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both keys
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Hi again everybody!

This marathon comes indeed with a long delay. Many reasons have 
unfortunately made its completion a very hard job. It is as if problems 
suddenly decided to appear all together. The worst of them is that 
special kind of problem, because of which I exploded in the group. I 
can hardly keep myself calm and sit down and write, but it seems that 
mathematics has a calming influence on me. (Which can be used as 
evidence that I can't be normal. ;-))

Anyway, before we start, some words and thoughts about 
mathematics and the world. After some thousands of years of history 
of humans, we have some real achievements and many mistakes. 
Between these achievements we have sciences and poetry, economic 
progress and technologies and many other things. But is there 
anything else between our achievements, that resembles mathematics 
in its search for the truth? Which of the human made achievements can 
be said to have the same validity as for example, that A = A , that 
something is identical to itself? (Might seem trivial, but its 
consequences are huge!) Even what is considered today to be the most 
beautiful poem, might be considered as trash after 1000 years. But 
could we ever say that A ≠ A ? And if we do, what next? It turns out 
that accepting the opposites of these basic axioms… makes everything 
possible. We can accept these opposites and try to build new 
mathematics out of them, but then each and every proposition will 
automatically be a theorem. (This is a proven fact.) And that is simply 
plain boring! If every statement is true, we have nothing interesting to 
search for. We find automatically all possible truth, because then 
everything is true. If we consider that we have great difficulties to 
even grasp what A ≠ A  should mean, we have to start suspecting that 
our brain isn't made for boring things. That this built-in allergy 
against A ≠ A  is somehow protecting us from getting stupid. 
(Though we can get stupid in myriad other ways. ;-)) So, having this 
in mind, I ask again: Is there anything out there, with the same 
endurance like mathematics? Empires rise and fall, technologies come 
and go, religions appear and disappear, arts are in and then out. But 
these simple things, like A = A  remain. The tiny little letter, π , has a 
career of some thousands of years behind it, and it doesn't look as if 

its career would be approaching an end. It still is in your watch, in my 
Mac, in our houses, literally everywhere. If we let aside anything to 
which we hold because of belief, or tradition, or simply because we like 
it, and if we keep only what we can trust most, what remains then? Isn't 
that the simple crystal clear statements that built step by step the building 
of mathematics? There is something true, something almost godly in 
these statements. There is something about them, that makes it worthy 
for everybody to get interested and start thinking about them. Perhaps 
this is what made Paul Erdös say "he lives", when he meant "he does 
mathematics", and "he died", when he meant "he stopped doing 
mathematics". So, let's live again!

In the previous marathon, the Sequences, Series, and Limits Marathon, 
we had a real hard time. The HP49G doesn't provide many things for 
sequences and series, and so we had to program them ourselves. And in 
order to program them, we had to first take a look many things in the 
fields of sequences and series, which were of great importance and help. 
But because the HP49G does provide a vast amount of built-in features 
for calculus, this marathon will not be such a hard path. We will of 
course have to program now and then, but most of the time we will use 
the built-in features. There will be also a continuation of the calculus 
marathon in future, after we will have examined vectors and matrices. 
So this is going to be the Basic Calculus Marathon, or BACAMARA. 
(Sounds like a card game, but we are still not at games theory.)

We start with the picture of a plot 
of a function y = f x( ) , some 
curve in general. If we consider 
the difference ∆x = x1 − x0 = h , 
then the corresponding difference 
of the values of y  is:

∆y = y1 − y0 = f x1( ) − f x0( ) = f xo + ∆x( ) − f x0( ) = f xo + h( ) − f x0( )
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The line that goes through 
the points P0  and P1 is 
one secant of the curve. 
The slope of this line is:

∆y
∆x

= f x0 + h( ) − f x0( )
h

= tan α( )

The ratio 
∆y
∆x

 is the 

difference quotient. The 
nearer the point P1 is to 
the point P0 , the better 
gets the description of the 

curve with the difference 
quotient at the point P0 . If 
we slip the point P1 along 
the curve towards the point 
P0 , then the secant 
approaches a limit 
position, which is the 
tangent of the curve at the 
point P0 . The angle α  
goes towards a limit, the 
value ϕ0 , which is the 
angle between the x-Axis 
and the tangent. The 
quantity tan ϕ0( )  is the 
slope of the tangent and the slope of the curve itself at the point P0 . 
That means, that when the point P1 approaches the point P0 , the 

quotient 
∆y
∆x

, approaches the slope of the curve at P0 . When the point 

P1 approaches the point P0 , the difference ∆x  approaches 0 . And so 

we have that the slope of the curve at P0  is the limit of 
∆y
∆x

 when 

∆x → 0 . We can find the slope of any curve by finding lim
∆x→0

∆y
∆x

. This 

limit, if it exists, is the differential quotient or derivative of y = f x( )  at 

the point P0  It is denoted as ′ f x0( ) , or ′ y x= x0
, or 

dy
dx

 
 

 
 x= x0

. From the 

last marathon we remember that the limit from the left has to be equal to 
the limit from the right. So, we have the definition of a function that has 
a derivative at a given point:

A function has a derivative at x = x0 , iff both the 
left and the right limits of the differential quotient 
exist and they are equal to each other.

Another useful theorem for our purposes in this marathon is:

If a function has a derivative at x = x0 , then it is 
for sure continuous at this point.

As we see, for a function to have a derivative at some point it is 
necessary but not sufficient to be continuous at that point. There are 
functions that are continuous at some point, but have no derivative there. 
There are even functions that are continuous in some interval of x-values 
and have no derivative at any point in this interval!

What does the HP49G provide considering all the above? Well, it 
doesn't have a built-in function for finding difference quotients. But 
why should it? Such things are piece of cake to program. A simple 
program for this is on the next page.
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<<
PUSH @Save current settings
→ f x x0 h @Store function, variable,
<< @point x0 and difference of

@x-values

f x x0 h + = SUBST @Find f xo + h( )
f x x0 = SUBST @Find f xo( )
- @Find f xo + h( ) − f x0( )
h / @Find 

f xo + h( ) − f x0( )
h

EXPAND @make it beautiful.
>>
POP @Restore saved settings.

>>

Store that in ∆QUOT . (The character ∆  is , , .) Let's 

try some examples. Enter X2 −1, then X , then 1, and then 
1

10
. Press 

the menu key . The result is 
21
10

. Press  to undo this 

and get the previous stack. Drop the 
1

10
, enter .1, and press  

again to get 2.1, the numeric result for 
21
10

. Notice that without 

putting the whole thing between the pair PUSH−POP , the second 
example would switch the calculator to approximate mode. Press 
again , drop the .1 and the 1, and enter X0  and h. If you now 
press , you get the result 2 ⋅ X0 + h , the symbolic expression 
of the difference quotient. Of course we could use this result to find 
that lim

h→ 0
2 ⋅ X0 + h = 2 ⋅ X0 . That is, we could use the difference 

quotient to find the derivative of X2 −1 at X0 . Having 2 ⋅ X0 + h  on 
stack level 1, we could enter h = 0  and then press  to get 2 ⋅ X0 . 
But this isn't necessary, as the HP49G provides a big variety of 
commands to find derivatives.

We stay a bit more at ∆QUOT . One could think that in case of numeric 
calculation using the smallest possible numeric value for h would give 
the best possible approximation for the slope of the function at some 
point X0 . But there are problems. Let's try an example. We use 
∆QUOT  with decreasing values of h to calculate a good approximation 
of the slope of SIN X( )  at X = π . Enter SIN X( ) , then X , then π , and 
then 1E − 5 . Now press . The result is −.999999999984 , 
quite near to the correct exact result −1. Let's do the same for 
h = 1E −10 . Press , drop the .00001 and enter 1E −10. Press 
again . The result is now −.999999999996 , even nearer to 
−1. Repeat for h = 1E −12 . Oops! Something went wrong here, 
because now the result is 0.  How can this happen? Well, in the 
Sequences, Series and Limits Marathon we have examined many things 
about the limited precision and accuracy of the HP49G. What we see 
here is another result of these limitations. It helps to follow the program 
for understanding what happens. So, we will debug it using the built-in 
debugger of the HP49G. First of all, put all necessary arguments on the 
stack. They are SIN X( ) , X , π  and 1E −12. Press  and then 

 to recall the program to the stack. Now, press  to go to the 
menu PRG. Press  twice and then  to go to the debugger 
menu. The first menu item from the left is . Press . This 
starts the program on stack level 1, but halts it immediately before the 
first command. (Note that the HLT  announciator at the top of the screen 
went on.) Now you can let the program run step for step. (This has 
nothing to do with the step by step feature of the CAS.) Press . 
This executes the next command in the program and halts the program 
again. Since the first command was PUSH, nothing changes on the 
stack. Note also that the command currently executed appears on the top 
of the screen. Press  to execute the next command. On the top of 
the screen you see the local variables assignment: → f x x0 h . 
Apparently the whole sequence counts as a single command. Notice also 
how the arguments that stood on the stack, now are gone. They are 
consumed because they are used by the command → . Pressing  
again you see << t  the top of the screen, which shows that we start 
with the local variables procedure. The next  displays f  on the top 
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of the screen. Since this is a local variable without quotes, its 
contents, SIN X( ) , are put on the stack. Continue pressing  until 
the command /  is executed. Now stack level 1 contains

SIN π+ .000000000001( ) − SIN π( )
.000000000001

We will need this expression again, so press  to make a copy 
of it on stack level 2. Notice that we affect the stack used by the 
program, while the program is debugged. This is a very useful feature 
of the HP49G, as it allows to test and check many things while a 
program is single stepped. If you now press the menu key , the 
next two commands in the program are displayed on the top of the 
screen. These commands are EXPAND >> . Press . Here it 
happens! The returned result is 0. . Press  to let the program run 
to the end and quit. Note that the announciator HLT  is no more 
displayed. Why did the HP49G returned 0.  when it expanded

SIN π+ .000000000001( ) − SIN π( )
.000000000001

 ?

Drop the 0.  from stack level 1 and let's take a look at the above 
expression. As you can see the expression contains real numbers 
(numeric values). When we expand such expressions, the HP49G 
"sees" the numeric values and decides to switch to approximate mode. 
It uses then π 's numeric approximation, 3.14159265359 . The 
expression is turned to

SIN3.14159265359 +.000000000001( ) − SIN 3.14159265359( )
.000000000001

Then the sum 3.14159265359 + .000000000001 is evaluated, 
which on an ideal machine with infinite precision should give 
3.141592653591. But the HP49G has only 12 digits for real 

numbers. And so 3.14159265359 + .000000000001 returns… 
3.14159265359 ! So the expression has been converted to

SIN3.14159265359( ) − SIN 3.14159265359( )
.000000000001

instead of

SIN3.141592653591( ) − SIN 3.14159265359( )
.000000000001

From this point on it is clear that further evaluation will return 0. , since 
on the numerator of the quotient we subtract SIN3.14159265359( )  

from SIN3.14159265359( ) . That shows that we can't just make h as 
small as possible and expect to get the best possible numeric 
approximation for the slope of a function. But fortunately we don't need 
to bother which value of h is small enough for a good numeric result of 
the slope, but also big enough to avoid such problems. (So why does 
Nick write all this? He, he, just to have more stuff for the readers ;-))

And what happens if we don't use reals but exact numbers (integers)? 
Let's see. Enter again  SIN X( ) , then X , then π , and then 1E − 20. 
Now, enter XQ  to convert 1E − 20 to

1
100000000000000000000

Press . Now the result is the expression:

100000000000000000000⋅ SIN
100000000000000000000⋅ π +1

100000000000000000000

 
 
  

 

If you press  at this point you will get −20676153.7357 , 
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which means that the numeric problems strike back. In this case the 
problems come because of two reasons. First, the numeric value of

100000000000000000000⋅ π + 1

100000000000000000000

is calculated as 3.14159265359 , and this is only an approximation. 
The correct value should have been:

100000000000000000000⋅ π + 1

100000000000000000000
= π+ 1

100000000000000000000

That means that we should have at least a numeric approximation with 
20 digits for π  and in general for real numbers.

The second reason is that while the HP49G returns 0  if you expand 
SIN π( ) , it returns −2.06761537357E − 13  if you expand 

SIN3.14159265359( ) . While π  is exact, the number 

3.14159265359  is not exactly π .

In this particular case you can press  with the expression

100000000000000000000⋅ SIN
100000000000000000000⋅ π +1

100000000000000000000

 
 
  

 

on stack level 1. This converts it to:

100000000000000000000⋅
COS

1
100000000000000000000

 
 
  

 
⋅ 0 +

SIN 1
100000000000000000000

 
 
  

 
⋅−1

 

 

 
 
 

 

 

 
 
 

Pressing  now will return the correct result, −1.

All the above shows us that caution is needed when working with 
numeric expressions. (And that Nick will have enough stuff for all 
marathons ;-))

As already said, the HP49G provides a great amount of commands for 
finding derivatives and slopes. Let's take a look at them. We have the 
function ∂ , which was also present at the HP48. This function has been 
modified a little bit, so it doesn't work exactly like in the HP48. In RPL 
syntax it takes the function from stack level 2, and the variable from 
stack level 1, and returns the derivative of the function for the specified 

variable. For example, enter e
SINW 2( )

, then enter W  and then press  to 

execute the function ∂ . The result is e
SINW 2( ) ⋅ COS W2( )⋅ 2 ⋅ W . The 

same can be done using algebraic syntax. Go to the EQW and press  

to write the unfinished expression 
∂
∂

( ) . The cursor blinks at the right 

of the ∂  in the "denominator" to indicate that the HP49G expects you to 

enter the variable of derivation. Enter W . Press  to go inside the 

parentheses and enter e
SINW 2( )

. Now you have:

∂
∂W

e
SINW 2( ) 

 
 
 

Press  to put that on stack level 1. Before we go further, let's see 
how the expression looks like when it isn't shown in pretty print. Press 

 and then  to edit the expression not in the EQW but in the 
command line, where no pretty print is used. Now you see: 
' ∂W EXP SIN W^2( )( )( )' , which contains only one ∂ . The general 

syntax of derivatives in the command line is ' ∂ var function( )' , where 
var  stands for the variable of derivation and function  for the function 
whose derivative you want to find.

Press now  to put the expression back to the stack. If you expand 
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it, then you get the same result as before, e
SINW 2( ) ⋅ COS W2( )⋅ 2 ⋅ W .

Now we can see how we can find the slope of a function at a given 
point. We can find the derivative and substitute the value of the 
variable at that point. Our example from the previous page was to find 
the slope of SIN X( )  at X = π . We enter SIN X( ) , then X , and then 
we use ∂ . The result is COS X( ) . Now we enter X = π , we press 

 and then , and we get −1. Or at the point where the 
HP49G returns the result of the derivation COS X( ) , we enter the list 
X{ } , then we enter π , we press  to create the list X π{ }   and then 

we press  to use the function  (where). The result COS π( )  can 
be expanded then to −1. In this case we didn't enter the list X π{ }  
directly because this would create a list which contains the function π  
and not the algebraic object π . If you enter π{ } , press  and 
then , you see that its object type is 18.  (function). But if you 
enter π  alone and press , then the result is 9.  (algebraic object). 
That means that π  is a function which puts the algebraic object π  on 
the stack. Since the function  doesn't work with arguments of type 
function, it would error out.

We can use the function  in an easier way that also looks better. Go 
to the EQW and enter:

∂
∂X

SINX( )( )

Select the whole expression and press  to write  to the right of the 
expression. Complete the expression to

∂
∂X

SINX( )( )
X =π

Press  to put the expression on the stack, and expand it to −1.

Another way to find a slope, inherited from the HP48, is to find the 
derivative for some variable, in which we have stored a value. For 
example, store π  in variable T . Go to the EQW and enter:

∂
∂T

SIN T( )( )

Put that on the stack and expand. The result is −1. The HP49G found 
the derivative of SIN T( )  to be COS T( ) , and then proceeded using the 
value π  stored in T , found COS π( ) , and expanded that to −1. But 
note: If the variable is the current VX , then we get problems. Suppose 
the current VX  is X . If you store π  in X , enter

∂
∂X

SINX( )( )

and then expand, you get the question to purge the current variable. If 
you choose "No", then the operation errors out with 
Mode Switch Cancelled". If you choose " Yes ", then X  is 
purged and the calculation returns COS X( ) , because the variable X  
doesn't exist any more. In this case instead of expanding you can press 

 twice, to avoid the question about purging the current variable.

We continue examining the behaviour of ∂ . A very interesting question 
is, what happens when we take derivatives of expressions with variables 
that themselves contain other expressions. Since there is a big number of 
cases and sub cases, we try to go as systematically as we can. (Or 
rather, as systematically as Nick can imagine ;-)) First we are going to 
store some expressions in some variables.

Store X2  in R .

Store SIN Y( )  in S .
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Store S2 −R  in U.

We also need some user defined functions.

In the EQW enter:

V X( ) =
X3

X −1

Put the equation in the stack and press  to create the user defined 
function. The same way create the user functions:

W R( ) = R ⋅ R +1( )

Z R,X( ) =
R − 1

X

Q S( ) =
S
R

Last thing, we create user functions with RPL syntax. Enter:

<< → X
  <<  0 1 3 FOR I
         X I R→I ^ +
        NEXT
  >>
>>

Store it in Z1. Now enter the program:

<< → R X
  <<  R EXP S EXP + X / >>
>>

Store it in Z2 .

Now we are ready to start examining what ∂  does, when applied to 
different combinations of functions and expressions 
with variables that contain other expressions.

Enter 'R'  (with quotes) and press  to make 
copy it on stack level 2. Press  to take the 
derivative of R  for R . The result is 1, which 
shows that ∂  didn't care about the fact that X2  is 
stored in R . If you enter 'R'  and then X , and take 
the derivative, then you get a fat 0 , which again 
shows: When some expression is on stack level 2 
and we take its derivative for some of its variables 
using the function ∂ , then derivation is carried out without first 
evaluating that variable. This is good for finding slopes of functions by 
storing something in the variable for which we take the derivative and 
then using ∂ , as we already saw on the previous page. Another example 
of this case: Enter S2 , then 'S'  (with quotes) and press  to get 2 ⋅ S . 
The same will happen if you enter

∂
∂S

S2( )

from the EQW and press . If you expand instead of evaluating, 
then not only the derivative 2 ⋅ S  will be returned, but also evaluation of 
S  will be carried out after derivation, and the result will be 2 ⋅ SIN Y( ) .

If you want to first evaluate some variable contained in an expression, 
and then take the derivative, you have to press  first. For example, 
enter U2 . We stored S2 −R  in U, SIN Y( )  in S , and X2  in R . If you 

want to take the derivative of the evaluated expression U2  for X ,  then 
press  first. This completely evaluates U2  to 
SIN Y( )4 − 2 ⋅ X ⋅SIN Y( )2 + X4 . Now you can enter X , press  and 

then expand, to get − 4 ⋅X ⋅ SIN Y( )2 − 4 ⋅ X3( ) .
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A problem that we have is, how could we for example take the 
derivative of the partially evaluated U2  for S? If we evaluate U2 , 
evaluation goes all the way down and doesn't stop at any intermediate 
step. That's what the command SHOW  is for. If you enter U2 , then 

'S'  (in quotes) and press , then evaluation will stop when the 

variable S  is shown. This will result in S2 −R( )2
, allowing us to 

enter 'S'  and take the derivative, by pressing .

Until now we have seen that ∂  doesn't evaluate the variables of 
expressions. However, ∂  shows a special behaviour when the 
expression, which we take the derivative of, is a user defined 
function. Let's take a look at that. Enter V X( )2

 and then X . If you 
now press  then the derivation takes a bit longer, and returns:

2 ⋅
X3

X −1
⋅

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )

This shows: Since V  is a user defined function, V X( )2
 is first 

evaluated to:

X3

X −1

 
 
  

 

2

and then derivation for X  is carried out! For the function ∂ , the user 
defined functions are much like the built-in functions. Exactly the 
same result will be returned if you enter

∂
∂X

V X( )2( )
and then evaluate. If you enter

∂
∂X

V X( )2( )
and expand, then you get the result:

4 ⋅X3 − 6 ⋅ X2( )⋅
X3

X −1
X2 − 2 ⋅ X + 1

This is a bit strange, since it is indeed correct, but not completely 
expanded. You can press  once again, to get the completely 
expanded form. If you enter

∂
∂X

V X( )2( )
and then press  or , nothing happens and the 
expression remains unchanged on stack level 1. This might seem not 
good, but it allows to collect unevaluated differential forms, which for 
example can be used to bring differential equations to a much more 
readable form. For example, enter

∂
∂X

V X( )2( )⋅ X +
∂

∂X
V X( )2( )⋅ A

and press , to get

X + A( )⋅
∂

∂X
V X( )2( )

If you want the opposite to happen, then don't press  or , 
but press . (  is the first menu item of menu 
CONVERT/REWRITE. If you press  with the last result still on 
stack level 1, then you will get
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X ⋅
∂

∂X
V X( )2( ) + A ⋅

∂
∂X

V X( )2( )

Is there any way to transform the sub expression

∂
∂X

V X( )2( )
of the above expression to

2 ⋅ V X( )⋅
∂

∂X
V X( )( )

getting thus a form that contains only differential forms of the function 
V X( ) , but not of V X( )2

? Yes, there is. Leave the last result on stack 
and press . Then press the menu key , and activate the 
option _Step/ Step. Press  twice to return to the stack. Press 

 to copy

X ⋅
∂

∂X
V X( )2( ) + A ⋅

∂
∂X

V X( )2( )
to stack level 2. If you evaluate, then you get

2 ⋅ A + 2 ⋅ X( ) ⋅V X( ) ⋅
∂

∂X
V X( )( )

Press  to swap stack levels 1 and 2. If you now expand, then you 
get the result:

2 ⋅ A + 2 ⋅ X( ) ⋅
X3

X −1
⋅

X −1( ) ⋅
∂

∂X
X3( ) − X3 ⋅

∂
∂X

X −1( )
SQ X −1( )

This is the same like the result on stack level 2, but the user defined 
function V X( )  has been additionally evaluated and the derivative

∂
∂X

X3

X −1

 
 
  

 

has been rewritten as

X −1( )⋅
∂

∂X
X3( ) − X3 ⋅

∂
∂X

X − 1( )
SQ X −1( )

according to the rules for differentiating ratios. Now, deactivate the step 
by step feature. We will see more about this feature later on.

The next question is: what happens when we take the derivative of some 
user defined function, to which we have given a variable as argument, 
that itself contains some expression? Enter the expression V R( ) . Now, 
enter 'R'  and press . The result is… 0 ! Perhaps it seems a bit 
strange, because the expression V R( )  does contain R  and taking the 
derivative for R , we would expect some result different than 0 . But it is 
completely understandable, if we think again about the special behaviour 
of ∂  when we take derivatives of user defined functions. In this case the 
user defined function is evaluated before derivation. This means that 
V R( )  was first evaluated to

R3

R − 1

Then, R  was evaluated, which returned

X6

X2 −1
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since R  contains X2 . It was this expression of which the derivative 
for R  was taken. And since the expression

X6

X2 −1

doesn't depend on R , the derivative was 0 . Enter V R( )  again, then 
enter X  and press  to get the result

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1( )
which is the derivative of the completely evaluated user defined 
function V R( )  for variable X .

Things go different if you use algebraic syntax. Enter

∂
∂R

V R( )( )

If you evaluate this, then the result is:

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )

which is the derivative of the user defined function V R( ) , where the 

argument R  hasn't been evaluated to X2 . But let's be organised and 
get a systematical overview.

The problem that arises is, how to let V R( )  be evaluated up to

R3

R − 1

and then take the derivative, without replacing R  by its contents first? 
Well, here comes a hidden super command, the command QUOTE , 
which is perhaps one of the most underestimated commands of the 
HP49G. QUOTE  is much like putting variables in expressions in an 
additional pair of single quotes, giving us the power to control exactly 
what is evaluated. You know of course that for example entering R  will 
put X2  on the stack, because X2  is stored in R . But entering 'R'  will 
simply put 'R'  on the stack without evaluating the variable. We extend 
this concept for algebraic expressions. Go to the EQW and enter 
V QUOTE R( )( ) . This is much like as if we had entered V 'R'( ) . Press 

 a couple of times, because we will need several copies of this 
expression. If you now press , then the result will not be

X6

X2 −1

but

R3

R − 1

When we evaluate V R( ) , all possible evaluations are carried out before 
the user defined function is evaluated itself. That means, that R  itself is 
evaluated, and since it contains X2  the user defined function V  is given 
the argument X2 . But when we evaluate V QUOTE R( )( ) , it is as if we 

were evaluating V 'R'( ) , and the quotes around R  prevent it from being 

evaluated, thus giving R  and not X2  to the user defined function V . 
Press  to drop the result

R3

R − 1

and bring V QUOTE R( )( )  on stack level 1. Enter 'R'  (in quotes) and 
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press  to get

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )

This is the derivative of the user defined function V R( )  evaluated up 
to:

R3

R − 1

The more demanding people will say now, "Yes, but the result is not 
completely expanded and if I expand now, I will get again an 
expression containing X s." And here we have the whole glory of 
QUOTE . You can even quote more than once. Enter 
V QUOTE QUOTE R( )( )( ) , which is much like V ''R''( ) . Enter 'R'  

and press  to get:

QUOTE R( ) −1( )• 3 • QUOTE R( )2 • d1QUOTE R( ) − QUOTE R( )3 • d1QUOTE R( )
SQ QUOTE R( ) − 1( )

If you evaluate now, you will get

2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1

which is the fully expanded result that still contains R s and not X s!! 
Superb, isn't it? The first QUOTE  prevented variable R  from being 
evaluated when we took the derivative. The second prevented it from 
being evaluated when with pressed . The sub expression 
d1QUOTE R( )  might puzzle you, so here is a small explanation. This 
expression means the derivative of the function QUOTE  for its first 
argument,  R . When the HP49G has to take a derivative from a 
function of which it doesn't know what the derivative is, it returns 

such expressions. Since the function QUOTE  simply returns its 
argument quoted, the expression d1QUOTE R( )  is the same as:

∂
∂R

'R'( )

which the next evaluation turned to 1, leaving the final result correct. 
The bigger explanation about such expressions will be given later on. 
Note also that in the above examples we used EVAL  rather than 
EXPAND , because the latter would have expanded the expression 
completely. For example, if you enter V QUOTE R( )( )  and expand, 
then the user defined function V  is given the argument R  and the 
intermediate result is:

R3

R − 1

But EXPAND  goes further after this, finds out that R  contains X2  and 
evaluates R , giving you the final result,

X2( )3

X2 −1

If you want to enter the derivative for R  in algebraic syntax, then you 
don't need to quote. You simply enter

∂
∂R

V R( )( )

If you evaluate this, then the result is:

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )
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the same like using QUOTE  once in RPL syntax. For being able to 
completely expand afterwards without evaluating R , you enter:

∂
∂R

V QUOTE R( )( )( )

and evaluate twice to get:

2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1

which is the same result like using QUOTE  twice in RPL syntax.

And further we go: What happens when a user defined function 
contains a variable in which we have stored some expression 
containing other variables? Take for example the user defined function 
W R( ) = R ⋅ R +1( ) . Its argument, R  , is also a global variable which 

contains X2 . How are such things evaluated? Here we have to always 
remember first: The local variables are completely different entities 
from those that exist globally. As long as the user defined function is 
evaluated, all evaluations of local variables do nothing more than 
simply putting the contents of the local variables on the stack. The 
user defined function W  in RPL syntax would look like:

<< → R @Store argument in local R
@which doesn't have to do
@anything with the existing
@global R, that contains X^2

  << R @Put contents of local R on
     R @the stack twice. Don't evaluate

@these contents further.
     1 @Enter 1.
     + @Calculate R+1
     * @Calculate R*(R+1)
  >>
>>

If you enter X  and press the menu key , then X  is stored locally in 
R . This local R  exists only while the algebraic R ⋅ R +1( )  is evaluated. 
It disappears afterwards. The variable R  in the defining procedure 
R ⋅ R +1( )  is not the global variable R  which contains X2 . The result is 

X ⋅ X +1( )  and not X2 ⋅ X2 +1( ) .

The question is, what happens if we give 'R'  as argument for W ? Well, 
then the global name R  is stored in the local name R . Throughout 
evaluation of R ⋅ R +1( ) , the contents of the local R  are put on the stack, 
but not evaluated any further! Since those contents are the global R , it is 
the global R  that is put on the stack and doesn't get evaluated. When the 
user defined function finishes, it leaves R ⋅ R +1( )  on the stack, but now 
R  is the global name. Now we can evaluate or expand R ⋅ R +1( ) , to let 

the global variable R  be also evaluated and replaced by X2 .

If you on the other hand enter W R( )  and evaluate or expand, then the 
evaluation will return R ⋅ R +1( ) , R  being the global variable as above. 

But this will be further evaluated, replacing R  with its contents X2 . The 
overall evaluation will return X2 ⋅ X2 +1( ) . Notice the difference to RPL 
syntax. Why is there a difference? Well, this is completely logical. In 
RPL syntax, you enter 'R'  and apply the user function W  on that 
argument. Since all contents of the local variable are simply put on the 
stack, the result is R ⋅ R +1( ) . But when you explicitly evaluate W R( ) , 
this includes EVALuation of the result R ⋅ R +1( ) , which results in 

X2 ⋅ X2 +1( ) . Evaluating W R( )  is meant inclusively for the global 

variable R  that is contained in the result R ⋅ R +1( ) . The important thing 

to note here is that it is not the local variable R  that returns X2  in any 
way. To understand this better, take a look at the following user defined 
function (next page):
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<< → R @Store argument in local R
@which doesn't have to do
@anything with the existing
@global R, that contains X^2

  << R @Put contents of local R on
EVAL @stack and evaluate.
R @Contents of local R on stack

@these contents further.
     1 @Enter 1.
     + @Calculate R+1
     * @Calculate R*(R+1)
  >>
>>

If you enter 'R'  and let this program run, then the following happens: 
First, the global name R  is stored in the local name R . Then the 
contents of the local name R  are put on the stack. This puts 'R'  on the 
stack. Then we explicitly evaluate the object on stack level 1, which is 
the global 'R' . This puts X2  on stack level 1. Then once again,  the 
contents of the local name R  are put on the stack. This puts 'R'  on the 
stack once again. We add 1, and so we get R + 1. Then we multiply 
and thus we get X2 ⋅ R + 1( )  as result.

Now what happens if we take derivatives of such functions? Here the 
rule that we already know also applies. The user defined function gets 
evaluated first, and then derivation follows. Enter W X( )  and then X . 
Press  to get the result X +1+ X . The user defined function W X( )  
was first evaluated, and that returned X ⋅ X +1( ) . Then the derivative 
for X  was found, X +1+ X . (If you enter X and press , then the 
result is X ⋅ X +1( ) . If you enter X  again and press  then you get 
the same result, X +1+ X .) Exactly the same if you enter

∂
∂X

W X( )( )

and press . If you press  instead of , then the 

result will be 2 ⋅ X +1, that is completely expanded.

Now the tricky part. If you enter W R( ) , then 'R'  and then press , the 
result is… 0 ! And it complies to the rule: The user function W R( )  is 
evaluated first. We already said that evaluating W R( )  (algebraic syntax) 

goes all the way down and returns X2 ⋅ X2 +1( ) . If we take the 

derivative of this expression for R , we get 0 , because the expression 
doesn't contain R . The same happens if you expand or evaluate the 
expression

∂
∂R

W R( )( )

But if you enter 'R' , and then press , then enter 'R'  again and then 
press , the result will be R + 1+R . As we already saw, in RPL 
syntax no evaluation of the global variable R  took place. So, we get the 
result R ⋅ R +1( )  when we apply the user defined function W  on the 
argument 'R'  which is on the stack. After this there is no user defined 
function that has to be evaluated before taking the derivative. The 
expression R + 1+R  doesn't contain any user defined function, and so 
∂  simply takes the derivative of this expression.

The technique using QUOTE  can also be used here. If you enter 
W QUOTE R( )( ) , then 'R'  and then press , the result will be 
R + 1+R  and not 0 . In algebraic syntax, if you enter

∂
∂R

W QUOTE R( )( )( )

and press , the HP49G returns the result:

d1QUOTE R( )⋅ QUOTE R( ) +1( ) + QUOTE R( ) ⋅d1QUOTE R( )
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If you evaluate this again, you get 2 ⋅R + 1.

If you enter W R( ) , then X , and then press , then the result is 

2 ⋅ X ⋅ X2 +1( ) + X2 ⋅2 ⋅ X . This shows again, the evaluation of W R( )  

took place, the way we already know, which returned X2 ⋅ X2 +1( ) , 

and then the derivative for X  of this result  was found. The strange 
thing comes now. I would expect that evaluating

∂
∂X

W R( )( )

wouldn't return 0 . But it does! In this case the uniformity of the 
behaviour breaks down. Because if the user defined function W R( )  
would be first evaluated following the rules on the previous page, 
then the result of this evaluation should have been X2 ⋅ X2 +1( ) . 
Taking the derivative afterwards should return 
2 ⋅ X ⋅ X2 +1( ) + X2 ⋅2 ⋅ X  and not 0 . So here we have a problem 
because the rules are broken. The conditions that must be true in order 
for this problem to appear are:

1) We have a user defined function that uses local names which also 
exist globally.

2) We give that user function the global name as argument, which it 
also uses itself locally.

3) We use ∂  in algebraic syntax.

I would be very glad if someone could put some light in this mystery, 
so if somebody out there starts experimenting, then please post your 
results and tell us more about this question.

For user defined functions that use both variables in which we didn't 
store anything and variables that do contain something, the same rules 
apply in combination. Try some examples for yourself using the user 
defined function Z  with different combinations of arguments.

Taking the derivatives of user defined functions follows the same rules, 
also when the functions are nested. For example, enter W V X( )( ) , enter 

X  and then press  to get the expression:

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( ) ⋅
X3

X − 1
+1

 
 
  

 
+

X3

X − 1
⋅

X − 1( ) ⋅3 ⋅X2 − X3

SQ X −1( )

How is this result produced? Let's follow what the HP49G does. First 
the most inner function, V X( ) , was evaluated, and returned:

X3

X −1

which was used as argument for the function W . The calculator has 
evaluated

W
X3

X − 1

 
 
  

 

This produced

X3

X −1
⋅

X3

X −1
+1

 
 
  

 

This result was then differentiated for X  and produced the final result. 
Exactly the same would happen, if we entered

∂
∂X

W V X( )( )( )

and evaluated.

Now we do the same using variable R  as argument. If you enter 'R' , 
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then press , then press ,  enter 'R'  again, and press , you 
find:

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( ) ⋅
R3

R − 1
+1

 
 
  

 
+

R3

R −1
⋅

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )

If you enter W V R( )( ) , then 'R'  and then press , then you find 0 . 
In the first case, the HP49G used the argument which we gave it, 
namely 'R'  and just applied the user functions V  and W  on this 
argument. Since the result didn't contain any user defined functions 
any more, the function ∂  just differentiated what it found on the 
stack, without any evaluation. In the second case however, the 
function ∂  found an expression that contained user defined functions, 
so it evaluated them first, found

X6

X2 −1
⋅

X6

X2 −1
+ 1

 
 
  

 

and so the differentiation for R  returned 0 .

Until now we used user defined functions with an algebraic 
definition. But we can also use RPL definitions that return an 
algebraic object. For example enter

∂
∂X

Z1X( )( )

and expand to get 3 ⋅ X2 + 2 ⋅X +1. Alternatively you can also enter 
Z1X( ) , then X , and then press  to find the derivative.

Using the same thoughts like before, we can predict what will happen 
if we evaluate

∂
∂R

Z1R( )( )

Since Z1 has to be evaluated first, the following happens:

<< → X @Store global 'R' in local X
  <<  0 @Enter 0
      1 3 FOR I @Do with I from 1 to 3
       X @Put contents of local X on

@the stack. This puts 'R' on
@the stack.

 I R→I @Put I on the stack, make it integer
 ^ @Find 'R^I'
 + @Add to the 0 that we entered at the

@start of the program. (The next
@times 'R^I' will be added to the sum
@that is already on the stack.)

      NEXT @Increment I, do again
  >>
>>

In all the above events, R  never gets evaluated and so the result of this 

function is R + R2 + R3 , and not X2 + X2( )2
+ X2( )3

. That means, the 

next thing that happens, taking the derivative for R , will return 
1+ 2 ⋅R + 3 ⋅R2 . Enter

∂
∂R

Z1R( )( )

and evaluate to see for yourself. Of course, if you enter

∂
∂R

Z1R( )( )

and expand instead of evaluating, then after the result 1+ 2 ⋅R + 3 ⋅R2  
has been found, the HP49G doesn't stop but proceeds, replacing R  
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with its contents, which are X2  (and doing some reordering). So the 

result of expanding is 3 ⋅ X2( )2
+ 2 ⋅X2 + 1.

On the other hand, if we enter Z1R( ) , then 'R'  and press  to find 
the derivative, the result is 0 . Evaluate Z1R( )  to understand why. In 
this case R  itself is evaluated before Z1. What will be returned if you 
take the derivative of Z1QUOTE R( )( )  for 'R' ?

The function ∂  can also be used for carrying out formal derivations. 
For example, enter F X( )  and then X , and then press  to get 
d1F X( ) . This result denotes the derivative of F X( )  for the first 
variable, which is X . Enter F X,Y( )  and then Y  and press  again to 
get d2F X,Y( ) . This means the derivative of F X,Y( )  for the second 
variable, which is Y . For now, we only note that such formal 
derivations are "not clear to the users that the great makers1  left 
uninformed". If you enter F X T( )( )  then T  and then press , the 

result is d1X T( )⋅ d1F X T( )( ) . The result means the product of the 

derivative of the "inner" function X T( )  for its first variable T , and the 

first derivative of the function F X T( )( )  for its first variable, which 
is…? Yes, that's the question. If the HP49G means that the first 
variable of F X T( )( )  is X T( )  then the result is OK. But if it means that 
it is T , then the result is wrong! This is one of the problems that 
occur to us, uninformed users, if on the one hand, notions like 

F X T( )( )  or F
X
Y

,
Y
X

 
 

 
  are allowed, but on the other hand the notion 

dnF X T( )( ) , or dnF
X
Y

,
Y
X

 
 

 
  is used to represent formal derivatives, 

where n  gives the nth variable of the function. If only functions of 
names as variables were allowed, like for example F X,Y( ) , then we 
1 ACO and the professor.

could always say what the first and what the second variables are. But if 

we allow such things like F
X
Y

,
Y
X

 
 

 
 , go figure out what the first variable 

of that expression is. (If you tend to say that the first variable of 

F
X
Y

,
Y
X

 
 

 
  is X  then wait until we examine such formal derivatives in 

much more detail.) 

Especially for such expressions like F X T( )( ) , we can't use X T( )  as the 
variable of differentiation when we use ∂  because this function only 
accepts as arguments a function (or name) on stack level 2 and a name 
on stack level 1. This means also that it can't be used for finding such 
things, like for example

∂
∂SIN X( ) SIN X( )( )

without any further manipulations. This example could be solved by 

entering 
∂

∂T
T( ) , then entering the list T SINX( ){ } , and then using the 

function . This returns the correct result 1. Note that entering 
∂

∂T
T( ) , 

then T = SIN X( )  and pressing  will error out. We will examine 
such strange looking derivatives in more detail later on, and we will 
return to them when we take a look at derivatives of parametric 
functions.

We go a little further examining formal derivatives. They always appear 
when the HP49G doesn't know how to take the derivative of a function. 
This happens when some undefined abstract function has to be 
differentiated. If the definition of F X( )  doesn't exist in the current path, 
then using ∂  to take the derivative for X , will return d1F X( ) . This 
means, as already said, the derivative of F X( )  for its first variable, 
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which is X . It is really amazing how much can be done with such 
expressions. Enter for example F S( ) , then Y , and press  to find 
the derivative. The same considerations like on the previous pages, 
are the explanation for the result that we get. Since S  contains 
SIN Y( ) , the result is COS Y( )⋅ d1F SINY( )( ) . The HP49G used the 
chain rule to return the product of the derivative for Y  of the inner 
function SIN Y( ) , with the derivative of the outer function. As the 

latter is totally undefined, the HP49G returns d1F SIN Y( )( ) , to denote 
that derivative in a general abstract way. If on the other hand, we 

evaluate or expand 
∂

∂Y
F S( )( ) , we get 0 . In the first case, using RPL 

syntax, the function ∂  evaluated the variable S  in F S( ) , and the 

result was F COS Y( )( ) . Then, the derivation for Y  was carried out, 

and COS Y( )⋅ d1F SINY( )( )  was found. In the second case, using 

algebraic syntax, The HP49G didn't care to evaluate S  in F S( )  first, 
and so the derivation for Y  returned 0 . At this point, it would be 
better to collect all the cases in a single table, for a better 
understanding of the behaviour of the function ∂ . I made two tables 
for this. The first is on the next page and contains cases of 
differentiation of an expression or a user defined function. The second 
table is on the page after the next and contains the cases of 
differentiation of a function that isn't defined, that is cases of formal 
differentiation. In both tables, regions with the same colour are those 
which return their results using the same mechanism. That means, that 
it is not the same result that makes up a region, but rather the same 
way that is followed by the HP49G to return these results. The formal 
derivatives, will be also our entrance to yet another neglected feature 
of the HP49G, its further capabilities for handling formal derivatives 
in combination with user defined derivatives. He, he, this machine 
has much too much stuff that we forgot about. But what a marathon 
would it be without presenting exactly this stuff?

Before we take a look to those forgotten features, let's do some 
examples that are more complex. We use what we know until now, to 

explain how the results are derived. Keep all variables and user defined 
functions because the following examples use them.

Enter F V X( )( ) , then enter 'R'  (in quotes) and press . The result is 0 , 
as we expect, because as we have seen already, the user defined 
function V X( )  (argument of F ) is evaluated before differentiation. This 
gives:

F
X3

X − 1

 
 
  

 

Now, the HP49G sees that this function, though undefined, doesn't 
depend on R , because R  doesn't appear as an argument of F . So the 
derivative is found to be 0 .

If you enter F V X( )( )  again, but then take the derivative with respect to 
X  using the function ∂ , then the result is:

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( ) ⋅ d1F
X3

X −1

 
 
  

 

How is that result produced? Let's follow again our known rules. First 
of all the function V X( )  is evaluated. The result of this action is:

X3

X −1

This is used as argument for the undefined function F , that is we get:

F
X3

X − 1

 
 
  

 

This result is then differentiated for X . According to the rules of 
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                0  

**

      
2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1
                             0  

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )  

V QUOTE R( )( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R  )

*

        
2 ⋅ X3 − 3 ⋅ X2

X2 − 2 ⋅ X + 1
 

                      0          
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )                 0

V QUOTE X( )( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> )

            0  
R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )
X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1( )                0

V R( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R  )

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )                     0        
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )                  0

            0

                    'X'

              2 ⋅R + 1

                     'R'

V X( )
(User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> )

                               0

                             'X'

           2 ⋅R + 1

                    'R'

R2 +R
(X2

 stored in R )

                            Variable of deri-
                                                 vation
Expression

RPL Syntax: Enter expression then variable, then use ∂
Algebraic Syntax:

Enter 
∂

∂ var
Expression( ) ,  then evaluate or expand

QUOTE R( ) −1( )⋅ 3 ⋅QUOTE R( )2 ⋅d1QUOTE R( ) − QUOTE R( )3 ⋅d1QUOTE R( )
SQ QUOTE R( ) −1( )

* Result is
EVALuate again to 
get the result in 
the table** Result is

QUOTE X( ) −1( ) ⋅3 ⋅ QUOTE X( )2 ⋅d1QUOTE X( ) − QUOTE X( )3 ⋅d1QUOTE X( )
SQ QUOTE X( ) − 1( )

No evaluation 
of expression 
variables 
before 
differentiation.

Evaluation of 
function 
before 
differentiation.

Evaluation 
argument of 
function and 
of function 
before 
differentiation.

Evaluation of 
function but 
not of its 
argument 
before 
differentiation.



derivation we get:

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( ) ⋅ d1F
X3

X −1

 
 
  

 

where the expression:

d1F
X3

X −1

 
 
  

 

stands for the formal derivative of:

F
X3

X − 1

 
 
  

 
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0*** d1F QUOTE R( )( )0d1F R( )F QUOTE R( )( )
X2

 stored in R

02 ⋅R ⋅d1F R2( )4 ⋅X3 ⋅d1F X4( )0F R2( )
X2

 stored in R

0d1F R( )2 ⋅ X ⋅ d1F X2( )0F R( )
X2

 stored in R

* d1F QUOTE X( )( )d1F X( )F QUOTE X( )( )
2 ⋅ X ⋅ d1F X2( )02 ⋅ X ⋅ d1F X2( )0F X2( )

F X( )

00

d1F X( )

'X'

0

'R'

 d1F X( )

'X'

0

'R'
                            Variable of deri-
                                                 vation
Expression

RPL Syntax:
Enter expression then variable,
then use ∂

Algebraic Syntax:

Enter 
∂

∂var
Expression( ), then evaluate

* EVALuate again to get d1F X( )

Formal differentiation with expansion 
of intermediate differential forms.

