
Between these achievements we have sciences and poetry, economic
progress and technologies and many other things. But is there
anything el se between our achievements, that resembles mathematics
in its search for the truth? Which of the human made achievements can
be said to have the same validity as for example, that A = A, that
something is identical to itself? (Might seem trivia, but its
conseguences are huge!) Even what is considered today to be the most
beautiful poem, might be considered as trash after 1000 years. But
could we ever say that At A?And if we do, what next? It turns out
that accepting the opposites of these basic axioms... makes everything
possible. We can accept these opposites and try to build new
mathematics out of them, but then each and every proposition will
automatically be atheorem. (Thisisaproven fact.) And that issimply
plain boring! If every statement istrue, we have nothing interesting to
search for. We find automatically all possible truth, because then
everything is true. If we consider that we have great difficulties to
even graspwhat A 1 A should mean, we have to start suspecting that
our brain isn't made for boring things. That this built-in allergy
against A ! A issomehow protecting us from getting stupid.
(Though we can get stupid in myriad other ways. ;-)) So, having this
in mind, | ask again: Is there anything out there, with the same
endurance like mathematics? Empiresrise and fall, technol ogies come
and go, religions appear and disappear, arts are in and then out. But
these simple things, like A = A remain. Thetiny littleletter, p, hasa
career of some thousands of years behind it, and it doesn't look as if

its career would be approaching an end. It till isin your watch, in my
Mac, in our houses, literally everywhere. If we let aside anything to
which we hold because of belief, or tradition, or smply because we like
it, and if we keep only what we can trust most, what remains then? Isn't
that thesimple crystal clear statementsthat built step by step the building
of mathematics? There is something true, something almost godly in
these statements. There is something about them, that makes it worthy
for everybody to get interested and start thinking about them. Perhaps
this is what made Paul Erdos say "he lives', when he meant "he does
mathematics’, and "he died", when he meant "he stopped doing
mathematics'. So, let's live again!

In the previous marathon, the Sequences, Series, and Limits Marathon,
we had area hard time. The HP49G doesn't provide many things for
sequences and series, and so we had to program them ourselves. And in
order to program them, we had to first take a look many things in the
fields of sequences and series, which were of great importance and help.
But because the HP49G does provide a vast amount of built-in features
for calculus, this marathon will not be such a hard path. We will of
course have to program now and then, but most of the time we will use
the built-in features. There will be aso a continuation of the calculus
marathon in future, after we will have examined vectors and matrices.
So this is going to be the Basic Calculus Marathon, or BACAMARA.
(Sounds like a card game, but we are till not at games theory.)

A We start with the picture of aplot

of a function y =f(x), some
curve in genera. If we consider
the difference Dx = x,- X, =h,
then the corresponding difference
of thevaluesof y is.

Y1

Yo

>

Dy =y, - Yo = f(x,) - f(x,) = f(x, +Dx)- f(x,) = f(x, +h) - f(x,)
Volume 1, 1-1

Basic Calculus with the HP49G - Volume 1 - Part

Y1

Yo

curve with the difference
quotient at the point P, . If
we dlip the point P, along
the curve towards the point
P, , then the secant
approaches a limit
position, which is the
tangent of the curve at the
point P,. Theanglea
goes towards a limit, the
value | ,, whichisthe
angle between the x-Axis
and the tangent. The

quantity tan(j 0) isthe

Y1

Yo

A

The line that goes through
the points P, and P, is
one secant of the curve.
The dlope of thislineis:

%/ _ f(xq +hr2- f(x,) - tan(a)

The ratio Dy isthe
Dx
difference quotient. The
nearer the point P, isto
the point P,, the better
gets the description of the

Xo Xy

slope of the tangent and the slope of the curve itself at the point P, .
That means, that when the point P, approachesthe point P, , the

Dy

guotient Ox approaches the slope of the curve a P, . When the point

X)

P, approachesthe point P, , the difference Dx approaches0. And so

: ... D
we have that the slope of the curve at P, isthelimit of 5{ when

Dx ® 0.We canfind the slope of any curve by finding gir@yo% . This

limit, if it exists, isthe differential quotient or derivative of y = f(x) at
aly

édxg)cxO
last marathon we remember that the limit from the left has to be equal to

the limit from the right. So, we have the definition of afunction that has
aderivative at agiven point:

the point P, It isdenoted asf((xo), oryg, ,or . From the

A function has a derivative at x =X,, iff both the

left and the right limits of the differential quotient
exist and they are equal to each other.

Another useful theorem for our purposes in this marathon is:

If a function has a derivative at X =Xx,, then it is
for sure continuous at this point.

As we see, for a function to have a derivative at some point it is
necessary but not sufficient to be continuous at that point. There are
functions that are continuous at some point, but have no derivative there.
There are even functionsthat are continuousin someinterval of x-values
and have no derivative at any point in thisinterval!

What does the HP49G provide considering all the above? Well, it
doesn't have a built-in function for finding difference quotients. But
why should it? Such things are piece of cake to program. A simple
program for thisis on the next page.

Volume 1, 1-2

Basic Calculus with the HP49G - Volume 1 - Part

<<

PUSH @Save current settings
® f x x0 h @Store function, variable,
<< @point x0 and difference of
@x-values

f x x0 h + = SUBST erind f(x, +h)

f x x0 = SUBST erind f(x,)

- erind f(x, +h)- f(x,)

f(x_ +h)- f(x
h / @Find(o)- f(xo)
h

EXPAND @make i1t beautiful.
>>
pPOP @Restore saved settings.

>>

Store that in DQUOT . (The character D isELFHA], [, [F3].) Let's

1
try some examples. Enter X” - 1, then X, then 1, and then T Press

the menu key

EXsIEal. Theresultis % Press FMOT] to undo this

and get the previous stack. Drop the % , enter .1, and press [XeNls]]

. . 21 . ,
again to get 2.1, the numeric result for T Notice that without

putting the whole thing between the pair PUSH- POP, the second
example would switch the calculator to approximate mode. Press
again[JMOC], drop the .1 and the 1, and enter X0 and h. If you now
press| , You get the result 2 XX0 + h, the symbolic expression
of the difference quotient. Of course we could use this result to find

that ngg) 2xX0+h =2xX0. That is, we could use the difference

quotient to find the derivative of X* - 1 at X,,. Having 2xX0 +h on
stack level 1, we could enter h =0 and then press|f to get 2xX0.

But this isn't necessary, as the HP49G provides a big variety of
commands to find derivatives.

We stay abit more at DQUOT . One could think that in case of numeric

calculation using the smallest possible numeric value for h would give
the best possible approximation for the slope of the function at some
point X,. But there are problems. Let's try an example. We use

DQUOT with decreasing values of h to calculate a good approximation
of the slope of SIN(X) at X = p . Enter SIN(X), then X, then p, and
then IE - 5. Now press fX&lsjll. Theresultis-.999999999984,

quite near to the correct exact result - 1. Let'sdo the samefor
h=1E- 10. Press[/HC]|, drop the .00001 and enter 1E - 10. Press
again fXENEgl. Theresultisnow - .999999999996, even nearer to

- 1. Repeat for h=1E - 12. Oops! Something went wrong here,
because now the result is 0. How can this happen? Well, in the
Sequences, Series and Limits Marathon we have examined many things
about the limited precision and accuracy of the HP49G. What we see
hereis another result of these limitations. It helps to follow the program
for understanding what happens. So, we will debug it using the built-in
debugger of the HP49G. First of al, put all necessary arguments on the
stack. They are SIN(X), X, p and IE - 12. Press[l 3 and then

FXENRl to recall the program to the stack. Now, pressFF| to go to the
menu PRG. Press [IXT] twice and then to go to the debugger
menu. The first menu item from the left is . Press|sj:{ile}. This
starts the program on stack level 1, but halts it immediately before the
first command. (Note that the HLT announciator at the top of the screen
went on.) Now you can let the program run step for step. (This has
nothing to do with the step by step feature of the CAS.) Press g .
This executes the next command in the program and halts the program
again. Since the first command was PUSH, nothing changes on the
stack. Note al so that the command currently executed appears on the top
of the screen. Press [} to execute the next command. On the top of
the screen you see the local variables assignment: ® f x x0 h.
Apparently the whol e sequence counts as a single command. Notice also
how the arguments that stood on the stack, now are gone. They are
consumed because they are used by the command ® . Pressing k3
again you see << t thetop of the screen, which shows that we start

with the local variables procedure. The next jsglf displays f on the top
Volume 1, 1-3

Basic Calculus with the HP49G - Volume 1 - Part

of the screen. Since this is a local variable without quotes, its

contents, SIN(X), are put on the stack. Continue pressing [l until
the command / is executed. Now stack level 1 contains
SIN(p+.000000000001) - SIN(p)

.000000000001
We will need this expression again, so press to make a copy

of it on stack level 2. Notice that we affect the stack used by the
program, while the program is debugged. Thisisavery useful feature
of the HP49G, as it alows to test and check many things while a
program is single stepped. If you now press the menu key [JIZ4l, the
next two commands in the program are displayed on the top of the
screen. These commands are EXPAND >>. Pressgisjlj. Here it
happens! The returned resultis 0.. Press[ZCFT] to let the program run
to the end and quit. Note that the announciator HLT isno more
displayed. Why did the HP49G returned 0. when it expanded

SIN(p+.000000000001) - SIN(p) _
.000000000001

Drop the 0. from stack level 1 and let'stake alook at the above
expression. As you can see the expression contains real numbers
(numeric values). When we expand such expressions, the HP49G
"sees" the numeric values and decides to switch to approximate mode.
It uses then p'snumeric approximation, 3.14159265359. The

expression isturned to

S|N(3.14159265359 +.000000000001) - S|N(3.14159265359)
.000000000001

Then the sum 3.14159265359 +.000000000001 is evaluated,

which on an ideal machine with infinite precision should give
3.141592653591. But the HP49G has only 12 digits for real

numbers. And so 3.14159265359 +.000000000001 returns...
3.14159265359! So the expression has been converted to

SIN{3.14159265359) - SIN(3.14159265359)
.000000000001

instead of

SIN{3.141592653591) - SIN(3.14159265359)
.000000000001

From thispoint onit is clear that further evaluation will return 0., since
on the numerator of the quotient we subtract SII\(3.14159265359)

from SINB.14159265359) . That shows that we can't just make h as

small as possible and expect to get the best possible numeric
approximation for the slope of afunction. But fortunately we don't need
to bother which value of h issmall enough for agood numeric result of
the slope, but also big enough to avoid such problems. (So why does
Nick write all this? He, he, just to have more stuff for the readers ;-))

And what happens if we don't use reals but exact numbers (integers)?
Let's see. Enter again SIN(X), then X, then p, and then IE - 20.
Now, enter XQ to convert IE - 20 to

1
10000000000000000000t

EXelleyl. Now the result is the expression:

100000000000000000000xSIN g200000000000009000000 +15
e 100000000000000000000 @

If you press [ZFUR] at this point you will get - 206761537357 ,
Volume 1, 1-4

Basic Calculus with the HP49G - Volume 1 - Part

which means that the numeric problems strike back. In this case the All the above shows us that caution is needed when working with

problems come because of two reasons. First, the numeric value of

100000000000000000000+ 1
100000000000000000000

iIscalculated as 3.14159265359, and thisis only an approximation.
The correct value should have been:

100000000000000000000p+ 1 N 1
100000000000000000000 " 10000000000000000000(

That meansthat we should have at |east anumeric approximation with

20 digitsfor p and in genera for real numbers.
The second reason is that while the HP49G returns O if you expand
SIN(p), it returns - 2.06761537357E - 13 if you expand

SIN{3.14159265359). While p isexact, the number
3.14159265359 isnot exactly p.

In this particular case you can press [I=AZEE® with the expression

g00000000000000000000%p +1¢

100000000000000000000%SIN
e 100000000000000000000 @

on stack level 1. This convertsit to:

w .
cos & L 0

: X0 +

€1000000000000000000002 +

100000000000000000000%; o
¢ sINE 1 Oy 1+

& £1000000000000000000008 @

Pressing [FUM| now will return the correct result, - 1

numeric expressions. (And that Nick will have enough stuff for all
marathons ;-))

As dready said, the HP49G provides a great amount of commands for
finding derivatives and slopes. Let's take a look at them. We have the
function Y1, which was also present at the HP48. This function has been
modified alittle bit, so it doesn't work exactly like in the HP48. In RPL
syntax it takes the function from stack level 2, and the variable from
stack level 1, and returns the derivative of the function for the specified

variable. For example, enter eS'N(WZ) , then enter W and then press[d] to
execute the function . Theresult is es™’) ><COS(W2)>Q AW . The
same can be done using algebraic syntax. Go to the EQW and press|#]

to write the unfinished expression 1—1L @) . The cursor blinks at the right

of the Y in the "denominator” to indicate that the HP49G expects you to
enter the variable of derivation. Enter W. Press to go inside the

siNw?)

parentheses and enter e

su\(w
‘ITW(?:é

. Now you have:

Press EMTEF] to put that on stack level 1. Before we go further, let's see
how the expression looks like when it isn't shown in pretty print. Press

and then[W] to edit the expression not in the EQW but in the
command line, where no pretty print is used. Now you see

"IW(EXP(SIN(W~2)))", which contains only one . The general

syntax of derivatives in the command line is ' var(function) , where

var stands for the variable of derivation and function for the function
whose derivative you want to find.

Press now EMTEF] to put the expression back to the stack. If you expand

Volume 1, 1-5

Basic Calculus with the HP49G - Volume 1 - Part

it, then you get the same result as before, eS'N(WZ) ><COS(W2) X2 AN .

Now we can see how we can find the slope of a function at a given
point. We can find the derivative and substitute the value of the
variable at that point. Our example from the previous page wasto find

the slope of SIN(X) at X = p. We enter SIN(X), then X, and then
we use 1. Theresult is COS(X) . Now we enter X =p, we press
EIERY] and then [, and we get - 1. Or at the point where the
HP49G returns the result of the derivation COS(X) , we enter the list
{X}, then we enter p, we press[+] to create thelist {X p} and then
we press[T]to usethefunction | (where). The result COS(p) can
be expanded then to - 1. In this case we didn't enter thelist {X p}
directly because thiswould create alist which containsthe function p
and not the algebraic object p . If you enter {p}, press [FZY and
then [RIaa, you see that its object typeis 18. (function). But if you
enter p alone and pressjkaga, then the result is 9. (algebraic object).
That meansthat p isafunction which puts the algebraic object p on
the stack. Since the function | doesn't work with arguments of type
function, it would error out.

We can use the function | in an easier way that also looks better. Go
to the EQW and enter:

1(Sll\(x))

X

Select the whole expression and press[[] to write | to theright of the
expression. Complete the expression to

ﬂlx(sn\(x)){

X=p

Press EMTEF] to put the expression on the stack, and expand it to - 1.

Another way to find a slope, inherited from the HP48, is to find the
derivative for some variable, in which we have stored a value. For

example, storep invariable T. Go to the EQW and enter:

- (SIN(T)

Put that on the stack and expand. The result is - 1. The HP49G found
the derivative of SIN(T) to be COS(T), and then proceeded using the

value p storedin T, found COS(p), and expanded that to - 1. But

note: If the variable isthe current VX, then we get problems. Suppose
the current VX is X. If you store p in X, enter

1(sn\(x))

X

and then expand, you get the question to purge the current variable. If
you choose "No",then the operation errorsout with
Mode Switch Cancelled". If youchoose" Yes", then X is

purged and the calculation returns COS(X), because the variable X

doesn't exist any more. In this case instead of expanding you can press
E¥AL twice, to avoid the question about purging the current variable.

We continue examining the behaviour of . A very interesting question

is, what happens when we take derivatives of expressions with variables
that themselves contain other expressions. Since there is a big number of
cases and sub cases, we try to go as systematically as we can. (Or
rather, as systematically as Nick can imagine ;-)) First we are going to
store some expressions in some variables.

Store X? inR.

Store SIN(Y) in S.
Volume 1, 1-6

Basic Calculus with the HP49G - Volume 1 - Part

Store S* - R in U.

We also need some user defined functions.

In the EQW enter:
X3

V(X) =

X) =%

Put the equation in the stack and press["EF] to create the user defined
function. The same way create the user functions:

W(R) =R xR +1)

Z(R,X) = R—)'(l

Last thing, we create user functions with RPL syntax. Enter:

<< ® X
<< 01 3 FOR 1
X1 R®I ~ +
NEXT
>>
>>

Storeitin Z1. Now enter the program:

<< ® R X
<< R EXP S EXP + X / >>
>>

Storeitin Z2.

Now we are ready to start examining what 9 does, when applied to
different combinations of functions and expressions
with variables that contain other expressions.)

Enter 'R" (with quotes) and pressfgMTEHR| to make
copy it on stack level 2. Press |d|totakethe 5 2
derivative of R for R. Theresultis1, which (S B R)

shows that didn't care about the fact that X is ¢ \
stored in R . If you enter 'R" and then X, and take

the derivative, then you get a fat 0, which again (3|N(y)2] x2)
shows: When some expression is on stack level 2

and we take its derivative for some of its variables

using the function ¢, then derivation is carried out without first
evaluating that variable. Thisis good for finding slopes of functions by
storing something in the variable for which we take the derivative and
then using , as we already saw on the previous page. Another example
of this case: Enter S°, then 'S' (with quotes) and press[d] to get 2S.
The same will happen if you enter

(s

2

from the EQW and press EVAL]. If you expand instead of evaluating,
then not only the derivative 2 xS will be returned, but also evaluation of
S will be carried out after derivation, and the result will be 2>SIN(Y).

If you want to first evaluate some variable contained in an expression,
and then take the derivative, you have to pressEVAL] first. For example,

enter U. Westored S - R in U, SIN(Y) in'S,and X? inR. If you
want to take the derivative of the evaluated expression U* for X, then
press ETAL first. This completely evaluates U? to

SIN(Y)" - 2508IN(Y)? +X*. Now you can enter X , press[d] and

then expand, to get - (4 ROSIN(Y)” - 43¢°).

Volume 1, 1-7

Basic Calculus with the HP49G - Volume 1 - Part

A problem that we have is, how could we for example take the

derivative of the partially evaluated U* for S?1f we evaluate U?
evaluation goes all the way down and doesn't stop at any intermediate
step. That's what the command SHOW isfor. If you enter U, then

=g | then evaluation will stop when the

variable S isshown. Thiswill resultin (S? - R)”, allowing usto
enter 'S' and take the derivative, by pressing|[].

Until now we have seen that i doesn't evaluate the variables of
expressions. However, 9 showsaspecial behaviour when the
expression, which we take the derivative of, is a user defined

function. Let's take a look at that. Enter V(X) and then X . If you
NOW press El then the derivation takes abit longer, and returns:

X3 (X-18xx* - X°
2
X-1 sQ(x-1

This shows: Since V isauser defined function, V(X)® isfirst
evauated to:

X 0

ex- 1o

2

and then derivation for X iscarried out! For the function {, the user
defined functions are much like the built-in functions. Exactly the
same result will be returned if you enter

= (VX))

X

and then evaluate. If you enter

- (VY

X
and expand, then you get the result:

(4><><3- 6><X2)><—
X-1

X2 - 2xX+1

This is a bit strange, since it is indeed correct, but not completely
expanded. You can press [T once again, to get the completely
expanded form. If you enter

- (VX))

X

and then press [Feygslz] or SEINNE), nothing happens and the
expression remains unchanged on stack level 1. This might seem not
good, but it allows to collect unevaluated differential forms, which for
example can be used to bring differential equations to a much more
readable form. For example, enter

'nlx (VX)) +ﬂ—1l((V(9)?) A

and press SsJiNIs], to get

(X +A)><ﬂ—1l((V(x)?)

If you want the opposite to happen, then don't pressE"AL] or SRR
but press EELEIE. (MEREIE isthe first menu item of menu
CONVERT/REWRITE. If you press §EIIFIE with the last result still on
stack level 1, then you will get

Volume 1, 1-8

Basic Calculus with the HP49G - Volume 1 - Part

X X
Isthere any way to transform the sub expression
1 2
o (VX))

of the above expression to

)l
2%V(X)»>— (V(X
(X (VOX)
getting thus aform that contains only differential forms of the function
V(X), but not of V(X)*? Yes, thereis. Leave the last result on stack

and press [AODE]. Then press the menu key [, and activate the
option _Step/ Step. Press [8]# twice to return to the stack. Press

ERTER] to copy

il 2 1 2
X (VX)) +A xﬁ(v(x))
to stack level 2. If you evaluate, then you get

(2% +2%¢) W/(X) xﬂlx (V(X))

Preslel to swap stack levels 1 and 2. If you now expand, then you
get the resullt:

(v s 1l
s (X- D) x—=(X?)- X®x—(X-1
(2><A+2><X)'Vx ()ﬂx() ﬂx()
X-1 SQ(X - 1)

This is the same like the result on stack level 2, but the user defined
function V(X) has been additionally evaluated and the derivative

1@Xs
X €X - 18

has been rewritten as

L (x- 1

(X -)l (%) - X° ~

X
SQ(X- 1)

according to therulesfor differentiating ratios. Now, deactivate the step
by step feature. We will see more about this feature later on.

The next question is: what happens when we take the derivative of some
user defined function, to which we have given a variable as argument,

that itself contains some expression? Enter the expression V(R) . Now,
enter 'R' and press|d]. Theresultis... 0! Perhapsit seems abit
strange, because the expression V(R) does contain R and taking the

derivativefor R , we would expect some result different than 0. But it is
completely understandable, if wethink again about the special behaviour
of § when we take derivatives of user defined functions. In this case the
user defined function is evaluated before derivation. This means that

V(R) wasfirst evaluated to

RS
R-1

Then, R was evauated, which returned

x6
X?-1

Volume 1, 1-9

Basic Calculus with the HP49G - Volume 1 - Part

since R contains X?. It was this expression of which the derivative
for R wastaken. And since the expression

XG
X?-1

doesn't depend on R, the derivativewas 0. Enter V(R) again, then
enter X and press[d] to get the result

(xz- 1)>6><X5- X6 %2 X
SQ(x2 - 1)

which is the derivative of the completely evaluated user defined
function V(R) for variable X .

Things go different if you use algebraic syntax. Enter

\l

i V(R

If you evaluate this, then theresult is:
R-)8R -R®

SQR - J)

which is the derivative of the user defined function V(R) , where the

argument R hasn't been evaluated to X?. But let's be organised and
get asystematical overview.

The problem that arisesis, how to let V(R) be evaluated up to

RS
R-1

and then take the derivative, without replacing R by its contents first?
WEell, here comes a hidden super command, the command QUOTE,
which is perhaps one of the most underestimated commands of the
HP49G. QUOTE ismuch like putting variables in expressionsin an
additional pair of single quotes, giving us the power to control exactly
what is evaluated. Y ou know of course that for example entering R will
put X* on the stack, because X isstored in R . But entering 'R" will
simply put 'R" on the stack without evaluating the variable. We extend
this concept for algebraic expressions. Go to the EQW and enter
V(QUOTE(R)). Thisis much like asif we had entered V('R'). Press

ERTEF] a couple of times, because we will need severa copies of this
expression. If you now pressEY£L], then the result will not be

X6
X?-1

RB
R-1

When we evaluate V(R), al possible evaluations are carried out before
the user defined function is evaluated itself. That means, that R itself is
evaluated, and since it contains X the user defined function V isgiven
the argument X?. But when we evaluate V(QUOTE(R)), it isasif we
were evaluating V('R’), and the quotes around R prevent it from being
evaluated, thus giving R and not X to the user defined function V .
Press E| to drop the result

RB
R-1

and bring V(QUOTE(R)) on stack level 1. Enter 'R' (in quotes) and
Volume 1, 1-10

Basic Calculus with the HP49G - Volume 1 - Part

press|[d] to get

R-)8R -R®
SQR - J)

Thisis the derivative of the user defined function V(R) evaluated up
to:

RS
R-1

The more demanding people will say now, "Yes, but the result is not
completely expanded and if | expand now, | will get again an
expression containing X s." And here we have the whole glory of
QUOTE. You can even quote more than once. Enter
V(QUOTE(QUOTE(RY))), which is much like V("R") . Enter 'R’

and press|d] to get:

(QUOTE(R) - 1) 3- QUOTE(R)® - d1QUOTHR)- QUOTE(R)® - d1QUOTE(R)
SQ(QUOTER)- 1)

If you evaluate now, you will get

2>5R3 - 3R?
R°-2R+1

which isthe fully expanded result that still contains R s and not X s!!
Superb, isn't it? The first QUOTE prevented variable R from being
evaluated when we took the derivative. The second prevented it from
being evaluated when with pressed E¥&L). The sub expression
d1QUOTE(R) might puzzle you, so hereisasmall explanation. This
expression means the derivative of the function QUOTE for itsfirst

argument, R .When the HP49G hasto take aderivative from a
function of which it doesn't know what the derivative is, it returns

such expressions. Since the function QUOTE simply returnsits
argument quoted, the expression d1QUOTE(R) isthe same as:

1
—('R'
which the next evaluation turned to 1, leaving the final result correct.
The bigger explanation about such expressions will be given later on.

Note also that in the above examples we used EVAL rather than
EXPAND, because the latter would have expanded the expression

completely. For example, if you enter V(QUOTE(R)) and expand,

then the user defined function V isgiventhe argument R and the
intermediate result is:

R3
R-1

But EXPAND goes further after this, finds out that R contains X* and
evaluatesR , giving you the final result,

Xy
X%-1

If you want to enter the derivative for R in agebraic syntax, then you
don't need to quote. Y ou simply enter

L (V(R)

R
If you evaluate this, then theresult is:

R-)8R -R®
SQR - 9

Volume 1, 1-11

Basic Calculus with the HP49G - Volume 1 - Part

the same like using QUOTE oncein RPL syntax. For being able to
completely expand afterwards without evaluating R , you enter:

ﬂiR (V(QUOTE(R)))

and evaluate twice to get:

25R% - 3xR?
R*-2R+1

which isthe sameresult like using QUOTE twicein RPL syntax.

And further we go: What happens when a user defined function
contains a variable in which we have stored some expression
containing other variables? Take for exampl e the user defined function

W(R) =R xR +1). Itsargument, R , isaso aglobal variable which

contains X?. How are such things evaluated? Here we have to always
remember first: The local variables are completely different entities
from those that exist globally. Aslong as the user defined function is
evaluated, all evaluations of local variables do nothing more than
simply putting the contents of the local variables on the stack. The
user defined function W in RPL syntax would look like:

<< ® R @Store argument in local R
@which doesn"t have to do
@anything with the existing
@global R, that contains X"2

<< R @Put contents of local R on
R @the stack twice. Don"t evaluate
@these contents further.
1 @Enter 1.
+ @Calculate R+1
* @Calculate R*(R+1)

>>
>>

If you enter X and press the menu key [, then X isstored locally in
R. Thislocal R existsonly whilethe algebraic R R +1) is evaluated.
It disappears afterwards. The variable R in the defining procedure

R R +1) isnot the global variable R which contains X*. Theresult is

X (X +1) and not X {X* +1)..

The question is, what happensif we give'R" as argument for W ? Well,
then the global name R isstored in thelocal name R . Throughout
evaluationof R R +1), the contents of thelocal R are put on the stack,

but not evaluated any further! Sincethose contentsarethegloba R, it is
theglobal R that is put on the stack and doesn't get evaluated. When the
user defined function finishes, it leaves R R +1) on the stack, but now

R isthe global name. Now we can evaluate or expand R XR +1), to let
the global variable R be also evaluated and replaced by X°.

If you on the other hand enter W(R) and evaluate or expand, then the
evaluation will returnR YR +1), R being the global variable as above.
But thiswill be further evaluated, replacing R with its contents X*. The
overall evauationwill return X? >(X2 + 1) . Notice the difference to RPL

syntax. Why is there a difference? Well, this is completely logical. In
RPL syntax, you enter 'R' and apply the user function W on that
argument. Since all contents of the local variable are simply put on the

stack, the result is R ¥R +1). But when you explicitly evaluate W(R),
this includes EVALuation of the result R ¥R +1), which resultsin
X? >(X2 + 1) . Evaluating W(R) is meant inclusively for the global
variableR that is contained in the result R R +1). The important thing

to note here is that it is not the local variable R that returns X in any
way. To understand this better, take alook at the following user defined
function (next page):

Volume 1, 1-12

Basic Calculus with the HP49G - Volume 1 - Part

<< ® R @Store argument in local R
@which doesn"t have to do
@anything with the existing
@global R, that contains X~"2

<< R @Put contents of local R on
EVAL @stack and evaluate.
R @Contents of local R on stack
@these contents further.
1 @Enter 1.
+ @Calculate R+1
* @Calculate R*(R+1)

>>
>>

If you enter 'R' and let this program run, then the following happens:
First, the global name R isstored in thelocal nameR . Then the
contents of thelocal name R are put on the stack. This puts 'R' on the
stack. Then we explicitly evaluate the object on stack level 1, whichis

the global 'R'. This puts X* on stack level 1. Then once again, the
contents of thelocal name R are put on the stack. This puts 'R' on the
stack once again. We add 1, and so we get R + 1. Then we multiply

and thus we get X YR + 1) asresuilt.

Now what happens if we take derivatives of such functions? Here the
rule that we already know also applies. The user defined function gets

evaluatedfirst, and then derivation follows. Enter W(X) and then X..
Press[d] to get theresult X +1+ X . The user defined function W(X)
was first evaluated, and that returned X XX +1). Then the derivative
for X wasfound, X +1+X. (If you enter X and press|ffj, then the
result is X XX +1). If you enter X again and press[d] then you get
the same result, X +1+ X.) Exactly the same if you enter

x (W)

and press EVAL. If you press SN instead of EVAL], then the

result will be 2xX +1, that is completely expanded.

Now the tricky part. If you enter W(R), then 'R' and then press[d], the
result is... 0! And it compliesto the rule: The user function W(R) is
evaluated first. We already said that evaluating W(R) (algebraic syntax)

goes all the way down and returns X2>(X2+1). If we take the

derivative of this expression for R, we get 0, because the expression
doesn't contain R . The same happens if you expand or evaluate the
expression

1

— (W(R

But if you enter 'R', and then press i, then enter 'R’ again and then
press El theresult will beR + 1+R. Aswe aready saw, in RPL
syntax no evaluation of the global variableR took place. So, we get the
result R ¥R +1) when we apply the user defined function W on the

argument 'R' which is on the stack. After thisthere is no user defined
function that has to be evaluated before taking the derivative. The
expression R +1+R doesn't contain any user defined function, and so
1 simply takes the derivative of this expression.

The technique using QUOTE can aso be used here. If you enter
W(QUOTE(R)), then 'R and thenpress [d], the result will be
R+ 1+R andnot 0. In algebraic syntax, if you enter

ﬂ—L (W(QuOTE(R)))

and pressE£L, the HP49G returns the resullt:

d1QUOTE(R){QUOTE(R) +1) + QUOTE(R) d1QUOTE(R)

Volume 1, 1-13

Basic Calculus with the HP49G - Volume 1 - Part

If you evaluate this again, you get 2R + 1.

If you enter W(R), then X, and then press|d], then the result is
2 XX ><(X2 +1) +X? »2 X . This shows again, the evaluation of W(R)

took place, the way we already know, which returned X? >(X2 +1) ,

and then the derivative for X of thisresult was found. The strange
thing comes now. | would expect that evaluating

\l
— (W(R
wouldn't return O. But it does! In this case the uniformity of the

behaviour breaks down. Because if the user defined function W(R)
would be first evaluated following the rules on the previous page,

then the result of this evaluation should have been X? >(X2 +1).
Taking the derivative afterwards should return
2 xX ><(x2 +1) +X? 2 xX and not 0. So here we have a problem

because the rules are broken. The conditions that must be true in order
for this problem to appear are:

1) We have a user defined function that uses local names which also
exist globally.

2) We give that user function the global name as argument, which it
also usesitself locally.

3) We use 1 in agebraic syntax.

| would be very glad if someone could put some light in this mystery,
so if somebody out there starts experimenting, then please post your
results and tell us more about this question.

For user defined functions that use both variables in which we didn't
store anything and variables that do contain something, the samerules
apply in combination. Try some examples for yourself using the user
defined function Z with different combinations of arguments.

Taking the derivatives of user defined functions follows the same rules,
also when the functions are nested. For example, enter W(V/(X)), enter

X and thenpress [] to get the expression:

(X - 1)>3%% - X° (X- 18x*- X°
SQ(X- 1) SQ(X- 1)

How is this result produced? Let's follow what the HP49G does. First
the most inner function, V(X), was eval uated, and returned:

3 .. 3
XEX +f+ X
ex-1 g X-1

XS
X-1

which was used as argument for the function W. The calculator has
evauated

3 .
wEX 0
SYRET

This produced

3 3 ..
X)g’E‘X +1o
X-1eX-1 @

This result was then differentiated for X and produced the final result.
Exactly the same would happen, if we entered

T (w(vx)

x©
and evaluated.

Now we do the same using variable R as argument. If you enter 'R,

Volume 1, 1-14

Basic Calculus with the HP49G - Volume 1 - Part

then press [Ell, then press il enter 'R’ again, and press[3],you 1. (Z1R))

find: 1R
R-)8R -R® fR?’ e R® (R-)8R -R® Since Z1 hasto be evaluated first, the following happens:
SOR - eR-1 9 R-1 SOR -
Q(]) Q(]) << ® X @Store global "R" in local X
_ << 0 @Enter O
If you enter W(V(R)), then 'R' and then press[2], then you find 0. 13 FOR I @Do with I from 1 to 3
In the first case, the HP49G used the argument which we gave it, X @Put contents of local X on
namely 'R’ and just applied the user functions V and W on this @the stack. This puts "R" on
argument. Since the result didn't contain any user defined functions othe stack.
g ' .) g . y . 1 R® 1 @Put 1 on the stack, make it integer
any more, the function Y just differentiated what it found on the A @Find "RAI"
stack, without any evaluation. In the second case however, the + @Add to the O that we entered at the
function 9 found an expression that contained user defined functions, @start of the program. (The next
30 it evaluated them first, found @times "RA1" will be added to the sum
@that is already on the stack.)
6 6 .. NEXT @Increment 1, do again
X : X +10 >>
X?-1ex’-1 @ >>
and so the differentiation for R returned 0. In all the above events, R never gets evaluated and so the result of this

_ _ _ _ ~ functionisR+R?+R®, and not X* + (Xz)2 +(X2)3. That means, the
Until now we used user defined functions with an agebraic
definition. But we can also use RPL definitions that return an Next thing that happens, taking the derivative for R, will return

algebraic object. For example enter 1+ 2 R + 3R, Enter
1 1
— — (Z1R

and expand to get 3xX2 +2 %X +1. Alternatively you can also enter and evaluate to see for yourself. Of course, if you enter
Z1X), then X, and then press[d] to find the derivative. q
= (Z1R))

Using the same thoughts like before, we can predict what will happen TR

if we evaluate
and expand instead of evaluating, then after the result 1+ 2 >R + 33R?
has been found, the HP49G doesn't stop but proceeds, replacing R

Volume 1, 1-15

Basic Calculus with the HP49G - Volume 1 - Part

with its contents, which are X (and doing some reordering). So the
result of expanding is 3><(X2)2 +2 % +1.

On the other hand, if we enter ZAR), then 'R' and press[d] to find
the derivative, the result is 0. Evaluate Z1R) to understand why. In
thiscase R itself isevauated before Z1. What will be returned if you
take the derivative of ZYQUOTE (R)) for 'R'?

The function] can also be used for carrying out formal derivations.
For example, enter F(X) and then X, and then press[4] to get

dF(X). Thisresult denotes the derivative of F(X) for the first
variable, whichis X . Enter F(X,Y) andthen Y and press[d] again to
get d2F(X,Y). This means the derivative of F(X,Y) for the second

variable, which is Y. For now, we only note that such formal
derivations are "not clear to the users that the great makers' left

uninformed". If you enter F(X(T)) then T and then press[d], the
result is d1X(T)>dF(X(T)). The result means the product of the
derivative of the "inner" function X(T) for itsfirst variable T, and the
first derivative of the function F(X(T)) for itsfirst variable, which
IS...? Yes, that's the question. If the HP49G means that the first
variableof F(X(T)) is X(T) then the result is OK. But if it means that

it is T, then theresult iswrong! Thisis one of the problems that
occur to us, uninformed users, if on the one hand, notions like

X Yg .
F(X(T)) or F=, <2 are alowed, but on the other hand the notion
ey’ Xo

Yo . —
dnF(X(T)), or aniae(;,—o is used to represent formal derivatives,
A

where n givesthe nth variable of the function. If only functions of
names as variables were allowed, like for example F(X,Y), then we

* ACO and the professor.

could always say what the first and what the second variables are. But if
we alow such things like F?—; , %g, go figure out what the first variable

of that expression is. (If you tend to say that the first variable of
Fg%g is X then wait until we examine such formal derivativesin

much more detail.)

Especially for such expressions like F(X(T)), we can't use X(T) asthe

variable of differentiation when we use { because this function only
accepts as arguments a function (or name) on stack level 2 and a name
on stack level 1. This means also that it can't be used for finding such
things, like for example

TSN L 0 (SIN(X))

without any further manipulations. This example could be solved by
entering ."—ITF (T), then entering thelist {T SINXX)}, and then using the

function |. Thisreturns the correct result 1. Note that entering ﬂlr (T),

then T = SIN(X) and pressing EEEEJ] will error out. We will examine
such strange looking derivatives in more detail later on, and we will
return to them when we take a look at derivatives of parametric
functions.

We go alittle further examining formal derivatives. They always appear
when the HP49G doesn't know how to take the derivative of afunction.
This happens when some undefined abstract function has to be

differentiated. If the definition of F(X) doesn't exist in the current path,
then using 1 to take the derivative for X, will return dIF(X). This
means, as already said, the derivative of F(X) for itsfirst variable,

Volume 1, 1-16

Basic Calculus with the HP49G - Volume 1 - Part

which is X. Itisrealy amazing how much can be done with such
expressions. Enter for example F(S), then Y, and press|i] to find
the derivative. The same considerations like on the previous pages,
are the explanation for the result that we get. Since S contains

SIN(Y), the result is COS(Y) dF(SINY)). The HP49G used the

chain rule to return the product of the derivative for Y of theinner
function SIN(Y), with the derivative of the outer function. Asthe

latter istotally undefined, the HP49G returns dFF(SIN(Y)) , to denote
that derivative in a general abstract way. If on the other hand, we

evaluate or expand ﬂlY (F(S)), weget 0. Inthefirst case, using RPL

syntax, the function evaluated the variable S in F(S), and the
result was F(COS(Y)). Then, the derivation for Y was carried out,
and COS(Y)>dF(SINY)) was found. In the second case, using

algebraic syntax, The HP49G didn't care to evaluate S in F(S) first,

and so the derivation for Y returned 0. At this point, it would be
better to collect al the cases in a single table, for a better
understanding of the behaviour of the function . | made two tables
for this. The first is on the next page and contains cases of
differentiation of an expression or a user defined function. The second
table is on the page after the next and contains the cases of
differentiation of a function that isn't defined, that is cases of formal
differentiation. In both tables, regions with the same colour are those
which return their results using the same mechanism. That means, that
it is not the same result that makes up a region, but rather the same
way that isfollowed by the HP49G to return these results. The formal
derivatives, will be aso our entrance to yet another neglected feature
of the HP49G, its further capabilities for handling formal derivatives
in combination with user defined derivatives. He, he, this machine
has much too much stuff that we forgot about. But what a marathon
would it be without presenting exactly this stuff?

Before we take a look to those forgotten features, let's do some
examples that are more complex. We use what we know until now, to

explain how the results are derived. Keep all variables and user defined
functions because the following exampl es use them.

Enter F(V(X)) , then enter 'R (in quotes) and press[3]. Theresult is 0,

as we expect, because as we have seen aready, the user defined
function V(X) (argument of F) is evaluated before differentiation. This

gives:

3 .
FEX 0
ex- 1o

Now, the HP49G sees that this function, though undefined, doesn't
depend on R, because R doesn't appear as an argument of F. So the
derivativeisfoundto be O.

If you enter F(V(X)) again, but then take the derivative with respect to

X using thefunction T, then theresult is:

(X - 1)3x* - X°
SQ(X- 1)

How is that result produced? Let's follow again our known rules. First
of al the function V(X) is evaluated. The result of this action is:

X o
ex- 1o

X3
X-1

Thisis used as argument for the undefined function F, that is we get:

3 .
FEX 0
ex- 1o

This result is then differentiated for X. According to the rules of
Volume 1, 1-17

RPL Syntax: Enter expression then variable, then use Y|

Algebraic Syntax:
Enter

1 .
Tvar (Expression) | then evaluate or expand

Basic Calculus with the HP49G - Volume 1 - Part

X? stored in R)

* Result is

(QUOTE(X) - 1)>8>QUOTE(X)” >d1QUOTE(X) - QUOTE(X)’ >d1QUOTE(X)

Variable of deri-
Vat'on 'RI 'x' 'R' |X|
Expression
R? +R No evaluation
) of expression

(X2 stored inR) 2R+1 0 2R+1 0 il
before

V(X) differentiation.

(User function V defined 0 (X- 8% - X 0 (X- 8% - X Eﬁﬂﬁgon o

as: | SQ(X- 1) SQ(X- 1) before

<<-> XXB/(X-1) >>) differentiation.

V(QUOTE(X))) 5 * Evaluation

(User function V defined 0 (X - l)>6XX - X 0 2xX3 - 3xX? Sl

as: SQ(X-]) & functlon_ and

<< > X'XAZ/(X-1) >>) X -2xXX+1 of function
before

V(R) differentiation.

(User function V defined (x2 - 1) 6 XX - X8 »2 xX (R -]) B8R - R® Evaluation of

as: 0 0 function but

<< > X XABI(X-1)' >>, SQ(X? - 1) SQR- 1 not of its

X? stored inR) argument
before

V(QUOTE(R)) differentiation.

(User function V' defined (R ;]) B >R? - R® *

as: 0 2>R® - 3R? 0

<< -> X 'XA3/(X-1) >>, SQ(R B]) m

** Result is

SQ(QUOTE(X)-)

(QUOTE(R) - 1)x3>QUOTE(R)” >d1QUOTE(R) - QUOTE(R)’ >d1QUOTE(R)

SQ(QUOTE(R)- 1)

EVALuate again to
— get the result in
the table

Volume 1, 1-18

Basic Calculus with the HP49G - Volume 1 - Part

derivation we get:

(X - 1)3x* - X°

X o

XS

eX 12

* EVALuate again to get dJF(X)
** EVALuate again to get d]F(Xz)

*** EVALuate again to get dIF(R) . An additional EVAL will return d]F(XZ)

SQ(x- 1 ex - 1o stands for the formal derivative of:
where the expression: @Xe, 5
ex 19
RPL Syntax: Algebraic Syntax:
g::rfru?eip ﬁession then variable, Enter Tvar (Expression), then evaluate
Variable of deri-
vation | 'R" 'X' R’ NG
Expression
F(X) 0 dF(X) 0 dF(X)
F(x?) 0 2 dF(X?) 0 2 dF(X?)
F(QUOTE(X)) 0 dF(X) 0 * dF(QUOTE(X))
() 0 23X xdF(X?) dF(R) 0
X? stored in R
F(R?) 0 4% dF(X") 2R dF(R?) 0
X? stored in R
F(QUOTE(R)) dF(R) (O *+ dF(QUOTE(R))| 0
X? stored in R

Formal differentiation with expansion
of intermediate differential forms.

Expansion of differential forms like

dF(QUOTE(X)) to dFF(X).

No expansion of the differential forms
iie dIF(QUOTE(X)). using

EXPAND instead of two EVALSs will
expand such forms to forms like

dF(X).

Evaluation of the argument of the
undefined function before
differentiation.

No evaluation of the argument of the
undefined function before
differentiation.

No evaluation of the argument of the
undefined function before
differentiation. No expansion of the
differential forms like

dF(QUOTE(R)) using EXPAND

" instead of two EVALS will expand

such forms to forms like d ZF(X 2) .

Volume 1, 1-19

Basic Calculus with the HP49G - Volume 1 - Part

That means a derivative which can't be explicitly found, since F is
undefined.

We make the last example trying to find the derivative of V(F(R)) for

R and for X. If you enter V(F(R)), then 'R’, and then press[4], you
are going to get 0. This shows again, that the argument of F, which
isR, gets evaluated to its contents, which are X*. After thiswe have

V(F(X?)), which differentiated for R must return 0, since it doesn't

depend on R . But if you enter V(F(R)), then X, and then press[3],
you get:

(F(x2)- 1)x8* F(x?)" 2 0dF (X) - F(X?)” 2> dFF(X?)
SQ(F(XZ) - 1)

Let's see how this was produced. First, the argument of F was
evaluated. This argument was R, and since X? isstored inR , the
result of the evaluation was X°. Thiswas used as argument for F,
and since F is undefined, we simply get F(Xz). This expression was
used as argument for V. So instead of getting

x3
X-1

we got

F(x? f’
F(X?)- 1
Next, thedifferentiation for X was carried out. According to the rules
of differentiation for aratio, we have:

1§ BFe) 0 (F(x*)- 1)><ﬂlX(F(x2)3)- F(xz)sxﬂ_";(F(XZ))
) T SQlF (<))

If we carry out the derivations of the right hand side of the last equation,
keeping in mind that d]:(Xz) isthe formal derivative of F(XZ), then we

see that the result returned by the HP49G was correct (inside the frame
of itsown evauation rules).

Do some examples for yourself and try to predict the behaviour of the
function 1, using the knowledge that we have so far. Remember that
QUOTE can also be used with formal functions, which means that

F(QUOTE(R)) is perfectly OK.

We proceed with some unexpected features regarding such formal
derivations. First of al, the meaning the expressions dFF(X) is: The
derivative of F, for itsfirst variable. "First" meansreally the order of

appearance of the variable inside the parentheses. We make an example.
Enter:

ﬂlx (F(Y.x))

and expand. This will return d2F(Y,X), which means the derivative of

F for its second variable, whichis X . Such derivatives add really great
power to the HP49G and they are not only of cosmetic nature. Suppose
for example that you have the expression

= (F(x)6(x)
Expanding this you will get the result G(X) xdF(X) +F(X)xd1G(X).

This result has been calculated using the product rule of derivation. If
you have the derivative of some complex expression, in which many

Volume 1, 1-20

Basic Calculus with the HP49G - Volume 1 - Part

functions are combined in many different ways, then this feature can
break the derivative into many small pieces, each of which containsa
derivative of a single function for a single variable. Consider for
example:

1
X & G(X)+X o

Inthisformitisreally hard to say how the derivatives of the functions
participate to built-up the whole derivative. Bur expanding this, you
get the resullt:

(6(x) - x>6(x)’) o F

(X) +(G X)? +2 %X xG(X)) (X)) xd1G(X) - G(X)? F(X)

G(X)” +2xX >G(X) +X?

This contains only derivatives of a single function for a single
variable, which makes easier to see how the differential forms
participate to built-up the derivative

1 #(X)e(x)’8
Xe G()+X g

If you have taken some thermodynamics class, then you surely know
how easier life can get with this feature. We will have some examples
on this later on, when we know enough about derivatives on the
HP49G.

Another very special feature of such formal derivativesisthat in some
sense they are not special at al! Enter for example dIF and press
to find out that thisis simply a name with object type 6. What
does this imply? Well, sometimes we know the derivative of some
function but we don't need the function itself for our work. On the
HP49G we can not only define functions but also derivatives, that is,
we can make not only user defined functions but also user defined
derivatives. Suppose for example that we know that the derivative of

F(X,Y) for X ise*™¥ (X - Y - 2). Wego to the EQW, we enter

dIF(X,Y) =¥ X - Y - 2), we pressERTEM] to put the equation on
the stack and we press[PEF]. Then anew variable dJF is created, which
contains:

<< ® X Y "EXP(X"2*Y)*(X-Y-2)" >>

Later on, we might have to calculate something like for example:

— (F(X, Y)))

eX*{

el
eqx

If you expand this without having made the definition of dIF(X,Y), you
will get:

dF(X,Y)’

eY><X

But if the derivative dIF(X,Y) is defined in the current path, you get:

(eXZ*Y (X~ Y - 2))2

eY><X

If you now press [l[f] and then|ZZsgfsla], you get:
ezw»@- Y >(X) (Y + 2))2

The user defined derivative dFF(X,Y) was evaluated just like any other
normal function. It used the arguments X and Y and returned the result

e (X - Y - 2) according to its definition.

Volume 1, 1-21

Basic Calculus with the HP49G - Volume 1 - Part

Alternatively you can use it also in RPL syntax. Enter the arguments Enter:
X and Y and press|EI to get the result Y x(X - Y - 2).
AR Xt
We had good news until now, so it's time for some bad news. There Y e €Y g
are also problems with the notation like dIF(X). One of the problems
is, as we already noticed, that we are allowed to build-up things like and expand. Y ou get:

dJG?ég that don't have adistinct order of their arguments. At the

same time the information about the variable of differentiationiscoded _ __ =1* (Gasp!!)

as a number between the small "d" and the name of the function. In Y?

the above example, which isthefirst variable? If you say that itis X,

then let's have an example to convince you about the problem. Enter If X isthefirst variable, why thenis Y ... also thefirst variable? The

result contains.

alk EG?Q(—OO X i

X e eYog diG. =2
ey o

which is the same like before, the derivative of G?—;g for itsfirst

variable, though we differentiated for Y and not for X thistime.

The notation:

This agrees with the theory that the first variable is X, because we
differentiated for X and we got an answer that contains: i (Function(arguments))
X

d7R0
ey o is much more precise than the notation d]Functior(arguments)

because the first explicitly shows the variable with respect to which we
But according to this, if we differentiate for Y, wemust getan @€ taking the derivative, no matter if it is the first, the second or the

answer that contains: twentieth.
X This shows that the notation d]Functior(arguments) isonly thought
dZGé; s for alisting of arguments, be them simple names or expressions, inside

the parentheses. For example evaluating
Volume 1, 1-22

Basic Calculus with the HP49G - Volume 1 - Part

T and expand, you get 2 XX ><dJG(X2) . This means that for the HP49G the
(G(x.Y))
Y relation holds:
or
L (6(x*)) = 25 ac{x?)
1 ™
—(G(x,Y))
X The two expressions,
will return results that can be interpreted easily, like d2G(X,Y) or
o (e6¢)
d1G(X,Y) . When some argument is not asimple name, like for X
examplein
and
1 &.aXpo
X geGé?m 2>00d16(X°)

we run into troubles, because of the ambiguous interpretation of the differ by afactor of 2xX, and so the expressions
expression:

A (e
420 X (c6<)
ey g and
in the result.
di6(x?)

From the above | might have created the impression that for example
the expressions are not identical! Only in cases where the function has simple names as
arguments, like for example G(X,Y), the two notations

L (otc) ﬂ
ox (GX.Y))
and d1G(X’) areat least theoretically equal. But thisisn't true (at least
in the CAS world of the HP49G). If you enter and
i (G(X2)) diG(X,Y) are equivalent. The expression:
X

Volume 1, 1-23

Basic Calculus with the HP49G - Volume 1 - Part

means the derivative of G(XZ) according to the chain rule, that is the
product of the "inner" derivative with the "outer" derivative. The
expression d]G(XZ) means the derivative of G(XZ) with respect to...

XZ(111) Now we can perhaps see better, what is meant by first,
second, and so on arguments of such expressions. The expression:

dnG(arg,,arg,,%,arg,,)

means the derivative of G for itsnth argument, counting the "sots"
between the commas and not the names of variables that appear in the
arguments, which themselves can be arbitrary expressions. That
means, that for example:

d2G(SIN(X),cOS(X))
IS equivalent to the expression:

L(x) (G(sINX),cos(x)))

1COS

which isimpossible to write directly with the HP49G! It it also totally
impossible to do? Well, let's see. First, we have to get an idea of what
such a derivative means.

ff(x)

A derivative v of afunction f(x) can be understood as the rate of

change of f(x) in relation to the rate of change of x . This means that
knowing it, we also know how the values of f(x) alter when x itself
aters. The notion f(x) shows that the function f dependson x.

When x changes, then f(x) (in general) also changes. But we can also
consider how some function f(x) changes when some other function
g(x) changes. For example, we can consider what SIN(X) does, with
corresponding changes of COS(X) . And this can be written as;

L(sn\(x))

fcos(X)
How to deal with such expressions?

Since both things depend on X, we can use parametrisation. We define
t = COS(X), where t isanew variable, defined as afunction of the

variable X . Enter the equation t = COS(X). Now, if we solve

t = COS(X) for X, we are going to get X asafunction of t. Enter X
: 5. Theresultis:

{X =-(2>npp +ACOS(t)) X =2nLp+ACOS(t)}.

This can be substituted in SIN(X), in order to convert it to a function of

t. Enter SIN(X), press[®] and thenENEER]. Now you have:

{SIN(- (2>n1p+ ACOS(t)) SIN2Dp +ACOS(1))} .