Expansion of differential forms like 

d1F QUOTE X( )( )  to d1F X( ) .

No expansion of the differential forms 

like d1F QUOTE X( )( ) . Using 

EXPAND instead of two EVALs will 
expand such forms to forms like 

d1F X( ) .

** EVALuate again to get d1F X2( )

Evaluation of the argument of the 
undefined function before 
differentiation.

No evaluation of the argument of the 
undefined function before 
differentiation.

No evaluation of the argument of the 
undefined function before 
differentiation. No expansion of the 
differential forms like 

d1F QUOTE R( )( )  Using EXPAND 

instead of two EVALs will expand 

such forms to forms like d1F X2( ) . 

***  EVALuate again to get d1F R( ) . An additional EVAL will return d1F X2( )



That means a derivative which can't be explicitly found, since F  is 
undefined.

We make the last example trying to find the derivative of V F R( )( )  for 

R  and for X . If you enter V F R( )( ) , then 'R' , and then press , you 
are going to get 0 . This shows again, that the argument of F , which 
is R , gets evaluated to its contents, which are X2 . After this we have 

V F X2( )( ) , which differentiated for R  must return 0 , since it doesn't 

depend on R . But if you enter V F R( )( ) , then X , and then press , 
you get:

F X2( ) −1( )⋅ 3∗F X2( )2
⋅ 2 ⋅ X ⋅ d1F X2( ) −F X2( )3

2 ⋅ X ⋅d1F X2( )
SQF X2( ) −1( )

Let's see how this was produced. First, the argument of F  was 
evaluated. This argument was R , and since X2  is stored in R , the 
result of the evaluation was X2 . This was used as argument for F , 
and since F  is undefined, we simply get F X2( ) . This expression was 

used as argument for V . So instead of getting

X3

X −1

we got

F X2( )3

F X2( ) −1

Next, the differentiation for X  was carried out. According to the rules 
of differentiation for a ratio, we have:

∂
∂X

F X2( )3

F X2( ) − 1

 

 
 

 

 
 =

F X2( ) −1( ) ⋅
∂

∂X
F X2( )3( ) −F X2( )3

⋅
∂

∂X
F X2( ) −1( )

SQ F X2( ) −1( )
If we carry out the derivations of the right hand side of the last equation, 
keeping in mind that d1F X2( )  is the formal derivative of F X2( ) , then we 
see that the result returned by the HP49G was correct (inside the frame 
of its own evaluation rules).

Do some examples for yourself and try to predict the behaviour of the 
function ∂ , using the knowledge that we have so far. Remember that 
QUOTE  can also be used with formal functions, which means that 
F QUOTE R( )( )  is perfectly OK.

We proceed with some unexpected features regarding such formal 
derivations. First of all, the meaning the expressions d1F X( )  is: The 
derivative of F , for its first variable. "First" means really the order of 
appearance of the variable inside the parentheses. We make an example. 
Enter:

∂
∂X

F Y,X( )( )

and expand. This will return d2F Y,X( ) , which means the derivative of 
F  for its second variable, which is X . Such derivatives add really great 
power to the HP49G and they are not only of cosmetic nature. Suppose 
for example that you have the expression

∂
∂X

F X( ) ⋅G X( )( )

Expanding this you will get the result G X( ) ⋅ d1F X( ) +F X( )⋅ d1G X( ) . 
This result has been calculated using the product rule of derivation. If 
you have the derivative of some complex expression, in which many 
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functions are combined in many different ways, then this feature can 
break the derivative into many small pieces, each of which contains a 
derivative of a single function for a single variable. Consider for 
example:

∂
∂X

F X( )⋅ G X( )2

G X( ) + X

 

 
  

 
 

In this form it is really hard to say how the derivatives of the functions 
participate to built-up the whole derivative. Bur expanding this, you 
get the result:

G X( )3 − X ⋅ G X( )2( ) ⋅d1F X( ) + G X( )2 + 2 ⋅ X ⋅ G X( )( ) ⋅F X( ) ⋅ d1G X( ) − G X( )2 ⋅F X( )
G X( )2 + 2⋅ X ⋅G X( ) + X 2

This contains only derivatives of a single function for a single 
variable, which makes easier to see how the differential forms 
participate to built-up the derivative

∂
∂X

F X( )⋅ G X( )2

G X( ) + X

 

 
  

 
 

If you have taken some thermodynamics class, then you surely know 
how easier life can get with this feature. We will have some examples 
on this later on, when we know enough about derivatives on the 
HP49G.

Another very special feature of such formal derivatives is that in some 
sense they are not special at all! Enter for example d1F  and press 

 to find out that this is simply a name with object type 6. What 
does this imply? Well, sometimes we know the derivative of some 
function but we don't need the function itself for our work. On the 
HP49G we can not only define functions but also derivatives, that is, 
we can make not only user defined functions but also user defined 
derivatives. Suppose for example that we know that the derivative of 

F X,Y( )  for X  is eX2 ⋅ Y ⋅ X − Y − 2( ) . We go to the EQW, we enter 

d1F X,Y( ) = eX 2 ⋅Y ⋅ X − Y − 2( ) , we press  to put the equation on 
the stack and we press . Then a new variable d1F  is created, which 
contains:

<< → X Y 'EXP(X^2*Y)*(X-Y-2)' >>

Later on, we might have to calculate something like for example:

∂
∂X

F X,Y( )( ) 
 

 
 

2

eX⋅Y

If you expand this without having made the definition of d1F X,Y( ) , you 
will get:

d1F X,Y( )2

eY⋅X

But if the derivative d1F X,Y( )  is defined in the current path, you get:

eX2 ∗Y ⋅ X − Y − 2( )( )2

eY⋅X

If you now press  and then , you get:

e2⋅Y⋅X 2 − Y⋅X ⋅ X − Y + 2( )( )2

The user defined derivative d1F X,Y( )  was evaluated just like any other 
normal function. It used the arguments X  and Y  and returned the result 

eX2 ⋅ Y ⋅ X − Y − 2( )  according to its definition.
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Alternatively you can use it also in RPL syntax. Enter the arguments 

X  and Y  and press  to get the result eX2 ⋅ Y ⋅ X − Y − 2( ) .

We had good news until now, so it's time for some bad news. There 
are also problems with the notation like d1F X( ) . One of the problems 
is, as we already noticed, that we are allowed to build-up things like 

d1G
X
Y

 
 

 
  that don't have a distinct order of their arguments. At the 

same time the information about the variable of differentiation is coded 
as a number between the small "d" and the name of the function. In 
the above example, which is the first variable? If you say that it is X , 
then let's have an example to convince you about the problem. Enter

∂
∂X

G
X
Y

 
 

 
 

 
 
  

 

Press  to get:

d1G
X
Y

 
 

 
 

Y

This agrees with the theory that the first variable is X , because we 
differentiated for X  and we got an answer that contains:

d1G
X
Y

 
 

 
 

But according to this, if we differentiate for Y , we must get an 
answer that contains:

d2G
X
Y

 
 

 
 

Enter:

∂
∂Y

G
X
Y

 
 

 
 

 
 
  

 

and expand. You get:

−
X ⋅ d1G

X
Y

 
 

 
 

Y2   (Gasp!!!)

If X  is the first variable, why then is Y ... also the first variable? The 
result contains:

d1G
X
Y

 
 

 
 

which is the same like before, the derivative of G
X
Y

 
 

 
  for its first 

variable, though we differentiated for Y  and not for X  this time.

The notation:

∂
∂X

Function arguments( )( )

is much more precise than the notation d1Functionarguments( )  
because the first explicitly shows the variable with respect to which we 
are taking the derivative, no matter if it is the first, the second or the 
twentieth.

This shows that the notation d1Functionarguments( )  is only thought 
for a listing of arguments, be them simple names or expressions, inside 
the parentheses. For example evaluating
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∂
∂Y

G X,Y( )( )

or

∂
∂X

G X,Y( )( )

will return results that can be interpreted easily, like d2G X,Y( )  or 
d1G X,Y( ) . When some argument is not a simple name, like for 
example in

∂
∂X

G
X
Y

 
 

 
 

 
 
  

 

we run into troubles, because of the ambiguous interpretation of the 
expression:

d1G
X
Y

 
 

 
 

in the result.

From the above I might have created the impression that for example 
the expressions

∂
∂X

G X2( )( )
and d1G X2( )  are at least theoretically equal. But this isn't true (at least 
in the CAS world of the HP49G). If you enter

∂
∂X

G X2( )( )

and expand, you get 2 ⋅ X ⋅ d1G X2( ) . This means that for the HP49G the 
relation holds:

∂
∂X

G X2( )( ) = 2 ⋅ X ⋅ d1G X2( )

The two expressions,

∂
∂X

G X2( )( )
and

2 ⋅ X ⋅ d1G X2( )
differ by a factor of 2 ⋅ X , and so the expressions

∂
∂X

G X2( )( )
and

d1G X2( )
are not identical! Only in cases where the function has simple names as 
arguments, like for example G X,Y( ) , the two notations

∂
∂X

G X,Y( )( )

and

d1G X,Y( )  are equivalent. The expression:
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∂
∂X

G X2( )( )
means the derivative of G X2( )  according to the chain rule, that is the 
product of the "inner" derivative with the "outer" derivative. The 
expression d1G X2( )  means the derivative of G X2( )  with respect to… 

X2(!!!) Now we can perhaps see better, what is meant by first, 
second, and so on arguments of such expressions. The expression:

dnG arg1,arg2,…,argm( )

means the derivative of G for its nth argument, counting the "slots" 
between the commas and not the names of variables that appear in the 
arguments, which themselves can be arbitrary expressions. That 
means, that for example:

d2G SIN X( ),COS X( )( )
is equivalent to the expression:

∂
∂COS X( ) G SINX( ),COS X( )( )( )

which is impossible to write directly with the HP49G! It it also totally 
impossible to do? Well, let's see. First, we have to get an idea of what 
such a derivative means.

A derivative 
∂f x( )
∂x

 of a function f x( )  can be understood as the rate of 

change of f x( )  in relation to the rate of change of x . This means that 
knowing it, we also know how the values of f x( )  alter when x  itself 
alters. The notion f x( )  shows that the function f  depends on x . 

When x  changes, then f x( )  (in general) also changes. But we can also 
consider how some function f x( )  changes when some other function 
g x( )  changes. For example, we can consider what SIN X( )  does, with 
corresponding changes of COS X( ) . And this can be written as:

∂
∂COS X( ) SINX( )( )

How to deal with such expressions?

Since both things depend on X , we can use parametrisation. We define 
t = COS X( ) , where t  is a new variable, defined as a function of the 
variable X . Enter the equation t = COS X( ) . Now, if we solve 
t = COS X( )  for X , we are going to get X  as a function of t . Enter X  
and press . The result is:

X = − 2 ⋅ n1⋅π + ACOS t( )( ) X = 2 ⋅n1⋅ π + ACOS t( ){ } . 

This can be substituted in SIN X( ) , in order to convert it to a function of 

t . Enter SIN X( ) , press  and then . Now you have:

SIN − 2 ⋅n1⋅ π + ACOS t( )( )( ) SIN2 ⋅ n1⋅π + ACOS t( )( ){ } .

Now, if we consider the expression

∂
∂COS X( ) SINX( )( )

again, we see that SIN X( )  can be replaced by either:

SIN − 2 ⋅n1⋅ π + ACOS t( )( )( )
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or:

SIN2 ⋅n1⋅ π + ACOS t( )( )

And COS X( )  can be replaced by t . So the derivative

∂
∂COS X( ) SINX( )( )

can be written as:

∂
∂t

SIN − 2 ⋅n1⋅ π + ACOS t( )( )( )( )
or:

∂
∂t

SIN 2 ⋅n1⋅ π + ACOS t( )( )( ) .

With the list:

SIN − 2 ⋅n1⋅ π + ACOS t( )( )( ) SIN2 ⋅ n1⋅π + ACOS t( )( ){ }
on stack level 1, enter t  and press  to get the list:

COS 2 ⋅n1⋅ π + ACOS t( )( )( ) ⋅ 1

1−SQ t( )

COS 2 ⋅n1⋅ π + ACOS t( )( ) ⋅−
1

1− SQ t( )

 

 
 

 
 

 

 
 

 
 

Press  to explode the list. Press  to get rid of the element 
count. Now the expression

COS 2 ⋅n1⋅ π + ACOS t( )( ) ⋅−
1

1− SQ t( )

is on stack level  1. Press  to get :

− t ⋅ COS 2 ⋅n1⋅π( ) − − t2 −1( ) ⋅ SIN2 ⋅n1⋅π( )( ) ⋅
1

1− SQ t( )
 

 
 

 

 
 

Since the HP49G still has no integer assuming capabilities, we must do 
a bit of work by hand. Press  to get this in the EQW. Since n1 is 
integer we know that COS 2 ⋅n1⋅π( )  is equal to 1 and SIN2 ⋅n1⋅π( )  is 
equal to 0 . Edit the expression and change it to:

− t ⋅1− − t2 −1( ) ⋅ 0( )⋅
1

1− SQ t( )
 

 
 

 

 
 

Press  to put it on the stack. Expand it to get:

t ⋅ − t2 −1( )
t2 −1

Press  and follow the same instructions to change the expression:

COS 2 ⋅n1⋅ π + ACOS t( )( )( ) ⋅
1

1− SQ t( )

to:

−
t ⋅ − t2 −1( )

t2 − 1
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Now we rebuild the list. Enter 2  and press  to get:

t ⋅ − t2 −1( )
t2 −1

−
t ⋅ − t2 − 1( )

t2 −1

 
 
 

 
 
 

These are the two possible results of

∂
∂COS X( ) SINX( )( )

written as functions of the variable t , for which we have defined 
t = COS X( ) . We can use this formula to do back substitution. Enter 
t = COS X( )  and press  to get:

COS X( ) ⋅ − COS X( )2 − 1( )
COS X( )2 −1

−
COS X( ) ⋅ − COS X( )2 − 1( )

COS X( )2 −1

 
 
 

  

 
 
 

  

Press  to convert − COS X( )2 −1( )  to SIN X( )2
 and get:

−
COS X( ) ⋅ SINX( )

SINX( )2

COS X( ) ⋅ SIN X( )
SINX( )2

 
 
 

 
 
 

The two expressions in the list are the results of the differentiation:

∂
∂COS X( ) SINX( )( )

Leave them on the stack, as we are going to use them in some 
minutes.

If we want to visualise the above, then we can plot all points that have as 
x-coordinate COS X( )  and as y-coordinate SIN X( ) . It sounds familiar, 
doesn't it? Yes, this is the built-in plot type Parametric . Perhaps now 
it is more clear, that we used parametrisation to find the above 
derivative. Let's see how we do parametric plots on the HP49G. First of 
all, for two dimensional parametric plots the HP49G uses complex 
quantities. The real part is used for plotting the horizontal coordinate, 
and the imaginary part is used for plotting the vertical coordinate. For 
example, if you have some parametric function, like:

Y X( ) X = t2

Y = t − 1

 
 
 

where the coordinates X  and Y  depend on the parameter t , then the 
complex quantity that the HP49G plots, is t2 + t −1( )⋅ i . That's what 
you have to store in EQ, in order to use the plot type Parametric . In 
our example we have found how y = SINX( )  changes, when 
x = COS X( )  changes. The horizontal and vertical coordinates depend 
on the parameter X . So we will plot COS X( ) +SIN X( ) ⋅ i .

Press and hold down  and while you hold this key down, press . 
The PLOT SETUP  screen appears. Choose Parametric  plot type. 
Move to the input field EQ: and enter COS X( ) +SIN X( ) ⋅ i . Enter X  in 
the input field Indep: , since X  is our parameter. Note that in this type 
of plot, Indep:  is not the horizontal coordinate! Now, press and hold 
down  and while you hold this key down, press  to go to the 
PLOT WINDOW − PARAMETRIC  screen. Set horizontal view 
from −2  to 2 , and vertical view from −1 to 1. Set Low:  to 0  and 
High: to 6.28 . (This is approximately from 0  to 2 ⋅π .) Set Step: to 

0.314 . (Approximately 
π

10
.) Now press  and then . 

You get a circle, that starts at COS 0( ),SIN0( )( ) = 1,0( ) , goes once 
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around the plot origin in clockwise direction, and ends again at 1,0( ) . 
The slope of the curve at any point of the circle is given by what we 
have found, that is by both formulae in the list:

−
COS X( ) ⋅ SINX( )

SINX( )2

COS X( ) ⋅ SIN X( )
SINX( )2

 
 
 

 
 
 

In this list, the 
variable X  is no 
more a parameter 
but a coordinate, 
namely the 
h o r i z o n t a l  
coordinate. This is 
exactly why we 
have two formulae 
for the slope. If 
you take an 
arbitrary value for 
the X  coordinate between −1 and 1, then the are two vertical 
coordinates Y  that correspond to it. And so we also have two 
derivatives. We want to superimpose the plot of the derivatives with 
the parametric plot. The derivatives are functions and so we might be 
inclined to change the plot type to Function . But this would cause 
problems. While the horizontal coordinate of the parametric plot goes 
from −1 to 1, the corresponding horizontal coordinate of the functions 
should be from 0  to 6.28 , exactly like the values for the 
parameter X  of the parametric plot. This would plot the derivatives 
in a way that corresponding horizontal coordinates of the parametric 
plot and its derivatives wouldn't coincide. We must find another way 
to plot the derivatives. One option is to plot them also as parametric 
functions. Consider for example the first formula in the above list, 
which defines the function:

y = −
COS X( )⋅ SIN X( )

SIN X( )2

We can turn it to a parametric function by writing:

x = COS X( )

y = −
COS X( )⋅ SIN X( )

SIN X( )2

Note that we didn't simply set x = X , because we want to stay 
compatible to the first plot, in which the horizontal coordinate x  was set 
equal to COS X( ) . (The variables x  and X  are not the same!) Our 
parametric representation of the first derivative is:

COS X( ) + −
COS X( ) ⋅ SINX( )

SINX( )2

 

 
  

 
 ⋅ i

Since we have two derivatives, we must also plot two parametric 
functions. That means that we must enter the list:

COS X( ) + −
COS X( ) ⋅ SIN X( )

SIN X( )2
 

 
  

 
 ⋅ i COS X( ) +

COS X( ) ⋅ SIN X( )
SIN X( )2 ⋅i

 
 
 

 
 
 

in the input field EQ: of the PLOT SETUP  screen. (When the 
reserved variable EQ  contains a list of parametric functions rather than a 
single parametric function, then all parametric functions are plotted 
together.) Press  to leave the plot, and then -  to go back 
to the PLOT SETUP  screen. Select the input field EQ:. Because 
entering a function can be a tedious task without the EQW, and because 
you can't enter the list directly in the EQW, you can temporarily leave 
the PLOT SETUP  screen, build-up the list using the stack, and return 
to the PLOT SETUP  screen with the list later. Press  to go to 
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the interactive stack, which still contains the list with the two 
derivatives. The small arrow at the right of the stack level number 1 
indicates that the object in this stack level can be used for further 
operations. Press . This echoes the list to the command line, 
which we came from. (The command line of the input field EQ:.) 
Press  to leave the interactive stack and return to the 
PLOT SETUP  screen. Now you see that the list waits in the 
command line to be entered in the input field "EQ:". Press [ENTER] 
to put it in the input field EQ:. This is not exactly the list that we have 
to plot, so we must edit it. Select the menu input field EQ: and press 

 until you see  over the key . Press  to 
temporarily leave the PLOT SETUP  screen. Now you are on the 
stack. This is not the same operation like pressing , as it copies 
the contents of the selected input field on a new empty stack. It also 
starts the normal stack environment instead of sending you to the 
interactive stack. This new stack can be thought a separate private 
stack of the input field EQ:. The global stack is also preserved but is 
temporarily hidden, so don't worry as we are not going to lose 
anything. The top part of the screen still shows the title of the input 
screen that you came from, as an aid for letting you know exactly 
where you are. Also, the message Enter function(s) to plot  
appears on the top of the screen to indicate exactly which input field 
will receive what you enter now. The previous contents of the input 
field EQ: are put on the stack. We have to change this list to:

COS X( ) + −
COS X( ) ⋅ SIN X( )

SIN X( )2
 

 
  

 
 ⋅ i COS X( ) +

COS X( ) ⋅ SIN X( )
SIN X( )2 ⋅i

 
 
 

 
 
 

We are going to use the list processing capabilities of the HP49G. 
Enter i and press  to multiply both objects in the list with the 

imaginary unit. Now, enter COS X( )  and press  to swap stack 
levels 1 and 2. You might think now that you just have to press  to 
add COS X( )  to both objects in the list. But especially this operation 
concatenates two lists or any object with a list, rather than adding an 

object to all objects in a list. For this purpose there is the command 
ADD . It is the sixth item of the menu MTH/LIST, so press , and 
then press . Now press  to add COS X( )  to both algebraic 
objects in the list. The message on the top of the screen has changed to 
Press [CONT] for menu . Press  to return to the menu that 
will allow to take the list on stack level 1 to the input field EQ:. Now 
press  to return to the PLOT SETUP  screen and put the list to 
that input field. Press . The two derivatives are plotted on the 
same plot that contained the 
circle. Press  to 
return to the (global) stack. 
As you can see, it still 
contains the original (not the 
edited) list with the 
derivatives.

In order to find such 
derivatives, like for example

∂
∂COS X( ) SINX( )( )

we don't need to do all by hand, like we did on pages 1-24 to 1-26. We 
can make a program that does (almost) everything automatically. 
Consider the code:

<< → f1 f2 @Store in locals
  << f1 f2 @Recall locals

IF f2 TYPE 6. == @If f2 is a name
THEN @then

∂ @take derivative
ELSE @else

LNAME 1 GET @get first name that is in f2,
SWAP ttemp = @build up equation f2=ttemp
SWAP SOLVE @solve equation for first name
SUBST EXPAND @substitute in f1
ttemp ∂ @take derivative for ttemp
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ttemp f2 = SUBST @back substitution
EXPAND @expand

END
  >>
>>

Store the program in dF1F2  and let's test it. The program takes two 
arguments. On stack level 2 it expects to find the expression to 
differentiate. In stack level 2 it expects the expression that specifies 
what to differentiate for.

Enter X2  and make a copy of this expression on stack level 2. Press 
the menu key . The result is the list 1 1{ } , which shows that 
it worked. (Anything differentiated for itself has to return 1.) Perhaps 
code should be added to remove duplicates from the list?

Enter eX2

 and then eX . Press  again to get 
2 ⋅ X ⋅ eX2

eX .

And one example in algebraic syntax. Go to the EQW and enter 

dF1F1 X2 ,
1
X

 
 

 
 . Put that on the stack and EVALuate to get − 2 ∗X3( ) .

Let's try also the example that we used for parametric plots. Enter 
SIN X( )  and then COS X( ) . Press . After some seconds the 
HP49G returns the list:

−
− COS X( )2 −1( ) ⋅ COS ACOS COS X( ) + 2 ⋅ n1⋅π( )( )

COS X( )2 − 1

−
− COS X( )2 −1( ) ⋅ COS ACOS COS X( ) + 2 ⋅n1⋅π( )( )

COS X( )2 −1

 

 

 
 

 

 
 

 

 

 
 

 

 
 

As you can see, the program didn't do the work that we did in the 
example. But this would be too much to demand as there is a huge 
number of possible results and possibilities to simplify them. The real 
problem is that (as already said 100 times) we still have no integer 
assumptions on the HP49G. In this case you can enter n1= 1 and then 
press , to turn n1 from a name to an integer. Then press 

 to get:

COS X( ) ⋅ SINX( )
SIN X( )2 −

COS X( ) ⋅ SIN X( )
SINX( )2

 
 
 

 
 
 

The program uses LNAME to find the first name returned in the vector 
of names that appear in f2 . It assumes that this is the variable whose 
variation causes the variations of f1 and f2 . But this doesn't have to be 
always true. Instead of using the command LNAME, we could also 
give an additional argument to the program, to specify the varying 
variable. Another problem is that the program relies on SOLVE  to solve 
the equation f2 = ttemp . If this step fails, then the program will not 
work. Since we will talk in much more detail about derivatives of 
functions in parametric form, we leave the program dF1F2  as it is for 
the time being.

A question that has been asked quite often in the group, is how to do 
implicit differentiation on the HP49G. And the answer to this question is 
rather simple: Use exactly the same method like for explicit 
differentiation. Suppose for example that you have the implicit function 
given by SIN Y( ) = Y − X . In this formula the variable Y  means 
actually Y X( ) , the quantity Y  is a function of the quantity X . We can't 
solve the equation SIN Y( ) = Y − X  analytically for Y . That means, we 
can't write Y X( ) = someFunctionX( ) . Nonetheless we can find the 
derivative of Y X( )  as a function of Y X( )  and X  by differentiating 
implicitly. To do that on the HP49G, we must always keep in mind that 
the calculator doesn't know that Y  somehow depends on X . And in this 
case it is a very good policy to not know. Consider for example what 
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would happen if you had to take the derivative of X ⋅ Y ⋅ Z  for X . If 
the HP49G would automatically consider all variables different than 
X  to be functions of X , then we would end up with very complicated 
expressions containing all thinkable derivatives of all variables other 
than X . And we would need a special mechanism for denoting that 
some variables don't depend on X . Instead of this the HP49G 
considers all variables in an expression that don't explicitly depend on 
X  (or any other variable of differentiation) as constants. If we have 
some variable for which we know that it does depend on X  (or any 
other variable of differentiation), we have to write this explicitly. In 
the example SIN Y( ) = Y − X , where Y  is a variable that depends on 

X , we write SIN Y X( )( ) = Y X( ) − X . If you enter this, then enter X , 

and then press , then you get COS Y X( )( )⋅ d1Y X( ) = d1Y X( ) −1. 

Now, you can enter d1Y X( )  and then press , to get the 
solution:

d1Y X( ) =
1

COS Y X( )( ) +1

The HP49G has done implicit derivation and solved for d1Y X( ) . The 
last operation, solving for d1Y X( )  might look unfamiliar, since we 
solved not for a variable but for an algebraic expression, but it is 
exactly as good as solving for any variable. To get an idea of this 
capability, enter SIN X( ) + COS Y X( )( ) = eX +Y X( ) , then COS Y X( )( ) , 

and the press  to solve for COS Y X( )( ) . The result is 

COS Y X( )( ) = eX+ Y X( ) − SIN X( ) , which shows that the whole 

expression COS Y X( )( )  was considered as a single variable. Still 
about implicit derivation: If you enter the above example as 
SIN Y( ) = Y − X , and take the derivative for X , then you are going to 
find 0 = −1. This unusual result comes because the left and the right 
hand sides of the equation SIN Y( ) = Y − X  were differentiated 
separately for X . Since the left hand side doesn't explicitly depend on 

X , the differentiation for X  (i.e. 
∂

∂X
SIN Y( )( )) returned 0 . On the 

other hand, the right hand side does depend on X , and so the 

differentiation for X  (i.e. 
∂

∂X
Y − X( )) returned −1. Both results were 

then set equal and so the result was 0 = −1. This isn't a bug even if the 
resulting equation is impossible. This "impossibility" was already 
contained in the expression SIN Y( ) = Y − X  in combination with 
derivation for X . The concept used in the HP49G for derivation, says 
that anything that doesn't explicitly depend on the variable of 
differentiation, is a constant. If Y  is a constant in the equation 
SIN Y( ) = Y − X , then the equation is not an identity but a proposition. 
It isn't valid for any value of Y  but only for some particular values. In 
this case we can't conclude equality of derivatives because of general 
equality of the two sides of the equation, i.e., we can't say:

leftHandSide(Y,X) = rightHandSide(Y,X) ⇒

∂
∂X

leftHandSide(Y,X( ) =
∂

∂X
rightHandSide(Y,X( )

To understand this better, consider the 
equation F X( ) = G X( ) . (In this example we 
only have the variable X , but for the 
understanding this doesn't matter.) If this 
equation is an identity, then the two things, 
F X( )  and G X( )  are always equal. If we 
plot them we are going to get two identical 
graphs. And since the two curves are identical, so must also be their 
derivatives. That means, in this case we can take the derivatives of both 
sides and set them equal. (Technique used in implicit differentiation.)

On the other hand, if the equation F X( ) = G X( )  is not an identity but a 
proposition, then it will hold only for some particular values of X . 
Plotting the two things, F X( )  and G X( ) , will produce two different 
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graphs, which (eventually) intersect at 
some particular values of X . We see that 
in this case the derivatives of the two 
things can't be equal (in general).

Thus, on the HP49G, we have the 
possibility to do both. If the equation 
which we use for implicit differentiation 
is an identity, we have to denote this by explicitly writing all 
dependencies on the variable of differentiation. If on the other hand, 
we have some equation that is a proposition, and we (for some 
reason) have to take the derivatives of the right and the left hand side 
and set them equal to each other, we omit the explicit dependencies on 
the variable of differentiation.

Last thing we are going to examine is how substitutions behave, when 
use on expressions that contain ∂ . Enter:

∂
∂X

X2 −1( )

then X = Y  and then press . The result is 2 ⋅ Y , which is 
correct, but doesn't allow us to tell if the substitution was made before 
or after the differentiation. Undo the last operation, and edit the 
equation in stack level 1 to X = Y2 . Press again . This time the 
HP49G errors out: Bad Argument Type . This shows that the 
HP49G tried to do the substitution before taking the derivative. It 

tried to substitute X = Y2  for each occurrence of X  in 
∂

∂X
X2 −1( ) . 

This would return:

∂
∂Y2 Y2( )2

−1( )
and as we already have seen, this is impossible on the HP49G right 
out of the box. (That's why we made the program dF1F2 .)

On the other hand, we have also the command  for substitutions. Drop 

the equation X = Y2 , and enter the list X Y{ } . Press . The result is 
again the correct expression 2 ⋅ Y , but now the operation took a bit 
longer, which shows that some other mechanism was used. Undo the 
operation, and edit the list to X Y2{ } . Press  again to get 2 ⋅ Y2 . 
Wow, it worked!  The HP49G has found the result of:

∂
∂Y2 Y2( )2

−1( )
Does this make our program dF1F2  totally unnecessary? Unfortunately 
not, because for derivatives like for example

∂
∂SIN X( ) COS X( )( )

we can't simply enter some 
∂

∂…
…( )  and use some substitution list with 

, to directly get the correct result. We have first to find some kind of 
parametrisation, which is what dF1F2  mainly does. In the case of

∂
∂SIN X( ) COS X( )( )

as we already have seen, we can write:

∂
∂t

1− t2( )
then enter t SINX( ){ } , and then press , to get the result:
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− 2 ⋅SIN X( )( )
2 ⋅ 1− SIN X( )2

If you expand and then press , you find:

−
SINX( )⋅ COS X( )

COS X( )2

which is exactly one fo the two results that dF1F2  returns, if we give 
it the arguments COS X( )  and SIN X( ) . However, the built-in 
function  can be used directly for derivatives with respect to 
expressions f x( ) , when the derivatives are of the form:

∂
∂f x( ) G f x( )( )( )

where G f x( )( )  is a function that depends explicitly only on f x( ) . Such 
derivatives are for example:

∂
∂SIN X( ) SIN X( )2 − SINX( )( )
or:

∂
∂X2 SIN X2( ) − X2( )
and so on. We can't enter them directly since the quantity for which 
we differentiate isn't a single variable name. But we can enter first the 
derivative in which all occurrences of f x( )  are replaced by a single 

variable name, say S . Then we can enter the list S f x( ){ } and use 

the command  to find the derivative. For example, if we have

∂
∂SIN X( ) SIN X( )2 − SINX( )( )
we can enter:

∂
∂S

S2 − S( )

then the list S SINX( ){ } , and then press , to find the derivative 

2 ⋅ SIN X( ) −1.

Let's move on now to the other command that the HP49G provides for 
derivation, DERIV . This is the new command that came with the CAS, 
that means the HP48 calculators do not have it. (Except of course if you 
install ERABLE.) How does this command behave? You guessed right, 
we are going to repeat what we did with ∂ , but now using DERIV . 
Take a breath and here we go.

In RPL syntax the command DERIV  takes the function from stack level 
2, and the variable from stack level 1, and returns the derivative of the 

function for the specified variable. For example, enter e
SIN Y2( )

, then 
enter Y  and then press . (The command is the second item in 

menu CALC/DERIV). The result is e
SIN Y2( ) ⋅ COS Y2( )⋅ 2 ⋅ Y . The same 

can be done using an algebraic syntax. Go to the EQW and press  
to write the unfinished expression DERIV ,( ) . The cursor blinks 
at the left of the comma to indicate that the HP49G expects you to enter 

the function that must be differentiated. Enter e
SIN Y2( )

. Press  to go 
to the second place holder to the right of the comma and enter Y . Now 

you have DERIV e
SINY 2( )

,Y 
 

 
 . Press  to put that on stack level 
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1. Let's see how the expression looks like when it isn't shown in 
pretty print. Press  and then  to edit the expression not in the 
EQW but in the command line, where no pretty print is used. Now 
you see: 'DERIV EXP SIN Y^2( )( ),Y( )' , which is quite different than 

the syntax of ∂ . The general syntax of DERIV  in the command line 
is 'DERIV Function,Var( )' , where Var  stands for the variable of 
derivation and Function  for the function whose derivative you want 
to find. Press now  to put the expression back to the stack. If 
you expand it, then you get the same result as before, 

e
SIN Y2( ) ⋅ COS Y2( )⋅ 2 ⋅ Y .

Can we find the slope of a function at a given point by finding the 
derivative and substitute the value of the variable at that point? Let's 
see. We try to find the slope of SIN X( )  at X = π . In the EQW we 

type DERIV SIN X( ),X( ) , and enter that on the stack. Then we enter 

X = π  and press . The result is DERIV SIN π( ), π( ) , which is 
not what we want, because the substitution has been carried out 
before the derivation took place. Obviously we can't use SUBST 
with DERIV  this way. First we must explicitly expand the expression 
DERIV SIN X( ),X( )  to get COS X( ) , and then we can use SUBST 
for finding the slope. Let's see what happens when we use SUBST 
with DERIV  in algebraic syntax. Go to the EQW and type 
SUBSTDERIV SIN X( ),X( ),X = π( ) . Press   to put his on the 

stack and press . The result is COS π( )  which is correct but 
not completely expanded. Obviously the expansion of the algebraic 
object SUBSTDERIV SIN X( ),X( ),X = π( )  retains the order of 
operations starting at the innermost sub expressions. Since the 
innermost operation is the derivation, it is carried out before 
substitution. But substituting in stack syntax just "puts the values" in 
the object of stack level 2, without first expanding it. Note also that in 
RPL mode you can't enter 'SUBSTDERIV SINX( ),X( ),X = π( )'  

from the command line. The built-in syntax checker will complain about 
a syntax error at the position of the "= ". Strange? Well, it is even 
stranger that the erroneous 'SUBSTexpression,val( )'  does not cause a 
syntax error, if val  is for example some number or name, but not an 
equation!  If you for some reason have to build up the algebraic object 
'SUBSTDERIV f var( ),var( ),var = value( )'  in a program, then you 
have to do that in some other way. The code snippet below takes an 
expression and a substitution equation and returns 
'SUBSTexpression,substitutionEquation( )' .

'SUBST(0,0)' →LST @Turn the dummy subst to a list
1 4 ROLL PUT @Put expression in position 1
2 ROT PUT @and substitution equation in 2
→ALG @Turn it to algebraic object.

I like → LST , and → ALG  very much. Nonetheless the usage of such 
tricks just to enter something that is syntactically completely correct, 
shouldn't be necessary. Another trick would be to store the substitution 
equation in some variable. For example, enter X = π  and store it in 
variable Y . Then enter SUBSTDERIV SIN X( ),X( ),T( ) . This 
expression in possible also from the command line since the second 
argument of SUBST doesn't contain a "= ". If you expand, you get the 
correct result −1. Not so much of a trick here, but still an unnecessary 
complication. Purge now Y .

And what happens with ? We start again with RPL syntax. Go to the 

EQW and enter DERIV SIN X( ),X( ) . Enter the list X ' π'{ } . Be careful 
to enter π  in single quotes in the list. This is the other method to ensure 
that π  is an algebraic object in the list and not just the command π . (We 
already used another method, namely entering X , π , and then 
constructing the list by entering 2  and pressing .) Now, press 

 to get COS π( ) , which isn't completely expanded but correct. Let's 
try that in algebraic syntax. Go to the EQW and enter:
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DERIV SIN X( ),X( )
X=π

Expand that to get the correct result, −1.

And what about the way that was inherited from the HP48? Can we 
store a value in some variable and find the derivative for this variable? 
For example, store π  in variable T . Enter SIN T( )  and then 'T'  in 
quotes. Press . You get COS T( )  which you can expand to get 

−1. Go to the EQW and type DERIV SIN T( ),T( ) . Put that on the 
stack and expand. Now you get an error Bad Argument Value. 
EVAL  doesn't work either and you lose the last argument since you 
get 0 , π , and the command DERIV  on the stack. If you want to get 
the correct result you have to use QUOTE . Enter 
DERIV SIN QUOTE T( )( ),QUOTE T( )( )  and expand to get −1. But 

note again that if you have for example X  as the current variable, 
store π  in X , then enter DERIV SIN QUOTE X( )( ),QUOTE X( )( )  
and expand, then you get the question to purge the current variable. If 
you choose "No", then the operation errors out with 
Mode Switch Cancelled. If you choose " Yes ", then X  is 
purged and the calculation returns COS X( ) , because the variable X  
doesn't exist any more. Instead of expanding in this case you can 
press  twice, to avoid the question about purging the current 
variable.

We continue examining the behaviour of DERIV  when we take 
derivatives of expressions with variables that themselves contain other 
expressions (just as we did with ∂ ). If you still have the following 
variables, then you don't need to re-create them. We need:

X2  in R

SIN Y( )  in S

S2 −R  in U.

<< → X 'X^3/(X-1)' >> in V

<< → R 'R*(R+1)' >> in W

<< → R X '(R-1)/X' >> in Z

<< → S 'S/R' >> in Q

We also need:

<< → X
  <<  0 1 3 FOR I
         X I R→I ^ +
        NEXT
  >>
>>

in Z1.

And last thing:

<< → R X
  <<  R EXP S EXP + X / >>
>>

in Z2 .

Enter 'R'  (with quotes) and press  to make copy it on stack level 
2. Press  to take the derivative of R  for R . The result is 1, 
which shows that DERIV  (like ∂ ) didn't care about the fact that X2  is 
stored in R . If you enter 'R'  and then X , and take the derivative, then 
you get a 0 , which again shows: When some expression is on stack 
level 2 and we take its derivative for some of its variables using the 
command DERIV , then derivation is carried out without first evaluating 
that variable. This is good for finding slopes of functions by storing 
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something in the variable for which we take the derivative and then 
using DERIV , as we already saw on the previous page. Another 
example of this case: Enter S2 , then 'S'  (with quotes) and press 

 to get 2 ⋅ S . If you enter DERIV S2 ,S( )  from the EQW and 

press , you will get 2 ⋅ SIN Y( ) ⋅COS Y( ) . If you expand instead 
of evaluating, then you get 2 ⋅ COS Y( ) ⋅SIN Y( ) , which is the same 
but with the factors reordered. Obviously, expanding or evaluating 
DERIV expression,variable( ) , when exp ression contains 
variables where other expressions are stored, will first differentiate 
and then replace the variables with their contents.

If you want to first evaluate some variable contained in an expression, 
and then take the derivative with DERIV, you have to evaluate first. 
For example, enter U2 . We stored S2 −R  in U, SIN Y( )  in S , and 

X2  in R . If you want to take the derivative of the evaluated 
expression U2  for X ,  then you have to press  first. This 
completely evaluates U2  to SIN Y( )4 − 2 ⋅ X ⋅SIN Y( )2 + X4 . Now you 
can enter X , press  and then , to get the fully 

expanded expression − 4 ⋅X ⋅ SIN Y( )2 − 4 ⋅ X3( ) .

And what about taking the derivative of the partially evaluated U2  for 
S? We try with SHOW  again. Enter U2 , then 'S'  (in quotes) and 

press , to stop evaluation when the variable S  is shown. This 

will result in S2 −R( )2
, allowing us to enter 'S'  and take the 

derivative pressing .

Now, what if the expression, which we take the derivative of, is a 
user defined function? Let's take a look at that. Enter V X( )2

 and then 
X . If you now press  then the derivation takes a bit longer, 
and returns:

2 ⋅
X3

X −1
⋅

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )

This shows: Since V  is a user defined function, V X( )2
 is first evaluated 

to

X3

X −1

 
 
  

 

2

and then the differentiation for X  is carried out! Exactly the same result 

will be returned if you enter DERIV V X( )2
,X( )  and then evaluate. If you 

enter DERIV V X( )2
,X( )  and expand, then you get the result:

4 ⋅ X6 − 6 ⋅ X5

X3 − 3 ⋅X2 + 3 ⋅X −1

which is the same as before, but completely expanded. If you enter 

DERIV V X( )2
,X( )  and then press  or , nothing 

happens and the expression remains unchanged on stack level 1. Like in 
case of ∂  this allows to collect unevaluated differential forms, which for 
example can be used to bring differential equations to a much more 
readable form. For example, enter the expression 

DERIV V X( )2
,X( ) ⋅ X + DERIV V X( )2

,X( )⋅ A  and press , to 

get X + A( )⋅DERIV V X( )2
,X( ) . If you want the opposite to happen, 

then don't press  or , but . If you press  
with the last result still on stack level 1, then you will get 

X ⋅DERIV V X( )2
,X( ) + A ⋅DERIV V X( )2

,X( ) . And what about 

transforming DERIV V X( )2
,X( )  to 2 ⋅ V X( )⋅DERIV V X( ),X( ) , or some 

equivalent form? Can we use step by step mode? Let's see. Switch to 
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step by step mode and enter DERIV V X( )2
,X( ) . If you evaluate or 

expand, then you see that… it doesn't work! You just get the same 
results like in non step by step mode. Step by step seems to work 
better with ∂  (as we already have seen) in this case. Deactivate the 
step by step feature now. 

Let's see now what happens when we take the derivative of some user 
defined function, to which we have given a variable as argument, that 
itself contains some expression. Enter the expression V R( ) . Now, 
enter 'R'  and press . The result is 0  because the user defined 
function is evaluated before derivation. This means that V R( )  was 
first evaluated to:

R3

R − 1

Then the variable R  in this expression was evaluated, which returned:

X6

X2 −1

since R  contains X2 . It was this expression of which the derivative 
for R  was taken. And since the expression

X6

X2 −1

doesn't depend on R , the derivative was 0 . If you enter V R( )  again, 
then enter X  and press , you get the result:

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1( )

the derivative of the completely evaluated user defined function V R( )  
for variable X . Notice here that the variable of derivation, R  is not 
getting evaluated to X2 .

Now the same in algebraic syntax. Enter DERIV V R( ),R( ) . If you 
evaluate this, then the result is again:

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1( )
which is the derivative of the user defined function V R( ) , where the 

argument R  has been evaluated to X2 , but also the variable of derivation 
R  has been evaluated to X2 . But let's see what happened stepwise. In 
algebraic expressions, in general the innermost nested things get 
evaluated first. In DERIV V R( ),R( )  the argument of the function V  was 

first evaluated to X2 . Then the function V  took X2  and returned:

X6

X2 −1

The variable of derivation, R , was also evaluated to X2 . So the 
expression was converted to:

DERIV
X6

X2 −1
,X2 

 
  

 

Here we must watch out! When the command DERIV  takes the 
derivative not for a single variable, but for an expression, then… it takes 
the derivative for the first variable that it finds in the expression, for 
which it takes the derivative. That means, that the returned result is the 
result of the differentiation:
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∂
∂X

X6

X2 −1

 
 
  

 

and not the result of the differentiation:

∂
∂ X2( )

X6

X2 − 1

 
 
  

 

If you enter:

X6

X2 −1

then X , and then press , you get the result:

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1( )
If you enter again:

X6

X2 −1

then X2  and press  again, you get again:

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1( )
The same result as for taking the derivative for X  was returned. 
Expand it to get:

4 ⋅ X7 −6 ⋅ X5

X4 − 2 ⋅X2 + 1

Our program dF1F2  fed with 
X6

X2 −1
 and X2 , returns the result:

2 ⋅X6 − 3 ⋅X4

X4 − 2 ⋅X2 + 1
2 ⋅ X6 − 3 ⋅ X4

X4 − 2 ⋅ X2 +1
 
 
 

 
 
 

which shows that:

∂
∂ X2( )

X6

X2 − 1

 
 
  

 
=

2 ⋅ X6 − 3 ⋅ X4

X4 − 2 ⋅ X2 +1
.