Now, if we consider the expression

L(Sll\(x))

Ccos(X)
again, we seethat SIN(X) can be replaced by either:

SIN(- (2nLp+ ACOS(Y)))
Volume 1, 1-24

Basic Calculus with the HP49G - Volume 1 - Part

or:
SIN2 nLp+ ACOS(t))

And COS(X) can bereplaced by t. So the derivative

X)(sn\(x))

‘HCOS
can be written as:

ﬂﬂt (SIN(- (2nDp+ ACOS(t))))

ﬂﬂt (SIN(2>n1p+ ACOS(1))).
With the st
{SIN(-(22n1p+ ACOS(t))) SIN2Dp + ACOS(1))

on stack level 1, enter t and press@ to get the list:

1 cos((2n1p+ ACOS(t 1 _d
. COS((2nDp+ ACOS(1)) TS0
i LY

i COS(2>nDp+ ACOS(1)) *

f 50

SISy to explode the list. Press@ to get rid of the element
count. Now the expression

1
J1- sQ(Y)

ison stack level 1. PresspiSA3R to get :

COS(2n1p + ACOS(t)) *

: g(txcos(z nbp)- \[-(€ - 1)xsIN2 >n1>1:))) xﬁg

Since the HP49G still has no integer assuming capabilities, we must do
a bit of work by hand. Press[%F] to get thisinthe EQW. Since n1is
integer we know that COS(2n1p) isequal to 1 and SIN2 »nDp) is
equal to 0. Edit the expression and change it to:

-aE(t><1- / - 1)) — Sth

Press EMTER] to put it on the stack. Expand it to get:

-1

Press |E| and follow the same instructions to change the expression:

1

cos((2>nvp+ ACOS(1))) 500
to:
_ tx/- (€2 - 1)

t°-1
Volume 1, 1-25

Basic Calculus with the HP49G - Volume 1 - Part

Now we rebuild the list. Enter 2 and press

2
) t°-1 t? b
These are the two possible results of
1
—— (SINX
‘HCOS(X)(NX))

written as functions of the variable t, for which we have defined
t = COS(X). We can use this formulato do back substitution. Enter

t = COS(X) and press Ei[EE

tcos(x)x/-(cos(x)-] cos(x)x/-(cos])F
; COS(X)- 1) COS(X)- 1 fo

EIEEIR) to convert - (COS(X)” - 1) to SIN(X)® and get:

OS(X)#SINX)| COS(X) $SIN(X)8

Ve
~

SINX)? SINX)?
The two expressionsin the list are the results of the differentiation:
SINX
'ncos()(NX)

Leave them on the stack, as we are going to use them in some
minutes.

If we want to visualise the above, then we can plot al points that have as
x-coordinate COS(X) and asy-coordinate SIN(X). It sounds familiar,
doesn't it? Yes, thisis the built-in plot type Parametric . Perhaps now
it is more clear, that we used parametrisation to find the above
derivative. Let's see how we do parametric plots on the HP49G. First of
al, for two dimensiona parametric plots the HP49G uses complex
guantities. The real part is used for plotting the horizontal coordinate,
and the imaginary part is used for plotting the vertical coordinate. For
example, if you have some parametric function, like:

iX =t

Y (X)i

1Y =t-1

where the coordinates X and Y depend on the parameter t, then the
complex quantity that the HP49G plots, is t* +(t- 1)%. That's what
you have to store in EQ, in order to use the plot type Parametric. In
our example we have found how y =SINX) changes, when

x = COS(X) changes. The horizontal and vertical coordinates depend
on the parameter X . So we will plot COS(X) +SIN(X) >

Press and hold down E2 and while you hold this key down, press[F].
The PLOT SETUP screen appears. Choose Parametric plot type.
Move to theinput field EQ: and enter COS(X) +SIN(X) % . Enter X in
the input field Indep:, since X isour parameter. Note that in thistype
of plot, Indep: isnot the horizontal coordinate! Now, press and hold
down and while you hold this key down, press[FZ] to go to the
PLOT WINDOW - PARAMETRIC screen. Set horizontal view
from - 2 to 2, and vertical view from - 1to 1. Set Low: to O and
High to 6.28. (Thisis approximately from O to 2>p .) Set Step: to

0.314. (Approximately % .) Now press [S3F35]s] and then[gE3il-
You get a circle, that starts at (COS(0), SIND)) = (10), goes once

Volume 1, 1-26

Basic Calculus with the HP49G - Volume 1 - Part

around the plot origin in clockwise direction, and ends again at (1,0).
The slope of the curve at any point of the circle is given by what we

have found, that is by both formulae in the list:

Ve

COS(X)4SINX) COS(X) 4SIN(X)|u

i
i -
i SINX)
In this list, the
variable X isno
more a parameter
but a coordinate,
namely the
horizontal
coordinate. Thisis
exactly why we
havetwo formulae
for the dope. If

you take an
arbitrary value for

SINX)?

\

_

J

2

the X coordinate between - 1 and 1, then the are two vertical
coordinates Y that correspond to it. And so we also have two
derivatives. We want to superimpose the plot of the derivatives with
the parametric plot. The derivatives are functions and so we might be
inclined to change the plot type to Function . But this would cause
problems. While the horizontal coordinate of the parametric plot goes
from - 1 to 1, the corresponding horizontal coordinate of the functions
should be from O to 6.28, exactly like the values for the
parameter X of the parametric plot. Thiswould plot the derivatives
In away that corresponding horizontal coordinates of the parametric
plot and its derivatives wouldn't coincide. We must find another way
to plot the derivatives. One option is to plot them also as parametric
functions. Consider for example the first formula in the above list,
which defines the function:

_ COS(X)ASIN(X)|
T SINX)?

We can turn it to a parametric function by writing:

x = COS(X)
_ COS(X)4sIN(X)|
~ T SINX)?

Note that we didn't smply set x = X, because we want to stay
compatibleto thefirst plot, in which the horizontal coordinate x was set
equal to COS(X). (Thevariablesx and X are not the same!) Our
parametric representation of the first derivativeis:

& COS(X)4SINX)6 .
COS(X)"LE' SINXY o

Since we have two derivatives, we must also plot two parametric
functions. That means that we must enter the list:

i &
i COS(X) + g
i

COS(X) 4SIN(X)|6 .
SINXY ¢

COS(X)4SIN(X)| U
0+ —SiNper i

in the input field EQ: of thePLOT SETUP screen. (When the
reservedvariableEQ containsalist of parametric functions rather than a
single parametric function, then all parametric functions are plotted
together.) Press EAHTEL] to leave the plot, and then R {F¥] to go back
to the PLOT SETUP screen. Select the input field EQ:. Because
entering a function can be atedious task without the EQW, and because
you can't enter the list directly in the EQW, you can temporarily leave
thePLOT SETUP screen, build-up the list using the stack, and return
to the PLOT SETUP screen with the list later. Press[HIST] to go to

Volume 1, 1-27

Basic Calculus with the HP49G - Volume 1 - Part

the interactive stack, which still contains the list with the two
derivatives. The small arrow at the right of the stack level number 1
indicates that the object in this stack level can be used for further
operations. Press [S#gl®]. This echoes the list to the command line,
which we came from. (The command line of the input field EQ:.)
Press EARCEL] to leave the interactive stack and return to the

PLOT SETUP screen. Now you seethat the list waitsin the
command line to be entered in the input field "EQ:". Press [ENTER]
toputitintheinput field EQ:. Thisis not exactly the list that we have
to plot, so we must edit it. Select the menu input field EQ: and press
FIET] until you see [&fXEsf over the key [FZ]. Press [#3Ks

temporarily leavethe PLOT SETUP screen. Now you are on the
stack. Thisis not the same operation like pressing [HIST], asit copies
the contents of the selected input field on anew empty stack. It aso
starts the normal stack environment instead of sending you to the
interactive stack. This new stack can be thought a separate private
stack of the input field EQ:. The global stack isalso preserved but is
temporarily hidden, so don't worry as we are not going to lose
anything. The top part of the screen still shows the title of the input
screen that you came from, as an aid for letting you know exactly
where you are. Also, the message Enter function(s) to plot
appears on the top of the screen to indicate exactly which input field
will receive what you enter now. The previous contents of the input
field EQ: are put on the stack. We have to change thislist to:

i e
i COS(X) + g
|

COS(X)4SIN(X)| .U
SIN(X)?

COS(X) 4SIN(X)[6 .
SINXP ¢

0s(X) +

We are going to use the list processing capabilities of the HP49G.
Enter i and pressf<] to multiply both objectsin the list with the
imaginary unit. Now, enter COS(X) and press[] to swap stack
levels 1 and 2. Y ou might think now that you just have to press[+] to
add COS(X) to both objectsin the list. But especially this operation
concatenates two lists or any object with alist, rather than adding an

object to al objects in a list. For this purpose there is the command
ADD. It isthe sixth item of the menu MTH/LIST, so pressfATH]|, and
then press [IE]. Now press [Ei§] to add COS(X) to both algebraic
objects in the list. The message on the top of the screen has changed to
Press [CONT] for menu. PressfORT] to return to the menu that
will allow to take the list on stack level 1 to the input field EQ:. Now
press [8Iq to returntothe PLOT SETUP screen and put the list to
that input field. Press [EgEXE. The two derivatives are plotted on the
same plot that contained the
circle. Press to
return to the (global) stack.
As you can see, it still
contains the original (not the

edited) list with the
derivatives.
In order to find such

derivatives, like for example

o (SINX))

1COS(X)

we don't need to do all by hand, like we did on pages 1-24 to 1-26. We
can make a program that does (amost) everything automatically.
Consider the code:

<< ® f1 2 @Store in locals
<< f1 f2 @Recall locals

IF f2 TYPE 6. == @1f f2 is a name

THEN @then
q @take derivative

ELSE @else
LNAME 1 GET @get first name that is in f2,
SWAP ttemp = @build up equation f2=ttemp
SWAP SOLVE @solve equation for Ffirst name
SUBST EXPAND @substitute In f1
ttemp @take derivative for ttemp

Volume 1, 1-28

Basic Calculus with the HP49G - Volume 1 - Part

ttemp f2 = SUBST @back substitution As you can see, the program didn't do the work that we did in the
EXPAND @expand example. But this would be too much to demand as there is a huge

END number of possible results and possibilities to ssimplify them. The real
>> problem is that (as already said 100 times) we still have no integer

> assumptions on the HP49G. In this case you can enter n1= 1 and then

Store the program in dFIF2 and let'stest it. The program takeStwo pamem E";:! iEll, t(? turn nl from aname to an integer. Then press
arguments, On stack level 2 it expects to find the expression to LSRN tO get:

differentiate. In stack level 2 it expects the expression that specifies
what to differentiate for. I COS(X)ASINX) COS(X) ASIN(X)u

1T SIN(XP SINX)2

Enter X and make a copy of this expression on stack level 2. Press

Fhe menu key ' _The reﬁ_ult |sthe.l|st {1]} , which snows that The program uses LNAME to find the first name returned in the vector
it worked. (Anything differentiated for itself hasto return 1.) Perhaps of names that appear in f2 . It assumes that this is the variable whose
code should be added to remove duplicates from the list? variation causes the variations of f1 and 2 . But this doesn't have to be
2 x5 aways tgjd% _ I_nst:lad of using thehcommand LNAME,_\;ve cr(])uld aso
x? X . - give an itional argument to the program, to specify the varying
Entere” andthene”. Press aganto get et variable. Another problem isthat the program relies on SOLVE to solve
the equation f2 = ttemp . If this step fails, then the program will not
And one example in algebraic syntax. Go to the EQW and enter work. Since we will talk in much more detail about derivatives of

» 19 3 functions in parametric form, we leave the program dF1F2 asitisfor
dF]Fl?(vt Put that on the stack and EVAL uate to get - (2 *X) the time being.

. - A question that has been asked quite often in the group, is how to do
Lets try also the example that we u for parametric plots. Enter implicit differentiation on the HP49G. And the answer to thisquestion is
SIN(X) and then COS(X) . Press EII#Nl. After somesecondsthe giher smple: Use exactly the same method like for explicit

HP49G returns the list: differentiation. Suppose for example that you have the implicit function
] given by SIN(Y) =Y - X.Inthisformulathe variable Y means

: actualy Y (X) , the quantity Y isafunction of the quantity X . We can't
i solve the equation SIN(Y) = Y - X anayticaly for Y. That means, we
i can't write Y(X) = someFunctior{X). Nonetheless we can find the

i J- (COS(X)* - 1)>cos(ACOS(COS(X) +2nbp))i derivative of Y(X) asafunction of Y(X) and X by differentiating

% - COS(X)2 1 - implicitly. To do that on the HP49G, we must always keep in mind that

the calculator doesn't know that Y somehow dependson X . And in this
case it is a very good policy to not know. Consider for example what

Volume 1, 1-29

J- (cos(x)’ - 1)xcos(acos(cos(x) + 2 1))
COS(X)*- 1

<\ ==

<

Basic Calculus with the HP49G - Volume 1 - Part

would happen if you had to take the derivative of X XY xZ for X. If
the HP49G would automatically consider all variables different than
X to befunctions of X, then we would end up with very complicated
expressions containing all thinkable derivatives of all variables other
than X . And we would need a special mechanism for denoting that
some variables don't depend on X. Instead of thisthe HP49G
considersall variablesin an expression that don't explicitly depend on
X (or any other variable of differentiation) as constants. If we have
some variable for which we know that it does depend on X (or any
other variable of differentiation), we have to write this explicitly. In

the example SIN(Y) = Y - X, where Y isavariable that depends on
X, wewrite SIN(Y(X)) = Y(X)- X. If you enter this, then enter X,
and then press[4], then you get COS(Y(X))>d1Y(X) = d1Y(X) - 1.
Now, you can enter d1Y(X) and then pressEIRS, to get the
solution:

_ 1
~ cos(Y(x))+1

d1y(x)

The HP49G has done implicit derivation and solved for d1Y(X). The

last operation, solving for d1Y(X) might look unfamiliar, since we

solved not for a variable but for an algebraic expression, but it is
exactly as good as solving for any variable. To get an idea of this

capability, enter SIN(X) + COS(Y(X)) = ***), then COS(Y(X)),
and the press EEINE to solvefor COS(Y(X)). Theresultis
cos(Y(x)) = &™) SIN(X) , which shows that the whole
expression COS(Y(X)) was considered as asingle variable. Sill
about implicit derivation: If you enter the above example as
SIN(Y) =Y - X, and take the derivative for X , then you are going to
find O = - 1. Thisunusual result comes because the left and the right
hand sides of the equation SIN(Y) =Y - X were differentiated
separately for X . Since the left hand side doesn't explicitly depend on

X , the differentiation for X (i.e. ﬂlx (SIN(Y))) returned 0. On the
other hand, the right hand side does depend on X, and sothe
differentiation for X (i.e. ‘ﬂlx (Y - X)) returned - 1. Both results were

then set equal and so theresult was 0 = - 1. Thisisn't abug even if the
resulting equation is impossible. This "impossibility” was aready
contained in the expression SIN(Y) =Y - X in combination with
derivation for X . The concept used in the HP49G for derivation, says
that anything that doesn't explicitly depend on the variable of
differentiation, is a constant. If Y isaconstant inthe equation
SIN(Y) = Y - X, then the equation is not an identity but a proposition.
It isn't valid for any value of Y but only for some particular values. In

this case we can't conclude equality of derivatives because of general
equality of the two sides of the equation, i.e., we can't say:

leftHandSide(Y,X) = rightHandSide(Y,X) b

\l

X 1 (rightHandside(Y,X)

(teftHandside(Y,X) = o

To understand this better, consider the
equation F(X) =G(X). (In this example we G(X)

only have the variable X, but for the
understanding this doesn't matter.) If this F(X)
equation is an identity, then the two things,

F(X) and G(X) arealways equal. If we

plot them we are going to get two identical
graphs. And since the two curves are identical, so must aso be their
derivatives. That means, in this case we can take the derivatives of both
sides and set them equal. (Technique used in implicit differentiation.)

On the other hand, if the equation F(X) = G(X) isnot an identity but a
proposition, then it will hold only for some particular values of X.
Plotting the two things, F(X) and G(X), will produce two different

Volume 1, 1-30

Basic Calculus with the HP49G - Volume 1 - Part

graphs, which (eventually) intersect at
some particular valuesof X . We see that
in this case the derivatives of the two
things can't be equal (in general).

G(X)
M(X)

Thus, on the HP49G, we have the

possibility to do both. If the equation

which we use for implicit differentiation

IS an identity, we have to denote this by explicitly writing al
dependencies on the variable of differentiation. If on the other hand,
we have some equation that is a proposition, and we (for some
reason) have to take the derivatives of the right and the left hand side
and set them equal to each other, we omit the explicit dependencieson
the variable of differentiation.

Last thing we are going to examine is how substitutions behave, when
use on expressions that contain . Enter:

EMEEN. Theresultis 2 XY, whichis
correct, but doesn't dlow usto tell if the substitution was made before
or after the differentiation. Undo the last operation, and edit the

equation in stack level 1to X = Y?. Press again EFEE]. Thistime the
HP49G errors out: Bad Argument Type. Thisshowsthat the
HP49G tried to do the substitution before taking the derivative. It

)
ﬂ—x(xz-l).

tried to substitute X = Y? for each occurrence of X in
Thiswould return:

ﬂTﬂz ((\(2)2 - 1)

and as we already have seen, this is impossible on the HP49G right
out of the box. (That's why we made the program dF1F2.)

On the other hand, we have also the command | for substitutions. Drop

theequation X = Y?, and enter thelist {X Y} . Press[T]. Theresultis

again the correct expression 2 XY, but now the operation took a bit
longer, which shows that some other mechanism was used. Undo the

operation, and edit the list to {X Y2} . Press[] againto get 2 xY?.
Wow, it worked! The HP49G has found the result of:

ﬂ—le ((\(2)2 - 1)

Does this make our program dF1F2 totally unnecessary? Unfortunately
not, because for derivatives like for example

il
TSIN(X)

(cos(x))

A

|, to directly get the correct result. We have first to find some kind of
parametrisation, which iswhat dF1F2 mainly does. In the case of

L(
TSIN(X)

we can't simply enter some ﬂll/ (¥4) and use some substitution list with

COS(X))

as we already have seen, we can write:

thenenter {t SIN(X)}, and then press[T], to get the resut:

Volume 1, 1-31

Basic Calculus with the HP49G - Volume 1 - Part

-(2>8IN(X))
2%[1- SIN(X)’

If you expand and then press [IgE[s®E], you find:

SINX)4CcOs(X)
~ COS(X)?

which is exactly one fo the two resultsthat dFIF2 returns, if we give
it the arguments COS(X) and SIN(X). However, the built-in

function | can be used directly for derivatives with respect to
expressions f(x) , when the derivatives are of the form:

el EU)

where G(f(x)) isafunction that depends explicitly only on f(x) . Such
derivatives are for example:

L(X)(sm(x)2 - SINX))

1SIN
or:

ﬂ 2 2
e (sIN(X) - x?)

and so on. We can't enter them directly since the quantity for which
we differentiate isn't asingle variable name. But we can enter first the

derivative in which all occurrences of f(x) are replaced by asingle
variable name, say S. Then we can enter thelist {S (x)} and use

the command | to find the derivative. For example, if we have

1 (SIN(X)” - SINX))

TSIN(X)

we can enter:

T (2
ﬂ—S(S - 3)

then the list {S SINXX)}, and then press[T], to find the derivative
2>SIN(X) - 1.

Let's move on now to the other command that the HP49G provides for
derivation, DERIV . Thisisthe new command that came with the CAS,
that means the HP48 calculators do not have it. (Except of courseif you
install ERABLE.) How does this command behave? Y ou guessed right,

we are going to repeat what we did with {, but now using DERIV .
Take a breath and here we go.

In RPL syntax the command DERIV takes the function from stack level
2, and the variable from stack level 1, and returns the derivative of the

function for the specified variable. For example, enter eS'N(YZ), then
enter Y and then press|slagiil. (The command isthe second item in

menu CALC/DERIV). Theresultise*™") xCOS(Y?)x2 XY . The same

can be done using an algebraic syntax. Go to the EQW and press[S]agka
to write the unfinished expression DERIV(« ,Jli|) . The cursor blinks
at the left of the commato indicate that the HP49G expects you to enter

the function that must be differentiated. Enter eS'N(YZ). Preslel togo
to the second place holder to the right of the commaand enter Y. Now

you have DERIVS%S'MYZ),YQ. Press EMTEF] to put that on stack level

Volume 1, 1-32

Basic Calculus with the HP49G - Volume 1 - Part

1. Let's see how the expression looks like when it isn't shown in
pretty print. Press [L2] and then[W] to edit the expression not in the
EQW but in the command line, where no pretty print is used. Now
you see: 'DERIV(EXP(SIN(Y*2)),Y)', which is quite different than
the syntax of . The genera syntax of DERIV in the command line
is 'DERIV (Function,Var), where Var stands for the variable of
derivation and Function for the function whose derivative you want

to find. Press now EMTEF] to put the expression back to the stack. If
you expand it, then you get the same result as before,

™) xcos(v?)exy .

Can we find the slope of afunction at a given point by finding the
derivative and substitute the value of the variable at that point? Let's

see. We try to find the slope of SIN(X) at X = p. Inthe EQW we
type DERIV(SIN(X),X), and enter that on the stack. Then we enter
X =p and pressEI[EH]. The result isDERIV(SIN(p), p), which is
not what we want, because the substitution has been carried out

before the derivation took place. Obviously we can't use SUBST
with DERIV thisway. First we must explicitly expand the expression

DERIV(SIN(X),X) to get COS(X), and then we can use SUBST
for finding the slope. Let's see what happens when we use SUBST
with DERIV inagebraic syntax. Go to the EQW and type
SUBSTPERIV(SIN(X),X),X = p). PressERTEF] to put his on the
stack and press [ZIFAAE. The result is COS(p) which is correct but
not completely expanded. Obvioudly the expansion of the algebraic
object SUBSTPERIV(SIN(X),X),X = p) retainsthe order of

operations starting at the innermost sub expressions. Since the
innermost operation is the derivation, it is carried out before
substitution. But substituting in stack syntax just "puts the values' in
the object of stack level 2, without first expanding it. Note also that in

RPL mode you can't enter 'SUBSTPERIV(SINX),X),X = p}

from the command line. The built-in syntax checker will complain about
a syntax error at the position of the "=". Strange? Wdll, itiseven

stranger that the erroneous 'SUBS Texpression,val) does not cause a
syntax error, if val isfor example some number or name, but not an
equation! If you for some reason have to build up the algebraic object
'SUBST(:)ERIV(f(var),var),var = value)' in a program, then you
have to do that in some other way. The code snippet below takes an
expression and a subdtitution equation and returns
'SUBSTEéxpression,substitutionEquation .

"SUBST(0,0)" ® LST
1 4 ROLL PUT
2 ROT PUT

® ALG

@Turn the dummy subst to a list
@Put expression in position 1
@and substitution equation in 2
@Turn it to algebraic object.

| like® LST, and ® ALG very much. Nonetheless the usage of such
tricks just to enter something that is syntactically completely correct,
shouldn't be necessary. Another trick would be to store the substitution
equation in some variable. For example, enter X =p and storeitin

variable Y . Then enter SUBSTDERIV(SIN(X),X),T). This
expression in possible also from the command line since the second
argument of SUBST doesn't contain a"=". If you expand, you get the

correct result - 1. Not so much of atrick here, but still an unnecessary
complication. Purge now Y .

And what happens with |? We start again with RPL syntax. Go to the

EQW and enter DERIV(SIN(X), X) . Enter thelist {X ' p'}. Be careful
to enter p insingle quotesin thelist. Thisisthe other method to ensure
that p isan algebraic object in thelist and not just the command p . (We
adready used another method, namely entering X, p, andthen
constructing the list by entering 2 and pressing [EiEIll.) Now, press
[T] to get COS(p), which isn't completely expanded but correct. Let's
try that in algebraic syntax. Go to the EQW and enter:

Volume 1, 1-33

Basic Calculus with the HP49G - Volume 1 - Part

DERIV(SIN(X),X) S’-RinU.

X=p

Expand that to get the correct result, - 1. < ® x Xr3/(X-1)7 >> IV

And what about the way that was inherited from the HP48? Canwe << ® R "R*(R+1)* >> inW
storeavauein somevariable and find the derivative for thisvariable?

For example, store p invariable T. Enter SIN(T) and then'T" in
quotes. Press[BJZ5Rd. You get COS(T) whichyou canexpandtoget <« ® s *s/r* > inQ
- 1. Go to the EQW and type DERIV(SIN(T), T). Put that on the

stack and expand. Now you get an error Bad Argument Value. We also needt:

EVAL doesn't work either and you losethe last argument sinceyou __ @

get 0, p, and the command DERIV on the stack. If you want to get << 0 1 3 EOR 1

the correct result you have to use QUOTE. Enter X1 R®I1 ~ +

DERIV(SIN(QUOTE(T)),QUOTE(T)) and expand to get - 1. But NEXT

>>

note again that if you have for example X asthecurrent variable, >>
store p in X, then enter DERIV(SIN(QUOTE(X)),QUOTE(X))
and expand, then you get the question to purge the current variable. If
you choose "No", thenthe operation errorsout with . And last thing:

Mode Switch Cancelled. If you choose" Yes", then X is

purged and the calculation returns COS(X), becausethevariable X << ® R X

doesn't exist any more. Instead of expanding in this case you can << R EXP S EXP + X / >>

press EVAL] twice, to avoid the question about purging the current >
variable.

<< ® R X "(R-1)/X" >> inZ

in Z1.

inZ2.

We continue examining the behaviour of DERIV when we take
derivativesof expressionswith variablesthat themselves contain other
expressions (just as we did with). If you still have the following

Enter 'R" (with quotes) and pressEMTEF] to make copy it on stack level
2. Press to take the derivative of R for R. Theresultis1,

variables, then you don't need to re-create them. We need: which shows that DERIV (like) didn't care about the fact that X is
storedin R. If you enter 'R' and then X, and take the derivative, then

X?inR you get a 0, which again shows: When some expression is on stack
level 2 and we take its derivative for some of its variables using the

SIN(Y) insS command DERIV , then derivation is carried out without first evaluating

that variable. This is good for finding slopes of functions by storing
Volume 1, 1-34

Basic Calculus with the HP49G - Volume 1 - Part

something in the variable for which we take the derivative and then X3 (X-1)8x* - X°
using DERIV, aswe aready saw on the previous page. Another 2 -1 SQ(X i])

example of this case: Enter S°, then 'S' (with quotes) and press

— 2
to get 2S. If you enter DERIV(S?,S) from the EQW and This shows: Since V isauser defined function, V(X) isfirst evaluated
press EVAL], you will get 2>SIN(Y) >COS(Y). If you expand instead to
of evaluating, then you get 2xCOS(Y)>SIN(Y), which isthe same
but with the factors reordered. Obviously, expanding or evaluating eex3 o
DERIV(expressionvariable), when exp ression contains &1
variables where other expressions are stored, will first differentiate
and then replace the variables with their contents.

2

and then the differentiation for X iscarried out! Exactly the same result

If you want to first evaluate some variable contained in an expression, Will be returned if you enter DER|V(V(X)2 ,X) and then evaluate. If you
and then take the derivative with DERIV, you have to evaluate first. t DERIV(V(X)2 X) q d.h et th It
For example, enter U?. Westored S - R inU, SIN(Y) inS,and ¢ /%) @nd expand, then you get the resutt:

X? inR . If you want to take the derivative of the evaluated
expression U’ for X, then you haveto pressE¥EL] first. This
completelyevaluatesU? to SIN(Y)" - 2xX>SIN(Y)? + X*. Now you
can enter X, press[BEskg and thenFEIZERR], to get the fully which is the same as before, but completely expanded. If you enter
expanded expression - (4 X SIN(Y) - 4 ><X3). DERIV(V(X)2 ,X) and then press or SEJNEH], nothing
happens and the expression remains unchanged on stack level 1. Likein

And what about taking the derivative of the partially evaluated U? for caseof { thisallowsto collect unevaluated differential forms, which for

n . - 2 o example can be used to bring differential equations to a much more
S?Wetry with SHOW again. Enter U”, then 'S" (in quotes) and readable . form. For example, enter the expression

DERIV(V(X)” X) %X + DERIV(V(X)? X A and press SElNRE, to
get (X +A)>DERIV(V(X)2,X). If you want the opposite to happen,
then don't press E¥AL] or (NN TEEE. |f you press BRI
Now, what if the expression, which we take the derivative of, is a With the last rzesult still on - stack 2Ieve| 1, then you will get
user defined function? Let'stake alook at that. Enter V(X)* and then X ’DERlV(V(X) 1X) +A ’DERlV(V(X) 7X)- And what about

X .dlf you now press [E25104 then the derivation takes a bit longer, transforming DERIV(V(X)z,X) to 2>/(X)>DERIV(V(X)X), or some
and returns. equivalent form? Can we use step by step mode? Let's see. Switch to

Volume 1, 1-35

4xX5 - 6xX°
X3-3XZP+3%-1

Elgisl], to stop evaluation when the variable S is shown. This

press

will result in (S2 - R)Z, alowing usto enter 'S’ and take the
derivative pressing |35kl

Basic Calculus with the HP49G - Volume 1 - Part

step by step mode and enter DERIV(V(X)Z,X). If you evaluate or
expand, then you see that... it doesn't work! You just get the same
results like in non step by step mode. Step by step seems to work

better with | (aswe already have seen) in this case. Deactivate the
step by step feature now.

Let's see now what happens when we take the derivative of some user
defined function, to which we have given avariable as argument, that

itself contains some expression. Enter the expression V(R). Now,

enter 'R’ and press[8]=gkd. The result is 0 because the user defined
functionis evaluated before derivation. This means that V(R) was
first evaluated to:

R3
R-1

Then the variable R in this expression was evaluated, which returned:

XG

X?-1

since R contains X°. It was this expression of which the derivative
for R wastaken. And since the expression

X6

X?-1

doesn't depend on R , the derivative was 0. If you enter V(R) again,
then enter X and press[ilagkd, you get the result:

(xz- 1)>6><X5- X6 52 XX
SQ(x2 - 1)

the derivative of the completely evaluated user defined function V(R)
for variable X . Notice here that the variable of derivation, R is not
getting evaluated to X°.

Now the same in agebraic syntax. Enter DERIV(V(R),R). If you
evaluate this, then the result is again:

(x2- 1)>6><X5- X6 52 XX
SQ(x2 - 1)

which is the derivative of the user defined function V(R), where the

argument R has been evaluated to X, but also the variable of derivation

R has been evaluated to X°. But let's see what happened stepwise. In
algebraic expressions, in general the innermost nested things get

evaluated first. In DERIV(V(R),R) the argument of the function V was
first evaluated to X”. Then the function V took X* and returned:

NG
X%-1

The variable of derivation, R, was also evaluated to X°. So the
expression was converted to:

6

x?29
-1 @

DERIV@E 5

ex
Here we must watch out! When the command DERIV takesthe
derivative not for asingle variable, but for an expression, then... it takes
the derivative for the first variable that it finds in the expression, for
which it takes the derivative. That means, that the returned result is the
result of the differentiation:

Volume 1, 1-36

Basic Calculus with the HP49G - Volume 1 - Part

1eex6 o)
X ex® - 1o

and not the result of the differentiation:

1 @XG o
(X?)ex?- 1o

If you enter:

XG
X?-1

then X, and then press [lEgkd., you get the result:

(xz- 1)>6><X5- X8 %2 X
SQ(x2 - 1)

If you enter again:

X6
X?-1

then X and press[¥Jagkg again, you get again:

(xz- 1)>6><X5- X6 52 XX
SQ(x2 - 1)

The same result as for taking the derivative for X was returned.
Expand it to get:

4 XX7 - 6 xX°
X*- 2% +1

6

. X
Our program dFIF2 fed with 1 and X?, returns the result:

] 2%K8- 3K 2xX®-3xX*)
IXT 2% +1 X' - 20 +1)

which shows that:

T @Xx 6_ 2% -3
‘n(xz)éxz- 16 X*- 2% +1°

If you have problems to understand what DERIV doesin such cases,
do the following: Enter X?, then X, and press|[ilagkd to get 2 XX,
which is OK. But now, enter X?, then X?, and press[ilaghd to get
2 xX again, which in this case iswrong, since

2
Xy
1<)
Another example: Enter X XY, then X and press[s]=gkd to get Y,
which is OK. But if you enter X XY, then X +Y , and press[ilaghd.,
you get Y again, which iswrong. The command just took the derivative
for thefirst variablein X +Y , whichis X. And if you enter X XY, then
Y + X, and then press[faghd, you get X , which is also wrong. In this
case the derivative was taken for Y, because it was the first variable in
Y + X. The problem hereisthat DERIV allows expressions to be
written, where the variable of derivation isitself some expression, but it
differentiates for the first variablein this"expression of derivation”, and
returns wrong results. So, when it comes to such derivatives we have to
use a program. For the time being use dF1F2 asit is now, though it will

Volume 1, 1-37

Basic Calculus with the HP49G - Volume 1 - Part

also have its problems when taking derivatives for expression that |If you evaluate now, you will get:

contain more than one variable, like for example

X XY
(X +Y)

We will make it better later on.
Wetry now to let V(R) be evaluated up to

RS
R-1

and then take the derivative, without replacing R by its contents. We
have to use the command QUOTE again. Go to the EQW and enter

V(QUOTE(R)). Enter 'R' (in quotes) and press[EEER] to get:
R-)8R -R®
SQR -3

Thisis the derivative of the user defined function V(R) evaluated up
to

RS
R-1

To get the fully expanded form without evaluating all occurrences of
R to X*, you can enter V(QUOTE(QUOTE(R))), then 'R, then

press |31k to get:

(QUOTE(R) - 1)>:@>QUOTE (R)* d1QUOTE(R) - QUOTE R)’ >d1QUOTE(R)
SQ(QUOTE(R)- 1)

2R3 - 3xR?
R’- 2R+1

which isthe fully expanded result that still contains R sand not X s.

If you want to enter the derivative for R in agebraic syntax, then you
haveto QUOTE not only thevariable R that appears as argument of the
user defined function V, but also the variable of derivation. Y ou enter

DERIV(V(QUOTE(R)),QUOTE(R)), to control evaluation and let the

expression be converted to:

R3 N
DERIVE~— RO
eR-1 o2

instead of

3 ..
DERIVER_ %20
eR- 1

If you evaluate the expression DERIV(V(QUOTE(R)),QUOTE(R)),
then theresult is:

R-)8R -R®
SQR - 3

But if you would evaluate the expression DERIV(V(QUOTE(R))R),

you would get O because it would be evaluated to:
3 N
DERIVES— x?0
eR-1 o

Volume 1, 1-38

Basic Calculus with the HP49G - Volume 1 - Part

Enter W(X) and then X . Press [i[Sgg to get theresult X +1+X. has to be evaluated before taking the derivative. The expression
The user defined function W(X) was first evaluated, and that returned er:;pll;/- gk%gﬁgt d%?{\‘}g{\‘/g?% 'tﬁesr e?(e;;grl:.ncu on, and so DERIV

X X +1). Then the derivative for X wasfound, X +1+X. (If you

enter X and press the menu key [W], the the resuit is X (X +1). If you enter W(QUOTE(R)), then 'R and then press[EEEI, the resut
Entering DERIV(W(X),X) and pressing ETAL] returns the same will be R+1+R.Inalgebraicsyntax, if you enter

result. I you would have pressed [EEZEN instead of VAL, thenthe DERIV(W(QUOTE(R)),QUOTE(R)) and pressE¥ZL], the HP49G

result would be 2xX +1, the completely expanded form. returns the result 2>R + 1. Both results are what we expect to get
according to what we know until now.

If you enter W(R), then 'R and then press[iagkd, the result is 0,
because: The user function W(R) wasfirst evaluated and returned If you enter W/(R), then X , and then press [EIEgRd, then the result is
X {X? +1) . Then the derivative of this expression for R wastaken, 2xX X? +1)+ X? 2 XX . This shows again, that W(R) was evaluated

which was found to be 0, because the expression didn't containR . the way we aready know, which returned X? >(X2 + 1) _and then the
But if you evaluate DERIV(W(R)'R)’ then the resultis derivative of this result for X wasfound. The same result isfound if
2 XX ><(X2 + 1) +X? 2 %X . Remember, evaluation of algebraic objects, you evaluate DERIV(W(R),X).

includes evaluation of user defined functions and variables. So the
evaluation went the way: Now we nest some user defined functions. For example, enter

W(V(X)), enter X and then press[EEER] to get the expression:
1) DERIV(W(R),R)

2) DERIV(W(X?),x?) (X- 98- X* @X° 6, X (X-)BK- X
3) DERIV(X? X? +1).X?) SQ(X-3) éex-1 g X-1 sSQ(X-1

sam if DERIV{W(V(X)),X
Then, because DERIV had an expression (X?) and not asingle Exactly the same would happen, if we entered ((())) and
variable to differentiate for, it differentiated for the first variable of this eval uated.

. 2 2
expression (X), and found 2xX "(X +1)+X XX Now we do the same using variable R as argument. If you enter 'R,
ress|fll, press|ff]. enter 'R' again, and press[Elagkd. you find:
If you enter 'R, press|ffj, then enter 'R’ again and then press press Bl pressEll X P Y

BERH the result will beR + 1+R. In RPL syntax no evaluationof (R~ 1) 3 xR’ - R® BR 5 R R-)8R -R®
the global variable R took place. So, we get the result R R +1) SOR- 3 R-1 8 R SOR- 3

when we apply the user defined function W on the argument 'R
which is on the stack. After thisthere is no user defined function that

Volume 1, 1-39

Basic Calculus with the HP49G - Volume 1 - Part

If you enter W(V(R)), then 'R and then press[SJZzlkd, then you find
0. Inthefirst case, the HP49G used the argument which we gave it,
namely 'R" and just applied the user functions V and W on this
argument. Since the result didn't contain any user defined functions
any more, the function DERIV just differentiated what it found on the
stack, without any evaluation. In the second case however, the
command DERIV found an algebraic expression that contained user
defined functions, so it evaluated them first, found:
6 6 .

X EX P

X°-1eX"-1 @

and so the differentiation for R returned O.

We continue on user defined functions with RPL definitions that
return an algebraic object. Enter DERIV(Z1X),X) and expand to get

3xX% +2 X +1. Alternatively you can also enter Z1X), then X, and
then press[Blaghd to find the derivative,

If we evaluate DERIV(ZAR),R) we get 2xX +4xX> +6xX°. Why
the difference? It seems that evaluating the above, triggers first
evaluation of the user defined function Z1 with argument R , which

resultsinR + R + R®. But then R is also evaluated and this resultsin
X2+ (Xz)2 +(X2)3. The variable of derivation is also evaluated, and

s0 the derivative is transformed to DERIV(X2 + (XZ)2 + (X2)3,X2) .

As we know, DERIV finds then the derivative for X and not for X>.
Thisway we cometo theresult 2 xX + 4 xX* +6xX°. Notice how this

differs from evaluation of the analogous expression ﬂlR (Z1R)).

In RPL syntax, if we enter Z1R), then 'R' and press|[i]25k4, the

result is 0.EVALuate Z{R) and take the derivative for 'R’ to
understand why. What will be returned if you take the derivative of
ZIQUOTE(R)) for 'R'?

The command DERIV can aso be used for carrying out formal
derivations. Enter F(X) and then X, and press[i]2gkg to get the formal

derivativedIF(X), which is returned because the function F depends on
X but the HP49G doesn't know how it dependson X . Enter F(X(T))
then T and then press[DERIV], to get d1X(T)xdIF(X(T)), exactly just
likeif you had used Y instead.

But there are also differences to Y. Since DERIV acceptsaso
expressions as variables of differentiation, we can enter F(X(T)), then

X(T), and then press[E2gk. We can do this and we get the result
dIX(T)xdF(X(T)), where dFF(X(T)) meansthe derivative of F for
X(T).

We aso see that the command DERIV can't be used for finding such
things like for example

TSIN(X)
TSIN(X)

right out of the box (simply because it returns the wrong result). If we
enter DERIV(T,T), then T = SIN(X), and then press ESIEE]], the
HP49G returns DERIV(SIN(X), SINXX)) , which isn't much of ahelp,
since the evaluation of this expression will till return COS(X) and not
1. But entering DERIV(T, T), then entering the list {T SINXX)}, and
then pressing [], does return the correct result 1. Thisworks asoin
algebraic syntax. Enter DERIV(T,T)| , and evaluate to get again 1.

T=SINX

Volume 1, 1-40

Basic Calculus with the HP49G - Volume 1 - Part

Isthat a hope for easy formulation and correct evaluation of arbitrary aT T 6
DERIV%— - BX\/: + 3,T;

flexpressionl o
flexpression2

then enter the list {T 2 ><X2} and press[T] to get:
Might be. Let's try some more complicated examples, and see if we

get the correct results. (2 31X - 3) $X|

Suppose we want to find: SQ(X) 4

X2- 3xX +3 which is OK. From the second derivative we get
f(2x?) (24X +3)4X]

We can't enter directly DERIV(X2 - 3% +3,2 ><X2) , because this SQ(X) 4

would actually return the result of DERIV(X2 -3 +3,X). Butif The program dF1F2 finds exactly the same results, but it also does the
above parametrisation automatically. The advantage of using DERIV
with | isthat the derivation and the back substitution are carried out in
one step. So we keep this in mind as it might prove useful for our

we think the expression of derivation 2 xX” asasingle variable, say
T, then we have:

R T . T . T improvements of dFI1F2. Thereal problem comesin caseslike for
2X°=T0 X*==, 2xX*=TU X*==0 X=%|= example:
2 2 2
2
So we can write the derivative as: X +Y) +X
IxX+Y
DERIV‘?E—r -3 x\/f + 3,T9 that iswhen we derivative for an expression that contains more than one
e2 2 variables. In such cases, if we do the parametrisation X +Y =T, then

writing DERIV(T2 +T- Y,T) would be wrong (for the CAS logic of

the HP49G). We should write DERIV(T? +T - Y(T),T), to denote that
==l T 0 the remaining Y, still isafunction of the derivation variable T . But

DERIVE_Z +3x\/; +3’Tg then, if we enter {T X+Y} andpress[]], weget

We try with the first expression. Enter: 2{X +Y)+1- d1Y(X +Y). Thelast term in this expression,

d1Y(X +Y), denotesthe derivative of Y for X +Y , i.e. afunction Y

Volume 1, 1-41

or:

Basic Calculus with the HP49G - Volume 1 - Part

that depends on... thesum X +Y , i.e. onitself!!! Thisis apparently
somehow pathological. But if we remember that X +Y =T, we see
that d1Y(X +Y) = d1Y(T). How to avoid such apparently

pathological results on the HP49G? Remember, d1Y(X +Y) isthe
result of using the list {T X +Y} asargumentfor |.Inthe
expression T? +T - Y(T) which must be differentiated, Y isa
function of T.Butinthelist {T X+ Y} thequantity Y doesn't
depend on anything, it is afree variable. We should rather have used

{T x+Y(T)}.Enter DERIV(T? +T - Y(T),T), then

{T X+Y(T)} and then press[T]. Theresult is

2{(X +Y(T))+1- d1Y(X +Y(T)). Now the formal derivative
d1Y(X +Y(T)) isno more so pathological, becausesince T =X +Y,
we have Y =T - X, and so for the derivative d1Y(X +Y) we have
d1Y(X +Y(T)) = d1Y(X + T - X) = d1Y(T). Weonly had to make
the dependence of Y on T explicit by writing Y (T).

Anyway, we see that taking derivatives for expressions and not for
single variables is not always so straight forward. We will return to
them, as already said, when we see how to take derivatives of
functions in parametric representation.

We go on examining formal derivatives and DERIV . Enter F(S),
then Y, and press[lSgkd to find the derivative. Theresult is
COS(Y)xdF(SINY)). The HP49G used the chain rule to return the
product of the derivativefor Y of the inner function SIN(Y), which
isstored in S, with the derivative of the outer function. As the latter is
totally undefined, the HP49G returns dFF(SIN(Y)), to denote that
derivative in a genera abstract way. If we evaluate or expand
DERIV(F(S),Y), we get COS(Y)>dF(SINY)) again. Notice here
the difference to 1, which returned 0. In both cases the command

DERIV triggered evaluation of the variable S in F(S), and the result
was F(COS(Y)). Then, the derivation for Y was carried out, and

COS(Y)xdF(SINY)) wasfound. At this point, we collect all the cases
inasingletable again, for a better understanding of the behaviour of the
command DERIV . There are four tables for this. Thefirst tableison
the next page and contains cases of differentiation of an expression or a
user defined function for avariable. The second table is on the page after
the next and contains cases of differentiation of an expression or a user
defined function for a quoted variable a la QUOTE(variable). The
third table is on the page 1-45 and contains the cases of differentiation of
afunction that isn't defined, that is cases of formal differentiation for a
variable. The fourth table is on the page 1-46 and contains the cases of
differentiation of a function that isn't defined, that is cases of formal
differentiation for a quoted variable a la QUOTE(variable). In all
tables, regions with the same colour are those which return their results
using the same mechanism. Like in the tables for T, it is not the same
result that makes up aregion, but rather the same way that is followed
by the HP49G to return these results.

Let's do some examples that are more complex. We use what we know
until now, to explain how the results are derived. Keep all variables and
user defined functions because the following examples use them.

Enter F(V(X)) , then enter 'R" (in quotes) and press[EISgI. The result
is 0, aswe expect, because as we have seen aready, the user defined
function V(X) (argument of F) is evaluated before differentiation. This
gives

3 .
FEX 0
ex- 1o

Now, the HP49G sees that this function, though undefined, doesn't
depend on R, because R doesn't appear as an argument of F. Asthe
derivation variable R isn't evaluated the derivativeisfoundto be 0.

Volume 1, 1-42

Basic Calculus with the HP49G - Volume 1 - Part

RPL Syntax: Algebraic Syntax:
Enter expression then variable, then use DERIV Enter DERIV(ExpressionVar), then evaluate or expand
Variable of deri-
vation 'R X! R Y
Expression
R® +R , ,
(X? stored inR) 2R +1 0 4 XX7+2 XX 4 XX7 +2 %X
V(X) 2 3 2 3 2 3
(User function V defined 0 (X - 1)><3><X - X (X - 1)><3><X - X (X - 1)><3><X - X
SQ(X- 9 SQ(X- 9 SQ(X- 9
<< -> X 'XA3/(X-1)' >>)
V(QUOTE(X))
2 3 2 3 2 3
(User function V' defined 0 (X _ 1)>GXX - X (X _ 1)>GXX - X (X ' 1))GXX - X
as: SQ(X- 3 SQ(X- 3 SQ(X- 9
<< -> XIXA/(X-1) >>)
V(R)
User function V defined
(as: 0 (X2-1)>6XX5-X6>Q><X (X7 - 16 x°- X®2 X (X2-1)>6xX25-X6>Q><X
<< > X XYY 5>, sQ(X? - 1) SQ(X*- 3 b
X? stored in R)
V(QUOTE(R))
(User function V defined (R ;])><3 R? - R®
as: 0 0 0
<< > X XAB[(X-1) >> SQR - 9)
X? stored in R)
No evaluation Evaluation of Evaluation of Evaluation of Evaluation of Evaluation of
of expression expression function and function, function function but not of function and
and derivation and derivation function arguments arguments and function derivation variable
variables variables but not of derivation derivation arguments and but not of function
before before variable before variable before derivation variable argument before

derivation. derivation. derivation. derivation. before derivation. derivation. Volume 1. 1-43

Basic Calculus with the HP49G - Volume 1 - Part

RPL Syntax: Algebraic Syntax:
Enter expression then variable, then use DERIV Enter DERIV(ExpressionVar), then evaluate or expand
Variable of deri-
vaon| 'QUOTE(R)’ 'QUOTE(X) 'QUOTE(R)’ 'QUOTE(X)
Expression
R® +R ,
(X?storedinR) | T | T 0 42X+ 2K
V(X)
2 3
(User function V defined | 0 (X- 18xX* - X
as: SQ(X- 3
<< > X 'XA3/(X-1) >>)
V(QUOTE(X)) , s
(User function V defined | | 0 (X - 1)><3><X - X
as: SQ(X- 1
<< -> X'XA3/(X-1)' >>)
V(R)
(User function V defined 0 (X2 - 1) 56 X3 XE 2R
AS | A ——— —
<< -> X 'XA3/(X-1) >> sQ(x- 1)
X? stored inR)
V(QUOTE(R))
(User function V defined (R .])>3 R - R®
as: | e 0
<< -> X XA3/(X-1) >> SQR-)
X? stored inR)
DERIV Error: Evaluation of function ~ Evaluation of function

Bad argument value

and function arguments but not of function

but not of derivation arguments and
variable before derivation variable
derivation. before derivation.

Volume 1, 1-44

Basic Calculus with the HP49G - Volume 1 - Part

If you enter F(V(X)) again, but then take the derivative with respect ~ Thisis used as argument for the undefined function F, that is we get:
to X using the command DERIV , then the result is: §X3 5

(X - 1)3x* - X° eex3 0 & 1o
SQ(X- 1) X 10

This result is then differentiated for X. According to the rules of

Following again our known rules we can understand that. First of all derivationwe get:

the function V(X) is evaluated. The result of this action is: (X-)R- X _@X° s

NE SQ(X- 9 ex - 1o
X-1 where the expression
RPL Syntax: Algebraic Syntax:
Enter expression then variable, Enter DERIV(ExpressionVar) ,
then use DERIV then evaluate
Variable of deri-
vation | 'R’ ‘X' 'R’ X'
Expression
Formal differentiation with expansion
F(X) 0 d]F(X) d]F(X) d]F(X) of intermediate differential forms.
2 2 2 Formal differentiation with expansion
() 0 2>XX >d:F(X) 2>XX ><:”F(X) 2>XX ><:”F(X) of intermediate differential forms but
no evaluation of the derivation
(QUOTE) 0 d]F(X) d]F(X) d]F(X) variable.
0 2 2 2 Formal differentiation with expansion
() 2XX Xd:F(X) 2XX Xd]F(X) 2XX Xd]F(X) of intermediate differential forms but
X? stored in R no evaluation of function arguments
F(RZ) 0 4 %3 >d:|F(X4) 4 %3 >d:F(X4) 4 %3 >d:F(X4) and derivation variable.
X? in R
stored in In algebraic syntax quoting
dF(R) |0 2 2 arguments of functions of which we
F(ZQUOTE(R)) () 2K >d]F(X) 2K >d]F(X) take derivatives, seems not to have
X* stored in R |any effect at all

Volume 1, 1-45

Basic Calculus with the HP49G - Volume 1 - Part

3 .
d]FE:E X" 6 stands for the formal derivative of
ex-19

=X s

eXlﬂ

that means a derivative which can't be explicitly given, since F is

undefined.

We try to find the derivative of V(F(R)) for R and for X. If you
enter V(F(R)), then 'R', and then press [BJS5IR, get 0. This shows
again, that the argument of F,whichis R, getsevaluated to its

contents, which are XZ.AfterthiswehaveV(F(Xz)),Which

differentiatedforR must return 0, since it doesn't depend on R . But if
you enter V(F(R)), then X, and then press[BS5R4. you get:

(F(x?)- 158 (x?)" 20 dTF(X?) - F(X2)’ 520 dF(X?) |

SQ(F(XZ)- 1)

Let's see how this was produced. First, the argument of F was
evaluated. Thisargument wasR , and since X” isstored inR , the result
of the evaluation was X”. Thiswas used as argument for F, and
because F isundefined, we ssmply get F(Xz). This expression was

RPL Syntax:

Enter expression then variable,

Algebraic Syntax:

Enter DERIV(ExpressionVar),

DERIV Error:
Bad Argument Value

Formal differentiation with expansion
of intermediate differential forms but
no evaluation of the derivation
variable.

then use DERIV then evaluate
Variable of deri-
vation 'QUOTE(R)' 'QUOTE(X)’ 'QUOTE(R)' 'QUOTE(X)'

Expression
F(X) 0 dF(X)

() 0 2 XX >d]F(X2)

F(QUOTE(x)) 0 dF(X)

() 0 2 XX >d]F(X2)
X? stored in R
F(R?) 0 4% dF(X")
X? stored in R
F(QUOTE(R)) 0 2> F(X?)
X? stored in R

In algebraic syntax quoting
arguments of functions of which we
take derivatives, seems not to have

any effect at all

Volume 1, 1-46

Basic Calculus with the HP49G - Volume 1 - Part

used as argument for V. So instead of getting:

X3
X-1

we got:
F)
F(x*)- 1

Next, the differentiation for X was carried out. According to the rules
of differentiation for aratio, we have:

ﬂ 2 2 ﬂ 2
=r(xe) o (FX7)-) (FO)) - FOC) g (FOC) -
W) ST

Carrying out the derivations of the right hand side of the last equation,

and keeping in mind that dF(X”) isthe formal derivative of F(X?),

we see that the result returned by the HP49G was correct (inside the
frame of its evaluation rules).

Do some examples for yourself and try to predict the behaviour of the
command DERIV, using the knowledge that we have so far.
Remember that QUOTE can aso be used with formal functions,

which means that F(QUOTE(R)) is perfectly OK. Note that the
command DERIV (and aso thefunction 1) doesn't like
QUOTE(variable) asthe differentiation variablein RPL syntax. But
DERIV accepts QUOTE(variable) asthedifferentiation variablein

algebraic syntax. Note also, that in agebraic syntax, quoting
arguments of functions doesn't seem to work at al. The arguments

seem to be always completely evaluated before differentiation.

Take heart, we almost finished this exhaustive study of the derivation
commands. We examine some more complex examples of derivation of

undefined functions with DERIV . Enter DERIV(F(Y,X),X) and
expand. This will return d2F(Y,X), just as expected. Enter
DERIV(F(X) >G(X),X) and expand thisto get:

G(X) xdF(X) +

Enter:

F(X)xd1G(X)

DERlv?(X) ’G(X)
e G(X)+X

If you now expand you get:

(G0x)° +X>G(X)*) E(X) +(G(X) +2 % G(x)) H(X) 1G(X) -
G(X)* +2xX xG(X) +X?

G(X)" #(X)

This contains only derivatives of asingle function for asingle variable,
which makes easier to see how the differential forms participate to built-
up the derivative

1 EFX)G(X)'8

X e G(X)+X g’
We see that DERIV behaves like { when it finds some function of
which it doesn't know how to built the derivative. Also, exactly like
working with 1, the expressions DERIV(G(XZ),X) and d]G(XZ) are
not equal. In this particular case for the HP49G the relation holds:

DERIV(G(X?),X) = 2 % xd15(x?)

Volume 1, 1-47

Basic Calculus with the HP49G - Volume 1 - Part

Only in cases where the function has simple names as arguments, like expand, you are going to get 4 %>, which is wrong because it is the

for example G(X,Y), the two notations DERIV(G(X,Y),X) and
d1G(X,Y) are equivalent.

The command DERIV can aso be used for implicit derivationsin the
same syntax like 1. Enter SIN(Y(X)) = Y(X) - X, then enter X, and

then press[EIEgM, to get COS(Y(X))>d1Y(X) = d1Y(X) - 1.

Last thing we are going to examine is how substitutions behave, when
used with expressions that contain DERIV. Enter DERIV(X” - 1X),

then X =Y and then pressEEIEE]]. Theresult is DERIV(Y - lY),

which showsthat SUBST only substituted all occurrences of X with
Y but didn't do anything else. Undo the last operation, and edit the

equation in stack level 1to X = Y?. Press again EBEE]]. Thistime the
HP49G returns DERIV(() -1Y) which as we know is exactly

the&ameasﬁwehadenteredDERlV(()],Y)

On the other hand, we have also the command | for substitutions.

Undo the |ast operation, drop the equation X = Y?, and enter the list
{X Y}. Press[T]. Theresult is now the expression 2 XY . The

function | not only did the substitution but triggered also the CASto
carry out the derivation, after the substitution. Undo the operation,

and edit the list to {X Y2} . Press[]] againto get 2xY?, which as
we have seen is the correct result of

el

Strange is only that if you enter directly DERIV(() 1Y)

result of derivationfor Y and not for Y. Y ou get the right result too, if
you enter DERIV(],X)l and expand or evaluate.

Another available command for derivation isthe command DERVX . It
works like DERIV , but it always takes the derivative for the current

VX . It needs only one argument, namely the expression of which we
want to find the derivative.

From what we have seen until now, it seems that EVAL gives us more
detailed control of what and how we want to work with derivatives.
Especially in combinationwith QUOTE and SHOW , this command is
very flexible. And this makesit a very powerful tool for programming,
when we want to do something special exactly the way we want to. On
the other hand, the real power of EXPAND isthat it ismore"fire and
forget", asit (almost) aways does its job from the beginning to the end
without any user intervention. (Goodness! | talk like amilitary man - too
much TV-war in the last days.)

Now that we have finished the long path of the workings of derivation
commands, we return to our main path. With the HP49G it is easy not
only to find some derivative or slope of a given expression, but also to
find if some expression has a derivative at some given point. Consider

for example X”. How can we find out if this expression has a derivative
at X =X,?Inthiscaseit isapiece of cake. One of the many many ways
to do that isto enter

1 (xz*
™ Ak,

and expand. We get 2 XX, which is defined everywhere. The derivative

exists at any point X,. Another example: Does the expression X have
aderivativeat X = 07?If we enter:

Volume 1, 1-48

Basic Calculus with the HP49G - Volume 1 - Part

)

X=0

and expand, then we get ?. Thederivativeisn't definedat X = 0.
Samewith e* "% at X = 2. Enter:

Al (eIX- zl)‘
ix x=2

and expand to get ?, which shows that the derivative is not defined at

that point. Especialy for the last example, €*?, we can usethe
program ISCONT? of SESELIMA to check if it is continuous at

X = 2. If you want to check that, enter €*? and X = 2 again and let
ISCONT? run. Theresult will bea 1, which shows that the
expression is continuous at that
point. If you plot the function,
then you see something like the
picture on the right. At X =2
we have a sharp bent (indicated
by the small dot). Such bents, +
peaks, and in generd
"unsmoothnesses’ ae T
candidates as points where the | , |
derivative isn't defined. But ! ! !
nonetheless the function is

continuous at that point. Thisisademonstration for the fact that if the
derivative of a function exists at some point, then the function is
continuous. But if the derivative doesn't exist at that point, then we
can't say anything about the steadiness of the function at that point. It
could be continuous, it could jump, anything is possible. Actualy
there are functions that are continuous everywhere and at the same
time their derivative isn't defined anywhere at al!!! (Trabakoulas
raises one eye brown and says "fascinating” ;-)) That means, dear
math freaks, that these functions consist in away... of infinite many
infinitesimal small sharp bents. You wanna see one? Don't expect

anything spectacular. trigonometric functions are already enough. For
example the function:

w(x) = 5 a" ><cos(b”) >9<)

n=1

with:

O<a<l, b>0, integerb , and a>b>1+37>p

is such a beast. Don't even try to plot such a thing. You would need
infinite resolution which no computing device on this world can give
you. And if you still do, hopping to catch the real looking of the
function by building the sum for the first, say 10 summands, you are
going to get quite asurprise itstime you zoomin. (OK, OK, | did that. |
expanded:

n

& &l f
— — xc0os(60" xp X
& 790 "005(60" 0 %)

and plotted the resulting expression. Each time | zoomed in, | had new
zig zags. And that with only the first 10 summands of the function.)

Btw, it was Weierstral’d that discovered this function. And it was a quite
fascinating discovery, an unexpected event, which happened because
mathematics before him was practised the way it was practised. Let's
take alook at math history to understand that. For quite along time there
was no clear and sharply defined definition for what "smooth function”
and should be. Though mathematicians worked already with functions
and derivatives, nobody knew how to sharply define what a point
should be, where a derivative isn't defined. It was believed that a
continuous function of one free variable is in general differentiable
everywhere, except for some "pathological points®, where the derivative
doesn't exist. But then came the reconstruction of these terms,
"continuous' and “differentiable’, in terms of e-d (look at

Volume 1, 1-49

Basic Calculus with the HP49G - Volume 1 - Part

SESELIMA). After this, it appeared that such unbelievable functions
could be constructed, like the one above, that are nowhere
differentiable and still continuous everywhere. And because such a
function (still) looks like a marvel, and because mathematicians have
often the flair for marvels, they searched and found these marvellous
functions. All the magic of Copperfield is nothing compared to the
Welerstral3d function. An even bigger marvel however is, how much
mathematics can be done, without these sharp definitions, simply by
intuition. In the times before the invention of e- d, therewas still a
huge amount of knowledge about functions. Admittedly, the redl
beauty was reveded after e- d, but nonethelessit is still amazing
how much was known before.

End of history, back to the present. The derivative of a function can
be considered itself as a function. For example, enter e X and press
X - (e' X %X >Q). This function has itself a derivative

which you can find if you press [W2sRed again: (2 XX - 1) e X 0.
In algebraic syntax you could enter DERVX(DERVX(e'XZ)), or
1 eef

X eqX
(DERIV(e' x x)) . Expanding that will return the second

derivative in one step. Higher derivatives can be found for undefined
functions too. For example you can enter F(XZ) and press [MazKE

twice to get the result (2 >dld1:(X2) xX? +dJF(X2))>Q. The
expression dldlZ(Xz) denotes the derivative for the first variable of

the derivative for the first variable of F(XZ) .Itisaformal derivative

of second order. Such higher order formal derivatives can be used
exactly like the formal derivatives of first order (including user
defined derivatives). And not only this. If you define the derivative of
some particular order, the HP49G is able to find any higher order

DERIV(DERIV(e' X ,x),x), or

like ik
X

(e'xz)g, or any mixed form

derivative using your definition. For example, if you enter
dFUNC(X) = X>e™* and pressEF], then the variable dFFUNC is
created, which takes one variable from the stack and returns the first
derivative of FUNC(variable) for variable. If you now enter

d1dFUNC(X) and expand, then the HP49G uses your definition to
return the second derivative.

Another thing that | should tell here, is that such derivatives may also
appear when the function that is differentiated is a built-in function. For
example, if you take the derivative of X! for X, the HP49G returns
d12(X). This means the derivative of the function ! for the first variable.
Here we see that the HP49G has aso built-in functions of which it
doesn't know how to take the derivative. Don't worry however, these
functions are just a few and most of the time you can define a user
defined derivative which will be used much like the derivatives that the
HP49G knows how to take. Let's take for example the function
GAMMA for which the HP49G returns dIGAMMA(X) asits
derivative. Asyou might already know:

_“'”gsx)) =Y(0 g3 x%x) - Y () 0 “fﬁ;ix) = G(x) ¥ ()

Since the HP49G has the functions G(x) and Y (x) built-in
(GAMMA(x) and Psi(x) respectively - unfortunately no greek letters G

and Y), we can make the use defined derivative. Enter
dIGAMMA(X) = GAMMA(X) *Psi(X) and pressPEF] to define the

derivative. Let'stry it. Enter DERIV(GAMMA(SIN(X)),X) and expand

to get the result COS(X)>GAMMA(SINX))*Psi(SIN(X)) which
doesn't contain any forma derivative anymore. If you enter
GAMMA(SIN(X)) , then X, and then press [BIZgR, you get

COS(X) xd1GAMMA(SIN(X)). This doesn't mean that our user
defined derivative doesn't work in RPL syntax, you just have to press

Volume 1, 1-50

Basic Calculus with the HP49G - Volume 1 - Part

SEFNE to convert the expression to
COS(X) *GAMMA(SINX))*Psi(SIN(X)). Since G(x +1) = x! (this
equation is an identity!), we obtain:

1]
IGbctd) I X gy (x+1)
Ix X Ix
which we can use to make a user defined derivative for the built-in
function I. We only need to define

d2(X) = GAMMA(X +1)»Psi(X + 1) . (Alternatively if we already
have defined dIGAMMA(X) we can also define

d1(X) = dIGAMMA(X + 1)). But the problem is that we can't enter
the name d1 because the HP49G things that we mean the factoria of
d1. So we haveto search in the trick box again. As we have seen, the
expression d2(X) isreturned when we try to take the derivative of !.
We can use this answer to built up our definition - somehow reminds
me of "anything that you say can be used against you ;-). Enter X!,
then X, and press[i]=gkd to get d1(X) . Now, enter the expression
GAMMA(X + 1) Psi(X +1) and press[=] to get the result

d1(X) = GAMMA(X +1) *Psi(X +1). PressEF| to make the
definition. Let'stry that. Enter:

ﬂ |
7 (X))

and expand. Oops, it stayed at d2(X). Perhaps another expand?
Doesn't help either. The same happens if you start with
DERIV(X!,X) or if you use RPL syntax. The resulting function d2

in the algebraic object d21(X) doesn't seem to want to be eval uated.

Y ou can evaluate it, expand it, do anything you want. The darn thing
is there, the HP49G is able to evaluate any user defined function that
existsin the current path, but this damned d2 just doesn't want to get

evaluated though the internal structure of the expression d1(X) isthe

samelikethe structure of F(X), G(X), or even VPN(X). For methisis
one of the most mysterious questions about the HP49G. Why doesn't
d1(X) get evaluated when the user defined derivative exists?
But we don't give up yet. Let's try to see if there is any difference
between the d1 that exists as avariablein the current directory and the
d1 that the derivation of X! returns. Press (second page of menu
PRG/MEM/DIR) to get alist of the variablesin the current directory. If
d2 wasthelast thing that you defined the list will look like

{d2 v other names}. If thelist looks different, then find out at

which position d1 is. Enter the number of the position of d1 inthelist
and press to extract d2 from the list. (We do all this because we
can't directly enter the name d1. If we do so the built-in command line
parser will thing that we mean the factorial of the variable d1, and not
the derivative of the function ! for the first variable.) Now, enter X!,
then X, and then press [BJ3gd to get d2(X). We have to extract the
name d1 out of the algebraic object. Press (second page of
menu 256) to get the list {X 'd1' #lh }.Theobjectdl isat

position 2, so enter 2 and pressfelg). Do you see the difference? The
object in stack level 2isthename 'd1', while the object on stack level 1
isthe algebraic object d1 that consists only of the name d1. Enter X,
and press [8ff=s] to get acopy of d2 on stack level 1. PressEVAL.
Evaluation of the algebraic object d1 just putsthe name 'd1" on the
stack. You have to evaluate once agan to Qet
GAMMA(X + 1) »Psi(X +1). Thisis the normal way of evaluation of an
algebraic object containing only one name of an existing user defined
function. And here is the question: Why isn't then the expression
d1(X) evauated to GAMMA(X + 1) »Psi(X +1) even after two
evaluations? If you had pressed [FHZERE instead of EVAL], then the first
EXPAND would turn the algebraic object d1 to the name 'd1" and
subsequent expansions would leave the name d1 unchanged. Anyway,
the user defined derivative d1 isuselessin thisform. We must find
another way. But before we do that, let's allow my alter ego HULK
come out and speak for a moment:

Volume 1, 1-51

Basic Calculus with the HP49G - Volume 1 - Part

...thank you very much indeed, ACO, that you put so much power
in the HP49G, yet made it also so full of mysteries that its usage
requires such headaches. And for me, the user, explanations about
inner workings of the function !, or any other command, just don't
count. | don't want to know how the HP49G does its work, | want
a CAS that is uniform in its behaviour on the interface between
human and machine... grrrrr!

OK Hulk, de-green again :-)

Now we have to purge d2. Since direct input of d1 wouldn't work,
you have to use again VARS, and extract the name d1 from the list
of variables. With the name d1 on stack level 1 press[[izea to get
rid of that beast.

Thanks goodness there is the synonym FACT for the function!. So
perhaps we use that? Hmm, let's try. Enter

dFACT(X) = GAMMA(X +1)Psi(X +1) and pressPEF|. Now, go
to the EQW and enter:

1

— (FACT(X +1

ax FACT(X +1)

Puu that on the sack and expand to et

GAMMA(X + 1+1)>Psi(X +1+ 1) . It works! But we have a new
problem. We can't use that with RPL syntax. If you enter X +1 and
then FACT , the HP49G returns X!¥X +1). (Automatic smplification
using the rule (X +1)!= XXX +1). If you enter X and then FACT,
then the result is X!. All occurrences of FACT arereplaced by !. If
you now try to take the derivative for X you will of course end up
with expressions containing d1, which we don't want to have. But
hey! We could make a program that converts al occurrences of ! to
FACT . Enter the program:

<<
{ "&A1" "FACT(&A)" }

- MATCH DROP
>>

and store the program in ® FACT . If you work with RPL syntax, you
can convert all occurrences of ! to FACT before derivation, in order to
get an expression that contains dIFACT . For example, enter again
(X +1)!. Expand that to get X!¥X +1). Now, press E=JZ=&j to convert
that to FACT(X)XX+1).Enter X and press[SlEghg to get
dIFACT(X) XX +1) +FACT(X) . Expand this to get

(X +1) xGAMMA(X +1) $Psi(X +1) + X!.

Alternatively you can enter (X +1)! and press X without
expanding. Theresult is FACT(X + 1). Now you can enter X and press
to get dFFACT(X +1) . Expanding this you will get

GAMMA(X + 1+1)>Psi(X +1+1) . If you want you could also make a
program that matches GAMMA(something) to (something- 1), in

order to get results that contain only !, but no GAMMA . For example
the code

<<
{ "GAMMA(ZAI)"
- MATCH DROP

"(&A-1)1" }
>>
would do this conversion.

Perhaps now that we have seen that there are built-in functions for
which the HP49G doesn't know how to take their derivatives out of the
box, it is a good time to say some words about operations, commands
functions and so on. Anything that the HP49G can perform is an
operation. When you press[+] to add two numbers, the HP49G carries

out an operation. When you press [*£F] to go to variables menu, the

HP49G carries out another operation. Of all operations, those that are

Volume 1, 1-52

Basic Calculus with the HP49G - Volume 1 - Part

programmable are called commands. So for example, + isa
command, because it is programmable. But pressing the key [T£H]
isn't programmable and so it isn't a command. There are of course
programmable equivalents for many operations that are not
programmable. For example you can use 2 MENU to get the
variables menu. On the HP49G when no other programmable
equivalent exists, thereisawaysthe possibility to use KEYEVAL, to
simulate a key press. For example, pressing [¥£R] can beaso
programmed with 31 KEYEVAL.We see until now that the
commands are asubset of all available operations. Commandsthat are
allowed in algebraic objects are called functions. For example + isa
function because it is alowed in
an agebraic object, but the
command PATH isnot a
function because you can't put Commands
that in an algebraic object.

Operations

Again, functions are a subset of Functions
commands. And last we have } }
those functions for which the Analytic Functions

HP49G provides an inverse and
aderivative. These functions are
analytic functions in the
terminology of the HP49G.
They are a subset of the
functions. So we have an
architecture like the picture on
the right.

The sentence "provides an inverse and a derivative for a function”
means that the HP49G can solve function(x) =y analytically for x,

and can find the derivative lx(function(x)) without any user

intervention. In the terminology of the HP49G for example, the
functions, ! or GAMMA, are not analytic, because the HP49G can't
solve GAMMA(X) = Y analyticaly (though it can do that numerically

for numeric values of Y), and can't find ﬂlx (GAMMA(X)) (though we

can make a user defined derivative). Note that the meanings of
"function” and "analytic function" for the HP49G are not 100% identical
with their mathematical meanings.

The HP49G provides also powerful toolsin the plotting environment for
finding slopes and derivatives in an interactive way. Let's try one
example. Go to the PLOT SETUP screen and choose plot type

Function . Enter:

SIN(X)

X

asthe function to plot, and X asthe independent variable. After this, go
tothe PLOT WINDOW - FUNCTION screen and set H- View
from - 12.5 t0 12.5. Press [Sgf%]= and E2Njge] (for automatic scaling
of V- View). When the HP49G finishes automatic scaling, press
erAty to let the HP49G plot the function. Now we are going to add the
derivative of the function to the already existing plot. We don't need to
move out of the plotting environment, find the derivative, add it to the
functions to plot, and redraw. Press [gagl] which brings up a menu with
many tools that relate to plotting functions. Move the graphics cursor
some 10 pixels to the
right and press g .
This operation finds and
displays the slope of the
Lun_ctionalat th?j . currerllt
orizontal coordinate. It
also puts a copy of the e S
slope on the stack. Press
any menu key to display the menu again, and press[l%1] to go to the
second page of the menu. Now, press [@l}. Thisfinds the derivative of
the function, adds it to the functions to plot, and redraws both functions.
I';] all_so leaves the menu FCN. Now the reserved variable EQ contains
thelist:

Volume 1, 1-53

Basic Calculus with the HP49G - Volume 1 - Part

| X xCOS(X)- SIN(X) SIN(X) i
i X X

The HP49G added the derivative to the functions to be plotted. Press
again. Since we have two functionsin the list, the question is,

on which of them will the tools of the menu FCN operate? The
answer is. On the first. That means, if you for example move the

cursor somewhere and pressEjRsJds), the slope will be found for

X xCOS(X) - SIN(X)
X2

that is for the derivative that we found. You can take a look at the
function on which the tools operate by pressing 21 and then[¥F|.
This displays the first function in the list for about one second on the
top of the screen. If you want to switch to the next function in the lit,
move the cursor a bit to the right or to the left, press[<T] and then
. The cursor moves then to the next function which gets
displayed on the bottom of the screen. (We move the cursor a bit

SINT(X) to find the

vertical coordinate. Sinceat X = 0 we havedivision by 0, this causes
the HP49G to leave the plotting environment because of error.)
Pressing [JE{2#] also rollstheitemsin the equation list. The first

equation is moved to the last place. The second moves to the first
place. The third to the second, and so on. Now press some menu key
again to display the menu, move the cursor again some 10 plxels to

away from X = 0, because the HP49G would use

the right and press [l to draw the tangent line of at that

\,%

point and display its

equation on the bottom

of the screen. A copy of

this equation is placed

on the stack for later _ =
use. If you leave the =™ -/

plotting environment and return to the stack you will see the slope and
the equation of the tangential line that the HP49G put there for you. (The
equation of the tangential lineisn't added in the list of equationsto plot.)

Let's move on now to the other calculus stuff. First of all, automatic
scaling has created the variable X . Y ou may want to purge it now, asit

isoftenthevariable VX and thisinterferes with the CAS of the HP49G.
One of the calculus statements, that doesn't sound very interesting at
first, but nonetheless has immense consequences, is.

If a function y=f(x)iscontinuousin a£x£b and
differentiable in a<x<b, then there exists always some
f(b) - f(a) _ T(x)
b-a B fix X=X
That means geometrically that the slope of the tangent line
of f(x) at x =x isequal to the slope of the secant that goes

though the points (a,f(a)) and (b,f(b)).

value x between a and b, such that

If we have a function f(x), two

points a and b, can wethen
find on the HP49G what the
equation of the secant line is,
that goes through the points
(a.f(a)) and (b,f(b))? Yes, we
can. This operation wasn't
included in the tools of the menu (a)
FCN of the plotting "\@
environment, but nonetheless it -

is easy to do that. Suppose that

we have the function a X b

F(X) =(x* - 1) ™) and we

want to find the equation of the line that goes through (0,F(0)) and
(LF(2). Enter:

f(b)

Volume 1, 1-54

Basic Calculus with the HP49G - Volume 1 - Part

F(X) =(x* - e ™)

and press PEF] to create the user defined function F. We are going to
need the user defined function F and the commandsR ® C and
DROITE . Since they reside al in different menus, we make a new
temporary menu that contans them al. Enter the list

{F R® C DROITE} and pressff[Z3. This creates atemporary
menu with the commands that we need. The menu exists only until we
leaveit. Enter O, the first X -coordinate. Press to make a copy
of it on stack level 2, and press the menu key . Thisreturns - 1,
the 'Y -coordinate that correspondsto X = 0. Press the menu key
EEYH to create the complex number (point on the plane) (0.,-1.) out
of the numbers on stack levels 1 and 2. Now, enter 1, pressENTEF]
to make a copy at stack level 2, press gl and then again EEga to get
the second point, (1.,0.). Now, press [Ba@id. The command
DROITE takestwo points from the stack and returns the equation of

the line that goes through these points. The points can be two complex
numbers, in numeric or in agebraic style. That means that we can use

for example (0.,-1.) and (1.,0.) (likewedid), or 0- i and 1. The

equation that DROITE returnedisY =X - 0.- 1.. It contains
numeric (real) values because we used numeric complex numbers.

Press@ to turn them to exact integers and [ZgEEE toget Y = X - 1,

the equation of the line that goes through (0,- 1) and (1,0). All the
aboveis of course easy to program.

<<

PUSH @Save user"s settings

® fvab @Store in local variables

<<
ab2 ®LIST @Make a list of the two coords
1 << ® NUM >> @Turn them to numbers
DOSUBS
T
v PICK3 = @make list {var=a var=b} and
SUBST @substitute in function

EXPAND R® C @Make list {(a,f(a) (b,f(b)}

0BJ® DROP @Explode it

DROITE @Find secant line

EXPAND

RCLVX v = SUBST @Use variable of function
pPoP @Restore user"s settings

>>

Store the program in SECLINE. If you want, you can add XQ after
the last EXPAND . The program takes from the stack the function, its

variable, and the two x-coordinates. Let's test it. Enter SIN(X)»e *, X,

3 .
g and Tm , and press i=MilfI4. Theresultis:

Y =- (.180967365884>§>(; .493414050108). Note that this

program will work only for points that are evaluable to numbers,
because the command DROITE doesn't work with symbolic
arguments. If we want a program that does its work with any possible
argument type, we unfortunately have to abandon the easiness of
DROITE and do all work ourselves. But we can get support from the
already existing program DQUOT . This program doesn't expect two x-
coordinates but rather one x-coordinate and Dx. So, if we want to use it
for a secant, we have to transform the two x-coordinates. Thisis easily
done by not providing the x-coordinates a and b themselves, but a and
b - a (instead of Dx). The program then returns the slope of the secant
line. The only thing that remainsthen isto program the cal culation of the
constant of the equation of the secant line. If the function that we haveis
f, and the x-coordinates are a and b respectively, then this constant is
given by:

f(a)xb - f(b)>a
b-a

The program SECLINE that comes with this document uses this
method.

Volume 1, 1-55

Basic Calculus with the HP49G - Volume 1 - Part

<<

PUSH @Save user"s settings
® fvab @Store in local variables
<<
"Yy* @Enter Y
f va=SUBST b * @Find (f(a)*b-f(b)*a)/(b-a)
f v b= SUBST a *
-ba-1/
fvaba- @Create arguments for DQUOT
DouoT @and call DQUOT
vV * + = @Built up secant line equation
>>
POP @Restore user"s settings

>>

It has the disadvantage that we do all work ourselves. But it is more
flexible. Let's do an example. Enter e*, X, 0 and 1. Press
FESIRE. Theresultis Y = X xe' - (X - 1), the equation of the
secant line that goes through the points (O,eo) and (], el).

Now that we have that, you might suspect what comes next. Make a
program that finds the equation of the tangent line of some function at
agiven point x,. We can find the slope of the line easily by finding
the derivative and substituting X = X, . That means, we have to find:

fit(x)

X

X=Xg

The constant of the equation of the tangent lineis given by:

f(x,) - T

Ix

X =Xg

which means that we can use the quantity

(%)

Ix

X=Xg

again. Hereisthelisting of the program TANLINE that takes afunction
f, itsvariable x, and a coordinate x,, from the stack, and returns the

equation of the tangent line at the point (x,f(x,))-

<<

PUSH @Save user"s settings
® fva @Store in local variables
<<

Y- @Enter Y

fv @rind Yf/qv

v a = SUBST @Substitute v=a

DUP v = eFind TF/v |-,

f v a = SUBST @Find f(a)

ROT a * - erind f(a)- a*Tf/v|,-,

+ EXPAND = @Built up tangent line equation
>>
popP @Restore user"s settings

>>

We test the program. Enter SIN(X), X and then 0. Press [to
get Y = X, thetangent line equation of SIN(X) at (0,SIN(0)).

Another interesting problem. Assume that you have a secant line that
goes through two points of some function. Then you search for a point
of the function, whose tangent line is parallél to the secant line. We can
make a program that takes a function f, itsvariable x, and two
coordinates a and b from the stack, finds the equation of the secant
line, and then finds the point whose tangent lineis parallel to the secant
line. This problem is also easy to solve. In order for the two lines to be
parallel, they must have the same slope. The slope of the secant lineis
given by:

Volume 1, 1-56

Basic Calculus with the HP49G - Volume 1 - Part

f(b) - f(a)

b-a

The dope of the tangent lineis given by the expression:

fif(x)

X

X=Xg

We have to find for which x,, the equation

Is satisfied. On the HP49G it suffices to solve the equation
f(b) - f(a) _ Ti(x)

b-a X
for x. Again we can use DQUOT for finding the quantity

f(b) - f(a)

b-a

Note however that in most cases the equation will not be analytically
solvable and so we will use also numerical solving. Hereisthelisting
of the program TANPARSEC (TANgent line PARalldl to SECant
line - do you have a better name?)

<<

PUSH @Save user"s settings
® fvab @Store in local variables
<<
fv @Find If/qv
f vaba- EXPAND @Find (f(b)-f(a))/(b-a)
DouoTt

DUP "Slope" ® TAG @Label result

UNROT = v @Create arguments for ZEROS
“"Try analytically” @Inform user what"s going on.
1 DISP
IFERR @1f trying to solve errors
ZEROS
THEN @then
"Failed.
Try numerically” @Inform user
1 DISP
b a- 2./ ROOT @and try numerically
v PURGE @Purge created variable
END
>>
popP @Restore user"s settings
>>
1 p 3)p el =]
Let'stry the program. Enter SIN(X), X, > and - Press EZHIE
to get:
- 2%
Y = E;:EL__Eé_zs
p

This is the equation of the tangent line. Now, re-enter SIN(X), X,

3
Tm , and press RIS

N |T

and . Theresults are the tagged objects:

X: -8 onlp+ AcOsZ 200 N1 + AcosZ 20y
i€ &p %o ¢pop

Volume 1, 1-57

Basic Calculus with the HP49G - Volume 1 - Part

That means that the slope of the tangent (and the secant) lineis 22 :

p
and that the tangent line at the points given in the list has this slope.
We get more than one solutions because the sine is a periodic
function. Now, we want the equation of the tangent line at those
points. We work with the second solution:

2Xn1p + ACOSae—20
p 4]

Enter 2 and press[Elqy to extract it from the list. We will work with
nl=0, sowe must substitute this value in the solution. Enter n1=0

Thisisthe point where we want to find the tangent of SIN(X). Enter
SIN(X), then X, and then press [El81f to put the argumentsiin the
right order. Press to get:

2 xAcosaepZO 2 X ++/p?-

p

This is the equation of the tangent line. Let's plot the function, the
secant and the tangent line together. Press [S&kes and [gllzl to extract
the right hand side of the equation of the tangent line. Press [gllg

again to get rid of the slope. Press |E| to bring the equation of the
secant line on stack level 1 and [EEI and [{Ig to extract the right
hand side of the equation of the secant line. Enter SIN(X), then 3,

and then press . :.:, to storethelistin EQ . Set
plot type Function, mdependent variable X, horizontal view range

Y =

from O t0 6.28, and -
vertical view range
from - 1. 2 to1.5.

= g
plot that Iooks like
the picture on the T
right. Of course all
this can dso be _

wrapped in a
program that doesthe all work automatically.

Another question that one might ask is, how can we represent
differentials of functions on the HP49G? Is there any way? For

example, suppose that we have the function Y = X?. Its differential dY
isdefined as:

X2

dy = xdX U dY = 2 X xdX

Of course we can take the derivative of the function, but how can we
denotethedifferential dX of the independent variable? One way would
be to ssmply append the small "d" in front of the name of the variable.
The question is how much work can be done with such an expression.
The answer is, at least it is the possible to store some value in variable
dX (oringenera dvariableName), and evauate to get the local
description of the function at some given point. Consider for example
the program:

<<

® fv @Store in local variables
<<

fv @rind Yf/qv

"rdt v+ T+ @Make string "Tdv™"

0BJ® @Turn string to name

*

>>
>>

Volume 1, 1-58

Basic Calculus with the HP49G - Volume 1 - Part

Store this in DY. Enter SIN(X), X and then press[sfg to get
COS(X) xdX. We seethat the function SIN(X) can be described
locally, i.e. in the neighbourhood of some given point X, as

COS(XO)de, where dX issometiny quantity. When X hasa
change of dX, then SIN(X) has achange of COS(X,)xdX. For

example let's see what SIN(X) doesat X =p . Enter X = p and
press EEIEER) and [to get - dX . Thismeans that at around
X =p,when X

has a variation of —
dX, then SIN(X)
has a variation of
- dX . Asyou can d¥
see, the loca
description of the X
curve can be
approximated using | I | | | |
differentials. They

say how much the function varies at a given point, when the
independent variable variesatiny little dX . Geometricaly thisislike
wanting to represent the function by many tangent lines, one at every
point. A good way to represent that is to draw them without drawing
the function itself. For example let's draw the tangent lines of X?
from - 2 to 2, in stepsof 0.2. Wewill use the program TANLINE
to find al the equations of the tangent lines. Enter <<*x~2" *X* a
TANLINE EQ® NIP>>, 'a', -2, 2 and.2. Press[E]2#} to evaluate
(run) the program for al valuesof a from - 2 to 2 instepsof 0.2. It
takes some seconds to run, so be patient. When it finishes, stack level

1 contains alist with the equations of the tangent lines. Press§

storethelistin EQ. Set plot type Function, independent variable X,
horizontal view rangefrom - 2 to 2, and vertical view from - 1to 4.
Now press |sSgE3s]=a and then|EzEXyl to see the plot. It takes quite a
long time to start plotting, and even longer to finish the plot, so be
patient. When it finishes you have the impression that the parabola
was drawn, though we plotted only straight lines.

The higher
differentiadls can be
calculated by using the
code in DY
repeatedly. If the
variable dX whichis
introduced by DY is
not the variable of
derivationand isnot in
the original function, it
will not interfere with our operations.

<<

® fvn @Store in local variables
<<
f @Put f on stack
1 n START @Do n times
v @rFind Yf/qv
"rdt v o+ T+ @Make string ""dv""
0BJ® @Turn string to name
*
NEXT
FACTOR @Collect all dv

>>
>>

Store the new code in DY and let'stest it. We will find the second
differential of SIN(X)xe *. Enter SIN(X)xe *, then X and then 2.

Press to get - (26" *xCOS(X) dX?). As you can see the
differentia of the independent variable isn't at the very end of the

algebraic. But thisis only a cosmetic problem.

The last thing at which we take a look here is a small comparison
between the notions 'ﬂlx (F(X)) and dZF(X) that both are possible on the
HP49G. The algebraic (no pretty print) form of the notion 'ﬂlx (F(X) is

Volume 1, 1-59

Basic Calculus with the HP49G - Volume 1 - Part

X(F(X)). It looks quite similar to dIF(X). But the differences are

huge. In the notion TX(F(X)) the sequence of characters X isnot a
name. The second character isthe variable of differentiation and isthe
second argument of the function . The HP49G displays 1X(F(X))
but internally it means 7(F(X),X). It isonly aspecial display and
nothing more. Quite different in dIF(X), the sequence of character
dIFF isaname. It isanormal name that you can typein, exactly like

any other name. There is no built-in function dF or d2VPN or
d3RCOBO . So we can define our own functions, that is, we make
user defined derivatives. When the CAS of the HP49G has to
manipulate some expression, it apparently checks if names are
present, that are constructed in the way dNumberName. If it finds
any, then it uses its built-in knowledge about derivatives. So for
exampleit is possible to enter X(X), then X, and then press [il2g 4
to get d1X(X) . Thisis aquite pathological example, and | useit only
for explanations, though it might as well have its usefulness. (He, he,
you guessed right, in some of the next parts we will perhaps use it...
perhaps! ;-)) In this example the dependence of the function X on
itself is somehow "hidden” in the derivative. The function name has
become d1X and itsargument is X, i.e. we have two different names
out of two identical names of the expression X(X). Thereisyet
another difference, which | think will can be understood better, if we
focus on the difference between variables and names on the HP49G.
A name is a single object (object type 6.), like for example X, Y,
VOLUME, or even Karagiaouroglou. (OK, the last example might
be no name at all ;-)) But a variable has become quite an abstract
concept on the HP49G. On the HP48 the world was easier, variables
were names, end of story. But on the HP49G a variable can be
sometimes a name, sometimes an expression. A variable is something
that can... vary, no matter if it is a name or an expression. What the
CASconsidersavariableisarational variable and not necessarily a
simple name. For example, if you enter SIN(X %Y)- COS(Z), and

press [RREEEIE, then the HPA9G returns the vector with the names that

appear in the expression, [X Y Z].Butif you press Cvan
HP49G returns the vector of rational variables, [SIN(X xY) COS(Z)]

Apparently the two quantities SIN(X %) and COS(2) arefor the

HP49G two entities, two things, that are treated as wholes in many
(al?) symbolic manipulations. And here we have a good starting point

for understanding the difference between the two notions ﬂlx (F(X)) and
dF(X). (At this point it would be good to purge F if you still have it
from the previous pages.) The first notion, ‘ﬂix (F(X)), isthe derivative

for the name X . The second, d¥F(X), is the derivative for the rational
variable X . Of coursein this example both are the same, but if we write
X? + X instead of X between the parentheses, then we get:

1

o (F (x® + x))

and:

dF(X* + X)

Now we see that
1

o (F (x® + x))

still means the derivative for the name X. If you expand it you get
(23X +1)xdTF(X? +X). On the other hand if there s no definition of the
derivative dIF(X), then expanding dIF(X* + X) returns dF(X” + X)
unchanged, because this is the first derivative of F for wholerational
variable X’ +X. Note that the second notion counts arguments

Volume 1, 1-60

Basic Calculus with the HP49G - Volume 1 - Part

(variables) simply by position. The construction important stuff about the "technical” part of the commands for
dNumberFunctiodvarlvarZ,1/4,varN) separates the arguments derivation, which wouldn't have been covered at all. So | decided to
by commas. Between the commas we have slots where the rational €organise things (once again) and do first all that stuff that you should

variables go. So, entering know before we proceed. | hope you enjoyed it.
T @a@(; , Yoo Greetings,
Xe ey X Nick.

and expanding, returns

Y ™ Yo, Y X Yo
SQ(X) ey’'xe sSQ(X) T evy'xe

In these expressions, though we started with a derivative for a name,
we end up with derivatives for arational variable. This doesn't mean
that the result is incorrect. Quite the contrary it is correct and if it is
used wisely it isalso very useful.

Note also that the HP49G allows entering for example d100F(X).

Expanding this doesn't do anything, though the function F has only
one and not 100 variables. This means that we have a way to enter
derivatives of non-existing variables which will not disappear when

we expand or do something else. With the notation 'ﬂlx (F(X)) we

can't do that. If you expand for example ﬂlY (F(X)) (i.e. derivation

for anon existing variable), then you get 0. In the above comparison

one could aswell use DERIV(F(X),X) instead of ‘ﬂix (F(X)).

We came to the end of the first part of this marathon. If the above
things were not very exciting, then wait until the next part, which will

definitely come without delays. What comes in the next part was
originally thought for this part. But then there would be too much

Volume 1, 1-61

Hi again!

In the first part of the Basic Calculus Marathon, we spent alot of time
by examining the "technical" part of the derivation commands and
their behaviour in many different cases of syntax and arguments. We
continue this marathon examining what rules of derivation are known
to the HP49G, and what we can program ourselves.

The HP49G is able to perform (almost) all rules of differentiation.
Most of the time you don't even notice that, but the HP49G finds
derivatives following those rules. We are going to take a closer ook
to these processes by activate the step by step feature. When this
featureis activated then differentiations can befollowed from one step
to the next.

Before we go further, purge the variables and user defined functions
that we used in thefirst part, because they may interfere with what we

are goingtodo now. Enter R S V W Z Q Z1 Z2} and
press to get rid of them. If the variables don't exist, then
PURGE will not error out. It will smply remove the list from the
stack. (PURGE behavesin the sense "Deletefileif it exists'.)

Thefirst derivation rule that we are going to examineis:

1 _ 1
x (CF(X)) = CX&(C (X))

Does the HP49G know that? Let's see. Enter

)l

X
and pressEAL] to get

(C#(X))

C xﬂ—l (F(X))

Basic Calculus with the HP49G - Volume 1 - Part 2

If you press E¥2L] again, then you get C>d¥F(X). Notice that the step
by step feature works only for algebraic entry of the whole derivative
and evauation. If you enter C>(X), then X, and then press[d], you

will get the end result, without the steps in-between. Y ou have to enter
your derivative in the form

(expression)

fflname

and pressEAL]. Any other way will give you the end result in one step.
Let's have a particular example, enter

I (anv?)

and evaluate to get

1
A><W (¥?)

Evauate againto get 2 XY %A . Of course you can also expand

T anr)

to get AxX2xY immediately without any stepsin-between, but we

examine here if and how the HP49G applies derivation rules. The
opposite direction, collecting the constant in front of the derivative and
multiply it with the function inside the derivative, is not possible on the
HP49G out of the box. But we can (of course ;-)) program that. We can

use the command - MATCH to convert any occurrence of the pattern

constant x—1— (function)
ffname

Volume 1, 2-1

to the pattern

r—, (constant xfunction)

But we must watch out here. We can't blindly do this matching. We
must check first if constant isitself afunction of name. If itis,
then we can't put it inside the parentheses of derivation. We are
allowed to do that only if constant doesn't depend on name. The

command - MATCH offersthe possibility to check some condition
and do the matching only if the condition is true. The condition that
wemust useisin genera "variable not in constant . We have the
command LNAME, which returns a vector of al namesin an
algebraic object, or an empty listif the algebraic object doesn't contain
any names. We can check if name isin that vector and decide what
to do accordingly. But... to do this we have to give the command

- MATCH alist containing three algebraic objects, the third of which
Isthe condition. And LNAME is acommand, not a function, and thus
it can't be put in an algebraic object. What to do in such a case? We
have to somehow smuggle what LNAME does in an algebraic object.
Here comes the flexibility of the HP49G. Imagine some program that
does anything it does, but returns a single object which is allowed in
an algebraic. For example, suppose that you have the program

<<
p ® Num
1 10 START
cos
NEXT
XQ

>>

stored in MULTPI10. If you enter the expression MULTPI10% XX
and expand, then the program will be evaluated and its result,

36293

49621

Basic Calculus with the HP49G - Volume 1 - Part 2

will replace the variable MULTPI10 in the expression, giving:

#86293y
€496219

The expansion then proceeds and returns the result

31317181849%X
2462243641

Since the result of MULTPI10 something allowed in algebraic objects,
everything works OK. Another example: Suppose that you have the
program

® x
<<
X TVARS SIZE
>>
>>

stored in NUMTVARS. The program takes a number as argument and
returns al variablesin the current directory, that are of the sametype like
the number. If you enter the algebraic object NUMTVARS(8) +10 and
expand, then the HP49G will return the sum of the number of programs
(type 8.) in the current directory and 2.

In exactly the same way we write the program
<<

SWAP LNAME NIP
IF DUP TYPE 29. ==

@Return list of names in alg.
@1Ff result is symbolic vector

THEN @then
AXL @convert it to a list
END
SWAP POS @Position of name in list.

>>

Volume 1, 2-2

Basic Calculus with the HP49G - Volume 1 - Part 2

and store it in POSNAME . The program takes two arguments. An testing condition was 1., which stands for true. The testing condition
algebraic (or name) on stack level two, and aname on stack level 1. It was evaluated to true and so pattern matching was performed. Enter
returns the position of the name in the vector of variables of the

algebraic object. If you enter X*- Y+Z and Z, thenpressing T (X))

e PR RIS returns 2. because Y isin the second position of the X

vector of names of X - -+ Z.If you enter X"~ Y+Z and A, then then press R0 to get the popup with the last 4 commands. Select the
pressing LeERRIRISE returns 0., because A isn't contained in P 9 popup

list with the pattern matching arguments and pressEFTER] to put it in the
command line. Press [ENTER] again to put it on the stack. Now, press

AEALO Sl again. The result now is

X?- Y +Z. Theimportant thing is that you can also do the samein
algebraic syntax. You can enter POSNAME(X2 -Y+ Z,Y) and
EXPAND. This will also set approximate mode on, switch back if
you don't want it. Now we can use POSNAME (expressionname) q
in any algebraic object. We can use it as the testing condition for the X x—— (F(X))
command - MATCH. Let'sdo an example first. Enter X

on stack level 2, and 0. on stack level 1, which shows that pattern

C xl (F(X)) matching was not performed because &v (i.e. X) wasin expression
X &c (i.e. X). Wewill usethis and other similar tricks later on, to make a
- program that collects differential forms, something that the HP49G can't
Now enter the list: do out of the box.
{l&c ﬂ;TLV (&f) ﬂ;TLV (&c*&f) NOT POSNAME(&C,&V)\E Next rule that we examine is the derivation rule for sums, which is:

1 (F(x)+G(x)) = 1 (F(x))+ l (G(x))

X X X
q Enter
— (CF(X)
X () 'nlx (F(X)+G(x))

on stack level 2, and 1. on stack level 1, which shows that pattern
matching was performed. The HP49G evaluated and evaluate. The HP49G returns

NOT POSNAME(&c,&V), the testing condition. Since variable &v

(i.e. X)wasnotinexpression &c (i.e. C), the program all (F(X)) + Bl (G(X))
POSNAME returned a 0. Thiswas negated and the result of the X X

Volume 1, 2-3

If you evaluate again then you get dIF(X)+diG(X). Weasodoa
particular example. Enter

1 (x7a - x)
X

and evaluate. Theresultis

T (y2)
'n_x(x m)-ﬁ(xxz)

which shows that the HP49G used the derivation rule for sums.
Evauate again to get

A (x2)- 2

X
Here the HP49G used the rule of derivation of an expression
multiplied by some constant. Evaluation of the term

1 (o2
ﬂ—x(x xA)

resulted in

1
Axﬁ(xz)

which still contains aderivative. Evaluation of the term

= (00

resulted in

Basic Calculus with the HP49G - Volume 1 - Part 2

)l
2

which was directly simplified to 2xL= 2. Evaluating again we get
2XX %A - 2, thefinal result, which the HP49G finds using again the
rule of derivation of an expression multiplied by a constant. Again the
opposite direction isn't possible. There is no command that collects
expressionslike:

T F(x)+ = (6(x)

x ™
to:

il (F(X)+G(x))
X

Here we could enter:

T () + - (G(x))

™ ™
then list that contains the patterns to match:

19 1 1 i
Lrav V(&f) +_‘ﬂ&v (&9) Tav (&f +&g)¥

and then use - MATCH to convert the sum of the derivativesto the
derivative of the sum. We keep these idea in mind for using them later
for a program that does collection of differential forms. The rule for
taking the derivative of a sum isknown by the CAS of the HP49G if we
build up the sum using +. But what about S ?Will it be able to handle
for example

Volume 1, 2-4

T8 x0

ﬂxenl

and convert it to

N
o
a3 () 2

Let's see. Enter:

T8 x0

ﬂxenl

and expand. The result is d]S(n,lN,xz). Unfortunately it doesn't
work this way. And this is a pity. The HP49G can do that. Enter

N
a X", then X, and then press[d]. You get:

n=1

X (N+ 1 6 +
(X _ 1) xée(N LNX) >(N+])><)—() 13_ (e(N IPLN(X) _ X)

SQ(X- 3

Expand thisto get:

N+l

((X -)N +- 1)>1X|
X3 - 2x¢% +X

N
This result shows that the HP49G first found the result of § X" and
n=1
then took the derivative of theresult for X . First of al the question is
why it doesn't do the same if we enter that in algebraic syntax? Then,
what will happen if the sum can't be handled by the built-in CAS? To

Basic Calculus with the HP49G - Volume 1 - Part 2

answer the second question, enter:

X
nzlx'n

then X , and then press|d]. After some seconds the HP49G returns:

n

5
X-ng

dlsgﬁ,lN,

It can't find what the result of

& X"
n=lx'n

is and so it returns the formal derivative. There is no built in way to
convert derivatives of sumsin the form:

e
X & a expressior(X, n)

to:

N
:a:lﬂ—‘ll((expression(X,n))

If the symbolic sum can be expanded to some other expression, then the
derivative of this resulting expression will be taken. If we use the
function 1, thisworks only if we first enter the sum, then a name and

then press@. Entering the whole thing at once, namely

e
X & a expressior(X, n)

Volume 1, 2-5

Basic Calculus with the HP49G - Volume 1 - Part 2

will not work, even if the symbolic sum can be handled by the CAS. to

On the other hand the command DERIV worksin both RPL and y e X" 8
algebraic syntax. The expression a DERIVY X
n=1 exX-n (%]
N .
DERIV% X" x° using the built-in commands. So the rule for derivation of sums seems
€h=1 9 to be only implemented for + but not for S. The opposite direction,

namely conversion of:
can be directly expanded to

& 1 .
* — (expression(X,;n
((x - o - DX + X glﬂx(pression(X,n))
X3 - 23K +X
to:
&
The same result we get if we enter g X", then X, and then press q ea!y ' 6
=1 — % expressior(X,n)
] and EEERE. But again, expanding the expression X €y 2

XN is aso not possible out of the box. In this case the HP49G takes the

N N
DERIV?é = n,X; derivative of expressior(X,n), and then triesto find the sum:
n=1 -
& 1 .
we get a — (expression(X,n))
n=1 X
ea X" 4 . . , .
dJSén,lN,X o If it can handle this, it returns some result that doesn't contain any

derivatives any more. If it can't find the sum, then it returns:

N n N
because the CAS can't handle the sum é . We can't somehow é_ derivativeOfExpressiorfX,n)

n=1 - n=1

convert
So we see that we have to program such conversions of sums built up
@9‘ X" 0 with S . We have to watch out because if the variable of derivation isthe
DERNénal X -n X 2 same like the summation index, then we are not allowed to convert:

Volume 1, 2-6

Basic Calculus with the HP49G - Volume 1 - Part 2

all

N ‘.
. 0
¥a expressionX,n
i &8 &XP X.n),

1 1
G(X) x— (F(X)) +F(X) x— (G(X
yoq or any equivaent form, to:
a — (expression(X,n))
=1 1IN i

o (F(x)6(x)
(Thisisalso true for the opposite direction.) So we have to check first
if the derivation variable is different from the summation index, and That means that we have to somehow make sure that it will do its work

do our conversions only if this condition istrue. with arbitrary differential forms, and not only with differential forms
Next rule of derivation isthe product derivation rule: written in some particular way. Let's have aparticular example. Enter:
T (2
q q q — (x*>sINX))
— (F(X)>G(X)) =F(X G(X))+ G(X F(X
o (F(XG(X) = F(X) = (GX)) + 6(x) <o (F(X)) X
Enter the derivative: and evaluate once to get the result:
T (2 21
= (F()6(x) g (X PSINK) X0 (SINX)
. _ The rule of derivation of products was used once. Press EVAL] againto
and evaluate it to get the result: get the result 2xX >6II\(X) Ve ><COS(X).
'ﬂlx (F(X))>G(X) +F(X) xﬂlX (G(x)) Now we move on to the derivation rule of powers:

We see that the HP49G knows also this rule of differentiation. But - (F(X)”) = n>4:(x)“'l X— (F(X))
here we start suspecting what one of the main problems of our X X
program will be, that collects differential forms. We haveto do it in

such away, that it will be able to collect: If you enter:
1 1 il n
L (F00)6(x) +FO) e (6(0) L (F00)

Volume 1, 2-7

and eva uate, you get the result:

n >4:(x)"’1><ﬂ—1l< (F(X))

The opposite direction is again not possible, there is no available

command to collect the expression:

n >F(X)n'1><ﬂ—1l< (F(X))

to:

® (F ()

x

For an example enter:

N

— (A

()

and pressEVEL] to get 4 A°.

We take alook to the derivation rule for quotients:

Basic Calculus with the HP49G - Volume 1 - Part 2

and evaluate. Y ou get the resullt:

SQ(G(x))

which shows that also this rule is known to the CAS. But again re-
collecting the result to:

1 gF(X)0
X eG(X)

isnot possible. To have an example, enter:

1 &sINX)s

Xe X @
and evaluate to get:

x% (SIN(X)) - SIN(X)

SQ(X)

Next evaluation gives.

_ SINX)- X>COS(X)
X? '

Next comes the "chain rule", the rule for taking derivatives of nested
functions:

Volume 1, 2-8

Basic Calculus with the HP49G - Volume 1 - Part 2

1 1 1 1
x (F(60) = gy () g (6(X) COS(x*) (X)
Enter: If you press EYAL] once more, you get 2 XX XCOS(XZ) (i.e. rule of

q derivation of powers). As you might have expected, the is no available
‘H_X (,: (G(X))) command for collecting:

l l
and evaluateto get d1G(X)dF(G(X)). Here the HP49G returmed the JG(x) (F(c(x) X (6(x))
result using dl-notation, but the result is nonetheless correct.
Remember, dF(G(X)) isthe derivative of F(G(X)) for G(X). Let's to:

have an example again. We use G(X)=X*and q
F(G(X)) = SIN(G(X)) = SIN(X?).. Enter: x (F(c(4))).