If you have problems to understand what DERIV  does in such cases, 
do the following: Enter X2 , then X , and press  to get 2 ⋅ X , 
which is OK. But now, enter X2 , then X2 , and press  to get 
2 ⋅ X  again, which in this case is wrong, since

∂X2

∂ X2( ) = 1

Another example: Enter X ⋅ Y , then X  and press  to get Y , 
which is OK. But if you enter X ⋅ Y , then X + Y , and press , 
you get Y  again, which is wrong. The command just took the derivative 
for the first variable in X + Y , which is X . And if you enter X ⋅ Y , then 
Y + X , and then press , you get X , which is also wrong. In this 
case the derivative was taken for Y , because it was the first variable in 
Y + X . The problem here is that DERIV  allows expressions to be 
written, where the variable of derivation is itself some expression, but it 
differentiates for the first variable in this "expression of derivation", and 
returns wrong results. So, when it comes to such derivatives we have to 
use a program. For the time being use dF1F2  as it is now, though it will 
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also have its problems when taking derivatives for expression that 
contain more than one variable, like for example

∂X ⋅ Y
∂ X + Y( )

We will make it better later on.

We try now to let V R( )  be evaluated up to

R3

R − 1

and then take the derivative, without replacing R  by its contents. We 
have to use the command QUOTE  again. Go to the EQW and enter 
V QUOTE R( )( ) . Enter 'R'  (in quotes) and press  to get:

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )

This is the derivative of the user defined function V R( )  evaluated up 
to

R3

R − 1

To get the fully expanded form without evaluating all occurrences of 
R  to X2 , you can enter V QUOTE QUOTE R( )( )( ) , then 'R' , then 

press  to get:

QUOTE R( ) −1( )⋅ 3⋅QUOTE R( )2 ⋅d1QUOTE R( ) − QUOTE R( )3 ⋅d1QUOTE R( )
SQ QUOTE R( ) −1( )

If you evaluate now, you will get:

2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1

which is the fully expanded result that still contains R s and not X s.

If you want to enter the derivative for R  in algebraic syntax, then you 
have to QUOTE not only the variable R  that appears as argument of the 
user defined function V , but also the variable of derivation. You enter 
DERIV V QUOTE R( )( ),QUOTE R( )( ) , to control evaluation and let the 
expression be converted to:

DERIV
R3

R − 1
,R

 
 
  

 

instead of:

DERIV
R3

R − 1
,X2 

 
  

 

If you evaluate the expression DERIV V QUOTE R( )( ),QUOTE R( )( ) , 
then the result is:

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )

But if you would evaluate the expression DERIV V QUOTE R( )( ),R( ) , 

you would get 0  because it would be evaluated to:

DERIV
R3

R − 1
,X2 

 
  

 
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Enter W X( )  and then X . Press  to get the result X +1+ X . 
The user defined function W X( )  was first evaluated, and that returned 
X ⋅ X +1( ) . Then the derivative for X  was found, X +1+ X . (If you 
enter X and press the menu key [W], the the result is X ⋅ X +1( ) . 

Entering DERIV W X( ),X( )  and pressing  returns the same 
result. If you would have pressed  instead of , then the 
result would be 2 ⋅ X +1, the completely expanded form.

If you enter W R( ) , then 'R'  and then press , the result is 0 , 
because: The user function W R( )  was first evaluated and returned 

X2 ⋅ X2 +1( ) . Then the derivative of this expression for R  was taken, 

which was found to be 0 , because the expression didn't  contain R . 
But if you evaluate DERIV W R( ),R( ) , then the result is 

2 ⋅ X ⋅ X2 +1( ) + X2 ⋅2 ⋅ X . Remember, evaluation of algebraic objects, 
includes evaluation of user defined functions and variables. So the 
evaluation went the way:

1) DERIV W R( ),R( )
2) DERIV W X2( ),X2( )
3) DERIV X2 ⋅ X2 + 1( ),X 2( )
Then, because DERIV  had an expression (X2) and not a single 
variable to differentiate for, it differentiated for the first variable of this 
expression (X ), and found 2 ⋅ X ⋅ X2 +1( ) + X2 ⋅2 ⋅ X .

If you enter 'R' , press , then enter 'R'  again and then press 
, the result will be R + 1+R . In RPL syntax no evaluation of 

the global variable R  took place. So, we get the result R ⋅ R +1( )  
when we apply the user defined function W  on the argument 'R'  
which is on the stack. After this there is no user defined function that 

has to be evaluated before taking the derivative. The expression 
R + 1+R  doesn't contain any user defined function, and so DERIV  
simply takes the derivative of this expression.

If you enter W QUOTE R( )( ) , then 'R'  and then press , the result 
will be R + 1+R . In algebraic syntax, if you enter 
DERIV W QUOTE R( )( ),QUOTE R( )( )  and press , the HP49G 

returns the result 2 ⋅R + 1. Both results are what we expect to get 
according to what we know until now.

If you enter W R( ) , then X , and then press , then the result is 

2 ⋅ X ⋅ X2 +1( ) + X2 ⋅2 ⋅ X . This shows again, that W R( )  was evaluated 

the way we already know, which returned X2 ⋅ X2 +1( ) , and then the 

derivative of this result for X  was found. The same result is found if 
you evaluate DERIV W R( ),X( ) .

Now we nest some user defined functions. For example, enter 
W V X( )( ) , enter X  and then press  to get the expression:

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( ) ⋅
X3

X − 1
+1

 
 
  

 
+

X3

X − 1
⋅

X − 1( ) ⋅3 ⋅X2 − X3

SQ X −1( )

Exactly the same would happen, if we entered DERIV W V X( )( ),X( )  and 
evaluated.

Now we do the same using variable R  as argument. If you enter 'R' , 
press , press ,  enter 'R'  again, and press , you find:

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( ) ⋅
R3

R − 1
+1

 
 
  

 
+

R3

R −1
⋅

R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )
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If you enter W V R( )( ) , then 'R'  and then press , then you find 
0 . In the first case, the HP49G used the argument which we gave it, 
namely 'R'  and just applied the user functions V  and W  on this 
argument. Since the result didn't contain any user defined functions 
any more, the function DERIV  just differentiated what it found on the 
stack, without any evaluation. In the second case however, the 
command DERIV found an algebraic expression that contained user 
defined functions, so it evaluated them first, found:

X6

X2 −1
⋅

X6

X2 −1
+ 1

 
 
  

 

and so the differentiation for R  returned 0 .

We continue on user defined functions with RPL definitions that 
return an algebraic object. Enter DERIV Z1X( ),X( )  and expand to get 

3 ⋅ X2 + 2 ⋅X +1. Alternatively you can also enter Z1X( ) , then X , and 
then press  to find the derivative.

If we evaluate DERIV Z1R( ),R( )  we get 2 ⋅ X + 4 ⋅ X3 + 6 ⋅ X5 . Why 
the difference? It seems that evaluating the above, triggers first 
evaluation of the user defined function Z1 with argument R , which 
results in R + R2 + R3 . But then R  is also evaluated and this results in 

X2 + X2( )2
+ X2( )3

. The variable of derivation is also evaluated, and 

so the derivative is transformed to DERIV X2 + X2( )2
+ X2( )3

,X2( ) . 

As we know, DERIV  finds then the derivative for X  and not for X2 . 
This way we come to the result 2 ⋅ X + 4 ⋅ X3 + 6 ⋅ X5 . Notice how this 

differs from evaluation of the analogous expression 
∂

∂R
Z1R( )( ) .

In RPL syntax, if we enter Z1R( ) , then 'R'  and press , the 

result is 0 . EVALuate Z1R( )  and take the derivative for 'R'  to 
understand why. What will be returned if you take the derivative of 
Z1QUOTE R( )( )  for 'R' ?

The command DERIV  can also be used for carrying out formal 
derivations. Enter F X( )  and then X , and press  to get the formal 
derivative d1F X( ) , which is returned because the function F  depends on 

X  but the HP49G doesn't know how  it depends on X .  Enter F X T( )( )  

then T  and then press [DERIV], to get d1X T( )⋅ d1F X T( )( ) , exactly just 
like if you had used ∂  instead.

But there are also differences to ∂ . Since DERIV  accepts also 
expressions as variables of differentiation, we can enter F X T( )( ) , then 

X T( ) , and then press . We can do this and we get the result 

d1X T( )⋅ d1F X T( )( ) , where d1F X T( )( )  means the derivative of F  for 

X T( ) .

We also see that the command DERIV  can't be used for finding such 
things like for example

∂SIN X( )
∂SIN X( )

right out of the box (simply because it returns the wrong result). If we 
enter DERIV T,T( ) , then T = SIN X( ) , and then press , the 

HP49G returns DERIV SIN X( ),SINX( )( ) , which isn't much of a help, 

since the evaluation of this expression will still return COS X( )  and not 

1. But entering DERIV T,T( ) , then entering the list T SINX( ){ } , and 
then pressing , does return the correct result 1. This works also in 
algebraic syntax. Enter DERIV T,T( )

T= SINX( )  and evaluate to get again 1. 
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Is that a hope for easy formulation and correct evaluation of arbitrary

∂expression1
∂ expression2

 ?

Might be. Let's try some more complicated examples, and see if we 
get the correct results.

Suppose we want to find:

∂X2 − 3 ⋅ X + 3
∂ 2 ⋅ X2( )

We can't enter directly DERIV X2 − 3 ⋅X + 3,2 ⋅ X2( ) , because this 

would actually return the result of DERIV X2 − 3 ⋅X + 3,X( ) . But if 

we think the expression of derivation 2 ⋅ X2  as a single variable, say 
T , then we have:

2 ⋅ X2 = T ⇔ X2 =
T
2

  ,   2 ⋅ X2 = T ⇔ X2 =
T
2

⇔ X = ±
T
2

So we can write the derivative as:

DERIV
T
2

− 3 ⋅
T
2

+ 3,T
 
 
  

 
 

or:

DERIV
T
2

+ 3 ⋅
T
2

+ 3,T
 
 
  

 
 

We try with the first expression. Enter:

DERIV
T
2

− 3 ⋅
T
2

+ 3,T
 
 
  

 
 

then enter the list T 2 ⋅ X2{ }  and press  to get:

2 ⋅ X − 3( ) ⋅ X

SQ X( ) ⋅4

which is OK. From the second derivative we get

2 ⋅ X + 3( ) ⋅ X

SQ X( ) ⋅ 4

The program dF1F2  finds exactly the same results, but it also does the 
above parametrisation automatically. The advantage of using DERIV  
with  is that the derivation and the back substitution are carried out in 
one step. So we keep this in mind as it might prove useful for our 
improvements of dF1F2 . The real problem comes in cases like for 
example:

∂ X + Y( )2 + X
∂X + Y

that is when we derivative for an expression that contains more than one 
variables. In such cases, if we do the parametrisation X + Y = T , then 
writing DERIV T2 + T − Y,T( )  would be wrong (for the CAS logic of 

the HP49G). We should write DERIV T2 + T − Y T( ),T( ) , to denote that 

the remaining Y , still is a function of the derivation variable T . But 
then, if we enter T X + Y{ }  and press , we get 
2 ⋅ X + Y( ) +1− d1Y X + Y( ) . The last term in this expression, 
d1Y X + Y( ) , denotes the derivative of Y  for X + Y , i.e. a function Y  
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that depends on… the sum X + Y , i.e. on itself!!! This is apparently 
somehow pathological. But if we remember that X + Y = T , we see 
that d1Y X + Y( ) = d1Y T( ) . How to avoid such apparently 
pathological results on the HP49G? Remember, d1Y X + Y( )  is the 
result of using the list T X + Y{ }  as argument for . In the 

expression T2 + T − Y T( )  which must be differentiated, Y  is a 
function of T . But in the list T X + Y{ }  the quantity Y  doesn't 
depend on anything, it is a free variable. We should rather have used 
T X + Y T( ){ } . Enter DERIV T2 + T − Y T( ),T( ) , then 

T X + Y T( ){ }  and then press . The result is 

2 ⋅ X + Y T( )( ) + 1− d1Y X + Y T( )( ) . Now the formal derivative 

d1Y X + Y T( )( )  is no more so pathological, because since T = X + Y , 

we have Y = T − X , and so for the derivative d1Y X + Y( )  we have 

d1Y X + Y T( )( ) = d1Y X + T − X( ) = d1Y T( ) . We only had to make 

the dependence of Y  on T  explicit by writing Y T( ) .

Anyway, we see that taking derivatives for expressions and not for 
single variables is not always so straight forward. We will return to 
them, as already said, when we see how to take derivatives of 
functions in parametric representation.

We go on examining formal derivatives and DERIV . Enter F S( ) , 
then Y , and press  to find the derivative. The result is 
COS Y( )⋅ d1F SINY( )( ) . The HP49G used the chain rule to return the 

product of the derivative for Y  of the inner function SIN Y( ) , which 
is stored in S , with the derivative of the outer function. As the latter is 
totally undefined, the HP49G returns d1F SIN Y( )( ) , to denote that 
derivative in a general abstract way. If we evaluate or expand 
DERIV F S( ),Y( ) , we get COS Y( )⋅ d1F SINY( )( )  again. Notice here 
the difference to ∂ , which returned 0 . In both cases the command 

DERIV  triggered evaluation of the variable S  in F S( ) , and the result 

was F COS Y( )( ) . Then, the derivation for Y  was carried out, and 

COS Y( )⋅ d1F SINY( )( )  was found. At this point, we collect all the cases 
in a single table again, for a better understanding of the behaviour of the 
command DERIV . There are four tables for this. The first table is on 
the next page and contains cases of differentiation of an expression or a 
user defined function for a variable. The second table is on the page after 
the next and contains cases of differentiation of an expression or a user 
defined function for a quoted variable a' la QUOTE variable( ) . The 
third table is on the page 1-45 and contains the cases of differentiation of 
a function that isn't defined, that is cases of formal differentiation for a 
variable. The fourth table is on the page 1-46 and contains the cases of 
differentiation of a function that isn't defined, that is cases of formal 
differentiation for a quoted variable a' la QUOTE variable( ) . In all 
tables, regions with the same colour are those which return their results 
using the same mechanism. Like in the tables for ∂ , it is not the same 
result that makes up a region, but rather the same way that is followed 
by the HP49G to return these results.

Let's do some examples that are more complex. We use what we know 
until now, to explain how the results are derived. Keep all variables and 
user defined functions because the following examples use them.

Enter F V X( )( ) , then enter 'R'  (in quotes) and press . The result 
is 0 , as we expect, because as we have seen already, the user defined 
function V X( )  (argument of F ) is evaluated before differentiation. This 
gives

F
X3

X − 1

 
 
  

 

Now, the HP49G sees that this function, though undefined, doesn't 
depend on R , because R  doesn't appear as an argument of F . As the 
derivation variable R  isn't evaluated the derivative is found to be 0 .
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                     0                          0                             0  
R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )  

V QUOTE R( )( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R  )

 
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )    
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )          
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )                  0

V QUOTE X( )( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> )

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2⋅ X

SQ X2 − 1( )  

  
X2 −1( ) ⋅6 ⋅X5 − X6 ⋅2 ⋅X

SQ X2 − 1( )

      

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1( )
                  0

V R( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R  )

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )   
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )        
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )                  0

            4 ⋅X3 + 2 ⋅X

                    'X'

          4 ⋅X3 + 2 ⋅X

                     'R'

V X( )
(User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> )

                               0

                             'X'

           2 ⋅R + 1

                    'R'

R2 +R
(X2

 stored in R )

                            Variable of deri-
                                                 vation
Expression

RPL Syntax:
Enter expression then variable, then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var( ) ,  then evaluate or expand

No evaluation 
of expression 
and derivation 
variables 
before 
derivation.

Evaluation of 
function  and 
function arguments 
but not of derivation 
variable before 
derivation.

Evaluation of 
function but not of 
function 
arguments and 
derivation variable 
before derivation.

Evaluation of 
function and 
derivation variable 
but not of function 
argument before 
derivation.

Evaluation of 
expression 
and derivation 
variables 
before 
derivation.

Evaluation of 
function, function 
arguments and 
derivation 
variable before 
derivation.
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                     0      
R − 1( ) ⋅3 ⋅R2 −R3

SQR − 1( )                   -------------------            ------------------ 

V QUOTE R( )( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R  )

 
X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )                            0                     -------------------           ------------------

V QUOTE X( )( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> )

X2 −1( ) ⋅6 ⋅ X5 − X6 ⋅2⋅ X

SQ X2 − 1( )                            0                   -------------------           ------------------

V R( )
( User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R  )

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( )                          0                  -------------------           ------------------

            4 ⋅X3 + 2 ⋅X

         'QUOTE X( )'

                          0

             'QUOTE R( )'

V X( )
(User function V  defined
 as:
<< -> X 'X^3/(X-1)' >> )

                  -------------------

                'QUOTE X( )'

           ------------------

        'QUOTE R( )'

R2 +R
(X2

 stored in R )

                            Variable of deri-
                                                 vation
Expression

RPL Syntax:
Enter expression then variable, then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var( ) ,  then evaluate or expand

Evaluation of function  
and function arguments 
but not of derivation 
variable before 
derivation.

Evaluation of function 
but not of function 
arguments and 
derivation variable 
before derivation.

DERIV Error:
Bad argument value



If you enter F V X( )( )  again, but then take the derivative with respect 
to X  using the command DERIV , then the result is:

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( ) ⋅ d1F
X3

X −1

 
 
  

 

Following again our known rules we can understand that. First of all 
the function V X( )  is evaluated. The result of this action is:

X3

X −1

This is used as argument for the undefined function F , that is we get:

F
X3

X − 1

 
 
  

 

This result is then differentiated for X . According to the rules of 
derivation we get:

X −1( )⋅ 3 ⋅ X2 − X3

SQ X − 1( ) ⋅ d1F
X3

X −1

 
 
  

 

where the expression
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2 ⋅ X ⋅ d1F X2( )2 ⋅ X ⋅ d1F X2( )0d1F R( )F QUOTE R( )( )
X2

 stored in R

4 ⋅X3 ⋅d1F X4( )4 ⋅X3 ⋅d1F X4( )4 ⋅X3 ⋅d1F X4( )0F R2( )
X2

 stored in R

2 ⋅ X ⋅ d1F X2( )2 ⋅ X ⋅ d1F X2( )2 ⋅ X ⋅ d1F X2( )0F R( )
X2

 stored in R

d1F X( )d1F X( )F QUOTE X( )( )
2 ⋅ X ⋅ d1F X2( )2 ⋅ X ⋅ d1F X2( )2 ⋅ X ⋅ d1F X2( )0F X2( )

F X( )

d1F X( )0

d1F X( )

'X'

d1F X( )

'R'

 d1F X( )

'X'

0

'R'
                            Variable of deri-
                                                 vation
Expression

RPL Syntax:
Enter expression then variable,
then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var( ) , 
then evaluate

In algebraic syntax quoting 
arguments of functions of which we 
take derivatives, seems not to have 
any effect at all

Formal differentiation with expansion 
of intermediate differential forms.

Formal differentiation with expansion 
of intermediate differential forms but 
no evaluation of the derivation 
variable.

Formal differentiation with expansion 
of intermediate differential forms but 
no evaluation of function arguments 
and derivation variable.



d1F
X3

X −1

 
 
  

 
 stands for the formal derivative of

F
X3

X − 1

 
 
  

 

that means a derivative which can't be explicitly given, since F  is 
undefined.

We try to find the derivative of V F R( )( )  for R  and for X . If you 

enter V F R( )( ) , then 'R' , and then press , get 0 . This shows 
again, that the argument of F , which is R , gets evaluated to its 

contents, which are X2 . After this we have V F X2( )( ) , which 

differentiated for R  must return 0 , since it doesn't depend on R . But if 
you enter V F R( )( ) , then X , and then press , you get:

F X2( ) −1( )⋅ 3 ⋅F X2( )2
⋅ 2 ⋅ X ⋅d1F X2( ) −F X2( )3

⋅ 2 ⋅ X ⋅d1F X2( )
SQ F X2( ) −1( ) . 

Let's see how this was produced. First, the argument of F  was 
evaluated. This argument was R , and since X2  is stored in R , the result 
of the evaluation was X2 . This was used as argument for F , and 
because F  is undefined, we simply get F X2( ) . This expression was 
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2 ⋅ X ⋅ d1F X2( )0--------------------------------------F QUOTE R( )( )
X2

 stored in R

4 ⋅X3 ⋅d1F X4( )0--------------------------------------F R2( )
X2

 stored in R

2 ⋅ X ⋅ d1F X2( )0--------------------------------------F R( )
X2

 stored in R

d1F X( )-------------------F QUOTE X( )( )
2 ⋅ X ⋅ d1F X2( )0--------------------------------------F X2( )

F X( )

0-------------------

d1F X( )

'QUOTE X( )'

0

'QUOTE R( )'

 -------------------

'QUOTE X( )'

-------------------

'QUOTE R( )'
                            Variable of deri-
                                                 vation
Expression

RPL Syntax:
Enter expression then variable,
then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var( ) , 
then evaluate

In algebraic syntax quoting 
arguments of functions of which we 
take derivatives, seems not to have 
any effect at all

Formal differentiation with expansion 
of intermediate differential forms but 
no evaluation of the derivation 
variable.

DERIV Error:
Bad Argument Value



used as argument for V . So instead of getting:

X3

X −1

we got:

F X2( )3

F X2( ) −1

Next, the differentiation for X  was carried out. According to the rules 
of differentiation for a ratio, we have:

∂
∂X

F X2( )3

F X2( ) − 1

 

 
 

 

 
 =

F X2( ) −1( ) ⋅
∂

∂X
F X2( )3( ) −F X2( )3

⋅
∂

∂X
F X2( ) −1( )

SQ F X2( ) −1( )
Carrying out the derivations of the right hand side of the last equation, 
and keeping in mind that d1F X2( )  is the formal derivative of F X2( ) , 
we see that the result returned by the HP49G was correct (inside the 
frame of its evaluation rules).

Do some examples for yourself and try to predict the behaviour of the 
command DERIV , using the knowledge that we have so far. 
Remember that QUOTE  can also be used with formal functions, 
which means that F QUOTE R( )( )  is perfectly OK. Note that the 
command DERIV  (and also the function ∂ ) doesn't like 
QUOTE variable( )  as the differentiation variable in RPL syntax. But 
DERIV  accepts QUOTE variable( )  as the differentiation variable in 
algebraic syntax. Note also, that in algebraic syntax, quoting 
arguments of functions doesn't seem to work at all. The arguments 
seem to be always completely evaluated before differentiation.

Take heart, we almost finished this exhaustive study of the derivation 
commands. We examine some more complex examples of derivation of 
undefined functions with DERIV . Enter DERIV F Y,X( ),X( )  and 

expand. This will return d1F Y,X( ) , just as expected. Enter 

DERIV F X( ) ⋅G X( ),X( )  and expand this to get:

G X( ) ⋅ d1F X( ) +F X( )⋅ d1G X( )

Enter:

DERIV
F X( ) ⋅G X( )2

G X( ) + X
,X

 

 
  

 
 

If you now expand you get:

G X( )3 + X ⋅ G X( )2( ) ⋅ d1F X( ) + G X( )2 + 2 ⋅X ⋅ G X( )( ) ⋅F X( ) ⋅ d1G X( ) − G X( )2 ⋅F X( )
G X( )2 + 2⋅ X ⋅G X( ) + X 2

This contains only derivatives of a single function for a single variable, 
which makes easier to see how the differential forms participate to built-
up the derivative

∂
∂X

F X( )⋅ G X( )2

G X( ) + X

 

 
  

 
 .

We see that DERIV behaves like ∂  when it finds some function of 
which it doesn't know how to built the derivative. Also, exactly like 

working with ∂ , the expressions DERIV G X2( ),X( )  and d1G X2( )  are 

not equal. In this particular case for the HP49G the relation holds:

DERIV G X2( ),X( ) = 2 ⋅X ⋅ d1G X2( )
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Only in cases where the function has simple names as arguments, like 
for example G X,Y( ) , the two notations DERIV G X,Y( ),X( )  and 

d1G X,Y( )  are equivalent.

The command DERIV  can also be used for implicit derivations in the 
same syntax like ∂ . Enter SIN Y X( )( ) = Y X( ) − X , then enter X , and 

then press , to get COS Y X( )( )⋅ d1Y X( ) = d1Y X( ) −1.

Last thing we are going to examine is how substitutions behave, when 
used with expressions that contain DERIV. Enter DERIV X2 − 1,X( ) , 

then X = Y  and then press . The result is DERIV Y2 −1,Y( ) , 

which shows that SUBST only substituted all occurrences of X  with 
Y  but didn't do anything else. Undo the last operation, and edit the 
equation in stack level 1 to X = Y2 . Press again . This time the 

HP49G returns DERIV Y2( )2
−1,Y2( ) , which as we know is exactly 

the same as if we had entered DERIV Y2( )2
−1,Y( ) .

On the other hand, we have also the command  for substitutions. 

Undo the last operation, drop the equation X = Y2 , and enter the list 
X Y{ } . Press . The result is now the expression 2 ⋅ Y . The 

function  not only did the substitution but triggered also the CAS to 
carry out the derivation, after the substitution. Undo the operation, 
and edit the list to X Y2{ } . Press  again to get 2 ⋅ Y2 , which as 
we have seen is the correct result of

∂
∂Y2 Y2( )2

−1( )
Strange is only that if you enter directly DERIV Y2( )2

−1,Y2( )  and 

expand, you are going to get 4 ⋅Y3 , which is wrong because it is the 
result of derivation for Y  and not for Y2 . You get the right result too, if 

you enter DERIV X2 − 1,X( )
X =Y 2

 and expand or evaluate.

Another available command for derivation is the command DERVX . It 
works like DERIV , but it always takes the derivative for the current 
VX . It needs only one argument, namely the expression of which we 
want to find the derivative.

From what we have seen until now, it seems that EVAL  gives us more 
detailed control of what and how we want to work with derivatives. 
Especially in combination with QUOTE  and SHOW , this command is 
very flexible. And this makes it a very powerful tool for programming, 
when we want to do something special exactly the way we want to. On 
the other hand, the real power of EXPAND  is that it is more "fire and 
forget", as it (almost) always does its job from the beginning to the end 
without any user intervention. (Goodness! I talk like a military man - too 
much TV-war in the last days.)

Now that we have finished the long path of the workings of derivation 
commands, we return to our main path. With the HP49G it is easy not 
only to find some derivative or slope of a given expression, but also to 
find if some expression has a derivative at some given point. Consider 
for example X2 . How can we find out if this expression has a derivative 
at X = X0? In this case it is a piece of cake. One of the many many ways 
to do that is to enter

∂
∂X

X2( )
X = X0

and expand. We get 2 ⋅ X0  which is defined everywhere. The derivative 

exists at any point X0 . Another example: Does the expression X3  have 
a derivative at X = 0? If we enter:
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∂
∂X

X3( )
X =0

and expand, then we get ? . The derivative isn't defined at X = 0 . 
Same with e X −2  at X = 2 . Enter:

∂
∂X

e X −2( )
X =2

and expand to get ? , which shows that the derivative is not defined at 
that point. Especially for the last example, e X −2 , we can use the 
program ISCONT?  of SESELIMA to check if it is continuous at 
X = 2 . If you want to check that, enter e X −2  and X = 2  again and let 
ISCONT?  run. The result will be a 1, which shows that the 
expression is continuous at that 
point. If you plot the function, 
then you see something like the 
picture on the right. At X = 2  
we have a sharp bent (indicated 
by the small dot). Such bents, 
peaks, and in general 
"unsmoothnesses" are 
candidates as points where the 
derivative isn't defined. But 
nonetheless the function is 
continuous at that point. This is a demonstration for the fact that if the 
derivative of a function exists at some point, then the function is 
continuous. But if the derivative doesn't exist at that point, then we 
can't say anything about the steadiness of the function at that point. It 
could be continuous, it could jump, anything is possible. Actually 
there are functions that are continuous everywhere and at the same 
time their derivative isn't defined anywhere at all!!! (Trabakoulas 
raises one eye brown and says "fascinating" ;-)) That means, dear 
math freaks, that these functions consist in a way… of infinite many 
infinitesimal small sharp bents. You wanna see one? Don't expect 

anything spectacular. trigonometric functions are already enough. For 
example the function:

w x( ) = an ⋅ cos bn ⋅ π ⋅x( )
n=1

∞

∑

with:

0 < a < 1  ,  b > 0   ,  integer b   ,   and  a ⋅b > 1+
3 ⋅π

2

is such a beast. Don't even try to plot such a thing. You would need 
infinite resolution which no computing device on this world can give 
you. And if you still do, hopping to catch the real looking of the 
function by building the sum for the first, say 10 summands, you are 
going to get quite a surprise its time you zoom in. (OK, OK, I did that. I 
expanded:

1
10

 
 

 
 

n

⋅ cos 60n ⋅ π ⋅X( )
n=1

10

∑

and plotted the resulting expression. Each time I zoomed in, I had new 
zig zags. And that with only the first 10 summands of the function.)

Btw, it was Weierstraß that discovered this function. And it was a quite 
fascinating discovery, an unexpected event, which happened because 
mathematics before him was practised the way it was practised. Let's 
take a look at math history to understand that. For quite a long time there 
was no clear and sharply defined definition for what "smooth function" 
and should be. Though mathematicians worked already with functions 
and derivatives, nobody knew how to sharply define what a point 
should be, where a derivative isn't defined. It was believed that a 
continuous function of one free variable is in general differentiable 
everywhere, except for some "pathological points", where the derivative 
doesn't exist. But then came the reconstruction of these terms, 
"continuous" and "differentiable", in terms of ε −δ  (look at 
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SESELIMA). After this, it appeared that such unbelievable functions 
could be constructed, like the one above, that are nowhere 
differentiable and still continuous everywhere. And because such a 
function (still) looks like a marvel, and because mathematicians have 
often the flair for marvels, they searched and found these marvellous 
functions. All the magic of Copperfield is nothing compared to the 
Weierstraß function. An even bigger marvel however is, how much 
mathematics can be done, without these sharp definitions, simply by 
intuition. In the times before the invention of ε −δ , there was still a 
huge amount of knowledge about functions. Admittedly, the real 
beauty was revealed after ε −δ , but nonetheless it is still amazing 
how much was known before.

End of history, back to the present. The derivative of a function can 

be considered itself as a function. For example, enter e− X2

and press 

 to get  − e− X2

⋅ X ⋅2( ) . This function has itself a derivative 

which you can find if you press  again: 2 ⋅ X2 −1( ) ⋅e− X2

⋅2 . 

In algebraic syntax you could enter DERVX DERVX e−X 2( )( ) , or 

DERIV DERIV e− X2

,X( ),X( ) , or 
∂

∂X
∂

∂X
e −X2( ) 

 
 
 , or any mixed form 

like 
∂

∂X
DERIV e− X2

,X( )( ) . Expanding that will return the second 

derivative in one step. Higher derivatives can be found for undefined 
functions too. For example you can enter F X2( )  and press  

twice to get the result 2 ⋅ d1d1F X2( ) ⋅ X2 + d1F X2( )( )⋅ 2 . The 

expression d1d1F X2( )  denotes the derivative for the first variable of 

the derivative for the first variable of F X2( ) . It is a formal derivative 
of second order. Such higher order formal derivatives can be used 
exactly like the formal derivatives of first order (including user 
defined derivatives). And not only this. If you define the derivative of 
some particular order, the HP49G is able to find any higher order 

derivative using your definition. For example, if you enter 
d1FUNC X( ) = X ⋅e −X  and press , then the variable d1FUNC  is 
created, which takes one variable  from the stack and returns the first 
derivative of FUNC variable( )  for variable. If you now enter 
d1d1FUNC X( )  and expand, then the HP49G uses your definition to 
return the second derivative.

Another thing that I should tell here, is that such derivatives may also 
appear when the function that is differentiated is a built-in function. For 
example, if you take the derivative of X! for X , the HP49G returns 
d1! X( ) . This means the derivative of the function ! for the first variable. 
Here we see that the HP49G has also built-in functions of which it 
doesn't know how to take the derivative. Don't worry however, these 
functions are just a few and most of the time you can define a user 
defined derivative which will be used much like the derivatives that the 
HP49G knows how to take. Let's take for example the function 
GAMMA for which the HP49G returns d1GAMMA X( )  as its 
derivative. As you might already know:

∂ ln Γ x( )( )
∂x

= Ψ x( ) ⇔
1

Γ x( ) ⋅
∂Γ x( )

∂x
= Ψ x( ) ⇔

∂Γ x( )
∂x

= Γ x( ) ⋅Ψ x( )

Since the HP49G has the functions Γ x( )  and Ψ x( )  built-in 
(GAMMA x( )  and Psi x( )  respectively - unfortunately no greek letters Γ  
and Ψ ), we can make the use defined derivative. Enter 
d1GAMMA X( ) = GAMMA X( )⋅Psi X( )  and press  to define the 

derivative. Let's try it. Enter DERIV GAMMA SIN X( )( ),X( )  and expand 

to get the result COS X( ) ⋅GAMMA SINX( )( )⋅Psi SIN X( )( )  which 
doesn't contain any formal derivative anymore. If you enter 
GAMMA SIN X( )( ) , then X , and then press , you get 

COS X( ) ⋅ d1GAMMA SIN X( )( ) . This doesn't mean that our user 
defined derivative doesn't work in RPL syntax, you just have to press 
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 to convert the expression to 
COS X( ) ⋅GAMMA SINX( )( )⋅Psi SIN X( )( ) . Since Γ x +1( ) = x!  (this 
equation is an identity!), we obtain:

∂Γ x +1( )
∂x

=
∂x!
∂x

⇔
∂x!
∂x

= Γ x +1( ) ⋅Ψ x +1( )

which we can use to make a user defined derivative for the built-in 
function !. We only need to define 
d1! X( ) = GAMMA X +1( )⋅Psi X + 1( ) . (Alternatively if we already 
have defined d1GAMMA X( )  we can also define 
d1! X( ) = d1GAMMA X + 1( ) ). But the problem is that we can't enter 
the name d1! because the HP49G things that we mean the factorial of 
d1. So we have to search in the trick box again. As we have seen, the 
expression d1! X( )  is returned when we try to take the derivative of !. 
We can use this answer to built up our definition - somehow reminds 
me of "anything that you say can be used against you ;-). Enter X!, 
then X , and press  to get d1!(X) . Now, enter the expression 
GAMMA X + 1( ) ⋅Psi X +1( )  and press  to get the result 
d1!(X) = GAMMA X +1( ) ⋅Psi X +1( ) . Press  to make the 
definition. Let's try that. Enter:

∂
∂X

X!( )

and expand. Oops, it stayed at d1! X( ) . Perhaps another expand? 
Doesn't help either. The same happens if you start with 
DERIV X!,X( )  or if you use RPL syntax. The resulting function d1! 
in the algebraic object d1! X( )  doesn't seem to want to be evaluated. 
You can evaluate it, expand it, do anything you want. The darn thing 
is there, the HP49G is able to evaluate any user defined function that 
exists in the current path, but this damned d1! just doesn't want to get 
evaluated though the internal structure of the expression d1! X( )  is the 

same like the structure of F X( ) , G(X), or even VPN X( ) . For me this is 
one of the most mysterious questions about the HP49G. Why doesn't 
d1! X( )  get evaluated when the user defined derivative exists? 
But we don't give up yet. Let's try to see if there is any difference 
between the d1! that exists as a variable in the current directory and the 
d1! that the derivation of X! returns. Press  (second page of menu 
PRG/MEM/DIR) to get a list of the variables in the current directory. If 
d1! was the last thing that you defined the list will look like 
d1! … other names{ } . If the list looks different, then find out at 

which position d1! is. Enter the number of the position of d1! in the list 
and press  to extract d1! from the list. (We do all this because we 
can't directly enter the name d1!. If we do so the built-in command line 
parser will thing that we mean the factorial of the variable d1, and not 
the derivative of the function ! for the first variable.) Now, enter X!, 
then X , and then press  to get d1! X( ) . We have to extract the 
name d1! out of the algebraic object. Press  (second page of 
menu 256) to get the list X 'd1!' #1h{ } . The object d1! is at 
position 2, so enter 2  and press . Do you see the difference? The 
object in stack level 2 is the name 'd1!' , while the object on stack level 1 
is the algebraic object d1! that consists only of the name d1!. Enter X , 
and press  to get a copy of d1! on stack level 1. Press . 
Evaluation of the algebraic object d1! just puts the name 'd1!'  on the 
stack. You have to evaluate once again to get 
GAMMA X + 1( ) ⋅Psi X +1( ) . This is the normal way of evaluation of an 
algebraic object containing only one name of an existing user defined 
function. And here is the question: Why isn't then the expression 
d1! X( )  evaluated to GAMMA X + 1( ) ⋅Psi X +1( )  even after two 
evaluations? If you had pressed  instead of , then the first 
EXPAND  would turn the algebraic object d1! to the name 'd1!'  and 
subsequent expansions would leave the name d1! unchanged. Anyway, 
the user defined derivative d1! is useless in this form. We must find 
another way. But before we do that, let's allow my alter ego HULK 
come out and speak for a moment:
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…thank you very much indeed, ACO, that you put so much power 
in the HP49G, yet made it also so full of mysteries that its usage 
requires such headaches. And for me, the user, explanations about 
inner workings of the function !, or any other command,  just don't 
count. I don't want to know how the HP49G does its work, I want 
a CAS that is uniform in its behaviour on the interface between 
human and machine… grrrrr!

OK Hulk, de-green again :-)

Now we have to purge d1!. Since direct input of d1! wouldn't work, 
you have to use again VARS , and extract the name d1! from the list 
of variables. With the name d1! on stack level 1 press  to get 
rid of that beast.

Thanks goodness there is the synonym FACT  for the function !. So 
perhaps we use that? Hmm, let's try. Enter 
d1FACT(X) = GAMMA X +1( )⋅Psi X +1( )  and press . Now, go 
to the EQW and enter:

∂
∂X

FACT X +1( )( )

Put that on the stack and expand to get 
GAMMA X + 1+1( )⋅Psi X +1+ 1( ) . It works! But we have a new 
problem. We can't use that with RPL syntax. If you enter X +1 and 
then FACT , the HP49G returns X!⋅ X +1( ) . (Automatic simplification 
using the rule X +1( )!= X!⋅ X + 1( ) . If you enter X  and then FACT , 
then the result is X!. All occurrences of FACT  are replaced by !. If 
you now try to take the derivative for X  you will of course end up 
with expressions containing d1!, which we don't want to have. But 
hey! We could make a program that converts all occurrences of ! to 
FACT . Enter the program:

<<
  { '&A!' 'FACT(&A)' }

  ↑ MATCH DROP
>>

and store the program in → FACT . If you work with RPL syntax, you 
can convert all occurrences of ! to FACT  before derivation, in order to 
get an expression that contains d1FACT . For example, enter again 
X +1( )!. Expand that to get X!⋅ X +1( ) . Now, press  to convert 

that to FACT X( ) ⋅ X + 1( ) . Enter X  and press  to get 
d1FACT X( )⋅ X +1( ) +FACT X( ) . Expand this to get 
X +1( )⋅ GAMMA X +1( ) ⋅Psi X +1( ) + X! .

Alternatively you can enter X +1( )! and press  without 
expanding. The result is FACT X +1( ) . Now you can enter X  and press 

 to get d1FACT X +1( ) . Expanding this you will get 
GAMMA X + 1+1( )⋅Psi X +1+ 1( ) . If you want you could also make a 
program that matches GAMMA something( )  to something−1( )!, in 
order to get results that contain only !, but no GAMMA . For example 
the code

<<
  { 'GAMMA(&A!)' '(&A-1)!' }

  ↑ MATCH DROP
>>

would do this conversion.

Perhaps now that we have seen that there are built-in functions for 
which the HP49G doesn't know how to take their derivatives out of the 
box, it is a good time to say some words about operations, commands 
functions and so on. Anything that the HP49G can perform is an 
operation. When you press  to add two numbers, the HP49G carries 
out an operation. When you press  to go to variables menu, the 
HP49G carries out another operation. Of all operations, those that are 
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programmable are called commands. So for example, +  is a 
command, because it is programmable. But pressing the key  
isn't programmable and so it isn't a command. There are of course 
programmable equivalents for many operations that are not 
programmable. For example you can use 2 MENU  to get the 
variables menu. On the HP49G when no other programmable 
equivalent exists, there is always the possibility to use KEYEVAL , to 
simulate a key press. For example, pressing  can be also 
programmed with 31 KEYEVAL . We see until now that the 
commands are a subset of all available operations. Commands that are 
allowed in algebraic objects are called functions. For example +  is a 
function because it is allowed in 
an algebraic object, but the 
command PATH  is not a 
function because you can't put 
that in an algebraic object. 
Again, functions are a subset of 
commands. And last we have 
those functions for which the 
HP49G provides an inverse and 
a derivative. These functions are 
analytic functions in the 
terminology of the HP49G. 
They are a subset of the 
functions. So we have an 
architecture like the picture on 
the right.

The sentence "provides an inverse and a derivative for a function" 
means that the HP49G can solve function(x) = y  analytically for x , 

and can find the derivative 
∂
∂x

function(x)( )   without any user 

intervention. In the terminology of the HP49G for example, the 
functions, ! or GAMMA , are not analytic, because the HP49G can't 
solve GAMMA X( ) = Y  analytically (though it can do that numerically 

for numeric values of Y ), and can't find 
∂

∂X
GAMMA(X)( )  (though we 

can make a user defined derivative). Note that the meanings of 
"function" and "analytic function" for the HP49G are not 100% identical 
with their mathematical meanings.

The HP49G provides also powerful tools in the plotting environment for 
finding slopes and derivatives in an interactive way. Let's try one 
example. Go to the PLOT SETUP  screen and choose plot type 
Function . Enter:

SIN X( )
X

as the function to plot, and X  as the independent variable. After this, go 
to the PLOT WINDOW − FUNCTION  screen and set H− View  
from −12.5  to 12.5 . Press  and  (for automatic scaling 
of V − View ). When the HP49G finishes automatic scaling, press 

 to let the HP49G plot the function. Now we are going to add the 
derivative of the function to the already existing plot. We don't need to 
move out of the plotting environment, find the derivative, add it to the 
functions to plot, and redraw. Press  which brings up a menu with 
many tools that relate to plotting functions. Move the graphics cursor 
some 10 pixels to the 
right and press . 
This operation finds and 
displays the slope of the 
function at the current 
horizontal coordinate. It 
also puts a copy of the 
slope on the stack. Press 
any menu key to display the menu again, and press  to go to the 
second page of the menu. Now, press . This finds the derivative of 
the function, adds it to the functions to plot, and redraws both functions. 
It also leaves the menu FCN. Now the reserved variable EQ  contains 
the list:
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X ⋅ COS X( ) − SIN X( )
X2

SIN X( )
X

 
 
 

 
 
 

The HP49G added the derivative to the functions to be plotted. Press 
 again. Since we have two functions in the list, the question is, 

on which of them will the tools of the menu FCN operate? The 
answer is: On the first. That means, if you for example move the 
cursor somewhere and press , the slope will be found for

X ⋅ COS X( ) − SIN X( )
X2

that is for the derivative that we found. You can take a look at the 
function on which the tools operate by pressing  and then . 
This displays the first function in the list for about one second on the 
top of the screen. If you want to switch to the next function in the list, 
move the cursor a bit to the right or to the left, press  and then 

. The cursor moves then to the next function which gets 
displayed on the bottom of the screen. (We move the cursor a bit 

away from X = 0 , because the HP49G would use 
SIN X( )

X
 to find the 

vertical coordinate. Since at X = 0  we have division by 0 , this causes 
the HP49G to leave the plotting environment because of error.) 
Pressing  also rolls the items in the equation list. The first 
equation is moved to the last place. The second moves to the first 
place. The third to the second, and so on. Now press some menu key 
again to display the menu, move the cursor again some 10 pixels to 

the right and press , to draw the tangent line of 
SIN X( )

X
 at that 

point and display its 
equation on the bottom 
of the screen. A copy of 
this equation is placed 
on the stack for later 
use. If you leave the 

plotting environment and return to the stack you will see the slope and 
the equation of the tangential line that the HP49G put there for you. (The 
equation of the tangential line isn't added in the list of equations to plot.)

Let's move on now to the other calculus stuff. First of all, automatic 
scaling has created the variable X . You may want to purge it now, as it 
is often the variable VX  and this interferes with the CAS of the HP49G. 
One of the calculus statements, that doesn't sound very interesting at 
first, but nonetheless has immense consequences, is:

If a function y = f x( )  is continuous in a ≤ x ≤ b  and 
differentiable in a < x < b , then there exists always some 

value ξ  between a  and b , such that 
f b( ) − f a( )

b − a
=

∂f x( )
∂x x=ξ

.  

That means geometrically that the slope of the tangent line 
of f x( )  at x = ξ  is equal to the slope of the secant that goes 
though the points a,f a( )( )  and b,f b( )( ) .