1) Aswe see all the above rules of differentiation are known to the CAS of
‘H_X(S”\(X)) the HP49G, but only in one direction, namely in the "expanding"

direction. The opposite, call it "collecting" direction, is not possible.
However, sometimes it is quite useful to have that feature of collection

and pressEVAL] to get: of differential forms. (We will see that this can be a quite a help for
solving some types of differential equations.) So we are going to make a

COS(Xz)xi(XZ) program for this. Let it be said here, that the program will not do
X miracles. In many cases it will fail to collect the differential forms,

though they could be collected. However, it will do its work in many
The HP49G has found the "outer” derivative: other cases. In addition it will demonstrate some techniques of
programming and dealing with algebraic objects, which | hope will
1) ’ generate appetite for more ideas and further improvements. Before we
e (S|N(X)) = COS(X) continue, deactivate the step by step feature, as we don't want stepwise
evaluation of derivatives any more.
and multiplied this with the "inner” derivative: Let's consider first some genera things about the program. In order to
q collect differential forms, it will make heavy use of the pattern matching
-~ (Xz), giving the result: commands - MATCH and ~ MATCH . But here we have the first
X problem. The commands can't be used with differential formswrittenin

dn notation. Imagine for example that we have dF(X) + d1G(X),

Volume 1, 2-9

which can be collected to:

1

X (F(x)+G(x))

First of al, the undefined functions F(X) and G(X) could also be
H(Y) and P(Z). That means that we have to use the pattern matching
commands with general patterns. But since the differential forms are
written as dFF(X) and d1G(X), the names of the functions alone are
not available for pattern matching. We only have the names dJF and

d1G . Matching dFF(X) to ﬂlx (F(X)) isonly possible for this
particular case, namely using the pattern matching list:

l U
dF(X) —(F(X
LAF(X) oo (F())g
We can't use any other more general pattern that would also match for

example d1G(Y) to ﬂlY (G(Y)). We can't use the pattern matching

list:

;}&F(&X) ﬂ&ix (&F(&x))g

This would of course match diG(Y) to ‘ﬂlY (G(Y)) and dF(X) to

ﬂix (F(X)), but it would also match F(X) to ﬂlx (F(X)) because, as
aready said, for the calculator both d2F(X) and F(X) arethe same
genera pattern. (Remember, dTF isjust aname.) In addition, the
expression dF(X) doesn't contain the variable of differentiationin a
way that makes it easy to do pattern replacement. So the first

Basic Calculus with the HP49G - Volume 1 - Part 2

requirement is that we have to convert first all derivatives writtenin d1
notation to derivativeswrittenin 1 notation. And for thiswe have to do

parsing. Since it could be useful to have such aprogram as astand alone
utility for converting expressions with d1 derivativesto expressions

with 1 derivatives, we are going to program that separately. Then, the
program that will do collection of differential forms, can just call this
stand alone utility and use it for the conversion of d1 derivativesto %

derivatives. Let's take a look at the listing of the program dn ® dv
which takes an expression from stack level 1, and returnsit with all di

derivatives converted to % derivatives.

<<

PUSH @Save user flags
-100. CF @No step by step
"Converting J to d” @Display message
1 DISP
IF
EXPAND LVAR {} 1 @1f expression has
@rational variables
OVER TYPE 9. == AND @and it is an algebraic
@object
THEN @then:
“"Filtering names out”™ @Display message
1 DISP
LVAR AXL @Return list of rat. vars
{
® varl @Store empty list in local
<< @Local var. procedure
1.
<< @Start of DOSUBS procedure
IF @for all rational variables
DUP TYPE 6. @If rat var. is a name
THEN @then drop it
DROP

Volume 1, 2-10

ELSE @else
"varl®™ STO+ @ add 1t to list varl.
END
>>
DOSUBS @Do to all rat. vars.
varl @Return varl
>>
IF
pup {3} 1 @1Ff result is not empty
THEN @then we parse all rat.
1. @variables
<< @Start of DOSUBS procedure

DUP ® STR @Make a copy, conv. to str.
2. OVER SIZE @Substr. chars. 2 to length
1 - SuUB @of string - 1

{3 " @Store in locals

® dFormAlg dFormStr
dvars dTemp

<<
1. SF @Set flag 1 (indicator)
DO @Do
"Searching diff. forms"
1. DISP @Display message
IF @1f
dFormStr @string starts with "d("
"d(" POS
1 ==

THEN @then
"No diff. forms"

1. DISP @Display message
1. CF @Clear flag 1
ELSE @else

IF eif
dFormStr
HEAD @1f first char. i1s "d"
"d' ==

THEN @then

"Diff. form found"

1. DISP @Display message
d @Store "d" in dTEMP
"dTemp*

STO

Basic Calculus with the HP49G - Volume 1 - Part 2

dFormStr @Store tail of dFormStr

TAIL @in dFormStr
"dFormStr*
STO

ELSE @else

"No diff. forms"
1. DISP @Display message

1. CF @Clear flag 1
END
IF @1 f flag 1 is set
1. FS?
THEN @then
"Parsing diff. form"™
1. DISP @Display message
WHILE @while

dFormStr @dFormStr starts with number
HEAD DUP @2 0 and £ 9

"o" 3

SWAP "9

£ AND

dFormSTr @and it has an opening

"(" POS (@parenthesis at a position

3. 3 @3 3
AND @(We check pattern "dn(™)
REPEAT @repeat

"dtemp*” @add first char of dFormStr
dFormStr @to dTemp

HEAD STO+
dFromStr @put the rest in dFormStr
TAIL
*dFormStr-
STO
END
IF @1f dFormStr has "(" in
dFormStr @first or second position
(" POS
2. £
THEN @then
IF eIf
dFormStr @dFormStr doesn"t start
"o 3 @with char. between 0

dFormStr @and 9

Volume 1, 2-11

Basic Calculus with the HP49G - Volume 1 - Part 2

"9 £ "Build-up MATCH list"
AND NOT 1. DISP @Display message
THEN @then DUPDUP (" @Find number of deriv. var.
"dvars”® @add object that results POS 1. + @Make list {nums deriv vars}
dTemp @from substr 1 to length OVER ™)™
2 OVER @-1 from dTemp POS 1 -
SIZE @to dvars SUB "{' SWAP
SuB 0BJ® + "} + 0BI®
STO+ ® vars @Store local
ELSE @else <<
1. CF @clear flag 1 SWAP 1.
END << @DOSUBS procedure
ELSE @else "9 vars @Make str "Yvar(expr)"
"dvars” @add object that results ROT GET
dTemp 2 @from substr 1 to length -1 + "+
OVER @from dTemp to dvars SWAP +
SIZE SUB "t o+
0BJ® >>
STO+ DOSUBS @Do with all list elements
END "= SWAP + @Add quotes and make alg.
END e+ 0BI®
END 2 ® LIST @Make pattern match list
UNTIL >>
1 FC? @until flag 1 is clear END
END >>
IF >>
dvars {} 1 @dvars contains something DOSUBS ©Do with all list elements
THEN IF @1f we don"t have an alg.
dFormAlg DUPDUP TYPE 9. 1! @or name
dvars REVLIST @Reverse dvars list SWAP TYPE 6. 1
IF @1f AND
dFormStr @dFormStr starts with char. THEN @then
HEAD DUP @between 0" and "9" "MATCHing diff. forms"
o 3 1. DISP @display message
SWAP 9" 1.
£ AND <<
THEN @then - MATCH DROP
"d @add "d" at start of >>
dFormStr + @dFormStr DOSUBS @MATCH every pattern
ELSE @else END
dFormStr @return dFormStr ELSE @else

END

Volume 1, 2-12

DROP @Drop
END
END
POP @Restore user settings

>>

The program dn ® dv which comes with this document (he, he, no

need to type it ;-)) is really no easy thing to read and to understand
how and why it works. | have made corrections and corrections of
corrections until it worked. So much of it iskind of patchwork. And it
isn't perfect also. For example it will crash if you give it d100F(X)
because it will try to find out what the hundredth rational variable
(inside the parentheses) of F(X) is. But it will work correctly if you

give it expressions that are convertible to the notation 1—% If no

derivative is contained in the expression that you giveit, it returnsthe
expanded expression. Should we try it? But of course! Enter
d1dF(X)- d1G(Y)xd2F{X,Y) and press M. The HP49G
displays some messages (that Nick finds informative ;-)) and then it
returns:

)) 1 el
- SEW (GO (FAV.Y))- o o FOX);,

It works! (Even | wouldn't expect that ;-))

Let's comment some of the used techniques before we proceed, as
they seem to be interesting. First of all, we have that EXPAND at the
beginning of the program. Is it necessary? Well, the expression that
contains differential forms, could contain them in any possible
notation. For example, we could give the program:

LRSI

Basic Calculus with the HP49G - Volume 1 - Part 2

or:

d1dF(X) . We expand at the beginning in order to convert the
expression to the standard fully expanded form. This way we are able to
know later on in the program, that the expressionisin a particular form,
no matter how it was entered.

Another thing that should be noticed is how thelist of rational variables
is constructed. Take for example the derivative d¥F(X,Y,Z). The
program converts that to a string and extracts the sub string "X,Y,Z".
Then the list delimiters are added and the string is converted to
"{X,Y,Z}". Thisstring is then converted to alist using the command
OBJ ® . Notice here the commas between the list elements. The
sequence "{ X,Y,Z}" OBJ® isexactly the same asif you have entered

the list {X,Y,Z} from the command line. Normally list e ements are
separated by spaces but commas will aso work. You can even enter
X,Y,Z ,whichisexactly thesamelikeentering X Y Z and creates
the three names in stack levels 3to 1. In this case it is very helpful not
having to replace the commas in the string to spaces before using
OBJ® . (However, if we had to do that, we could use the command
SREPL.)

The last thing that seems remarkable is that the same comparison
commands, like for example >, 3 and so on, can be used to compare...
characters! Of course we don't compare the characters themselves but
rather their character number in the character table of the HP49G. Thisis
very helpful for alphabetising purposes, or for finding if some string
starts with a character, the character number of which iswithin acertain
range.

Volume 1, 2-13

Now that we have dn® dv, let's proceed and see what else we
need. The collection of differential forms can be very hard to
program, if we don't define the standard form in which the algebraic
form has to be delivered to our collecting algorithms. Of course we
have already used EXPAND to bring the expression in its standard
fully expanded form, but this is not enough. The command
EXPAND will sometimes return sums of products, sometimes sums
of terms, and so on. We can't predict what the general form of its
results will be. So we make a convention. The expression has to be
delivered to our collecting algorithm as a sum of products. This way
we will know that it has the form T,+T, +%+T,, where
T,T,%,T, aredl products (i.e. they don't contain any sums). The
HP49G has the command FDISTRIB, which fully distributes > and /
over + and - . Thiscommand has a so the big advantage, that it
returns sums but no differences. For example, entering

A-B

C
and using FDISTRIB, returns:

(i.e. the sum of A and - B rather than the difference of A and E).
C C C C

Don't underestimate this simple fact. If we had sometimes a sum and
sometimes a difference, then using the summands one after the other
in a program would be much more complicated because we would
have to check if they are connected by + or by - . If we havethe
expression in its fully distributed form, then we can examine each
summand for itself, and decide if in some of them the differential
forms can be collected. Then we can add them pair wise and examine
every possible pair T; + T, where it j, with pattern matching of the
differential forms. We need a program that returns all summands of
some expression separately and unfortunately the HP49G doesn't

Basic Calculus with the HP49G - Volume 1 - Part 2

have such acommand. But fortunately the Sequences, Series and Limits
Marathon was done before the Basic Calculus Marathon. (There is
method in my insanity ;-)) In that marathon we had the program
® TERMS that does exactly this. It returns alist with all summands of
some expression. If you don't have that marathon then it doesn't matter,
because the program ® TERMS comes aso with this marathon.

Let's see now the listing of the program dCOLLECT.1, which
(hopefully) collects differential forms. It uses all the ideas from above
and also the pattern matching commands quite often. It needs d1® dv
and ® TERMS to run, so you should have these programs at the same
directory. The program is way from being perfect, but as already said,
all programs of the marathon are for demonstrating programming
techniques and creating appetite for improvement.

<<

PUSH @Save user"s settings
dn® dv @Convert to Y notation
® TERMS @return list of terms

® diffTerms

<<
1. diffTerms SIZE
FOR 1

"Checking " I + "
" + 1. DISP

diffTerms 1 GET

FACTORS

{1. 1.3 {3

® termFacts
facts difFacts
<<
termFacts 1.
<<
IF

NSUB 2. MOD
NOT
THEN
2. ®LIST
END

>>

@Store in local

@Do for each term

term

@Display message

@Extract term from list
@Return list of factors and
@multiplicities

@Store in locals
@DOSUBS procedure starts
@1f we have an element at

@an even position

@then it is a power
@so make list {factor power}

Volume 1, 2-14

DOSUBS

"Separating "
1. DISP

1.
<<
IF
DUP HEAD

@Now the list is in the form
@{{factl powl}{fact2 pow2}.}
@Now we are going to
@separate diff. forms from
@other factors

@Another DOSUBS procedure
@If

{"feveeay: =Tav(ar) y

MATCH NIP
THEN
1. ® LIST
"difFacts”
ELSE
"facts”
END
SWAP STO+
>>
DOSUBS

@factor is a diff. form
@then convert it to a list

@and enter "difFacts
@else
@enter "facts”

@Add factor to approp. list

@Now we have all factors that

@are diff. forms in difFacts.

IF
difFacts SIZE
1. >

THEN
"facts”

@All the others are iIn facts
@1Ff there were more than one
@diff. forms

@Then we take the highest

@derivative and add the others

@to the common factors

"lsolate highest diff.

*'2. DISP
difFacts TAIL

1

<< 0BJ® DROP >>

DOSUBS STO+
difFacts HEAD
1. ®Li1ST

"difFacts" STO

END
IF
difFacts {} !

@Message
@Add all but the highest
@der.

@to common factors

@Put highest derivative
@in difFacts

@1f difFacts isn"t empty

THEN

Basic Calculus with the HP49G - Volume 1 - Part 2

@then

"(MH2rn ® T=(Hr-1y

2. DISP

difFacts 1.
<<
0BJ® DROP
OVER SWAP
1. - R® 1
3. ®LIST
>>
DOSUBS
"difFacts®™ STO

@we will convert all derivs.
@from (TX(FCX)D))™n to

@ TXCFCO*CTXCFOOIN(n-1)
@(See explanations after
@program listing.)

@Yet another DOSUBS proc.

@Convert { deriv pow } to
@{ deriv deriv pow-1 }

@Store in difFacts

“Collecting 9§ of powers”

2. DISP
difFacts 1.
<<
1F
facts OVER
HEAD 0BJ®
3. DROPN
POS DUPDUP
THEN
facts SWAP
GET facts
ROT 1 +
GET
® factor
power
<<

u-ﬂn

OVER HEAD

@Another message

@DOSUBS proc.

@Nf

@Sub expression F(X)

@of TXCFCOD

@appears in the factors
@that are not derivatives
@then

@get factor and its power n

@Store locally

@Construct fX(F(X)"n+1)

0BJ® DROP2

NIP + ("

+

factor power

1. + R® 1
=
DUP 0.

<

Volume 1, 2-15

THEN
NEG ™ INV
ELSE
N
END
® STR 2. OVER
SIZE 1. - SUB +
") + 0BI®
1. SWAP @Put X(FCX)~n+1) in Ffirst
PUT @place of difFact
"facts®™ (@Construct {F(X) -n n+l1 -1}
factor
power
NEG power
1. + R® 1
-1. 4. ®LIST
STO+ @Add to list facts
>>
ELSE @else
DROP2 @drop unnecessary objects
END
>>
DOSUBS @Do to every diff. Factor
"difFacts"®™ STO @store in difFacts
END
"difTerms”
I facts 1.
<< @DOSUBS proc for each factor
IF @1f we are at an even pos.
NSUB 2. MOD
NOT
THEN @then
R®E1 ~ @we raise to the power
END
>>
DOSUBS
1+ PrListT @Add 1 to the list and

EXPAND dn® dv
IF
difFacts {} 1

@make prod. of list elements
@Use dn® dv again

@1 Ff there are diff. facts

Basic Calculus with the HP49G - Volume 1 - Part 2

THEN @then
difFacts 1.
<< @Product of diff. factors
0BJ® DROP
R® 1 ~ *
>>
DOSUBS
1+
PLisT @Make product of derivs.
* @Mult. factors and derivs.
END
PUT @Put back in orig. list
>>
NEXT
1. SF @Flag 1 is our indicator
WHILE @While more than one term
diffTerms SIZE @and flag 1 is set
1. > 1 FS? AND
REPEAT @repeat
1. diffTerms SIZE
_’]__ -
FOR 1 @FfFor 1=1 to number of diff.
@terms - 1
1 1 +
diffTerms SIZE @for J=2 to number of diff.
FOR J @terms
"Diff. terms "
P+ " "+ @Construct and display
J + 1. DISP @message
diffTerms @Make sum of Ith and Jth
1 GET @term
diffTerms
J GET +
® dTerm @Store in local
<<
"A*B+B* A ® ((A*B)"
2. DISP @Message
dTerm
CASE @Use product rule

{ "&A* Y&V (&B)+&B*T&V(&A) "
“f&v(&A*&B) " }

Volume 1, 2-16

different.

matches

- MATCH @Prod. patt. match
THEN
1. @return 1.
END @Same match written

{ “&A*f&av(&B)+f&Vv(&A)*&B"
“fav(aAa*aB) " }
- MATCH
THEN
1.
END
COLLECT @Collect and retry

{ "&A* Y&V (&B)+&B* &V (&A)"
“fav(aa*aB) " }
- MATCH

THEN
1.

END
{ "&A*T&v(&B)+ &V (&A)*&B"
“f&av(&A*&B) " }

- MATCH
THEN
1.
END @1f no match, return O.
0.
END
ey ® Ty
2. DISP @Message
SWAP

{ “&Cc*faveav) " " av*af)-
"NOT POSNAME(&C,&v)" }

- MATCH @Match mult. with constant.
ROT OR

"A+9B ® T(A+B)"

2. DISP @Message

SWAP @Match sums
{"Tevar)+Te&v(aB) "

“f&v(&A+&B) " }

Basic Calculus with the HP49G - Volume 1 - Part 2

- MATCH ROT OR
SWAP

{"Yavar)-YaveaB) -
fav(aa-&B) " }

- MATCH ROT OR

IF @1Ff we had a match
THEN
1. SF @Set flag 1
diffTerms @Replace the two terms
1. 1 1. - @of diffTerms that we used
SuUB @with the matched one
diffTerms
1 1. +
OVER SIZE SUB
DUP 1. J.
diffTerms
SIZE 4. PIC
SIZE - - 1. -
SUB SWAP J
diffTerms
SIZE PICK3 SIZE
__1_+
OVER SIZE SUB
+ + +
"diffTerms® @Store in diffTerms
STO
diffTerms @Store numbers > than
SIZE 1 + @end of FOR loop
DUP "1" STO @in 1 and J to exit
"J" STO @the FOR loops
ELSE @Else (no match)
DROP @Drop terms
1. CF @Clear flag 1
END
>>
NEXT
NEXT
END @End of WHILE
diffTerms 0 +
SLiIsT @Sum of all terms

{ “&Cc*fav(av) " Y (av*ef)-
Volume 1, 2-17

Basic Calculus with the HP49G - Volume 1 - Part 2

*NOT POSNAME(&C,&v)" } 1 E(x)
- MATCH @Match mult. with constant. _ﬂx(())
DROP 2

>>

POP

. In about 15 seconds the HP49G returns;

>>

There are many interesting things in this program, but | guess you are
rather interested to see it in work first. So, let's have some tests and
then we can discuss what the program does and why.

Indeed it worked!

In al the following examples | use 1 notation but the d1 notation Ent
nter:

could be used as well. The program takes differential formsin any of

the two notations or even mixed up. We start with an easy example. .

Enter. 2T 6(x))0 + 6(x) s (F(X) + F(X) s (G(X))
X eqXx a X X

\l

F(X) X (F(x)) Press EFTEF] to make a copy and then press|ilesIAN=eikll. After about
1 minute and 10 seconds in agony the HP49G returns the result:

According to the rule for differentiating powers and to the chain rule q q)

we have L FH(x) (%) +— (X))
xe X g

1 2
1 2\ _ - _ X (This is the same expression with all differential forms collected in one
X (F(X)) =2 ﬂz(X)XW (F(X)) U F(X)xﬁ (F(X)) - 2 derivative. But isthat really the same like what we entered? Press[- | and
expand to get a fat O, which shows that the two expressions were
indeed equal to each other.
Since
Enter:

_ xl . ,
F() < (X) = F(x) < (F(X) L 2T (roa+ 2 (c00)S+ L (e)

the program dCOLLECT.1 should return

and press ples]NN=S N After about 47 seconds of dancing messages
at the top of the screen the HP49G returns:

Volume 1, 2-18

minute and 8 seconds, and returns the collected form:

ﬂlx FOQ)G(x)* +F(x)%)

Enter:

TR L (F(x))

After the examples we will see why the program didn't collected

completely.

Enter:

Basic Calculus with the HP49G - Volume 1 - Part 2

25F(X)? xi(F(x)) ﬂ"l(:111((F(x))0 2 (X) ﬂ.ll((F(X))S

and press againpiss]NIs Ml The HP49G returns:

RVl
Ixe€

in about 46 seconds. Equivalent forms of this result, having differential
forms collected differently, are:

o E o000 (FX)S

IX e9x €3 % 2

and:

o G (PO) oy X

We will see how to get the second or the third form after the examples.

Enter:

F(X) 111>T< :g((F(X))g+ 1111((F(X))* + all (F(X))

and press piss]AN=s NN .
1 1 6
o 0% (FO) + FX)G

in about 46 seconds. Here again the result could be further collected to:

Volume 1, 2-19

Basic Calculus with the HP49G - Volume 1 - Part 2

1691“2- 20 0 1% X 1 E(X o]

X e9X €2)t FX), ﬂxé()"ﬁ(()

Enter: after 27 seconds. Also here we could go further and get:
l ee‘ﬂ al >F(X)266.
X e9X €2 20

Enter:

2>G(X) ¥(X) ><ﬂ_1l((F(X)) - F(X)? % (G(X))

X
G(X)*
in about 46 seconds. In this case the result could also have been
collected further to: The program dCOLLECT.1 needs about 49 seconds to return:
1 @‘ﬂ =< 1 0 11 o
— X=(X F(X LU ol 2z
7 &% &2 ot ‘ﬂX() &)>F(><)
or to: Enter:
= TR0 + 1) (F()C G(X) - (F(x)) - (F(X)- G()*) - (&())
X € X 2 1 X

After the examples we will see how to get these forms using
dCOLLECT.1or COLLECT.

and press pise]ANS8 N t0 get:
Enter:
121 0
— ¢—— F(X) + G(X)~
et l 2 X éG(X) 2
F(X) x— F(X F(X
() %5 g (FO5 25 (FOX)
after about 57 seconds.
Pressing [usts]NSsg Rl returns the collected form:

Last example. Enter:
Volume 1, 2-20

Basic Calculus with the HP49G - Volume 1 - Part 2

Let's follow what the program did. The second term of the origina

i 2 > T 2 expression was transformed to:
3>F(x)xﬂ—x(|:(x)) - 3>5F(X) x&(F(X))

T (FO?) < (F(x)

x X

using the rule of differentiation of powers. This happened at the point

1(3 F(X)” - 2>F(X)3)xl(':(x)) where the message Collecting § of powers was displayed. When

X

the program displayed A*B+B*YA ® (A *B), therule of
differentiation was used, and the sum

in about 1 minute.)
FX) %o 20 (£()) 0+ - (F(X)?) el (F(X))

As we see the program works in many cases. In many other cases it X X g qX X
returns only partialy collected results. And | am sure that you will
find even more cases in which it doesn't work at al or it even crashes. \yastransformed to
Feel free to change its code and make it better, if you wish. But to
make it better, some details about its inner workings are necessary. q a% , 1 5
— F(X)" x—(F(X
We start explaining the cases where the program gives only partially X €) X (())‘3

collected results, and we try to find a way to make the collection of
differential forms complete in these cases. For example why was Now, from this point on, the rule of differentiation of powers could be
used again on the sub expression:

FX)? e B (£(3))8 + 2 5 (X) % (F(X))’

X e9X 2 x F(X)* xﬂ—l (F(X))
transformed to And this is exactly what the program doesn't do. It doesn't check if
q q . using some differentiation rule results in a derivative, in which the
A ﬁ(x)2 — (F(x))o expression that is differentiated can itself be further collected. Can we do
xXe X g something to achieve complete collection of differential forms in this
case? Let's consider first an interactive possibility. What would happen
but not to if we had the expression
1 @‘H ad 300 > 1
— — = ¥X ? F(X)” x—(F(X
X efx e3 ()ﬂz) ﬂX(()

Volume 1, 2-21

on the stack and we used dCOLLECT.1? Enter:

The expression was collected. Of course it would be atedious task to
have the result

% O o (FO0)S

on stack, use OBJ ® to explodeit, then use dCOLLECT.1 on the
sub expression:

F(X)* s (FOX)

to transform it to:

& rx)e0
qx &3)

and then recombine this result and the rest of the objects returned by
OBJ® to:

T T &)00
X eqX €3 20

But we don't need to do that. Since we are talking about sub

Basic Calculus with the HP49G - Volume 1 - Part 2

expressions of agiven expression, the EQW comesinto mind. Therewe
can select some sub expression, apply some built-in command on that
sub expression only, and get the result that we want to have. If there
would be some way to apply our own programs on some particular sub
expression, then we could take

o O g (FOO)S

and use dCOLLECT.1 totransformiit to

T & x)*0
xe3 Ve

And guess what? Thereisaway. (Or else why should Nick tell al this?
;-)). We can make a user menu that is active when we are in the EQW.
In that menu we can put al things that we need. Let's see how we do
that. When the EQW is active and you have selected some sub
expression, pressing FUUSTOR) has a special meaning. Under these
conditions the HP49G checks if a program named STARTEQW exists
in the current path. If it does, then this program is executed. Now, we
can use this capability to display a pop up menu that contains all things
we need, including dCOLLECT.1. Actually we can add anything we
want in that menu, provided that the objects contained in that menu,
need one algebraic object as input and return one algebraic object as
output. (Or anything that is allowed in algebraic objects.) Thisis one of
the many great ideas of VPN for which | am very grateful. Let's make
the program STARTEQW . Consider the program on the next page.

Volume 1, 2-22

<<

COLCT

COLLECT

dCOLLECT.1

dn® dv

{ "Edit in new EQW"
<< EQW >>

}

}
1

CHOOSE
IF
THEN
EVAL
END
>>

@Pop-up has no title

@First menu item is the old
@command COLCT, which
@sometimes collects
@differently than COLLECT.
@Second comes COLLECT.

@Then comes dCOLLECT.1.
@Then comes dn® dv

@Then comes a menu item that
@shows "Edit in new EQW"™ but
@executes << EQW >> when
@selected.

@We display the pop-up with
@the first item selected
@1f user pressed [ENTER]
@then we evaluate (execute)
@the selected item

Store that in STARTEQW . (Or smply use the program that comes

with this document.) Let's see that in action. Go to the EQW and

enter:

F(X) e 2T

X X 2

again. Select the whole expression. Now the expression is displayed

(F(X))2+2 % (X) vall

(FO))

X

inverse. Press [CUUSTOM) to start the program STARTEQW . The

pop-up menu is displayed over the selected expression and the screen

of the calculator looks like the
picture to the right. Press[¥|
twice to select the item
dCOLLECT.1, and then

press [ERMTEF]. Wow! The
program dCOLLECT.1runs

Edit in new EQW

Basic Calculus with the HP49G - Volume 1 - Part 2

just as if it was one of the built-in commands. It displays its messages

and works just like
it does when we
use it from the
stack. In fact,
behind the scenes it
does work on the
stack. First it puts
the selected sub
expression on the
stack. Then the
selected menu item

takes the sub
expression, does
its work with it,
and returns its
output on the
stack. Then the

result istaken back
to the EQW, where
it replaces the
originally selected
sub expression. So
now the result

o O < (FOX)S

™ 4]
is displayed
inverse in the

EQW. Sedlect the
sub expression:

R (F(X)
Now the EQW
displays:

F(X)

Menu item selected
and [ENTER] pressed.
The selected expression
is put on the stack.

\/

2, T el O, s « T 2
X 81 (F(x)),*+2*F(X) X (F(X))
The selected menu item
is evaluated and the
result is put on the
stack.

\/
all 2, 1 0
o 00 (FXO

The result is replaces
the originally selected
sub expression in the
EQW.

Volume 1, 2-23

Basic Calculus with the HP49G - Volume 1 - Part 2

Press again [USTOM], and select again dCOLLECT.1. Whenthe We can go further and put the factor 2 i one of the two derivatives,
program is ready, the EQW displays: _ 3
getting one of the results:

'nlx geﬂ—"l(Z% F(X) 38)%((F(X))z

Voilal PressENTEF] to put the completely collected expression on the

or:
stack.

We will use the same technique for the next example that wasn't il Eei(p(xf)xi o, F(x)df’

completely collected, namely the expression: X eqx X €3 7]
2 1 1 e o 1 3 You have noticed that we put aso the menu item
2>F(X) W(F(X))xﬁéﬂ_x (F(X))g+2>F(X)><ﬂ—x(F(X)) Edit in new EQW inthepop-up menu. Thisisthetitle of the

menu item. When this menu item is selected, then the corresponding

Go to the EQW and enter the above expression. Select the whole object << EqQw >> will be executed. The command EQW isthe
expression and use the pop-up like before for running the program Programmable command for starting the EQW. It just needs one
dCOLLECT.1. Theresult is: algebraic, which it then takes in the EQW for editing. In our case it is
not necessary to start anew EQW, but it demonstrates how flexible the
HP49G is. In the EQW select the sub expression:

1 1 5
o) (F)S
1.1 3
2o FO’)
Still in the EQW select the sub expression: 3 X
q While the sub expression
F (X (FO) . :
3
37 (PO g (FOX)

and then use the pop-up again to run dCOLLECT.1. Now the result
is:
is selected, press[WF] to select % Then press ™ and then[*] to add

Volume 1, 2-24

Basic Calculus with the HP49G - Volume 1 - Part 2

1.1 3
375 FO)
il F()°) o . o
X Now the old EQW is active again and contains the expression:
to the selected sub expression. Now Tela %(x)sdxl (F(X))('j
19 X efx €3 2 X 2
2L ()
3 X At this point you could pressEMTEF] to put the expression on the stack.

, o B how the oth ibl It, ely:
is selected. Use the pop-up menu to select Edit in new EQW ut wewant to see how the other possible restlt, namely

and run the program << EQw >>. The expression s
hN-all (F(x)) X ()00

1.1 3 xXex mxe3 20

3L (00

3 IX

can be obtained. Press the last operation and turn the algebraic
appearsin anew EQW alone, while the other EQW waits suspended 2dan to:

in the background. Select the whole expression e I q =

— = (F(X)?) = (F(X))°
_1xl(F(x)3) X €3 ﬂx()P FO0)
3 X

1 .
in the new EQW and let dCOLLECT.1 run from the popup menu. S¢l€ct the factor 3 Press K2 and thenlEl to exchange the positions
Theresultis:

of §1 and ‘ﬂix (F(X)s). Press™ and then[| to add 'ﬂlx (F(X)) tothe
Bl (X)*° selection. Now use dCOLLECT.1 from the pop-up menu to convert the
X €3 2 selected sub expression:
Press ENTER] to quit the new EQW, take the algebraic object 19 (F (X))
e
G e 31X
— T=5F(x)°
qx &3 2 to:

and replace the selected object of the old EQW, which was:

Volume 1, 2-25

Basic Calculus with the HP49G - Volume 1 - Part 2

T & 0 1 2\ 1 2

L — |(F(X F(X
Now the EQW contains: using the same rule. The sum of the two terms,

el s\ T & 60 szxi‘?elpxzb.pl szxlpxz
LT R0k 20 (0" o e (FOO)5 2 ((FO) s ()
After these exciting interactive manoeuvres, let's see why Wasconvertedto:

dCOLLECT.1 can't return the completely collected result. The)
program took the expression: Al af:(X)2 x_ﬂ (F(X))20

xe X 2
l T eef o} 1 3
25F (x)° W(F(X))xﬁ X (F(X))g+2 F(X) xﬂ_x(':(x)) using the rule of differentiation of products. After this, the program

didn't check if application of thisrule, namely:

and converted it to the two terms:

f(x) Jo(x) +g(x)) _ 9(x)>g(x) , creates a product f(x) >g(x) , in

1 1 e 6 fix fix fix

25 (X)? x— (F(X)) %= == (F(X
() X (F) X enXx (7))ﬂ our case F(X)* xﬂ—"; (F(X))’, whichitself can be further collected using
and: the rule of differentiation of powers.
25F(X) xﬂlx (F(X))’ We do the same for the example
The first term was converted to: (|: (X) + xl 381 (|: (x))f) + Al (,:(X))2
Xeqx g X

- :

F(X)° xﬂ—'ll(é& (F(X))zg Enter this in the EQW, select the whole expression and use the pop-up
torun dCOLLECT.1 and get:

using the rule of differentiation of powers. The second was converted 1] q 5
to: IX 8T (F(X))#(X) + x (F (x))z

Volume 1, 2-26

Still in the EQW you can either select the sub expression:

o (F() F(¥

and run dCOLLECT.1 to transform the sub expression to:

I & rx)0
xe2 Ve

thus obtaining the result:

ﬂlx geﬂ_‘; g F(X)70 + ﬂ_‘l(G

Or you can select the sub expression:

1 (F(X)) F(X) i (F(X))

x X

and use the pop-up menu to evaluate COLLECT and transform the

sub expression to:

(F(X)+ x%((F(X))

thus gaining the result:

ﬂlx TF(x)+1) xﬂlx (F(X))g

In this example the program dCOLLECT.1 transformed the

expression:

Basic Calculus with the HP49G - Volume 1 - Part 2

(F(x)+1) Rl (F(x))2+ 1 (F(X))’

X &9X g X

to itsterms,

Thefirst term was transformed to:

1 (F() - (F()

— X—
X X

Then the sum of the first and the second terms,

)l 1 T el 0
X (F(X) o (F(X)) +F(X) %X 8T (F(X)),

was transformed to:

o e (FOQ) ()]

using therule of differentiation of products. Then the result

'nlx Zeﬂ—"l((F())F(x)°

Volume 1, 2-27

Basic Calculus with the HP49G - Volume 1 - Part 2

replaced the two terms: 1 aei (F (X))d
q , X eqx [}
- (F(x)) | _
X and obtained the sum:
and: N N
T et (F(X))#(x)2+ iRl (F(x))°
T eev o) X eqx g X eqx @
F(X) < = (F(X))
Xeqx 2 It used the rule of differentiation of sumsto convert this result to:

in the list of terms. At this point, like in the previous example, the 1 1
program didn't check if the result of application of therule

(FOQ)F () + e (F(x))2

X 91X X
f(X) xﬂgﬂ_(;() + g(x) ﬂ;(::) = 'ﬂf(x‘)"::g(x) which was what it returned.

. Then we had the example:
created a product f(x) >g(x) , in our case

1 e o 1 2
T () F0) "0 e F0™ 3 F)

x
which itself can be further collected to forwhich dCOLLECT.1 returned:
) 1 1 0
! 20 _%(X)X_ (F(x))
— = ¥(X e [7]
x ez X X X
. : - . . but not
using the rule of differentiation of powers. Instead of doing this, the
program constructed the sum of the new partialy collected term .
all @i od >F(X) 200
X eqx €2 20

e 0
X 87X (FO))F(X),,
Let's see what the program did. It first converted the expression to its

and of theterm terms,

Volume 1, 2-28

Basic Calculus with the HP49G - Volume 1 - Part 2

T el 0 e 20
F(X) X SIX (F(X)), X &2 F(X)",

it th It:
and2>F(X) Xﬂ_ﬂx (F(X)) and o it returned the resu

1 1 o
Then it tried to apply the rule of differentiation of powers for each of qx ZE(X) Xﬁ (F(x))

these terms. Doing that it converted the second term to:
Of course you can again use the EQW to select

T o)
i (05 FX) F(x) "% (F(x))

though this is not collection of differential forms. Then it started
checking all possible pair wise sums of all termsfor application of the and convert it to:
rule of differentiation of products, sums, etc. When it checked the

sum of the first and the second term: 1

20
X 82 #(X)

1 6, 1 1 ?
using dCOLLECT.1 from the pop-up menu of STARTEQW, gaining

: . . thus the completely collected result:

it saw that thisis convertible to:

) 1 Eeﬂ &l 200
l l o — $— "= F(X)
e 97 FOU); fxemxez =7

Let's now get a closer look at the workings of the program. Doing this
we are going to see some very interesting behaviour patterns of the
HP49G too. First of al the program uses PUSH to store the current
settings of the user, because it males changes to flag settings and we
don't want a program to change the modes of the calculator behind the
back of the user. Then the program calls dn® dv and ® TERMS.

using the rule of product differentiation. And so it converted it. (Or
else why the trouble? ;-)) Then it removed the two terms from which
the collected term came from and kept the new collected term, which
was also the only one that remained. At this point the program didn't
bother to check if the new expression:

q Thisresultsin alist of all terms of an expression. Noticethat dn ® dv
F(X) X& (F(x)) replacesall occurrences of derivativesinthe d1 notation to derivativesin

o the 1 notation. The program ® TERMS uses the command
inside the parentheses can be converted to: 1

Volume 1, 2-29

FDISTRIB. Fortunately FDISTRIB does completely distribution of
>and / over + and - , but it expand otherwise and so it doesn't
change the derivatives of the expression back to d1 notation. That
means, if you enter for example

T (F(0) {x +3)

X
and press [fEEIEIE

, then you will get:

Thisis very good because we can build up the list of all terms of an
arbitrary expression without having to care if some special syntax or
notation will be destroyed. Why do we want alist of al terms of the
origina expression? Why don't we work with the expression itself?
WEell, imagine how many possibilities there are, to built up arbitrary
expressions. We can use have them in an endless variety, and so
finding general patterns for matching, would simply become
impossible. Chopping the expression in alist of all terms, we can be
sure that each one of the termsis a product. When we can ensure that
some given expression is of a certain type, then we narrow the variety
of what must be done, to convert the expression according to our
needs. But, of course, we have to do what has to be done, for each of
the terms. Having the termsin alist, we use aloop to apply the first
of the converting proceduresto each term.

Each one of the terms gets converted to a list of its factors using the
command FACTORS. First of al, we can use this command safely
because it aso doesn't change the derivatives and leaves them in our

1—1} notation. Why do we want the factors of each term? Well, the

answer hasto do with the fact that we apply the rule for derivation of
powersfirst. Simply using pattern matching here would make our life
very difficult. Imagine for example that we have the term:

Basic Calculus with the HP49G - Volume 1 - Part 2

Here we can use the pattern matching with the pattern:

\ .
[8AX_ (3A) —_E&ATOY
i Y&V 1&V e 2 o)

But this is one of the many cases where the rule of differentiation of
powers can be used to collect differential forms. What would be for
example with:

X

or...? Obviously we must find a more general method. And to do that
we do a bit mathematics first. Suppose that we have the derivative:

T (F0r) = nor(x) L (£ (X))

‘H_X X
This already shows that:

n-1 1l _1— 1 n
FX)" i (FX) == e (F(')

Volume 1, 2-30

Basic Calculus with the HP49G - Volume 1 - Part 2

That means for us, that if we have some expression which contains m xi (F(X)n+m)
the pattern n+m X
F(X)" vl (F(X)) To understand this better, expand
X
n 1 m
with arbitrary n, we can replace it with F(X) X (F(X))
1 9 n+l d
- F(X an
n+ 1x‘ﬂ_X((x))
.. 3 m ﬂ n+m
This is more general, but not as general as we wish. Because we ="~ xﬁ((X))
might also have the pattern
The two results are equal. But this still isn't general enough. (We are
F(X)“ xi (F(X)m) very demanding, aren't we? ;-)) We could also have some term that
X contains
in an expression, where n and m are also arbitrary. In this case we a1 m\P
have: F(X) X& (F(X))
F(X)" Nl (F(x)m) = F(X)">m>F(X)™ 1, (F(X)) b What to do in such cases? Well, one of the possibilities that we have, is
X X to convert
n ﬂ m n+m-1 ﬂ
F(X F(X)" | = m>x&(X F(X)) b n m
() x&(()) m () xﬁ(()) F(X) x_&(p(x))p
FO) e (FO)") = = (F ()™
X n+m X to
and thus we must replace n Tl m\p-1
FX)" e (FOO™) e (FOX))
no 1l m
FOX)" % (F(X)") |
> and then consider the sub product
with 0 m
F(X)" o (FO0)")

Volume 1, 2-31

We can do collection to:

m 1

ax F")

n+m X

and then multiply by:

® (F o)

x

p-1

getting the result:

) g)

Thisiswhat how the rule of differentiation of powersisimplemented
in the program for collection of differential forms. First of al, the list
of factors and multiplicities (factor power) is converted to a list of
lists. Each of the sub lists contains the factor and its power. Right
after this, all factors are separated. If they contain any derivative then
they are added in the list of differential factors. Otherwise they are
added inthelist of (normal) factors. At this point we consider the fact
that some terms will eventually contain more than one differential
factors. Take for example

x FO0)

which contains two factors that are derivatives. In such cases the
program in its current incarnation prefers the highest derivative. (You
might started guessing that many incarnations will follow, what
Bhuvanesh?;-)) The program leaves the highest derivative asthe only
expression in thelist of differential factors, and movesall therest into
the list of the other factors. We can easily decide which one is the
highest derivative in the list of differential factors, because the
command FACTORS returns always the highest derivative asthe

F(x)"

1 e)
xﬂ_X éﬁ (F(X))

Basic Calculus with the HP49G - Volume 1 - Part 2

first element in the list of factors and multiplicities, while the lower
derivativesfollow in order.

Then the program converts the differential factors|list:
{highestDerivative power}
to the differential factorslist:

{highestDerivative highestDerivative power- 1}

This corresponds to the step:
ﬂ m\P _ ﬂ m ﬂ m\P-1
ﬂ—X(F(X)) —&(F(X))Xﬂ—X(F(X)).
After this, the program checks to find if the expression inside the

parentheses of 1)(() inthe highest derivative, occurs also in the list of

the other factors. If it does, then it puts the factor

ax)

into the first position of thelist of differential factors:
{highestDerivative highestDerivative power- 1}

and addsthe list:

{FX) -(h+#m-12) n+m -3

to the list of other factors, which is equivalent to adding the factors

F(X) ™™ and (n+m)* to the list of the other factors.

Volume 1, 2-32

Basic Calculus with the HP49G - Volume 1 - Part 2

We make an examplefor getting the idea of the whole procedureupto and
now. Suppose that we have:

F(X)z xl (F(X)S) %{l ﬂ_x (F(X)) 1§[v)

q 17T 1 ul
5 (X)° xﬁ(F(x)) Hax (F(x)) X (F(x)) o.
by dn® dv . After thisthe program ® TERMS convertsthat to: Then the factor
! 61 U Al F(X)7
{5>F(X) Xﬂ—X(F(X))% ﬂx()

is put into the first position of the list of differential factors, turning it to:

5>F(X)6><ﬂ—1l<(F(X)) ﬂﬂlX(F(xY) ﬂlX(F(X)) ogg
tothelist After thisthelist
;}5 1, ﬂ—"l((F(x)) 1. F(X) 6.% {FC) -6 7 -1}

isadded to the list of other factors, turning it to

Our program then convertsthislist to:
Pros {5 1. F(X) 6. F(X) -6. 7 -1}

I i1 9] 0]
%{5 1} {‘ﬂ_x(F(x)) 1-% {F(X) 6}% Then the list of factorsis turned to
and separatesthelist to }5 F(X)6 F(X)-e %g

|

{5 1. F(x) 6}
Volume 1, 2-33

Basic Calculus with the HP49G - Volume 1 - Part 2

The product of the list is built up using PLIST and EXPAND, retums automatically ﬂlx(F(X)Y)')

which returns g)

We make another example in abbreviated form of the inner workings of
We proceed describing the program. Because the product of normal the program up to this point, using the expression:
factors might also contain derivatives (the lower derivatives which, if
they exist, are put in the list of normal factors), and because we used (()) «” 3

EXPAND, which turns these derivatives to d1 notation, we call the X SX (()) 7

x
progran dn® dv once again to convert back toﬂ notation. Then
weturn thelist of differentia factorsto the product: i (()) ‘ﬂ el (()) dn->dv
q q X X 89X o >
— (F(X)™ ™) = (F(X))"" &
ﬂx(()) ﬂx(()) 18>F(X)X1(F(X)) 1 %ﬂ (F(X)) ->TERMS
X 'ﬂx eqx

which for the above exampl e trand ates to:

L (R O07) % (Fx))°

! T el 6 FACTORS
i 185F(X) % (F(X))” % X 87X — (F(), >

X X N . .. Conversion

! ! {18 1 l‘?el(lr(x))o 2. l(F(X))) 1y tolist

or simply: I Xefx 9 iX [\g of lists

1 7 1 1 T el 6 LU 1T u u
ﬂ—X(F(X)) %{18 1} 'nxé'nx(F(X))ra 2 {ﬂX(F(X)) 5 {F(x) 1}%

(Note that we don't need to expand in order to smplify our example,
because the operations are done with RPL syntax and so the sequence: ,
Separation of factors

T[N N s .
ax FX)) 0 HL S0 2§ FLE) sfy {18 1 FX) 1)

X
automatically returns 1. Also,

Hold only highest derivative \/

—

ﬂlx FOT) 1 =

Volume 1, 2-34

11 21 6 . udj
Hﬂxéﬂx(F(x)) 2.% 118 1. F(X) 1
Convert dern to
der*der*(n-1)

9
1=
(RS

i

L=t
i1 X eqx

@l o Teef

Put appropriate
factor into first
position

60 l&l
(F(X)) 5 TXETX

(F()

e

I
118 1. F(X) 1 X

Corssersion

" en

o ooy (FO) D 2

2 X efX (F (X))SJ

%18 F(X)

\/

. Add appropriate
0 4 Ud factors and

“'%\ifm

5. lF(x) -5. 6 -1
X
Conversion
ﬂ 5 ﬂ -5 1U
X F(X) X F(X) 34

i

b

Basic Calculus with the HP49G - Volume 1 - Part 2

P LIST
iEXPAND
d1->dv
Product
\/ 3*F(X)
1 a9 s T e o}
3F(X) A 87X (F(X)) " TX 81 (F(X))@

One question that you might ask is, why do we prefer the highest
derivative? Why not the lowest? Well, that presumably has to do with
the fact that the things | work with, demand quite often to do that. But if
it fits your needs better, you can of course tell me to change that. Just
mail me your wishes and I'll see what can be done. The perfect thing
would be of courseto check al derivatives and select that particular one
which best fits for collection of differential forms according to the rule
of differentiation of power. (Yet another future incarnation? Or rather
inbitation;-))

Right after this rather complex part that deals with the rule of
differentiation of powers, we have a somewhat ssmpler part, which tries
to apply the rule of differentiation of products. It does this by using
pattern matching twice. The whole pattern matching is inside a
CASE- THEN - END clause. If one match works, then the
subsequent matches are not performed at all. Why do we do that this
way? Couldn't we just keep on doing pattern matching until nothing
changes? To answer this we must take alook at the matching patterns at
this point. In general, we will convert expressions of type:

F(X) x%&x) +G(X)X%X)

to expressions of type:

TF(X)>G(X)
X
Volume 1, 2-35

Basic Calculus with the HP49G - Volume 1 - Part 2

We see that this match doesn't create a sum, that would eventually be or ssimilar. So we collect to convert it to:
of exactly the same type. Because we do pattern matching to all
possible sums of two terms of the original expression, no new sum j;e TF(X)6
can be created by pattern matching, so that no subsequent matching of A XdF(X) x—=— + G(X) x——*

the same type is necessary. This fact, together with the fact that the € x X o

used command - MATCH does pattern matching starting at the most

inner nested sub expressions and continues matching until the top S° thet the hidden pattern:
expressions are reached, makes a single pattern matching operation
sufficient. First we try to match: F(X) ,ﬂ?g(x) +G(X) :;ﬂ':é(x)
J&(X) JF(X)
F(X) X +G(x) X becomes visible for - MATCH. Note that COLLECT will not destroy
to: the % notation of our expressions. Also note that COLLECT will not
T1F(X) G(X) collect expressions inside the parentheses of 1—1}(). It only collects
X "outside".
If it works, we leave the CASE- THEN - END clause. If it doesn't, After this, the program uses pattern matching to apply the rule of
we try to match: differentiation for expressions multiplied with some constant. At this
step we try to convert all expressions of type:
F() 2 T () TF(x)
X X constant x——=
X
to:
to expressions of type:
1F(X) G(X)
X flconstant »(X)
X ’

If it works, we leave the clause. If it doesn't, then we collect and

repeat the two above pattern matching operations once again. We do only if the expression constant isrealy aconstant, i.e. only if it

that because our expression might aso bein the form: doesn't contain the variable of derivation. We use the program
POSNAME and the method described on pages 2-2 to 2-3.

1G(x) TF(X)
A (X) X +AXG(X) I The next step is to apply the rule of differentiation of sums, again by

doing pattern matching. We match expressions of the form:
Volume 1, 2-36

to:
TF(X) + G(X)
X
and expressions of the form:

TF(X) 16()
X X

to:

1F(X) - G(X)
X

During all the above operations we kept track of the success of the
application of the rules. After al rules are applied, we check if some
of them was successful. If so, then we remove the two terms of
which the currently examined sum consists from the list of terms of
the original expressions. Then we put the result of the pattern
matching operationsin the same list. This makesthe list shrink by one
element. Then we start over building up al possible sums of two
terms until all sums have been examined.

This is in brief the way dCOLLECT.1 works. There are some
additional things that are interesting. We are going to take a look at
them now. First of all, we have seen that there are commands, like

FACTORS or COLLECT, which retain our % notation of

derivatives. FACTOR also belongs to these commands, but
EXPAND doesn't belong to them, asit will convert all formal
derivatives to d1 notation. In cases where the specific notation of

Basic Calculus with the HP49G - Volume 1 - Part 2

derivatives is of importance, you should always check to see if some
command that you want to use retains the notation, or convertsit to d1.

We aso saw that FACTORS will return the highest derivativesin
positions before the lower derivatives in the list of factors and

multiplicities. But this works only for "simple" expressions. For
example, if you enter:

I (R () () i EL — (F(¥)°

X X eqX

and pressFsfests | then you get the result:

Lo PG 1 gy) 1) 1

But if you enter:

i T iy
[Z(F(X) 1. F(X) 1. —X(F(X))+1 1.%.

1ax

This is an additional reason for chopping our expressions to its terms,
so that we can be sure that when we use FACTORS, there will not be
any factors that are themselves sums, and so the highest derivative will
be the first element in the list of factors. FACTOR worksinasimilar
way. If you enter:

L E00)) % 2T (F (x))0

11X X e9X
Volume 1, 2-37

, thenthereaultis:

o e (FOON e (F() F00)

in which again the derivatives appear in order higher to lower. If you

enter:

T #00) F00 EL 2T (Fpo)+ £

efx eqx

in which the factors appear in the same order like in the result of the
command FACTORS. COLLECT returnsaresult with the exactly

opposite order. Enter:

T £ 00)F () L ZT (£ 30)0

ix X eNx

and press SeJANS8] to get:

X ‘HX e‘HX
Or enter
o (E00) 00 < T8 (F)5 o5 (F0) ()
and press SsJINI8] to get:

Basic Calculus with the HP49G - Volume 1 - Part 2

EXPAND hasasoitsdistinct idiosyncrasy. Enter:

L (E00) 0 e L ()0

fix X eqX

and press [ZIZHE. The result is F(X) xdF(X) >d1dF(X) , which shows

that in products the command EXPAND putsthe derivativesin the
order lower to higher. Enter:

T F09) #0200+ L () F (%)

fix X e9X g X

and expand again to get F(X) >dF(X) >d1dF(X) +F(X)xdF(X), which
shows that the terms are ordered in a way, that terms containing the
highest derivative appear first, followed by terms with lower
derivatives. The order of the derivatives inside each term is again lower
to higher.

Another interesting thing that we see in the program dCOLLECT.1, is
the technique of breaking out of FOR loops by storing avaluein the
counter, that exceeds the upper limit of iteration. Consider for the code:

<<
1 10
FOR 1
IF
1 53
THEN
100 1" STO
END
NEXT
>>

Volume 1, 2-38

In this code, the loop will run until the iteration variable | has the
value 5. At this point, a value of 100 is stored in I, which makes the
program leave the loop when the NEXT command is executed, since
the value of 100 exceeds the upper iteration limit which is 10. The
iteration variableisalocal variablethat existsonly insidetheloop. As
long as we are inside the loop, we can not only use its current value,
but also store new valuesinit using STO, STO + and so on. So we
have away to exit FOR loopsin apolite and civilised way, by ssimply
adding the upper limit of iteration to the iteration variable. We can
check if something particular happens, that makes us wanting to leave
the loop, and if it happens we can use STO + to make theiteration
variable greater than the upper limit of iteration. Note however, that
the loop isn't exited automatically when we store some value in the
iteration variable. All the subsequent commands until NEXT will be
executed. Only when the command NEXT is executed does the
HP49G check the current value of the iteration variable, and decides
to leave the loop if it exceeds the upper limit of iteration. It is not an
emergency right now without any questions exit. But even such an
exit can be implemented. Y ou just have to put all the commands that
shouldn't be executed when the iteration variable exceeds the upper
limit, into an IF- THEN- END clause. Consider the code:

<<
DUP SIZE
® ourList up
<<
1 up
FOR I
ourList I GET SQ
IF DUP 1000 3
THEN up "1" STO+
END
IF 1 up £
THEN 1 + 3 A
END
NEXT
>>

This program takes a list of numbers as argument, and startsaloop in

Basic Calculus with the HP49G - Volume 1 - Part 2

which it calculates the square of the square of the number. If this square
is greater than or equal to 1000, the program adds the upper limit of
iteration to the iteration variable. Then it checksif the iteration variable
exceeds the upper limit iteration. If it doesn't, then it adds 1 to the
sguare of the number and raises the result to the third power. But if it
does, then it does nothing more and continues after the END of the
second IF- THEN- END clause. Since the next command is NEXT,
the current value of the iteration variable is checked. Since it is greater
than the upper limit, the loop is exited without performing thecode1 +
3 ~, immediately.