If we have a function f x( ) , two 
points a  and b , can we then 
find on the HP49G what the 
equation of the secant line is, 
that goes through the points 
a,f a( )( )  and b,f b( )( )? Yes, we 

can. This operation wasn't 
included in the tools of the menu 
FCN of the plotting 
environment, but nonetheless it 
is easy to do that. Suppose that 
we have the function 

F X( ) = X2 −1( )⋅ e
− X2( )

 and we 

want to find the equation of the line that goes through 0,F 0( )( )  and 

1,F 1( )( ) . Enter:
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F X( ) = X2 −1( )⋅ e
− X2( )

and press  to create the user defined function F . We are going to 
need the user defined function F  and the commands R → C  and 
DROITE . Since they reside all in different menus, we make a new 
temporary menu that contains them all. Enter the list 
F R → C DROITE{ }  and press . This creates a temporary 

menu with the commands that we need. The menu exists only until we 
leave it. Enter 0 , the first X -coordinate. Press  to make a copy 
of it on stack level 2, and press the menu key . This returns −1, 
the Y -coordinate that corresponds to X = 0 . Press the menu key 

 to create the complex number (point on the plane) 0., −1.( )  out 
of the numbers on stack levels 1 and 2. Now, enter 1, press  
to make a copy at stack level 2, press  and then again  to get 
the second point, 1.,0.( ) . Now, press . The command 
DROITE  takes two points from the stack and returns the equation of 
the line that goes through these points. The points can be two complex 
numbers, in numeric or in algebraic style. That means that we can use 
for example 0., −1.( )  and 1.,0.( )  (like we did), or 0 − i and 1. The 
equation that DROITE  returned is Y = X − 0. −1. . It contains 
numeric (real) values because we used numeric complex numbers. 

Press  to turn them to exact integers and  to get Y = X −1, 

the equation of the line that goes through 0,−1( )  and 1,0( ) . All the 
above is of course easy to program.

<<
  PUSH @Save user's settings
  → f v a b @Store in local variables
  <<
    a b 2 →LIST @Make a list of the two coords
    1 << →NUM >> @Turn them to numbers
    DOSUBS
    f
    v PICK3 = @make list {var=a var=b} and
    SUBST @substitute in function

    EXPAND R→C @Make list {(a,f(a) (b,f(b)}
    OBJ→ DROP @Explode it
    DROITE @Find secant line
    EXPAND
    RCLVX v = SUBST @Use variable of function
  >>
  POP @Restore user's settings
>>

Store the program in SECLINE. If you want, you can add XQ  after 
the last EXPAND . The program takes from the stack the function, its 
variable, and the two x-coordinates. Let's test it. Enter SIN X( )⋅ e− X , X , 
π
3

 and 
3 ⋅π

4
, and press . The result is:

Y = − .180967365884⋅X − .493414050108( ) . Note that this 
program will work only for points that are evaluable to numbers, 
because the command DROITE  doesn't work with symbolic 
arguments. If we want a program that does its work with any possible 
argument type, we unfortunately have to abandon the easiness of 
DROITE  and do all work ourselves. But we can get support from the 
already existing program ∆QUOT . This program doesn't expect two x-
coordinates but rather one x-coordinate and ∆x . So, if we want to use it 
for a secant, we have to transform the two x-coordinates. This is easily 
done by not providing the x-coordinates a  and b  themselves, but a  and 
b − a  (instead of ∆x). The program then returns the slope of the secant 
line. The only thing that remains then is to program the calculation of the 
constant of the equation of the secant line. If the function that we have is 
f , and the x-coordinates are a  and b  respectively, then this constant is 
given by:

f a( )⋅ b − f b( ) ⋅a
b − a

The program SECLINE that comes with this document uses this 
method.
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<<
  PUSH @Save user's settings
  → f v a b @Store in local variables
  <<
    'Y'                 @Enter Y
    f v a = SUBST b * @Find (f(a)*b-f(b)*a)/(b-a)
    f v b = SUBST a *
    - b a - /
    f v a b a - @Create arguments for ∆QUOT
    ∆ QUOT @and call ∆QUOT
    v * + = @Built up secant line equation
  >>
  POP @Restore user's settings
>>

It has the disadvantage that we do all work ourselves. But it is more 
flexible. Let's do an example. Enter eX , X , 0  and 1. Press 

. The result is Y = X ⋅ e1 − X −1( ) , the equation of the 

secant line that goes through the points 0,e0( )  and 1,e1( ) .

Now that we have that, you might suspect what comes next. Make a 
program that finds the equation of the tangent line of some function at 
a given point x0 . We can find the slope of the line easily by finding 
the derivative and substituting x = x0 . That means, we have to find:

∂f x( )
∂x x= x0

The constant of the equation of the tangent line is given by:

f x0( ) −
∂f x( )
∂x x =x0

⋅ x0

which means that we can use the quantity

∂f x( )
∂x x= x0

again. Here is the listing of the program TANLINE  that takes a function 
f , its variable x , and a coordinate x0  from the stack, and returns the 

equation of the tangent line at the point x0,f x0( )( ) .

<<
  PUSH @Save user's settings
  → f v a @Store in local variables
  <<
    'Y'                 @Enter Y
    f v ∂ @Find ∂f / ∂v
    v a = SUBST @Substitute v=a
    DUP v *             @Find ∂f / ∂v |v= a

    f v a = SUBST @Find f(a)
    ROT a * - @Find f a( ) − a ∗∂f / ∂v |v= a

    + EXPAND = @Built up tangent line equation
  >>
  POP @Restore user's settings
>>

We test the program. Enter SIN X( ) , X  and then 0 . Press  to 

get Y = X , the tangent line equation of SIN X( )  at 0,SIN 0( )( ) .

Another interesting problem. Assume that you have a secant line that 
goes through two points of some function. Then you search for a point 
of the function, whose tangent line is parallel to the secant line. We can 
make a program that takes a function f , its variable x , and two 
coordinates a  and b  from the stack, finds the equation of the secant 
line, and then finds the point whose tangent line is parallel to the secant 
line. This problem is also easy to solve. In order for the two lines to be 
parallel, they must have the same slope. The slope of the secant line is 
given by:
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f b( ) − f a( )
b − a

The slope of the tangent line is given by the expression:

∂f x( )
∂x x= x0

We have to find for which x0  the equation

f b( ) − f a( )
b − a

=
∂f x( )
∂x x= x0

is satisfied. On the HP49G it suffices to solve the equation

f b( ) − f a( )
b − a

=
∂f x( )
∂x

for x . Again we can use ∆QUOT  for finding the quantity

f b( ) − f a( )
b − a

Note however that in most cases the equation will not be analytically 
solvable and so we will use also numerical solving. Here is the listing 
of the program TANPARSEC  (TANgent line PARallel to SECant 
line - do you have a better name?)

<<
  PUSH @Save user's settings
  → f v a b @Store in local variables
  <<
    f v ∂ @Find ∂f / ∂v
    f v a b a - EXPAND @Find (f(b)-f(a))/(b-a)
    ∆ QUOT

    DUP "Slope" →TAG @Label result
    UNROT = v @Create arguments for ZEROS
    "Try analytically" @Inform user what's going on.
    1 DISP
    IFERR @If trying to solve errors
      ZEROS
    THEN @then
      "Failed.
Try numerically" @Inform user
      1 DISP

b a - 2. / ROOT   @and try numerically
      v PURGE @Purge created variable
    END    
  >>
  POP @Restore user's settings
>>

Let's try the program. Enter SIN X( ) , X , 
π
2

 and 
3 ⋅π

2
. Press  

to get:

Y =
2 ⋅π − 2 ⋅ X

π

This is the equation of the tangent line. Now, re-enter SIN X( ) , X , 
π
2

 

and 
3 ⋅π

2
, and press . The results are the tagged objects:

Slope:
−2
π

and

X: − 2 ⋅n1⋅ π + ACOS
−2
π

 
 

 
 

 
 
  

 
2 ⋅n1⋅ π + ACOS

−2
π

 
 

 
 

 
 
 

 
 
 
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That means that the slope of the tangent (and the secant) line is 
−2
π

, 

and that the tangent line at the points given in the list has this slope. 
We get more than one solutions because the sine is a periodic 
function. Now, we want the equation of the tangent line at those 
points. We work with the second solution:

2 ⋅ n1⋅π + ACOS
−2
π

 
 

 
 

Enter 2  and press  to extract it from the list. We will work with 
n1= 0 , so we must substitute this value in the solution. Enter n1= 0  
and press , then  to get:

ACOS
−2
π

 
 

 
 

This is the point  where we want to find the tangent of SIN X( ) . Enter 
SIN X( ) , then X , and then press  to put the arguments in the 
right order. Press  to get:

Y =
2 ⋅ACOS

−2
π

 
 

 
 − 2 ⋅ X + π2 − 4

π

This is the equation of the tangent line. Let's plot the function, the 
secant and the tangent line together. Press  and  to extract 
the right hand side of the equation of the tangent line. Press  

again to get rid of the slope. Press  to bring the equation of the 
secant line on stack level 1 and  and  to extract the right 
hand side of the equation of the secant line. Enter SIN X( ) , then 3 , 

and then press  and press  to store the list in EQ . Set 

plot type Function , independent variable X , horizontal view range 

from 0  to 6.28 , and 
vertical view range 
from −1.2  to 1.5 . 
Now  to get a 
plot that looks like 
the picture on the 
right. Of course all 
this can also be 
wrapped in a 
program that does the all work automatically. 

Another question that one might ask is, how can we represent 
differentials of functions on the HP49G? Is there any way? For 
example, suppose that we have the function Y = X2 . Its differential dY  
is defined as:

dY =
∂X2

∂X
⋅ dX ⇔ dY = 2 ⋅X ⋅ dX

Of course we can take the derivative of the function, but how can we 
denote the differential dX  of the independent variable? One way would 
be to simply append the small "d" in front of the name of the variable. 
The question is how much work can be done with such an expression. 
The answer is, at least it is the possible to store some value in variable 
dX  (or in general dvariableName), and evaluate to get the local 
description of the function at some given point. Consider for example 
the program:

<<
  → f v @Store in local variables
  <<
    f v ∂ @Find ∂f / ∂v
    "'d" v + "'" + @Make string "'dv'"
    OBJ→ @Turn string to name
    *
  >>
>>
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Store this in DY. Enter SIN X( ) , X  and then press  to get 
COS X( ) ⋅ dX . We see that the function SIN X( )  can be described 
locally, i.e. in the neighbourhood of some given point X0  as 

COS X0( )⋅ dX , where dX  is some tiny quantity. When X  has a 

change of dX , then SIN X( )  has a change of COS X0( )⋅ dX . For 

example let's see what SIN X( )  does at X = π . Enter X = π  and 
press  and  to get −dX . This means that at around 
X = π , when X  
has a variation of 
dX , then SIN X( )  
has a variation of 
−dX . As you can 
see, the local 
description of the 
curve can be 
approximated using 
differentials. They 
say how much the function varies at a given point, when the 
independent variable varies a tiny little dX . Geometrically this is like 
wanting to represent the function by many tangent lines, one at every 
point. A good way to represent that is to draw them without drawing 
the function itself. For example let's draw the tangent lines of X2  
from −2  to 2 , in steps of 0.2 . We will use the program TANLINE  
to find all the equations of the tangent lines. Enter <<'X^2' 'X' a 
TANLINE EQ→ NIP>>, 'a' , −2 , 2  and .2 . Press  to evaluate 
(run) the program for all values of a  from −2  to 2  in steps of 0.2 . It 
takes some seconds to run, so be patient. When it finishes, stack level 

1 contains a list with the equations of the tangent lines. Press  to 

store the list in EQ . Set plot type Function, independent variable X , 
horizontal view range from −2  to 2 , and vertical view from −1 to 4 . 
Now press  and then  to see the plot. It takes quite a 
long time to start plotting, and even longer to finish the plot, so be 
patient. When it finishes you have the impression that the parabola 
was drawn, though we plotted only straight lines.

The higher 
differentials can be 
calculated by using the 
code in DY  
repeatedly. If the 
variable dX  which is 
introduced by DY  is 
not the variable of 
derivation and is not in 
the original function, it 
will not interfere with our operations.

<<
  → f v n @Store in local variables
  <<
    f @Put f on stack
    1 n START @Do n times
      v ∂ @Find ∂f / ∂v
      "'d" v + "'" + @Make string "'dv'"
      OBJ→ @Turn string to name
      *
    NEXT
    FACTOR              @Collect all dv
  >>
>>

Store the new code in DY  and let's test it. We will find the second 
differential of SIN X( )⋅ e− X . Enter SIN X( )⋅ e− X , then X  and then 2 . 

Press  to get − 2 ⋅e− X ⋅ COS X( ) ⋅dX 2( ) . As you can see the 
differential of the independent variable isn't at the very end of the 
algebraic. But this is only a cosmetic problem.

The last thing at which we take a look here is a small comparison 

between the notions 
∂

∂X
F X( )( )  and d1F X( )  that both are possible on the 

HP49G. The algebraic (no pretty print) form of the notion 
∂

∂X
F X( )( )  is 
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∂X F X( )( ) . It looks quite similar to d1F X( ) . But the differences are 

huge. In the notion ∂X F X( )( )  the sequence of characters ∂X  is not a 
name. The second character is the variable of differentiation and is the 
second argument of the function ∂ . The HP49G displays ∂X F X( )( )  

but internally it means ∂ F X( ),X( ) . It is only a special display and 

nothing more. Quite different in d1F X( ) , the sequence of character 
d1F  is a name. It is a normal name that you can type in, exactly like 
any other name. There is no built-in function d1F  or d2VPN  or 
d3RCOBO . So we can define our own functions, that is, we make 
user defined derivatives. When the CAS of the HP49G has to 
manipulate some expression, it apparently checks if names are 
present, that are constructed in the way dNumberName. If it finds 
any, then it uses its built-in knowledge about derivatives. So for 
example it is possible to enter X X( ) , then X , and then press  
to get d1X X( ) . This is a quite pathological example, and I use it only 
for explanations, though it might as well have its usefulness. (He, he, 
you guessed right, in some of the next parts we will perhaps use it... 
perhaps! ;-)) In this example the dependence of the function X  on 
itself is somehow "hidden" in the derivative. The function name has 
become d1X and its argument is X , i.e. we have two different names 
out of two identical names of the expression X X( ) . There is yet 
another difference, which I think will can be understood better, if we 
focus on the difference between variables and names on the HP49G. 
A name is a single object (object type 6.), like for example X , Y , 
VOLUME , or even Karagiaouroglou. (OK, the last example might 
be no name at all ;-)) But a variable has become quite an abstract 
concept on the HP49G. On the HP48 the world was easier, variables 
were names, end of story. But on the HP49G a variable can be 
sometimes a name, sometimes an expression. A variable is something 
that can… vary, no matter if it is a name or an expression. What the 
CAS considers a variable is a rational variable and not necessarily a 
simple name. For example, if you enter SIN X ⋅Y( ) − COS Z( ) , and 

press , then the HP49G returns the vector with the names that 

appear in the expression, X Y Z[ ]. But if you press , the 

HP49G returns the vector of rational variables, SIN X ⋅ Y( ) COS Z( )[ ]. 
Apparently the two quantities SIN X ⋅Y( )  and COS Z( )  are for the 
HP49G two entities, two things, that are treated as wholes in many 
(all?) symbolic manipulations. And here we have a good starting point 

for understanding the difference between the two notions 
∂

∂X
F X( )( )  and 

d1F X( ) . (At this point it would be good to purge F  if you still have it 

from the previous pages.)  The first notion, 
∂

∂X
F X( )( ) , is the derivative 

for the name X . The second, d1F X( ) , is the derivative for the rational 
variable X . Of course in this example both are the same, but if we write 
X2 + X  instead of X  between the parentheses, then we get:

∂
∂X

F X2 + X( )( )
and:

d1F X2 + X( )
Now we see that

∂
∂X

F X2 + X( )( )
still means the derivative for the name X . If you expand it you get 
2 ⋅ X +1( )⋅ d1F X2 + X( ) . On the other hand if there is no definition of the 

derivative d1F X( ) , then expanding d1F X2 + X( )  returns d1F X2 + X( )  

unchanged, because this is the first derivative of F  for whole rational 
variable X2 + X . Note that the second notion counts arguments 
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(variables) simply by position. The construction 
dNumberFunctionvar1,var2,…,varN( )  separates the arguments 
by commas. Between the commas we have slots where the rational 
variables go. So, entering

∂
∂X

F
X
Y

,
Y
X

 
 

 
 

 
 
  

 

and expanding, returns

−Y
SQ X( ) ⋅ d2F

X
Y

,
Y
X

 
 

 
 +

Y
SQ X( ) ⋅d1F

X
Y

,
Y
X

 
 

 
 

In these expressions, though we started with a derivative for a name, 
we end up with derivatives for a rational variable. This doesn't mean 
that the result is incorrect. Quite the contrary it is correct and if it is 
used wisely it is also very useful.

Note also that the HP49G allows entering for example d100F X( ) . 
Expanding this doesn't do anything, though the function F  has only 
one and not 100 variables. This means that we have a way to enter 
derivatives of non-existing variables which will not disappear when 

we expand or do something else. With the notation 
∂

∂X
F X( )( )  we 

can't do that. If you expand for example 
∂

∂Y
F X( )( )  (i.e. derivation 

for a non existing variable), then you get 0 . In the above comparison 

one could as well use DERIV F X( ),X( )  instead of 
∂

∂X
F X( )( ) .

We came to the end of the first part of this marathon. If the above 
things were not very exciting, then wait until the next part, which will 
definitely come without delays. What comes in the next part was 
originally thought for this part. But then there would be too much 

important stuff about the "technical" part of the commands for 
derivation, which wouldn't have been covered at all. So I decided to 
reorganise things (once again) and do first all that stuff that you should 
know before we proceed. I hope you enjoyed it.

Greetings,
Nick.
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Hi again!

In the first part of the Basic Calculus Marathon, we spent a lot of time 
by examining the "technical" part of the derivation commands and 
their behaviour in many different cases of syntax and arguments. We 
continue this marathon examining what rules of derivation are known 
to the HP49G, and what we can program ourselves.

The HP49G is able to perform (almost) all rules of differentiation. 
Most of the time you don't even notice that, but the HP49G finds 
derivatives following those rules. We are going to take a closer look 
to these processes by activate the step by step feature. When this 
feature is activated then differentiations can be followed from one step 
to the next.

Before we go further, purge the variables and user defined functions 
that we used in the first part, because they may interfere with what we 
are going to do now. Enter R S V W Z Q Z1 Z2{ }  and 
press  to get rid of them. If the variables don't exist, then 
PURGE  will not error out. It will simply remove the list from the 
stack. (PURGE  behaves in the sense "Delete file if it exists".)

The first derivation rule that we are going to examine is:

∂
∂X

C ⋅F X( )( ) = C ⋅
∂

∂X
C ⋅F X( )( )

Does the HP49G know that? Let's see. Enter

∂
∂X

C ⋅F X( )( )

and press  to get

C ⋅
∂

∂X
F X( )( )

If you press  again, then you get C ⋅ d1F X( ) . Notice that the step 
by step feature works only for algebraic entry of the whole derivative 
and evaluation. If you enter C ⋅F X( ) , then X , and then press , you 
will get the end result, without the steps in-between. You have to enter 
your derivative in the form

∂
∂name

expression( )

and press . Any other way will give you the end result in one step. 
Let's have a particular example, enter

∂
∂Y

A ⋅ Y2( )

and evaluate to get

A ⋅
∂

∂Y
Y2( )

Evaluate again to get 2 ⋅ Y ⋅ A . Of course you can also expand

∂
∂Y

A ⋅ Y2( )

to get A ⋅ 2 ⋅ Y  immediately without any steps in-between, but we 
examine here if and how the HP49G applies derivation rules. The 
opposite direction, collecting the constant in front of the derivative and 
multiply it with the function inside the derivative, is not possible on the 
HP49G out of the box. But we can (of course ;-)) program that. We can 
use the command ↑ MATCH  to convert any occurrence of the pattern

constant ⋅
∂

∂name
function( )
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to the pattern

∂
∂name

constant ⋅ function( )

But we must watch out here. We can't blindly do this matching. We 
must check first if constant  is itself a function of name . If it is, 
then we can't put it inside the parentheses of derivation. We are 
allowed to do that only if constant  doesn't depend on name . The 
command ↑ MATCH  offers the possibility to check some condition 
and do the matching only if the condition is true. The condition that 
we must use is in general "variable not in constant ". We have the 
command LNAME, which returns a vector of all names in an 
algebraic object, or an empty list if the algebraic object doesn't contain 
any names. We can check if name  is in that vector and decide what 
to do accordingly. But… to do this we have to give the command  
↑ MATCH  a list containing three algebraic objects, the third of which 
is the condition. And LNAME is a command, not a function, and thus 
it can't be put in an algebraic object. What to do in such a case? We 
have to somehow smuggle what LNAME does in an algebraic object. 
Here comes the flexibility of the HP49G. Imagine some program that 
does anything it does, but returns a single object which is allowed in 
an algebraic. For example, suppose that you have the program

<<
    π  →NUM
    1 10 START
      COS
    NEXT
    XQ
>>

stored in MULTPI10. If you enter the expression MULTPI102 ⋅X  
and expand, then the program will be evaluated and its result,

36293
49621

will replace the variable MULTPI10 in the expression, giving:

36293
49621

 
 

 
 

2

⋅X .

The expansion then proceeds and returns the result

31317181849⋅ X
2462243641

Since the result of MULTPI10 something allowed in algebraic objects, 
everything works OK. Another example: Suppose that you have the 
program

<<
   → x
   <<
     x TVARS SIZE
   >>
>>

stored in NUMTVARS. The program takes a number as argument and 
returns all variables in the current directory, that are of the same type like 
the number. If you enter the algebraic object NUMTVARS 8( ) +10  and 
expand, then the HP49G will return the sum of the number of programs 
(type 8.) in the current directory and 2 .

In exactly the same way we write the program

<<
   SWAP LNAME NIP @Return list of names in alg.
   IF DUP TYPE 29. == @If result is symbolic vector
   THEN @then
     AXL @convert it to a list
   END
   SWAP POS @Position of name in list.
>>
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and store it in POSNAME . The program takes two arguments. An 
algebraic (or name) on stack level two, and a name on stack level 1. It 
returns the position of the name in the vector of variables of the 
algebraic object. If you enter X2 − Y + Z  and Z , then pressing 

 returns 2.  because Y  is in the second position of the 
vector of names of X2 − Y + Z . If you enter X2 − Y + Z  and A , then 
pressing  returns 0. , because A  isn't contained in 
X2 − Y + Z . The important thing is that you can also do the same in 
algebraic syntax. You can enter POSNAME X2 − Y + Z,Y( )  and 
EXPAND. This will also set approximate mode on, switch back if 
you don't want it. Now we can use POSNAME expression,name( )  
in any algebraic object. We can use it as the testing condition for the 
command ↑ MATCH . Let's do an example first. Enter

C ⋅
∂

∂X
F X( )( )

Now enter the list:

&c ⋅
∂

∂ &v
&f( ) ∂

∂ &v
&c ⋅ &f( ) NOT POSNAME&c,&v( ) 

 
 

 
 
 

Press . The result is

∂
∂X

C ⋅F X( )( )

on stack level 2, and 1.  on stack level 1, which shows that pattern 
matching was performed. The HP49G evaluated 
NOT POSNAME &c,&v( ) , the testing condition. Since variable &v  
(i.e. X ) was not in expression &c  (i.e. C ), the program 
POSNAME  returned a 0.  This was negated and the result of the 

testing condition was 1. , which stands for true. The testing condition 
was evaluated to true and so pattern matching was performed. Enter

X ⋅
∂

∂X
F X( )( )

then press  to get the popup with the last 4 commands. Select the 
list with the pattern matching arguments and press  to put it in the 
command line. Press  again to put it on the stack. Now, press 

 again. The result now is

X ⋅
∂

∂X
F X( )( )

on stack level 2, and 0.  on stack level 1, which shows that pattern 
matching was not performed because &v  (i.e. X ) was in expression 
&c  (i.e. X ). We will use this and other similar tricks later on, to make a 
program that collects differential forms, something that the HP49G can't 
do out of the box.

Next rule that we examine is the derivation rule for sums, which is:

∂
∂X

F X( ) + G X( )( ) =
∂

∂X
F X( )( ) +

∂
∂X

G X( )( )

Enter

∂
∂X

F X( ) + G X( )( )

and evaluate. The HP49G returns

∂
∂X

F X( )( ) +
∂

∂X
G X( )( )
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If you evaluate again then you get d1F X( ) + d1G X( ) . We also do a 
particular example. Enter

∂
∂X

X2 ⋅ A − X ⋅ 2( )

and evaluate. The result is

∂
∂X

X2 ⋅ A( ) −
∂

∂X
X ⋅2( )

which shows that the HP49G used the derivation rule for sums. 
Evaluate again to get

A ⋅
∂

∂X
X2( ) − 2

Here the HP49G used the rule of derivation of an expression 
multiplied by some constant. Evaluation of the term

∂
∂X

X2 ⋅ A( )

resulted in

A ⋅
∂

∂X
X2( )

which still contains a derivative. Evaluation of the term

∂
∂X

X ⋅ 2( )

resulted in

2 ⋅
∂

∂X
X( )

which was directly simplified to 2 ⋅1= 2 . Evaluating again we get 
2 ⋅ X ⋅ A − 2 , the final result, which the HP49G finds using again the 
rule of derivation of an expression multiplied by a constant. Again the 
opposite direction isn't possible. There is no command that collects 
expressions like:

∂
∂X

F X( )( ) +
∂

∂X
G X( )( )

to:

∂
∂X

F X( ) + G X( )( )

Here we could enter:

∂
∂X

F X( )( ) +
∂

∂X
G X( )( )

then list that contains the patterns to match:

∂
∂ & v

&f( ) +
∂

∂ &v
&g( ) ∂

∂ &v
&f + &g( ) 

 
 

 
 
 

and then use ↑ MATCH  to convert the sum of the derivatives to the 
derivative of the sum. We keep these idea in mind for using them later 
for a program that does collection of differential forms. The rule for 
taking the derivative of a sum is known by the CAS of the HP49G if we 
build up the sum using + . But what about Σ ? Will it be able to handle 
for example
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∂
∂X

Xn

n=1

N

∑ 
 
  

 

and convert it to

∂
∂X

Xn( )
n=1

N

∑   ?

Let's see. Enter:

∂
∂X

Xn

n=1

N

∑ 
 
  

 

and expand. The result is d1Σ n,1,N,X 2( ) . Unfortunately it doesn't 
work this way. And this is a pity. The HP49G can do that. Enter 

Xn

n=1

N

∑ , then X , and then press . You get:

X −1( )⋅ e N+1( ) ⋅LNX( ) ⋅ N+ 1( ) ⋅ 1
X

− 1
 
 

 
 − e N +1( )⋅LN X( ) − X( )

SQ X −1( )

Expand this to get:

X −1( )⋅N +−1( )⋅ X
N+1( ) + X

X3 − 2 ⋅ X2 + X

This result shows that the HP49G first found the result of Xn

n=1

N

∑  and 

then took the derivative of the result for X . First of all the question is 
why it doesn't do the same if we enter that in algebraic syntax? Then, 
what will happen if the sum can't be handled by the built-in CAS? To 

answer the second question, enter:

Xn

X −nn=1

N

∑

then X , and then press . After some seconds the HP49G returns:

d1Σ n,1,N,
Xn

X − n

 
 
  

 

It can't find what the result of

Xn

X −nn=1

N

∑

is and so it returns the formal derivative. There is no built in way to 
convert derivatives of sums in the form:

∂
∂X

expressionX,n( )
n=1

N

∑ 
 
  

 

to:

∂
∂X

expression X,n( )( )
n=1

N

∑

If the symbolic sum can be expanded to some other expression, then the 
derivative of this resulting expression will be taken. If we use the 
function ∂ , this works only if we first enter the sum, then a name and 
then press . Entering the whole thing at once, namely

∂
∂X

expressionX,n( )
n=1

N

∑ 
 
  

 
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will not work, even if the symbolic sum can be handled by the CAS.

On the other hand the command DERIV  works in both RPL and 
algebraic syntax. The expression

DERIV Xn

n=1

N

∑ ,X
 
 
  

 

can be directly expanded to

X −1( )⋅N −1( )⋅ X
N+1( ) + X

X3 − 2 ⋅ X2 + X

The same result we get if we enter Xn

n=1

N

∑ , then X , and then press 

 and . But again, expanding the expression

DERIV
Xn

X −nn=1

N

∑ ,X
 
 
  

 

we get

d1Σ n,1,N,
Xn

X − n

 
 
  

 

because the CAS can't handle the sum 
Xn

X −nn=1

N

∑ . We can't somehow 

convert

DERIV
Xn

X −nn=1

N

∑ ,X
 
 
  

 

to

DERIV
Xn

X −n
,X

 
 
  

 n=1

N

∑

using the built-in commands. So the rule for derivation of sums seems 
to be only implemented for +  but not for Σ . The opposite direction, 
namely conversion of:

∂
∂X

expression X,n( )( )
n=1

N

∑

to:

∂
∂X

expressionX,n( )
n=1

N

∑ 
 
  

 

is also not possible out of the box. In this case the HP49G takes the 
derivative of expressionX,n( ) , and then tries to find the sum:

∂
∂X

expression X,n( )( )
n=1

N

∑

If it can handle this, it returns some result that doesn't contain any 
derivatives any more. If it can't find the sum, then it returns:

derivativeOfExpressionX,n( )
n=1

N

∑

So we see that we have to program such conversions of sums built up 
with Σ . We have to watch out because if the variable of derivation is the 
same like the summation index, then we are not allowed to convert:
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∂
∂n

expressionX,n( )
n=1

N

∑ 
 
  

 

to:

∂
∂n

expression X,n( )( )
n=1

N

∑

(This is also true for the opposite direction.) So we have to check first 
if the derivation variable is different from the summation index, and 
do our conversions only if this condition is true.

Next rule of derivation is the product derivation rule:

∂
∂X

F X( ) ⋅G X( )( ) = F X( ) ⋅
∂

∂X
G X( )( ) + G X( )⋅

∂
∂X

F X( )( )

Enter the derivative:

∂
∂X

F X( ) ⋅G X( )( )

and evaluate it to get the result:

∂
∂X

F X( )( ) ⋅G X( ) +F X( ) ⋅
∂

∂X
G X( )( )

We see that the HP49G knows also this rule of differentiation. But 
here we start suspecting what one of the main problems of our 
program will be, that collects differential forms. We have to do it in 
such a way, that it will be able to collect:

∂
∂X

F X( )( ) ⋅G X( ) +F X( ) ⋅
∂

∂X
G X( )( )

but also:

G X( ) ⋅
∂

∂X
F X( )( ) +F X( ) ⋅

∂
∂X

G X( )( )

or any equivalent form, to:

∂
∂X

F X( ) ⋅G X( )( )

That means that we have to somehow make sure that it will do its work 
with arbitrary differential forms, and not only with differential forms 
written in some particular way.  Let's have a particular example. Enter:

∂
∂X

X2 ⋅ SINX( )( )

and evaluate once to get the result:

∂
∂X

X2( )⋅ SINX( ) + X2 ⋅
∂

∂X
SINX( )( )

The rule of derivation of products was used once. Press  again to 
get the result 2 ⋅ X ⋅ SINX( ) + X2 ⋅ COS X( ) .

Now we move on to the derivation rule of powers:

∂
∂X

F X( )n( ) = n ⋅F X( )n−1 ⋅
∂

∂X
F X( )( )

If you enter:

∂
∂X

F X( )n( )
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and evaluate, you get the result:

n ⋅F X( )n −1 ⋅
∂

∂X
F X( )( )

The opposite direction is again not possible, there is no available 
command to collect the expression:

n ⋅F X( )n −1 ⋅
∂

∂X
F X( )( )

to:

∂
∂X

F X( )n( )
For an example enter:

∂
∂A

A4( )

and press  to get 4 ⋅A3 .

We take a look to the derivation rule for quotients:

∂
∂X

F X( )
G X( )

 
 
  

 
 =

G X( ) ⋅
∂

∂X
F X( )( ) −F X( )⋅

∂
∂X

G X( )( )
G X( )2

Enter:

∂
∂X

F X( )
G X( )

 
 
  

 
 

and evaluate. You get the result:

G X( ) ⋅
∂

∂X
F X( )( ) −F X( )⋅

∂
∂X

G X( )( )
SQ G X( )( )

which shows that also this rule is known to the CAS. But again re-
collecting the result to:

∂
∂X

F X( )
G X( )

 
 
  

 
 

is not possible. To have an example, enter:

∂
∂X

SINX( )
X

 
 
  

 

and evaluate to get:

X ⋅
∂

∂X
SIN X( )( ) −SIN X( )

SQ X( )

Next evaluation gives:

−
SINX( ) − X ⋅ COS X( )

X2 .

Next comes the "chain rule", the rule for taking derivatives of nested 
functions:
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∂
∂X

F G X( )( )( ) =
∂

∂G X( ) F G X( )( )( )⋅
∂

∂X
G X( )( )

Enter:

∂
∂X

F G X( )( )( )

and evaluate to get d1G X( )⋅ d1F G X( )( ) . Here the HP49G returned the 
result using d1-notation, but the result is nonetheless correct. 
Remember, d1F G X( )( )  is the derivative of F G X( )( )  for G X( ) . Let's 

have an example again. We use G X( ) = X2  and 

F G X( )( ) = SIN G X( )( ) = SIN X2( ) . Enter:

∂
∂X

SINX 2( )( )
and press  to get:

COS X2( )⋅
∂

∂X
X2( )

The HP49G has found the "outer" derivative:

∂
∂X2 SIN X2( )( ) = COS X2( )

and multiplied this with the "inner" derivative:

∂
∂X

X2( ) , giving the result:

COS X2( )⋅
∂

∂X
X2( )

If you press  once more, you get 2 ⋅ X ⋅ COS X2( )  (i.e. rule of 
derivation of powers). As you might have expected, the is no available 
command for collecting:

∂
∂G X( ) F G X( )( )( )⋅

∂
∂X

G X( )( )

to:

∂
∂X

F G X( )( )( ) .

As we see all the above rules of differentiation are known to the CAS of 
the HP49G, but only in one direction, namely in the "expanding" 
direction. The opposite, call it "collecting" direction, is not possible. 
However, sometimes it is quite useful to have that feature of collection 
of differential forms. (We will see that this can be a quite a help for 
solving some types of differential equations.) So we are going to make a 
program for this. Let it be said here, that the program will not do 
miracles. In many cases it will fail to collect the differential forms, 
though they could be collected. However, it will do its work in many 
other cases. In addition it will demonstrate some techniques of 
programming and dealing with algebraic objects, which I hope will 
generate appetite for more ideas and further improvements. Before we 
continue, deactivate the step by step feature, as we don't want stepwise 
evaluation of derivatives any more.

Let's consider first some general things about the program. In order to 
collect differential forms, it will make heavy use of the pattern matching 
commands ↑ MATCH  and ↓ MATCH . But here we have the first 
problem. The commands can't be used with differential forms written in 
dn  notation. Imagine for example that we have d1F X( ) + d1G X( ) , 
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which can be collected to:

∂
∂X

F X( ) + G X( )( )

First of all, the undefined functions F X( )  and G X( )  could also be 
H Y( )  and P Z( ) . That means that we have to use the pattern matching 
commands with general patterns. But since the differential forms are 
written as d1F X( )  and d1G X( ) , the names of the functions alone are 
not available for pattern matching. We only have the names d1F  and 

d1G . Matching d1F X( )  to 
∂

∂X
F X( )( )  is only possible for this 

particular case, namely using the pattern matching list:

d1F X( ) ∂
∂X

F X( )( ) 
 
 

 
 
 

We can't use any other more general pattern that would also match for 

example d1G Y( )  to 
∂

∂Y
G Y( )( ) . We can't use the pattern matching 

list:

&F &X( ) ∂
∂ & X

&F &X( )( ) 
 
 

 
 
 

This would of course match d1G Y( )  to 
∂

∂Y
G Y( )( )  and d1F X( )  to 

∂
∂X

F X( )( ) , but it would also match F X( )  to 
∂

∂X
F X( )( )  because, as 

already said, for the calculator both d1F X( )  and F X( )  are the same 
general pattern. (Remember, d1F  is just a name.) In addition, the 
expression d1F X( )  doesn't contain the variable of differentiation in a 
way that makes it easy to do pattern replacement. So the first 

requirement is that we have to convert first all derivatives written in d1 

notation to derivatives written in 
∂
∂

 notation. And for this we have to do 

parsing. Since it could be useful to have such a program as a stand alone 
utility for converting expressions with d1 derivatives to expressions 

with 
∂
∂

 derivatives, we are going to program that separately. Then, the 

program that will do collection of differential forms, can just call this 

stand alone utility and use it for the conversion of d1 derivatives to 
∂
∂

 

derivatives. Let's take a look at the listing of the program dn → dv  
which takes an expression from stack level 1, and returns it with all d1 

derivatives converted to 
∂
∂

 derivatives.

<<
PUSH @Save user flags
-100. CF @No step by step
"Converting ∂  to d" @Display message
1 DISP
IF

EXPAND LVAR {} ≠ @If expression has
@rational variables

OVER TYPE 9. == AND @and it is an algebraic
@object

THEN @then:
"Filtering names out" @Display message
1 DISP
LVAR AXL @Return list of rat. vars
{}
→ varl @Store empty list in local
<< @Local var. procedure

1.
<< @Start of DOSUBS procedure

IF @for all rational variables
DUP TYPE 6. @If rat var. is a name
==

THEN @then drop it
DROP
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ELSE @else
'varl' STO+ @ add it to list varl.

END
>>
DOSUBS @Do to all rat. vars.
varl @Return varl

>>
IF

DUP {} ≠ @If result is not empty
THEN @then we parse all rat.

1. @variables
<< @Start of DOSUBS procedure

DUP →STR @Make a copy, conv. to str.
2. OVER SIZE @Substr. chars. 2 to length
1 - SUB @of string - 1
{} "" @Store in locals
→ dFormAlg dFormStr
dvars dTemp
<<

1. SF @Set flag 1 (indicator)
DO @Do

"Searching diff. forms"
1. DISP @Display message
IF @If

dFormStr @string starts with "d("
"d(" POS
1. ==

THEN @then
"No diff. forms"
1. DISP @Display message
1. CF @Clear flag 1

ELSE @else
IF @if

dFormStr
HEAD @If first char. is "d"
"d" ==

THEN @then
"Diff. form found"
1. DISP @Display message
"d" @Store "d" in dTEMP
'dTemp'
STO

dFormStr @Store tail of dFormStr
TAIL @in dFormStr
'dFormStr'
STO

ELSE @else
"No diff. forms"
1. DISP @Display message
1. CF @Clear flag 1

END
IF @If flag 1 is set

1. FS?
THEN @then

"Parsing diff. form"
1. DISP @Display message
WHILE @While

dFormStr @dFormStr starts with number
HEAD DUP @≥ 0 and ≤ 9
"0" ≥
SWAP "9"
≤ AND
dFormSTr @and it has an opening
"(" POS @parenthesis at a position
3. ≥ @≥ 3
AND @(We check pattern "dn(")

REPEAT @repeat
'dtemp' @add first char of dFormStr
dFormStr @to dTemp
HEAD STO+
dFromStr @put the rest in dFormStr
TAIL
'dFormStr'
STO

END
IF @If dFormStr has "(" in

dFormStr @first or second position
"(" POS
2. ≤

THEN @then
IF @If

dFormStr @dFormStr doesn't start
"0" ≥ @with char. between 0
dFormStr @and 9
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"9" ≤
AND NOT

THEN @then
'dvars' @add object that results
dTemp @from substr 1 to length
2 OVER @-1 from dTemp
SIZE @to dvars
SUB OBJ→
STO+

ELSE @else
1. CF @clear flag 1

END
ELSE @else

'dvars' @add object that results
dTemp 2 @from substr 1 to length -1
OVER @from dTemp to dvars
SIZE SUB
OBJ→
STO+

END
END

END
UNTIL

1 FC? @until flag 1 is clear
END
IF

dvars {} ≠ @dvars contains something
THEN

dFormAlg
dvars REVLIST @Reverse dvars list
IF @If

dFormStr @dFormStr starts with char.
HEAD DUP @between "0" and "9"
"0" ≥
SWAP "9"
≤ AND

THEN @then
"d" @add "d" at start of
dFormStr + @dFormStr

ELSE @else
dFormStr @return dFormStr

END

"Build-up MATCH list"
1. DISP @Display message
DUPDUP "(" @Find number of deriv. var.
POS 1. + @Make list {nums deriv vars}
OVER ")"
POS 1 -
SUB "{" SWAP
+ "}" + OBJ→
→ vars @Store local
<<

SWAP 1.
<< @DOSUBS procedure

"∂ " vars @Make str "∂ var(expr)"
ROT GET
+ "(" +
SWAP +
")" +

>>
DOSUBS @Do with all list elements
"'" SWAP + @Add quotes and make alg.
"'" + OBJ→
2 →LIST @Make pattern match list

>>
END

>>
>>
DOSUBS ©Do with all list elements
IF @If we don't have an alg.

DUPDUP TYPE 9. ≠ @or name
SWAP TYPE 6. ≠
AND

THEN @then
"MATCHing diff. forms"
1. DISP @display message
1.
<<

↑ MATCH DROP
>>
DOSUBS @MATCH every pattern

END
ELSE @else
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DROP @Drop
END

END
POP @Restore user settings

>>

The program dn → dv  which comes with this document (he, he, no 
need to type it ;-)) is really no easy thing to read and to understand 
how and why it works. I have made corrections and corrections of 
corrections until it worked. So much of it is kind of patchwork. And it 
isn't perfect also. For example it will crash if you give it  d100F X( )  
because it will try to find out what the hundredth rational variable 
(inside the parentheses) of F X( )  is. But it will work correctly if you 

give it expressions that are convertible to the notation 
∂
∂

. If no 

derivative is contained in the expression that you give it, it returns the 
expanded expression. Should we try it? But of course! Enter 
d1d1F X( ) − d1G Y( )⋅ d2F1X,Y( )  and press . The HP49G 
displays some messages (that Nick finds informative ;-)) and then it 
returns:

−
∂

∂Y
G Y( )( ) ⋅

∂
∂Y

F1Y,Y( )( ) −
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

 
 
  

 

It works! (Even I wouldn't expect that ;-))

Let's comment some of the used techniques before we proceed, as 
they seem to be interesting. First of all, we have that EXPAND  at the 
beginning of the program. Is it necessary? Well, the expression that 
contains differential forms, could contain them in any possible 
notation. For example, we could give the program:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

or:

∂
∂X

d1F X( )( )

or:

d1d1F X( ) . We expand at the beginning in order to convert the 
expression to the standard fully expanded form. This way we are able to 
know later on in the program, that the expression is in a particular form, 
no matter how it was entered.

Another thing that should be noticed is how the list of rational variables 
is constructed. Take for example the derivative d1F X,Y,Z( ) . The 
program converts that to a string and extracts the sub string "X,Y,Z" . 
Then the list delimiters are added and the string is converted to 
" X,Y,Z{ }". This string is then converted to a list using the command 
OBJ → . Notice here the commas between the list elements. The 
sequence " X,Y,Z{ }" OBJ →  is exactly the same as if you have entered 
the list X,Y,Z{ }  from the command line. Normally list elements are 
separated by spaces but commas will also work. You can even enter 
X,Y,Z , which is exactly the same like entering X Y Z and creates 
the three names in stack levels 3 to 1. In this case it is very helpful not 
having to replace the commas in the string to spaces before using 
OBJ → .  (However, if we had to do that, we could use the command 
SREPL .)

The last thing that seems remarkable is that the same comparison 
commands, like for example >  , ≥  and so on, can be used to compare… 
characters! Of course we don't compare the characters themselves but 
rather their character number in the character table of the HP49G. This is 
very helpful for alphabetising purposes, or for finding if some string 
starts with a character, the character number of which is within a certain 
range.
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Now that we have dn → dv , let's proceed and see what else we 
need. The collection of differential forms can be very hard to 
program, if we don't define the standard form in which the algebraic 
form has to be delivered to our collecting algorithms. Of course we 
have already used EXPAND  to bring the expression in its standard 
fully expanded form, but this is not enough. The command 
EXPAND  will sometimes return sums of products, sometimes sums 
of terms, and so on. We can't predict what the general form of its 
results will be. So we make a convention. The expression has to be 
delivered to our collecting algorithm as a sum of products. This way 
we will know that it has the form T1 + T2 +…+ Tn , where 
T1,T2 ,…,Tn  are all products (i.e. they don't contain any sums). The 
HP49G has the command FDISTRIB , which fully distributes ⋅  and /  
over +  and − . This command has also the big advantage, that it 
returns sums but no differences. For example, entering

A −B
C

and using FDISTRIB , returns:

A
C

+−
B
C

(i.e. the sum of 
A
C

 and −
B
C

 rather than the difference of 
A
C

 and 
B
C

). 

Don't underestimate this simple fact. If we had sometimes a sum and 
sometimes a difference, then using the summands one after the other 
in a program would be much more complicated because we would 
have to check if they are connected by +  or by − . If we have the 
expression in its fully distributed form, then we can examine each 
summand for itself, and decide if in some of them the differential 
forms can be collected. Then we can add them pair wise and examine 
every possible pair Ti + Tj , where i ≠ j , with pattern matching of the 
differential forms. We need a program that returns all summands of 
some expression separately and unfortunately the HP49G doesn't 

have such a command. But fortunately the Sequences, Series and Limits 
Marathon was done before the Basic Calculus Marathon. (There is 
method in my insanity ;-)) In that marathon we had the program 
→ TERMS  that does exactly this. It returns a list with all summands of 
some expression. If you don't have that marathon then it doesn't matter, 
because the program → TERMS  comes also with this marathon.

Let's see now the listing of the program dCOLLECT.1, which 
(hopefully) collects differential forms. It uses all the ideas from above 
and also the pattern matching commands quite often. It needs d1→dv 
and → TERMS  to run, so you should have these programs at the same 
directory. The program is way from being perfect, but as already said, 
all programs of the marathon are for demonstrating programming 
techniques and creating appetite for improvement.

<<
PUSH @Save user's settings
dn→dv @Convert to ∂  notation
→TERMS @return list of terms
→ diffTerms @Store in local
<<

1. diffTerms SIZE @Do for each term
FOR I

"Checking " I + " term
" + 1. DISP @Display message

diffTerms I GET @Extract term from list
FACTORS @Return list of factors and
{ 1. 1.} {} @multiplicities
→ termFacts
facts difFacts @Store in locals
<<

termFacts 1.
<< @DOSUBS procedure starts

IF @If we have an element at
NSUB 2. MOD @an even position
NOT

THEN @then it is a power
2. →LIST @so make list {factor power}

END
>>
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DOSUBS @Now the list is in the form
@{{fact1 pow1}{fact2 pow2}…}

"Separating ∂ " @Now we are going to
1. DISP @separate diff. forms from

@other factors
1.
<< @Another DOSUBS procedure

IF @If
DUP HEAD
{'∂ &V(&A)' '∂ &V(&A)'}

↓ MATCH NIP @factor is a diff. form
THEN @then convert it to a list

1. →LIST
'difFacts' @and enter 'difFacts

ELSE @else
'facts' @enter 'facts'

END
SWAP STO+ @Add factor to approp. list

>>
DOSUBS @Now we have all factors that

@are diff. forms in difFacts.
@All the others are in facts

IF @If there were more than one
difFacts SIZE @diff. forms
1. >

THEN @Then we take the highest
'facts' @derivative and add the others

@to the common factors
"Isolate highest diff.

" 2. DISP @Message
difFacts TAIL @Add all but the highest

@der.
1. @to common factors
<< OBJ→ DROP >>
DOSUBS STO+
difFacts HEAD @Put highest derivative
1. →LIST @in difFacts
'difFacts' STO

END
IF @If difFacts isn't empty

difFacts {} ≠

THEN @then
"(∂ )^n → ∂ *(∂ )^(n-1)"
2. DISP @We will convert all derivs.

@from (∂ X(F(X)))^n to
@∂ X(F(X))*(∂ X(F(X)))^(n-1)
@(See explanations after
@program listing.)

difFacts 1.
<< @Yet another DOSUBS proc.

OBJ→ DROP @Convert { deriv pow } to
OVER SWAP @{ deriv deriv pow-1 }
1. - R→I
3. →LIST

>>
DOSUBS
'difFacts' STO @Store in difFacts
"Collecting ∂  of powers"
2. DISP @Another message
difFacts 1.
<< @DOSUBS proc.

IF @If
facts OVER @Sub expression F(X)
HEAD OBJ→ @of ∂ X(F(X))
3. DROPN @appears in the factors
POS DUPDUP @that are not derivatives

THEN @then
facts SWAP @get factor and its power n
GET facts
ROT 1 +
GET
→ factor @Store locally
power
<<

"'∂ " @Construct ∂ X(F(X)^n+1)
OVER HEAD
OBJ→ DROP2
NIP + "(" +
factor power
1. + R→I
IF

DUP 0. <
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THEN
NEG ^ INV

ELSE
^

END
→STR 2. OVER
SIZE 1. - SUB +
")'" + OBJ→
1. SWAP @Put ∂ X(F(X)^n+1) in first
PUT @place of difFact
'facts' @Construct {F(X) -n n+1 -1}
factor
power
NEG power
1. + R→I
-1. 4. →LIST
STO+ @Add to list facts

>>
ELSE @else

DROP2 @drop unnecessary objects
END

>>
DOSUBS @Do to every diff. Factor
'difFacts' STO @store in difFacts

END
'difTerms'
I facts 1.
<< @DOSUBS proc for each factor

IF @If we are at an even pos.
NSUB 2. MOD
NOT

THEN @then
R→I ^ @we raise to the power

END
>>
DOSUBS
1 + Π LIST @Add 1 to the list and

@make prod. of list elements
EXPAND dn→dv @Use dn→dv again
IF

difFacts {} ≠ @If there are diff. facts

THEN @then
difFacts 1.
<< @Product of diff. factors

OBJ→ DROP
R→I ^ *

>>
DOSUBS
1 +
Π LIST @Make product of derivs.
* @Mult. factors and derivs.

END
PUT @Put back in orig. list

>>
NEXT
1. SF @Flag 1 is our indicator
WHILE @While more than one term

diffTerms SIZE @and flag 1 is set
1. > 1 FS? AND

REPEAT @repeat
1. diffTerms SIZE
1. -
FOR I @for I=1 to number of diff.

@terms - 1
I 1 +
diffTerms SIZE @for J=2 to number of diff.
FOR J @terms

"Diff. terms "
I + " " + @Construct and display
J + 1. DISP @message
diffTerms @Make sum of Ith and Jth
I GET @term
diffTerms
J GET +
→ dTerm @Store in local
<<

"A*∂ B+B*∂ A → ∂ (A*B)"
2. DISP @Message
dTerm
CASE @Use product rule

{ '&A*∂ &V(&B)+&B*∂ &V(&A)'
'∂ &V(&A*&B)' }
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↑ MATCH @Prod. patt. match
THEN

1. @return 1.
END @Same match written 

different.
{ '&A*∂ &V(&B)+∂ &V(&A)*&B'
'∂ &V(&A*&B)' }

↑ MATCH
THEN

1.
END

COLLECT @Collect and retry 
matches

{ '&A*∂ &V(&B)+&B*∂ &V(&A)'
'∂ &V(&A*&B)' }

↑ MATCH
THEN

1.
END

{ '&A*∂ &V(&B)+∂ &V(&A)*&B'
'∂ &V(&A*&B)' }

↑ MATCH
THEN

1.
END @If no match, return 0.
0.

END
"C*∂ (A) → ∂ (C*A)"
2. DISP @Message
SWAP
{ '&C*∂ &v(&v)' '∂ (&v*&f)'

'NOT POSNAME(&C,&v)' }

↑ MATCH @Match mult. with constant.
ROT OR
"∂ A+∂ B → ∂ (A+B)"
2. DISP @Message
SWAP @Match sums
{'∂ &V(&A)+∂ &V(&B)'

'∂ &V(&A+&B)' }

↑ MATCH ROT OR
SWAP
{'∂ &V(&A)-∂ &V(&B)'

'∂ &V(&A-&B)' }

↑ MATCH ROT OR
IF @If we had a match
THEN

1. SF @Set flag 1
diffTerms @Replace the two terms
1. I 1. - @of diffTerms that we used
SUB @with the matched one
diffTerms
I 1. +
OVER SIZE SUB
DUP 1. J.
diffTerms
SIZE 4. PIC
SIZE - - 1. -
SUB SWAP J
diffTerms
SIZE PICK3 SIZE
- - 1. +
OVER SIZE SUB
+ + +
'diffTerms' @Store in diffTerms
STO
diffTerms @Store numbers > than
SIZE I + @end of FOR loop
DUP 'I' STO @in I and J to exit
'J' STO @the FOR loops

ELSE @Else (no match)
DROP @Drop terms
1. CF @Clear flag 1

END
>>

NEXT
NEXT

END @End of WHILE
diffTerms 0 +
Σ LIST @Sum of all terms
{ '&C*∂ &v(&v)' '∂ (&v*&f)'
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'NOT POSNAME(&C,&v)' }

↑ MATCH @Match mult. with constant.
DROP

>>
POP

>>

There are many interesting things in this program, but I guess you are 
rather interested to see it in work first. So, let's have some tests and 
then we can discuss what the program does and why. 

In all the following examples I use 
∂
∂

 notation but the d1 notation 

could be used as well. The program takes differential forms in any of 
the two notations or even mixed up. We start with an easy example. 
Enter:

F X( ) ⋅
∂

∂X
F X( )( )

According to the rule for differentiating powers and to the chain rule 
we have:

∂
∂X

F X( )2( ) = 2 ⋅F X( )⋅
∂

∂X
F X( )( ) ⇔ F X( )⋅

∂
∂X

F X( )( ) =

∂
∂X

F X( )2( )
2

Since

F X( ) ⋅ d1F X( ) = F X( )⋅
∂

∂X
F X( )( )

the program dCOLLECT.1 should return

∂
∂X

F X( )2( )
2

Press . In about 15 seconds the HP49G returns:

∂
∂X

1
2

⋅F X( )2 
 

 
 

Indeed it worked!

Enter:

∂
∂X

∂
∂X

G X( )( ) 
 

 
 + G X( ) ⋅

∂
∂X

F X( )( ) + F X( )⋅
∂

∂X
G X( )( )

Press  to make a copy and then press . After about 
1 minute and 10 seconds in agony the HP49G returns the result:

∂
∂X

G X( ) ⋅F X( ) +
∂

∂X
G X( )( ) 

 
 
 

This is the same expression with all differential forms collected in one 
derivative. But is that really the same like what we entered? Press  and 
expand to get a fat 0 , which shows that the two expressions were 
indeed equal to each other.

Enter:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 +

∂
∂X

∂
∂X

G X( )( ) 
 

 
 +

∂
∂X

G X( )( )

and press . After about 47 seconds of dancing messages 
at the top of the screen the HP49G returns:
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∂
∂X

∂
∂X

F X( ) + G X( )( ) +G X( ) 
 

 
 

Enter:

3 ⋅F X( )2 + G X( )2( ) ⋅
∂

∂X
F X( )( ) + 2 ⋅G X( )⋅F X( ) ⋅

∂
∂X

G X( )( )

and press  again. This time the HP49G needs about 1 
minute and 8 seconds, and returns the collected form:

∂
∂X

F X( ) ⋅G X( )2 + F X( )3( )
Enter:

F X( )2 ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 + 2 ⋅F X( ) ⋅

∂
∂X

F X( )( )2

Press  to get the partially collected form:

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( ) 

 
 
 

in about 39 seconds. The result could be further collected to:

∂
∂X

∂
∂X

1
3

⋅F X( )3 
 

 
 

 
 
  

 

After the examples we will see why the program didn't collected 
completely.

Enter:

2 ⋅F X( )2 ⋅
∂

∂X
F X( )( )⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 + 2 ⋅F X( ) ⋅

∂
∂X

F X( )( )3

and press again . The HP49G returns:

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( )2 

 
 
 

in about 46 seconds. Equivalent forms of this result, having differential 
forms collected differently, are:

∂
∂X

∂
∂X

1
3

⋅F X( )3 
 

 
 ⋅

∂
∂X

F X( )( ) 
 
  

 

and:

∂
∂X

∂
∂X

F X( )3( )⋅
∂

∂X
F

1
3

⋅ X
 
 

 
 

 
 
  

 
 
 
  

 
 

We will see how to get the second or the third form after the examples.

Enter:

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2
+

∂
∂X

F X( )( )

and press . You get:

∂
∂X

F X( )⋅
∂

∂X
F X( )( ) + F X( ) 

 
 
 

in about 46 seconds. Here again the result could be further collected to:
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∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 +F X( ) 

 
  

 

Enter:

F X( ) + 1( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2

and press  to get:

∂
∂X

∂
∂X

F X( )( )⋅F X( ) +
∂

∂X
F X( )( ) 

 
 
 

in about 46 seconds. In this case the result could also have been 
collected further to:

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 +

∂
∂X

F X( )( ) 
 
  

 

or to:

∂
∂X

F X( ) +1( ) ⋅
∂

∂X
F X( )( ) 

 
 
 

After the examples we will see how to get these forms using 
dCOLLECT.1 or COLLECT .

Enter:

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2

Pressing  returns the collected form:

∂
∂X

F X( )⋅
∂

∂X
F X( )( ) 

 
 
 

after 27 seconds. Also here we could go further and get:

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 

 
 
  

 
.

Enter:

2 ⋅ G X( ) ⋅F X( )⋅
∂

∂X
F X( )( ) −F X( )2 ⋅

∂
∂X

G X( )( )
G X( )2

The program dCOLLECT.1 needs about 49 seconds to return:

∂
∂X

1
G X( ) ⋅F X( )2 

 
  

 
 .

Enter:

G X( ) ⋅
∂

∂X
F X( )( ) − F X( ) − G X( )2( )⋅

∂
∂X

G X( )( )
G X( )2

and press  to get:

∂
∂X

1
G X( ) ⋅F X( ) + G X( )

 
 
  

 
 

after about 57 seconds.

Last example. Enter:
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3 ⋅F X( ) ⋅
∂

∂X
F X( )( )2

− 3 ⋅F X( )2 ⋅
∂

∂X
F X( )( )2

Press  to get:

∂
∂X

3 ⋅F X( )2 − 2 ⋅F X( )3( )⋅
∂

∂X
F X( )( )

2

in about 1 minute.

As we see the program works in many cases. In many other cases it 
returns only partially collected results. And I am sure that you will 
find even more cases in which it doesn't work at all or it even crashes. 
Feel free to change its code and make it better, if you wish. But to 
make it better, some details about its inner workings are necessary.

We start explaining the cases where the program gives only partially 
collected results, and we try to find a way to make the collection of 
differential forms complete in these cases. For example why was

F X( )2 ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 + 2 ⋅F X( ) ⋅

∂
∂X

F X( )( )2

transformed to

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( ) 

 
 
 

but not to

∂
∂X

∂
∂X

1
3

⋅F X( )3 
 

 
 

 
 
  

 
 ?

Let's follow what the program did. The second term of the original 
expression was transformed to:

∂
∂X

F X( )2( ) ⋅
∂

∂X
F X( )( )

using the rule of differentiation of powers. This happened at the point 
where the message Collecting ∂ of powers was displayed. When 
the program displayed A ∗∂B + B ∗∂A → ∂(A ∗B) , the rule of 
differentiation was used, and the sum

F X( )2 ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )2( )⋅
∂

∂X
F X( )( )

was transformed to

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( ) 

 
 
 

Now, from this point on, the rule of differentiation of powers could be 
used again on the sub expression:

F X( )2 ⋅
∂

∂X
F X( )( )

And this is exactly what the program doesn't do. It doesn't check if 
using some differentiation rule results in a derivative, in which the 
expression that is differentiated can itself be further collected. Can we do 
something to achieve complete collection of differential forms in this 
case? Let's consider first an interactive possibility. What would happen 
if we had the expression

F X( )2 ⋅
∂

∂X
F X( )( )
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on the stack and we used dCOLLECT.1? Enter:

F X( )2 ⋅
∂

∂X
F X( )( )

and press  to get:

∂
∂X

1
3

⋅F X( )3 
 

 
 

The expression was collected. Of course it would be a tedious task to 
have the result

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( ) 

 
 
 

on stack, use OBJ →  to explode it, then use dCOLLECT.1 on the 
sub expression:

F X( )2 ⋅
∂

∂X
F X( )( )

to transform it to:

∂
∂X

1
3

⋅F X( )3 
 

 
 

and then recombine this result and the rest of the objects returned by 
OBJ →  to:

∂
∂X

∂
∂X

1
3

⋅F X( )3 
 

 
 

 
 
  

 

But we don't need to do that. Since we are talking about sub 

expressions of a given expression, the EQW comes into mind. There we 
can select some sub expression, apply some built-in command on that 
sub expression only, and get the result that we want to have. If there 
would be some way to apply our own programs on some particular sub 
expression, then we could take

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( ) 

 
 
 

in the EQW, select the sub expression

F X( )2 ⋅
∂

∂X
F X( )( )

and use dCOLLECT.1 to transform it to

∂
∂X

1
3

⋅F X( )3 
 

 
 

And guess what? There is a way. (Or else why should Nick tell all this? 
;-)). We can make a user menu that is active when we are in the EQW. 
In that menu we can put all things that we need. Let's see how we do 
that. When the EQW is active and you have selected some sub 
expression, pressing  has a special meaning. Under these 
conditions the HP49G checks if a program named STARTEQW  exists 
in the current path. If it does, then this program is executed. Now, we 
can use this capability to display a pop up menu that contains all things 
we need, including dCOLLECT.1. Actually we can add anything we 
want in that menu, provided that the objects contained in that menu, 
need one algebraic object as input and return one algebraic object as 
output. (Or anything that is allowed in algebraic objects.) This is one of 
the many great ideas of VPN for which I am very grateful. Let's make 
the program STARTEQW . Consider the program on the next page.
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<<
"" @Pop-up has no title
{

COLCT @First menu item is the old
@command COLCT, which
@sometimes collects
@differently than COLLECT.

COLLECT @Second comes COLLECT.
dCOLLECT.1 @Then comes dCOLLECT.1.
dn→dv @Then comes dn→dv
{ "Edit in new EQW" @Then comes a menu item that

<< EQW >> @shows "Edit in new EQW" but
} @executes << EQW >> when

@selected.
}
1. @We display the pop-up with
CHOOSE @the first item selected
IF @If user pressed [ENTER]
THEN @then we evaluate (execute)

EVAL @the selected item
END

>>

Store that in STARTEQW . (Or simply use the program that comes 
with this document.) Let's see that in action. Go to the EQW and 
enter:

F X( )2 ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 + 2 ⋅F X( ) ⋅

∂
∂X

F X( )( )2

again. Select the whole expression. Now the expression is displayed 
inverse. Press  to start the program STARTEQW . The 
pop-up menu is displayed over the selected expression and the screen 
of the calculator looks like the 
picture to the right. Press  
twice to select the item 
dCOLLECT.1, and then 
press . Wow! The 
program dCOLLECT.1 runs 

just as if it was one of the built-in commands. It displays its messages 
and works just like 
it does when we 
use it from the 
stack. In fact, 
behind the scenes it 
does work on the 
stack. First it puts 
the selected sub 
expression on the 
stack. Then the 
selected menu item 
takes the sub 
expression, does 
its work with it, 
and returns its 
output on the 
stack. Then the 
result is taken back 
to the EQW, where 
it replaces the 
originally selected 
sub expression. So 
now the result

∂
∂X

F X( )2 ⋅ ∂
∂X

F X( )( ) 
 

 
 

is displayed 
inverse in the 
EQW. Select the 
sub expression:

F X( )2 ⋅
∂

∂X
F X( )( )

Now the EQW 
displays:
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COLCT
COLLECT
dCOLLECT.1
dn →dv
Edit in new EQW

Menu item selected
and [ENTER] pressed.
The selected expression 
is put on the stack.

F X( )2 ∗
∂

∂X
∂

∂X
F X( )( ) 

 
 
 + 2 ∗F X( )∗

∂
∂X

F X( )( )2

COLCT
COLLECT
dCOLLECT.1
dn →dv
Edit in new EQW

The selected menu item 
is evaluated and the 
result is put on the 
stack.

∂
∂X

F X( )2 ∗
∂

∂X
F X( )( ) 

 
 
 

The result is replaces 
the originally selected 
sub expression in the 
EQW.



Press again , and select again dCOLLECT.1. When the 
program is ready, the EQW displays:

Voila! Press  to put the completely collected expression on the 
stack.

We will use the same technique for the next example that wasn't 
completely collected, namely the expression:

2 ⋅F X( )2 ⋅
∂

∂X
F X( )( )⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 + 2 ⋅F X( ) ⋅

∂
∂X

F X( )( )3

Go to the EQW and enter the above expression. Select the whole 
expression and use the pop-up like before for running the program 
dCOLLECT.1. The result is:

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( )2 

 
 
 

Still in the EQW select the sub expression:

F X( )2 ⋅
∂

∂X
F X( )( )2

and then use the pop-up again to run dCOLLECT.1. Now the result 
is:

∂
∂X

1
3

⋅
∂

∂X
F X( )3( )⋅

∂
∂X

F X( )( ) 
 

 
 

We can go further and put the factor 
1
3

 in one of the two derivatives, 

getting one of the results:

∂
∂X

∂
∂X

1
3

⋅F X( )3 
 

 
 ⋅

∂
∂X

F X( )( ) 
 
  

 

or:

∂
∂X

∂
∂X

F X( )3( )⋅
∂

∂X
1
3

∗F X( ) 
 

 
 

 
 
  

 

You have noticed that we put also the menu item 
Edit in new EQW  in the pop-up menu. This is the title of the 
menu item. When this menu item is selected, then the corresponding 
object << EQW >> will be executed. The command EQW  is the 
programmable command for starting the EQW. It just needs one 
algebraic, which it then takes in the EQW for editing. In our case it is 
not necessary to start a new EQW, but it demonstrates how flexible the 
HP49G is. In the EQW select the sub expression:

1
3

⋅
∂

∂X
F X( )3( )

While the sub expression

1
3

⋅
∂

∂X
F X( )3( ) ⋅

∂
∂X

F X( )( )

is selected, press  to select 
1
3

. Then press  and then  to add 
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the factor

∂
∂X

F X( )3( )
to the selected sub expression. Now

1
3

⋅
∂

∂X
F X( )3( )

is selected. Use the pop-up menu to select Edit in new EQW  
and run the program << EQW >>. The expression

1
3

⋅
∂

∂X
F X( )3( )

appears in a new EQW alone, while the other EQW waits suspended 
in the background. Select the whole expression

1
3

⋅
∂

∂X
F X( )3( )

in the new EQW and let dCOLLECT.1 run from the popup menu. 
The result is:

∂
∂X

1
3

⋅F X( )3 
 

 
 

Press  to quit the new EQW, take the algebraic object

∂
∂X

1
3

⋅F X( )3 
 

 
 

and replace the selected object of the old EQW, which was:

1
3

⋅ ∂
∂X

F X( )3( )
Now the old EQW is active again and contains the expression:

∂
∂X

∂
∂X

1
3

⋅F X( )3 
 

 
 ⋅

∂
∂X

F X( )( ) 
 
  

 

At this point you could press  to put the expression on the stack. 
But we want to see how the other possible result, namely:

∂
∂X

∂
∂X

F X( )3( )⋅
∂

∂X
1
3

⋅F X( ) 
 

 
 

 
 
  

 

can be obtained. Press  the last operation and turn the algebraic 
again to:

∂
∂X

1
3

⋅
∂

∂X
F X( )3( )⋅

∂
∂X

F X( )( ) 
 

 
 

Select the factor 
1
3

. Press  and then  to exchange the positions 

of 
1
3

 and 
∂

∂X
F X( )3( ) . Press  and then  to add 

∂
∂X

F X( )( )  to the 

selection. Now use dCOLLECT.1 from the pop-up menu to convert the 
selected sub expression:

1
3

⋅
∂

∂X
F X( )( )

to:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-25



∂
∂X

1
3

⋅F X( ) 
 

 
 

Now the EQW contains:

∂
∂X

∂
∂X

F X( )3( )⋅
∂

∂X
1
3

⋅F X( ) 
 

 
 

 
 
  

 

After these exciting interactive manoeuvres, let's see why 
dCOLLECT.1 can't return the completely collected result. The 
program took the expression:

2 ⋅F X( )2 ⋅
∂

∂X
F X( )( )⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 + 2 ⋅F X( ) ⋅

∂
∂X

F X( )( )3

and converted it to the two terms:

2 ⋅F X( )2 ⋅
∂

∂X
F X( )( )⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

and:

2 ⋅F X( ) ⋅
∂

∂X
F X( )( )3

The first term was converted to:

F X( )2 ⋅
∂

∂X
∂

∂X
F X( )( )2 

 
 
 

using the rule of differentiation of powers. The second was converted 
to:

∂
∂X

F X( )( )2( ) ⋅
∂

∂X
F X( )( )2

using the same rule. The sum of the two terms,

F X( )2 ⋅
∂

∂X
∂

∂X
F X( )( )2 

 
 
 +

∂
∂X

F X( )( )2( )⋅
∂

∂X
F X( )( )2

was converted to:

∂
∂X

F X( )2 ⋅
∂

∂X
F X( )( )2 

 
 
 

using the rule of differentiation of products. After this, the program 
didn't check if application of this rule, namely:

f x( ) ⋅
∂g x( )

∂x
+ g x( ) ⋅

∂f x( )
∂x

=
∂f x( )⋅ g x( )

∂x
, creates a product f x( ) ⋅g x( ) , in 

our case F X( )2 ⋅
∂

∂X
F X( )( )2

, which itself can be further collected using 

the rule of differentiation of powers.

We do the same for the example

F X( ) + 1( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2

Enter this in the EQW, select the whole expression and use the pop-up 
to run dCOLLECT.1 and get:

∂
∂X

∂
∂X

F X( )( )⋅F X( ) +
∂

∂X
F X( )( ) 

 
 
 
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Still in the EQW you can either select the sub expression:

∂
∂X

F X( )( ) ⋅F X( )

and run dCOLLECT.1 to transform the sub expression to:

∂
∂X

1
2

⋅F X( )2 
 

 
 

thus obtaining the result:

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 +

∂
∂X

F X( )( ) 
 
  

 

Or you can select the sub expression:

∂
∂X

F X( )( ) ⋅F X( ) +
∂

∂X
F X( )( )

and use the pop-up menu to evaluate COLLECT  and transform the 
sub expression to:

F X( ) + 1( ) ⋅
∂

∂X
F X( )( )

thus gaining the result:

∂
∂X

F X( ) +1( ) ⋅
∂

∂X
F X( )( ) 

 
 
 

In this example the program dCOLLECT.1 transformed the 
expression:

F X( ) + 1( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2

to its terms,

∂
∂X

F X( )( )2
 ,

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 ,

and 1⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

The first term was transformed to:

∂
∂X

F X( )( ) ⋅
∂

∂X
F X( )( )

Then the sum of the first and the second terms,

∂
∂X

F X( )( ) ⋅
∂

∂X
F X( )( ) + F X( )⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

was transformed to:

∂
∂X

∂
∂X

F X( )( )⋅F X( ) 
 

 
 

using the rule of differentiation of products. Then the result

∂
∂X

∂
∂X

F X( )( )⋅F X( ) 
 

 
 
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replaced the two terms:

∂
∂X

F X( )( )2

and:

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

in the list of terms. At this point, like in the previous example, the 
program didn't check if the result of application of the rule

f x( ) ⋅
∂g x( )

∂x
+ g x( ) ⋅

∂f x( )
∂x

=
∂f x( )⋅ g x( )

∂x

created a product f x( ) ⋅g x( ) , in our case

∂
∂X

F X( )( ) ⋅F X( ) )

which itself can be further collected to

∂
∂X

1
2

⋅F X( )2 
 

 
 

using the rule of differentiation of powers. Instead of doing this, the 
program constructed the sum of the new partially collected term

∂
∂X

∂
∂X

F X( )( )⋅F X( ) 
 

 
 

and of the term

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

and obtained the sum:

∂
∂X

∂
∂X

F X( )( )⋅F X( ) 
 

 
 +

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

It used the rule of differentiation of sums to convert this result to:

∂
∂X

∂
∂X

F X( )( )⋅F X( ) +
∂

∂X
F X( )( ) 

 
 
 

which was what it returned.

Then we had the example:

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2

for which dCOLLECT.1 returned:

∂
∂X

F X( )⋅
∂

∂X
F X( )( ) 

 
 
 

but not

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 

 
 
  

 

Let's see what the program did. It first converted the expression to its 
terms,
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F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

and 2 ⋅F X( ) ⋅
∂

∂X
F X( )( )

Then it tried to apply the rule of differentiation of powers for each of 
these terms. Doing that it converted the second term to:

∂
∂X

F X( )( ) ⋅
∂

∂X
F X( )( )

though this is not collection of differential forms. Then it started 
checking all possible pair wise sums of all terms for application of the 
rule of differentiation of products, sums, etc. When it checked the 
sum of the first and the second term:

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )⋅
∂

∂X
F X( )( )

it saw that this is convertible to:

∂
∂X

F X( )⋅
∂

∂X
F X( )( ) 

 
 
 

using the rule of product differentiation. And so it converted it. (Or 
else why the trouble? ;-)) Then it removed the two terms from which 
the collected term came from and kept the new collected term, which 
was also the only one that remained. At this point the program didn't 
bother to check if the new expression:

F X( ) ⋅
∂

∂X
F X( )( )

inside the parentheses can be converted to:

∂
∂X

1
2

⋅F X( )2 
 

 
 

and so it returned the result:

∂
∂X

F X( )⋅
∂

∂X
F X( )( ) 

 
 
 

Of course you can again use the EQW to select

F X( ) ⋅
∂

∂X
F X( )( )

and convert it to:

∂
∂X

1
2

⋅F X( )2 
 

 
 

using dCOLLECT.1 from the pop-up menu of STARTEQW , gaining 
thus the completely collected result:

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 

 
 
  

 

Let's now get a closer look at the workings of the program. Doing this 
we are going to see some very interesting behaviour patterns of the 
HP49G too. First of all the program uses PUSH to store the current 
settings of the user, because it males changes to flag settings and we 
don't want a program to change the modes of the calculator behind the 
back of the user. Then the program calls dn → dv  and → TERMS . 
This results in a list of all terms of an expression. Notice that dn → dv  
replaces all occurrences of derivatives in the d1 notation to derivatives in 

the 
∂
∂

 notation. The program → TERMS  uses the command 
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FDISTRIB . Fortunately FDISTRIB  does completely distribution of 
⋅  and /  over +  and − , but it expand otherwise and so it doesn't 
change the derivatives of the expression back to d1 notation. That 
means, if you enter for example

∂
∂X

F X( )( ) ⋅ X + 3( )

and press , then you will get:

X ⋅
∂

∂X
F X( )( ) + 3 ⋅

∂
∂X

F X( )( )

This is very good because we can build up the list of all terms of an 
arbitrary expression without having to care if some special syntax or 
notation will be destroyed. Why do we want a list of all terms of the 
original expression? Why don't we work with the expression itself? 
Well, imagine how many possibilities there are, to built up arbitrary 
expressions. We can use have them in an endless variety, and so 
finding general patterns for matching, would simply become 
impossible. Chopping the expression in a list of all terms, we can be 
sure that each one of the terms is a product. When we can ensure that 
some given expression is of a certain type, then we narrow the variety 
of what must be done, to convert the expression according to our 
needs. But, of course, we have to do what has to be done, for each of 
the terms. Having the terms in a list, we use a loop to apply the first 
of the converting procedures to each term.

Each one of the terms gets converted to a list of its factors using the 
command FACTORS . First of all, we can use this command safely 
because it also doesn't change the derivatives and leaves them in our 
∂
∂

 notation. Why do we want the factors of each term? Well, the 

answer has to do with the fact that we apply the rule for derivation of 
powers first. Simply using pattern matching here would make our life 
very difficult. Imagine for example that we have the term:

F X( ) ⋅
∂

∂X
F X( )( )

Here we can use the pattern matching with the pattern:

&A ⋅
∂

∂ &V
&A( ) ∂

∂ &V
&A2

2

 
 
  

 
 
 
 

 
 
 

But this is one of the many cases where the rule of differentiation of 
powers can be used to collect differential forms. What would be for 
example with:

F X( ) ⋅
∂

∂X
F X( )2( )

or:

F X( )2 ⋅
∂

∂X
F X( )( )

or:

F X( )2 ⋅
∂

∂X
F X( )( )2

or…? Obviously we must find a more general method. And to do that 
we do a bit mathematics first. Suppose that we have the derivative:

∂
∂X

F X( )n( ) = n ⋅F X( )n−1 ⋅
∂

∂X
F X( )( )

This already shows that:

F X( )n −1 ⋅
∂

∂X
F X( )( ) =

1
n

⋅
∂

∂X
F X( )n( )
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That means for us, that if we have some expression which contains 
the pattern

F X( )n ⋅
∂

∂X
F X( )( )

with arbitrary n , we can replace it with

1
n+ 1

⋅
∂

∂X
F X( )n+1( )

This is more general, but not as general as we wish. Because we 
might also have the pattern

F X( )n ⋅
∂

∂X
F X( )m( )

in an expression, where n  and m  are also arbitrary. In this case we 
have: 

F X( )n ⋅
∂

∂X
F X( )m( ) = F X( )n ⋅m ⋅F X( )m −1 ⋅

∂
∂X

F X( )( ) ⇒

F X( )n ⋅
∂

∂X
F X( )m( ) = m ⋅F X( )n+ m−1 ⋅

∂
∂X

F X( )( ) ⇒

F X( )n ⋅
∂

∂X
F X( )m( ) =

m
n +m

⋅
∂

∂X
F X( )n +m( )

and thus we must replace

F X( )n ⋅
∂

∂X
F X( )m( )

with

m
n+ m

⋅
∂

∂X
F X( )n+m( )

To understand this better, expand

F X( )n ⋅
∂

∂X
F X( )m( )

and

m
n+ m

⋅
∂

∂X
F X( )n+m( )

The two results are equal. But this still isn't general enough. (We are 
very demanding, aren't we? ;-)) We could also have some term that 
contains

F X( )n ⋅
∂

∂X
F X( )m( )p

What to do in such cases? Well, one of the possibilities that we have, is 
to convert

F X( )n ⋅
∂

∂X
F X( )m( )p

to

F X( )n ⋅
∂

∂X
F X( )m( ) ⋅

∂
∂X

F X( )m( )p −1

and then consider the sub product

F X( )n ⋅
∂

∂X
F X( )m( )
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We can do collection to:

m
n+ m

⋅
∂

∂X
F X( )n+m( )

and then multiply by:

∂
∂X

F X( )m( )p−1

getting the result:

F X( )n ⋅
∂

∂X
F X( )m( ) ⋅

∂
∂X

F X( )m( )p −1

This is what how the rule of differentiation of powers is implemented 
in the program for collection of differential forms. First of all, the list 
of factors and multiplicities (factor power) is converted to a list of 
lists. Each of the sub lists contains the factor and its power. Right 
after this, all factors are separated. If they contain any derivative then 
they are added in the list of differential factors. Otherwise they are 
added in the list of (normal) factors. At this point we consider the fact 
that some terms will eventually contain more than one differential 
factors. Take for example

∂
∂X

F X( )( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

which contains two factors that are derivatives. In such cases the 
program in its current incarnation prefers the highest derivative. (You 
might started guessing that many incarnations will follow, what 
Bhuvanesh? ;-)) The program leaves the highest derivative as the only 
expression in the list of differential factors, and moves all the rest into 
the list of the other factors. We can easily decide which one is the 
highest derivative in the list of differential factors, because the 
command FACTORS  returns always the highest derivative as the 

first element in the list of factors and multiplicities, while the lower 
derivatives follow in order.

Then the program converts the differential factors list:

highestDerivative power{ }

to the differential factors list:

highestDerivative highestDerivative power−1{ }

This corresponds to the step:

∂
∂X

F X( )m( )p
=

∂
∂X

F X( )m( ) ⋅
∂

∂X
F X( )m( )p −1

.

After this, the program checks to find if the expression inside the 

parentheses of 
∂

∂X
( )  in the highest derivative, occurs also in the list of 

the other factors. If it does, then it puts the factor

∂
∂X

F X( )n+ m( )
into the first position of the list of differential factors:

highestDerivative highestDerivative power−1{ }

and adds the list:

F X( ) − n +m − 1( ) n +m −1{ }
to the list of other factors, which is equivalent to adding the factors 

F X( )− n +m−1( )
 and n+ m( )−1

 to the list of the other factors.
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We make an example for getting the idea of the whole procedure up to 
now. Suppose that we have:

F X( )2 ⋅
∂

∂X
F X( )5( )

This will be converted to:

5 ⋅F X( )6 ⋅
∂

∂X
F X( )( )

by dn → dv . After this the program → TERMS  converts that to:

5 ⋅F X( )6 ⋅
∂

∂X
F X( )( ) 

 
 

 
 
 

The command FACTORS  converts the term

5 ⋅F X( )6 ⋅
∂

∂X
F X( )( )

to the list

5 1.
∂

∂X
F X( )( ) 1. F X( ) 6.

 
 
 

 
 
 

Our program then converts this list to:

5 1.{ } ∂
∂X

F X( )( ) 1.
 
 
 

 
 
 

F X( ) 6.{ } 
 
 

 
 
 

and separates the list to

5 1. F X( ) 6.{ }

and

∂
∂X

F X( )( ) 1.
 
 
 

 
 
 

 
 
 

 
 
 

The list of the differential factors is converted to:

∂
∂X

F X( )( ) ∂
∂X

F X( )( ) 0.
 
 
 

 
 
 

 
 
 

 
 
 

 Then the factor

∂
∂X

F X( )7( )
is put into the first position of the list of differential factors, turning it to:

∂
∂X

F X( )7( ) ∂
∂X

F X( )( ) 0.
 
 
 

 
 
 

 
 
 

 
 
 

After this the list

F X( ) −6. 7 −1.{ }
is added to the list of other factors, turning it to

5 1. F X( ) 6. F X( ) −6. 7 −1.{ }
Then the list of factors is turned to

5 F X( )6
F X( )−6 1

7
 
 
 

 
 
 
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The product of the list is built up using ΠLIST  and EXPAND , 

which returns 
5
7

. 

We proceed describing the program. Because the product of normal 
factors might also contain derivatives (the lower derivatives which, if 
they exist, are put in the list of normal factors), and because we used 
EXPAND , which turns these derivatives to d1 notation, we call the 

program dn → dv  once again to convert back to 
∂
∂

 notation. Then 

we turn the list of differential factors to the product:

∂
∂X

F X( )n+ m( )⋅
∂

∂X
F X( )( )p−1

which for the above example translates to:

∂
∂X

F X( )7( ) ⋅
∂

∂X
F X( )( )0

or simply:

∂
∂X

F X( )7( )
(Note that we don't need to expand in order to simplify our example, 
because the operations are done with RPL syntax and so the sequence:

∂
∂X

F X( )( ) 0 ^

automatically returns 1. Also,

∂
∂X

F X( )7( ) 1 ∗

returns automatically 
∂

∂X
F X( )7( ) .)

We make another example  in abbreviated form of the inner workings of 
the program up to this point, using the expression:

∂
∂X

F X( )2( ) ⋅
∂

∂X
∂

∂X
F X( )( )3 

 
 
 

2

∂
∂X

F X( )2( ) ⋅
∂

∂X
∂

∂X
F X( )( )3 

 
 
 

2 dn->dv

18 ⋅F X( ) ⋅
∂

∂X
F X( )( )5

⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

2
->TERMS

18 ⋅F X( ) ⋅
∂

∂X
F X( )( )5

⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

2 
 
 

 
 
 

FACTORS

18 1.
∂

∂X
∂

∂X
F X( )( ) 

 
 
 2.

∂
∂X

F X( )( ) 5. F X( ) 1.
 
 
 

 
 
 

Conversion 
to list
of lists

18 1.{ } ∂
∂X

∂
∂X

F X( )( ) 
 

 
 2.

 
 
 

 
 
 

∂
∂X

F X( )( ) 5.
 
 
 

 
 
 

F X( ) 1.{ } 
 
 

 
 
 

Separation of factors 

∂
∂X

∂
∂X

F X( )( ) 
 

 
 2.

 
 
 

 
 
 

∂
∂X

F X( )( ) 5.  
 

  
 

 
 
 

 
 
 

18 1. F X( ) 1.{ }

Hold only highest derivative 
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∂
∂X

∂
∂X

F X( )( ) 
 

 
 2.

 
 
 

 
 
 

 
 
 

 
 
 

18 1. F X( ) 1.
∂

∂X
F X( ) 5.

 
 
 

 
 
 

Convert der^n to 
der*der^(n-1) 

      

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

∂
∂X

∂
∂X

F X( )( ) 
 

 
 1.

 
 
 

 
 
 

 
 
 

 
 
 

Put appropriate
factor into first
position

∂
∂X

∂
∂X

F X( )( )6 
 

 
 

∂
∂X

∂
∂X

F X( )( ) 
 

 
 1.

 
 
 

 
 
 

 
 
 

 
 
 

Add appropriate 
factors and 
powers

     18 1. F X( ) 1.
∂

∂X
F X( ) 5.

∂
∂X

F X( ) −5. 6 −1.
 
 
 

 
 
 

∂
∂X

∂
∂X

F X( )( )6 
 

 
 ⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 Conversion

18 F X( ) ∂
∂X

F X( )5 ∂
∂X

F X( )−5 1
6

 
 
 

 
 
 

Product

Π LIST
EXPAND
d1->dv

3∗F X( )
3 ⋅F X( ) ⋅

∂
∂X

∂
∂X

F X( )( )6 
 

 
 ⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

One question that you might ask is, why do we prefer the highest 
derivative? Why not the lowest? Well, that presumably has to do with 
the fact that the things I work with, demand quite often to do that. But if 
it fits your needs better, you can of course tell me to change that. Just 
mail me your wishes and I'll see what can be done. The perfect thing 
would be of course to check all derivatives and select that particular one 
which best fits for collection of differential forms according to the rule 
of differentiation of power. (Yet another future incarnation? Or rather 
inbitation;-))

Right after this rather complex part that deals with the rule of 
differentiation of powers, we have a somewhat simpler part, which tries 
to apply the rule of differentiation of products. It does this by using 
pattern matching twice. The whole pattern matching is inside a 
CASE− THEN −END  clause. If one match works, then the 
subsequent matches are not performed at all. Why do we do that this 
way? Couldn't we just keep on doing pattern matching until nothing 
changes? To answer this we must take a look at the matching patterns at 
this point. In general, we will convert expressions of type:

F X( ) ⋅
∂G X( )

∂X
+ G X( )⋅

∂F X( )
∂X

to expressions of type:

∂F X( ) ⋅G X( )
∂X
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We see that this match doesn't create a sum, that would eventually be 
of exactly the same type. Because we do pattern matching to all 
possible sums of two terms of the original expression, no new sum 
can be created by pattern matching, so that no subsequent matching of 
the same type is necessary. This fact, together with the fact that the 
used command ↑ MATCH  does pattern matching starting at the most 
inner nested sub expressions and continues matching until the top 
expressions are reached, makes a single pattern matching operation 
sufficient. First we try to match:

F X( ) ⋅
∂G X( )

∂X
+ G X( )⋅

∂F X( )
∂X

to:

∂F X( ) ⋅G X( )
∂X

If it works, we leave the CASE− THEN −END  clause. If it doesn't, 
we try to match:

F X( ) ⋅
∂G X( )

∂X
+

∂F X( )
∂X

⋅G X( )

to:

∂F X( ) ⋅G X( )
∂X

If it works, we leave the clause. If it doesn't, then we collect and 
repeat the two above pattern matching operations once again. We do 
that because our expression might also be in the form:

A ⋅F X( ) ⋅
∂G X( )

∂X
+ A ⋅ G X( ) ⋅

∂F X( )
∂X

or similar. So we collect to convert it to:

A ⋅ F X( )⋅
∂G X( )

∂X
+ G X( ) ⋅

∂F X( )
∂X

 
 
  

 

so that the hidden pattern:

F X( ) ⋅
∂G X( )

∂X
+ G X( )⋅

∂F X( )
∂X

becomes visible for ↑ MATCH . Note that COLLECT  will not destroy 

the 
∂
∂

 notation of our expressions. Also note that COLLECT will not 

collect expressions inside the parentheses of 
∂
∂

( ) . It only collects 

"outside".

After this, the program uses pattern matching to apply the rule of 
differentiation for expressions multiplied with some constant. At this 
step we try to convert all expressions of type:

constant ⋅
∂F X( )

∂X

to expressions of type:

∂constant ⋅F X( )
∂X

 ,

only if the expression constant  is really a constant, i.e. only if it 
doesn't contain the variable of derivation. We use the program 
POSNAME  and the method described on pages 2-2 to 2-3.

The next step is to apply the rule of differentiation of sums, again by 
doing pattern matching. We match expressions of the form:
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∂F X( )
∂X

+
∂G X( )

∂X

to:

∂F X( ) + G X( )
∂X

and expressions of the form:

∂F X( )
∂X

−
∂G X( )

∂X

to:

∂F X( ) − G X( )
∂X

During all the above operations we kept track of the success of the 
application of the rules. After all rules are applied, we check if some 
of them was successful. If so, then we remove the two terms of 
which the currently examined sum consists from the list of terms of 
the original expressions. Then we put the result of the pattern 
matching operations in the same list. This makes the list shrink by one 
element. Then we start over building up all possible sums of two 
terms until all sums have been examined.