Perhaps you have asked yourself, why do we add {1 1 tothelist of
factors beforewe use PLIST ? And why do we add O to the list of terms
before we use SLIST ?Weéll, we do that to avoid the error "Invalid
dimension, in case the lists contain only one element or no elements at
al. In our case, instead of checking how many elements some list has,
we can add {1 1} tothelist beforewe use PLIST, to make sure that
there will be a result in any case. If the list has only a single element,
then multiplying it with 1 will not cause any trouble. If it has no
elementsat al, then we find the factor 1, which aso doesn't change our
expression. The same considerations apply to adding 0 or {0 0} toa
list before we use SLIST. Note however that thistechniqueis
applicable to our case and to other cases, but there can be cases where
we shouldn't use it. If for example some result does depend on the fact
that alist has only one element, then we should better check the size of
thelist.

Talking about lists, we shouldn't forget another important feature of the
command SUB. This command can be used to build up sub parts of
many objects. When it is used with lists, it takes a list from stack level
3, the starting position from stack level 2, and the end position from
stack level 1. It returns anew list which contains the elements of the old
list, starting and ending at the specified positions. For example, entering
{1 2 3 4 5},2,4,andpressing E}, returns {2 3 4}.But
this command has also some very convenient properties. Enter again
{1 2 3 4 5},then 2, andthen 10, and pressElE]. Though the

Volume 1, 2-39

list has only 5 elements, the HP49G doesn't error out, but simply
returns {2 3 4 5}.Enteroncemore{l 2 3 4 5}, then

enter -3 (1) and 3, and pressEM toget {1 2 3}.Anditgets
even better. enter {1 2 3 4 5},then 10, andthen 15, and

press [EIE] to get an empty list asresult. Thereis no "out of range"
error! (However, if you enter {1 2 3 4 5}, 5, 3,andthen

press|Ellg you don't get {3 4 5}, but an empty list asresult.)

Enough peculiarities and nice properties. Time to return to our main
path again. If the fans of program reinbitation start feeling euphoric,
then this must be partly because we are about to think how the
program dCOLLECT.1 could get better. Let's first remember why

sometimes the program doesn't do compl ete collection of differential
forms. When some applied ruleis successful in combining differential
forms, it could return a new differential form, which contains an

expression between the parentheses of 1—T(), which itself can be

collected. One possible way to do that would be, to keep on doing
pattern matching until nothing more changes. But we can't use this
method for collection of differential forms using the rule of
differentiation of powers, because especially for this purpose we
don't work with pattern matching. Let's work out a method for this
case, that is able to continue collecting differential forms into the
depths of the algebraic expression. Imagine some hypothetical code,
that is able to detect the presence of differential forms, extract the

expression in the parentheses of %() and give this expression to

dCOLLECT.1. If our code can do that for any nested level of
derivatives, then we are able to apply dCOLLECT.1 repeatedly, until
nothing changes. Consider the following code, which | will comment
after itslisting:

<<
DO

"9 ® DERIV" 3. DISP @Message

Basic Calculus with the HP49G - Volume 1 - Part 2

DO @Convert all § to DERIV
{ "Tev@ay:
"DERIV(&A,&V" }
- MATCH
UNTIL
NOT
END
® LSsT @Convert alg. to list
"DERIV(A,B)" @Dummy
® LST @Convert it to list
DUP 3 GET @Get the object "DERIV*®
SWAP 5 GET @and the invisible APPLY

® deralg apl

<<

@Store in locals

@Message

@DOSUBS procedure

"Object" 3. DISP
1
<<
NSUB R® I ™ of " +
ENDSUB R® I +
4. DISP
CASE

DUP deralg SAME
THEN
END
DUP apl
THEN
ROT 1 ® ALG
UNROT EVAL
IF
DUP 0BJ®
{DERIV} HEAD
SAME
THEN
DROP2
dCOLLECT
OVER 0BJ®
3 DROPN
SWAP 2 ® LIST

- MATCH DROP
ELSE
DROPN

SAME

@Message

@1f we have a "DERIVT
@then do nothing

@1f we have APPLY

@then convert the function
@that is applied to alg.
@and evaluate APPLY

@If

@we have DERIV(expression)

@then

@apply dCOLLECT to expr.
@(dCOLLECT is new! Its
@description comes on
@page 2-31)

@and match expression

@with matched expression.

Volume 1, 2-40

END
END
EVAL @In all other cases EVAL
END

>>
DOSUBS
"DERIV ® ﬂ" 3. DISP @Message
HEAD
DO @Convert all DERIV to T

{ "DERIV(&A,&V"
"f&v(&A) "} - MATCH
UNTIL
NOT
END

>>
UNTIL

SWAP OVER SAME @Do until nothing changes
END

>>

Let's take a closer look to what the program does. First of al we
convert al patterns ‘ﬂlx (F) to DERIV(F,X) . Why do we do that?

Well, we want later on to transform the algebraic object to an RPL
list, using the command list. The problem isthat nested derivatives are
not exploded to the objects of which they consist. For example, if you

enter:
1881(2)0
X eqx\ /o

q)
x (X)) 1y

and not {X X X 2 ~ 9§ 1}, whichwould bethe complete

Basic Calculus with the HP49G - Volume 1 - Part 2

RPL decomposition of the algebraic object:

But if you enter the same algebraic object using DERIV , that is
DERIV(DERIV(XZ,X),X), and press E=IEEH, then the result is

{x 2 ~ X 'DERIV' #2d X 'DERIV' #2d}.Thisligisa
complete decomposition. It contains two invisible items. If you press
SAE=] to explode the list, then stack levels 2 and 6 seem to contain thin
air. If we represent these invisible objects with ¢, then the list in reality
looks like:

{Xx 2 ~ X 'DERIV' #2d + X 'DERIV' #2d ¢}

The strange invisible object « isthe command FCNAPPLY , which has
no visible representation on the HP49G. That means that we are "not
allowed" to use it. But because we don't accept any limits in the usage
of our machines, we are going to work with it. Actually the list says
nothing more, than a complete description of what to do, in order to get

the algebraic object DERIV(DERIV(XZ,X),X). It sys:

X Enter X.

2 Enter 2. Now we have the arguments X and 2.

n Make X°.

X Enter X again. Now we have X* and X .

'DERIV' Enter the algebraic object (!) 'DERIV'. Now we
have X*, X and 'DERIV".

#2d Enter the system binary #2d . Now we have X, X,
'DERIV' and #2d.

. Apply the function DERIV , to the number of

arguments, given by the system binary #2d. Now
we have DERIV(X?,X).

Volume 1, 2-41

X Enter X . Now we have DERIV(X?,X) and X.

'DERIV' Enter the dgebraic object (!) 'DERIV'. Now we
have DERIV(X? X), X and 'DERIV".

#2d Enter the system binary #2d . Now we have
DERIV(X?X), X, 'DERIV' and #2d.

. Apply the function DERIV , to the number of

arguments, given by the system binary #2d.
Now we have DERIV(DERIV(XZ,X),X).

Since thelist contains acomplete RPL decomposition of the algebraic
object DERIV(DERIV(X’ X)X), we can use it to detect where the

object that we encounter isthe algebraic object 'DERIV'. But we need
to compare the object in the list with 'DERIV', and we can't enter
'DERIV' ourselves. That is why we enter the dummy DERIV(A,B),
decompose it, and put 'DERIV' inthelocal variable deralg. At this
point we also put theinvisible FCNAPPLY inthelocal variable apl,
because we are going to need it later in the program. Therest is easy.
Whenever we encounter an object different that 'DERIV' or ¢, we
simply evaluate it. This successively builds up our algebraic object.
When we encounter a 'DERIV', we don't do anything. When we
encounter a ¢, we turn the object on stack level 3 to an agebraic,
because « must have an algebraic object at that level. Then we evaluate
e, which builds up expressons of the form

someFunctiof{arglarg2¥s,argn). Then we check if this
expression is actually DERIV(argLarg2). If it is, we give arg1to

the new program dCOLLECT , which collects differentials. We keep
on doing this until nothing more changes.

We copy the old dCOLLECT.1in dCOLLECT and we store the
above code in... dCOLLECT itsef! Thisway the program
dCOLLECT calsitsdlf over and over again, until it can do nothing

code is bold):

<<
PUSH
dn® dv

® TERMS
<<

>>

® diffTerms rCode

>>

Basic Calculus with the HP49G - Volume 1 - Part 2

@Save user"s settings
@Convert to Y notation
@return list of terms
@All the above code

@Store in locals

We aso write in dCOLLECT before the application of the rule of
differentiation of an expression multiplied with a constant:

END
IF
THEN

rCode EVAL 1.

ELSE

0.

END

"exf(r) ® T

Now we have a
program, that gives
itself a program as an
argument, that in turn
calls the program itself
again. The process of
calling each other ends,
when dCOLLECT
can't collect anything
more. Isn't that
amazing?

Enters rCode and gives
itself rCodeas an
argument

dCOLLECT < > Code

When rCode runs, it
executes dCOLLECT

more. At the start of the program dCOLLECT we write (additional This is the program dCOLLECT which comes with this document.

Volume 1, 2-42

The expression:

will be converted to

I & rx)0
xe2 Ve

in 17 seconds.

The expression:

AR

e (FOOP +6(x) xﬂ_’l((F(X))+F(X) xﬂ_l (6(x))

gets converted to:

T T3 #(x) + L (X))

Ix e X
in 97 seconds.

The expression:

M1 & o 1 v o, 1
e 0)g * gx e (G5 * 7 (G

gets converted to:

Basic Calculus with the HP49G - Volume 1 - Part 2

Let's try the examples which we examined with dCOLLECT.1.

in 51 seconds.

The expression:

(X" +6(X)?) s (FX) + 256X () g (G(x)
goes to:

ﬂlx (60 #(x) + F(x)*)

in 116 seconds.

The expression:

ﬂlx Zeﬂ—"l(()2 +6(x)

(F(X)) +F(X) ﬂlx (6(X)

=

goes to:

T F(x)6(x) + - (FX)P

X e
in 97 seconds.

The expression:

F(X)’ xﬂ—l ZE% (F())2+2#(x) xﬂ—l (F(X))*

Volume 1, 2-43

goesto:

Tl &)00
X efX €2 20
in 119 seconds.

The expression:

Basic Calculus with the HP49G - Volume 1 - Part 2

21 1 v 0 2
25F(X) o (F(x)) X 87X (F(X))g+ 2 5 (X)
goes to:

T 1 3\ T o]
X &3 X (F(X))xﬁ (F(X)),a
in 162 seconds.

The expression:

T el o, 1 2 1
F() o o (FOONG + o (FOX) + 2% (F(X)
goesto
T T 00 L r(x)°
X efx €2) 2
in 124 seconds.

The expression:

20 1 (o}
F(X)"+ v (FX)),,
in 123 seconds.

The expression:
F(X) ><l —
X

goes to:

T T 200

X eqx €2 20
in 109 seconds.

The expression:

£3
bl
£3
(=
)
X

2>G(X) ¥(X) ><ﬂ_1l(&

Volume 1, 2-44

in 102 seconds.

The expression:

goesto

1 8#(x)

X eG(X) +6(x

9 o

in 110 seconds.

The expression:

)l 20
- J3F(X) - 3>F(X))><W(F(X)) °
goes to:

ﬂlx (357 (x)- 2 (x)°) xﬂ—l (F(X))
2

in 61 seconds.

We do some additional examples.

The expression:

Basic Calculus with the HP49G - Volume 1 - Part 2

goesto:

T & (x)0
X &4)

in 18 seconds.

The expression:

goesto:

e (FOO* ek (FX)

in 23 seconds.

The expression:

goesto:

TN &)0, T &)66
X eqx €2 g qxe3 20

in 260 seconds. Here the result could have been further collected to:

Volume 1, 2-45

Basic Calculus with the HP49G - Volume 1 - Part 2

Teelal 2,1, 00 F(X) 1T T 26
o o o X+ SR o o FOO G

Welet rCode run only after the rule of differentiation of products has 1N 31 seconds. Try to find out why no complete collection of differential
been successfully applied. But if you want, you can do the same after forms was done here.
the rule of differentiation of sumsis applied successfully. This way,

when some expression like:

1 & o, 1 e o)

Is successfully collected to:

1 e) 6
ox ox (FX)) 22 (GX));5.

then the sub expression inside the parentheses;:

T F(0)+ -2 (6(x))

x X
will itsalf be collected to:

1
o FOX)+6(x)
Thiswill of course cost even more time.

The expression:

F(X) g (FX) gl S (PO

goes to:

The expression:

2>U(X) G(X)*F(X) xﬂlx (F(X)) +U(X) +=(x)* xﬂlx (G(x)) + &[x)F (x)* xﬂlx(u(x))
goesto:

1 2
o (LX) 6(x) F(x)’)

in 179 seconds.

Note that the program doesn't contain any explicit implementation of the
rule of differentiation of ratios. This is achieved implicitly as a
combination of the rule for powers and for products.

There are also other methods to make such a program. One of them will
be demonstrated in some future marathon and bases on isomorphism.

We dready talked about the fact that the HP49G doesn't provide any
commands for conversion of:

N
18 F(X.n)

X

to:

Volume 1, 2-46

But it is not hard to program that. We can use pattern matching with

Basic Calculus with the HP49G - Volume 1 - Part 2

FANE now, the HP49G

inside the sum isn't expanded. If you press =g

the condition that the derivation variable is different from the Will not only expand the derivative to n>nxX"", but will also expand

summation index. We first make a program that smuggles the usage
of the command SAME in an agebraic object:

<<

SAME
>>

Westoreitin ALGSAME
Then we program:

<<

{"T&V(S (&n=&n0,&N,&F))"
*S (&n=n0,&N, JJ&V(&F))"

"NOT ALGSAME(&V,&n)"}

- MATCH DROP
>>

and we storethat in dS® Sd.

Enter:

N "
Al % fxx0
Xeés @

e derivative

the sum to:

(X2~ 2>x +2)N2 - (2 - 2N+ X+ X" - (X+1)
X3 - 3xX% +3%xX -1

If you don't want that, then you must use another strategy, since
smuggling even more RPL in algebraic objects will not work. The
customs officers started suspecting us ;-). If you would try to smuggle
EXPAND into an algebraic by storing

<<

EXPAND
>>

in ALGEXPAND and changing dS® Sd to:

<<
£~ T&V(S (&n=&n0,&N,&F))"
=S (&n=n0,&N,ALGEXPAND(&V (&F)))"
"NOT ALGSAME(&V,&n)"}

- MATCH DROP
>>

then it wouldn't work. If you would enter:

s, then you would get:

Volume 1, 2-47

all
eqx

N
8 ALGEXPAND

n=1

poc)e

But it doesn't have to be always pattern matching. Consider for
example the program:

<<
® dsum
<<
dsum OBJ® NIP ROT ® LST
IF
DUP HEAD 4 PICK

SAME NOT
THEN
DUP 4 GET

4 ROLL 4 ROLL EVAL
4 SWAP PUT ® ALG

ELSE
3 DROPN
dsum

END

>>
>>

Storethat in dS® Sd2. Enter again:

N .
I % fxx0
™>xer 1%/

and press EoEcasH . to get:

N
é nxnxX"*. Of course this program works only for expressions of

n=1
the exact form:

Basic Calculus with the HP49G - Volume 1 - Part 2

T &4 0
—¢a F(X,n)+
X én?no ()@

It will not work, or even crash, for any other expression, even if it is
just alittle bit different, like for example:

)| e&“ o)
A & FXn),

The other program, dS® Sd, isabit better, since it will also not work
for any expression the doesn't contain the pattern:

T &8 0
—¢a F(X,n)+
X én§n0 ()z

but at least it will not crash. Making a program that worksin more cases
than for some simple patterns, is a bit more difficult, but not very

difficult either. We know that the notation % isproblematic with S but

DERIV seemsto work better. We must first convert al ﬂ in some

given expression to DERIV . Then we can expand. The program:

<<
{"Y&V(&F))" "DERIV(&F,&V)"}

- MATCH DROP EXPAND
>>

will do that. Note aso that if the HP49G can't handle the sum, then it
will return aresult that can be questionable. Enter:

T8
X égl F(X,n)g

Volume 1, 2-48

and expand. Y ou get d1S(n,1N,F(X,n)) because the sum:

N

a F(x.n)

n=1

can't be calculated. But in diS(n,1N,F(X,n)) the differentiation is

meant for thefirst rational variable in the parentheses, whichisn. We
definitely didn't enter:

T
fin é?:l F(X’n)g

We had a derivative for X. And even worse: In d1S(n,1N,F(X,n))
the information about the variable of differentiation is completely lost
without atrace! Using DERIV instead of § doesn't help either. We
seem to have hard problem here. On the one hand we can't be sure
that al differentiations of summations will follow the simple pattern:

T &3 0
—c¢a F(X,n)+
ix én?ﬁo ()ra

and so pattern matching will not aways work. On the other hand if
we expand trying to convert all differentiations of summations to

paterns like d1S(n,2N,F(X,n)), we lose the variable of
differentiation. Isthere any way to solve this problem?

If we want to make dCOLLECT good enough for being able to
handle arbitrary expressions that contain also sums, then we have add
special code that somehow takes care of them. One possibility would
be to convert al sums to temporary functions, say
tempFuncA(derVar), tempFuncB(derVar), and so on, that

contain the variable of differentiation. Then, using EXPAND , we can
can convert the given expression to an expression that only contains

Basic Calculus with the HP49G - Volume 1 - Part 2

simple patterns like diltempFuncA(X). In these patterns the
information about the differentiation variable isfully preserved. We can
let the code of dACOLLECT run and so collect differential formswith
the temporary functions dltempFuncA(X) instead of the original sums.
This will work, because dCOLLECT isalready ableto handle such
abstract expressions, like d¥F(X), diG(X), and thusalso
d1tempFuncA(X). When we are done with this, we reconvert all
tempFuncA(X) back to:

N

a F(x.n)

n=n,

and d1tempFuncA(X) back to:

And so we see that we must keep track of the corresponding expressions
N
tempFuncA(X) and & F(X,n), in order to be able to make the

n=n,
backwards conversion afterwards. Let's try first to make a program for
conversion of:

T &4 0
—¢a F(X,n)+
X én?no ()@

to:

g 1
a)

Volume 1, 2-49

Consider the code:

<<

"{ ® DERIV" 1. DISP
DO

{"T&aVv(&F) " DERIV(&F,&V)"} @Convert all Y to DERIV

- MATCH DROP
UNTIL
NOT
END
® LsT

"DERIV(A,B)" ® LST DUP 3 GET@Create "DERIV", and the

SWAP 5 GET

{3 {3 "X° 64.

® deralg apl sums
tempFuncs dervar fnum

<<
"Object™ 1. DISP
1.
<<
NSUB R® I ™ of " +
ENDSUB R® I + 2. DISP
CASE
DUP deralg SAME
THEN
END
DUP apl SAME
THEN
ROT 1 ® ALG
UNROT
IF

PICK3 deralg

1. ® ALG SAME
THEN

4 PICK

"dervar”

EVAL

IF

sums {} 1!
THEN

STO

@Message

@Alg. to list
@invisible APPLY

@Store in locals

@Message

@DOSUBS for all objects
@in list of alg.
@Message

@In case

@we have "DERIV*®

@do nothing

@we have APPLY

@Convert object in
@stack level 3 to alg.
@If

@stack level 3 is DERIV
@Store derivation
@variable
@Evaluate i1nvis. APPLY
@If

@sums already found

"tempFunction + (var)"

2. DISP

tempFuncs 1.
<<

IF
DUP
dervar
.oy
POS NOT
THEN
dervar
+ ","
+
END
>>
DOSUBS
"tempFuncs*
STO
END
ELSE
EVAL
END
END
DUP {S3} HEAD SAME
THEN
"S ® tempFunction”
2. DISP
5. ® ALG
DUP "sums®™ STO+

"tempFunction" fnum
INCR CHR + (" +
"tempFuncs® STO+

END
EVAL

END

>>

DOSUBS HEAD

IF

sums {} 1

THEN

Basic Calculus with the HP49G - Volume 1 - Part 2

@Message

@DOSUBS for all sums
@1f tempFunction
@doesn"t contain
@sub string 'dervar,™

@then add that sub
@string

@Store in

"tempFuncs*

@else (stack 3 1
@evaluate object

DERIV)

@In case object is S

@Message

@Build-up sum

@Add it to sums

@Make string
@tempFunctionX where X
@stands for capital letter
@and add to tempFuncs

@In case nothing of the
@above, then EVAL

@*****

@If
@we found sums

Volume 1, 2-50

rid

"tempFunction ® alg"”

2. DISP @Message
sums tempFuncs {}
"tempFuncs® STO @Store {} in sums
2.
<< @For all sums, tempFuncs
1. OVER SIZE 1. - SUB
Yy
IFERR @Try to convert
0BJ® @tempFunction to alg.
THEN @In case of error get
DROP2 @of sum and tempFunction
ELSE
2. ®LIST 1. ® LIST @else keep
"tempFuncs® STO+ @{sum tempFunction}
END
>>
DOLIST
IF @1f we have
tempFuncs {} 1! @tempFunctions
THEN
"MATCH S tempFunction”
2. DISP @Message
tempFuncs 1. @Match each sum to
<< @its corresponding
- MATCH DROP @temporary function
>>
DOSUBS
END
END
"' 2. DISP @Clear display line 2
dn® dv @Run dn® dv
IF @1f we have
tempFuncs {} ! @temporary functions
THEN
"MATCH tempFunction S
2. DISP @Message
tempFuncs
1. @Match temporary func.
<< @with sum

Basic Calculus with the HP49G - Volume 1 - Part 2

REVLIST - MATCH

DROP

>>

DOSUBS
END
IF @1f we have

tempFuncs {} 1 @temporary functions
THEN

"{S® ST 2. pIsSP @Message

{ "Y&v(S (&n=&n0,&N,&F)) "
*S (&n=&n0,8&N, &V (&F)) "
"NOT ALGSAME(&V,&n)" }
- MATCH DROP
END
>>
>>

@Match S to S

We dready had dS® Sd and dS® Sd2, so let the program be
named derS® Sder. (We are running out of names!)

Enter the expression:

&y)i Fxn)?
X éF(X,n)xa F(X,n)g

n=1

which doesn't contain the pattern:

T &4 0
—¢a F(X,n)+
X én?no ()@

but still can be expanded to:

F(X,n) %(ga,% F(X,n)g+ 2 F(x.n) xﬂlx (F(x.n))

n=1

which does contain the pattern:

Volume 1, 2-51

1 &9

—¢a F(X n)9
™Yéon, = o

lild- The HPA9G flashes happily messages,
converts, reconverts and after awhileit returns:

F(%.n) yaﬂ_‘; (F(xn))+ a F(x,n)xﬂ_ﬁl((F(x.n)

Notice that the derivation is now inside the summation. The program
worked. The other two programs, dS® Sd and dS® Sd2, would
live the expression:

o GFxn) x91 FOxn)°

unchanged. Notice also that the code of the program up to the point
marked with =*==** in the program listing, strongly resembles the part
rCode of dCOLLECT.

With almost the same code of derS® Sder we can aso enhance our
dCOLLECT, in order to be ableto collect differential forms. At the
point in the program, wherewe call dn® dv, we could also call the
current version of dCOLLECT . That means that we can make yet
another new version that handles also sums. But we can also combine
the two functiondities of collection of differential forms and of
converting:

1 &y 6
188 Fix
xed (on)

to:

Basic Calculus wi

th the HP49G - Volume 1 - Part 2
" (F(xm)

&
a I
in asingle program. This program takes an expression with differential
forms from stack level 2, and a 1 or O from stack level 1. If the
argument on stack level 1isal, the program collects differential forms.
IfitisaO, itjust converts.

T & 0
—¢q F(X
‘ITXenan (n)ra

to:

l
X

(F(X,n))

|| QJOZ

by expanding the differential forms. We just have to make minor
modifications in derS® Sder. At the start of the program we write
(bold type face):

<<

SWAP
"ﬂ ® DERIV™ 1. DISP @Message
DO
{"T&V(&F)" DERIV(&F,&V)"} @Convert all Y to DERIV
- MATCH DROP
UNTIL
NOT
END
® LsT @Alg. to list
SWAP
"DERIV(A,B)" ® LST DUP 3 GET@Create "DERIV", and the
SWAP 5 GET @invisible APPLY
{3 {3 "X* 64.
® dColFlag deralg apl sums @Store in locals

tempFuncs dervar fnum

Volume 1, 2-52

Basic Calculus with the HP49G - Volume 1 - Part 2

T 80cn)d Fxn)

At the middle of the program we add:

__________ 1Xe
" 2. DISP @Clear display line 2
IF erf then 0, and press . You get the expanded resullt:
dColFlag @the user entered 1
THEN @then do collection & q q N
dCOLLECT @of diff. forms. G(X — (F(X,n)) + — (G(X F(X,n
ELSE @else ()xﬁlﬂx(()) ﬂX(())xna:‘l ()
dn ® dv @Run dn® dv
END where the derivation is brought inside the parentheses of the sum.
N enor . e o runcti Now, it would be good if the collection of differential forms would
e Tnes i emporary functrons dready work, but we still need a tiny modification. Before calling
“MATCH tempFunction S* dCOLLECT we must convert al patterns:
........... y o
Thisis the program dCOLEX that comes with this document. Let's 8_. ﬂ_ (F(X,n))
try it. Enter: =t
q to:
— (F(X,n)>G(X))
X T 0
—&a F(X,n)
ﬂx en:l 2

then O (for expansion of differential forms) and pressi®s]i=y. The
result is the expression:

| Press We will modify dlightly the code in dCOLEX amost since everything

q q we need is already there. At the beginning of the program, after the first

G(X) x— (F(X,n)) + F(X,n) X (G(x)) SWAP , we add:

X
If you now enter 1 (for collection of differential forms) and press '[;OS T®S™ 1. pisp

pee]N=g again, then you get: {~S (&n=&n0,&N, T&V(&F))" *T&Vv(S (&n=&n0,&N,&F))"
0 *NOT ALGSAME(&V,&n) } - MATCH

UNTIL NOT
ﬂ—X(G(X) F(X,n)) END

the expression we started with. But the improvement becomes visible NOW, having:
when working with sums. Enter:

Volume 1, 2-53

Basic Calculus with the HP49G - Volume 1 - Part 2

ST 1 d | think that it is time now to take alook at the interdependencies of our
G(x)<a X (F(X,n))+ o~ (G(X)) xa F(X.n) programs, because we had so many of them, and we are going to lose

n=1] T n=t track, who is using whom, and what we need and we can through
or: away.

7 & 0 & We don't need necessarily dS® Sd and dS® Sd2. Thesetwo
G(X) ngé}f(x’”)g*(e(x» ?‘1 F(X,n) programs can be purged if you don't need them. | only include them

with this document for studying purposes. (And to spare you the typing
on the hard keys of the HP49G ;-)) Also, dCOLLECT.1 isnot needed.
The programs dCOLEX and dCOLLECT do that work better. Y ou
N . could keep dCOLLECT , though dCOLEX does the same and more,
all EG(X) >é F(X,n)o because dCOLLECT isfaster, sinceit doesn't include special code for
Xe n=1 g sums. So perhaps you can use it for faster results, when no sums are
involved. If you purge dS® Sd, dS® Sd2, and dCOLLECT.1,
The program still works with the examples that we had on the then the program structure becomes a bit simpler. (The picture of the
previous page. If it doesn't, then call Trabakoulas and tell him the simpler program structure is on the next page.) The two programs
story. He will be glad to "suggest" me to do more programming ISCONT? and ® TERMS come from the Sequences, Series and
EXErcises. ;-) Limits Marathon. Their complete documentation is there, but | include
them in the files of this marathon for convenience.

on stack level 1, you can enter al, and press i%&

STARTEQW
dCOLEX
SECLINE || TANPARSEC dS->sd |lers->Sder dCOLLECT||dCOLLECT.1
ISCONT?
d1GAMMA|l dF1F2 /
d1FACT || ->FACT DQUOT || TANLINE || ds->sd2 ||aLcsAME|| dn->dv ||POSNAME]| ->TERMS DY

Volume 1, 2-54

If we bring the main ingredients of the programs dn® dv,
dCOLLECT derS® Sder, or dCOLEX, then we see that they
use list processing very extensively. Algebraics objects are
transformed to the corresponding RPL lists, and then each of the list
objects is examined and used individualy. The programs work in
many cases. Of course they will not work in other cases. But the main
picture that we get from them is that we are actually process lists, in
this case the particular RPL lists that are equivalent to the algebraic
objects of the HP49G. Without doubts the lists are a very powerful
object n the HP49G, because the are somewhere between algebraic
objects, programs, and data. Having commands like ® LST,
® ALG and similar, we are able to start with an algebraic object,
convert it to alist, jumping thus in the world of listoids with al their
special capabilities, transform the list to a new list which corresponds
to some other algebraic objects, and finally jJump back to the world of

Basic Calculus with the HP49G - Volume 1 - Part 2

algebraicoidswith their special capabilities. When we transform thellist,
using our rules of programming, we actually are performing operations
on algebraic objects in their list form. You can imagine some virtua
algebraic object, which experiences the corresponding changes, when
we somehow operate on its list form. For example, take the algebraic

object X +Y, anditsRPL list form {X Y +}.If we exchange the

elements X and Y inthelist, we are actually transforming X +Y to

Y + X. There are of course countless ways to exchange elements X and
Y of thelist, but al these possible agorithms, programs, name them
what you like, are actually doing the same. They use the commutative
property of addition. Any hypothetica built-in command
COMMUTEPLUS, would correspond to our element exchange
algorithm. But, not all elements exchanges would correspond to
commutation of the operands of addition. In the list we can aso
exchange the
elements Y and
+, transforming
it to
{x + v},
which is no
more the mirror
picture of some
valid algebraic

STARTEQW

object in the

dCOLEX

SECLINE |JTANPARSEC]| derS->Sder

ISCONT?

d1GAMMA dF1F2

world of the
listoids. The list
{x + v},

would be like
trying to enter
'Y (X,+)" which
isn't possible on
the HP49G.
(Well, usualy at
least. ;-)) This
shows us that

dCOLLECT

d1FACT ->FACT DQUOT TANLINE | | ALGSAME

dn->dv J|[POSNAME|| ->TERMS DY we have ways

Volume 1, 2-55

on the HP49G, to extend the possible algebraic objects, to al those
which are representable through valid lists, but not through valid
algebraic expressions. ("Vaid" means valid for the HP49G.) For
example, the object 'Y(X,+), represented by {X + Y}, could
mean some function Y , that acts upon two arguments, one of which
is itself a function! We can use it for any program, that we code
accordingly to what the function Y does with its arguments. We can
only not represent it using algebraic syntax, but that's the only
limitation. So we see that the world of listoids seems to be somehow
more extended, bigger than the world of algebraicoids. Imagine the
possibilities. (We aready have experienced some of these
possibilities, think again of our programs.)

But one of the main disadvantages of the lists are, that they are harder
to understand by simply looking at them. Enter some lengthy
expression using derivatives, sums and whatever you want, and take
alook at it. A ssmple short look in the EQW. If you think that it is not
very readable, press g, and think about the readability of the

RPL list. Perhaps because of years in school, perhaps because of
built-in preference of humans for algebraic syntax, we seemto be able
to understand algebraics (by looking at them) better than RPL. (Or did
anybody read any book of physics, that says that the one dimensional
Schrodinger equationis 22 m x/ NEGY XX TEY = instead

2
- Z*hm x% = ExY ?) Don't think that | am afan of algebraic

syntax on calculators, or on any other CAS. | am a fan of the

algebraic syntax as it is used in mathematics, and that's (often)

quite different from that used on computer algebra systems. Compare
2

the mathematics formula - %n X% = ExY with the calculator

formula - (7 /(2 >m)A1x(Tx(Y))) = EXY to understand what | mean.

They are way not the same. Only when some input software like the
EQW is available, somebody can say that algebraic is like it was
meant "on paper". Otherwise the similarity exists only on the
prospects of the device/CAS.

Basic Calculus with the HP49G - Volume 1 - Part 2

Why do | say the above things? Well, the lists may be as good and
powerful asthey want, but they don't have the transparency of using an
algebraic, at least on the HP49G. Algebraic objects and the commands
available for them, are easier to understand. Somehow clearer. So, isn't
there any way to do, for example, collection of differential forms,
avoiding lists and their difficulties when it comes to understanding?
Can't we do the same, like what dS® Sd or dCOLLECT does, but

using only algebraic objects and the commands for them? Well, thereid!
But in order to understand this (marvellous!) way, we have to take a

closer look to our old good friends - MATCH and MATCH again.

We have met them in the Trigonometry Marathon for thefirst time. And
their power iswaaaaay from being completely known. What followsisa
first short journey into the depths of pattern matching on the HP49G. |
think that many many journeys will follow in the next marathons.

Let's bring in mind again, why we avoided using pattern matching for
collecting differential forms in expressions that contain sums. The
problem was, that we can't be sure that all sumswill bein afew ssimple
patterns, which we can then convert to other patterns with pattern
matching. In order to convert the whole expression in another
expression, in which only some few simple patterns with sums appear,
we have to expand it first. But then all expressions of the form:

1 & 0
—c¢a F(X,n)~
X én:ano ()z

will be converted to d1S(n,n,,N,F(X,n)) and we lose the information
about the variable of derivation. That was the reason that we decided to
first convert every sum in a temporary function tempFunctionA(X),
tempFunctionB(X) and so on. Thisway any expression like:

1 &8 0
¢ca FlX,n)+
ﬂx énian0 ()ﬂ

Volume 1, 2-56

gets converted to:

X — (tempFunctionA(X))

and then we are able to expand, because then the result is
d1tempFunctionA(X). After thiswe apply our algorithms for
collection of differential forms, and we reconvert all temporary
functions back to sums. One small but important detail of the
procedure is that each distinct sum should be converted to a distinct
temporary function, in order to keep the information that different
sums are involved. This is why we can't use pattern matching. If we
have an expression, like for example:

R
X ena1 F(n,X) + r%G(m X)

&N

and we match all patterns @ &F to tempFunctionA(X), then the
&n=&n0
expression:

R
X ena1 F(n,X) + r%G(m X)

will be converted to:
I (tempFunctionA(X) +tempFunctionA(X))

which is wrong since there were two different sums in the original
expression, but only a single temporary function in the result.

But if we were able to expand the differential formsin the expression
completely but without using EXPAND , then we would at least be
sure, that the only differential form where sums appear, would be of

Basic Calculus with the HP49G - Volume 1 - Part 2

the form:

1 &8 0
—Cca KX,n)+
‘HXenan ()@

If we know that this is the only possible pattern, we are half the way
through. Of course, we can't expect that a single pattern matching could
do that. But using many of them, in areasonable order, it is possible to
do what we want. Consider the program:

<<
DO

DUP ® TERMS

0 + SLIST

"TA/B)® (B*TA-A*B)/Br2"

1. DISP

DO @Ratio rule
{"T&v(&As&aB) " " (&B*T&V(&A)-&A* &V (&B))/&B"2" }
- MATCH

UNTIL
NOT

END

® TERMS 0 + SLIST

“"TA+B)® A+ B"

1. DISP

DO @Sums rule
{"T&av(eA+&B) " " fav(aA)+T&av(&B) " }
- MATCH

UNTIL
NOT

END

"9 (Const*A) ® Const* A"

1. DISP

DO @Constant rule
{"fav(ac* &) "&C*J&V(&A)" "NOT POSNAME(&C,&V)" }
- MATCH

UNTIL
NOT

Volume 1, 2-57

Basic Calculus with the HP49G - Volume 1 - Part 2

" (A*B)® B*A+A*{B"

@Product rule

{"Tav(aa*aB) " "&B*fav(&A)+&A*f&aVvV(&B) " }

" (A7) ® n*Ar(n-1)* A"

@Power rule
{" T&V(&An&N) " "&n*&AN(&N-1)* &V (&A) "

*NOT POSNAME(&n,&V)"}

"IS® S~ @All other expansions of
@diff. forms are done.
@start converting sums
{"&V(S (&n=&n0,&N,&F))"

* S (&n=&n0,&N, fJ&V(&F))"

"NOT ALGSAME(&V,&n) }

SWAP OVER SAME

Thisisthe program PATdS ® Sd. Let'sseeit in action. Enter:

1 = E5(x, n)xa F(xn)

il The program returns:

:%1 F(X,n) ><ﬂ—1l((G(X))+G(x) x?i 111; (F(X,n))

the correct result. Notice that we didn't use EXPAND asingletime.
Notice also that we used ® TERMS, which itself doesn't convert the
patterns:

T8 F(xn)?

iX € 2

to d1S(n,ny,N,F(X,n)). Try some examples yourself. I'm sure that you
will find expressions that the program can't handle, but one thing is
sure. This program is a much clearer and easier to understand, than the
others. No DOSUBS of DOSUBS and procedures buried under
nested levels of loops. No tricks and dummies from which we extract
objects that we can't create directly. Just DO -loops, nicely ordered one
after the other, each one of which simply repeats asingle kind of pattern
matching, until nothing more happens. And the whole thing wrapped in
an outer DO -loop which runs again and again, until nothing changes.

Now that we have this program, we know that whatever the form is, in
which differential forms are present in some expression, when the
program ends all derivatives of sums will be in the form of a single
simple pattern:

il
——(&F
&na:&no fi& X (&F)

This contains all information that we need in order to convert it to a
temporary function. So we can hope that we will be able to use again
pattern matching for collecting differential forms including differential
formsthat contain sums. We can convert all patterns.

Volume 1, 2-58

BRI

ﬂ&xe&n &no ﬂ

then convert al patterns:

BRI

ﬂ&xe&n &no Q

to patterns:

T2 X (tempFunctlor(&X))

then apply dCOLLECT, and then convert all patterns
tempFunctiof&X) back to:

%N
a &F
&n=&n,

The principleisclear, but...

Aswe have seen, if we try to match each pattern:

&N -
&5 &0
ﬂ & x e&n:&no g

to, say:

Basic Calculus with the HP49G -Volume l - Part 2

T QREPLS§ a &F
T&X

an-ano g@

having programmed REPLS before, as a program that takes the sum
and creates replacements, like tempFunctionA(X), then we have two

small problems. First of all, the replacements have to be different from
each other for different sums, and second, if we match some expression
like:

ﬂéa()

ﬂx n=n0 g

using the pattern list:

&F° —Gre I &F
%ﬂ& xe&ﬁno o Taxér e&na&no mﬁ

then we get the result:

I) 5
G
X (REPLSS aF(X)mj

n=n0

where the replacement program wasn't evaluated. So we have to code
the progran REPLS inaway, that isassigns distinct
temporaryFunction names to distinct sums. And we have to expand
the whole expression, in order to evaluate all sub expressions:

EPLSeea F(X)zz

n=n0

‘IT

Since the inner most nested sub expressions are evaluated first, we can
be sure that:

Volume 1, 2-59

N v
REPLSE A F(X);

n=n0

will be evaluated before the differentiation, producing the result:

‘ﬂlx (tempFunctionA(X))

which will be further evaluated to d1tempFunctionA(X). Let's first

make the program REPLS. It just hasto return an algebraic object,
but can do anything else in-between.

<<

® sum dervar @Store in locals
<<
IF
VARS SLIST POS NOT @1Ff SLIST doesn"t exist
THEN @then
{} "SLIST" STO @create SLIST and RLIST
{} "TLIST" STO
64. "nTemp™ STO @initialise nTemp
END
IF
SLIST sum POS NOT @1f sum not in SLIST
THEN @then
"SLIST" sum STO+ @Add sum to SLIST
"TLIST"
""tempFunction” @Create distinct temporary

"*nTemp®" INCR CHR + @function for replacement

“(" + dervar +)" +

+ 0BJ® DUP UNROT @Copy of tempFunction for
@replacement in expression

STO+ @Add tempFunction to TLIST

END
>>
>>

This program takes a sum and a derivation variable, and updates the

Basic Calculus with the HP49G - Volume 1 - Part 2

list of sums SLIST and thelist of temporary replacement functions
TLIST . It returns adistinct temporary replacement function for every
sum that it receives as argument.

Now we make PATACOLLECT, the program for collection of
differential forms that uses pattern matching. Actually we can use much
of the code of the program PATdS ® Sd.

<<
DO

DUP ® TERMS

0 + SLIST

“"Ta/B)® (B*TA-A*B)/B 2"

1. DISP

DO @Ratio rule
{"T&v(&As&B) " " (&B*T&V(&A)-&A* &V (&B))/&B"2" }
- MATCH

UNTIL
NOT

END

® TERMS 0 + SLIST

“"TA+BY® A+ B"

1. DISP

DO @Sums rule
{"Yav(eA+&B) " "f&v(&A)+T&V(&B) " }
- MATCH

UNTIL
NOT

END

"9 (Const*A) ® Const* A"

1. DISP

DO @Constant rule
{"T&av(&ac*aA) " "&C*T&V(&A) ™ "NOT POSNAME(&C,&V)" }
- MATCH

UNTIL
NOT

END

" (A*B) ® B*A+A*q[B"

1. DISP

Volume 1, 2-60

Basic Calculus with the HP49G - Volume 1 - Part 2

DO @Product rule NOT
{"T&v(aA*&B) " "&B*T&Vv(&A)+&A*f&V(&B) " } END
- MATCH
UNTIL EXPAND @Create replacements
NOT
END IF L
" (ArN) ® n*Ar(n-1)* A" SLIST {}
1. DISP THEN .
DO @Power rule ISD%@SPtempFunct
- N - - * N * - -
§N£$¥§ig£mgl&nfgbfya(&n 1> favear) SLIST TLIST 2. @Match_S to replacement
<< @function
- MATCH 2. ->LIST MATCH DROP
UNTIL >> DOLIST
NOT END
END
UNTIL dCOLLECT @Collect diff. forms
SWAP OVER SAME
END @Except the part S® S IE
@and conversion of derivat. SLIST {} !
@of sums, this is the code THEN
@of PATTS® ST. “tempFunc ® S*
"ST ® S~ 1. DISP
1. DISP TLIST SLIST 2. @Match replacement function
DO ematch ST to 1S << @back to original S
{" S (&n=&n0,&N, T&V(&F))" 2. ->LIST MATCH DROP
*9f&v(S (&n=&n0, &N, &F)) >> DOLIST
"NOT ALGSAME(&V,&n)"}
- MATCH "ditempFunc ® S~
UNTIL 1. DISP
NOT TLIST 1.
END << @Create list of dltempFunct
->STR 2. OVER SIZE
“S ® 9YREPLS" SUB "*d1" SWAP +
1. DISP 0BJ®
DO @Match 1S to T(REPLS(S)) >> DOSUBS
{"1&v(S (&n=&n0,&N,&F))" .
- &V (REPLS (S (&n=&n0.&N,&F).&V))} itlST TLIST 2. @Create list of IS
- MATCH 0BJ-> DROP2
UNTIL SWAP ->STR 2. OVER

Volume 1, 2-61

Basic Calculus with the HP49G - Volume 1 - Part 2

SIZE 1. - SUB & . .
we gl ROT + (" + but rather g F(X) to temporary replacement functions. Thisis avery
SWAP + ") + ot
0OBJ->) important thing to do! We don't want only
>> DOLIST
2. N ..
0
<< @Match ditempFunc to S leaé F(X)
ﬂX en=n0 9
2. ->LIST - MATCH DROP
>> DOLIST)
SLIST TLIST nT .
e nTemp but also Q F(X) to be matched to temporary replacement functions, in
END n=n0

order to retain the original structure of the expression regarding
differential forms. If for example we have:

>>

Notice here the following remarkable thing. When we match all
patterns of the form: 0

5”1 F(X,n)x“—‘ll((G(x))+ G(X)xlx ?;1 F(X,n)g

n=1 n=1

T8 Fx)0

™@er o [} and we replace only the sumsin differential forms, then we will get:
to: J 1)| :
a F(X,n)xﬁ (G(x)) + G(X)xﬁ(tempFunctlonA(X))
n=1
| & 8 60
X EREF’LSE?@}OF(X)% in which dCOLLECT can't collect any differential forms, simply

because there is nothing to collect. But if we also replace the sums that

we do only aformal replacement. The real replacement follows much arenot in differential forms, we get the expression:

later in two stages. The first stage is the evaluation of the expression q q

which creates the list of sums SLIST and thelist of temporary tempFunctionA(X) x— (G(X)) +G(X) x— (tempFunctionA(X))
replacement functions TLIST . The second stage is the following ix X

pattern matching, which matches not _
which dCOLLECT can convert to:

L85 F(x)° g
Xeoo o X (tempFunctionA(X) >G(X))

Volume 1, 2-62

N
and in which we can match tempFunctionA(X) back to & F(X,n),
n=1

getting the result:

98 :
X égl F(X,n) >G(X)g

This is one example of delayed evaluation and delayed pattern

matching, a very powerful possibility that we have for formula
manipulation.

Let'stry the program PATACOLLECT . Enter the expression:

n?a: F(X,n)Xﬂ—.ll((G(x))+ G(x)xél%((F(X,n))

and press [FALs]ARIN . The program returns:

T84 Fixn)
X éG(X) >21F(X,n)g ,

the collected form.

In the program PATdCOLLECT much of the codeisidentical to the
code of PATdS ® Sd. Again we can combine the functionalities of
the two programs in one program, PATdCOLEX, that needs an
additional argument, a0 or a1, that specifiesif we want conversion
of §S to SY (i.e. expansion of differential forms), or collection of
differential forms. The following listing isPATdCOLEX .

<<
® dColFlag
<<
DO
DUP ® TERMS

Basic Calculus with the HP49G - Volume 1 - Part 2

0 + SLiIsT

“aAsB)® (B> A-A*B)/Br2"

1. DISP

DO @Ratio rule

{"Tav(aAasaB) "
"(&B* &V (&A)-&A* &V (&B))/&B"2" }
- MATCH

UNTIL

NOT
END

® TERMS 0 + SLIST
" A+B)® TA+{B"

1. DISP

DO @Sums rule
{"Taveaa+aB) = = favar)+av(aB) " }
- MATCH

UNTIL
NOT

END

"9 (Const*A) ® Const* A"

1. DISP

DO @Constant rule

£ fav(ac*aA) " =&C*f&av(&A)"
"NOT POSNAME(&C,&V)" }
- MATCH
UNTIL
NOT
END
" (A*B)® B*A+A*B"
1. DISP
DO @Product rule

{"fav(eA*&B) " "&B*T&V(&A)+&A*T&V(&B)" }

- MATCH
UNTIL
NOT
END
"ﬂ(AAn)C)n*AA(n—l)*ﬂA"
1. DISP
DO @Power rule

Volume 1, 2-63

£ T&V(&AN&N) " "&n*&AN(&N-1)* &V (&A) "
"NOT POSNAME(&n,&V) "}

- MATCH
UNTIL
NOT
END
IF
dColFlag @1f we want collection.
THEN
“ST ® fsS-~
1. DISP
DO @Match S to S
{"S (&n=&n0, &N, J&V(&F))"
"1&V(S (&n=&n0, &N, &F))
"NOT ALGSAME(&V,&n)"}
- MATCH
UNTIL
NOT
END
S ® 9JREPLS™
1. DISP
DO @Match S to Y (REPLS (S))
{"T&V(S (&n=&n0,&N,&F))"
"&V(REPLS (S (&n=&n0,&N,&F),&V))}
- MATCH
UNTIL
NOT
END
EXPAND @Create replacements
1F
SLIST {3 1
THEN
"S ® tempFunct”
1. DISP
SLIST TLIST 2. @Match S to replacement
<< @FfFunction
2. ->LIST MATCH DROP
>> DOLIST
END
dCOLLECT @Collect diff. forms

Basic Calculus with the HP49G - Volume 1 - Part 2

THEN

sLIsT {3 1

"tempFunc ® S

1. DISP

TLIST SLIST 2. @Match replacement

<< @function back to
2. ->LIST MATCH @original S
DROP

>> DOLIST

"dltempFunc ® 9qS*

1. DISP

TLIST 1.

<< @Create list of
->STR 2. OVER @dl1tempFunct

SIZE SUB ""di1"

SWAP + 0BJ®
>> DOSUBS
SLIST TLIST 2. @Create list of S
<<

OBJ-> DROP2

SWAP ->STR 2. OVER

SIZE 1. - SUB

v ROT + (" +

SWAP + ") +

END

OoBJ->
>> DOLIST
2.
<< @Match dltempFunc to S
2. ->LIST - MATCH DROP
>> DOLIST
{ SLIST TLIST nTemp }
PURGE
@we want expansion
"IS® S~ @All other expansions of
DISP @diff. forms are done. So

@we start converting sums
{"&V(S (&n=&n0,&N,&F))"
* S (&n=&n0,&N, &V (&F))"
"NOT ALGSAME(&V,&n) }

Volume 1, 2-64

Basic Calculus with the HP49G - Volume 1 - Part 2

- MATCH automatically evaluated when the pattern matching is successful. We
UNTIL have to expand explicitly afterwards, to put the result of
NOT programpatternArgs) in place of programlpatternArgs) in the
ENSND algebraic object.
The program
UNTIL &A &A
SWAP OVER SAME has to be a SA { progran{&A)}
END program that
> Sngle. algebraic - MATCH
77 Obj%Ct, g or All &A are replaced by progran(&A)
A small test to see that it works. Enter: anything else
that isallowed in roaram&A
18l Fcf dqebrace, like Pro9TaTEA)
— GLX,n)xa N for example a
xe n=1 2 number. g The EXPAND
whole procedure program(&A) is evaluated and does all
then 0, and press CIATISEN=4 to get the expanded form: works like on its work, returning some result(&A)
\ \ the picture a the which replaces all sub expressions
R d q right. It has to
G(X)xa — (F(X.n))+a F(X,n)x— (G(X)) be at least two progran{&A)
n=1 ﬂx n=1 ﬂx gages’ becau%
_ program isnot result(&A)
Now enter 1 and press again|gls]N=y to get back to: automatically

evaluated at the moment of pattern matching. But as we also saw, if we

1 & & 0 use pattern matching with alist of three elements, then the third element
x éG(X,n)xa F(X,n)ﬂ) is used as a condition for pattern matching. The pattern matching
n=t commandsfirst check to seeif the patternsthat must be matched exist. If

they don't exist, the algebraic object is returned to the stack unchanged.
But if the patterns do exist, then the condition for pattern matching
The above might be nice, but the pattern matching commands have is evaluated, and the matching is done if the condition is true. Ahal
even more depths, which 'We can explore. As we aready saw, when Y ou see where it goes. Couldn't we make a program, name it test, that
pattern matching is used, to replace some give pattern with the sub Mot only returns a truth value, but also does other work before it

expression programpatternArgs), where program is a program returns the truth value? Of course we can! Let's start with easy
pression prog n(p gs) prog Prog examples. First of all, there are no special objectsfor true and false in
that we wrote previoudly, and patternArgs are arguments built-up

; ; . ; user RPL. Any number different than O istrue, and O isfalse. (Sothe
using the patterns, then the returned algebraic object contains sub |p4gG js an extraordinary truth loving machine, since there are so

expressions program(patternArgs), i.e. the program isn't many more numbers that are equivalent to true. ;-)) We make first the

Volume 1, 2-65

the form we started with.

program TEST1.
<<
IF @If
VARS "nlter®™ POS NOT @variable nlter doesn"t
@exist
THEN @then
0. "nlter® STO @initialise i1t
END
"nlter® INCR @Increment nlter
@and
1. DISP @display current
@value
1. @Return 1.
(true)

>>

It doesn't use any arguments and always evaluate to
true. That means that if the patterns exist, that we
specify in the pattern list, the pattern matching will be
always performed.

Enter F(F(F(X))) and {&F(&X) &X-1 TEST].

Now use the command - MATCH to get F(X - 1) - 1.
Did you see what happened in addition? The program
TEST1 was evaluated and it counted how many time

it was evaluated, that is how many passes - MATCH
did. As we aready saw, - MATCH does not only

one pattern matching but it starts from the inner most
sub expressions and in direction of the outer most sub
expressions (almost) as long as there are patterns that
can be matched. In this example it could also match

F(X-1)- 1to X - 1- 1- 1. Drop the 1. from stack
level 1, enter again {&F(&X) &X-1 TEST} and

do another - MATCH toget X- 1- 1- 1andseea3
displayed on the top of the screen while the pattern

Basic Calculus with the HP49G - Volume 1 - Part 2

matching is performed. Take a look what a cascade of events was
caused by asingle command execution. Purge now variable niter, aswe
don't need it any more.

It could be interesting to see what the patterns &F(&X), &X, and
&X - 1 were, each time the pattern matching is performed. We make the

FF(F(x)) {&F(&X) &Xx-1 TEST]

- MATCH sees that the
pattern &F(&X) exists and
triggers execution of TEST1

TEST1 runs for the first time. It
initialises nlter to 0. It increments nlter
to 1. It displays the current value of nlter
on display line 1. It returns 1. (true)

- MATCH sees that TEST1 evaluates to 1.
(true) and so it performs pattern matching.
After this it sees another pattern &F(&X) and
does the same again.

FF(X- D){&F(&X) &x-1 TEST3

TEST1 runs for the second time. It
increments nlter to 2. It displays the
current value of nlter on display line 1. It
returns 1. (true)

-

F(X-1-1 :
- MATCH sees that TEST1 evaluates to 1. (true) and so it

performs pattern matching. Then it stops though there is
an additional (last) pattern &F(&X).

Volume 1, 2-66

Basic Calculus with the HP49G - Volume 1 - Part 2

program TEST4, which needs arguments. These are going to be then[W] to take alook at the log file. Y ou see:
exactly the patterns that we want to examine, after the pattern

matching has been performed. Don't be confused about TEST4 Detected: F(X)="F(X)" F(F(F(X)))
coming directly after TEST1, since these programs are only with X=X.
examples. We could name them TESTWHATEVER, Replaced "F(X)" with *X-1° I
TESTASYOUWISH or anything else. The program TEST4 should ~— 7~
create log records for each pattern matching in anice readable form. poiected: Fx)="F(F(X-1))" F(F(X- 1)
So herewe have TEST4 : with X=F(X-1).
Replaced "F(F(X-1))" with "F(X-1)-1°"
<. T F(X-1)-1
VARS “MATCHLOG®" POS NOT Detected: F(X)="F(X-1)" |
THEN with X=X-1.
" "MATCHLOG" STO Replaced "F(X-1)" with ~(X-1)-1- X-1-1-1
END o

"MATCHLOG" "Detected: F(X)=" 5. PICK +

with: X=" 4_ ROLL + "
Replaced ™ + 4. ROLL + "™ with "™ + ROT +

"+ STO+ 1.
>>

Now enter a program that does pattern matching using the condition
TEST(&F(&X),&X,&X - 1) until nothing changes any more:

<<

"F(F(FCX)) ™
DO

{"&F(&X)" "&X-1" "TEST4(&F(&X),&X,&X-1)" }

- MATCH
UNTIL
NOT
END
>>

This tells you exactly how the pattern matching was performed. Purge
variable MATCHLOG now, since we don't need it any more. Now,
enter the same program as before, but using the command MATCH
instead of - MATCH. Let the program run. The result is again

X - 1-1- 1, but it was produced in another way. Take alook at the
contents of MATCHLOG. Now you see:

Detected: F(X)="F(F(F(X)))" F(F(F(x)))
with X=F(F(X)).
Replaced "F(F(F(X)))" with "F(F(X))-1-"

F(F(X))- 1
Detected: F(X)="F(F(X))"

with X=F(X).

Replaced "F(F(X))" with "F(X)-1-
-------------------------------- F(X)-1-1
Detected: F(X)="F(X)*

with X=X.

Replaced "F(X)" with "X-1° X-1-1-1

Evaluate the program to get the fully matched result X - 1- 1- 1.
Press [V2F] to get the variables menu. Then press [N fealkecl and

Volume 1, 2-67

Basic Calculus with the HP49G - Volume 1 - Part 2

Purge again MATCHLOG. X - 1- 1- 1towhat we started with. Enter a1. and preslel. The
) . stack must contain now: On level 3theagebraic X - 1- 1- 1, onlevel 2
In our example, when we successively match all patterns F(X) with 5 1., and on level 1 thelist of the patterns for pattern matching

X -1,weend upwith X - 1- 1- 1, inwhich al information about
where the expression came from is lost. Of course, in this case we {{F(X -9 X-1-]} {F(F(X i 1)) F(X - 2)-]} {F(X) X-]}}

know that each pattern X - 1 came out of apattern F(X) . But thereare Enter the program:
many cases in which losing the information about the expression
before the match can be a big problem. You remember of course, _
what a problem it is, when expanding the derivative of asum we just ~ REVLIST ~ MATCH DROP
evaporate the variable of differentiation. But we can use the pattern >~
matching commands with a condition that evaluates to true, and that

creates al information for being able to reconstruct the origina Press [mslsilaE] to get the original expression, F(F(F(X))). The

eSS ing thei hing. E h ;
expression by doing the nverse pattern matching. Enter the program recorded patterns that were used to convert F(F(F(X))) toX-1-1-1,

<<

<< were used again in reverse direction to convert X-1-1- 1to
VARS *RLIST* POS NOT F(F(F(X))). Purge now RLIST . This manual purging of the variables
THEN that are created is getting on our nervous. Can't it be done automatically?
{3} "RLIST" STO Of course! And there are many methods.
END
i- ® LIST 1. ® LIST "RLIST" STO+ One of them would be to use local variables. Consider the program:
>>)
<<
{} ® rlist
and store it in TEST2. Now enter F(F(F(X))) and then the list <<
EGGCDN
{&F(sX) &x-1 TEST2(&F(&X)&X - 1)}.Doa- MATCH to DO
get F(X-1)-1andal. Dropthel., enter thelist {_'h‘:‘/fT(g‘:)' TaX-1T TTEST2(&F(&X).&X-1)" }
{&F(&X) &x-1 TEST2(&F(&X).&X - 1)} again and do another UNTIL
- MATCH toget X - 1- 1- 1and al.. Drop the 1. from the stack. ENEOT
Thevariable RLIST was created by TESTZ2, the execution of which rlist

was triggered by the command - MATCH. Recall RLIST on the >>
stack, and take a look a its contents which are: >>

{{F(X -1) Xx-1-1 {F(F(X - 1)) F(X-1)- 3} {Fx) x-]}} It would return the list of patterns and would creste no global variable
With this list we can do the reverse match and reconvert the result that must be explicitly purged. Another possibility isto use alarms. Let's

Volume 1, 2-68

have a look at the programmable commands for alarms on the
HP49G. First of all we have STOALARM. This command takes data
from the stack and creates an alarm. It needs one argument, which can
be:

1) A real number that specifiesthe time when the alarm will go off.

2) A list with two real numbers. The first specifies the date and the
second specifies the time when the darms will go off.

3) A list containing the date and the time as well the object that will
be evaluated when the dlarm will go off.

4) A list containing the date and the time, the object that will be

evaluated when the alarm will go off, and arepeat interval for the
alarm.

We will use the third variant, so let's see in more details what the
contents of the list are. The first number is areal, which specifies the
date of the alarm. It must be in format dd.mmyyyy or mm.ddyyyy
accordingly to your setting of the date format. The second number isa
real, which specifies the time of the alarm. It must be in format
hh.mmss, with the part hh going from O to 24. The third element in
the list can be any object. If it isastring, then we have an appointment
alarm. At the specified date and time, the string is displayed and the
HPA49G beeps. But if it is anything else, a number, an expression, or
aprogram, then we have a control alarm and the object is evaluated.
STOALARM returns a number, the index of the alarm that it storesin
the alarm list. The next command we examine is the command
FINDALARM . It takes one argument from the stack, which can be:

1) A rea number that specifies adate.

2) A list with two real numbers. The first specifies a date and the
second specifiesatime.

3) Thenumber O.

If the command is given a date, then it returns the index of the first
alarm that comes due after 12:00 of the specified date. If itisgiven a
list with a date and a time, then it returns the index of the first alarm
that comes due after the specified date and time. If it is given a 0.,
then it returns the index of the first past due alarm. We also have the

Basic Calculus with the HP49G - Volume 1 - Part 2

command DELALARM, which simply takes an darm index an deletes
the corresponding alarm from the dlarm list.

What we also should know about alarms on the HP49G is that they
won't interrupt running programs. If an aarm comes due while a
program is running, it will wait for the program to complete execution,
and then it will go off. That means for us, that if we make the pattern
matching condition program in such away, that it setsan alarm to purge
the variables created by the program, then it will not conflict with the
program because it will come off after the program has completed. Let's
try that. Enter the program:

<<
IF
VARS *RLIST* POS NOT
THEN
{3} "RLIST" STO
DATE TIME 0.0003

@1Ff RLIST doesn"t exist
@then initialise it

@Current date and time + 3s
<< @0bject to be executed
RLIST "RLIST®" PURGE @when the alarm comes due
0. FINDALARM DELALARM
>> 3. ® LIST STOALARM DROP
END
2. ®LIST 1.
>>

® LIST "RLIST" STO+ 1.

Store that in TEST3. Enter F(F(F(X))) and then

{&F(&x) &X-1 TEST2(&F(&X).&X - 1)} .Doa- MATCH. The

pattern matching is performed, and after that you get the variable RLIST
recalled on the stack, and purged. The program

<<
RLIST "RLIST" PURGE

0. FINDALARM DELALARM
>>

which runs when the pattern matching completes, also removes the
alarm that triggered its execution from the the alarm list. Take alook at

Volume 1, 2-69

- MATCH triggers execution of a testing program one or more times.

Testing program runs one or more times. The first time it
runs, it sets an alarm for now+3 seconds.

| P time

now+3 seconds.

Alarm comes due, but
- MATCH didn't
finish yet, so the alarm
waits.

- MATCH finishes.
Alarm goes off.
Alarm program runs,
recalls RLIST, purges
RLIST, and deletes

Alarm program
finishes here

alarm from the alarm

list
Running time of - MATCH and testing program
Running time of alarm program, a "tail" to the execution
of the original procedure.

the events as they take place asthe timeis passing by.

For our purposes the evaluation of the condition for pattern matching
isaback door that enables us to enter the domain of "thingsthat aren't
possible". Consider for example some arbitrary expression containing
derivatives of sums. In our programs we used pattern matching to
prepare the expression so that only patterns of the form:

I & 0
ﬂX én:anO F(X)ﬂ

exist. After this we want to convert al sums that appear inside the

VARS "RLIST" POS NOT
THEN
{} "RLIST" STO
64. "nTemp® STO
END
""tempFunction”
"nTemp®™ INCR CHR +
(" o+ SWAP +
)" " + 0BJ->
2. ®LIST 1. ®LIST
"RLIST® STO+ 1.
>>

Basic Calculus with the HP49G - Volume 1 - Part 2

parentheses of

temporary replacement functions.
Wewant to have distinct replacement
functions for distinct sums, and we
want to retain he variable of
differentiation, because if we don't,
then expanding

1 (tempFunction) would return

Tvar

0, and the temporary replacement
function would evaporate. We can
make a program, name it for example
CREATEMP, that we use as a
condition for pattern matching. The
next program listing demonstrates
this.

@1Ff RLIST doesn"t exist
@then initialise it
@initialise nTemp

@Create tempFunction

@Add to replacement list
@and return 1. (true)

Volume 1, 2-70

Storethisin CREATEMP . Now, enter the expression:

i eﬁb ie&';l 30
X e:313(3(x n) X églF(X,n) .

that contains two different sums. Enter the pattern list:

&N ..
T 82er0 T 83065 creatempl 4 erav
i ﬂ&V e&n &no g T1&V e en=gno 9 &n=&n0 ﬂy

t b
and do a - MATCH . When the pattern matching is done, you have
exactly the same expression like before. But now you have the
variableRLIST in the current directory, which contains sub lists with
al the pairs of distinct sums and distinct temporary replacement
functions. Now these pairs can be used for pattern matching.
Remember that we did amost the same a few pages ago, when we
used the program REPLS as acondition for pattern matching. But
the difference was that we created an expression in which we had
unevaluated patterns of the form:

all (tempFunctionA(X))

X

But now we just use pattern matching to trigger execution of the
condition program, which in turn creates the list of replacements. The
pattern matching command replaces each sum with itself, leaving the
expression unchanged. The real replacement is to be done in a
subsequent pattern matching operation using the created replacement
list RLIST . Take alook its contents:

QJ%

N
1 A F(X,n)° tempFunctionB(X g 1
i |

n=1

) f—;
’

. ad
G(X,n) tempFunctlonA(X)rv)Ev)

n=a

Basic Calculus with the HP49G - Volume 1 - Part 2

It has all necessary information for replacement of sums with temporary
functions that depend on the differentiation variable. Notice al'so how we
use nTemp asacounter for adding asingle capital letter to the string
"'tempFunction”, for creating distinct replacements for distinct

sums. This method limits the number of possible distinct temporary
replacement functions to 26, but even if this shouldn't be enough, we
can improve it adding another letter, or finding some other method for
creating distinct names of temporary replacement functions. Also, using
the names tempFunctionA, tempFunctionB and S0 on, means that
these names must not appear in the original expression. If you for some
reason have them in your expression, you could use replacement names
like TrabakoulasA, or even Karagiaouroglouz. (And hope that the
HP49G will not crash. ;-))

We stay a little bit longer at pattern matching. In the marathons (under
the heavy influence of VPN ;-)) we often encountered a major
shortcoming of the CAS of the HP49G. It has no INTEGERASSUME,
and so it can't simplify for example SINN>p) to 0, when n isinteger.
But doesit really have no integer assuming capabilities? | would say that
using pattern matching with conditions we can not only construct integer
assumptions but also odd and even integer assumptions, or any other
assumptions we want. Suppose that you want to expand the expression

SINNn>p)+COSn>p) using integer assumptions for variable n. First
of al go to directory CASDIR and storetherethelist {n} in variable

INTEGERASSUME . Storethelist {n} invariable ODDASSUME.
Now enter the program:

<<

{HOME CASDIR INTEGERASSUME} RCL SWAP POS
>>

Storeitin HOME invariable ISINTEG?. Enter

<<

{HOME CASDIR ODDASSUME} RCL SWAP POS
>>

Volume 1, 2-71

Storeitin HOME invariable ISODD? Now, suppose that you want
to have a command, name it IEXPAND, that does expanding for
trigonometrics using assumptions for integers and odd integers. Enter
the program:

<<

TEXPAND

DO
{"SIN(&n*p)" O "ISINTEG?(&n)"}
- MATCH SWAP
{"COS(&n*p)" -1 "1SODD?(&n)"}
- MATCH ROT OR

UNTIL
NOT

END

EXPAND
>>

Store it in HOME invariable IEXPAND . Now return to your
working directory. Since ISINTEG?, ISODD? and IEXPAND are
in HOME, they are accessible from every directory in your directory
structure. Enter SINnp) + COS[n>p) . Enter IEXPAND and watch

your HP49G using its new created knowledge to return - 1. Imagine
now, how many assumptions are possible using this simple method.

Another shortcoming of the HP49G is that the upwards pattern

matching command - MATCH does (almost) al possible matches at
any level of nesting, starting at the most inner nested sub expressions
and making its way to the outer nestings. But using conditions we can

make a new command, say - MATCH]1, that does a single pattern
matching at the inner most nested sub expression. Store the mini
program

<<

1. FS?C
>>

Basic Calculus with the HP49G - Volume 1 - Part 2

in TEST - MATCHL1. Store the program

<<
PUSH 1. SF

"TEST- MATCH1" +
- MATCH POP

>>
in - MATCH1. Now enter F(F(F(X))), and then the pattern list
{&F(&X) &X - 1. Press [FEETREZIENESaIN to get F(F(X - 1) and 1..

The expression F(F(X - 1)) shows that pattern matching was performed
only at the innermost nested sub expression.

Enough patterns (for thistime ;-)). In the next part of this marathon we
are going to examine how to... put pattern matching in pattern matching.
(Well, it seems that Nick has a preoccupation with such things ;-)) We
are going to see, what would happen if we use some condition program
for pattern matching that itself does pattern matching. And what happens
if the program does pattern matching using itself as a condition
program?

Before we go any further, let's take alook once more at our collection of
programs, which has grown again (first picture on next page). | left out
STARTEQW sinceit can use any other program, which meansthat its
dependence on other programs will vary. If we through out
PATdCOLLECT, whose functionality isimplemented in
PATACOLEX, then the whole building gets a bit clearer (second
picture on next page). The programs TEST1, TEST2, TEST3,
TEST4 and CREATEMP are aso l€eft out, because they were
introduced as examples for a possible usage of the pattern matching
commands, but otherwise they aren't needed by any of our main
programs. Notice that dCOLEX and PATACOLEX (should) have the
same functionality. Nonetheless | guess that there will be cases where
the one works and the other doesn't work or even crashes. Decide for
yourself which of them you find easier to understand and to make better.

Volume 1, 2-72

Basic Calculus with the HP49G - Volume 1 - Part 2

PATdCOLEX JJ[PATdCOLLECT dCOLEX

dCOLLECT

derS->Sdeff [PATdS->Sd

SECLINE || TaANPARSEC||TMATCHL

DY

I ISCONT’?I TANLINE

d1GAMMA dF1F2
d1FACT ->FACT DQUOT TESTTMATCH1 REPLS dn->dv " ->TERMS "ALGSAME POSNAME

<

Anyway, it looks quite crowded in the neighbourhood of dn® dv, shows that the functionality of these programsis essential. They are the

ALGSAME, POSNAME, ® TERMS, and dCOLLECT. This fundament upon which the rest of the building stands. If they fall, all
programs which base upon them will also fall.

PATdCOLEX dCOLEX

PATdS->Sd

derS->Sde

SECLINE || TaANPARSEC| | TMATCH1 dCOLLECT

|—||—|DY T~
ISCONT? || TANLINE

d1GAMMA|| dF1F2 ‘\

d1FACT ->FACT DQUOT TESTIMATCH1 dn->dv REPLS ->TERMS IIALGSAME POSNAME

Volume 1, 2-73

Basic Calculus with the HP49G - Volume 1 - Part 2

y y =x We come now to derivatives of {X Y Y X} and press[[], then the two replacementswill be
y =f(x) inverse functions. The inverse performed simultaneously ontheoriginal expression. The result isthen

function y =f(x) of amonotonic 'y = X |n RPL syntax the command | gets one expression from stack
and continuous function y = f(x) in level 2, and one list from stack level 1. The list contains in pairs the

the interva a<x <Db canbe name that has to be replaced, and the expression that it hasto be replaced
/ = f(x) constructed geometrically, if we With. Theimportant thing here is that the replacements do not interfere

mirror the plot of the function on the With each other, even if some variable is replaced with another variable

liney = x. Analytically thefunction that aready exists in the original expression and that itself has to be
) Xy =f(x) isfound if we solve replaced with something else. Using | withthelist {X Y Y X} on

y = f(x) for x, and exchange variables y and x inthesolution. On the HP49G is not equivalent to using SUBST oncewith X =Y and

the HP49G it is much easier to work analytically than geometrically fight after thisanother timewith Y = X! Now we have Y = LN(X) and
for finding inverses. (And in genera thisisalso the way to do this, as Y = e*, that isthe function and its inverse on the stack. Enter Y = X,

it provides us the equation of the inverse function, which we can use the line on which we must mirror some function, in order to get its
for potting and other purposes. For example, _Iet's suppose that we inverse. Now, enter 3 and press aalERll to make alist of all equations.
have Y = LN(X) and we want the inverse function. Go to the EQW, I to store the list of equationsin EQ . Set the plot type to

enter Y = LN(X), and put that on the stack. PressERTER] to copy the i ction _independent variable to X , horizontal view from - 7.5 to
equation on stack level 2. Enter X and press 5. toget X =e". 125, vertica view from - 4.2 to 5.8, and press [EETEIE and BRI
Now we must exchange variables Y and X toget Y =e*. If weuse to plot the three functions. (If you have the Rcobo's HP49G with laser
SUBST here, then we will have a problem. For example, if weenter plasmascreen, then you will seethe plotsin colour ;-)). But if rigourous
X =Y and pressEEHE], then the result will be Y = e” and we will mode is on, you are going to get an additional part of Y = LN(X) which
not be able to replace Y with X only in the exponential function, shouldn't be there. Exit the plot, return to the stack, enter X, and press
because if we enter Y = X and substitute again, then we will get

X=e"(i.e

both Ys — This part of ¥ = LM X) appears
will be Replace every X when rigorous mode is on l

substituted by Y X=e'
with Xs). : > * X

But we can Replace every Y
do what we by X Y
want using | L=
|. Though {X Y Y X} -
in algebraic
syntax the function | can perform one replacement at atime, in RPL
syntax it can perform severa replacements at once. If you enter [LFT]. Inrigourous mode theresult is LN(|X|),which explains how the

Volume 1, 2-74

Basic Calculus with the HP49G - Volume 1 - Part 2

additional part in the plot was drawn. The HP49G didn't actually plot 1 B Y The derivative of the oricinal funct
Y = LN(X), but rather Y = LN(}X]), becauise the CAS wasin get v ress[17%] to get Y . The derivative of the original function

rigourous mode. Here we have another (unneeded) complication. Y =e* isY . Notice that we find the derivative in terms of Y and not in
While in general it is good to work in rigourous more (i.e. Not t0 ¢ of X . Indeed the derivative of Y(X) —eXis

assumethat [X| = X), for the plot of LN(X) this brings an additional

thing that we must do.
Press , then the
menu key , and then
deactivate the option
_Rigorous. Press
ERTEF] to accept the
changes, then

again to leave the screen

TY(X) 9qe*
_ﬂg() :W :eX:Y(X)

We continue with an example in which it isn't possible to find the
anaytic closed form of the origina function. We use as the inverse

function X(Y) = Y>e". Enter Y xe", then Y, and then press|[d] or
B=akd togete” +Y xe”. Press[TT%] to get:

CALCULATOR MODES,]
and finally press = // 1

i 2gain, to re- e’ +Yxe'
plot. Now you get the
correct plot without the
additional part.

which is the derivative of the original function Y (X), intermsof Y.
The function Y (X) itself that can't be written in an analytic closed form

If we have the inverse function x = f (y) of some function y = f(x), In terms of X.. But nonetheless we have found out that:

but not the function y = f(x) itself, and we want the derivative of v(X) 1

y = f(x), then we don't need to find the function y = f(x) first. X e™x V(X))

Instead of this we can use the relation:

F 1 i.e. the derivative of Y (X) intermsof Y(X).
= I

An additional problem that we have when we know the inverse function
Ty but we can't find the origina function, is how to plot the original

Which on the HP49G is pi f cake. We do asimpl e i function. In our example from above, X = Y xe" we can plot of course
chonthe 'S PIEce 0 € Wedo asmple example first. Y xe", but thiswill be the picture of the inverse function, and we must

We use X(Y) =LN(Y) whichistheinverseof Y(X) =e”.Inthis jmagine what it would look like, if we mirrored the function curve on
example it is easy to find the function out of its inverse, but this thelineY = X. Let's see how we can do that without having to imagine
doesn't always have to be this case, as we will see in the next o worlds, Set up a function plot with Y »e” asEQ and Y as

example. Enter now LN(Y), then Y, and then press[3] or [EE5] to indep. Set horizontal view range from - 2 to 2, and vertical view range

Volume 1, 2-75

from - 1tol. Plot the
function to get a curve like
in the picture to the right.
Now set up a parametric
plot with Yxe' +ixY as
EQ. The equation of the I E— 1
parametric function for
plotting the origina
equation is easily found. —+
Since we want to have
X =Y xe", wewrite this
In parametricformusing Y

itself as parameter:
X=Yxe"
Y=Y

This parameter representation, trandlated in HP49G-ish, is the same

as Yxe' +ixY.Now the _
plot contains both the
origina function, of which
we can't have an analytic -+
closed form, and the inverse
function. This technique can
be used for visualising the —t+— —+——
curve of the origind
function, when we can't
represent it by means of an
algebraic equation of the
formy = f(x). Notice that in
many cases the origina
"function” is actually no function at all, but rather a relation. The
above exampleis one of these cases.

While we are talking about functionsin parameter representation, the

Basic Calculus with the HP49G -

Volume 1l - Part 2
ff(x)

strange derivatives of the form m come into mind, which we

already encountered. Let's take alook at parametric functions and their
derivatives. A function y = f(x) is given in parametric form:

y =i (1)
x=y(t)

We don't know how y dependson x, but we know how x and y both
depend on the parameter t. From the parametric representation we can

find the derivative Ty(x) without having to find y(x) itself. For the

qIx
derivetive ‘”31/]—5:() we have:

Ty(t)
__ 1t

That means that we can find the derivative ﬂ)%—g(x) using the derivatives

() 4 X0
Tt

. Let's have an example. The equation of an ellipse:

1t

2 2
X_+L =1
A B

in parametric formis:

Volume 1, 2-76

X = AxCOS(t)
Y =B>SIN(Y)

Now we find the derivative. Enter B>xSINt), then t, and press[d] or
B=5kd to get BXCOS(t) . Thisisthe derivative:

()

it
Now, enter AxCOS(t), then t, and press[d] or [lagkd to get
A SIN(t) . Thisisthe derivative:

x(t)

qt
Press[*] and then g

B>COS(1)
A>SIN(t)

Thisisthe derivative:

Ty(x)

ix

written in terms of t. But of course we can write it also as afunction
of X, orof Y, orof both X and Y, if wewant. For example, since
X = AxCOS(t), we have:

cosa):§

Basic Calculus with the HP49G - Volume 1 - Part 2

Andsince Y = B>SIN(t), we have:

&MQ:%

How to substitute

X

COS(t) ==
A

and

SIN(t) =

W<

B>COS(t) .,
"~ ASIN(Y)

Let's do that all on the HP49G. PressEMTEF] a couple of timesto make
severa copiesof:

B >COS(1)
A>SIN(t)

on the stack, because we are going to need the expression more than one
times. Enter X = AxCOS(t) and then COS(t). Press S

for COS(t). Aswe already saw, the command SOLVE allows to solve
for any rational variable of agiven equation. Theresult is:

cos(t) = %

Volume 1, 2-77

Basic Calculus with the HP49G - Volume 1 - Part 2

In the first step, the solution of COS(t) = % for t, was found to be:

Jl. and you will not get:

C— _ &g

A>G|l\(t) t= ACOSéKQ
but rather: Thisisthe principal solution of the equation. The general solution that

X SOLVE would return, would be:
"
) 1 & X o aX U
t=-%¥2xnlxp+ ACOS — t=2xnbp+ ACOS.—
A £|N§Acosaé;g; 1= -gembp N P Ao}

o . . Th lutioni ISOL, when flag -1 is clear. But when
How and why is this result obtained? The command SUBST didn't ﬂag?r}f;? litr:grr]]||§(r)e;[_urrge&£gthepringp;n Soﬁtjg[ion:lscear uw

redly Substitute§ for all COS(t) that it found. In fact it didn't even x
_ o]
search for COS(t). What it did seems to be: t=ACOS 14

1) Solvetheequation COS(t) = X for the first variable (not rational SUBST returns always the principal solution. Y ou don't believe that
A SUBST can be used for this? Very well! Enter:
variable) on the left hand side, which is t. Thisreturns

B : . : X
t= ACOS?%A(\;. Notice that thisis not the general solutionthat ~ COS(t) ==

SOLVE would return.
then t, and press Bl

X BCOS(t B>COS(1)

2) Substitute t = ACOS.— - . Thisreturned the Xy
IV ASSING) t = ACOS. Sng . When SUBST is used with an equation on stack level
X
B % 1, it does substitution. When it is used with an expression or name (no
result - A equation) on stack level 1, it solves the expression on stack level 2 for
A N@ACOSZE;(‘;; the expression or name on stack level 1. So we have:

Volume 1, 2-78

Flag -1 clear for
general solutions

Flag -1 set for
principal solutions

Notice how wonderful the three commands cover the whol e spectrum

of possibilities.

SOLVE SOLVE doesn't care about flag -1 and always
returns general solutions.

ISOL General solution. Principal solution.

SUBST SUBST doesn't care about flag -1 and always

returns principal solutions.

Now, let's go on with our problem. In the expression:

B>

] A
A >6|N?Acos"*x°°
€A 929

I Y .
we can't do the second substitution SIN(t) = 5 because the variable
t doesn't exist anymore. We can only expand the expression to get:

XoB %A - X2 ofA|

A’ - X2 xA?

This is the derivative

Ty(x)
fIx

wanted it asafunction of X and Y . Drop the expression:

] X8 /A7 - X% 4A|

N

, written as afunction of X . But we

Basic Calculus with the HP49G - Volume 1 - Part 2

from the stack and let's start over. What we need is to replace COS(t)

with 2 ,and SIN(t) with Yin
A B

_ B>COs(1)
T ASIN()

without doing anything else. This is clearly a mission for pattern

matching. With:
B>COS(1)

- ———2 on stack leve 1, enter thelist:

A>SIN(t)

] Xl
{COS(t) A

and press (AL, to get:

andal. Dropthel., enter:

Yi

}S|N(t) al

and press [IIIAISEN a second time, to get:

Volume 1, 2-79

Basic Calculus with the HP49G - Volume 1 - Part 2

X
A B >COSEASINEY 60

i _Q e eB 2y
Axz AsSINEASINE60
e

and al. Dropthel. and expand to get: ,
Expand the expression to get:

X B2
B YXAZ) BZX\/W)iBl
SQ(B) %Y xA

the derivative asafunctionof X and Y.
Thisisnot completely expanded, so press [SigE

J[§ again. You get:
Obtaining the derivative asfunction of Y aoneisalso easy. Drop the

expression: _ m 18|
X B2 Y XA
Y xAZ

Thisisthe derivative asafunction of Y alone.

Now the expression: We see from the above that when we have a function y(x) written in

B>COS(t) parametric form:
A>SIN(t) x=j (1

should be on stack level 1. Enter Y = BxSIN(1), the definitionof Y Y =Y (1)
asafunction of the parameter t. Enter t, and press EMEEL, to get the

principal solution: it is easy to get the derivative ‘Hy_E(x) as afunction of the parameter t.
&Y g We only need to calculate:
t ASINéEg
Ty (1)
t
x(t
it

Volume 1, 2-80

The problem is how to convert it to afunction of x, or of y, or of x
and y. Theconversionto afunctionof x or of y aloneis
systematically easier. We just solve the equation of the parametric
definition of x of or y for the parameter t. Then we substitute the
solution for t in the expression:

()

t
ox(t

it

The difficulties here arise from the fact that it will not aways be
possibleto solve the parametric definition of x or y for the parameter
t. But thisis not a systematical difficulty. The procedureis clear and
very easily to implement on a machine. On the other hand, turning

()

t
ox(t

Mt

to afunction of x and y by "seeing" what patterns are best available

for matching, is for us humans an easy thing. But how can we do that
systematically, so that we can show the poor HP49G what it should
do? There is no general recipe for "seeing”, like we do. For pattern
recognition we, humans, are ill unbeatable. We can recognise
patterns by just taking alook at them. As Trabakoulas says, "...thisis
our strength. We can recognise a face instantly, without the need to
calculate angles between the nose and the eyes, and distances from
one ear to the other. We just see that. The HP49G can't see that. But
that might be also our weakness. We sometimes "see" to much,
without really taking care to derive truth of falseness of what we
"see". In this category of phenomena belongs the old picture of
automatically "knowing who the bad guys and who the good guys
are”. Just because we "saw" what kind of clothes they have, what
they believe to be God, or what their opinions about this world are.

Basic Calculus with the HP49G - Volume 1 - Part 2

No matter what we say about our progress in these things, the old devil
of pattern recognition isin our minds since the first humans walked on
this planet. This is the way biosystems work. If we had to calculate
firgt, if the beautiful animal that comes running to us, is a lion, we
would presumably not have any need for discussing about capabilities of
CAS, smply because we would be eaten out, long before getting the
idea to make a CAS. Of course it is not impossible that some of these
lions would suddenly decide to not eat us, but the pattern recognition
machine says that this is rather unlikely - almost impossible - and so it
puts the 2 hypothetical lions that wouldn't eat us in the same category of
lions that would eat us. It is a safe method, good for surviving. But
think about the lost possibilities. A powerful friend, the vegetarian lion,
is lost right from the start. If we are to make real progress in these
things, if we want to face the world without prejudice and ad hoc
categories, we have to diminish theimportance of the pattern recognition
unit in our brains. To control it with logic, when it is telling us
something about a pattern. And we can do that only after accepting that
the pattern recognition unit it still isthere, it still works, it still produces
patterns - the fundaments of our amazing capabilities, and also the
fundament of our too fast categorising everything." Enough philosophy,
let's continue our marathon.

Let's make a program for finding the derivative of a function in
parametric form. The program should return the derivative as afunction
of the parameter, as a function of the independent variable, and as a
function of the dependent variable. It should aso try to give us the
derivative as a function of the independent and the dependent variable.
Of course the latter will be rather imperfect, but at least we can try to
imitate our built-in pattern recognition unit on the HP49G. This naive
imitation is based on the above example. The program finds the rational
variables of the definitions of x and y asfunctions of the parameter. It
picks the first rational variable in each definition, solves for this
variable, and triesto replace thisrational variablewith the solutionin the
derivative. In the above example, the derivative as a function of the
parameter is:

Volume 1, 2-81

<<

B>COS(t)

- ® paramFunc varl var2 param

ASIN(t)

<<

The definitionsfor x and y are: X = AxCOS(t) and Y = B>xSIN(t).
The rational variables that appear in the first definition are COS(t)
and A . The program solves X = A xCOS(t) for COS(t) and finds:

Ccos(t) = X

. X . N
Then it matches COS(t) to A in the derivative:

_ B>COs(t)
" ASSIN(E)

and finds:

X

B x—

A
A>SINt)

The same it does for the other definition, Y = B>xSIN(t). (Very naive,

| know, but perhaps somebody is going to find out how we do it, in
our brains ;-)) Since the representation of a function in parametric
form (for plotting) is X +ixY, weretain this syntax. The program
will take four arguments from the stack. The parametric function, the
X-variable, the Y-variable and the parameter. It will return the
representations of the derivative, which we already examined. That is,
it will return the derivative as a function of the parameter, as a
function of the X-variable, as a function of the Y-variable and as a
function of the X and the Y variable. All outputs will be labelled.

PUSH {1. 2.} CF
paramFunc RE
paramFunc IM

2. ® LIST DUP param

0BJ® DROP SWAP /
EXPAND DUP
“"der (" param +
® TAG
OVER 4.
= param
I FERR
SOLVE
THEN

3. ®LIST
® TAG
ELSE
IF
DUP {} SAME
THEN
DROP
"No sol.
varl +
ELSE
SUBST
“der ("
+
END
END
® TAG
PICK3 5. PICK 2.
var2 = param
IFERR
SOLVE
THEN

3. ® LIST

® TAG
ELSE

IF

"yt

“"Error"

for

GET

“"Error"

PICK HEAD varl

varl + ")"

Basic Calculus with the HP49G - Volume 1 - Part 2

@Flags 1 and 2 are used

@Find der.

@Label der. as function of
@the parameter
@Try to solve x=] (t) for t

@1f error during solving

@then wrap der., x=] (t) and t
@in a list and label it

@with "Error'".

@Else (no error during SOLVE)
eIf

@no solutions found

@then

@drop the empty list

@Make label for no solution

@Else (we have solutions)

@substitute them in deriv.
@Make label

@Label result

@Try to solve y=Yy (t) for t
@1f error during solving

@then wrap der., x=] (t) and t
@in a list and label it

@with "Error'.
@Else (no error during SOLVE)
@

Volume 1, 2-82

Basic Calculus with the HP49G - Volume 1 - Part 2

DUP {} SAME
THEN
DROP
"No sol. for
var2 +
ELSE
SUBST
“der(” var2 + ")"
+
END
END
® TAG
4. ROLL 5. ROLL
0BJ® DROP
® derParm x y
<<
X LVAR
1. OVER SIZE HEAD
FOR 1
1F
DUP I GET LNAME
1F
DUP {} 1
THEN
AXL
END
param POS
THEN

@no solutions found

@then

@drop the empty list

@Make label for no solution

@Else (we have solutions)

@substitute them in deriv.
@Make label

@Here starts the naive code

@Find rational vars. of x

@Find all names in rat. var.
@Convert to list if
@necessary

@1f param. in rat var.
@then we use this rat. var.

9.99999999999E499

1" STO
1. SF
NIP SWAP varl =
SWAP
IFERR

SOLVE
THEN

2. ® LIST

"Error” ® TAG
2. SF

ELSE
0BJ® DROP

@Store MAXR in I (to exit
@loop). Set flag 1.

@Try to solve x=] (t) for
@the 1st. rat. var. that
@contains the param.

@In case of error

@Return labelled list with
@x=] (t) and t.

@and set flag 2.
@else (no err. during SOLVE)
@make list for matching

@Else (param. not in rat.
@var.) drop rat. var.

@1 f we didn*t find a rat. var.
@that contains the param.
@then

@drop 2 objects.

@1Ff no error while solving
@x=] (t) for rat. var.

@then we try to solve also
@y=Y (t) for a rat. var. that
@contains the parameter.

@We do the same like for

@x=] ()

® Li1sT
derParm SWAP
- MATCH DROP
“derParm® STO
END
ELSE
DROP
END
NEXT
IF
1. FC?C
THEN
DROP2
END
IF
2. FC?C
THEN
y LVAR 1. OVER
SIZE HEAD
FOR 1
IF
DUP 1 GET
LNAME
IF
pup {3} 1
THEN
AXL
END
param POS
THEN
9.99999999999E499
1" STO
1. SF NIP
SWAP var2 =
SWAP
I FERR
SOLVE
THEN
2. ® LIST
2. ®LIST

"Error"” ® TAG

Volume 1, 2-83

2. SF
ELSE
0BJ® DROP
® LIST derParm

SWAP - MATCH DROP
END
ELSE
DROP

END

NEXT

1F
1. FC?

THEN
DROP2

END

IF @1 f there was a rat. var.
1. FS? 2. FC? @that contained the param.
AND @and a solution was found

THEN @then expand and label
EXPAND "der ("
varl + "," var2 +
"y + ® TAG

END

END
>>
POP
>>
>>

This is the program dPARMF that comes with this document. The
coloured code is the naive part of the program. (That's why it isin
baby blue ;-)) If you don't want to have it, rip it off out of the
program, (Poor baby, away from mama ;-)) Let's test the program
and see what it does. Enter the parametric function of our example
from above as. AxCOS(t) +i>B SIN(t). Enter X (the independent

variable), then Y (the dependent variable), and then t (the parameter).
Switch to real mode. That'simportant!!! If you are in complex more
and some of thevariables A, B, X, Y or t isnot assumed to be real,
then the HP49G will consider it as a complex quantity and will not

' der(Y): -

Basic Calculus with the HP49G - Volume 1 - Part 2

five the results that are described in the next paragraphs. Press

PSSl and wait some seconds. When the program finishes, you
have the following results:

On stack level 4 the derivative of the parametric function, written as a
function of the parameter t:

o)
der(t): (\;_ Los(t)g
e ASIN(t) o

On stack level 3 the derivative of the parametric function, written as a
function of the independent variable X :

i aX
. B >COS§‘E @ NDp + ACOSTOR o >cos§ez>n1>p +A<:osa@A(°O

|

i &A
der(X) - 2

|

1

aXdJ

A>6|N§@m1m+Acosa@(°°° A>sn\@ nbp+ ACOSEL
b

The program returns the general solution because the might be casesin
which the principal solution is not what we want. Substituting n1=0,
and expanding will give usthe result:

XoB A2 - X2 oA

A’ - X2 xA?

that we had on page 2-79.

On stack level 2 the derivative of the parametric function, written as a
function of the dependent variable Y :

- B’“COS??NWMO +ASIN§%$§ B>cos§xn1>p +Asn\169—{@"ju

& 5D é‘i aé(oo
AXSIN eﬁml + ASINT=0% AXSINY2 n1xp+ ASIN,
0 g?é P eB gz P Bﬂzp

Volume 1, 2-84

Basic Calculus with the HP49G - Volume 1 - Part 2

Again, the program returns the general solution because the might be i))) i
cases in which we don't want the principal solution. Substituting with S| N(((2 ni+ 1) P ACOS(Y 1)))
nl= 0, and expanding will give usthe result:

I AxCoS(- (2>n1+1)>p- ACOS(Y- 1))- A f

der(Y):i
Nzl i ___ SIN(2xn1+1)>p- ACOS(Y-1)
VI { A>COS((2>n1+1)p- ACOS(Y - 1)) - Al
hat we h 2-80. -
that we had on page 2-80 der(X,Y): t:;A)AZX

On spack level 1 the derivative_of the parametric function, wrjtten asa
function of the independent varigble X and the dependent variable Y The reqit |abelled with Error on stack level 3 shows that the HP49G
couldn't solve Ax{t- SIN(t)) = X for t, and so it couldn't substitute

X>B?
der(X’Y):g Y xAZZ t = someFunctionOf(X) in:
The naive part of the code, did its work OK in this case. ____SIN()
AXCOS(t)- A

We try another example. The parametric representation of the
epicycloid (on the HP49G) is AXt- SIN())+ixAxL- COS(t)). (Butwho can solve AxX{t- SIN(t)) = X for t analytically?)
enter this expression, and then X, Y, and t. (Again, make sure you
arein real mode). Press lsEAsl®Id and wait. After some secondsyou The result on stack level 1 shows that the naive code already had
Qget: problems. It couldn't convert the derivative to afunction that depends on
X and Y, but not on t. Oh well, we are just at the beginning of

e SIN(t) & programming automatic pattern recognition and artificial intelligence.
der(t):?- - Except of course if somebody connects a brain directly to the HP49G.
e A>COS(t)- Ag Then two things may happen:

SIN(t) 1 1) The HP49G will be glad to have artificial intelligence. Thisis the
— AxXt- SIN(Y)) =X t case for most people out there,

Error: : -
T AxCOS(t)

o<Cc

2) Thehuman will start beeping. (Thisisthe case for Nick ;-))

Perhaps you already noticed that the program dF1F2 of thefirst part of
this marathon is a relative of the program dPARMF. The program

Volume 1, 2-85

Basic Calculus with the HP49G - Volume 1 - Part 2

. _— f(x
dFIF2 finds derivatives of the form :TTL()) It usesthe Program dPARMF driFz
g\x .
following technique to do its work. Properties
Definition of | y =y (t)ii _ f(x) i
First it sets g(x) = ttemp, introducing ttemp asanew [the function | =] (t)g b y(x)=y(j (1)) g(x) = ttempgb
variable. Then it (tries to) solve g(x) = ttemp for x gi]]:‘terintiated)
creating the solution x = someFunctionOf(ttemp) . (The f(x). u
function someFunctionOf(ttemp) isthe returned X= someFuncnonOf(ttemp)KV)
solution x =% .) Then it substitutes g(x) = ttemp and f(x) = f(someFunctionOf(ttemp))
_ . - 9ii(x) o
x = someFunctionOf(ttemp) in —— , creating:
ﬂg(X) Explanations |Consider the definitions as Consider the definitions as
; y (t) - rename t to X, and y=y (X) rename ttemp to X
flsomeFunctionOf(ttemp) i()=x A ttemp = (x)’ !
ittemp X to ttemp, and you have the|and X to t, and you have the same
same situation as for dF1F2. |situation as for dPARMF.

This derivative is evauated returning the function
firstDerivativeOfsomeFunctionOf ttemp). Then ttemp =g(x) is vy = SINX)

substituted in this function, creating x = COS(X)
firstDerivativeOfsomeFunctionOi(g(x)), which isreturned by

dFIF2. Therelation of the two programsis best seen in atable on the (Thevariables x and X arenot the same.) To find the derivative:
top right. For dFIF2 that meansthat we can aso use the same

mechanism as in dPARMF. We only have to do some re- T1SIN(X)
constructing in order to create the parametric definition. For example,
let's reconsider the derivative: 1COs(X)
TSIN(X) we simply have to find:

1COS(X) 1SIN(X)

that we had to do with on page 1-24. If we consider X asa _ﬂT_SX
parameter, then we can write: 1COS(X
X

Volume 1, 2-86

Hal That meansthat dF1F2 can be rewritten ssmpler and shorter.

<<
® y x param
<<
y param § x param Y
/ EXPAND
>>
>>

The program in its new version requires an additional argument,
namely the name for the parameter on which y and x depend.
Generally speaking it is a good policy to make programs that must
have the name for which we do something (in our case
differentiation). We could have to find:

TSINX xA) xe”
A XZ >COS(X)

or any other derivative in which more than one variables areinvolved,
and so we must know what to consider as the parameter for which we
differentiate. Before we store the new program in dF1F2, we test the
old version of dFIF2. Let'susethe above example. Enter
SIN(X>A)»e”, then AxZ xCOS(X), and press EIRI#E. The
program returns:

X xe” xCOS(X*A)
ZxCOS(X)

whichiscorrect... only if the variable A was meant as the parameter.
The program initsold version automatically assumesthe first namein
the vector of namesto be the parameter. Typein the small program on

the top of this column and store it in dFIF2. Enter SIN(X>A)xe”,
AxZ xCOS(X) and X . Press KT to get:

Basic Calculus with the HP49G - Volume 1 - Part 2

e’ xCOS(X>A)
Z>SIN(X)

the correct result if we consider X asthe parameter. The result that the
old version returned, considering A asthe parameter, can be obtained
by the new version, if you enter SIN(X>A)xe”, AxZxCOS(X) and A,
and press BI@I#. The programn dPARMF does the work of dF1F2
but it also does additional work, trying to convert the derivative to

expressions that depend on the variables instead on the parameter. We
can useit to find:

TSINX xA) xe”
A xZ>COS(X)

We enter AxZxCOS(X)+i>SIN(XxA)>»”, x, y, X, and press
LFY=IRT. Notice that in this example the variables are the small letters
x and y, and the parameter isthe capita letter X . The program returns
the result:

der(x)-?f e’ xCOS(X xA)o
e ZSINX) o

on stack level 4, and the other results on stack levels 3 to 1.
Before we proceed we notice that the differentiation commands work

also with lists. The following picture on the next page demonstrates how
these commands behave when one or both arguments are lists.

Volume 1, 2-87

Basic Calculus with the HP49G - Volume 1 - Part 2

{f(x) o(x) 1/4)3 T or DERIV i ﬂ))(() ﬂ:]é(x) 1/4§ y %] ﬂr((j))ﬂ’f'n((JJ))] ﬂfﬂéj ; >sin(j) +r(j)>cos(j)
x W 9qr(j)>xcos(j (| . N
T J T 'ﬂjj >cos(j)-r(j)sin(j)

U Let's consider as example the logarithmic spira r=a>x"* .lIts

f(x,y,¥a) T or DERIV ‘}ﬂf(x,y,%) T(x,y, %) 8
{X y 1/4} T Ty derivative% of the polar coordinates written in terms of polar
coordi nat%Ji sgiven by:
{9 oly) *} _forDERTY 196 faly) ﬂi;r:ﬂaﬂ’jem = axoe
{x y v} T X Ty
fly

Now that we have examined derivatives of parametric functions, we Its derivative — of the cartesian coordinates written in terms of
can proceed to derivatives of functions in polar form. A function in Tix

polar form is given as r(j), which denotes the dependence of the polar coordinates is given by:

radius r ontheangle] . For the coordinates x and y we have: T _ _
- oS)+r()cos() Lk i Y a e scos(i
y =r(j)ssin(j) y =1(j)>sin(j) HZ‘I‘H _a >ek‘ xsin(j) a>ekA>‘COS(J):
. . I 3K % i) ¥ in(i
x =r(j) xcos(j) " T ﬁxcos(J)- (i)>sin(j) @%’€ xcos(j) - " xsin(j)
According to our kxsin(j) +cos(j)
previous considerations N
this means that we can J k>cos(j) - sin(j)
consider this as a x =r(j) xcos(j)

function in parametric

- o . , _
form with the parameter | , and thus: To obtainthe derivative r we only haveto differentiate r for | using

one of the many possible methods of the HP49G. That means we can
enter r(j), then | , and then use T or DERIV, and so on. To obtain the

derivative ﬂ—i , we can use one of the programs dF1F2 or dPARMF,

after transforming r(j) to its parametric form. And thisis easily done.
Volume 1, 2-88

Basic Calculus with the HP49G - Volume 1 - Part 2

- 2 H
Let's see what we have to do to use dFIF2 for finding 1Y of the How does r=COS(A)" +3-COS(A - 1 look, anyway? For plotting
_ _ x such polar functions the HP49G has the built-in plot type polar. Let's do
logarithmic spiral. Enter a >’ xSIN(&), then ae** xCOS(/&) . For a polar plot. Go to the PLOT SETUP screen and select Polar plot
thecharacter 4, enter acapital O, pressELFHA if you aren't already type. Enter COS(A)’ + 3 >COS(A&) - 1intheinput field EQ:. Enter A&

in alpha mode, then [and[¥] to change the capital O to /&, the jn the input field Indep: . Go to the

character that resembles) most in the HPA9G character table. Enter b o7 \WINDOW - POLAR T
/ (the parameter) and pressEIJIEE. The resultis: screen and enter horizontal view from +
e : - 3 to 5 and vertical view from - 2 to
_ kosin(j) +cosj) 2. Press EEEET and then Gl to —— — +—
sin(j) - k>cos(j) plot the polar function. Let's see how i
the data stored in the system reserved

We can make a small program that takes a function in its polar form variable PPAR are used when the

r(j), creates the algebraic objects a »e** xSIN(4&) and plot typeis polar.
a et ><COS(/E),and then uses dF1F2 to find thederivativem. PPAR isalist with 7 items, which the plotting commands use for
fix drawing according to the settings of the user. The list has the form:
<< . . .
® polarF « 6To get x. enter a small o and then {(xmm,ymm) (xmax,ymax) indep res axes ptype depend}
<< @press [ALPHA] if not already in

polarF £ SIN * @alpha more, then [red shift], [9] Fortheplottype POLAR these elements have the following meaning:
polarF £ COS *

A (xmin,ymin) A complex number which specifies the lower left
dF1F2 . :
o> corner of the display range. Default value is
>> (- 6.5,-3.1). The programmable command for
o o o setting this parameter isPMIN. This command takes
Thisisthe program dYXr &. Let'stry it with afunction in polar form. a complex number from the stack and puts it in the
We use the function r=COS(&)’ +3>COS(A) - 1.Enter first position of PPAR .

COS(A&)* +3>COS(A) - 1, then /&, and press

to get: (xmax,ymax) As you might have imagine, a complex number

which specifies the upper right corner of the display
(2xCOS(4) +3) SIN(A&) - (COS("E)3 +3>COS(A) - COS(/‘E)) range. Default valueis (6.5,3.2). The programmable
(3 >COS(A&) +6>COS(A)- 1) SIN(A) command for setting this parameter is PMAX . This
command takes a complex number from the stack and
putsit in the second position of PPAR .

Volume 1, 2-89

indep

the display range. Thefirst isXRNG. It takes two
real numbers from the stack (the minimum and
maximum of the view range of the X-axis) and sets

up the parameters of and of . The other is*

YRNG and as you can think it does the same for
the Y-axis.

This element can be either a name specifying the €S
independent variable of the expression that we
want to plot. Or it can be alist which contains the
name of the independent variable and the minimum
and maximum of the plotting range. Thisallowsto
have different values for the viewing and plotting
range. Default for this parameter is X . There are
two programmable commands that can be used for
setting this parameter. We have the command
INDEP, which can take as arguments:

1)

2)

3)

The name of the independent variable. If a
name is given to INDEP then thisname
replacesthethird element of PPAR , that isif
you aready have specified a plotting range,
then this will be lost and the viewing range
from the parameters (xmin,ymin) and

(xmax,ymax) will be used.

A list which contains the name of the
independent variable. In this case the
independent variable is replaced but an
existing plotting range will not be touched.

A list with the name of the independent
variable, a real number that specifies the
minimum of the plotting range and a red
number that specifies the maximum of the
plotting range.

axes

ptype

Basic Calculus with the HP49G - Volume 1 - Part 2

There are two additional commands for setting upe

4) A list with two numbers specifying the
minimum and maximum of the plotting range.
The independent variable remains untouched.

5) Two real numbersthat specify the minimum and
the maximum of the plotting range. The
independent variable remains untouched.

A real number that specifies the interval in user
coordinates between the values of the independent
variable. The default value is 0 and specifiesan

interval of 2 degrees, 2 grads or % radians. The

command that setsthis parameter isRES.

This element is either a complex number specifying
the coordinates of intersection of the axes. Or a list
that has one or more of the following elements in
order. A complex number specifying the coordinates
of intersection of the axes, alist that specifiesthetick
marks of the axes and two strings that are used as
labels for the X- and the Y -axes. Commands for this
parameter are. AXES, which takes as arguments a
complex number representing the coordinates of axes
intersection, or a list that has the parameters listed
above. ATICK, which sets up the distance between
tick marks on the axes. This command takes as
arguments either a real number that specifies the
distance between tick marks in user units for both
axes, or alist with two real numbers that specify this
distance separately for the X- and Y-axis, or abinary
integer that specifies the distance between tick marks
in pixels for both axes, or a list with two binary
integers that specify this distance separately for the
X-and Y-axis.

One of the plot types available on the HP49G out of
Volume 1, 2-90

the box. These arec BAR, CONIC, DIFFEQ,
FUNCTION, GRIDMAP, HISTOGRAM,
PARAMETRIC , PARSURFACE,
PCONTOUR, POLAR, SCATTER,
SLOPEFIELD, TRUTH, WIREFRAME ,
YSLICE and FAST - 3D. The commands for
setting the appropriate plot type are the same like
the parameters above, that is, if you want to set up
the plot type polar from a program, you just enter
the command POLAR.

depend

A name that specifies the dependent variable.
Default for this parameter is Y . The command for
setting the dependent variable is DEPND and its
arguments have the same forms as the arguments
for INDEP. Note that aplot range for the
independent variable is only used for the plot type
TRUTH but isignored otherwise.