This is in brief the way dCOLLECT.1 works. There are some 
additional things that are interesting. We are going to take a look at 
them now. First of all, we have seen that there are commands, like 

FACTORS  or COLLECT , which retain our 
∂
∂

 notation of 

derivatives. FACTOR  also belongs to these commands, but 
EXPAND  doesn't belong to them, as it will convert all formal 
derivatives to d1 notation. In cases where the specific notation of 

derivatives is of importance, you should always check to see if some 
command that you want to use retains the notation, or converts it to d1.

We also saw that FACTORS  will return the highest derivatives in 
positions before the lower derivatives in the list of factors and 
multiplicities. But this works only for "simple" expressions. For 
example, if you enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

and press , then you get the result:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 1.

∂
∂X

F X( )( ) 1. F X( ) 1.
 
 
 

 
 
 

But if you enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )⋅F X( )

and press , then the HP49G will return the result:

∂
∂X

F X( )( ) 1. F X( ) 1.
∂

∂X
F X( )( ) +1 1.

 
 
 

 
 
 

.

This is an additional reason for chopping our expressions to its terms, 
so that we can be sure that when we use FACTORS , there will not be 
any factors that are themselves sums, and so the highest derivative will 
be the first element in the list of factors. FACTOR  works in a similar 
way. If you enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 
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and press , then the result is:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 ⋅

∂
∂X

F X( )( ) ⋅F X( )  ,

in which again the derivatives appear in order higher to lower. If you 
enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )⋅F X( )

and press , then you get:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +1

 
 
  

 
 ,

in which the factors appear in the same order like in the result of the 
command FACTORS . COLLECT  returns a result with the exactly 
opposite order. Enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

and press  to get:

F X( ) ⋅
∂

∂X
F X( )( ) ⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

Or enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )⋅F X( )

and press  to get:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 +1

 
 
  

 
⋅F X( ) ⋅

∂
∂X

F X( )( )

EXPAND  has also its distinct idiosyncrasy. Enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 

and press . The result is F X( ) ⋅ d1F X( ) ⋅d1d1F X( ) , which shows 
that in products the command EXPAND  puts the derivatives in the 
order lower to higher. Enter:

∂
∂X

F X( )( ) ⋅F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )⋅F X( )

and expand again to get F X( ) ⋅ d1F X( ) ⋅d1d1F X( ) +F X( )⋅ d1F X( ) , which 
shows that the terms are ordered in a way, that terms containing the 
highest derivative appear first, followed by terms with lower 
derivatives. The order of the derivatives inside each term is again lower 
to higher.

Another interesting thing that we see in the program dCOLLECT.1, is 
the technique of breaking out of FOR  loops by storing a value in the 
counter, that exceeds the upper limit of iteration. Consider for the code:

<< 
1 10
FOR I

IF
I 5 ≥

THEN
100 'I' STO

END
NEXT

>>
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In this code, the loop will run until the iteration variable I has the 
value 5. At this point, a value of 100 is stored in I, which makes the 
program leave the loop when the NEXT  command is executed, since 
the value of 100 exceeds the upper iteration limit which is 10. The 
iteration variable is a local variable that exists only inside the loop. As 
long as we are inside the loop, we can not only use its current value, 
but also store new values in it using STO , STO +  and so on. So we 
have a way to exit FOR  loops in a polite and civilised way, by simply 
adding the upper limit of iteration to the iteration variable. We can 
check if something particular happens, that makes us wanting to leave 
the loop, and if it happens we can use STO +  to make the iteration 
variable greater than the upper limit of iteration. Note however, that 
the loop isn't exited automatically when we store some value in the 
iteration variable. All the subsequent commands until NEXT  will be 
executed. Only when the command NEXT  is executed does the 
HP49G check the current value of the iteration variable, and decides 
to leave the loop if it exceeds the upper limit of iteration. It is not an 
emergency right now without any questions exit. But even such an 
exit can be implemented. You just have to put all the commands that 
shouldn't be executed when the iteration variable exceeds the upper 
limit, into an IF − THEN− END clause. Consider the code:

<<
DUP SIZE
→ ourList up
<<

1 up
FOR I

ourList I GET SQ
IF DUP 1000 ≥
THEN up 'I' STO+
END
IF I up ≤
THEN 1 + 3 ^
END

NEXT
>>

This program takes a list of numbers as argument, and starts a loop in 

which it calculates the square of the square of the number. If this square 
is greater than or equal to 1000, the program adds the upper limit of 
iteration to the iteration variable. Then it checks if the iteration variable 
exceeds the upper limit iteration. If it doesn't, then it adds 1 to the 
square of the number and raises the result to the third power. But if it 
does, then it does nothing more and continues after the END  of the 
second IF − THEN− END clause. Since the next command is NEXT , 
the current value of the iteration variable is checked. Since it is greater 
than the upper limit, the loop is exited without performing the code 1 + 
3 ^, immediately.

Perhaps you have asked yourself, why do we add 1 1{ }  to the list of 
factors before we use ΠLIST ? And why do we add 0 to the list of terms 
before we use ΣLIST ? Well, we do that to avoid the error "Invalid 
dimension, in case the lists contain only one element or no elements at 
all. In our case, instead of checking how many elements some list has, 
we can add 1 1{ }  to the list before we use ΠLIST , to make sure that 
there will be a result in any case. If the list has only a single element, 
then multiplying it with 1 will not cause any trouble. If it has no 
elements at all, then we find the factor 1, which also doesn't change our 
expression. The same considerations apply to adding 0  or 0 0{ }  to a 
list before we use ΣLIST . Note however that this technique is 
applicable to our case and to other cases, but there can be cases where 
we shouldn't use it. If for example some result does depend on the fact 
that a list has only one element, then we should better check the size of 
the list.

Talking about lists, we shouldn't forget another important feature of the 
command SUB. This command can be used to build up sub parts of 
many objects. When it is used with lists, it takes a list from stack level 
3, the starting position from stack level 2, and the end position from 
stack level 1. It returns a new list which contains the elements of the old 
list, starting and ending at the specified positions. For example, entering 
1 2 3 4 5{ } , 2 , 4 , and pressing , returns 2 3 4{ } . But 

this command has also some very convenient properties. Enter again 
1 2 3 4 5{ } , then 2 , and then 10 , and press . Though the 
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list has only 5 elements, the HP49G doesn't error out, but simply 
returns 2 3 4 5{ } . Enter once more 1 2 3 4 5{ } , then 
enter −3  (!) and 3 , and press  to get 1 2 3{ } . And it gets 
even better. enter 1 2 3 4 5{ } , then 10 , and then 15 , and 
press  to get an empty list as result. There is no "out of range" 
error! (However, if you enter 1 2 3 4 5{ } , 5 , 3 , and then 
press  you don't get 3 4 5{ } , but an empty list as result.)

Enough peculiarities and nice properties. Time to return to our main 
path again. If the fans of program reinbitation start feeling euphoric, 
then this must be partly because we are about to think how the 
program dCOLLECT.1 could get better. Let's first remember why 
sometimes the program doesn't do complete collection of differential 
forms. When some applied rule is successful in combining differential 
forms, it could return a new differential form, which contains an 

expression between the parentheses of 
∂
∂

( ) , which itself can be 

collected. One possible way to do that would be, to keep on doing 
pattern matching until nothing more changes. But we can't use this 
method for collection of differential forms using the rule of 
differentiation of powers, because especially for this purpose we 
don't work with pattern matching. Let's work out a method for this 
case, that is able to continue collecting differential forms into the 
depths of the algebraic expression. Imagine some hypothetical code, 
that is able to detect the presence of differential forms, extract the 

expression in the parentheses of 
∂
∂

( ) , and give this expression to 

dCOLLECT.1. If our code can do that for any nested level of 
derivatives, then we are able to apply dCOLLECT.1 repeatedly, until 
nothing changes. Consider the following code, which I will comment 
after its listing:

<<
DO

"∂  → DERIV" 3. DISP @Message

DO @Convert all ∂  to DERIV
{ '∂ &V(&A)'

'DERIV(&A,&V' }

↑ MATCH
UNTIL

NOT
END
→LST @Convert alg. to list
'DERIV(A,B)' @Dummy
→LST @Convert it to list
DUP 3 GET @Get the object 'DERIV'
SWAP 5 GET @and the invisible APPLY
→ deralg apl @Store in locals
<<

"Object" 3. DISP @Message
1
<< @DOSUBS procedure

NSUB R→I " of " +
ENDSUB R→I +
4. DISP @Message
CASE

DUP deralg SAME @If we have a 'DERIV'
THEN @then do nothing
END

DUP apl SAME @If we have APPLY
THEN @then convert the function

ROT 1 →ALG @that is applied to alg.
UNROT EVAL @and evaluate APPLY
IF @If

DUP OBJ→ @we have DERIV(expression)
{DERIV} HEAD
SAME

THEN @then
DROP2 @apply dCOLLECT to expr.
dCOLLECT @(dCOLLECT is new! Its
OVER OBJ→ @description comes on
3 DROPN @page 2-31)
SWAP 2 →LIST @and match expression

↑ MATCH DROP @with matched expression.
ELSE

DROPN
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END
END

EVAL @In all other cases EVAL
END

>>
DOSUBS
"DERIV → ∂ " 3. DISP @Message
HEAD
DO @Convert all DERIV to ∂

{ 'DERIV(&A,&V'

'∂ &V(&A)'} ↑ MATCH
UNTIL

NOT
END

>>
UNTIL

SWAP OVER SAME @Do until nothing changes
END

>>

Let's take a closer look to what the program does. First of all we 

convert all patterns 
∂

∂X
F( )  to DERIV F,X( ) . Why do we do that? 

Well, we want later on to transform the algebraic object to an RPL 
list, using the command list. The problem is that nested derivatives are 
not exploded to the objects of which they consist. For example, if you 
enter:

∂
∂X

∂
∂X

X2( ) 
 

 
 

and press , then the result is the list:

X
∂

∂X
X2( ) ∂ 

 
 

 
 
 

and not X X X 2 ^ ∂ ∂{ } , which would be the complete 

RPL decomposition of the algebraic object:

∂
∂X

∂
∂X

X2( ) 
 

 
 

But if you enter the same algebraic object using DERIV , that is 

DERIV DERIV X2 ,X( ),X( ) , and press , then the result is 

X 2 ^ X 'DERIV' #2d X 'DERIV' #2d{ } . This list is a 
complete decomposition. It contains two invisible items. If you press 

 to explode the list, then stack levels 2 and 6 seem to contain thin 
air. If we represent these invisible objects with •, then the list in reality 
looks like:

X 2 ^ X 'DERIV' #2d • X 'DERIV' #2d •{ }

The strange invisible object • is the command FCNAPPLY , which has 
no visible representation on the HP49G. That means that we are "not 
allowed" to use it. But because we don't accept any limits in the usage 
of our machines, we are going to work with it. Actually the list says 
nothing more, than a complete description of what to do, in order to get 

the algebraic object DERIV DERIV X2 ,X( ),X( ) . It says:

X Enter X .
2 Enter 2 . Now we have the arguments X  and 2 .
^ Make X2 .
X Enter X  again. Now we have X2  and X .
'DERIV' Enter the algebraic object (!) 'DERIV'. Now we

have X2 , X  and 'DERIV'.
#2d Enter the system binary #2d . Now we have X2 , X ,

'DERIV' and #2d .
• Apply the function DERIV , to the number of

arguments, given by the system binary #2d . Now
we have DERIV X2,X( ) .
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X Enter X . Now we have DERIV X2,X( )  and X .

'DERIV' Enter the algebraic object (!) 'DERIV'. Now we
have DERIV X2,X( ) , X  and 'DERIV'.

#2d Enter the system binary #2d . Now we have
DERIV X2,X( ) , X , 'DERIV' and #2d .

• Apply the function DERIV , to the number of
arguments, given by the system binary #2d .

Now we have DERIV DERIV X2 ,X( ),X( ) .

Since the list contains a complete RPL decomposition of the algebraic 

object DERIV DERIV X2 ,X( ),X( ) , we can use it to detect where the 

object that we encounter is the algebraic object 'DERIV'. But we need 
to compare the object in the list with 'DERIV', and we can't enter 
'DERIV' ourselves. That is why we enter the dummy DERIV A,B( ) , 
decompose it, and put 'DERIV' in the local variable deralg. At this 
point we also put the invisible FCNAPPLY  in the local variable apl , 
because we are going to need it later in the program. The rest is easy. 
Whenever we encounter an object different that 'DERIV' or •, we 
simply evaluate it. This successively builds up our algebraic object. 
When we encounter a 'DERIV', we don't do anything. When we 
encounter a •, we turn the object on stack level 3 to an algebraic, 
because • must have an algebraic object at that level. Then we evaluate 
•, which builds up expressions of the form 
someFunctionarg1,arg2…,argn( ) . Then we check if this 
expression is actually DERIV arg1,arg2( ) . If it is, we give arg1 to 
the new program dCOLLECT , which collects differentials. We keep 
on doing this until nothing more changes.

We copy the old dCOLLECT.1 in dCOLLECT  and we store the 
above code in… dCOLLECT  itself! This way the program 
dCOLLECT  calls itself over and over again, until it can do nothing 
more. At the start of the program dCOLLECT  we write (additional 

code is bold):

<<
PUSH @Save user's settings
dn→dv @Convert to ∂  notation
→TERMS @return list of terms
<< @All the above code

…
>>
→ diffTerms rCode @Store in locals
>>

We also write in dCOLLECT  before the application of the rule of 
differentiation of an expression multiplied with a constant:

…
END
IF
THEN

rCode EVAL 1.
ELSE

0.
END
"C*∂ (A) → ∂ (C*A)"
…

Now we have a 
program, that gives 
itself a program as an 
argument, that in turn 
calls the program itself 
again. The process of 
calling each other ends, 
when dCOLLECT  
can't collect anything 
more. Isn't that 
amazing?

This is the program dCOLLECT  which comes with this document. 
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Let's try the examples which we examined with dCOLLECT.1.

The expression:

F X( ) ⋅
∂

∂X
F X( )( )

will be converted to

∂
∂X

1
2

⋅F X( )2 
 

 
 

in 17 seconds.

The expression:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 + G X( )⋅

∂
∂X

F X( )( ) + F X( )⋅
∂

∂X
G X( )( )

gets converted to:

∂
∂X

G X( ) ⋅F X( ) +
∂

∂X
F X( )( ) 

 
 
 

in 97 seconds.

The expression:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 +

∂
∂X

∂
∂X

G X( )( ) 
 

 
 +

∂
∂X

G X( )( )

gets converted to:

∂
∂X

∂
∂X

F X( ) + G X( )( ) +G X( ) 
 

 
 

in 51 seconds.

The expression:

3 ⋅F X( )2 + G X( )2( ) ⋅
∂

∂X
F X( )( ) + 2 ⋅G X( )⋅F X( ) ⋅

∂
∂X

G X( )( )

goes to:

∂
∂X

G X( )2 ⋅F X( ) + F X( )3( )
in 116 seconds.

The expression:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 + G X( ) ∂

∂X
F X( )( ) +F X( ) ∂

∂X
G X( )( )

goes to:

∂
∂X

F X( )⋅ G X( ) +
∂

∂X
F X( )( ) 

 
 
 

in 97 seconds.

The expression:

F X( )2 ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 + 2 ⋅F X( ) ⋅

∂
∂X

F X( )( )2
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goes to:

∂
∂X

∂
∂X

1
2

⋅F X( )3 
 

 
 

 
 
  

 

in 119 seconds.

The expression:

2 ⋅F X( )2 ⋅
∂

∂X
F X( )( )⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 + 2 ⋅F X( )2 ⋅

∂
∂X

F X( )( )3

goes to:

∂
∂X

1
3

⋅
∂

∂X
F X( )3( )⋅

∂
∂X

F X( )( ) 
 

 
 

in 162 seconds.

The expression:

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2
+

∂
∂X

F X( )( )

goes to

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 +F X( ) 

 
  

 

in 124 seconds.

The expression:

F X( ) + 1( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2

goes to:

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 +

∂
∂X

F X( )( ) 
 
  

 

in 123 seconds.

The expression:

F X( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 +

∂
∂X

F X( )( )2

goes to:

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 

 
 
  

 

in 109 seconds.

The expression:

2 ⋅ G X( ) ⋅F X( )⋅
∂

∂X
F X( )( ) −F X( )2 ⋅

∂
∂X

G X( )( )
G X( )2

goes to:

∂
∂X

F X( )2

G X( )
 

 
  

 
 

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-44



in 102 seconds.

The expression:

G X( ) ⋅
∂

∂X
F X( )( ) − F X( ) − G X( )2( )⋅

∂
∂X

G X( )( )
G X( )2

goes to

∂
∂X

F X( )
G X( ) + G X( )

 
 
  

 
 

in 110 seconds.

The expression:

− 3 ⋅F X( )2 − 3 ⋅F X( )( )⋅
∂

∂X
F X( )( )2 

 
 
 

goes to:

∂
∂X

3 ⋅F X( )2 −2 ⋅F X( )3( ) ⋅
∂

∂X
F X( )( )

2

in 61 seconds.

We do some additional examples.

The expression:

3 ⋅F X( )3 ⋅
∂

∂X
F X( )( )

goes to:

∂
∂X

3
4

⋅F X( )4 
 

 
 

in 18 seconds.

The expression:

3 ⋅F X( )3 ⋅
∂

∂X
F X( )( )2

goes to:

3
4

⋅
∂

∂X
F X( )4( )⋅

∂
∂X

F X( )( )

in 23 seconds.

The expression:

F X( )2 +F X( )( ) ⋅
∂

∂X
∂

∂X
F X( )( ) 

 
 
 + 2 ⋅F X( ) +1( )⋅

∂
∂X

F X( )( )2

goes to:

∂
∂X

∂
∂X

1
2

⋅F X( )2 
 

 
 +

∂
∂X

1
3

⋅F X( )3 
 

 
 

 
 
  

 

in 260 seconds. Here the result could have been further collected to:
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∂
∂X

∂
∂X

1
2

⋅F X( )2 +
1
3

⋅F X( )3 
 

 
 

 
 
  

 

We let rCode run only after the rule of differentiation of products has 
been successfully applied. But if you want, you can do the same after 
the rule of differentiation of sums is applied successfully. This way, 
when some expression like:

∂
∂X

∂
∂X

F X( )( ) 
 

 
 +

∂
∂X

∂
∂X

G X( )( ) 
 

 
 

is successfully collected to:

∂
∂X

∂
∂X

F X( )( ) +
∂

∂X
G X( )( ) 

 
 
  ,

then the sub expression inside the parentheses,:

∂
∂X

F X( )( ) +
∂

∂X
G X( )( )

will itself be collected to:

∂
∂X

F X( ) + G X( )( )

This will of course cost even more time.

The expression:

F X( ) ⋅
∂

∂X
F X( )( ) ⋅

∂
∂X

∂
∂X

F X( )( ) 
 

 
 

goes to:

F X( )
2

⋅
∂

∂X
∂

∂X
F X( )( )2 

 
 
 

in 31 seconds. Try to find out why no complete collection of differential 
forms was done here.

The expression:

2⋅U X( ) ⋅G X( )∗F X( ) ⋅ ∂
∂X

F X( )( ) + U X( ) ⋅F X( )2 ⋅ ∂
∂X

G X( )( ) + G X( )⋅F X( )2 ⋅ ∂
∂X

U X( )( )

goes to:

∂
∂X

U X( ) ⋅G X( ) ⋅F X( )2( )
in 179 seconds.

Note that the program doesn't contain any explicit implementation of the 
rule of differentiation of ratios. This is achieved implicitly as a 
combination of the rule for powers and for products.

There are also other methods to make such a program. One of them will 
be demonstrated in some future marathon and bases on isomorphism.

We already talked about the fact that the HP49G doesn't provide any 
commands for conversion of:

∂ F X,n( )
n =n0

N

∑
∂X

to:
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∂F X,n( )
∂Xn= n0

N

∑

But it is not hard to program that. We can use pattern matching with 
the condition that the derivation variable is different from the 
summation index. We first make a program that smuggles the usage 
of the command SAME  in an algebraic object:

<<
SAME

>>

We store it in ALGSAME

Then we program:

<<
{'∂ &V(Σ (&n=&n0,&N,&F))'

'Σ (&n=n0,&N,∂ &V(&F))'
'NOT ALGSAME(&V,&n)'}

↑ MATCH DROP
>>

and we store that in dΣ → Σd .

Enter:

∂
∂X

n ⋅ Xn

n=1

N

∑ 
 
  

 

and press  to get:

∂
∂X

n ⋅ Xn( )
n=1

N

∑
The derivative:

∂
∂X

n ⋅Xn( )

inside the sum isn't expanded. If you press  now, the HP49G 
will not only expand the derivative to n ⋅n ⋅ Xn−1 , but will also expand 
the sum to:

X2 − 2 ⋅ X +1( )⋅N2 − 2 ⋅X − 2( )⋅N + X +1( )⋅ X
N − X + 1( )

X3 − 3 ⋅ X2 + 3 ⋅ X −1

If you don't want that, then you must use another strategy, since 
smuggling even more RPL in algebraic objects will not work. The 
customs officers started suspecting us ;-). If you would try to smuggle 
EXPAND  into an algebraic by storing

<<
EXPAND

>>

in ALGEXPAND  and changing dΣ → Σd  to:

<<
{'∂ &V(Σ (&n=&n0,&N,&F))'

'Σ (&n=n0,&N,ALGEXPAND(∂ &V(&F)))'
'NOT ALGSAME(&V,&n)'}

↑ MATCH DROP
>>

then it wouldn't work. If you would enter:

∂
∂X

n ⋅ Xn

n=1

N

∑ 
 
  

 
 ,

and press , then you would get:
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ALGEXPAND
∂

∂X
n ⋅ Xn( ) 

 
 
 n=1

N

∑

But it doesn't have to be always pattern matching. Consider for 
example the program:

<<
→ dsum
<<

dsum OBJ→ NIP ROT →LST
IF

DUP HEAD 4 PICK
SAME NOT

THEN
DUP 4 GET
4 ROLL 4 ROLL EVAL
4 SWAP PUT →ALG

ELSE
3 DROPN
dsum

END
>>

>>

Store that in dΣ → Σd2 . Enter again:

∂
∂X

n ⋅ Xn

n=1

N

∑ 
 
  

 

and press , to get:

n ⋅ n ⋅Xn−1

n=1

N

∑ . Of course this program works only for expressions of 

the exact form:

∂
∂X

F X,n( )
n=n0

N

∑
 

 
  

 
 

It will not work, or even crash, for any other expression, even if it is 
just a little bit different, like for example:

A ⋅
∂

∂X
F X,n( )

n =1

N

∑ 
 
  

 

The other program, dΣ → Σd , is a bit better, since it will also not work 
for any expression the doesn't contain the pattern:

∂
∂X

F X,n( )
n=n0

N

∑
 

 
  

 
 

but at least it will not crash. Making a program that works in more cases 
than for some simple patterns, is a bit more difficult, but not very 

difficult either. We know that the notation 
∂
∂

 is problematic with Σ  but 

DERIV  seems to work better. We must first convert all 
∂
∂

 in some 

given expression to DERIV . Then we can expand. The program:

<<
{'∂ &V(&F))' 'DERIV(&F,&V)'}

↑ MATCH DROP EXPAND
>>

will do that. Note also that if the HP49G can't handle the sum, then it 
will return a result that can be questionable. Enter:

∂
∂X

F X,n( )
n=1

N

∑ 
 
  

 
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and expand. You get d1Σ n,1,N,F X,n( )( )  because the sum:

F X,n( )
n=1

N

∑

can't be calculated. But in d1Σ n,1,N,F X,n( )( )  the differentiation is 
meant for the first rational variable in the parentheses, which is n . We 
definitely didn't enter:

∂
∂n

F X,n( )
n=1

N

∑ 
 
  

 

We had a derivative for X . And even worse: In d1Σ n,1,N,F X,n( )( )  
the information about the variable of differentiation is completely lost 
without a trace! Using DERIV  instead of ∂  doesn't help either. We 
seem to have hard problem here. On the one hand we can't be sure 
that all differentiations of summations will follow the simple pattern:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

and so pattern matching will not always work. On the other hand if 
we expand trying to convert all differentiations of summations to 
patterns like d1Σ n,1,N,F X,n( )( ) , we lose the variable of 
differentiation. Is there any way to solve this problem?

If we want to make dCOLLECT  good enough for being able to 
handle arbitrary expressions that contain also sums, then we have add 
special code that somehow takes care of them. One possibility would 
be to convert all sums to temporary functions, say 
tempFuncA derVar( ) , tempFuncB derVar( ) , and so on, that 
contain the variable of differentiation. Then, using EXPAND , we can 
can convert the given expression to an expression that only contains 

simple patterns like d1tempFuncA X( ) . In these patterns the 
information about the differentiation variable is fully preserved. We can 
let the code of dCOLLECT  run and so collect differential forms with 
the temporary functions d1tempFuncA X( )  instead of the original sums. 
This will work, because dCOLLECT  is already able to handle such 
abstract expressions, like d1F X( ) , d1G X( ) , and thus also 
d1tempFuncA X( ) . When we are done with this, we reconvert all 
tempFuncA X( )  back to:

F X,n( )
n= n0

N

∑

and d1tempFuncA X( )  back to:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

And so we see that we must keep track of the corresponding expressions 

tempFuncA X( )  and F X,n( )
n= n0

N

∑ , in order to be able to make the 

backwards conversion afterwards. Let's try first to make a program for 
conversion of:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

to:

∂
∂X

F X,n( )( )
n= no

N

∑
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Consider the code:

<<
"∂  → DERIV" 1. DISP @Message
DO

{'∂ &V(&F)' DERIV(&F,&V)'} @Convert all ∂  to DERIV

↑ MATCH DROP
UNTIL

NOT
END
→LST @Alg. to list
'DERIV(A,B)' →LST DUP 3 GET@Create 'DERIV', and the
SWAP 5 GET @invisible APPLY
{} {} 'X' 64.
→ deralg apl sums @Store in locals

tempFuncs dervar fnum
<<

"Object" 1. DISP @Message
1.
<< @DOSUBS for all objects

NSUB R→I " of " + @in list of alg.
ENDSUB R→I + 2. DISP @Message
CASE @In case

DUP deralg SAME @we have 'DERIV'
THEN @do nothing
END

DUP apl SAME @we have APPLY
THEN

ROT 1 →ALG @Convert object in
UNROT @stack level 3 to alg.
IF @If

PICK3 deralg @stack level 3 is DERIV
1. →ALG SAME

THEN @Store derivation
4 PICK @variable
'dervar' STO
EVAL @Evaluate invis. APPLY
IF @If

sums {} ≠ @sums already found
THEN

"tempFunction + (var)"

2. DISP @Message
tempFuncs 1.
<< @DOSUBS for all sums

IF @If tempFunction 
DUP @doesn't contain
dervar @sub string "dervar,"
"," +
POS NOT

THEN @then add that sub
dervar @string
+ ","
+

END
>>
DOSUBS
'tempFuncs' @Store in 'tempFuncs'
STO

END
ELSE @else (stack 3 ≠  DERIV)

EVAL @evaluate object
END

END
DUP {Σ } HEAD  SAME @In case object is Σ

THEN
"Σ  → tempFunction"
2. DISP @Message
5. →ALG @Build-up sum
DUP 'sums' STO+ @Add it to sums
"tempFunction" fnum @Make string
INCR CHR + "(" + @tempFunctionX where X
'tempFuncs' STO+ @stands for capital letter

@and add to tempFuncs
END

EVAL @In case nothing of the
@above, then EVAL

END
>>
DOSUBS HEAD @*****
IF @If

sums {} ≠ @we found sums
THEN
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"tempFunction → alg"
2. DISP @Message
sums tempFuncs {}
'tempFuncs' STO @Store {} in sums
2.
<< @For all sums, tempFuncs

1. OVER SIZE 1. - SUB
")'" +
IFERR @Try to convert

OBJ→ @tempFunction to alg.
THEN @In case of error get 

rid
DROP2 @of sum and tempFunction

ELSE
2. →LIST 1. →LIST @else keep
'tempFuncs' STO+ @{sum tempFunction}

END
>>
DOLIST
IF @If we have

tempFuncs {} ≠ @tempFunctions
THEN

"MATCH Σ  tempFunction"
2. DISP @Message
tempFuncs 1. @Match each sum to
<< @its corresponding

↑ MATCH DROP @temporary function
>>
DOSUBS

END
END
"" 2. DISP @Clear display line 2
dn→dv @Run dn→dv
IF @If we have

tempFuncs {} ≠ @temporary functions
THEN

"MATCH tempFunction Σ "
2. DISP @Message
tempFuncs
1. @Match temporary func.
<< @with sum

REVLIST ↑ MATCH
DROP

>>
DOSUBS

END
IF @If we have

tempFuncs {} ≠ @temporary functions
THEN

"∂Σ → Σ∂ " 2. DISP @Message
{ '∂ &V(Σ (&n=&n0,&N,&F))'
  'Σ (&n=&n0,&N,∂ &V(&F))'

'NOT ALGSAME(&V,&n)' }

↑ MATCH DROP @Match ∂Σ  to Σ∂
END

>>
>>

We already had dΣ → Σd  and dΣ → Σd2 , so let the program be 
named derΣ → Σder . (We are running out of names!)

Enter the expression:

∂
∂X

F X,n( )⋅ F X,n( )
n=1

N

∑ 
 
  

 

which doesn't contain the pattern:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

but still can be expanded to:

F X,n( ) ⋅
∂

∂X
F X,n( )

n=1

N

∑ 
 
  

 
+ F X,n( )

n =1

N

∑ ⋅
∂

∂X
F X,n( )( )

which does contain the pattern:
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∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

Press . The HP49G flashes happily messages, 
converts, reconverts, and after a while it returns:

F X,n( ) ⋅
∂

∂X
F X,n( )( )

n=1

N

∑ + F X,n( )
n=1

N

∑ ⋅
∂

∂X
F X,n( )( )

Notice that the derivation is now inside the summation. The program 
worked. The other two programs, dΣ → Σd  and dΣ → Σd2 , would 
live the expression:

∂
∂X

F X,n( )⋅ F X,n( )
n=1

N

∑ 
 
  

 

unchanged. Notice also that the code of the program up to the point 
marked with ***** in the program listing, strongly resembles the part 
rCode of dCOLLECT .

With almost the same code of derΣ → Σder  we can also enhance our 
dCOLLECT , in order to be able to collect differential forms. At the 
point in the program, where we call dn → dv , we could also call the 
current version of dCOLLECT . That means that we can make yet 
another new version that handles also sums. But we can also combine 
the two functionalities of collection of differential forms and of 
converting:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

to:

∂
∂X

F X,n( )( )
n= n0

N

∑

in a single program. This program takes an expression with differential 
forms from stack level 2, and a 1 or 0  from stack level 1. If the 
argument on stack level 1 is a 1, the program collects differential forms. 
If it is a 0 , it just converts:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

to:

∂
∂X

F X,n( )( )
n= n0

N

∑

by expanding the differential forms. We just have to make minor 
modifications in derΣ → Σder . At the start of the program we write 
(bold type face):

<<
SWAP
"∂  → DERIV" 1. DISP @Message
DO

{'∂ &V(&F)' DERIV(&F,&V)'} @Convert all ∂  to DERIV

↑ MATCH DROP
UNTIL

NOT
END
→LST @Alg. to list
SWAP
'DERIV(A,B)' →LST DUP 3 GET@Create 'DERIV', and the
SWAP 5 GET @invisible APPLY
{} {} 'X' 64.
→ dColFlag  deralg apl sums @Store in locals

tempFuncs dervar fnum
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At the middle of the program we add:

..........
"" 2. DISP @Clear display line 2
IF @If

dColFlag @the user entered 1
THEN @then do collection

dCOLLECT @of diff. forms.
ELSE @else

dn →dv @Run dn→dv
END
IF @If we have

tempFuncs {} ≠ @temporary functions
THEN

"MATCH tempFunction Σ "
...........

This is the program dCOLEX  that comes with this document. Let's 
try it. Enter:

∂
∂X

F X,n( )⋅ G X( )( )

then 0  (for expansion of differential forms) and press . The 
result is the expression:

G X( ) ⋅
∂

∂X
F X,n( )( ) + F X,n( ) ⋅

∂
∂X

G X( )( )

If you now enter 1 (for collection of differential forms) and press 
 again, then you get:

∂
∂X

G X( ) ⋅F X,n( )( )  ,

the expression we started with. But the improvement becomes visible 
when working with sums. Enter:

∂
∂X

G X,n( )⋅ F X,n( )
n=1

N

∑ 
 
  

 

then 0 , and press . You get the expanded result:

G X( ) ⋅
∂

∂X
F X,n( )( )

n =1

N

∑ +
∂

∂X
G X( )( ) ⋅ F X,n( )

n =1

N

∑

where the derivation is brought inside the parentheses of the sum. 
Now, it would be good if the collection of differential forms would 
already work, but we still need a tiny modification. Before calling 
dCOLLECT  we must convert all patterns:

∂
∂X

F X,n( )( )
n=1

N

∑

to:

∂
∂X

F X,n( )
n=1

N

∑ 
 
  

 

We will modify slightly the code in dCOLEX  almost since everything 
we need is already there. At the beginning of the program, after the first 
SWAP , we add: 

"Σ ∂ → ∂ Σ " 1. DISP
DO

{'Σ (&n=&n0,&N,∂ &V(&F))' '∂ &V(Σ (&n=&n0,&N,&F))'

'NOT ALGSAME(&V,&n) } ↑ MATCH
UNTIL NOT
END

Now, having:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-53



G X( ) ⋅
∂

∂X
F X,n( )( )

n =1

N

∑ +
∂

∂X
G X( )( ) ⋅ F X,n( )

n =1

N

∑
or:

G X( ) ⋅
∂

∂X
F X,n( )

n=1

N

∑ 
 
  

 
+ G X( )( ) ⋅ F X,n( )

n=1

N

∑

on stack level 1, you can enter a 1, and press  to get:

∂
∂X

G X( ) ⋅ F X,n( )
n=1

N

∑ 
 
  

 

The program still works with the examples that we had on the 
previous page. If it doesn't, then call Trabakoulas and tell him the 
story. He will be glad to "suggest" me to do more programming 
exercises. ;-)

I think that it is time now to take a look at the interdependencies of our 
programs, because we had so many of them, and we are going to lose 
track, who is using whom, and what we need and we can through 
away.

We don't need necessarily dΣ → Σd  and dΣ → Σd2 . These two 
programs can be purged if you don't need them. I only include them 
with this document for studying purposes. (And to spare you the typing 
on the hard keys of the HP49G ;-)) Also, dCOLLECT.1 is not needed. 
The programs dCOLEX  and dCOLLECT  do that work better. You 
could keep dCOLLECT , though dCOLEX  does the same and more, 
because dCOLLECT  is faster, since it doesn't include special code for 
sums. So perhaps you can use it for faster results, when no sums are 
involved. If you purge dΣ → Σd , dΣ → Σd2 , and dCOLLECT.1, 
then the program structure becomes a bit simpler. (The picture of the 
simpler program structure is on the next page.) The two programs 
ISCONT?  and → TERMS  come from the Sequences, Series and 
Limits Marathon. Their complete documentation is there, but I include 
them in the files of this marathon for convenience.
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If  we bring the main ingredients of the programs dn → dv , 
dCOLLECT  derΣ → Σder , or dCOLEX , then we see that they 
use list processing very extensively. Algebraics objects are 
transformed to the corresponding RPL lists, and then each of the list 
objects is examined and used individually. The programs work in 
many cases. Of course they will not work in other cases. But the main 
picture that we get from them is that we are actually process lists, in 
this case the particular RPL lists that are equivalent to the algebraic 
objects of the HP49G. Without doubts the lists are a very powerful 
object n the HP49G, because the are somewhere between algebraic 
objects, programs, and data. Having commands like → LST , 
→ ALG  and similar, we are able to start with an algebraic object, 
convert it to a list, jumping thus in the world of listoids with all their 
special capabilities, transform the list to a new list which corresponds 
to some other algebraic objects, and finally jump back to the world of 

algebraicoids with their special capabilities. When we transform the list, 
using our rules of programming, we actually are performing operations 
on algebraic objects in their list form. You can imagine some virtual 
algebraic object, which experiences the corresponding changes, when 
we somehow operate on its list form. For example, take the algebraic 
object X + Y , and its RPL list form X Y +{ } . If we exchange the 
elements X  and Y  in the list, we are actually transforming X + Y  to 
Y + X . There are of course countless ways to exchange elements X  and 
Y  of the list, but all these possible algorithms, programs, name them 
what you like, are actually doing the same. They use the commutative 
property of addition. Any hypothetical built-in command 
COMMUTEPLUS, would correspond to our element exchange 
algorithm. But, not all elements exchanges would correspond to 
commutation of the operands of addition. In the list we can also 

exchange the 
elements Y  and 
+ , transforming 
it to 
X + Y{ } , 

which is no 
more the mirror 
picture of some 
valid algebraic 
object in the 
world of the 
listoids. The list 
X + Y{ } , 

would be like 
trying to enter 
'Y X,+( )'  which 
isn't possible on 
the HP49G. 
(Well, usually at 
least. ;-)) This 
shows us that 
we have ways 
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on the HP49G, to extend the possible algebraic objects, to all those 
which are representable through valid lists, but not through valid 
algebraic expressions. ("Valid" means valid for the HP49G.) For 
example, the object 'Y X,+( )' , represented by X + Y{ } , could 
mean some function Y , that acts upon two arguments, one of which 
is itself a function! We can use it for any program, that we code 
accordingly to what the function Y  does with its arguments. We can 
only not represent it using algebraic syntax, but that's the only 
limitation. So we see that the world of listoids seems to be somehow 
more extended, bigger than the world of algebraicoids. Imagine the 
possibilities. (We already have experienced some of these 
possibilities, think again of our programs.)

But one of the main disadvantages of the lists are, that they are harder 
to understand by simply looking at them. Enter some lengthy 
expression using derivatives, sums and whatever you want, and take 
a look at it. A simple short look in the EQW. If you think that it is not 
very readable, press , and think about the readability of the 
RPL list. Perhaps because of years in school, perhaps because of 
built-in preference of humans for algebraic syntax, we seem to be able 
to understand algebraics (by looking at them) better than RPL. (Or did 
anybody read any book of physics, that says that the one dimensional 
Schrödinger equation is   h 2 m ⋅ / NEG Ψ x ∂ x ∂ E Ψ =  instead 

of 
  
−

h
2∗ m

⋅
∂2Ψ
∂x2 = E ⋅Ψ ?) Don't think that I am a fan of algebraic 

syntax on calculators, or on any other CAS. I am a fan of the 
algebraic syntax as it is used in mathematics, and that's (often) 
quite different from that used on computer algebra systems. Compare 

the mathematics formula 
  
−

h
2∗ m

⋅
∂2Ψ
∂x2 = E ⋅Ψ   with the calculator 

formula   − h / 2 ⋅m( )⋅∂x ∂x Ψ( )( )( ) = E ⋅Ψ  to understand what I mean. 
They are way not the same. Only when some input software like the 
EQW is available, somebody can say that algebraic is like it was 
meant "on paper". Otherwise the similarity exists only on the 
prospects of the device/CAS.

Why do I say the above things? Well, the lists may be as good and 
powerful as they want, but they don't have the transparency of using an 
algebraic, at least on the HP49G. Algebraic objects and the commands 
available for them, are easier to understand. Somehow clearer. So, isn't 
there any way to do, for example, collection of differential forms, 
avoiding lists and their difficulties when it comes to understanding? 
Can't we do the same, like what dΣ → Σd  or dCOLLECT  does, but 
using only algebraic objects and the commands for them? Well, there is! 
But in order to understand this (marvellous!) way, we have to take a 
closer look to our old good friends ↑ MATCH  and ↓ MATCH  again. 
We have met them in the Trigonometry Marathon for the first time. And 
their power is waaaaay from being completely known. What follows is a 
first short journey into the depths of pattern matching on the HP49G. I 
think that many many journeys will follow in the next marathons.

Let's bring in mind again, why we avoided using pattern matching for 
collecting differential forms in expressions that contain sums. The 
problem was, that we can't be sure that all sums will be in a few simple 
patterns, which we can then convert to other patterns with pattern 
matching. In order to convert the whole expression in another 
expression, in which only some few simple patterns with sums appear, 
we have to expand it first. But then all expressions of the form:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

will be converted to d1Σ n,n0 ,N,F X,n( )( )  and we lose the information 
about the variable of derivation. That was the reason that we decided to 
first convert every sum in a temporary function tempFunctionA X( ) , 
tempFunctionB X( )  and so on. This way any expression like:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-56



gets converted to:

∂
∂X

tempFunctionA X( )( )

and then we are able to expand, because then the result is 
d1tempFunctionA X( ) . After this we apply our algorithms for 
collection of differential forms, and we reconvert all temporary 
functions back to sums. One small but important detail of the 
procedure is that each distinct sum should be converted to a distinct 
temporary function, in order to keep the information that different 
sums are involved. This is why we can't use pattern matching. If we 
have an expression, like for example:

∂
∂X

F n,X( )
n=1

N

∑ + G m,X( )
m=1

N

∑ 
 
  

 

and we match all patterns &F
&n= &n0

&N

∑  to tempFunctionA X( ) , then the 

expression:

∂
∂X

F n,X( )
n=1

N

∑ + G m,X( )
m=1

N

∑ 
 
  

 

will be converted to:

∂
∂X

tempFunctionA X( ) + tempFunctionA X( )( )

which is wrong since there were two different sums in the original 
expression, but only a single temporary function in the result. 

But if we were able to expand the differential forms in the expression 
completely but without using EXPAND , then we would at least be 
sure, that the only differential form where sums appear, would be of 

the form:

∂
∂X

F X,n( )
n=n o

N

∑
 

 
  

 
 

If we know that this is the only possible pattern, we are half the way 
through. Of course, we can't expect that a single pattern matching could 
do that. But using many of them, in a reasonable order, it is possible to 
do what we want. Consider the program:

<<
DO

DUP →TERMS
0 + Σ LIST
"∂ (A/B)→(B*∂ A-A*∂ B)/B^2"
1. DISP
DO @Ratio rule

{'∂ &V(&A/&B)' '(&B*∂ &V(&A)-&A*∂ &V(&B))/&B^2' }

↑ MATCH
UNTIL

NOT
END
→TERMS 0 + Σ LIST
"∂ (A+B)→ ∂ A+∂ B"
1. DISP
DO @Sums rule

{'∂ &V(&A+&B)' '∂ &V(&A)+∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (Const*A)→Const*∂ A"
1. DISP
DO @Constant rule

{'∂ &V(&C*&A)' '&C*∂ &V(&A)' 'NOT POSNAME(&C,&V)' }

↑ MATCH
UNTIL

NOT
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END
"∂ (A*B)→B*∂ A+A*∂ B"
1. DISP
DO @Product rule

{'∂ &V(&A*&B)' '&B*∂ &V(&A)+&A*∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A^n)→n*A^(n-1)*∂ A"
1. DISP
DO @Power rule

{'∂ &V(&A^&n)' '&n*&A^(&n-1)*∂ &V(&A)'
'NOT POSNAME(&n,&V)'}

↑ MATCH
UNTIL

NOT
END
"∂ Σ → Σ ∂ " @All other expansions of
1. DISP @diff. forms are done. So we
DO @start converting sums

{'∂ &V(Σ (&n=&n0,&N,&F))'
'Σ (&n=&n0,&N,∂ &V(&F))'
'NOT ALGSAME(&V,&n) }

↑ MATCH
UNTIL

NOT
END

UNTIL
SWAP OVER SAME

END
>>

This is the program PATdΣ → Σd . Let's see it in action. Enter:

∂
∂X

G X,n( )⋅ F X,n( )
n=1

N

∑ 
 
  

 

and press . The program returns:

F X,n( )
n=1

N

∑ ⋅
∂

∂X
G X( )( ) + G X( )⋅

∂
∂X

F X,n( )( )
n=1

N

∑  ,

the correct result. Notice that we didn't use EXPAND  a single time. 
Notice also that we used → TERMS , which itself doesn't convert the 
patterns:

∂
∂X

F X,n( )
n=1

N

∑ 
 
  

 

to d1Σ n,n0 ,N,F X,n( )( ) . Try some examples yourself. I'm sure that you 
will find expressions that the program can't handle, but one thing is 
sure. This program is a much clearer and easier to understand, than the 
others. No DOSUBS of DOSUBS and procedures buried under 
nested levels of loops. No tricks and dummies from which we extract 
objects that we can't create directly. Just DO -loops, nicely ordered one 
after the other, each one of which simply repeats a single kind of pattern 
matching, until nothing more happens. And the whole thing wrapped in 
an outer DO -loop which runs again and again, until nothing changes.

Now that we have this program, we know that whatever the form is, in 
which differential forms are present in some expression, when the 
program ends all derivatives of sums will be in the form of a single 
simple pattern:

∂
∂& X

&F( )
&n= &n0

&N

∑

This contains all information that we need in order to convert it to a 
temporary function. So we can hope that we will be able to use again 
pattern matching for collecting differential forms including differential 
forms that contain sums. We can convert all patterns:
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∂
∂& X

&F( )
&n= &n0

&N

∑

to:

∂
∂ & X

&F
&n= &n0

&N

∑ 
 
  

 

then convert all patterns:

∂
∂ & X

&F
&n= &n0

&N

∑ 
 
  

 

to patterns:

∂
∂ & X

tempFunction&X( )( )

then apply dCOLLECT , and then convert all patterns 
tempFunction&X( )  back to:

&F
&n= &n0

&N

∑

The principle is clear, but…

As we have seen, if we try to match each pattern:

∂
∂ & X

&F
&n= &n0

&N

∑ 
 
  

 

to , say:

∂
∂ & X

REPLΣ &F
&n= &n0

&N

∑ 
 
  

 
 
 
  

 
 

having programmed REPLΣ  before, as a program that takes the sum 
and creates replacements, like tempFunctionA X( ) , then we have two 
small problems. First of all, the replacements have to be different from 
each other for different sums, and second, if we match some expression 
like:

∂
∂X

F X( )
n=n0

N

∑ 
 
  

 

using the pattern list:

∂
∂ & X

&F
&n= &n0

&N

∑ 
 
  

 
∂

∂ & X
repl &F

&n=&n0

&N

∑ 
 
  

 
 
 
  

 
 

 
 
 

 
 
 

then we get the result:

∂
∂X

REPLΣ F X( )
n=n0

N

∑ 
 
  

 
 
 
  

 
 

where the replacement program wasn't evaluated. So we have to code 
the program REPLΣ  in a way, that is assigns distinct 
temporaryFunction names to distinct sums. And we have to expand 
the whole expression, in order to evaluate all sub expressions:

∂
∂X

REPLΣ F X( )
n=n0

N

∑ 
 
  

 
 
 
  

 
 

Since the inner most  nested sub expressions are evaluated first, we can 
be sure that:
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REPLΣ F X( )
n= n0

N

∑ 
 
  

 

will be evaluated before the differentiation, producing the result:

∂
∂X

tempFunctionA X( )( )

which will be further evaluated to d1tempFunctionA X( ) . Let's first 
make the program REPLΣ . It just has to return an algebraic object, 
but can do anything else in-between. 

<<
→ sum derVar @Store in locals
<<

IF
VARS SLIST POS NOT @If SLIST doesn't exist

THEN @then
{} 'SLIST' STO @create SLIST and RLIST
{} 'TLIST' STO
64. 'nTemp' STO @initialise nTemp

END
IF

SLIST sum POS NOT @If sum not in SLIST
THEN @then

'SLIST' sum STO+ @Add sum to SLIST
'TLIST'
"'tempFunction" @Create distinct temporary
'nTemp' INCR CHR + @function for replacement
"(" + derVar + ")'" +
+ OBJ→ DUP UNROT @Copy of tempFunction for

@replacement in expression
STO+ @Add tempFunction to TLIST

END
>>

>>

This program takes a sum and a derivation variable, and updates the 

list of sums SLIST and the list of temporary replacement functions 
TLIST . It returns a distinct temporary replacement function for every 
sum that it receives as argument.

Now we make PATdCOLLECT , the program for collection of 
differential forms that uses pattern matching. Actually we can use much 
of the code of the program PATdΣ → Σd .

<<
DO

DUP →TERMS
0 + Σ LIST
"∂ (A/B)→(B*∂ A-A*∂ B)/B^2"
1. DISP
DO @Ratio rule

{'∂ &V(&A/&B)' '(&B*∂ &V(&A)-&A*∂ &V(&B))/&B^2' }

↑ MATCH
UNTIL

NOT
END
→TERMS 0 + Σ LIST
"∂ (A+B)→ ∂ A+∂ B"
1. DISP
DO @Sums rule

{'∂ &V(&A+&B)' '∂ &V(&A)+∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (Const*A)→Const*∂ A"
1. DISP
DO @Constant rule

{'∂ &V(&C*&A)' '&C*∂ &V(&A)' 'NOT POSNAME(&C,&V)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A*B)→B*∂ A+A*∂ B"
1. DISP
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DO @Product rule
{'∂ &V(&A*&B)' '&B*∂ &V(&A)+&A*∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A^n)→n*A^(n-1)*∂ A"
1. DISP
DO @Power rule

{'∂ &V(&A^&n)' '&n*&A^(&n-1)*∂ &V(&A)'
'NOT POSNAME(&n,&V)'}

↑ MATCH
UNTIL

NOT
END

UNTIL
SWAP OVER SAME

END @Except the part ∂ Σ → Σ ∂
@and conversion of derivat.
@of sums, this is the code
@of PAT∂ Σ → Σ ∂ .

"Σ ∂  → ∂ Σ "
1. DISP
DO @Match Σ ∂  to ∂ Σ

{'Σ (&n=&n0,&N,∂ &V(&F))'
 '∂ &V(Σ (&n=&n0,&N,&F))
 'NOT ALGSAME(&V,&n)'}

↑ MATCH
UNTIL

NOT
END

"∂ Σ  → ∂ REPLΣ "
1. DISP
DO @Match ∂ Σ  to ∂ (REPLΣ (Σ ))

{'∂ &V(Σ (&n=&n0,&N,&F))'
 '∂ &V(REPLΣ (Σ (&n=&n0,&N,&F),&V))}

↑ MATCH
UNTIL

NOT
END

EXPAND @Create replacements

IF
SLIST {} ≠

THEN
"Σ  → tempFunct"
1. DISP
SLIST TLIST 2. @Match Σ  to replacement
<< @function

2. ->LIST MATCH DROP
>> DOLIST

END

dCOLLECT @Collect diff. forms

IF
SLIST {} ≠

THEN
"tempFunc → Σ "
1. DISP
TLIST SLIST 2. @Match replacement function
<< @back to original Σ

2. ->LIST MATCH DROP
>> DOLIST

"d1tempFunc → ∂ Σ "
1. DISP
TLIST 1.
<< @Create list of d1tempFunct

->STR 2. OVER SIZE
SUB "'d1" SWAP +
OBJ→

>> DOSUBS

SLIST TLIST 2. @Create list of ∂Σ
<<

OBJ-> DROP2
SWAP ->STR 2. OVER
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SIZE 1. - SUB
"'∂ " ROT + "(" +
SWAP + ")'" +
OBJ->

>> DOLIST
2.
<< @Match d1tempFunc to ∂Σ

2. ->LIST ↑ MATCH DROP
>> DOLIST
{ SLIST TLIST nTemp }
PURGE

END
>>

Notice here the following remarkable thing. When we match all 
patterns of the form:

∂
∂X

F X( )
n=n0

N

∑ 
 
  

 

to:

∂
∂X

REPLΣ F X( )
n=n0

N

∑ 
 
  

 
 
 
  

 
 

we do only a formal replacement. The real replacement follows much 
later in two stages. The first stage is the evaluation of the expression 
which creates the list of sums SLIST and the list of temporary 
replacement functions TLIST . The second stage is the following 
pattern matching, which matches not

∂
∂X

F X( )
n=n0

N

∑ 
 
  

 

but rather F X( )
n= n0

N

∑  to temporary replacement functions. This is a very 

important thing to do! We don't want only

∂
∂X

F X( )
n=n0

N

∑ 
 
  

 

but also F X( )
n= n0

N

∑  to be matched to temporary replacement functions, in 

order to retain the original structure of the expression regarding 
differential forms. If for example we have:

F X,n( )
n=1

N

∑ ⋅
∂

∂X
G X( )( ) + G X( )⋅

∂
∂X

F X,n( )
n =1

N

∑ 
 
  

 

and we replace only the sums in differential forms, then we will get:

F X,n( )
n=1

N

∑ ⋅
∂

∂X
G X( )( ) + G X( )⋅

∂
∂X

tempFunctionA X( )( )

in which dCOLLECT  can't  collect any differential forms, simply 
because there is nothing to collect. But if we also replace the sums that 
are not in differential forms, we get the expression:

tempFunctionA X( )⋅
∂

∂X
G X( )( ) + G X( ) ⋅

∂
∂X

tempFunctionA X( )( )

which dCOLLECT  can convert to:

∂
∂X

tempFunctionA X( ) ⋅G X( )( )
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and in which we can match tempFunctionA X( )  back to F X,n( )
n=1

N

∑ , 

getting the result:

∂
∂X

F X,n( )
n=1

N

∑ ⋅G X( ) 
 
  

 

This is one example of delayed evaluation and delayed pattern 
matching, a very powerful possibility that we have for formula 
manipulation.

Let's try the program PATdCOLLECT . Enter the expression:

F X,n( )
n=1

N

∑ ⋅
∂

∂X
G X( )( ) + G X( )⋅

∂
∂X

F X,n( )( )
n=1

N

∑

and press . The program returns:

∂
∂X

G X( ) ⋅ F X,n( )
n=1

N

∑ 
 
  

 
 ,

the collected form.

In the program PATdCOLLECT  much of the code is identical to the 
code of PATdΣ → Σd . Again we can combine the functionalities of 
the two programs in one program, PATdCOLEX , that needs an 
additional argument, a 0  or a 1, that specifies if we want conversion 
of ∂Σ  to Σ∂  (i.e. expansion of differential forms), or collection of 
differential forms. The following listing is PATdCOLEX .

<<
→dColFlag
<<

DO
DUP →TERMS

0 + Σ LIST
"∂ (A/B)→(B*∂ A-A*∂ B)/B^2"
1. DISP
DO @Ratio rule

{'∂ &V(&A/&B)'
'(&B*∂ &V(&A)-&A*∂ &V(&B))/&B^2' }

↑ MATCH
UNTIL

NOT
END
→TERMS 0 + Σ LIST
"∂ (A+B)→ ∂ A+∂ B"
1. DISP
DO @Sums rule

{'∂ &V(&A+&B)' '∂ &V(&A)+∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (Const*A)→Const*∂ A"
1. DISP
DO @Constant rule

{'∂ &V(&C*&A)' '&C*∂ &V(&A)'
'NOT POSNAME(&C,&V)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A*B)→B*∂ A+A*∂ B"
1. DISP
DO @Product rule

{'∂ &V(&A*&B)' '&B*∂ &V(&A)+&A*∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A^n)→n*A^(n-1)*∂ A"
1. DISP
DO @Power rule
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{'∂ &V(&A^&n)' '&n*&A^(&n-1)*∂ &V(&A)'
'NOT POSNAME(&n,&V)'}

↑ MATCH
UNTIL

NOT
END
IF

dColFlag @If we want collection.
THEN

"Σ ∂  → ∂ Σ "
1. DISP
DO @Match Σ ∂  to ∂ Σ

{'Σ (&n=&n0,&N,∂ &V(&F))'
 '∂ &V(Σ (&n=&n0,&N,&F))
 'NOT ALGSAME(&V,&n)'}

↑ MATCH
UNTIL

NOT
END
"∂ Σ  → ∂ REPLΣ "
1. DISP
DO @Match ∂ Σ  to ∂ (REPLΣ (Σ ))

{'∂ &V(Σ (&n=&n0,&N,&F))'
'∂ &V(REPLΣ (Σ (&n=&n0,&N,&F),&V))}

↑ MATCH
UNTIL

NOT
END
EXPAND @Create replacements
IF

SLIST {} ≠
THEN

"Σ  → tempFunct"
1. DISP
SLIST TLIST 2. @Match Σ  to replacement
<< @function

2. ->LIST MATCH DROP
>> DOLIST

END
dCOLLECT @Collect diff. forms

IF
SLIST {} ≠

THEN
"tempFunc → Σ "
1. DISP
TLIST SLIST 2. @Match replacement 
<< @function back to 

2. ->LIST MATCH @original Σ
DROP

>> DOLIST
"d1tempFunc → ∂ Σ "
1. DISP
TLIST 1.
<< @Create list of

->STR 2. OVER @d1tempFunct
SIZE SUB "'d1"
SWAP + OBJ→

>> DOSUBS
SLIST TLIST 2. @Create list of ∂Σ
<<

OBJ-> DROP2
SWAP ->STR 2. OVER
SIZE 1. - SUB
"'∂ " ROT + "(" +
SWAP + ")'" +
OBJ->

>> DOLIST
2.
<< @Match d1tempFunc to ∂Σ

2. ->LIST ↑ MATCH DROP
>> DOLIST
{ SLIST TLIST nTemp }
PURGE

END
ELSE @we want expansion

"∂ Σ → Σ ∂ " @All other expansions of
1. DISP @diff. forms are done. So
DO @we start converting sums

{'∂ &V(Σ (&n=&n0,&N,&F))'
'Σ (&n=&n0,&N,∂ &V(&F))'
'NOT ALGSAME(&V,&n) }
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↑ MATCH
UNTIL

NOT
END

END
UNTIL

SWAP OVER SAME
END

>>
>>

A small test to see that it works. Enter:

∂
∂X

G X,n( )⋅ F X,n( )
n=1

N

∑ 
 
  

 

then 0 , and press  to get the expanded form:

G X( ) ⋅
∂

∂X
F X,n( )( )

n =1

N

∑ + F X,n( )
n =1

N

∑ ⋅
∂

∂X
G X( )( )

Now enter 1 and press again  to get back to:

∂
∂X

G X,n( )⋅ F X,n( )
n=1

N

∑ 
 
  

 
 ,

the form we started with.

The above might be nice, but the pattern matching commands have 
even more depths, which we can explore. As we already saw, when 
pattern matching is used, to replace some give pattern with the sub 
expression programpatternArgs( ) , where program is a program 
that we wrote previously, and patternArgs  are arguments built-up 
using the patterns, then the returned algebraic object contains sub 
expressions programpatternArgs( ) , i.e. the program isn't 

automatically evaluated when the pattern matching is successful. We 
have to expand explicitly afterwards, to put the result of 
programpatternArgs( )  in place of programpatternArgs( )  in the 
algebraic object. 
The program 
has to be a 
program that 
returns one 
single algebraic 
object, or 
anything else 
that is allowed in 
algebraics, like 
for example a 
number. The 
whole procedure 
works like on 
the picture at the 
right. It has to 
be at least two 
stages, because 
program is not 
automatical ly 
evaluated at the moment of pattern matching. But as we also saw, if we 
use pattern matching with a list of three elements, then the third element 
is used as a condition for pattern matching. The pattern matching 
commands first check to see if the patterns that must be matched exist. If 
they don't exist, the algebraic object is returned to the stack unchanged. 
But if the patterns do exist, then the condition for pattern matching 
is evaluated, and the matching is done if the condition is true. Aha! 
You see where it goes. Couldn't we make a program, name it test , that 
not only returns a truth value, but also does other work before it 
returns the truth value? Of course we can! Let's start with easy 
examples. First of all, there are no special objects for true  and false  in 
user RPL. Any number different than 0  is true, and 0  is false. (So the 
HP49G is an extraordinary truth loving machine, since there are so 
many more numbers that are equivalent to true. ;-)) We make first the 
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&A

↑ MATCH
All &A  are replaced by program&A( )

&A program&A( ){ }

program&A( )

EXPAND
program&A( )  is evaluated and does all 
its work, returning some result &A( )  
which replaces all sub expressions 
program&A( )

result &A( )



program TEST1. 

<<
IF @If

VARS 'nIter' POS NOT @variable nIter doesn't
@exist

THEN @then
0. 'nIter' STO @initialise it

END
'nIter' INCR @Increment nIter

@and
1. DISP @display current

@value
1. @Return 1. 

(true)
>>

It doesn't use any arguments and always evaluate to 
true. That means that if the patterns exist, that we 
specify in the pattern list, the pattern matching will be 
always performed.

Enter F F F X( )( )( )  and &F &X( ) &X −1 TEST1{ } . 

Now use the command ↑ MATCH  to get F X −1( ) −1. 
Did you see what happened in addition? The program 
TEST1 was evaluated and it counted how many time 
it was evaluated, that is how many passes ↑ MATCH  
did. As we already saw, ↑ MATCH  does not only 
one pattern matching but it starts from the inner most 
sub expressions and in direction of the outer most sub 
expressions (almost) as long as there are patterns that 
can be matched. In this example it could also match 
F X −1( ) −1 to X −1−1− 1. Drop the 1.  from stack 

level 1, enter again &F &X( ) &X −1 TEST1{ }  and 

do another ↑ MATCH  to get X −1−1− 1 and see a 3  
displayed on the top of the screen while the pattern 

matching is performed. Take a look what a cascade of events was 
caused by a single command execution. Purge now variable nIter, as we 
don't need it any more.

It could be interesting to see what the patterns &F &X( ) , &X , and 
&X −1 were, each time the pattern matching is performed. We make the 

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-66

F F F X( )( )( )
↑ MATCH sees that the 
pattern &F &X( )  exists and 
triggers execution of TEST1

&F &X( ) &X −1 TEST1{ }

TEST1 runs for the first time. It 
initialises nIter to 0. It increments nIter 
to 1. It displays the current value of nIter 
on display line 1. It returns 1. (true)

↑ MATCH sees that TEST1 evaluates to 1. 
(true) and so it performs pattern matching. 
After this it sees another pattern &F &X( )  and 
does the same again.

F F X − 1( )( )

TEST1 runs for the second time. It 
increments nIter to 2. It displays the 
current value of nIter on display line 1. It 
returns 1. (true)

&F &X( ) &X −1 TEST1{ }

↑ MATCH sees that TEST1 evaluates to 1. (true) and so it 
performs pattern matching. Then it stops though there is 
an additional (last) pattern &F &X( ) .

F X −1( ) −1

F F X − 1( )( )



program TEST4 , which needs arguments. These are going to be 
exactly the patterns that we want to examine, after the pattern 
matching has been performed. Don't be confused about TEST4  
coming directly after TEST1, since these programs are only 
examples. We could name them TESTWHATEVER , 
TESTASYOUWISH or anything else. The program TEST4  should 
create log records for each pattern matching in a nice readable form. 
So here we have TEST4 :

<<
IF

VARS 'MATCHLOG' POS NOT
THEN

"" 'MATCHLOG' STO
END

'MATCHLOG' "Detected: F(X)=" 5. PICK +
"

with: X=" 4. ROLL + ".
Replaced " + 4. ROLL + " with " + ROT +
"
--------------------------------
" + STO+ 1.
>>

Now enter a program that does pattern matching using the condition 
TEST &F &X( ),&X,&X −1( )  until nothing changes any more:

<<
'F(F(F(X)))'
DO

{'&F(&X)' '&X-1' 'TEST4(&F(&X),&X,&X-1)' }

↑ MATCH
UNTIL

NOT
END

>>

Evaluate the program to get the fully matched result X −1−1− 1. 
Press  to get the variables menu. Then press  and 

then  to take a look at the log file. You see:

Detected: F(X)='F(X)'
with X=X.
Replaced 'F(X)' with 'X-1'
--------------------------------

Detected: F(X)='F(F(X-1))'
with X=F(X-1).
Replaced 'F(F(X-1))' with 'F(X-1)-1'
--------------------------------

Detected: F(X)='F(X-1)'
with X=X-1.
Replaced 'F(X-1)' with '(X-1)-1'
--------------------------------

This tells you exactly how the pattern matching was performed. Purge 
variable MATCHLOG  now, since we don't need it any more. Now, 
enter the same program as before, but using the command ↓ MATCH  
instead of ↑ MATCH . Let the program run. The result is again 
X −1−1− 1, but it was produced in another way. Take a look at the 
contents of MATCHLOG . Now you see:

Detected: F(X)='F(F(F(X)))'
with X=F(F(X)).
Replaced 'F(F(F(X)))' with 'F(F(X))-1'
--------------------------------

Detected: F(X)='F(F(X))'
with X=F(X).
Replaced 'F(F(X))' with 'F(X)-1'
--------------------------------

Detected: F(X)='F(X)'
with X=X.
Replaced 'F(X)' with 'X-1'
--------------------------------
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F F F X( )( )( )

F F X − 1( )( )

F X −1( ) −1

X −1−1− 1

F F F X( )( )( )

F F X( )( ) −1

F X( ) −1−1

X −1−1− 1



Purge again MATCHLOG .

In our example, when we successively match all patterns F X( )  with 
X −1, we end up with X −1−1− 1, in which all information about 
where the expression came from is lost. Of course, in this case we 
know that each pattern X −1 came out of a pattern F X( ) . But there are 
many cases in which losing the information about the expression 
before the match can be a big problem. You remember of course, 
what a problem it is, when expanding the derivative of a sum we just 
evaporate the variable of differentiation. But we can use the pattern 
matching commands with a condition that evaluates to true, and that 
creates all information for being able to reconstruct the original 
expression by doing the inverse pattern matching. Enter the program:

<<
IF

VARS 'RLIST' POS NOT
THEN

{} 'RLIST' STO
END
2. →LIST 1. →LIST 'RLIST' STO+
1.

>>

and store it in TEST2 . Now enter F F F X( )( )( )  and then the list 

&F &X( ) &X −1 TEST2 &F &X( ),&X −1( ){ } . Do a ↑ MATCH  to 

get F X −1( ) −1 and a 1.  Drop the 1. , enter the list 

&F &X( ) &X −1 TEST2 &F &X( ),&X −1( ){ }  again and do another  

↑ MATCH  to get X −1−1− 1 and a 1. . Drop the 1.  from the stack. 
The variable RLIST  was created by TEST2 , the execution of which 
was triggered by the command ↑ MATCH . Recall RLIST  on the 
stack, and take a look at its contents which are: 

F X −1( ) X −1−1{ } F F X −1( )( ) F X −1( ) −1{ } F X( ) X −1{ }{ } . 

With this list we can do the reverse match and reconvert the result 

X −1−1− 1 to what we started with. Enter a 1.  and press . The 
stack must contain now:  On level 3 the algebraic X −1−1− 1, on level 2 
a 1. , and on level 1 the list of the patterns for pattern matching 

F X −1( ) X −1−1{ } F F X −1( )( ) F X −1( ) −1{ } F X( ) X −1{ }{ } . 
Enter the program:

<<

REVLIST ↓ MATCH DROP
>>

Press  to get the original expression, F F F X( )( )( ) . The 

recorded patterns that were used to convert F F F X( )( )( )  to X −1−1− 1, 

were used again in reverse direction to convert X −1−1− 1 to 
F F F X( )( )( ) . Purge now RLIST . This manual purging of the variables 
that are created is getting on our nervous. Can't it be done automatically? 
Of course! And there are many methods.

One of them would be to use local variables. Consider the program:

<<
{} → rlist
<<

'F(F(F(X))'
DO

{'&F(&X)' '&X-1' 'TEST2(&F(&X),&X-1)' }

↓ MATCH
UNTIL

NOT
END
rlist

>>
>>

It would return the list of patterns and would create no global variable 
that must be explicitly purged. Another possibility is to use alarms. Let's 
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have a look at the programmable commands for alarms on the 
HP49G. First of all we have STOALARM . This command takes data 
from the stack and creates an alarm. It needs one argument, which can 
be:

1) A real number that specifies the time when the alarm will go off.
2) A list with two real numbers. The first specifies the date and the 

second specifies the time when the alarms will go off.
3) A list containing the date and the time as well the object that will 

be evaluated when the alarm will go off.
4) A list containing the date and the time, the object that will be 

evaluated when the alarm will go off, and a repeat interval for the 
alarm.

We will use the third variant, so let's see in more details what the 
contents of the list are. The first number is a real, which specifies the 
date of the alarm. It must be in format dd.mmyyyy or mm.ddyyyy 
accordingly to your setting of the date format. The second number is a 
real, which specifies the time of the alarm. It must be in format 
hh.mmss, with the part hh going from 0 to 24. The third element in 
the list can be any object. If it is a string, then we have an appointment 
alarm. At the specified date and time, the string is displayed and the 
HP49G beeps. But if it is anything else, a number, an expression, or 
a program, then  we have a control alarm and the object is evaluated. 
STOALARM  returns a number, the index of the alarm that it stores in 
the alarm list. The next command we examine is the command 
FINDALARM . It takes one argument from the stack, which can be:

1) A real number that specifies a date.
2) A list with two real numbers. The first specifies a date and the 

second specifies a time.
3) The number 0.

If the command is given a date, then it returns the index of the first 
alarm that comes due after 12:00 of the specified date. If it is given a 
list with a date and a time, then it returns the index of the first alarm 
that comes due after the specified date and time. If it is given a 0., 
then it returns the index of the first past due alarm. We also have the 

command DELALARM , which simply takes an alarm index an deletes 
the corresponding alarm from the alarm list.

What we also should know about alarms on the HP49G is that they 
won't interrupt running programs. If an alarm comes due while a 
program is running, it will wait for the program to complete execution, 
and then it will go off. That means for us, that if we make the pattern 
matching condition program in such a way, that it sets an alarm to purge 
the variables created by the program, then it will not conflict with the 
program because it will come off after the program has completed. Let's 
try that. Enter the program:

<<
IF @If RLIST doesn't exist

VARS 'RLIST' POS NOT
THEN @then initialise it

{} 'RLIST' STO
DATE TIME 0.0003 @Current date and time + 3s
<< @Object to be executed

RLIST 'RLIST' PURGE @when the alarm comes due
0. FINDALARM DELALARM

>> 3. →LIST STOALARM DROP
END
2. →LIST 1. →LIST 'RLIST' STO+ 1.

>>

Store that in TEST3 . Enter F F F X( )( )( )  and then 

&F &X( ) &X −1 TEST2 &F &X( ),&X −1( ){ } . Do a ↑ MATCH . The 

pattern matching is performed, and after that you get the variable RLIST  
recalled on the stack, and purged. The program

<<
RLIST 'RLIST' PURGE
0. FINDALARM DELALARM

>>

which runs when the pattern matching completes, also removes the 
alarm that triggered its execution from the the alarm list. Take a look at 
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the events as they take place as the time is passing by.
For our purposes the evaluation of the condition for pattern matching 
is a back door that enables us to enter the domain of "things that aren't 
possible". Consider for example some arbitrary expression containing 
derivatives of sums. In our programs we used pattern matching to 
prepare the expression so that only patterns of the form:

∂
∂X

F X( )
n=n0

N

∑ 
 
  

 

exist. After this we want to convert all sums that appear inside the 

parentheses of 
∂

∂ var
( )  to 

temporary replacement functions. 
We want to have distinct replacement 
functions for distinct sums, and we 
want to retain he variable of 
differentiation, because if we don't, 
then expanding 

∂
∂ var

tempFunction( )  would return 

0 , and the temporary replacement 
function would evaporate. We can 
make a program, name it for example 
CREATEMP , that we use as a 
condition for pattern matching. The 
next program listing demonstrates 
this.

<<
IF @If RLIST doesn't exist

VARS 'RLIST' POS NOT
THEN @then initialise it

{} 'RLIST' STO
64. 'nTemp' STO @initialise nTemp

END
"'tempFunction" @Create tempFunction
'nTemp' INCR CHR +
"(" + SWAP +
")'" + OBJ->
2. →LIST 1. →LIST
'RLIST' STO+ 1. @Add to replacement list

>> @and return 1. (true)
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↑ MATCH triggers execution of a testing program one or more times.

Testing program runs one or more times. The first time it 
runs, it sets an alarm for now+3 seconds.

now+3 seconds.
Alarm comes due, but 
↑ MATCH didn't 
finish yet, so the alarm 
waits.

↑ MATCH finishes. 
Alarm goes off.
Alarm program runs, 
recalls RLIST, purges 
RLIST, and deletes 
alarm from the alarm 
list

time

now
Alarm program 
finishes here

Running time of ↑ MATCH and testing program 
Running time of alarm program, a "tail" to the execution
of the original procedure.



Store this in CREATEMP . Now, enter the expression:

∂
∂X

G X,n( )
n= a

b

∑ 
 
  

 
+

∂
∂X

F X,n( )3

n=1

N

∑ 
 
  

 

that contains two different sums. Enter the pattern list:

∂
∂ &V

&F
&n= &n0

&N

∑ 
 
  

 
∂

∂ &V
&F

&n= &n0

&N

∑ 
 
  

 
CREATEMP &F

&n= &n0

&N

∑ ,&V
 
 
  

 
 
 
 

  

 
 
 

  

and do a ↑ MATCH . When the pattern matching is done, you have 
exactly the same expression like before. But now you have the 
variable RLIST  in the current directory, which contains sub lists with 
all the pairs of distinct sums and distinct temporary replacement 
functions. Now these pairs can be used for pattern matching. 
Remember that we did almost the same a few pages ago, when we 
used the program REPLΣ  as a condition for pattern matching. But 
the difference was that we created an expression in which we had 
unevaluated patterns of the form:

∂
∂X

tempFunctionA X( )( )

But now we just use pattern matching to trigger execution of the 
condition program, which in turn creates the list of replacements. The 
pattern matching command replaces each sum with itself, leaving the 
expression unchanged. The real replacement is to be done in a 
subsequent pattern matching operation using the created replacement 
list RLIST . Take a look its contents:

F X,n( )3

n=1

N

∑ tempFunctionB X( ) 
 
 

 
 
 

G X,n( )
n=a

b

∑ tempFunctionA X( ) 
 
 

 
 
 

 
 
 

 
 
 

It has all necessary information for replacement of sums with temporary 
functions that depend on the differentiation variable. Notice also how we 
use nTemp  as a counter for adding a single capital letter to the string 
" 'tempFunction", for creating distinct replacements for distinct 
sums. This method limits the number of possible distinct temporary 
replacement functions to 26, but even if this shouldn't be enough, we 
can improve it adding another letter, or finding some other method for 
creating distinct names of temporary replacement functions. Also, using 
the names tempFunctionA , tempFunctionB, and so on, means that 
these names must not appear in the original expression. If you for some 
reason have them in your expression, you could use replacement names 
like TrabakoulasA, or even KaragiaouroglouZ. (And hope that the 
HP49G will not crash. ;-))

We stay a little bit longer at pattern matching. In the marathons (under 
the heavy influence of VPN ;-)) we often encountered a major 
shortcoming of the CAS of the HP49G. It has no INTEGERASSUME, 
and so it can't simplify for example SINn ⋅π( )  to 0 , when n  is integer. 
But does it really have no integer assuming capabilities? I would say that 
using pattern matching with conditions we can not only construct integer 
assumptions but also odd and even integer assumptions, or any other 
assumptions we want. Suppose that you want to expand the expression 
SINn ⋅π( ) + COSn ⋅π( )  using integer assumptions for variable n . First 
of all go to directory CASDIR  and store there the list n{ }  in variable 
INTEGERASSUME . Store the list n{ }  in variable ODDASSUME. 
Now enter the program:

<<
{HOME CASDIR INTEGERASSUME} RCL SWAP POS

>>

Store it in HOME  in variable ISINTEG? . Enter

<<
{HOME CASDIR ODDASSUME} RCL SWAP POS

>>
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Store it in HOME  in variable ISODD?  Now, suppose that you want 
to have a command, name it IEXPAND , that does expanding for 
trigonometrics using assumptions for integers and odd integers. Enter 
the program:

<<
TEXPAND
DO

{'SIN(&n*π)' 0 'ISINTEG?(&n)'}
↑ MATCH SWAP
{'COS(&n*π)' -1 'ISODD?(&n)'}
↑ MATCH ROT OR

UNTIL
NOT

END
EXPAND

>>

Store it in HOME  in variable IEXPAND . Now return to your 
working directory. Since ISINTEG? , ISODD?  and IEXPAND  are 
in HOME , they are accessible from every directory in your directory 
structure. Enter SINn ⋅π( ) + COSn ⋅π( ) . Enter IEXPAND  and watch 
your HP49G using its new created knowledge to return −1. Imagine 
now, how many assumptions are possible using this simple method.

Another shortcoming of the HP49G is that the upwards pattern 
matching command ↑ MATCH  does (almost) all possible matches at 
any level of nesting, starting at the most inner nested sub expressions 
and making its way to the outer nestings. But using conditions we can 
make a new command, say ↑ MATCH1, that does a single pattern 
matching at the inner most nested sub expression. Store the mini 
program

<<
1. FS?C

>>

in TEST ↑ MATCH1. Store the program

<<
PUSH 1. SF

'TEST↑ MATCH1' +

↑ MATCH POP
>>

in ↑ MATCH1. Now enter F F F X( )( )( ) , and then the pattern list 

&F &X( ) &X −1{ } . Press  to get F F X − 1( )( )  and 1. . 

The expression F F X − 1( )( )  shows that pattern matching was performed 
only at the innermost nested sub expression.

Enough patterns (for this time ;-)). In the next part of this marathon we 
are going to examine how to… put pattern matching in pattern matching. 
(Well, it seems that Nick has a preoccupation with such things ;-)) We 
are going to see, what would happen if we use some condition program 
for pattern matching that itself does pattern matching. And what happens 
if the program does pattern matching using itself as a condition 
program?

Before we go any further, let's take a look once more at our collection of 
programs, which has grown again (first picture on next page). I left out 
STARTEQW  since it can use any other program, which means that its 
dependence on other programs will vary. If we through out 
PATdCOLLECT , whose functionality is implemented in 
PATdCOLEX , then the whole building gets a bit clearer (second 
picture on next page). The programs TEST1, TEST2 , TEST3 , 
TEST4  and CREATEMP  are also left out, because they were 
introduced as examples for a possible usage of the pattern matching 
commands, but otherwise they aren't needed by any of our main 
programs. Notice that dCOLEX  and PATdCOLEX  (should) have the 
same functionality. Nonetheless I guess that there will be cases where 
the one works and the other doesn't work or even crashes. Decide for 
yourself which of them you find easier to understand and to make better. 
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Anyway, it looks quite crowded in the neighbourhood of dn → dv , 
ALGSAME , POSNAME , → TERMS , and dCOLLECT . This 

shows that the functionality of these programs is essential. They are the 
fundament upon which the rest of the building stands. If they fall, all 
programs which base upon them will also fall.
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We come now to derivatives of 
inverse functions. The inverse 
function y = φ x( )  of a monotonic 
and continuous function y = f x( )  in 
the interval a < x < b  can be 
constructed geometrically, if we 
mirror the plot of the function on the 
line y = x . Analytically the function 
y = φ x( )  is found if we solve 

y = f x( )  for x , and exchange variables y  and x  in the solution. On 
the HP49G it is much easier to work analytically than geometrically 
for finding inverses. (And in general this is also the way to do this, as 
it provides us the equation of the inverse function, which we can use 
for potting and other purposes. For example, let's suppose that we 
have Y = LN X( )  and we want the inverse function. Go to the EQW, 
enter Y = LN X( ) , and put that on the stack. Press  to copy the 

equation on stack level 2. Enter X  and press , to get X = eY . 
Now we must exchange variables Y  and X  to get Y = eX . If we use 
SUBST here, then we will have a problem. For example, if we enter 
X = Y  and press , then the result will be Y = ey  and we will 
not be able to replace Y  with X  only in the exponential function, 
because if we enter Y = X  and substitute again, then we will get 
X = eX  (i.e. 
both Y s 
will be 
substituted 
with X s). 
But we can 
do what we 
want using 

. Though 
in algebraic 
syntax the function  can perform one replacement at a time, in RPL 
syntax it can perform several replacements at once. If you enter 

X Y Y X{ }  and press , then the two replacements will be 
performed simultaneously on the original expression. The result is then 
Y = eX . In RPL syntax the command  gets one expression from stack 
level 2, and one list from stack level 1. The list contains in pairs the 
name that has to be replaced, and the expression that it has to be replaced 
with. The important thing here is that the replacements do not interfere 
with each other, even if some variable is replaced with another variable 
that already exists in the original expression and that itself has to be 
replaced with something else. Using  with the list X Y Y X{ }  on 
the HP49G is not equivalent to using SUBST once with X = Y  and 
right after this another time with Y = X ! Now we have Y = LN X( )  and 

Y = eX , that is the function and its inverse on the stack. Enter Y = X , 
the line on which we must mirror some function, in order to get its 
inverse. Now, enter 3  and press  to make a list of all equations. 

Press  to store the list of equations in EQ . Set the plot type to 

Function , independent variable to X , horizontal view from −7.5  to 
12.5 , vertical view from −4.2  to 5.8 , and press  and  
to plot the three functions. (If you have the Rcobo's HP49G with laser 
plasma screen, then you will see the plots in colour ;-)). But if rigourous 
mode is on, you are going to get an additional part of Y = LN X( )  which 
shouldn't be there. Exit the plot, return to the stack, enter X , and press 

. In rigourous mode the result is LN X( ) , which explains how the 
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additional part in the plot was drawn. The HP49G didn't actually plot 
Y = LN X( ) , but rather Y = LN X( ) , because the CAS was in 
rigourous mode. Here we have another (unneeded) complication. 
While in general it is good to work in rigourous more (i.e. not to 
assume that X = X ), for the plot of LN X( )  this brings an additional 
thing that we must do. 
Press , then the 
menu key , and then 
deactivate the option 
_Rigorous. Press 

 to accept the 
changes, then  
again to leave the screen 
CALCULATOR MODES, 
and finally press  
and  again, to re-
plot. Now you get the 
correct plot without the 
additional part.

If we have the inverse function x = φ y( )  of some function y = f x( ) , 
but not the function y = f x( )  itself, and we want the derivative of 
y = f x( ) , then we don't need to find the function y = f x( )  first. 
Instead of this we can use the relation:

∂f
∂x

=
1
∂φ
∂y

Which on the HP49G is piece of cake. We do a simple example first. 
We use X Y( ) = LN Y( )  which is the inverse of Y X( ) = eX . In this 
example it is easy to find the function out of its inverse, but this 
doesn't always have to be this case, as we will see in the next 
example. Enter now LN Y( ) , then Y , and then press  or  to 

get 
1
Y

. Press  to get Y . The derivative of the original function 

Y = eX  is Y . Notice that we find the derivative in terms of Y  and not in 
terms of X . Indeed the derivative of Y X( ) = eX  is:

∂Y X( )
∂X

=
∂eX

∂X
= eX = Y X( )

We continue with an example in which it isn't possible to find the 
analytic closed form of the original function. We use as the inverse 
function X Y( ) = Y ⋅eY . Enter Y ⋅ eY , then Y , and then press  or 

 to get eY + Y ⋅ eY . Press  to get:

1
eY + Y ⋅ eY

which is the derivative of the original function Y X( ) , in terms of Y . 
The function Y X( )  itself that can't be written in an analytic closed form 
in terms of X . But nonetheless we have found out that:

∂Y X( )
∂X

=
1

eY X( ) + Y X( )⋅ eY X( )

i.e. the derivative of Y X( )  in terms of Y X( ) .

An additional problem that we have when we know the inverse function 
but we can't find the original function, is how to plot the original 
function. In our example from above, X = Y ⋅ eY  we can plot of course 
Y ⋅ eY , but this will be the picture of the inverse function, and we must 
imagine what it would look like, if we mirrored the function curve on 
the line Y = X . Let's see how we can do that without having to imagine 
mirror worlds. Set up a function plot with Y ⋅ eY  as EQ  and Y   as 
indep. Set horizontal view range from −2  to 2 , and vertical view range 
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from −1 to 1. Plot the 
function to get a curve like 
in the picture to the right. 
Now set up a parametric 
plot with Y ⋅ eY + i ⋅ Y  as 
EQ. The equation of the 
parametric function for 
plotting the original 
equation is easily found. 
Since we want to have 
X = Y ⋅ eY , we write this 
in parametric form using Y  
itself as parameter:

X = Y ⋅ eY

Y = Y

This parameter representation, translated in HP49G-ish, is the same 
as Y ⋅ eY + i ⋅ Y . Now the 
plot contains both the 
original function, of which 
we can't have an analytic 
closed form, and the inverse 
function. This technique can 
be used for visualising the 
curve of the original 
function, when we can't 
represent it by means of an 
algebraic equation of the 
form y = f x( ) . Notice that in 
many cases the original 
"function" is actually no function at all, but rather a relation. The 
above example is one of these cases.

While we are talking about functions in parameter representation, the 

strange derivatives of the form 
∂f x( )
∂g x( )  come into mind, which we 

already encountered. Let's take a look at parametric functions and their 
derivatives. A function y = f x( )  is given in parametric form:

y = ϕ t( )
x = ψ t( )

We don't know how y  depends on x , but we know how x  and y  both 
depend on the parameter t . From the parametric representation we can 

find the derivative 
∂y x( )

∂x
 without having to find y x( )  itself. For the 

derivative 
∂y x( )

∂x
 we have:

∂y x( )
∂x

=

∂y t( )
∂t

∂x t( )
∂t

That means that we can find the derivative 
∂y x( )

∂x
 using the derivatives 

∂y t( )
∂t

 and 
∂x t( )

∂t
. Let's have an example. The equation of an ellipse:

X2

A
+

Y2

B
= 1

in parametric form is:
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X = A ⋅ COS t( )
Y = B ⋅ SIN t( )

Now we find the derivative. Enter B ⋅ SINt( ) , then t , and press  or 
 to get B ⋅ COS t( ) . This is the derivative:

∂y t( )
∂t

Now, enter A ⋅ COS t( ) , then t , and press  or  to get 
A ⋅−SIN t( ) . This is the derivative:

∂x t( )
∂t

Press  and then  to get:

−
B ⋅COS t( )
A ⋅SIN t( )

This is the derivative:

∂y x( )
∂x

written in terms of t . But of course we can write it also as a function 
of X , or of Y , or of both X  and Y , if we want. For example, since 
X = A ⋅ COS t( ) , we have:

COS t( ) =
X
A

And since Y = B ⋅ SIN t( ) , we have:

SIN t( ) =
Y
B

How to substitute

COS t( ) =
X
A

and

SIN t( ) =
Y
B

in

−
B ⋅COS t( )
A ⋅SIN t( )  ?

Let's do that all on the HP49G. Press  a couple of times to make 
several copies of:

−
B ⋅COS t( )
A ⋅SIN t( )

on the stack, because we are going to need the expression more than one 
times. Enter X = A ⋅ COS t( )  and then COS t( ) . Press  to solve 
for COS t( ) . As we already saw, the command SOLVE  allows to solve 
for any rational variable of a given equation. The result is:

COS t( ) =
X
A
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Press , and you will not get:

−
B ⋅

X
A

A ⋅ SINt( )

but rather:

−
B ⋅

X
A

A ⋅ SIN ACOS
X
A

 
 

 
 

 
 
  

 

How and why is this result obtained? The command SUBST didn't 

really substitute 
X
A

 for all COS t( )  that it found. In fact it didn't even 

search for COS t( ) . What it did seems to be:

1) Solve the equation COS t( ) =
X
A

 for the first variable (not rational 

variable) on the left hand side, which is t . This returns 

t = ACOS
X
A

 
 

 
 . Notice that this is not the general solution that 

SOLVE would return.

2) Substitute t = ACOS
X
A

 
 

 
  in −

B ⋅COS t( )
A ⋅SIN t( ) . This returned the 

result −
B ⋅

X
A

A ⋅ SIN ACOS
X
A

 
 

 
 

 
 
  

 

.

In the first step, the solution of COS t( ) =
X
A

 for t , was found to be:

t = ACOS
X
A

 
 

 
 

This is the principal solution of the equation. The general solution that 
SOLVE  would return, would be:

t = − 2 ⋅n1⋅ π + ACOS
X
A

 
 

 
 

 
 
  

 
t = 2 ⋅n1⋅ π + ACOS

X
A

 
 

 
 

 
 
 

 
 
 

The same solution is returned by ISOL , when flag -1 is clear. But when 
flag -1 is set, then ISOL  returns the principal solution:

t = ACOS
X
A

 
 

 
 

SUBST returns always the principal solution. You don't believe that 
SUBST can be used for this? Very well! Enter:

COS t( ) =
X
A

then t , and press  to get:

t = ACOS
X
A

 
 

 
 . When SUBST is used with an equation on stack level 

1, it does substitution. When it is used with an expression or name (no 
equation) on stack level 1, it solves the expression on stack level 2 for 
the expression or name on stack level 1. So we have:
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SUBST doesn't care about flag -1 and always 
returns principal solutions.

SUBST

Principal solution.General solution.ISOL

SOLVE doesn't care about flag -1 and always 
returns general solutions.

SOLVE

Flag -1 set for 
principal solutions

Flag -1 clear for 
general solutions

Notice how wonderful the three commands cover the whole spectrum 
of possibilities.