We examined alot of things about the capabilities of the HP49G when
it comes to derivatives, but we still didn't answer a simple question.
The HP49G has a huge amount of built-in functions. Which of them
can it differentiate out of the box? Aswe have seen, there are at |east
two built-in functions that it doesn't know how to differentiate,
namely GAMMA and!. For most of the built-in functions the
HP49G provides a derivative. So most of the time you will just use
DERIV or DERVX or in any possible syntax and the HP49G will
find the derivative. But for some functions you will have to define the
derivative the way we did for GAMMA , because the HP49G doesn't
provide a built-in derivative for them. There are also some built-in
functions which show an unusual behaviour. Enter X, Y and press

3. The HP49G returns:
Y

X x——

100

Basic Calculus with the HP49G - Volume 1 - Part 2

which of course can be differentiated for X or Y using one of the
differentiation commands. For example enter X and press[i]aghg to get:

Y
100
But if you enter the algebraic object %(X,Y), then X, and use or

DERIV, then the result is d1%(X,Y) , though the HP49G knows how
to differentiate the function % because it knowsits simple definition:

Y

X %—

100
If you enter the algebraic object:

lx (%(X,Y)) and expand or evaluate, then the result will be again

d19%(X,Y) . We would expect that expanding or eval uating

DERIV(%(X,Y),X) aso returns d1%(X,Y) , wouldn't we? But no,
this time the HP49G returns the result:

Y

100

And so we have yet another unexpected and puzzling behaviour.
Sometimes the one way, some times the other way. Let's say that this
machine has "character” ;-) The functions for which the HP49G doesn't
provide a derivative, or for which it behaves the above ambiguous way
are summarised on the tables from the next page up to page 2-106.
Those functions are only functionsin the HP49G sense, that means that
they are allowed in algebraics and thus we can formally construct a
derivative of them. The red cells contain the cases where the derivative
can't be found. The green cells contain the cases where the analytic

derivative is returned. The first column contains the functions. If a cell
that contains the function isred, that means that you have to make a user

Volume 1, 2-91

Basic Calculus with the HP49G - Volume 1 - Part 2

Function

Enter arguments,
then use Function,
and then |

Enter arguments,
then use Function,

and then DERIV

Algebraic object
Function(X,%) then

X, then

Algebraic object
Function(X,%)
then X, then DERIV

ﬂlx (Function(X %4))

then EXPAND or EVAL

DERIV(Function(X, %),X),
then EXPAND or EVAL

X and then !
returns X!. Enter
X and use § to

X and then !
returns X!. Enter
X and use DERIV

Enter X!, then X, and
use I to get d]!(X).

Enter X!, then X,
and use DERIV to get
d1(X).

Enter ﬂlX (X!) and

EXPAND or EVAL to get

enter DERIV(X!,X)

and EXPAND or EVAL to
get d]!(X).

get d]l(X). to get d]!(X). d]l(X).
% X, Y, then % |X, Y, then % Enter %(X Y) then |Enter %(X Y) then | Enter
e v Enter — (%0(X,Y
returns X % lreturns X x— | X,anduse Y toget [X, and use DERIV to neer X (0()) DERN(%(X,Y),X)
100 100" [d19%(X,Y). get d1%(X,Y). and EXPAND or EVAL to |and EXPAND or EVAL to
Enter X and use |Enter X and use get dl%(X,Y). . Y
et — .
1 toget —. [DERIV to get s : ’ 100
100 100
%CH | X, Y, then X, Y, then Enter %CH(X,Y), Enter %CH(X,Y), Enter Enter
%CH r.eturns %CH T.eturns then X, and use § to |then X, and use 1 (%CH(X,Y)) el DERIV(%CH(X’Y)’X)
& P00 |Z-.10xq00. |oet d1%CH(X,Y). |DERI to get X and EVAL to get
ex o ex @ d1%CH(X,Y). EXPAND or EVAL to get .Y
Enter X and use |Enter X and use d1%CH(X,Y). 100 SQ(X) or
9 to get DERIV to get 100 %Y
- Y EXPAND to get - ———>—
100 %——. |100%——. X
SQ(X) SQ(X)
%T X, Y, then %T | X, Y, then %T |Enter %T(X Y) then | Enter %T(X Y) q Enter
1o o Enter — (%0T(X,Y
returns X X100 _ | returns X x100 |X anduse { toget |then X, and use et X (° ()) DERIV(%T(X’Y)!X)
X X d1%T(X,Y). DERIV to get and EXPAND or EVAL to |and EVAL to get
Enter X and use [Enter X and use dl%T(X,Y). get dl%T(X,Y)_ -Y
9 to get DERIV to get 100 SQ(X)’ s
100 ¥—— 100 Vi 100 »Y
SQ(X) : SQ(X)) EXPAND to get - =z

Volume 1, 2-92

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments,| Enter arguments, Algebraic object Algebraic object il = ion(X . DERIV(Functior(X,1/4),X),
then use Function, | then use Function, | Function(X,%) then| Function(X,4) X (unction(X, 4)) then EXPAND or EVAL
and then | and then DERIV X, then I then X, then DERIV | then EXPAND or EVAL
< X, Y,andthen | X, Y, and then <|Enter X <Y, then X, |Enter X <Y, then q Enter
< returns returns X <Y. [anduse to get X, and use DERIV to |ENter ﬂ_X (X < Y) and DERIV(X < Y,X) and
Xd< Y .Entter >E E’éﬁ:{/? an(tj use |d1l< (X1Y)- get d1< (X1Y)- EXPAND or EVAL to get |EXPAND or EVAL to get
and use | to ge o ge d1<(X.Y).
d1<(X.Y). |d1<(XY). d1<(X.Y). (X.Y)
== X, Y,andthen |X, Y,andthen |Enter X ==Y, then [Enter X ==Y, then 1 . Enter
== returns == returns X,and use Y toget |X, and use DERIV to |ENter ﬂ_X (X —) DERIV(X = Y,X) and
§ :=dY. E%t(ir Xd== YD.Eir:\t/e; X |dl== (X,Y) . get d1== (X,Y) . and EXPAND or EVAL to | EXPAND or EVAL to get
anduse J to |and use o — d1==(X.Y).
get d1==(X,Y) . [get d1==(X,Y). get d1==(X.Y). xv)
> X, Y,and then | X, Y, and then >|Enter X > Y, then X, |Enter X > Y, then q Enter
> returns returns X > Y. [anduse Y to get X, and use DERIV to |ENter ﬂ_X (X > Y) and DERIV(X > Y,X) and
xd> Y .Entter)E ';‘E;elil?[(a”‘: use | d1>(X,Y). get d1>(X,Y). EXPAND or EVAL to get |EVAL or EXPAND to get
and use | to ge o ge d1>(X.Y).
d1>(X,Y). [d1>(X.Y). d1>(XY). (X.Y)
AND X, Y,andthen | X, Y,andthen |Enter X AND Y, [Enter X AND Y, |Enter Enter
AND returns AND returns then x, and use ﬂ to |then x, and use 1 (x AND Y) DERIV(X AND Y,X)
X AND Y. |X AND Y. |get dIAND(X,Y). |DERIV to get ax and EXPAND or EVAL to
Enter X and use |Enter X and use dlAND(X,Y). and EXPAND or EVAL to | get dlAND(X,Y).
9 to get DERIV to get + dLAND(X.Y).
d1AND(X,Y). |d1AND(X,Y). o D(x.Y)
APPLY {X Y} Y, {X Y} . Y, then|Enter Enter Enter Enter
then APPLY |APPLY retums |APPLY(F.X,Y) |APPLY(F,X,Y) [1X(APPLY(F,X,Y)) |DERIV(APPLY(F.X.Y)X)
returns F(X,Y)_ F(X,Y)_ Enter X |from the command line | from the command |from the command line |from the command line to
Enter X and use |and use DERIV to |0 9et line to get to get get

9 to get
dF(X,Y).

get dF(X,Y).

Invalid Expression.

Enter X, and use | to

get dF(X,Y).

Invalid Expression.
Enter X, and use
DERIV to get
dF(X,Y).

TX(Invalid Expression).
EXPAND or EVAL to get
dIAPPLY(F.{X Y}).

Invalid Expression.

EXPAND or EVAL to get
dF(X,Y).

Volume 1, 2-93

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object il = ion(X.y. DERIV(Functior(X,l/A),X),
then use Function, | then use Function, Function(X,1/4) then Function(X,1/4) ﬂ_X (unctlon(' 4)) then EXPAND or EVAL
and then | and then DERIV X, then I then X . then DERIV | then EXPAND or EVAL
CEIL |X then CEIL [X then CEIL [enter CEIL(X), then |Enter CEIL(X), - 1(CE|L(X)) Enter
M returns CE”—(X)- X,and use | toget |then X, and use nter X DERN(CE'L(X),X)
CEIL(X). Enter |gnter X and use | d CEIL(X). DERIV to get and EXPAND or EVAL to |and EXPAND or EVAL to
X and use J to |DERIV to get dICEIL(X). get dICEIL(X). get dICEIL(X).
get dICEIL(X). [dICEIL(X).
COMB [X, Y,andthen |X, Y, andthen |Enter COMB(X,Y), Enter COMB(X,Y), Enter Enter
COM'B returns COMlB returns |ipen X anduse ¥ to |then X, and use l (COMB(X Y)) DERIV(COMB(X,Y),X)
S _ X _ get d:COMB(X,Y) . |DERIV to get X ’ and EXPAND to get
(X- Y)¥! (X- Y)¥! dICOMB(X,Y). [and EXPAND orEVAL to | aXbd1(X- Y)- &
Enter X and use |Enter X and use get dI:OMB(X,Y). c "
lto g)et) I;(ERIV)to get() e (X - Y) ’dl(x)ﬂ
X - Y)Y d1(X) -6 X - Y)Y d1(X) -6
c i . VX - Y)P
& Xpd1(X - Y)Rrig [& XbdL(X - Y)®vl
: or EVAL to get
S| S VI X - Y)A1H1(X) - 6
< Xpda(X - Y)Y
SQ((X- Y)x)
CONJ [in real mode In real mode enter |In real n(mde ent()er In real rr(mde entt;r In real mode enter In real Enode ((enter))
enter X+Y X, |X+YX,then CONJ(X +Y), CONJ(X +Y), l _ DERIV(CONJ(X + Y %), X),
then CONJ to CONJ to get then X and use §| to |then X, and use X (CONJ(X Y X)) and use EXPAND or EVAL
get X+-Y A, X +-Y A. Enter get DERIV to get and use EXPAND or to get 1.
Enter X ?-nd use E)(Eaa?\l;se . d_‘CONJ(X +i xY) _ d]CONJ(X +i xY) |EvAL to get In complex mode enter
ﬂ (:grSSItex.mode In compleiorr?c?;e " in complex mode enter |In complex mode dEONJ(X t XY) : DERIV(CON‘](Z)’Z)’
enter Z, then enter Z, then CON‘](Z)' and use [enter CONJ(Z), In complex mode enter |and use EVAL or EXPAND
CONJ to get CONJ to get to get dICONJ(Z). |and use T to get alk (CONJ(Z)) ang |toget dICONJ(2).
CONJ(Z). enter| CONJ(Z). Enter dICONJ(2). X
Z anduse | to |Z and use DERIV use EVAL or EXPAND to
get d]CONJ(Z) |to get get d]CONJ(Z) .
dICONJ(Z).

Volume 1, 2-94

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object il = ion(X v, DERIV(Functior(X,%),X),

then use Function,| then use Function, Function(X,1/4) then Function(X,1/4) ﬂ_X (unctlon(, 4)) then EXPAND or EVAL
and then and then DERIV X, then I then X, then DERIV | then EXPAND or EVAL
CYCLOTOMIC| 3 then 3 then Enter Enter Enter Enter

CYCLOTOMIC|CYCLOTOMIC CYCLOTOMIC(B), CYCLOTOMIC(3), l(CYCLOTOMIC(S)) DERIV(CYCLOTOMIC(3),X)
regurns relz:urns then X, and use | to |then X, and use X and EXPAND or EVAL to
X+ X+1. X“+ X +1. Enter [get 2xX+1. DERIV to get 2XX + 1, [and EXPAND or EVAL 10 [get 2 xX + 1.
Enter X and use | X and use DERIV get 0.
9 toget 2xXX+1 [toget 2XX+1.

DARCY | X, Y,and then [X, Y, andthen [Enter DARCY(X,Y), Enter Enter Enter
DARCY returns| DARCY returns fimm 5 adlues DARCY(X,Y), 1 (DARCY(X Y)) DERIV(DARCY(X,Y), X)
DARCY(X,Y). [DARCY(X,Y). |get dDARCY(X,Y). |then X, and use X ’ and EXPAND or EVAL to
Enter X and use |Enter X and use DERIV to get and EXPAND or EVAL to |9et dDARCY(X,Y).
1 to get DERIV to get dDARCY(X,Y). get dDARCY(X,Y).
dDARCY(X,Y). | dDARCY(X,Y).

DEF Enter Enter From the EQW enter From the EQW enter |From the EQW enter From the EQW enter
F(X) =X*- X [F(X) =X*- X |DEF(F(X) = X*- X)|DEF(F(X) = X* - X %(DEF(F(X) =X - X)) DERIV(DERF(X) = X" - X).X)
and then DEF . fand then DEF . |40 then enter X and |and then enter X and|ang then EVAL to get fgd ;:en EVAL or EXPAND
Enter F(X) , then |Enter F(X) . then [yse Y to get use DERIV to get 2%X - 1=2XX - 1.1f |9)?X 1= 2% - 1 Thi
X anduse J to |X anduse DERIV |2XX-1=2XX-1 [2XX-1=2xX-1 |y, use EXPAND, you I B y - TS
get 2XX - 1. to get 2XX - 1. This also creates the | This also creates the | get 0. Both EVAL and aiso creates the user

user defined function. |user defined function.|expAND also create the defined function.
user defined function.
DROITE |DROITE works |DROITE works |Enter DROITE(X,Y), Enter DROITE(X,Y), [Enter Enter
only with only with then X, and use ¥ to |then X, and use i DERIV(DROITE(X,Y)
arguments arguments get dDROITE(X,Y). [DERIV to get X (DROITE(X’Y)) and EXPAND or EVAL. The
e"a'“ab'le to reals e"a'“ab"f to reals dDROITE(X,Y). | and EXPAND or EVAL to |HP49G errors out with
or complex. or complex. get dDROlTE(X,Y)) “Bad Argument Type"
D® R | X, and then X, and then Enter D ® R(X) , Enter D ® R(X) , Enter

D ® R returns

D ® R(X). Enter
X and use § to
get dD® R(X).

D ® R returns

D ® R(X). Enter X
and use DERIV to
get dAD® R(X).

then X, and use | to
get dAD® R(X).

then X, and use
DERIV to get
dD® R(X).

1
Enter ﬂ_X (D ® R(X))

and EXPAND or EVAL to
get dAD® R(X).

DERIV(D® R(X).X)
and EXPAND or EVAL to
get AD® R(X).

Volume 1, 2-95

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object i = ion(X Y. DERIV(Functior(X,%),X),
then use Function, | then use Function, | Function(X,%) then| Function(X,v4) 1 (unction(X, 4)) then EXPAND or EVAL
and then ﬂ and then DERIV X’ then 1'[then X’ then DERIV then EXPAND or EVAL
EULER |EULER works |EULER works |enter EULER(X), Enter EULER(X), Enter Enter
only with integer fonly with integer |¢pon X anduse 9 to |then X, and use 1 (EULER(X)) o DERIV(EULER(X),X) and
arguments. arguments. get d]EULER(X) ' DERIV to get X then EVAL or EXPAND.
dEULER(X). then EVAL or EXPAND [The HP49G errors out
to get dIEULER(X). |"Bad Argument Type™
FOl [X, Y thenFOl |X, Y thenFOl |enter FOI (X,Y), enter FOI (X,Y), \l Enter
returns returns dien 5C. eneluss Y o | i 5%, e uss Enter ﬂ_X (FOl (X’Y)) DERlV(F0| (X,Y),X)
FOI (X,Y). FOI(X.Y). Enter get dFOI (X,Y). DERIV to get and then EVAL or and then EVAL or EXPAND
Enter X and use | X and use DERIV dI0l (X,Y). EXPAND to get to get dFFOI (X,Y)_
I to get to get dIFOl (X,Y)_
dFol (X,Y). |dFol (X,Y).
FACT |X thenFACT |X then FACT |Enter FACT(X), then |Enter FACT(X), Al (FACT(X)) Enter
returns X!. Enter returns X Enter |y .04 se T to get |then X, and use Enter X DERIV(FACT(X),X)
A and Hee 12 eng My V| dFACT(X). DERIV to get and then EVAL to get |and then EVAL or EXPAND
getd(X). |toget d2(X). dFACT(X). dFACT(X,Y). to get d1(X).
EXPAND returns
d1(X).
FANNING| X, Y then X, Y then Enter FANNING(X,Y). |Enter FANNING(X,Y),|Enter Enter
FANNING FANNING then X, and use ¥ to |then X, and use all (FANNING(X Y)) DERIV(FANNING(X,Y),X)
returns returns get d]FANNING(X,Y) . |DERIV to get X ! and then EVAL or EXPAND
FANNING(X,Y). [FANNING(X,Y). dFANNING(X,Y). and then EVAL or to get dFANNING(X,Y) .
Enter X and use [Enter X and use EXPAND to get
ﬂ to get DERIV to get dFANNING(X.Y) .
dFFANNING(X,Y) . | dFANNING(X,Y). cx.Y)
FLOOR | X then FLOOR | X then FLOOR |enter FLOOR(X), Enter FLOOR(X), Enter Enter
returns returns then X, and use l DERlV(FLOOR(X),X)

FLOOR(X).
Enter X and use
i to get
dIFLOOR(X).

FLOOR(X).

Enter X and use
DERIV to get
dIFLOOR(X).

then X, and use { to
get dFLOOR(X).

DERIV to get
dIFLOOR(X).

” (FLOOR(X)) and

EXPAND or EVAL to get
dIFLOOR(X).

and EXPAND or EVAL to
get dFLOOR(X).

Volume 1, 2-96

Basic Calculus with the HP49G - Volume 1 - Part 2

Function

Enter arguments,
then use Function,

Enter arguments,
then use Function,

Algebraic object
Function(X,Y4) then

Algebraic object
Function(X, %)

ﬂlx (Function(X%4))

DERIV (Function(X, ¥z),X),
then EXPAND or EVAL

and then | and then DERIV X, then then X, then DERIV | then EXPAND or EVAL
FP |X, then FP X, then FP Enter FP(X), then X, |Enter FP(X), then |~ T (FP(X)) and Enter
returns FP(X). |returns FP(X). | ang use 1 to get X, and use DERIV to X DERN(FP(X)’X) and
Enter X and use [Enter X and use d]FP(X). get d]FP(X). EXPAND or EVAL to get |EXPAND or EVAL to get
9 to get DERIV to get deP()()_ d]FP(X).
dFP(X). dFP(X).
GAMMA | X, and then X, and then Enter GAM MA(X), Enter GAMMA(X), Enter Enter
GAMMA GAMMA returns|pen X . and use 1 to |then X, and use al (GAMMA(X)) and DERIV(GAMMA(X),X)
returns GAM MA(X). get dIGAM MA(X). DERIV to get X and EXPAND or EVAL to
GAMMA(X)- Enter X and use diGAM MA(X). EXPAND or EVAL to get |get dIGAM MA(X).
Enter X and use |DERIV to get d]GAMMA(X).
T to get dIGAMMA(X).
dIGAMMA(X).
GCD |X%-1, X+1, |X?-1, X+1, Enter Enter Enter Enter
then GCD then GCD GCD(X* - 1X +1), | GCD(X* - 1X +1).| L (cenpe- 1x+3) [DERIV(GCD(X” - 1X
returns {X +1. |returns {X +3}. then X, and use Y to [then X, and use and then EVAL to get |and then EVAL or EXPAND
Enter X and use |Enter X anduse |get 1. DERIV to get 1. dZGCD(Xz 1 X+])+ to get 1.
1 to get {]} : DERIV to get {]} : ’ _
2 dGCD(X? - 1,X +1)
EXPAND returns
2% dBCD(X? - 1X +1) +
d2GCD(X? - 1X +1)
HERMITE| 3 then 3 then Enter HERMITE(3), Enter HERMITE(3), | Enter Enter
HERMITE HERMITE then X and use] to |then X and use DERIV 1 (HERMlTE(3)) DERIV(HERMITE(3),X),
returgs returgls get 8>3 xX2-12 to get 83 xXX%-12. X ’ |and use EVAL to get
8xX7-12xX. |8xX"-12xX. S v B o 8x3xX?%- 12 . EXPAND
Enter X and use [Enter X and use EXPAND to get O. returns 24 XX% - 12
9 to get DERIV to get '
8x3xX?-12. |8>3xX*- 12.

Volume 1, 2-97

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object il . 1 DERIV(Functior(X,1/4),X),
then use Function, | then use Function, Function(X,1/4) then Function(X,1/4) ﬂ_X (FUﬂCtIOI’](X, /4)) then EXPAND or EVAL
and then | and then DERIV X, then then X, then DERIV | then EXPAND or EVAL
IBERNOULLI [IBERNOULLI |[IBERNOULLI |Enter Enter Enter Enter
works only with |works only with |IBERNOULLI(X), [IBERNOULLI(X), i (lBERNOULLI(X) DERIV(IBERNOULLI(X)X)
integer integer arguments. | then X, and use Y to |then X, and use X and EXPAND or EVAL. The
arguments. get DERIV to get and EXPAND or EVAL to [HP49G errors out "Bad
dIBERNOULLI(X). | dIBERNOULLI(X).| get Argument Type"
dIBERNOULLIX).
IFTE [A. X2 X%and [A X? X®and |Enter Enter Enter Enter
then IFTE then IFTE IFTE(AX* %), [IFTE(AX*X%), |1 (FTE(A X2 X7) DERIV(IFTE(A X X%).X)
returds - o [TTS L oy [then X, anduse Y to |then X, and use X and EXPAND or EVAL to
IFTE(A,X* X°). [IFTE(AX* X%). |46t DERIV to get and EXPAND to get | get 2
Enter X and use |Enter X and use IFTE(A,2 %X 3 ><X2). IFTE(A,2 X 3><x2) _ IFTE(A,Z %X, 3 %X) IFTE(A,2 X, 3 XX)
1 to get L ||PER i ERE EVAL errors out with
IFTE(A’2 33X) 0 IFTE(A'Z 3 %X) c "CAS Internal Error"
IM In real mode In real mode enter [In real mode enter In real mode enter In real mode enter In real mode enter

enter X + X%,
then IM to get
X?. Enter X and
use Y| to get
2%xX.

In complex mode
enter Z, then IM
to get IM(Z).
Enter Z and use
9 to get
dam(z).

X + X2, then
IM to get X2
Enter X and use
DERIV to get 2 XX .
In complex mode
enter Z, then IM
to get ||\/|(Z).
Enter Z and use
DERIV to get
dam(z).

IM(X +X? %), then X
and use | to get
dIM(X + X).

In complex mode enter
|M(Z), then Z and
use I to get d]lM(Z).

IM(X +X? %), then
X and use DERIV to
get dIM(X +X° %).
In complex mode
enter |M(Z), then Z

and use | to get
dam(2).

11((IM(X +X? xi)) and

then EVAL or EXPAND
to get d]lM(X +X° >i).

In complex mode enter

1 (IM(Z)) and then

V4
EVAL or EXPAND to get
dam(2).

DERIV(IM(X +X2 x)x)

and then EVAL or EXPAND
to get 2XX . In complex
mode enter

DERIV(IM(Z),Z) and
then EVAL or EXPAND to
get dAM(Z) .

Volume 1, 2-98

Basic Calculus with the HP49G - Volume 1 - Part 2

DERIV (Function(X,%),X),

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object i = fi (X 1/)
then use Function,| then use Function, Function(X,1/4) then Function(X,1/4) ﬂ_X(Unction\A,7a) then EXPAND or EVAL
and then and then DERIV X, then then X . then DERIV | then EXPAND or EVAL
INT X? X, X,and |X? X, X,and |Enter |NT(X2,X,X), Enter |NT(X2,X,X), Erﬁter Enter ,
DERIV(INT(X?,X,X),X
t?_en INT returns t;n_en INT returns then X, and use 7. then X, and use — (INT(XZ,X,X)) (())
=X enter X | =xX® Enter X |The HP49G errors out |DERIV. The HP4os | X and EVAL to get
3 3 "Can't derive int. var" |errors out "Can't and EXPAZ‘ND to get 3x3xX
and use Y to get |and use DERIV to derive int. var"” 33 xX 9 EXPAND
al 1) —— . EVAL errors 5
= x3xX°. get = X3 XX". returns X°.
3 3 out with "Can't derive
int. var”
IP X and then IP X and then IP Enter |P(X), then X, |Enter |P(X) then X, 1 Enter DERlV(lP(X),X)
returns |P(X) returns |P(X) Hnisr — (IP(X)) and
g : and use | to get and use DERIV to get X and EVAL or EXPAND to
Enter X and use [Enter X anduse [d1P(X). d1P(X). EVAL or EXPAND to get |get d1P(X).
1 to get d1P(X) .| DERIV to get daP(X).
d1P(X).
IQUOT [IQUOT works |IQUOT works |Enter IQUOT(X,Y), Enter IQUOT(X,Y), Enter Enter
only with integer fonly with integer |¢,on X anduse 9§ to |then X, and use hl (IQUOT(X Y)) DERIV(QUOT(X,Y),X)
arguments. arguments. get d]lQUOT(X,Y). DERIV to get X ! and EVAL or EXPAND.
dIQUOT(X,Y). [and EVAL or EXPAND to | The HP49G errors out
get d]lQUOT(X Y). with “Bad Argument
’ Type".
IREMAINDER| IREMAINDER [IREMAINDER |Enter Enter Enter Enter
works only with |[works only with [IREMAINDER(X,Y), |IREMAINDER xv),| 1 (IREMAINDER(X Y)) DERIV(IREMAINDER(X,Y),X)
integer integer arguments. | then X, and use § to [then X, and use ™ and EVAL or EXPAND.
arguments. get DERIV to get and EVAL or EXPAND to | The HP49G errors out
dIREMAINDER(X,Y). | dIREMAINDER(X,Y).|get with "Bad Argument
dIREMAINDER(X,Y). [Type".
ISPRIME?|ISPRIME? ISPRIME? Enter ISPRIME 2AX), |Enter ISPRIME?(X), |Enter Enter
works only with |works only with [then X and use J to [then X, and use 1 (ISPRIME’?(X)) DERIV(ISPRIME?(X),X),
integer integer arguments. | gat DERIV to get X ' ' [then X, EVAL or
arguments. dIRSPRIME?(X). [dIRSPRIME?(X). EXPAND. The HP49G

then X, EVAL or
EXPAND to get
d1RSPRIME?(X).

errors out with "Bad
Argument Type".

Volume 1, 2-99

Basic Calculus with the HP49G - Volume 1 - Part 2

Function

Enter arguments,
then use Function,

Enter arguments,
then use Function,

Algebraic object
Function(X,Y4) then

Algebraic object
Function(X, %)

ﬂlx (Function(X%4))

DERIV(Function(X,%),X),
then EXPAND or EVAL

and then | and then DERIV X . then then X, then DERIV | then EXPAND or EVAL
I® R |I® R works | ® R works only |Enter | ® R(X), then |Enter | ® R(X), . l (l ® R(X)) Enter
only with integer |with integer X, and use Y] toget [then X, and use nter X DERIV(I ® R(X)1X)
arguments. arguments. d1® R(X). DERIV to get and EVAL or EXPAND to |and EVAL or EXPAND to
d1® R(X). get d1® R(X). get d1® R(X).
LEGENDRE| LEGENDRE LEGENDRE Enter Enter Enter Enter
works only with |works only with [LEGENDRE(X), |LEGENDRE(X), | T (LEGENDRE(X)) DERIV(LEGENDRE(X),X)
integer Integer arguments. | than X, and use to [then X, and use X and EVAL or EXPAND.
arguments. get DERIV to get and EVAL or EXPAND to | The HP49G errors out
dLEGENDRE(X). |d1LEGENDRE(X).|get (il 1R ARgUmEE
dLEGENDRE(X). |Type™
MANT [X, and then X, and then Enter MANT(X), |enter MANT(X), 1 Enter
MANT returns |MANT returns [gnen X and use to |then X, anduse |- X (MANT(x)) DERIV(MANT(X),X)
MANT(X). MANT(X) . Enter get AIMANT(X). DERIV to get and EVAL or EXPAND to |and EVAL or EXPAND to
Enter X and use | X and use DERIV dIMANT(X). get dIMANT(X). get dIQUOT(X,Y).
9 to get to get
dIMANT(X). | dIMANT(X).
MAX | X, Y andthen [X, Y and then Enter MAX(X,Y), Enter MAX(X,Y), Enter Enter ()
MAX returns MAX returns then X, and use { to [then X, and use 1 DERIV(MAX(X,Y),X
, , — (MAX(X,Y)) and Y
MAX(X,Y). MAX(X,Y). get dMAX(X,Y). [DERIV to get X SRS e and EVAL or EXPAND to
Enter X and use |Enter X and use d]MAX(X,Y) ; EVAL or EXPAND to get |get d][\/lAX(X,Y))
9 to get DERIV to get d][\/IAX(X,Y))
dIMAX(X,Y). [dIMAX(X,Y).
MIN |X, Y andthen [X, Y andthen |enter MIN(X,Y), enter MIN(X,Y), \l Enter
MIN returns MIN returns i o st s] e | 00, e e Enter ﬂ_X (MlN(X’Y)) DERlV(l\/”N(X,Y),X)
MIN(X, Y). MIN(X,Y). Enter | gt dMIN(X,Y). |DERIV to get and EVAL or EXPAND to |and EVAL or EXPAND to
Enter X and use | X and use DERIV dIMIN(X,Y). get dMIN(X,Y). get d]l\/||N(X,Y).

9 to get
dIMIN(X,Y).

to get
dIMIN(X,Y).

Volume 1, 2-100

Basic Calculus with the HP49G - Volume 1 - Part 2

Function

Enter arguments,
then use Function,

Enter arguments,
then use Function,

Algebraic object
Function(X,Y4) then

Algebraic object
Function(X, %)

ﬂlx (Function(X %4))

DERIV(Function(X,%s),X),
then EXPAND or EVAL

and then | and then DERIV X, then then X . then DERIV | then EXPAND or EVAL
MOD |X, Y andthen |X, Y and then Enter X MOD Y, |[eEnter X MOD Y |Enter Enter
MOD returns MOD returns then X, and use J to |then X, and use 1 (X MOD Y) DERIV(X MOD Y,X)
X MOD Y. |X MOD Y. |get d]MOD(X1Y)_ DERIV to get X and EVAL or EXPAND to
Enter X and use |[Enter X and use d]lVIOD(X,Y). and EVAL or EXPAND to |get d]l\/IOD(X,Y).
1 to get DERIV to get get dMOD(X,Y).
dMMOD(X,Y). |[dIMOD(X,Y).
NEXTPRIMEf NEXTPRIME | NEXTPRIME Enter Enter Enter Enter
works only with [works only with NEXTPRIME(X), NEXTPRlME(X), Al (NEXTPRIME(X)) DERIV(NEXTPRIME(X),X)
integer Integer arguments. | than X, and use Y to [then X, and use and EVAL or EXPAND.
arguments. get DERIV to get and EVAL or EXPAND to | The HP49G errors out
d]NEXTPRlME(X) .| dNEXTPRIME(X). |get with "Bad Argument
dINEXTPRIME(X) . |Type".
NOT [X, and then X, and then NOT [Enter NOT X, then |Enter NOT X, 1 NOT X Enter
NOT returns returns NOT X | X and use to get [then X, and use Sz ﬂ_X() DERlV(NOT X,X)
)IjOT X. 1I15nter Enter X and use [dINOT(X). I?jERIV to(ge)t and EVAL or EXPAND to |and EVAL or EXPAND to
and use { to |[DERIV to get INOT(X). t dNOT(X). get dAINOT(X).
get dANOT(X). |dINOT(X). ge (X) (X)
OR X, Y,andthen [X, Y, andthen |Enter X OR Y, Enter X OR Y, [Enter Enter
OR returns OR returns then X, and use J to [then X, and use 1 (X OR Y) and DERlV(X OR Y,X)
X OR Y. X OR Y. get leR(X,Y) _ DERIV to get X and EVAL or EXPAND to
Enter X and use |Enter X and use leR(X,Y) : EVAL or EXPAND to get |get d]_OR(X,Y) _
9 to get DERIV to get leR(X Y) _
d1OR(X,Y). [d1OR(X,Y). ’
PA2B2 |PA2B2 works |PA2B2 works |enter PA2B2(X), |enter PA2B2(X), 1 Enter
only with integer |only with integer |{hen X, and use to |then X, and use Enter ﬂ_X (PAZBZ(X)) DERIV(PAZBZ(X),X)

arguments.

arguments.

get dPA2B2(X) .

DERIV to get
dIPA2B2(X).

and EVAL or EXPAND to
get dPA2B2(X).

and EVAL or EXPAND. The
HP49G errors out with
"Bad Argument Type".

Volume 1, 2-101

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object i . . DERlV(FUﬂCtiOY(X,l/4),X),
then use Function,| then use Function, Function(X,1/4) then Function(X,1/4) ﬂ_x (Functlon(x, /4)) then EXPAND or EVAL
and then | and then DERIV X, then | then X . then DERIV | then EXPAND or EVAL
PERM | X, Y andthen |[X, Y and then Enter PERM(X,Y), Enter PERM(X,Y), Enter Enter
PERIM returns PERIM returns |tpen X and use ¥ to |then X, and use i (PERM(X Y)) DERIV(PERM(X,Y),X) and
X e |2 cnter |oet dPERM(X,Y). |DERIV to get X ! EVAL to get
(X-Y) (X-Y) dPERM(X,Y). and EVAL or EE(PANI)D to | &X - Y)bd1(X)- 6
X anduse § to | X and use DERIV get dAPERM(X,Y). ¢ =
get to get e X >d1(X B Y) [7]
X - Y)hx1(X)- 6 X - Y)d1(X)- 6
A I(0-0 | i(0)-¢ SO YY)
& XNL(X-Y) g | & XMH1(X-Y) 4 EXPAND returns
SQ((X- Y)) SQX- Y)) axXbd1(X- Y)- 6
& (x- yda(x);
(X-Y)?
PREVPRIME [PREVPRIME | NEXTPRIME Enter Enter Enter Enter
works only with |works only with |PREVPRIME (X) ., |PREVPRIME (X) 1L (PREVPRIME (X)) DERIV(PREVPRIME(X)X)
integer Integer arguments. | than X, and use Y to [then X, and use fix and EVAL or EXPAND.
arguments. get DERIV to get and EVAL or EXPAND to | The HP49G errors out
dPPREVPRIME(X). | dPREVPRIME(X) . |9et with "Bad Argument
dIPREVPRIME(X). |Type".
PSI X, 2,andthen |[X, 2,and then |Enter PSI(X,Z), then |Enter PSI(X,Z), Enter

PSI returns
PSl(X,2). Enter

X and use § to
get dPSI(X,2).

PSI returns
PSl(X,Z). Enter
X and use DERIV

to get
dPsI(X,2).

X, and use Y to get
dPsI(X,2).

then X, and use
DERIV to get
dPsI(X,2).

1
Enter ﬂ_X (PSl(X,Z))

and EVAL or EXPAND to
get dPSI(X,2).

DERIV(PS(X,2),X)
and EVAL or EXPAND to
get dPPSI(X,2).

Volume 1, 2-102

Basic Calculus with the HP49G - Volume 1 - Part 2

Function

Enter arguments,
then use Function,
and then |

Enter arguments,
then use Function,
and then DERIV

Algebraic object
Function(X,Y4) then

X, then

Algebraic object
Function(X, %)
then X, then DERIV

ﬂlx (Function(X%4))

then EXPAND or EVAL

DERIV(Function(X,%),X),
then EXPAND or EVAL

Psi X, and then PSi | X, and then PSi [Enter Psi(X), then X, |Enter Psi(X), then il b (X) Enter
returns PSi(X). returns PSi(X). and use § to get X, and use DERIV to Enter ﬂ_x(=) il DERlV(PSi(X),X) and
Enter X and use [Enter X and use dJPSl(X)- get dJPS'(X)- EVAL or EXPAND to get |EVAL or EXPAND to get
1 to get DERIV to get dPsi(X). dPsi(X).
dPsi(X). dPsi(X).
RE In real mode In real mode enter [In real mode enter In real mode enter In real mode enter In real mode enter
enter X + X%, [X +X*%, then RE(X +X? >1'), then RE(X +X? >1'), then | T (RE(X v >1.)) DERIV (RE(X + X?), X)
tXhenERtE t)(z getd EE toxget ()j(X and use to get X and use DERIV to | TX and then EVAL or EXPAND
. Enter X an nter X and use h 2 d then EVAL 1. I
use ﬂ to get 1 DERIV to get 1 d]RE(X + X2 >1) . get leE(X + X >1) ’ Z;PANeDnto get o 0 get n c%m(p eX())
In complex mode |In complex mode In complex mode enter [N complex mode 2 mode enter — (RE(Z
enter Z, then enter Z, then RE RE(Z)‘ then Z and |enter RE(Z), then d]RE(X X >1). n dth EVILZ EXPAND
and then or
RE to get to get RE(Z)- use Y to get dRE(Z). [£ and use DERIV to c%mplex mode enter to et d]RE(Z)
RE(Z)- Enter Z [gnter Z and use get dRE(Z). s (RE(Z)) R . '
and use § to get |DERIV to get |4
dRE(Z). dRE(Z). EVAL or EXPAND to get
dRE(Z).
RND [X, 2 andthen [X, 2 and then enter RND(X,2), Enter RND(X,2), 1 Enter
RND returns |RND returns | ghen X and use 9 to |then X, and use EfiE ﬂ—x(RND(X’Z)) DERIV(RND(X,2),X)
RND(X,2.). |[RND(X,2.). get dRND(X,2). [DERIV to get and EVAL or EXPAND to |and EVAL or EXPAND to
Enter X and use |Enter X and use d]RND(X,Z). get d]RND(X,Z)_ get d]RND(X,Z_)_
9 to get DERIV to get
dRND(X,2.). [dRND(X,2.).
R® D |X, and then X, and then Enter R ® D(X), Enter R ® D(X), T (R ® D(X)) Enter
R® D returns |R® D returns | ynon X and use 1 to |then X, and use Enter X DERlV(R ® D(X),X)
R® D(X). R® D(X). Enter | oo dR® D(X). |DERIV to get and EXPAND or EVAL to |and EXPAND or EVAL to
Enter X and use | X and use DERIV dR® D(X). get AR ® D(X)_ get AR® D(X)_
9 to get to get
dR® D(X). |dR® D(X).

Volume 1, 2-103

Basic Calculus with the HP49G - Volume 1 - Part

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object i = ion(X Y. DERlV(FUHCtiOY(X,l/4),X),
then use Function, | then use Function, | Function(X,¥) then| Function(X,%4) | qx (Function(X,%)) |~ en expan or EvaL
and then and then DERIV X, then § then X, then DERIV | then EXPAND or EVAL
R® I |R® | works R ® | works only |Enter R ® I(X), then |Enter R ® |(X), . l (R ® I(X)) Enter
only with integer |with integer X, anduse Y toget |then X, and use nter X DERIV(R ® I(X),X)
arguments. arguments. dR® I(X). DERIV to get and EVAL or EXPAND to | and EVAL or EXPAND to
dR® I(X). get AR® [(X). get dAR® [(X).
SIDENS| X, and then X, and then Enter SIDENS{X), Enter SIDENS{X), Enter Enter
SIDENS SIDENS returns | then X, and use § to |then X, and use hl (SIDENSX)) and DERIV(SIDENSX),X)
returns Sl DENS{X). get d1S| DENS(X) . | DERIV to get X and EVAL or EXPAND to
SIDENS{\X)- Enter X and use d]SlDENS(X) ; EVAL or EXPAND to get |get d]SlDENS(X) :
Enter X and use |DERIV to get d]SlDENS(X) .
T to get dISIDENYX).
dISIDENSX).
TCHEBYCHEFF| 2 and then 2 and then Enter Enter Enter Enter
TCHEBYCHEFF | TCHEBYCHEFF | TCHEBYCHEFF(2), | TCHEBYCHEFF(2), | 1 oy iepycerr(2) |DERIV(TCHEBYCHERRZ)X)
returns 2xX° - 1 [returns 2xX*- 1. |then X, and use Y to [then X, and use ™ and EVAL to get 2 X2 XX .
Enter X and use |Enter X and use |get 2X2XX. DERIV to get 2 X2 XX .[and EVAL or EXPAND to |ExpAND returns 4 XX .
9 to get 2>X2 XX .| DERIV to get get 0.
2X2 XX ..
TDELTA | X, Y,andthen |[X, Y, and then [Enter Enter Enter Enter
TDELTA TDELTA DERIV(TDELTA(X,Y),X
returns| TDELTA(X,Y), then| TDELTA(X,Y), | 1. (TDELTA(X,Y) ((X.Y)X)
returns TDELTA(X,Y). | X, and use ¥ toget |then X , and use X and EVAL or EXPAND to
TDELTA(X’Y) -|Enter X and use d1TDELTA(X,Y). DERIV to get and EVAL or EXPAND to [get leDELTA(X,Y)_
Enter X and use |DENV to get d1TDELTA(X,Y). [get d1TDELTA(X,Y).
1 to get d1TDELTA(X,Y).
d1TDELTA(X,Y).
TRNC | X, 2,andthen |X, 2,andthen |Enter TRNC(X,Z) . |Enter TRNC(X,Z) . | Enter Enter
TRNC returns | TRNC returns | hon X, and use to |then X , and use 1 DERIV(TRNC(X, 2),X)

TRNC(X,2.).
Enter X and use
i to get
d1TRNC(X,2.).

TRNC(X,2.).
Enter X and use

DERIV to get
d1TRNC(X,2.).

get d1ITRNC(X,2).

DERIV to get
d1TRNC(X,2).

= (TRNC(X,2)) and

EVAL or EXPAND to get
d1TRNC(X,2).

and EVAL or EXPAND to
get d1ITRNC(X,2.).

Volume 1, 2-104

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments, | Enter arguments, Algebraic object Algebraic object il = i (X 1/) DERIV(Functior(X,l/A),X),
then use Function,| then use Function, Function(X,1/4) then Function(X,1/4) ﬂ_X (UnclioniA,7a) then EXPAND or EVAL
and then | and then DERIV X, then I then X . then DERIV | then EXPAND or EVAL

UBASE |In the command [In the command In the command line In the command line |[In the command line In the command line enter
line enter line enter enter enter enter DERIV(UBASEX*2_cm®))
X2 _cm? and | X2®_cm? and |UBASHX?x1_cm?), |[UBASE(X*4_cm?), l(UBASE(X2 x_cm?)) [and EVAL or EXPAND to
use UBASE to |use UBASE to |[then X, and use Y to [then X, and use ™ get leBASE(X2 >¢_cm2)_
get get get DERIV to get and EVAL or EXPAND to
UBASHX?x1_cm?). | UBASHX?xL_cm?). | dUBASHX? % cm? d:UBASEEJX2 X _cm?) |9et

#XE¢_cm) EX®_om) EX*_cm?).) dUBASE(X® ®_cm?).

Enter X and use |Enter X and use
9 to get DERIV to get
dUBASE(X* 1_cm?). | dUBASE(X’ 2_cm?).

UVAL |[in the command In the command In the command line In the command line |In the command line In the command line enter
line enter line enter enter enter enter DERIV(UVALX * 2_cm?)x)
X®%_cm? and | X*_cm? and UVAL(X2 ><l_cm2), UVAL(X*x1_cm?), %(UVAL(XZ x_cm?)) |and EVAL or EXPAND to
use UVAL to get|use UVAL to get et dUVAL(X2x_ cnm?).

A 9 A 9°t |then X, and use { to |then X, and use and EVAL or EXPAND to | ° (**2_ o)
UVAL(X?>d_cn?) [UVAL(X24_cn??) . get DERIV to get qot
Enter X and use [Enter X and use d]UVAL(XZ >§|__sz)_ leVAL(X2 A sz). d1JVAL(X2 . sz)_
9 to get DERIV to get -
d1UVAL(X® 2_ cm’). | dIUVAL(X* 2_),

XOR X, Y,andthen | X, Y,andthen |Enter X XOR Y, |Enter X XOR Y, |Enter Enter
XOR returns | XOR returns then X, and use Y to |then X, and use q (X XOR V) DERIV(X XOR Y,X)
Y XOR X. |Y XOR X. |get leOR(Y,X). DERIV to get X and EVAL or EXPAND to
Enter X and use |Enter X and use leOR(Y,X). and EVAL or EXPAND to |get leOR(Y,X)_

9 to get DERIV to get get leOR(Y,X).
dIXOR(Y,X). [dIXOR(Y,X).

XPON |[X, and then X, and then enter XPON(X), [Enter XPON(X), 1 Enter
XPON returns | XPON returns Enter _(XPON(X))

then X, and use Y| to |then X, and use X DER|V(XPON(X),X)
XPON(X). XPON(X) . Enter get dIXPON(X). DERIV to get and EVAL or EXPAND to [and EVAL or EXPAND to
Enter X and use |X and use DERIV dIXPON(X). get d1XPON(X). get d1IXPON(X).

9 to get
dIXPON(X).

to get
dIXPON(X).

Volume 1, 2-105

Basic Calculus with the HP49G - Volume 1 - Part 2

Function | Enter arguments,| Enter arguments, Algebraic object Algebraic object i = ion(X 1. DERlV(FUﬂCtiOY(X,l/4),X),
then use Function,| then use Function, Function(x,1/4) then Function(X,1/4) ﬂ_X (unCtlon(' 4)) then EXPAND or EVAL
and then | and then DERIV X, then | then X . then DERIV | then EXPAND or EVAL
ZFACTOR | X, Y ,and then |X, Y, and then |Enter Enter Enter Enter

ZFACTOR ZFACTOR ZFACTOR(X,Y), |ZFACTOR(X,Y), | T (ZFACTOR(X.Y)) DERIV(ZFACTOR(X,Y),X)
returns returns then X, and use Y to |then X, and use X ’ and EVAL or EXPAND to
ZFACTOR(X,Y). [ZFACTOR(X,Y). get DERIV to get and EVAL or EXPAND to |get dIZZFACTOR (X, Y).
Enter X and use [Enter X and use dlZFACTOR(X,Y). dlZFACTOR(X,Y). get
I to get DERIV to get d1ZFACTOR (X,Y).
d1ZFACTOR(X,Y).| d1ZFACTOR(X,Y).

| Y. {Y 3x}, |Y.{Y 3xX}. |enter Y|, .4 then X, [Enter Y|, _. . then Enter i (Yl) | e
and then | and then | returns|and use to get 3. X, and use DERIV to qx e DERIV(YIYz3>9(1X) and
returns 3 XX. 3 XX . Enter X and get 3. EVAL or EXPAND to get |EyAL or EXPAND to get
Enter X and use |use DERIV to get 3 dl| (Y,{ Y 3 XX}) 3
9 to get 3. :

£ X, Y,and then |[X, Y, and then £|Enter X £ Y, then X,|Enter X £ Y, then il Enter
£ returns returns X £Y. [anduse to get X, and use DERIV to |ENter ﬂ_X (X £ Y) and DERIV(X £ Y,X) and
XdE Y ;ntter >E EE;QI{/?[(a”‘: use |d1£(X,Y). get d1£(X,Y). EXPAND or EVAL to get |EXPAND or EVAL to get
and use | to ge o ge d1£ (X.Y).
d1£(X,Y). d1£(X,Y). d1£(X.Y). (x.¥)

3 X, Y,and then | X, Y, and then 3 |Enter X 3 Y, then X, |Enter X 3 Y, then il 5 Enter
3 returns returns X 3 Y. |anduse Y to get X, and use DERIV to |ENter ﬂ_X (X Y) and DERIV(X e Y,X) and
X; Y .Entter): Er;tRel‘\r/i(an(i use dis (X,Y) . get dis (X,Y) . EXPAND or EVAL to get EXPAND or EVAL to get
and use | to ge 0 ge 3 13 (X,Y).
d13 (X,Y). d13 (X,Y). d1® (X.Y). L5 (5

1 X, Y,andthen [X, Y,andthen?® |Enter X1 Y, then X,|Enter X1 Y, then il 1 Enter
1 returns returns X1 Y. [anduse Y to get X, and use DERIV to |ENter ﬂ_X (X Y) and DERIV(X 1 Y,X) and
Xdl Y. Entter >E E'gfl{/i(anctzl use (d1t (X’Y)- get d1* (X,Y). EXPAND or EVAL to get |EXPAND or EVAL to get
and use | to ge 0 ge 1 dit (X,Y).
d1t (X,Y). dit (X,Y). dit (XY). (x.v)

Volume 1, 2—106

defined derivative because the HP49G can't find the derivative in
any syntax. If the cell is yellow, then the HP49G can find the
derivative but only using some particular syntax. In such cases

you can both make a user defined derivative or use always the

particular syntax. The cells coloured green in the same row as the
function will show you what the syntax is that you can use to find
the derivative. Some times it can get tricky to make the user
defined derivative, aswe have seen in the case of | and GAMMA .

The tables contain some things that are quite surprising, so when
you have time you might want to take alook at them. Mama mia!

They were more than | suspected. But I'm through at last, so that
we can continue with some more pleasant things. We are going to
take alook at some parametric and polar plots on the HP49G, and
see what we can do with the stuff we have covered in this part.

We start with the question:
Can some body in universe,
be it a planet, satellite,
comet, or even a stone, be
in noncircular, non-elliptic
orbit? Before you answer,
think again about our built-
in pattern recognition
machine. We look at the
sky, we see circular
motions, we develop
astronomy based on circular
(and dliptical) motion. And
SO we project "circular” and

K
Satelite

Planet

Star

"eliptical" motions to all bodies in the universe. But let's make a
simple example. A planet movesin circular orbit around a start and a
satellitein circular orbit around the planet. What will the motion of the
satellite look like, seen from some ET that sits above the plain of the
ecliptic? In other words, can we give the parametric or polar equations
of the motion of the satellite, having the sun as the origin of our
coordinates system? Let's try. We assume that the planet moves
around the star in distance R from the star and with angular velocity

W. The satellite moves around the planet in distance d from the planet

y:

Basic Calculus with the HP49G - Volume 1 - Part 2

R >sin(W>t) + d xsin(w xt)

r d/
] Ewx
Y =Rsin(Wx) =
F =Wx
X =R >cos(Wx)

x =R >cos(Wst) + d>cos(w %)

and with angular velocity w. The parametric representation of the planet
coordinatesis:

X =R >cos(Wx)
Y = Rsin(Wx)

No need to plot that, it is a circle. The parametric representation of the
satellite coordinates (having the star as the origin of the coordinates
system) is:

x =R >cos(W»t) + d>cos(w)
y =Rosin(Wx) +dxsin(w %)

What kind of curveisthat? If we assign some valuesto thevariablesR
W, d, and w, we can make a parametric plot with the parameter t. For
the sake of simplicity we store 1. in R, making thus the distance from
the star to the planet to our distance unit in space. The distance d from
the satellite to the planet then less than 1. Store .1 in d. Again for
simplicity we store 1. in W, making the angular velocity of the planet to
our angular velocity unit in space. (Y ou get the character W by pressing

Volume 1, 2-107

ELFHA] and then[T 4 - EZW).) The angular velocity of the satellite on
Its motion around the planet is in general greater than the angular
velocity of the motion of the planet around the sun. Store 5. in w.
(The character w isELFHA, [F 4 and thenEE¥].) We are going to
make a parametric plot. Go to the PLOT SETUP screen and select
plot type Parametric . Enter

R >COS(W>t) +d>COS(w) + iR >SIN(W>t) + d>SIN(w t)) in
the input field EQ:. Enter t astheindependent variable (the
screen, enter H- View: from - 3 to 3, and V - View: from - 1.5 to
1.5. Enter Indep Low: 0., and High 6.28. Also enter Step: 1
_Pixels. Press

Sar3=] and then

P49G plot the orbit of ' ' :

the satellite around the +

star. Wow! Almost a 1

square! Erase the plot,

redraw. Wow?2! Now it

Is even more like a

to add the orbit of the A/‘\

planet in the same plot. A :

you are in the equations

catalogue screen. Press

parametric equation of the planet motion. The HP49G switchesto the
EQW and enters automatically XY1t) =. Delete the unfinished
Sar%1=f and then|[EgERY. Because of the limited resolution we can't
see very well which the orbit of the planet and which the orbit of the

parameter). Now, in the PLOT WINDOW - PARAMETRIC
and activate the option

STl and let the , / \

store .05 ind and

sgquare! It is interesting

Press -[FT]. Now ' k ;/

B8], to add the

expression XY {t) = and enter R >COS(W>t) +i>R >SIN(W>t). Press
satelliteis. We can of course zoom-in to focus on some particular part

Basic Calculus with the HP49G - Volume 1 - Part 2

of the orbits, but let's go
the opposite way and P
enlarge the PICT itself.
The PICT isper default

131 pixels wide and 64 .
pixels high, so let's double
its dimensions. Go to the
stack, enter #262d and

#128d, and press|[Z¥]

to resize it to 262 pixels wide and 128 pixels high. Redraw the plot.
While the HP49G is plotting, you only see the central part of the plot.

Wait until it finishes and then press a1 andEl to activate scroll mode.
In thismode all other graphics functions are deactivated and you can use
the arrow keys to scroll around. When you had enough scrolling, press

again and [] to leave scroll mode and return to the normal
graphics environment. Here you can also use the arrow keys to move

around, but
/Ecu:um area

the graphics
cursor has
to reach the
edges of the
screen

before the

scrolling i g
starts. Let's

zoom-in

now to get :

an even I\\ /

better E

impression ., A

of what's

going on. Use the areaindicated in the above picture to zoom in and wait
until the plot is done. Move around using the arrow keys to get a first
overall impression of the orbits. Though the orbit of the satellite around
the star isamost a square, its orbit around the planet is a perfect circle.
The picture on the next side demonstrates this. The two orbits are
connected with red line segments, which represent the distance d of the
Volume 1, 2-108

Satellite orbit

its default dimensions.
7 Store.1lind and 8. in
- A, w. Redraw the orbits. 1
Now you have a six- :
o, fold flower (satellite ' i
RV orbit) and a circle
(planet orbit). Return to T
how the satellite moves
around the planet,
while the planet moves
around the star. b
We will try now to | |
satellite to apolar form.
Enter the list
{R W d w} and

the stack, store .3 ind
0
“a
l convert the parametric
d
- press to delete the variables with numeric values. Press[VAF]

Basic Calculus with the HP49G - Volume 1 - Part 2
and redraw to see better
form of the orbit of the T
to get the variables menu, and press to put the list of the two

T parametric expressions on the stack. Press to extract thefirst
planet to the orbit at several times. At the right part of the picture the €xpression for the satellite orbit

relative positions of the planet and the satellite are shown again, to R >COS(Wst) +d>COS(w) +i{R>SIN(W>t) +d>SIN(w 5t))

emphasise on the circular motion of the satellite around the planet. The \ye could use the function ABS to get the absolute value of the above
small circle represents the planet, while the red line represents the harametric expression, but then we should add all variables contained in
distance d. The satellite sits on the free end of the red line segments. tha expression to REALASSUME, because otherwise the HP49G will
If yqy{rrra?gltnﬁsttl ngon tlhe plak?_?t and Wg‘tﬁ:" ng|th%tsat[\|e”|t2{r¥e|ou W'!![assume that they are complex, and will return a result containing for
See thal 1t Nas a crcuiar orbit around me pranet. IMOnetetess 1t - o ample RE(R), IM(R) , and so on. Instead of using ABS we find the
moves in an almost square orbit around the star. Let's try some absolute value "by hand". Switch to real mode (that's important). Press

add!tlonal pl O'[S.WI'[h ot‘her valuesfor d and w. First of all, whlleyou ERTEF] to make a.copy of the parametric expression. Then press@H to
are in the graphics environment, press W then press twice[lxT] get the real part of the expresson, and square it, to get

to go to the third page of the zoom menu, and then press E{R3s1) to
reset the plot to the view ranges before we zoomed in. Then go to the SQ(R)COS(Wt) +dxCOS(w ><t)) : Press|E| to swap stack levels 1

stack, enter #131d and #64d and press &I to bring the PICT to a@nd 2. Press [l to get the imaginary part, and squaret, to get

Volume 1, 2-109

SQ(R*SIN(W>t) +d>SIN(w >t)) . Press|[+] to add two squares and
then [E]ANE8) to transform thisto

R? +d? +2>d>R >COS((w - W) x). Press[¥¥ | to get the square root
of the result. The expression:

JRE +d? +250b>R >COS((w - W) %)

isthe distance from the coordinates origin (star) to the satellite. If you
storethisin EQ, restore the same values like before for variablesR
W, d and w, select plot type Polar, and redraw, you are going to
get the same satellite orbit, like in the examples above. Notice that this
polar representation doesn't depend on the angle a of the satellitein
the coordinates system, in which the star is the origin. It depends on
the angle difference between the angle | of the satellitein the
coordinates system in which the planet isthe origin, and the angle F
of the planet in the coordinates system in which the star is the origin.

If you want to plot \[R® +d” +2 >R >COS((w - W) <) asapolar
plot, then you must have t as the independent variable.

Basic Calculus with the HP49G - Volume 1 - Part 2

We have seen that for some particular values of the variablesR , W, d
and w, the satellite orbit looks ailmost like a square. Are there any other
particular values of those variables, that make the orbit ook like another
polygon? We will examine this question in the next parts of this
marathon, when we will have covered the additional stuff that is
necessary.

Before closing this part, we do another example that shows what
complicated curves can be generated by using very simple mechanisms.
Consider the simple machine on the bottom of the next page. The
(orange metal) arm is connected with the wheel and goes through the
metal ring in a distance d from the whedl. Thering itself can freely
rotate, but it doesn't move along the x axis. When the wheel spins with
angular velocity w, what will be the curve that the end of the (orange
metal) arm will create? In order to answer this (and plot this) we must
find some analytic form of the coordinates of the end of the arm, or take
the numeric way. In this case it is easy to follow the analytic way. We
need to find the angle a, because if we haveit, then we can useit to
find the lengths of the projections of the arm on the x and on the 'y axis.
This angle can be found by using the formula:

_ & Rxsin(wx) 9
a= atan; !
éd +R - Rxcos(w) o

Having this angle we can find the x coordinate of the end of the metal
arm. Enter:

-)
ATANE R>SINwt) ©
ed+R - R>COS(w)z

and store the expresson in variable a.Now enter
R >COS(w %) +1>COS(a). Inthe EQW select the sub expression

1>COS(a) and expand. Press[EFTER] to put the expression for the x
coordinate on the stack. The expressionis:

Volume 1, 2-110

R >COS(w %) +

Basic Calculus with the HP49G - Volume 1 - Part 2

. X

(R >xCOS(W)* - (2:R" +2>chR?)>COSW) +R* +2>05R® + 5R2|xSIN(w)” +
RHCOS(wat)' - (4 R*+4>d5R?)>COS(W %)’ + (6>R* +12xd R + 602 R?) >COS(W %)° -
(4R* +12>0R® +12>d7 R +4 >t 5R)COS(Wt) + R +4>0 3R + 6>d? XR2 + 430 R +d*

NS

R?>SIN(w X)° +R? >COS(W>t)* - (2R? +2xd>R)xCOS(W)+ 25R? + 2> R +d?

Alone the huge sub expression under the sguare root is reason for
making us to lose any interest to handle the problem. It wouldn't fit
the width of this page written in one line. But the HP49G is a much
more powerful companion than it might look. Press[WF] to take the
whole expression in the EQW. Use the arrow keys to select the sub
expression under the square root. Press Eu]ANE# and thenE VAL,
The HP49G converts this sub expression to:

AR2 XSIN(W %)* +R2 >COS(W %)° -
(R>coS(wt)- (R+d))’ xg(z R +2>dR) >COS(w 1) +
R” +2xdR +d° z

and this brings our hopes back that we will somehow
cometo an end ;-). Whilein the EQW select the term

R ssin(w %)

-
N

R>cos(wx) Ios(a

R? xSIN(w)°, press™ and then[®*] to extend the selection to
R? xSIN(w %)*. PressIH to convert the selection to R . Using the

same technique select the sub expression 2>XR* + 2 xd xR and collect it to
(R + d) R 2. Select the sub expression R? + 2 xd >R +d* and collect it

to R+ d)2 . Now we move on to the denominator. Use the arrow keys
to select the sub expression R? xSIN(w %) + R* xCOS(w #)° of the

I~
N

R >cos(w X
(w>) R - Rxcos(w %)

Volume 1, 2-111

Basic Calculus with the HP49G - Volume 1 - Part 2

denominator and press again to convertit to R*. Select the R >sin(w st)

expression 2>R* +2xd>R and collectit to (R + d) R ®. Select the

expression R* +2xd>3R +d” of the denominator and collect it to

(R + d)*. PressERTEF] to put the whole expression on the stack. R \\

Now it looks much better: a li
(R>cOS(w>t)- (R+d)) x K

" (R - R+d)R2>COS(w) +(R+d)’)

RACOSW) +— e R) R2-CoSwR) + R+ d)

Storethisin variable x (small letter).

2 2 2 2 A
Now we are going to find an expression for the coordinate y . Enter , ZR >SIN(W >¢) R >COS(W){) (,)
R>SIN(w %) - IxSIN(a). Press[W] to take the expression in the (R>cos(wx)- (R+d)) x (2 R?+2>d >R) >COS(w %) +
EQW. In the EQW select the sub expression - 1>SIN(a) and expand. R? + 23R + o 5

Press [ENTEF] to put the expression for they coordinate on the stack.
The expressionis While in the EQW sdect the sub expression

ROSIN(w %) + R? xSIN(w 5t)?+R? xSIN(w %)°, and pressEIH
. 2
R*>COS(Wxt) - (2R* +2>dR) COS(W>t) +R* +2xd R+ 3R2)>SIN(w 1)’ + to convert the selection to R*. Select the sub
expression 2>R° +2xd>R and collect it to

(R + d) R 2. Select the sub expression
(45R* +12>5R® +125 5R? +4xd”R)XCOS(Wt) +R* + 4xR’ + 6>dR” +4xd R+d' R2 4 2 x5R +d? and collect it to R+d)’.

ROSIN(W) x [R* >COS(w)" - (45R* +4xd>R*)>COS(w x)° +(6>R* +12>d>R* +6 0% R?)xCOS(w %) -

(RPCOS(Wot)- (R° +d R®))SIN(W %) - R*XCOS(w)" - (3R> +3 xR?)XCOS(w) + Select the whole denominator and collect to get
(35R°+ BxdxR? + 357 R)>COS(W 1) - R +3>cR2+3 >t R +0f°) the sub expression:

which is again a monster that the HP49G can tame. select the whole , 2 o 2

sub expression under the square root and collect it. The HP49G fights aR? >SIN(w xt)” +R? >COS(w¢)" - 0

bravely and manages to collect the sub monster, errh, | mean sub :

(RXCOS(WH)- (R+)2 R? + 2> R)>COS(w) +
¢R? +2 >xd>R +d? 17}
Volume 1, 2-112

expression to

Press to convert R xSIN(w xt)*+R? xSIN(w xt)* to R?. Then
collect 2>R? +2xd>R to (R+d)’R 2, and R* +2>xd>R +d* to

(R + d)*. The expression for the y coordinate of the end of the metal

arm looks now aso much better. We still can't tell that it is an "easy"
expression, but comparing it to what we started with, it is ssmpler:

(RxcOs(wx)- (R +d))"
XROSIN(W xt) x

(R*- R+d)R>2>coS(wt)+ R +d))
AR>COS(wt)- (R +d))x o
E(R2 - (R+d)>R>Q>cos(w>¢)+(R+d)2);

Storeitiny (small letter).

RO>SIN(w %) +

Before we do the plot for this parametric function, some words about
the math capabilities of the HP49G. As you saw the expressions we
deal with in this example are way not "easy". Nonethel ess the HP49G
isagreat help. Consider for example how long it would take to do the
same by hand. It is not only a matter "knowing how to" but also a
matter of mistakes that one could do, for example because of
forgetting apower, and the like. The calculator is no substitute for our
thinking (fortunately) but rather a help for freeing us from the "dirty
work™" and letting us concentrate on the important things. Also notice
that we didn't simply said, "HP49G think for me and simplify this
expression”. We considered the expressions, we decided what would
be best to do, and tried it out. Of course, often our decision will not
bring any advantages when it comes to simplifications. But with the
HP49G this is not bad at al. Quite the contrary, it is very good.
Because this way, after a certain amount of experience, we start
"knowing" what some particular operation will give us, before we
carry it out. Not exactly each and every terms of the result, but rather
the overall shape of the result. Pattern recognition?

Curious as we are, we want to see what the above parametric function

Basic Calculus with the HP49G - Volume 1 - Part 2

lookslike. In order to plot it, we must store some valuesin the variables
R,d, l,andw. Storel. inR, 1.ind, 4. inl,and 1. inw. Inthe
variables menu, press B, enter i, pressfl, then <] and then[¥].
Store the resulting expression in EQ. Inthe PLOT SETUP screen,
set plot type Parametric, and set independent variable t. In the
PLOT WINDOW - PARAMETRIC screen, set H- View: from

0.to6. andV - View: from-1.51t01.5. Set Indep Low: toO..
When the input field High isselected, enter the sequence

2 p * ® NUM, toenter the numeric approximation of 2> .
Finally, enter the sequence _

2 p * 50 / ® NUM ¢

in the input field Step:. /_\

plot but now with a much \/
bigger I. Store 18. in |, set

H- View: from 0. to 34.

and V - View: from - 8.5 t0 8.5., and erase and draw again. Thistime
you get abanana. What arethat curvesbetween | = 4. and | = 18.? Let's
inside the above

limits for a step of

2., thatisfor | = 4.,

|=6.,upto I=18..

Enter the program:

Press [S:T%1a and then
see. We will do a

. You get the "drop"
at theright. Let'stry another |
small program that
draws the curves

<<

ERASE DRAX
4. 18.
FOR 1
I “1° STO DRAW
2. STEP
>>

Volume 1, 2-113

Basic Calculus with the HP49G - Volume 1 - Part 2

Press EV&L to let

it run and watch
how the generated
curves change
shape as | gets
bigger and bigger.
When the program
finishes, press
[arrow-left] to go
the graphics
environment, turn
the HP49G 90° in
clockwise direction, and see how drops and bananas can be combine
to giveusapine.

This example of a parametric function shows aso that interesting
curves can be produced out of ssmple mechanisms. It would be a
good exercise to think about some "machines’, with connected wheels
and arms and axes and gear, and try to use the HP49G for plotting the
curves of some point of the moving parts of the machine. The
resulting parametric expressions are most of the time rather
"inconvenient” but with the brave HP49G on your side you will be
ableto defeat most of the monsters. But some of them, often the most
"easy looking", will prove very very "noncooperative'. Like
Trabakoulas said, "Pattern recognition can get quite dangerous, when
it comes to easy and difficult. Exact examination isfar better.”

Wefinish this part, and | think that it istime for me to go sleep about
one week. | see curves and lines instead of pines, which means that |
need agood old Lagavulin to return to reality. Take care and 'till next
time.

Parametric greetings,
Nick.

Volume 1, 2-114

Basic Calculus with the HP49G - Volume 1 - Part

Hoi z&mme!?

The last part of this marathon has been quite..., well, marathonial.
After that we will surely enjoy a part with much stuff to play with. As
Trabakoulas says, "Learning is best made in the game". So, while
other people are playing "how to be become of the master of the
world", weignore that totally uninteresting (and questionable) games,
and we play again, what we play best: How much maths is possible
on the HP49G?. From what we've seen until now, the answer to this
question is "much, much more than we could imagine considering
only the size of the machine. And who knows what is yet to come.

Until now we focused on functions of a single variable. But a
function can have more than one variables. Consider the function

f(u,v,w) , which depends on the variables u, v, and w. If we
consider any two of these variables, say v and w, as quantities, the
values of which we "hold" constant, then the function f(u,v,w) can

be considered as a function of a single variable, namely of u. We
"freeze" both v and w at some arbitrary values, and consider how the
function behaveswhen u varies. That means, we consider the partial

dependency of f(u,v,w) onvariable u. Then, the partial derivative
of f(u,v,w) for uis ﬂ—TrlfJ.Actuallythe"curly" Tisusedin
mathematics for such partial derivatives. The normal derivative is
denoted with "norma” d, i.e. % . But because the HP49G considers
any variable that doesn't depend on the differentiation variable as
constant, it uses only the symbol /. Let's do some examples.

Enter X° +7 X? xY + 3 XX XY° - 5xY°® and pressEMTEF] to make a
copy of this expression. Let's find the partial derivative for X . Enter
X and then press[d] to get 3xX* + Y %7 2 XX + 3 XY °. Expanding

2 Swiss "Hi everybody", pronounced "Hoi tsama", or something like that. The
letters of the alphabet are simply not enough to represent this singing language
accurately.

and let's find the
to get

this you get 3xXX*+14 XY XX +3xY° . Press
partial derivative for Y.Enter Y and press

7 XX +3xX x5 xY* - 56 xY°. Expand thisto get
7XX? +15xY* XX - 30 xY°. Asyou can see the HP49G has ordered the
powers of X indescending order. If you want to order for Y powers,
enter Y and press ETEREREEN to get - (30%Y° - 15X xY* - 7xX?). If
you don't like the minus sign in front of the whole expression, then
press FEEIELE, to get - (30 ><Y5) +15xX xY* + 7 xX?. If you want
ascending ordering, then set flag -114 and expand. The result is
- (30 XY - 15 XX XY * - 7><X2), that means in ascending order of
powers of X. If you now enter Y and press|s]3sizif]S=}§ again, then
you get 7xX*+15xY* xX- 30XY°, in which the powersof Y are
sorted in ascending order. The command EXPAND orders the powers
according to the flag -114. It prefers automatically the variable that is
lower in alphabetical order. That means, if you have an expression with
variables A and B, then it will try to order for A according to the state

of flag -114. The command REORDER alowsyou to select which
variable's powers will be used for ordering. Clear flag -114 now.

Let's do some more examples. Enter:

ax (=)

and make a copy of the expression because we will need it more than
EXPAND

once. If you press now, you will get
(Y2 + (3507 +3) %% + (35 +6x0) ¢ + Y* +3x7°) ™ . Press
|E| to bring the expression:

ax (=)

Volume 1, 3-1

Basic Calculus with the HP49G - Volume 1 - Part

on stack level 1, and make another copy of it. Now press E¥AL]. The
result this time is 3X(X +Y)* %™ +(X + Y)® xy x**. This shows

that EXPAND and EVAL are different things. They don't dways
return the same results when applied on algebraic expressions. The
last result demonstrates also another fact. Suppose that for some

reason you want to expand the factor 3XX +Y)* of theterm

3x(X +Y)*xe™, but leave the rest of the expression unchanged.
Interactively you would take the whole expression in the EQW, select

3xX +Y)? using the arrow keys, and expand it. But there is no built-
in programmable command for doing the same from a program. We
can't apply some command, like EXPAND or COLLECT, to a part
of an expression programmatically. One of the features | miss most on
the HP49G is exactly this. The next pages will demonstrate an
imperfect way to achieve this, which | nonetheless believe that it is
good enough for generation of idess.

Having the commands ® LST and ® ALG, itisnot difficult to
make programs that apply some commands to a part of an expression.
Let's examine these commands. With the expression
3X +Y)* 5™ +(X+Y) xv %™ on stack level 1, press
to get:

13 X Y + 27~ *EXP * X Y + 3 7~ Y
X Y * EXP * + b

Ly

Thefirst 7 list elements represent the expression 3XX +Y)* that we
want to expand. Make a copy of the list. Enter 1, then 7, and press
EXE to createthesublist {3 X Y + 2 ~ *} Now press

=W to convert thelist to 3(X +Y)?. Expand this expression to

get 3xX” +6xXX XY +3xY? and press E=IEg] to convert it to the list
to {3 X 2r~* 6 Y * X * + 3 Y 2r* 4},
Preslel to bring the big list to stack level 1. Now we will create the

sub list of all elementsthat we didn't use, i.e elements 8 to last. Enter 8
and press [BPIEE] and then EEE, to get 25. . Press|ElIE] to get

X Yy *EXP * XY + 372~ Y * XY * EXP * +}.
Press [+] to add the the expanded sub expression to the list on stack level
1 Now AR to get
(337 + 62X XY +3x2)se™ + (X +Y)’

In general the method looks like this:
Step 1: Convert the algebraic object to itsequivalent RPL list using
thecommand ® LST.

‘arbitraryAlgebraic’ \

{ell el, Yo el el, % el el el 1/4}

n+m n+m+1 n+m+1

Step 2: Create the sub list that contains elements 1 up to n-1, where

n is the first element that belongs to the sub expression
which we want to manipulate.

{ell eI2 1/4 eIn eIn+l]/4 eIn+m eIn+m+l eIn+m+1 1/4}

“——

1 Ya n-
{el, el, ¥4 el }

Step 3: Create the sub list that contains elements n up to n+m,
where n is the first element and n+m is the last element of

the sub expression which we want to manipulate.

Volume 1, 3-2

Basic Calculus with the HP49G - Volume 1 - Part

{el, e, v2 el el, Y el, el el A

v

el el., % el,}

n n+m n+m+1 n+m+1

'‘ManipulatedAlgebraicSubExpression’

SA

{NewEl, NewEl, ¥ }

Add {NewEl NewEl, ¥ } tothelist

{el, e, vi el }.

Yo el } {NewE|, NewEl, ¥ }

: Step 7:
Step 4: Use ® ALG toconvertthelist{el, el. % el,.}
to its corresponding algebraic object.
1 {el el
{eln eIn+1 /4 e|n+m}\ 1 2
‘algebraicSubExpressionToBeManipulated
{ell el,
Step 5: Apply the agebraic manipulation (EXPAND,
COLLECT, etc.) to
'algebraicSubExpressionToBeManipulated.
‘algebraicSubExpressionToBeManipulated {e|1 el,
‘ManipulatedAlgebraicSubExpression’
Step 6: Convert '‘ManipulatedAlgebraicSubExpression' to Step 9:

thelist {newEl newEel, ¥ } with® LST.

v

Y, el , NewElL NewEl vi }

Create the sub list that contains elements n+m+1 up to the
last, where n+m is the last element that belongs to the sub
expression which we want to manipul ate.

Ya el el Yo el,, el l/4}

n+m+1 el

v

{e|n+ m+1 eIn+m+2 1/4 }

n+1 n+m+1

Add the sub list {el, ., el.. . %% } tothelist
{el, el, ¥4 el , NewElL NewEl ¥i }.
Volume 1, 3-3

Basic Calculus with the HP49G - Volume 1 - Part

{el, el, v el,, NewEL NewE, ¥ }

{e|n+ mii €hime Y }

v

{el, el, ¥4 el , NewE|[NewEl, ¥ el

el Ya }

n+m+l n+m+2

Step 10: Use ® ALG to convert thelast list to an agebraic

object.

{el, el, ¥4 el., NewEL NewEL ¥ €l.ni €him Y%)

v

'‘NewAlgebraicWithManipulatedAgebraicSubExpression'

Thisisindeed avery easy thing to program. We will make a program
that takes an algebraic object from stack level 2, and alist from stack
level 1. The list contains will have three items. The first item is the
manipulation that we want to apply to a sub expression of the
algebraic object. It can be acommand, like EXPAND, COLLECT,

etc. But it can also be function, like SIN, COS, etc. It can beeven a
program, provided that the program takes exactly one algebraic object
as input and returns exactly one algebraic as output. The second item
IS the position of the first RPL list element that belongs to the sub
expression that we want to manipulate. The third item is the position
of the last RPL list element that belongs to the sub expression that we
want to manipulate. Here isthe program listing:

<<
SWAP ® LST
® specs expr
<<

expr 1 specs 2 GET @Create first sub list

1 - SUB
expr specs 2 GET
specs 3 GET SUB
® ALG specs HEAD
EVAL ® LST +
expr 3 GET 1 +
OVER SIZE SUB +
® ALG
>>
>>

@Create sub list of alg.
@to be manipulated.
@Apply command. Add to
@fFirst sub list.

@Create third sub list,
@add to the rest
@Convert to algebraic

This is the program APLAT (APpLy AT, name borrowed from
Mathematica). To use this program we must first see how we number
the elements of an algebraic expression, in order to be able to provide
the program with correct information. If you didn't drop the last result
of page 3-2, then stack level 1 must contain the expression

(337 +6xX XY +3xY2)se™ + (X +Y)* Y ™" Let's see how the

elements of this expression are numbered.
We start numbering at the first element
excluding parentheses, as parentheses are not
included in the el ements of the corresponding
RPL list. (This is a result of the RPL
method, which doesn't need any parentheses
a al) We count first the operands
(arguments) and then the functions that act
upon the operants. For example in the above

3xX?

expression, we start with 3xX°. Thetwo
number 1. The argument X? isitself an
® o
X and 2, which are combined by ~
5. The picture on the top of the right column illustrates this. That means,

arguments 3 and X* are combined by -

(multiplication). The argument 3 hasthe | |

expression, so we can't give it the number 2.

This expression contains the two arguments

(power). So, X isnumber 2, the power 2 is number 3, the power

function is number 4, and the multiplication of 3 with X* is number

when we want to somehow manipulate the sub expression 3xX*, we
Volume 1, 3-4

Basic Calculus with the HP49G - Volume 1 - Part

have to give the numbers 1 and 5 to our program.

The sub expression 3xX* +6xX xY +3xY? includes elements 1 to
17. Let' try our program. We will collect the sub expression

3xX” +6xXX XY +3xY? but will leave the rest unchanged. Since the
expression (33X? +6xX XY +3xY)xe™ + (X + Y)* xy " ison
stack level 1, we don't need to type it again. Enter the list
{COLLECT 1 17} and press[WRll. Theresultis

(X +Y)? 8% +(X+Y)® v %™ It worked!

But there are shadows on our way. The corresponding RPL list of an
algebraic object contains no parentheses, but the algebraic object itself
can contain parentheses. To understand the problem better we
consider a simple example. Enter the algebraic object A+B+C.
What problems can this smple expression bring? Well, set flag -53
(to let all parentheses be shown), press b1 and then[WF] to edit the
expression in the command line. The expression Is shown as
‘(A +B)+ C'. There are invisible parentheses in this ssimple object!!!
What does this mean for us? First of all, supposewe have A+B+C
and we want to do something with the sub expression B+ C. This
means that we should give the program APLAT the numbers 3 and
5, according to our numbering system. PressEMTEF] to put the
expression to the stack, and enter the list {EXPAND 3 5}. Press
LA to (try to) expand the sub expression B + C. Of coursein
this example you cant expand anything, but this is only for
demonstration purposes. The HP49G errors out with
Bad Argument Type andleaves'Invalid Expression on stack
level 1. What happened here? Press and then drop the list.
Now the object A +B +C must be back on stack level 1. Press
=d%Jll Theresultisthelis {A B + C +}.Elements3to5
build up thesub list {+ C +}, out of which the program APLAT
tried to make a sub expression. This list is of course not the
corresponding RPL list of the sub expression B + C. Can we build up
the sub expression B+ C out of the (current) algebraic object

A + B+ C?What numbers do we have to giveto APLAT to achieve
this? The answer is: The current inner structure of the algebraic object
A + B+ C makesthistask impossible. In redlity the object, asit is now,
is (A +B) +C. Inthis object the sub expression B+ C doesn't exist!!!
Don't confuse this with the well known (and almost spontaneous)
recognition of the patern (A+B)+C=A+(B+C),which
"automatically" implies that our object is equivalentto A + (B +C), in
which the sub expression B + C does exist. The calculator doesn't have

such "spontaneous' cognition capabilities. Before we go further take a
look at the following table:

Algebraic Object RPL List
(A+B)+C {A B + C +}
A+(B+C) {A B C + +}

Sub expression B+ C
Doesn't exist
Elements2to 4

Though the two objects (A +B)+C and A + (B + C) are mathematically
equivalent, for the HP49G they are different!!

In this example, if you expand the current version of A+B+C, the
calculator altersitsinner structurefrom (A +B)+C to A+ (B +C), i.e.

from{A B + C +}to{A B C + +}.PressZiZHM, then
E=1. and then[W], to see the object in theform A + (B + C) . Press
ENTEF] to put it back to the stack. Now of course you can enter the list
{EXPAND 2 4} and pressXJ¥AY. But now the sub expression

A + B has become unavailable for partial manipulations. And the big
problem is that there are ssmply too many internal rules that the HP49G
uses in order to decide which sub expressions to put in parentheses.
(And these rules are kept secret by the makers.) Wanting to make a
program that will run successfully in any possible case, is like wanting
to do reverse engineering on the whole CAS of the HP49G, and then
make a program that "knows" all rules and all possible way to rearrange
an expression. Thiswould be also similar to mapping all propertieslike
commutativity, associativity etc., to a single program... errrh, who's
gonnado that? ;-)

Volume 1, 3-5

Basic Calculus with the HP49G - Volume 1 - Part

From the above paragraphs we see that it is not so easy to specify a
mathematically valid sub expression of an expression on the HP49G.
And since there are no built in commands that can give us some
particular (mathematically valid) sub part of a given expression, |
think we have a magjor disadvantage. We will return to these fields
some day, in a specia marathon run, but for now we take a look at
three small programs that can bring us some light when we want to
know exactly, what the internal structure of an algebraic object looks
like.

First of al we make a program that
converts a given algebraic object to a
structured list. We continue using the
example A +B+C initstwo different
versions, (A+B)+C and A+ (B +C).
When the program is fed with
(A +B)+C, it should return the list

{{{a B 4 c +}},inwhichthesub

expression (A +B) (intheinvisible
parentheses) is put in a sub list, which
itself is element of another sub list that
contains the "rest”". But when the program
is fed with A + (B +C), it should return
thelist{{A {B C +} +}},inwhich
the sub expresson (B+C) (inthe
invisible parentheses) is put in a sub list, |
which itself is element of another sub list
that containsthe "rest". The structured list
that the program returns is one
representation of the algebraic tree that

builds up the algebraic object. Consider
the following code:

{{ia B 4 c +}}

<<
IF
DUP TYPE 9. ==
THEN
1. ®LIST
END
1.
<<
IF
DUP TYPE 9. ==
THEN
OBJ® SWAP 1.
ALG® TREE
END
>>
DOSUBS
>>

+ ® LIST

Thisis the program ALG ® TREE that comes with this document. It
takes one algebraic object from the stack and it returns its algebraic tree
list. Asyou can see it calls itself over and over again, until the whole
object has been processed. Let'stry it. Enter:

Y SSIN(X)* +a°Y- = xcos(X)?

and make one copy of this algebraic object. Now press RIS

Theresultisthelist:

{{{Y {x s 24+ {{vy {12} -} {{x cos} 2 4 % +}}

If you imagine all but the outermost brackets away, then you have the

Iist that the command ® LST would return. Press and then
=18 Y ou get the list:

{y X SIN2~»*Y 12/ - X COS 2 » * +}

Volume 1, 3-6

Basic Calculus with the HP49G - Volume 1 - Part

which indeed is equivalent to the treelist, up to additional structuring. The program TREE ® ALG can be easily made:
Thetree list, so to speak, includes the (invisible) parentheses that are
present to algebraic objects, while the RPL list is the command <<
sequence that produces exactly the same algebraic object. FLATTEN ® ALG
>>
Since we have a the program ALG ® TREE, weareinclinedto)
program the opposite, TREE ® ALG. If we could somehow flatten ~SOmetimes programs are easy ;-)
the tree list, we would get the RPL list of the algebraic object, which) ,
we can convert to an algebraic object using ® ALG. Herewe canuse With the agebraic expression:
the program FLATTEN again, which we made in the Complex

Numbers Marathon: Y>6|N(X)2 +§_ o)Cos(x)z

<<

1. CF
1.
<<

IF

on stack level 1, press FAEERAIE]SS] to get the algebraic tree list again.
Now, press |is]3=kF3Ke] to get the algebraic object out of the treelist.

Using the tree list we can introduce another numbering system for sub

THEEP TYPE S expressions. The first one that we used, was simply the range of
0BJ® DROP position numbersin the RPL list of an algebraic object. For example the
1. SF sub expression:
END
>> 1
DOSUBS Y - >
IF
1. FS? .
THEN of the algebraic object:
FLATTEN
END

>>

Y SIN(X)Y + & - 205cog(x)?
Y

As you can see the program FLATTEN is one of those that call . . : .
themselves until some condition (here: flag 1 is clear) is true. Press €@ be specified by therange 7...11 in the corresponding RPL list:

El and then[JENRESE], to convert the treelist to the RPL list. Now A x - A *
you can press R to get the original algebraic object: {y X siN 2 vi2 X COS 2 +

. The same sub expression can be specified by giving the position
% >6IN(X)2 LR 2 ><COS(X)2 numbers of the sub lists, sub sub lists, and so on, of the corresponding
e treelist. Thetreelist of the above expression was.

Volume 1, 3-7

Basic Calculus with the HP49G - Volume 1 - Part

{{{Y fix sy 24+ {{vy {12 4 -} {{x cos} 2 4 + +}}

In this list the sub expression: {{{Y {x sib 2 4« {{y {12 4 -} {{x cos} 2 4 +}}
First element of the

isthe 1st. element of the 2nd, [Ireelist k{{Y {{X SIN} 2 A} *} {{Y {12 4 } {{X cos} 2 A} *} +}

element of the 1st. element of [(the expression itself

the tree list. That means that
we can specify this sub

Siveson by g e SIS il (2) -} {x cosh 2 4
"coordinates list" {1 2 1. thetree i

If we put away the first
coordinate which is always 1

(i.e. the expression itself) First element of the
then we can specify the sub ?e(;torédelana}ttohfth {v 1t 2 } -}
expression with {2 1. tlrreelis?mm orthe

Programming the extraction
of sub expressons from
algebraic objectsisthen easy:

This is the program GETSUBEX that comes with this document. It

<<CF§EPTH PICK3 ALG® TREE HEAD takes an algebraic object and a list with the sequence of sub parts that
<< tarlege p[i’::t d1ept<h< terEeTe >> specifies the sub expression that we want. This list must not contain the
I FERR] first 1, whichisthe algebraic object itself. The program uses
DOSUBS ALG ® TREE to convert the algebraic object to atreelist. Then it takes
THEN the parts specified by the "coordinates list". If it fails because of wrong
DEPTH depth - 2 + DROPN part specification, it cleans up the stack and exits giving you a message
alg part Bad Part Specification . Else, you get the corresponding sub

"Bad Part Specification”™ DOERR
ELSE
IF DUP TYPE 5. ==

expression. In case the part specification specifies something different
than a sub expression (a function, a variable, etc.) you get the

THEN TREE® ALG corresponding object alone. (Not in an algebraic object). Let's giveit a
END try.
END _
>> Enter again:

>>

Volume 1, 3-8

Basic Calculus with the HP49G - Volume 1 - Part

1=y to get:

The program GETSUBEX can be used to implement partial algebraic
object manipulation.

<<

® alg manipart
<<

alg DUP

manipart 2. GET
GETSUBEX DUP
manipart HEAD EVAL
2. ®vLisT

- MATCH DROP
>>
>>

This is the program APLSUBEX. It takes an algebraic object from
stack level 2, and alist from stack level 1. Thelist has two elements.
The first is the command or program that has to be applied on some
sub expression of the algebraic object. The second is a list that
specifies the sub expression. Try it? OK! Enter:

Y SIN(X)? +a§(- = xcos(X)?

We will linearise the sub expression

SIN(X)?.

Thisis sub expression {1 2} of the algebraic object. Enter thelist:

{Tun {1 2}}

Now press figR=8l={=4 {0 get:

YXE>COS(2><X)+— +§(- = xcos()

What problems does this program have?

Last thing that we do before returning to calculusis visualisation of such
algebraic trees using a quite unorthodox method. It would be a
cumbersome thing to program a graphics representation of the algebraic
tree, but we don't need to do it. The HP49G has a built-in tree graphics
generator. Itis... the built-in filer!!! If we create an algebraic tree, then
we can also create a directory structure based on that tree. For example
consider the expression A + B. We can create a directory with the name
+ (!) and in this directory we can create two sub directories with

the names A and B. Thefiler of the HP49G will display the tree

at the right. You may wonder how we can create a directory
named + . But thisis easy. We can enter the string "+ " and used B
the command S~N to convert it to aname. So let's make a

program that takes an algebraic tree and creates the appropriate directory
structure:

<<

PATH @Store current path
® path
<<
1. @Do to all elements
<< @of algebraic tree
CASE
DUP TYPE 5. == @1Ff element is list
THEN @then call yourself
REVLIST TREE® DSTRUCT
END

Volume 1, 3-9

Basic Calculus with the HP49G - Volume 1 - Part

DUP TYPE {18. 14.} @If element is command

JA? - 1SIN(w t) and press MISEEIRENESA A fter some seconds the

SWAP POS f i . o X .
Gor Tunction HPA49G starts the filer and highlights the current directory in the
THEN) gnign
® STR S~N @then convert it to name directory tree. Press acouple of times. Y ou seethetree of the
y p
WHILE @Add character """ to algebraic object in the
VARS OVER POS @the name until it is filer. So that's another * The product of:
REPEAT @unique possible (misjusage of |— the square root of:
END e @Create sub directory theﬁlerasa\/iw-a”sation I_- the difference of:
DUP CRDIR EVAL @and switch to that tool for algebraic trees. A the power of:
END @sub directory VVh?? ed you h wae A
@1f none of the above wonaer enoug .OUt A raised to
DUP TYPE 6. 1 @then if element is not a Other possble 2
THEN @name, then convert it (mis)usage of the f!|er, —2 a1
® STR S~N @to a name press . This 1 a
WHILE @Add character """ to program will purge the
VARS OVER POS @the name until it is root directory of the tree . .
REPEAT @unique and al sub directories — COS and the cosine of:
* SN that were created in it, L _
CRgng @Create sub directory andthenithIIexu,The * theFWOdUCtOt
END moral of the story is that W w
o we can use a screwdriver
DOSUBS as ahammer or any other ¢ andt
path EVAL @switch to sub directory tool, if we only have
>> @we came from enough fantasy

>>
o _ Another consequence of the possible conversion of functions or
This is the program TREE ® DSTRUCT . It doesn't display the ~ command to names, is that we can have our own definition of any

tree, it only createsthe appropriate directory structure. Wewrapitina function. Consider the following example. e. Enter the program:
program that displays the directory structure as a tree.

<< << ® xvy
ALG® TREE @Create tree list << IF @1f we have two numeric
_ x TYPE 3. == @vectors
ITEES)DSTRUCT g;;iaiilg:rigtSEZWSE;UCt' y TYPE 3. == AND @then find dot product
VARS HEAD PGDIR @Purge directory struct. THEN Xy EOT @else find product
>> ELSE x y
END

>>

This is the program VIEWALGTREE . Let'stry it. Enter

>>

Volume 1, 3-10

Basic Calculus with the HP49G - Volume 1 - Part

Enter the string"*" and press . You get '*', which isno more
the function *, but aname. Press . Now you have a new
program named '*', which can be used for dot and normal products.
For example enter [1. 2. 3] andthen[4. 5. 6. (with decimal

points after the numbers - we want numeric vectors), and press

to get 32. But enter 2 and 3 and press“ to get 6. Whenever
you press the menu key , the new extended functionality will be
used. But the normal multiplication key f<] till retains its normal
functionality. The same applies when writing programs. When you
press “ while writing a program, then the multiplication sign *
which refers to the new program will be placed in the program text.
But when you press[+], the sign * refersto the built-in multiplication.
Now, press['], then , and then EMTEF] to put the quoted name
"*' on the stack. Then press|gli=ie]=] to delete the program named "*'.
Just imagine how strongly extendable the command set of the HP49G
can be, if we use this capability. And since only the variables are
accessible that exist in the current path, we can even have many
differently extended functions available in different directories. Thisis
extensibility!!!

After this excursion to the forests of algebraic trees, let's return to the
rocky paths of calculus. We examine partial derivatives of higher

order. Consider afunction f(x,y). We can differentiate this more than

once. For example we can take the derivative for x twice. Then we
write (in mathematics text books):

1°f(x.y)
'S
and on the HP49G:

el

T e L X xy))2 or DERIV(DERIV(f(x,y).x)x)

We can of course also take the "mixed" derivatives, like:

T°f(x.y)
XMy
for which on the HP49G we write:
Tl (f(x,))" or DERIV(DERIV(f(x,y).y)x)

ix efy

Let's have an example. We will find:

T eef

o o7y (X>SIN(Y) - Y>COS(X))0

a
using RPL syntax.

Enter X>SINY)- Y >COS(X). Now enter Y and press|d] to get

X xCOS(Y)- Y>COS(X). Enter X and press|d] again to get
COS(Y) +SINX). We do the same example using algebraic objects.
Enter:

T eef

o oy (SIN(Y) - ¥ COS(X))0

DERIV(DERIV(X>SIN(Y) - Y>COS(X),Y),X)

and press [ZIZEE to get SIN(X) + COS(Y).

The "mixed" derivatives depend on the order of differentiation, i.e. in
generd:

Volume 1, 3-11

Basic Calculus with the HP49G - Volume 1 - Part

Tfxy) , THxy)
xfly fiyfix
But if the mixed derivatives are continuous functionsof x andy ina

given domain, then the mixed derivatives are equal to each other in
this domain.

You remember that we have done a program for finding the
differential of a monovariate function. Now we will extend this
concept to functions of more than one variables. Thetotal differential

of such afunction z = f(x,y) isgiven by:

dg = JoY) L THx0Y) dy
fix Ty

The same concept can be extended to functions of even more

variables. For example consider z :f(xl,xz,x3,1/4).ThetotaI

differential of thisfunctionis:

dy = Th(X,X 5. X 5, Ya) i +‘ﬂf(x1,x2,x3,1/4) clx +‘|1f(xl,x2, X, Ya)
2

1 XX, +Ya
X, 1%, %,

If the partial derivatives are themselves continuous differentiable
functions, then we can have total differentials of higher order. For

example, consider the function z = f(x,y) again. Thetotal differential
of second order is:

Thetiny quantities dx, dy, and so on, are considered to be constant.

We aready made a program for finding the total derivative of a
monovariate function. Now we make a program for finding the total
derivative of agiven order of afunction of more variables. The program
will take the function from stack level 3, the list of variables from stack
level 2, and the order from stack level 1, and will return the total

derivativeintroducing new variables dx , dy, which of course must not

appear in the function.

<<
OVER
1
etc.
<<
"d" SWAP + S~N
>>
DOSUBS
® f vars ord dvars
<<
1 ord
START
f vars
dvars *
0 + SLIST
EXPAND *f* STO
NEXT
f
>>
>>

@Make list of dx, dy,

@Differentiate for all vars
@Multiply each partial
@derivative by the approp.
@dvar. Add all expressions

This is the program Td that comes with this document. To try it enter

ﬂﬁﬂf(xy xax + ;yy >dyﬂ ﬂeqﬂﬂ)de+M>d
+

dz? = = TAN(X +Y), then {X Y}, andthen 2 (second order), and press [}
Tix Ty to get:
2 X y ﬂf y ﬂz
féx D +2xﬂ(x_.”y) xdxdy + f'ﬁy) dy* (27dX? + 45 >dX +2>dY?) TAN(X + Y)* + (250X +4>dY xdX + 2xdY*]XTANX +Y)

Volume 1, 3-12

Basic Calculus with the HP49G - Volume 1 - Part

If you want to focus on thetiny quantities dx , dy, then enter dx and m>R XT m>R xT m>R 5T
press [F]Selgin]SSH to get: N vyl IO L vreval W L vreval
3 2 ﬂm Tl-r W
(2XTAN(X+ Y)? + 2XTAN(X +)} xdX* +
(4 KTAN(X +Y)° + 4 XTAN(X +Y))><dY sl X + RA e MR - MR >;T oV
M3V M x/ M %/

3 2
(2 XTAN(X * Y) *2 XTAN(X * Y)) Y We use the absolute values of the partia derivatives, because they can

sometimes be positive and sometimes negative. If we wouldn't use the
The meaning of the total differential can be made understandable by a apbsolute values, then the error DP could be calculated less than its
geometric visualisation. It is the total change of a function of more maximum value. We can make aprogram that derives the expression of
than one variables, when each of the variables changes from x to the error of a calculated quantity out of the errors of the measured
X +dx. The quantity dx isarbitrary small but positive. The total guantities, on which the calculated quantity depends. The program takes
differential is the fundament out of which we can calculate the as arguments. The calculated quantity as a function of the measured
maximum error of some quantity that is a function of more than one variables from stack level 5, the list of measured
variables. For example, suppose that you are 1z
experimenting with an (approximately) ideal ;
gas. You want to calculate its pressure P by
measuring its mass m, itstemperature T, and
itsvolume V, and use the formula:

_MXRXT
MxV

P

% dx + j—; dy
In this formula the gas constant R, and the
molecular weight of the gas M are considered
to be known without error. But the
measurements of m, T and V can't be
perfect. They will be measured with errors
Dm, DT and DV. Thetotal change of the
calculated pressure caused by the error in
measurements will be:

Volume 1, 3-13

Basic Calculus with the HP49G - Volume 1 - Part

variablesfrom stack level 4, thelist of variablesthat are greater than 0
from stack level 3, the list of variables that are less than 0 from stack
level 2, and the list of maximum errors of the measured quantities
from stack level 1 It returns the expression

D(variables) = function(variables) out of which we can create a
user defined function by pressing PEF.

<<
PUSH
{ HOME CASDIR REALASSUME } RCL
® alg vars posvvars negvvars
maxerrvvars assums
<<

-103 CF @Set real mode
vars D" APPLY @Create expression EKvars)
IF
posvvars {} 1 @1f we have positive vars.
THEN
posvvars 1 @make appropriate assumptions
<< @for calculating the abs. value
"30" + "t SWAP +
e+ 0BJ® ASSUME
DROP
>>
DOSUBS
END
IF
negvvars {} 1 @1f we have negative vars.
THEN

negvvars 1 @make appropriate assumptions

<< @for calculating the abs. value
"£0" + T SWAP +
v+ 0BJ® ASSUME
DROP
>>
DOSUBS
END
alg vars 1 ABS @Find maximum error
EXPAND
vars 1

<<
..Dn
>>
DOSUBS
DUP UNROT * 0 +
SLisT
SWAP maxerrvvars 2
<< = >>

@Create Dvars
SWAP + S~N

@Create equations
@Dvar=value

DOLIST
1 @and substitute iIn
<< SUBST >> @expression
DOSUBS =
{ HOME CASDIR } EVAL @Restore original
assums "REALASSUME® STO @assumptions

>>

POP

>>

Thisisthe progran DMSRM. Wetest it with the above example of the
idedl gas. Enter:

m>R XT
M »/

then the list of measured quantities {m TV}, thelist of positive
quantities{m T V M R}, thelist of negative quantities { }, and
the list of maximum errors in the measured quantities
{00001 .01 .00%}.(Wecouldasoenter {Dm DT DV} if we

want to have the symbolic result.) Press EqElEzIEN to get:
TR m >R mXT xR

D(m,T,V) = —— x00001+ x01+ ———— x001
VM VM V2 oM

If you now press FEF| you will have the user function D which will take
the measured values of m, T and V from the stack, and return the
maximum error for P, under the specified maximum errors of the
measured quantities. (Of course you must substitute anumeric value for

Volume 1, 3-14

Basic Calculus with the HP49G - Volume 1 - Part

the gas constant R in the formula.)

Since we have examine derivatives of functions of more than one
variables, it is time to take alook at further possible usage of formal

TF(x.y)

derivatives of more than one variables. For the derivative the

HP49G writes d1f(x,y), when the function f is undefined. Similarly,
T (x.y)

for the derivative it writes d2f(x,y), and for the derivative

T°f(x.y)

81\%
such formal derivatives as user defined functions.

it writes d1d2f(x,y) . We make an example of the usage of

We create first a sub directory. We are going to create some variables
and so it is a good policy to create them in a separate directory for
clarity and for preventing cluttering of the menu VAR. Enter
something like 'EXMPZI or similar and press[szidIgl. Switch to
directory 'EXMP1. Here we will do the whole work for the first
example.

In the first example we want to find a formula for the difference
C, - C,, between the heat capacity of asystem at constant pressure
and its heat capacity at constant volume. First the theory.

From general thermodynamics we have the definition of heat capacity
C, of asystem at constant volume:

_&Uo

c, =5
eqTa,

(D

U istheinner energy of the system, afunction of its absolute

temperatureT and of itsvolume V . The differential quotient ?T—Ud

e,

in parentheses with the index V, denotes that we take the partial

derivativefor T by holding the volume V constant.

Similarly the definition of heat capacity C, of asystem at constant
pressureis:

_&Ho

& = &qTe,

)

H isthe enthalpy of the system, afunction of its absolute temperature T

and of the pressure P . The differential quotient fﬂﬁ in parentheses

T2

with the index P, denotes that we take the partial derivativefor T by
holding the pressure P constant.

The definition of the enthalpy H is:
H=U+PxV 3
Substituting thisin (2) we get:

_afHo _@(U+P)s _afUs |, alPs

=9 : =° AP0 4 p VO
&g, & T g efre. efre,

efT 4,
Now, since in this derivation we hold the pressure P constant, the term
HPo

eT 4

is 0. So we get:

[V

- - Vo
PeqTe. eqTL

eqTe,

Volume 1, 3-15

Basic Calculus with the HP49G - Volume 1 - Part

We build up the difference C, - C,: but written differently. If you want you can use now our program
dn ® dv to beautify the result and get:
e, =Mo @Vl . . S
TV eT4 efTe, eqre, -G (utT)) - ZL (U(T)) +P et (v(T) P
efT eqT 1T
Now let's do that on the HP49G. Enter the definition of C,:
For an ideal gaswe have:

il
Cp =— (H(T)
P = (T AV —aw
eNT o,
. . 1 . .

and press ['EF], which stores the expression T (H(T)) invariable \pere 4 isthe expansivity of theideal gas. Enter d1V(T) = a %/(T)

Cp . Enter the definition of C,: and press ['EF] to create the user defined derivative d1V. Let's find the
difference C, - C,, for anideal gas. Enter again Cp - Cv and expand to

cv= (ugT)) get - (dJUJ(T) - (dL2(T)+Poa >%\/(T))) . Again you can beauttify this

T with dn ® dv to get:

and press PEF] again to store % (UAT)) inCv.Weuse U{T) to @1 (UT))- C| (UA(T)) +Pa */(T)gz

distinguish between the inner energy as a function of the temperature efr e
T andthevolume V from theinner energy U2 as afunction of the . . i .
pressure P and the temperature T . Enter the definition of the Now enter CLVAR to purge al variablesin the directory. We will do
enthalpy: the same example using different variable definitions. Enter
Cp = dH(T) and pressPEF]. Then enter Cv = dUAT) and pressPEF|
H(T) =u2(T) +P xv/(T) again. We have defined the heat capacities using dn syntax. We will
work with an ideal gas again, so enter d1V(T) = a ¥/(T) and press[EF]|
and pressP'EF] to create the user defined function H. to create the user defined derivative d1V. Now instead of the user
_ function H we are going to use the user defined derivative dH . Enter
Enter Cp - Cv and press(Z48) to get the result dH(T) = dU2(T) +P >xdIM(T). PressPEF] to make the definition. Enter
- (dWAT) - (dW2(T) +Pd1V(T))), which is the same as: Cp - Cv and expand to get - (dUXT)- (d2(T)+P>a »/(T))) again.
&6, H@Ve U Yet another way to so that. Enter CLVAR to clean up the directory.
eqT 9, eqTe, eqrg, Now we will use the definition of the inner energy as a user function.

Volume 1, 3-16

Basic Calculus with the HP49G - Volume 1 - Part

Enter U2(T) = H(T)- P »V(T) and pressP'EF] to create the user and expand againto get - (Cp - Cv).

function U2. We will use the derivative:
The above examples show how well the HP49G can handle such formal

q derivatives. Especialy the third demonstrates how to get results with

T (u1T)) =cv "normal” variables out of only formally defined derivatives.
. . We are at the end of the first volume of the Basic Calculus Marathon. In
Enter dUXT) = Cv and pressPEF]. This creates the user defined the second volume we will continue with extrema of functions and other
derivative dUAT). interesting things.
We will also use the derivative of the enthalpy: Before we go to sleep with smoking heads dreaming of the derivative of
the derivative of Ouzo(Trabakoulas), wetake alook at our program

q building (next page), which gets more and more crowded. How am |
T (H(T))=cp going to represent it when even more programs come?
Enter dIH(T) = Cp and pressPEF] to create the definition of the user i (Greetings(Nick))
defined derivative. fiNick
Now, enter:

1 1
— (U2T))- —(UAT
a7 (UAT)- 3 (017)

and expand to get - (Cp -(cv-P ><le(T))), which beautified would
be:

-Gp- Tv- F>><ﬂ—ﬂT (v(m)%

Enter:

L (uA7)- () +P e (v(T)

Volume 1, 3-17

Basic Calculus with the HP49G - Volume 1 - Part 3

APLSUBEX PATdCOLEX || dCOLEX
\ 4
VIEWALGTREE GETSUBEX
SECLINE TMATCH1 derS->Sde
TANPARSEC dCOLLECT PATAS->Sd
TREE->ALG
TREE->DSTRUCT 4
FLATTEN |IALG->TREE
| ISCONT?I TANLINE \ 4 \
DMSRM||ldicAaMmmAll dF1F2 4 vTESTTMATCHl \ 4 ‘ ‘
Td d1FACT ->FACT DQUOT dn->dv REPLS || ->TERMS “ALGSAME POSNAME

Volume 1, 3-18