Now, let's go on with our problem. In the expression:

−
B ⋅

X
A

A ⋅ SIN ACOS
X
A

 
 

 
 

 
 
  

 

we can't do the second substitution SIN t( ) =
Y
B

, because the variable 

t  doesn't exist anymore. We can only expand the expression to get:

−
X ⋅B ⋅ A2 − X2 ⋅ A

A4 − X2 ⋅ A2

This is the derivative 
∂y x( )

∂x
, written as a function of X . But we 

wanted it as a function of X  and Y . Drop the expression:

−
X ⋅B ⋅ A2 − X2 ⋅ A

A4 − X2 ⋅ A2

from the stack and let's start over. What we need is to replace COS t( )  

with 
X
A

, and SIN t( )  with 
Y
B

 in:

−
B ⋅COS t( )
A ⋅SIN t( )

without doing anything else. This is clearly a mission for pattern 
matching. With:

−
B ⋅COS t( )
A ⋅SIN t( )  on stack level 1, enter the list:

COS t( ) X
A

 
 
 

 
 
 

and press , to get:

−
B ⋅

X
A

A ⋅ SINt( )

and a 1.  Drop the 1. , enter:

SIN t( ) Y
A

 
 
 

 
 
 

and press  a second time, to get:
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−
B ⋅

X
A

A ⋅
Y
B

and a 1.  Drop the 1.  and expand to get:

−
X ⋅B2

Y ⋅ A2

the derivative as a function of X  and Y .

Obtaining the derivative as function of Y  alone is also easy. Drop the 
expression:

−
X ⋅B2

Y ⋅ A2

Now the expression:

−
B ⋅COS t( )
A ⋅SIN t( )

should be on stack level 1. Enter Y = B ⋅ SIN t( ) , the definition of Y  
as a function of the parameter t . Enter t , and press , to get the 
principal solution:

t = ASIN
Y
B

 
 

 
 

Press  again to get:

−
B ⋅COS ASIN

Y
B

 
 

 
 

 
 
  

 

A ⋅SIN ASIN
Y
B

 
 

 
 

 
 
  

 

Expand the expression to get:

−
B2 ⋅ B2 − Y2 ⋅ B

SQ B( )⋅ Y ⋅ A

This is not completely expanded, so press  again. You get:

−
B2 − Y2 ⋅ B

Y ⋅ A

This is the derivative as a function of Y  alone.

We see from the above that when we have a function y x( )  written in 
parametric form:

x = ϕ t( )
y = ψ t( )

it is easy to get the derivative 
∂y x( )

∂x
 as a function of the parameter t . 

We only need to calculate:

∂y t( )
∂t

∂x t( )
∂t
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The problem is how to convert it to a function of x , or of y , or of x  
and y . The conversion to a function of x  or of y  alone is 
systematically easier. We just solve the equation of the parametric 
definition of x  of or y  for the parameter t . Then we substitute the 
solution for t  in the expression:

∂y t( )
∂t

∂x t( )
∂t

The difficulties here arise from the fact that it will not always be 
possible to solve the parametric definition of x  or y  for the parameter 
t . But this is not a systematical difficulty. The procedure is clear and 
very easily to implement on a machine. On the other hand, turning

∂y t( )
∂t

∂x t( )
∂t

to a function of x  and y  by "seeing" what patterns are best available 
for matching, is for us humans an easy thing. But how can we do that 
systematically, so that we can show the poor HP49G what it should 
do? There is no general recipe for "seeing", like we do. For pattern 
recognition we, humans, are still unbeatable. We can recognise 
patterns by just taking a look at them. As Trabakoulas says, "…this is 
our strength. We can recognise a face instantly, without the need to 
calculate angles between the nose and the eyes, and distances from 
one ear to the other. We just see that. The HP49G can't see that. But 
that might be also our weakness. We sometimes "see" to much, 
without really taking care to derive truth of falseness of what we 
"see". In this category of phenomena belongs the old picture of 
automatically "knowing who the bad guys and who the good guys 
are". Just because we "saw" what kind of clothes they have, what 
they believe to be God, or what their opinions about this world are. 

No matter what we say about our progress in these things, the old devil 
of pattern recognition is in our minds since the first humans walked on 
this planet. This is the way biosystems work. If we had to calculate 
first, if the beautiful animal that comes running to us, is a lion, we 
would presumably not have any need for discussing about capabilities of  
CAS, simply because we would be eaten out, long before getting the 
idea to make a CAS. Of course it is not impossible that some of these 
lions would suddenly decide to not eat us, but the pattern recognition 
machine says that this is rather unlikely - almost impossible - and so it 
puts the 2 hypothetical lions that wouldn't eat us in the same category of 
lions that would eat us. It is a safe method, good for surviving. But 
think about the lost possibilities. A powerful friend, the vegetarian lion, 
is lost right from the start. If we are to make real progress in these 
things, if we want to face the world without prejudice and ad hoc 
categories, we have to diminish the importance of the pattern recognition 
unit in our brains. To control it with logic, when it is telling us 
something about a pattern. And we can do that only after accepting that 
the pattern recognition unit it still is there, it still works, it still produces 
patterns - the fundaments of our amazing capabilities, and also the 
fundament of our too fast categorising everything." Enough philosophy, 
let's continue our marathon.

Let's make a program for finding the derivative of a function in 
parametric form. The program should return the derivative as a function 
of the parameter, as a function of the independent variable, and as a 
function of the dependent variable. It should also try to give us the 
derivative as a function of the independent and the dependent variable. 
Of course the latter will be rather imperfect, but at least we can try to 
imitate our built-in pattern recognition unit on the HP49G. This naive 
imitation is based on the above example. The program finds the rational 
variables of the definitions of x  and y  as functions of the parameter. It 
picks the first rational variable in each definition, solves for this 
variable, and tries to replace this rational variable with the solution in the 
derivative. In the above example, the derivative as a function of the 
parameter is:
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−
B ⋅COS t( )
A ⋅SIN t( )

The definitions for x  and y  are: X = A ⋅ COS t( )  and Y = B ⋅ SIN t( ) . 
The rational variables that appear in the first definition are COS t( )  
and A . The program solves X = A ⋅ COS t( )  for COS t( )  and finds:

COS t( ) =
X
A

Then it matches COS t( )  to 
X
A

 in the derivative:

−
B ⋅COS t( )
A ⋅SIN t( )

and finds:

−
B ⋅

X
A

A ⋅ SINt( )

The same it does for the other definition, Y = B ⋅ SIN t( ) . (Very naive, 
I know, but perhaps somebody is going to find out how we do it, in 
our brains ;-)) Since the representation of a function in parametric 
form (for plotting) is X + i ⋅Y , we retain this syntax. The program 
will take four arguments from the stack. The parametric function, the 
X-variable, the Y-variable and the parameter. It will return the 
representations of the derivative, which we already examined. That is, 
it will return the derivative as a function of the parameter, as a 
function of the X-variable, as a function of the Y-variable and as a 
function of the X and the Y variable. All outputs will be labelled.

<<
→ paramFunc var1 var2 param
<<

PUSH {1. 2.} CF @Flags 1 and 2 are used
paramFunc RE
paramFunc IM
2. →LIST DUP param ∂ @Find der.
OBJ→ DROP SWAP /
EXPAND DUP
"der(" param + ")" + @Label der. as function of
→TAG @the parameter
OVER 4. PICK HEAD var1 @Try to solve x=ϕ (t) for t
= param
IFERR @If error during solving

SOLVE
THEN @then wrap der., x=ϕ (t) and t

3. →LIST "Error" @in a list and label it
→TAG @with "Error".

ELSE @Else (no error during SOLVE)
IF @If

DUP {} SAME @no solutions found
THEN @then

DROP @drop the empty list
"No sol. for " @Make label for no solution
var1 +

ELSE @Else (we have solutions)
SUBST @substitute them in deriv.
"der(" var1 + ")" @Make label
+

END
END
→TAG @Label result
PICK3 5. PICK 2. GET

 var2 = param @Try to solve y=ψ (t) for t
IFERR @If error during solving

SOLVE
THEN @then wrap der., x=ϕ (t) and t

3. →LIST "Error" @in a list and label it
→TAG @with "Error".

ELSE @Else (no error during SOLVE)
IF @If
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DUP {} SAME @no solutions found
THEN @then

DROP @drop the empty list
"No sol. for " @Make label for no solution
var2 +

ELSE @Else (we have solutions)
SUBST @substitute them in deriv.
"der(" var2 + ")" @Make label
+

END
END
→TAG
4. ROLL 5. ROLL @Here starts the naive code
OBJ→ DROP
→ derParm x y
<<

x LVAR @Find rational vars. of x
1. OVER SIZE HEAD
FOR I

IF
DUP I GET LNAME @Find all names in rat. var.
IF @Convert to list if

DUP {} ≠ @necessary
THEN

AXL
END
param POS @If param. in rat var.

THEN @then we use this rat. var.
9.99999999999E499
'I' STO @Store MAXR in I (to exit
1. SF @loop). Set flag 1.
NIP SWAP var1 = @Try to solve x=ϕ (t) for
SWAP @the 1st. rat. var. that
IFERR @contains the param.

SOLVE @In case of error
THEN @Return labelled list with

2. →LIST @x=ϕ (t) and t.
"Error" →TAG
2. SF @and set flag 2.

ELSE @else (no err. during SOLVE)
OBJ→ DROP @make list for matching

→LIST
derParm SWAP

↑ MATCH DROP
'derParm' STO

END
ELSE @Else (param. not in rat. 

DROP @var.) drop rat. var.
END

NEXT
IF @If we didn't find a rat. var.

1. FC?C @that contains the param.
THEN @then

DROP2 @drop 2 objects.
END
IF @If no error while solving

2. FC?C @x=ϕ (t) for rat. var.
THEN @then we try to solve also

y LVAR 1. OVER @y=ψ (t) for a rat. var. that
SIZE HEAD @contains the parameter.
FOR I @We do the same like for

IF @x=ϕ (t)
DUP I GET
LNAME
IF

DUP {} ≠
THEN

AXL
END
param POS

THEN
9.99999999999E499
'I' STO
1. SF NIP
SWAP var2 =
SWAP
IFERR

SOLVE
THEN

2. →LIST
2. →LIST
"Error" →TAG
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2. SF
ELSE

OBJ→ DROP
→LIST derParm

SWAP ↑ MATCH DROP
END

ELSE
DROP

END
NEXT
IF

1. FC?
THEN

DROP2
END
IF @If there was a rat. var.

1. FS? 2. FC? @that contained the param.
AND @and a solution was found

THEN @then expand and label
EXPAND "der("
var1 + "," var2 +
")" + →TAG

END
END

>>
POP

>>
>>

This is the program dPARMF  that comes with this document. The 
coloured code is the naive part of the program. (That's why it is in 
baby blue ;-)) If you don't want to have it, rip it off out of the 
program, (Poor baby, away from mama ;-)) Let's test the program 
and see what it does. Enter the parametric function of our example 
from above as: A ⋅ COS t( ) + i ⋅B ⋅SIN t( ) . Enter X  (the independent 
variable), then Y  (the dependent variable), and then t  (the parameter). 
Switch to real mode. That's important!!! If you are in complex more, 
and some of the variables A , B , X , Y  or t  is not assumed to be real, 
then the HP49G will consider it as a complex quantity and will not 

five the results that are described in the next paragraphs. Press 
 and wait some seconds. When the program finishes, you 

have the following results:

On stack level 4 the derivative of the parametric function, written as a 
function of the parameter t :

der t( ): −
B ⋅COS t( )
A ⋅SIN t( )

 
 
  

 
 .

On stack level 3 the derivative of the parametric function, written as a 
function of the independent variable X :

der X( ): −
B ⋅COS − 2 ⋅n1⋅π + ACOS

X
A

 
 

 
 

 
 
  

 
 
 
  

 
 

A ⋅ SIN − 2 ⋅n1⋅ π + ACOS
X
A

 
 

 
 

 
 
  

 
 
 
  

 
 

−
B ⋅COS 2⋅n1⋅π + ACOS

X
A

 
 

 
 

 
 
  

 

A ⋅SIN 2 ⋅n1⋅ π + ACOS
X

A
 
 

 
 

 
 
  

 

 

 
 

 
 

 

 
 

 
 

The program returns the general solution because the might be cases in 
which the principal solution is not what we want. Substituting n1= 0 , 
and expanding will give us the result:

−
X ⋅B ⋅ A2 − X2 ⋅ A

A4 − X2 ⋅ A2

that we had on page 2-79.

On stack level 2 the derivative of the parametric function, written as a 
function of the dependent variable Y :

der Y( ): −
B ⋅ COS − 2 ⋅ n1⋅π + ASIN

Y
B

 
 

 
 

 
 
  

 
 
 
  

 
 

A ⋅ SIN − 2 ⋅n1⋅ π + ASIN
Y
B

 
 

 
 

 
 
  

 
 
 
  

 
 

−
B ⋅COS 2 ⋅ n1⋅π + ASIN

Y
B

 
 

 
 

 
 
  

 

A ⋅SIN 2 ⋅n1⋅ π + ASIN
Y

B
 
 

 
 

 
 
  

 

 

 
 

 
 

 

 
 

 
 
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Again, the program returns the general solution because the might be 
cases in which we don't want the principal solution. Substituting with 
n1= 0 , and expanding will give us the result:

−
B2 − Y2 ⋅ B

Y ⋅ A

that we had on page 2-80.

On stack level 1 the derivative of the parametric function, written as a 
function of the independent variable X  and the dependent variable Y :

der X,Y( ): −
X ⋅B2

Y ⋅ A2

 
 
  

 

The naive part of the code, did its work OK in this case.

We try another example. The parametric representation of the 
epicycloid (on the HP49G) is A ⋅ t − SIN t( )( ) + i ⋅ A ⋅ 1− COS t( )( ) . 
enter this expression, and then X , Y , and t . (Again, make sure you 
are in real mode). Press  and wait. After some seconds you 
get:

der t( ): −
SIN t( )

A ⋅COS t( ) − A

 
 
  

 
 

Error: −
SIN t( )

A ⋅ COS t( ) − A
A ⋅ t − SIN t( )( ) = X t

 
 
 

 
 
 

der Y( ):
−

SIN − 2 ⋅n1+1( ) ⋅π − ACOS Y −1( )( )( )
A ⋅ COS − 2 ⋅n1+1( )⋅ π − ACOS Y − 1( )( )( ) − A

−
SIN 2 ⋅ n1+1( ) ⋅ π − ACOS Y −1( )( )

A ⋅ COS 2 ⋅n1+1( )⋅ π − ACOS Y −1( )( ) − A

 

 
  

 
 
 

 

 
  

 
 
 

der X,Y( ): t ⋅ A − X
Y ⋅A2

The result labelled with Error  on stack level 3 shows that the HP49G 
couldn't solve A ⋅ t − SIN t( )( ) = X  for t , and so it couldn't substitute 

t = someFunctionOf X( )  in:

−
SIN t( )

A ⋅ COS t( ) − A

(But who can solve A ⋅ t − SIN t( )( ) = X  for t  analytically?)

The result on stack level 1 shows that the naive code already had 
problems. It couldn't convert the derivative to a function that depends on 
X  and Y , but not on t . Oh well, we are just at the beginning of 
programming automatic pattern recognition and artificial intelligence. 
Except of course if somebody connects a brain directly to the HP49G. 
Then two things may happen:

1) The HP49G will be glad to have artificial intelligence. This is the 
case for most people out there.

2) The human will start beeping. (This is the case for Nick ;-))

Perhaps you already noticed that the program dF1F2  of the first part of 
this marathon is a relative of the program dPARMF . The program 
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dF1F2  finds derivatives of the form 
∂f x( )
∂g x( ) . It uses the 

following technique to do its work.

First it sets g x( ) = ttemp , introducing ttemp  as a new 
variable. Then it (tries to) solve g x( ) = ttemp  for x  
creating the solution x = someFunctionOf ttemp( ) . (The 
function someFunctionOf ttemp( )  is the returned 
solution x =… .) Then it substitutes g x( ) = ttemp  and 

x = someFunctionOf ttemp( )  in 
∂f x( )
∂g x( ) , creating:

∂someFunctionOf ttemp( )
∂ttemp

This derivative is evaluated returning the function 
firstDerivativeOfsomeFunctionOf ttemp( ) . Then ttemp = g x( )  is 
substituted in this function, creating 
firstDerivativeOfsomeFunctionOf g x( )( ) , which is returned by 
dF1F2 . The relation of the two programs is best seen in a table on the 
top right. For dF1F2  that means that we can also use the same 
mechanism as in dPARMF . We only have to do some re-
constructing in order to create the parametric definition. For example, 
let's reconsider the derivative:

∂SIN X( )
∂COS X( )

that we had to do with on page 1-24. If we consider X  as a 
parameter, then we can write:

y = SINX( )
x = COS X( )

(The variables x  and X  are not the same.) To find the derivative:

∂SIN X( )
∂COS X( )

we simply have to find:

∂SIN X( )
∂X

∂COS X( )
∂X

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-86

Explanations Consider the definitions as 
y = ψ x( )

ttemp = ϕ x( ) , rename ttemp  to x , 

and x  to t , and you have the same 
situation as for dPARMF.

Consider the definitions as 
ψ t( ) = y

ϕ t( ) = x
, rename t  to x , and 

x  to ttemp , and you have the 

same situation as for dF1F2.

f x( )
g x( ) = ttemp

 
 
 

⇒

f x( )
x = someFunctionOf ttemp( )

 
 
 

⇒

f x( ) = f someFunctionOf ttemp( )( )

y = ψ t( )
x = ϕ t( )

 
 
 

⇒ y x( ) = y ϕ t( )( )
Definition of 
the function 
that is 
differentiated

        Program

Properties

dF1F2dPARMF



Ha! That means that dF1F2  can be rewritten simpler and shorter.

<<
→ y x param
<<

y param ∂  x param ∂
/ EXPAND

>>
>>

The program in its new version requires an additional argument, 
namely the name for the parameter on which y  and x  depend. 
Generally speaking it is a good policy to make programs that must 
have the name for which we do something (in our case 
differentiation). We could have to find:

∂SINX ⋅ A( )⋅ eZ

∂A ⋅ Z ⋅COS X( )

or any other derivative in which more than one variables are involved, 
and so we must know what to consider as the parameter for which we 
differentiate. Before we store the new program in dF1F2 , we test the 
old version of dF1F2 . Let's use the above example. Enter 
SIN X ⋅A( )⋅ eZ , then A ⋅ Z ⋅ COS X( ) , and press . The 
program returns:

X ⋅ ez ⋅ COS X ⋅ A( )
Z ⋅ COS X( )

which is correct… only if the variable A  was meant as the parameter. 
The program in its old version automatically assumes the first name in 
the vector of names to be the parameter. Type in the small program on 
the top of this column and store it in dF1F2 . Enter SIN X ⋅A( )⋅ eZ , 
A ⋅ Z ⋅ COS X( )  and X . Press  to get:

−
ez ⋅ COS X ⋅A( )

Z ⋅SIN X( )

the correct result if we consider X  as the parameter. The result that the 
old version returned, considering A  as the parameter, can be obtained 
by the new version, if you enter SIN X ⋅A( )⋅ eZ , A ⋅ Z ⋅ COS X( )  and A , 
and press . The program dPARMF  does the work of dF1F2  
but it also does additional work, trying to convert the derivative to 
expressions that depend on the variables instead on the parameter. We 
can use it to find:

∂SINX ⋅ A( )⋅ eZ

∂A ⋅ Z ⋅COS X( )

We enter A ⋅ Z ⋅ COS X( ) + i ⋅SIN X ⋅ A( ) ⋅eZ , x , y , X , and press 
. Notice that in this example the variables are the small letters 

x  and y , and the parameter is the capital letter X . The program returns 
the result:

der X( ): −
ez ⋅COS X ⋅ A( )

Z ⋅ SINX( )
 
 
  

 
 

on stack level 4, and the other results on stack levels 3 to 1.

Before we proceed we notice that the differentiation commands work 
also with lists. The following picture on the next page demonstrates how 
these commands behave when one or both arguments are lists.
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Now that we have examined derivatives of parametric functions, we 
can proceed to derivatives of functions in polar form. A function in 
polar form is given as r ϕ( ) , which denotes the dependence of the 
radius r  on the angle ϕ . For the coordinates x  and y  we have:

y = r ϕ( ) ⋅sin ϕ( )
x = r ϕ( ) ⋅ cos ϕ( )

According to our 
previous considerations 
this means that we can 
consider this as a 
function in parametric 
form with the parameter ϕ , and thus:

∂y
∂x

=

∂y
∂ϕ
∂x
∂ϕ

=

∂r ϕ( )⋅ sin ϕ( )
∂ϕ

∂r ϕ( )⋅ cos ϕ( )
∂ϕ

=

∂r ϕ( )
∂ϕ

⋅sin ϕ( ) + r ϕ( )⋅ cos ϕ( )
∂r ϕ( )

∂ϕ
⋅cos ϕ( ) − r ϕ( ) ⋅sin ϕ( )

Let's consider as example the logarithmic spiral r = a ⋅ek⋅ϕ . Its 

derivative 
∂r
∂ϕ

 of the polar coordinates written in terms of polar 

coordinates is given by:

∂r
∂ϕ

=
∂a ⋅ek⋅ϕ

∂ϕ
= a ⋅ k ⋅ek⋅ϕ

Its derivative 
∂y
∂x

 of the cartesian coordinates written in terms of 

polar coordinates is given by:

∂y
∂x

=

∂r
∂ϕ

⋅ sin ϕ( ) + r ϕ( )⋅ cos ϕ( )
∂r
∂ϕ

⋅ cos ϕ( ) − r ϕ( )⋅ sin ϕ( )
=

a ⋅k ⋅ek⋅ϕ ⋅ sin ϕ( ) + a ⋅ek⋅ϕ ⋅ cos ϕ( )
a ⋅k ⋅ek⋅ϕ ⋅ cos ϕ( ) − a ⋅ek⋅ϕ ⋅ sin ϕ( )

=

k ⋅ sin ϕ( ) + cos ϕ( )
k ⋅ cos ϕ( ) − sin ϕ( )

To obtain the derivative 
∂r
∂ϕ

 we only have to differentiate r  for ϕ  using 

one of the many possible methods of the HP49G. That means we can 
enter r ϕ( ) , then ϕ , and then use ∂  or DERIV , and so on. To obtain the 

derivative 
∂y
∂x

, we can use one of the programs dF1F2  or dPARMF , 

after transforming r ϕ( )  to its parametric form. And this is easily done. 
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f x( ) g x( ) …{ }
x

∂  or DERIV ∂f x( )
∂x

∂g x( )
∂x

…
 
 
 

 
 
 

x y …{ }
f x,y,…( ) ∂  or DERIV ∂f x,y,…( )

∂x
∂f x,y,…( )

∂y
…

 
 
 

 
 
 

f x( ) g y( ) …{ }
x y …{ }

∂  or DERIV ∂f x( )
∂x

∂g y( )
∂y

…
 
 
 

 
 
 

ϕ

r ϕ( )

x = r ϕ( ) ⋅ cos ϕ( )

y = r ϕ( ) ⋅ sin ϕ( )



Let's see what we have to do to use dF1F2  for finding 
∂y
∂x

 of the 

logarithmic spiral. Enter a ⋅ek⋅ϕ ⋅ SIN ∅( ) , then a ⋅ek⋅ϕ ⋅ COS ∅( ) . For 
the character ∅ , enter a capital O , press  if you aren't already 
in alpha mode, then  and  to change the capital O  to ∅ , the 
character that resembles ϕ  most in the HP49G character table. Enter 
∅  (the parameter) and press . The result is:

−
k ⋅sin ϕ( ) + cos ϕ( )
sin ϕ( ) −k ⋅cos ϕ( )

We can make a small program that takes a function in its polar form 
r ϕ( ) , creates the algebraic objects a ⋅ek⋅ϕ ⋅ SIN ∅( )  and 

a ⋅ek⋅ϕ ⋅ COS ∅( ) , and then uses dF1F2  to find the derivative 
∂y
∂x

.

<<
→ polarF ∅ @To get ∅, enter a small o and then
<< @press [ALPHA] if not already in

polarF ∅ SIN * @alpha more, then [red shift], [9]
polarF ∅ COS *
∅
dF1F2

>>
>>

This is the program dYXr ∅. Let's try it with a function in polar form. 
We use the function r = COS ∅( )2 + 3 ⋅COS ∅( ) −1. Enter 

COS ∅( )2 + 3 ⋅COS ∅( ) −1, then ∅ , and press  to get:

2⋅ COS ∅( ) + 3( ) ⋅SIN ∅( )2 − COS ∅( )3 + 3 ⋅COS ∅( )2 − COS ∅( )( )
3 ⋅COS ∅( )2 + 6 ⋅COS ∅( ) −1( ) ⋅SIN ∅( )

How does r = COS ∅( )2 + 3 ⋅COS ∅( ) −1 look, anyway? For plotting 
such polar functions the HP49G has the built-in plot type polar. Let's do 
a polar plot. Go to the PLOT SETUP  screen and select Polar  plot 

type. Enter COS ∅( )2 + 3 ⋅COS ∅( ) −1 in the input field EQ:. Enter ∅  
in the input field Indep: . Go to the 
PLOT WINDOW − POLAR  
screen and enter horizontal view from 
−3  to 5  and vertical view from −2  to 
2 . Press  and then  to 
plot the polar function. Let's see how 
the data stored in the system reserved 
variable PPAR  are used when the 
plot type is polar.

PPAR  is a list with 7 items, which the plotting commands use for 
drawing according to the settings of the user. The list has the form:

xmin,ymin( ) xmax,ymax( ) indep res axes ptype depend{ }
For the plot type POLAR  these elements have the following meaning:

xmin,ymin( ) A complex number which specifies the lower left 
corner of the display range. Default value is 
−6.5, −3.1( ) . The programmable command for 

setting this parameter is PMIN . This command takes 
a complex number from the stack and puts it in the 
first position of PPAR .

xmax,ymax( ) As you might have imagine, a complex number 
which specifies the upper right corner of the display 
range. Default value is 6.5,3.2( ) . The programmable 
command for setting this parameter is PMAX . This 
command takes a complex number from the stack and 
puts it in the second position of PPAR .
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There are two additional commands for setting up 
the display range. The first is XRNG . It takes two 
real numbers from the stack (the minimum and 
maximum of the view range of the X-axis) and sets 
up the parameters   of   and   of  . The other is 
YRNG  and as you can think it does the same for 
the Y-axis.

indep This element can be either a name specifying the 
independent variable of the expression that we 
want to plot. Or it can be a list which contains the 
name of the independent variable and the minimum 
and maximum of the plotting range. This allows to 
have different values for the viewing and plotting 
range. Default for this parameter is X . There are 
two programmable commands that can be used for 
setting this parameter. We have the command 
INDEP , which can take as arguments:

• 1) The name of the independent variable. If a 
name is given to INDEP  then this name 
replaces the third element of PPAR , that is if 
you already have specified a plotting range, 
then this will be lost and the viewing range 
from the parameters xmin,ymin( )  and 
xmax,ymax( )  will be used.

• 2) A list which contains the name of the 
independent variable. In this case the 
independent variable is replaced but an 
existing plotting range will not be touched.

• 3) A list with the name of the independent 
variable, a real number that specifies the 
minimum of the plotting range and a real 
number that specifies the maximum of the 
plotting range.

• 4) A list with two numbers specifying the 
minimum and maximum of the plotting range. 
The independent variable remains untouched.

• 5) Two real numbers that specify the minimum and 
the maximum of the plotting range. The 
independent variable remains untouched.

res A real number that specifies the interval in user 
coordinates between the values of the independent 
variable. The default value is 0  and specifies an 

interval of 2 degrees, 2 grads or 
π
90

 radians. The 

command that sets this parameter is RES .

axes This element is either a complex number specifying 
the coordinates of intersection of the axes. Or a list 
that has one or more of the following elements in 
order. A complex number specifying the coordinates 
of intersection of the axes, a list that specifies the tick 
marks of the axes and two strings that are used as 
labels for the X- and the Y-axes. Commands for this 
parameter are: AXES , which takes as arguments a 
complex number representing the coordinates of axes 
intersection, or a list that has the parameters listed 
above. ATICK , which sets up the distance between 
tick marks on the axes. This command takes as 
arguments either a real number that specifies the 
distance between tick marks in user units for both 
axes, or a list with two real numbers that specify this 
distance separately for the X- and Y-axis, or a binary 
integer that specifies the distance between tick marks 
in pixels for both axes, or a list with two binary 
integers that specify this distance separately for the 
X- and Y-axis.

ptype One of the plot types available on the HP49G out of 
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the box. These are: BAR , CONIC , DIFFEQ , 
FUNCTION , GRIDMAP , HISTOGRAM, 
PARAMETRIC , PARSURFACE , 
PCONTOUR , POLAR , SCATTER , 
SLOPEFIELD , TRUTH , WIREFRAME , 
YSLICE and FAST − 3D. The commands for 
setting the appropriate plot type are the same like 
the parameters above, that is, if you want to set up 
the plot type polar from a program, you just enter 
the command POLAR.

depend A name that specifies the dependent variable. 
Default for this parameter is Y . The command for 
setting the dependent variable is DEPND  and its 
arguments have the same forms as the arguments 
for INDEP . Note that a plot range for the 
independent variable is only used for the plot type 
TRUTH  but is ignored otherwise.

We examined a lot of things about the capabilities of the HP49G when 
it comes to derivatives, but we still didn't answer a simple question. 
The HP49G has a huge amount of built-in functions. Which of them 
can it differentiate out of the box? As we have seen, there are at least 
two built-in functions that it doesn't know how to differentiate, 
namely GAMMA  and !. For most of the built-in functions the 
HP49G provides a derivative. So most of the time you will just use 
DERIV  or DERVX  or ∂  in any possible syntax and the HP49G will 
find the derivative. But for some functions you will have to define the 
derivative the way we did for GAMMA , because the HP49G doesn't 
provide a built-in derivative for them. There are also some built-in 
functions which show an unusual behaviour. Enter X , Y  and press 

. The HP49G returns:

X ⋅
Y

100

which of course can be differentiated for X  or Y  using one of the 
differentiation commands. For example enter X  and press  to get:

Y
100

But if you enter the algebraic object % X,Y( ) , then X ,  and use ∂  or 
DERIV , then the result is d1% X,Y( ) , though the HP49G knows how 
to differentiate the function %  because it knows its simple definition:

X ⋅
Y

100

If you enter the algebraic object:

∂
∂X

% X,Y( )( )  and expand or evaluate, then the result will be again 

d1% X,Y( ) . We would expect that expanding or evaluating 

DERIV % X,Y( ),X( )  also returns d1% X,Y( ) , wouldn't we? But no, 
this time the HP49G returns the result:

Y
100

And so we have yet another unexpected and puzzling behaviour. 
Sometimes the one way, some times the other way. Let's say that this 
machine has "character" ;-) The functions for which the HP49G doesn't 
provide a derivative, or for which it behaves the above ambiguous way 
are summarised on the tables from the next page up to page 2-106. 
Those functions are only functions in the HP49G sense, that means that 
they are allowed in algebraics and thus we can formally construct a 
derivative of them. The red cells contain the cases where the derivative 
can't be found. The green cells contain the cases where the analytic 
derivative is returned. The first column contains the functions. If a cell 
that contains the function is red, that means that you have to make a user 
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Enter 

DERIV %T X,Y( ),X( )  

and EVAL to get 

100 ⋅
−Y

SQ X( ) , or 

EXPAND to get −
100 ⋅Y

X2

Enter 
∂

∂X
%T X,Y( )( )  

and EXPAND or EVAL to 
get d1%T X,Y( ) .

Enter %T X,Y( ) , 

then X , and use 
DERIV to get 
d1%T X,Y( ) .

Enter %T X,Y( ) , then 

X , and use ∂  to get 
d1%T X,Y( ) .

X , Y , then %T  

returns 
Y
X

⋅100 . 

Enter X  and use 
DERIV to get 

100 ⋅
−Y

SQ X( ) .

X , Y , then %T  

returns 
Y
X

⋅100 . 

Enter X  and use 
∂  to get 

100 ⋅
−Y

SQ X( ) .

%T

Enter 

DERIV %CH X,Y( ),X( )  

and EVAL to get 

100 ⋅
−Y

SQ X( ) , or 

EXPAND to get −
100 ⋅Y

X2 .

Enter 
∂

∂X
%CH X,Y( )( )  and 

EXPAND or EVAL to get 
d1%CH X,Y( ) .

Enter %CH X,Y( ) , 

then X , and use 
DERIV to get 
d1%CH X,Y( ) .

Enter %CH X,Y( ) , 

then X , and use ∂  to 
get d1%CH X,Y( ) .

X , Y , then 
%CH  returns 

Y
X

−1
 
 

 
 ⋅100 . 

Enter X  and use 
DERIV to get 

100 ⋅
−Y

SQ X( ) .

X , Y , then 
%CH  returns 

Y
X

−1
 
 

 
 ⋅100 . 

Enter X  and use 
∂  to get 

100 ⋅
−Y

SQ X( ) .

%CH

Enter 

DERIV % X,Y( ),X( )  

and EXPAND or EVAL to 

get 
Y

100
.

Enter 
∂

∂X
% X,Y( )( )  

and EXPAND or EVAL to 
get d1% X,Y( ) .

Enter % X,Y( ) , then 

X , and use DERIV to 
get d1% X,Y( ) .

Enter % X,Y( ) , then 

X , and use ∂  to get 
d1% X,Y( ) .

X , Y , then %  

returns X ⋅
Y

100
. 

Enter X  and use 

DERIV to get 
Y

100
.

X , Y , then %  

returns X ⋅
Y

100
. 

Enter X  and use 

∂  to get 
Y

100
.

%

Enter DERIV X!,X( )  

and EXPAND or EVAL to 
get d1! X( ) .

Enter 
∂

∂X
X!( )  and 

EXPAND or EVAL to get 
d1! X( ) .

Enter X!, then X , 
and use DERIV to get 
d1! X( ) .

Enter X!, then X , and 
use ∂  to get d1! X( ) .

X  and then ! 
returns X!. Enter 
X  and use DERIV 
to get d1! X( ) .

X  and then !
returns X!. Enter 
X  and use ∂  to 
get d1! X( ) .

!

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 
DERIV X AND Y,X( )  

and EXPAND or EVAL to 
get d1AND X,Y( ) .

Enter 
∂

∂X
X AND Y( )  

and EXPAND or EVAL to 
get d1AND X,Y( ) .

Enter X AND Y , 

then X , and use 
DERIV to get 
d1AND X,Y( ) .

Enter X AND Y , 

then X , and use ∂  to 
get d1AND X,Y( ) .

X , Y , and then 
AND  returns 
X AND Y . 

Enter X  and use 
DERIV to get 
d1AND X,Y( ) .

X , Y , and then 
AND  returns 
X AND Y . 

Enter X  and use 
∂  to get 
d1AND X,Y( ) .

AND

Enter 
DERIV APPLY F,X,Y( ),X( ) 
from the command line to 
get 
Invalid Expression. 

EXPAND or EVAL to get 
d1F X,Y( ) .

Enter 

∂X APPLY F,X,Y( )( )  

from the command line 
to get 
∂X Invalid Expression( ) . 

EXPAND or EVAL to get 
d1APPLY F, X Y{ }( ) .

Enter 
APPLY F,X,Y( )  

from the command 
line to get 
Invalid Expression. 
Enter X , and use 
DERIV to get 
d1F X,Y( ) .

Enter 
APPLY F,X,Y( )  

from the command line 
to get 
Invalid Expression. 
Enter X , and use ∂  to 
get d1F X,Y( ) .

X Y{ } , Y , then 

APPLY  returns 
F X,Y( ) . Enter X  

and use DERIV to 
get d1F X,Y( ) .

X Y{ } , Y , 

then APPLY  
returns F X,Y( ) . 

Enter X  and use 
∂  to get 
d1F X,Y( ) .

APPLY

Enter 
DERIV X > Y,X( )  and 

EVAL or EXPAND to get 
d1> X,Y( ) .

Enter 
∂

∂X
X > Y( )  and 

EXPAND or EVAL to get 
d1> X,Y( ) .

Enter X > Y , then 
X , and use DERIV to 
get d1> X,Y( ) .

Enter X > Y , then X , 
and use ∂  to get 
d1> X,Y( ) .

X , Y , and then >  
returns X > Y . 
Enter X  and use 
DERIV to get 
d1> X,Y( ) .

X , Y , and then 
>  returns 
X > Y . Enter X  
and use ∂  to get 
d1> X,Y( ) .

>

Enter 
DERIV X == Y,X( )  and 

EXPAND or EVAL to get 
d1== X,Y( ) .

Enter 
∂

∂X
X == Y( )  

and EXPAND or EVAL to 
get d1== X,Y( ) .

Enter X == Y , then 
X , and use DERIV to 
get d1== X,Y( ) .

Enter X == Y , then 
X , and use ∂  to get 
d1== X,Y( ) .

X , Y , and then 
==  returns 
X == Y . Enter X  
and use DERIV to 
get d1== X,Y( ) .

X , Y , and then 
==  returns 
X == Y . Enter 
X  and use ∂  to 
get d1== X,Y( ) .

==

Enter 
DERIV X < Y,X( )  and 

EXPAND or EVAL to get 
d1< X,Y( ) .

Enter 
∂

∂X
X < Y( )  and 

EXPAND or EVAL to get 
d1< X,Y( ) .

Enter X < Y , then 
X , and use DERIV to 
get d1< X,Y( ) .

Enter X < Y , then X , 
and use ∂  to get 
d1< X,Y( ) .

X , Y , and then <  
returns X < Y . 
Enter X  and use 
DERIV to get 
d1< X,Y( ) .

X , Y , and then 
<  returns 
X < Y . Enter X  
and use ∂  to get 
d1< X,Y( ) .

<

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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In real mode enter 
DERIV CONJ X + Y ⋅ i( ),X( ), 
and use EXPAND or EVAL 
to get 1.
In complex mode enter 

DERIV CONJ Z( ),Z( ) , 

and use EVAL or EXPAND 
to get d1CONJ Z( ) .

In real mode enter 
∂

∂X
CONJ X + Y ⋅i( )( ) , 

and use EXPAND or 
EVAL to get 
d1CONJ X + i ⋅ Y( ) .

In complex mode enter 
∂

∂X
CONJ Z( )( ) , and 

use EVAL or EXPAND to 
get d1CONJ Z( ) .

In real mode enter 
CONJ X + Y ⋅ i( ) , 

then X , and use 
DERIV to get 
d1CONJ X + i ⋅ Y( ) .

In complex mode 
enter CONJ Z( ) , 

and use ∂  to get 
d1CONJ Z( ) .

In real mode enter 
CONJ X + Y ⋅ i( ) , 

then X  and use ∂  to 
get 
d1CONJ X + i ⋅ Y( ) .

In complex mode enter 
CONJ Z( ) , and use ∂  

to get d1CONJ Z( ) .

In real mode enter 
X + Y ⋅ i, then 
CONJ  to get 
X +−Y ⋅ i . Enter 
X  and use 
DERIV  to get 1.
In complex mode 
enter Z , then 
CONJ  to get 
CONJ Z( ) . Enter 

Z  and use DERIV 
to get 
d1CONJ Z( ) .

In real mode 
enter X + Y ⋅ i, 
then CONJ  to 
get X +−Y ⋅ i . 
Enter X  and use 
∂  to get 1.
In complex mode 
enter Z , then 
CONJ  to get 
CONJ Z( ) . Enter 

Z  and use ∂  to 
get d1CONJ Z( ) .

CONJ

Enter 
DERIV COMB X,Y( ),X( )  

and EXPAND to get 

−

X!⋅d1! X − Y( ) −

X − Y( )! ⋅d1! X( )

 

 
 

 

 
 

Y!⋅ X − Y( )!2  

or EVAL to get 

X − Y( )!⋅Y! ⋅d1! X( ) −

X!⋅d1! X − Y( )⋅ Y!

 

 
 

 

 
 

SQ X − Y( )!⋅Y!( ) .

Enter 
∂

∂X
COMB X,Y( )( )  

and EXPAND or EVAL to 
get d1COMB X,Y( ) .

Enter COMB X,Y( ) , 

then X , and use 
DERIV to get 
d1COMB X,Y( ) .

Enter COMB X,Y( ) , 

then X , and use ∂  to 
get d1COMB X,Y( ) .

X , Y , and then 
COMB  returns 

X!
X − Y( )! ⋅Y!

. 

Enter X  and use 
DERIV to get 

X − Y( )! ⋅Y!⋅d1! X( ) −

X!⋅d1! X − Y( ) ⋅Y!

 

 
 

 

 
 

SQ X − Y( )! ⋅Y!( )
.

X , Y , and then 
COMB  returns 

X!
X − Y( )! ⋅Y!

. 

Enter X  and use 
∂  to get 

X − Y( )! ⋅Y!⋅d1! X( ) −

X!⋅d1! X − Y( ) ⋅Y!

 

 
 

 

 
 

SQ X − Y( )! ⋅Y!( ) .

COMB

Enter 

DERIV CEIL X( ),X( )  

and EXPAND or EVAL to 
get d1CEIL X( ) .

Enter 
∂

∂X
CEIL X( )( )  

and EXPAND or EVAL to 
get d1CEIL X( ) .

Enter CEIL X( ) , 

then X , and use 
DERIV to get 
d1CEIL X( ) .

Enter CEIL X( ) , then 

X , and use ∂  to get 
d1CEIL X( ) .

X  then CEIL  
returns CEIL X( ) . 

Enter X  and use 
DERIV to get 
d1CEIL X( ) .

X  then CEIL  
returns 
CEIL X( ) . Enter 

X  and use ∂  to 
get d1CEIL X( ) .

CEIL

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 

DERIV D → R X( ),X( )  

and EXPAND or EVAL to 
get d1D → R X( ) .

Enter 
∂

∂X
D → R X( )( )  

and EXPAND or EVAL to 
get d1D → R X( ) .

Enter D → R X( ) , 

then X , and use 
DERIV to get 
d1D → R X( ) .

Enter D → R X( ) , 

then X , and use ∂  to 
get d1D → R X( ) .

X , and then 
D → R  returns 
D → R X( ) . Enter X
and use DERIV to 
get d1D → R X( ) .

X , and then 
D → R  returns 
D → R X( ) . Enter 

X  and use ∂  to 
get d1D→ R X( ) .

D → R

Enter 

DERIV DROITE X,Y( ),(
and EXPAND or EVAL. The 
HP49G errors out with 
"Bad Argument Type"

Enter 
∂

∂X
DROITE X,Y( )( )  

and EXPAND or EVAL to 
get d1DROITE X,Y( ) .

Enter DROITE X,Y( ) , 
then X , and use 
DERIV to get 
d1DROITE X,Y( ) .

Enter DROITE X,Y( ) , 

then X , and use ∂  to 
get d1DROITE X,Y( ) .

DROITE  works 
only with 
arguments 
evaluable to reals 
or complex.

DROITE  works 
only with 
arguments 
evaluable to reals 
or complex.

DROITE

From the EQW enter 
DERIV DEF F X( ) = X

2 − X( ),X( ) 
and then EVAL or EXPAND 
to get 
2 ⋅ X −1= 2 ⋅ X −1. This 
also creates the user 
defined function.

From the EQW enter 
∂

∂X
DEF F X( ) = X2 − X( )( )  

and then EVAL to get 
2 ⋅ X −1= 2 ⋅ X −1. If 
you use EXPAND, you 
get 0 . Both EVAL and 
EXPAND also create the 
user defined function.

From the EQW enter 

DEF F X( ) = X2 − X(
and then enter X  and 
use DERIV to get 
2 ⋅ X −1= 2 ⋅ X −1. 
This also creates the 
user defined function.

From the EQW enter 

DEF F X( ) = X2 − X( )  

and then enter X  and 
use ∂  to get 
2 ⋅ X −1= 2 ⋅ X −1. 
This also creates the 
user defined function.

Enter 

F X( ) = X2 − X  

and then DEF . 
Enter F X( ) , then 

X  and use DERIV 
to get 2 ⋅ X −1.

Enter 

F X( ) = X2 − X  

and then DEF . 
Enter F X( ) , then 

X  and use ∂  to 
get 2 ⋅ X −1.

DEF

Enter 
DERIV DARCY X,Y( ),X( ) 
and EXPAND or EVAL to 
get d1DARCY X,Y( ) .

Enter 
∂

∂X
DARCY X,Y( )( )  

and EXPAND or EVAL to 
get d1DARCY X,Y( ) .

Enter 
DARCY X,Y( ) , 

then X , and use 
DERIV to get 
d1DARCY X,Y( ) .

Enter DARCY X,Y( ) , 

then X , and use ∂  to 
get d1DARCY X,Y( ) .

X , Y , and then 
DARCY  returns 
DARCY X,Y( ) . 

Enter X  and use 
DERIV to get 
d1DARCY X,Y( ) .

X , Y , and then 
DARCY  returns 
DARCY X,Y( ) . 

Enter X  and use 
∂  to get 
d1DARCY X,Y( ) .

DARCY

Enter 
DERIV CYCLOTOMIC 3( ),X( )  
and EXPAND or EVAL to 
get 2 ⋅ X + 1.

Enter 
∂

∂X
CYCLOTOMIC 3( )( ) 

and EXPAND or EVAL to 
get 0 .

Enter 
CYCLOTOMIC 3( ) , 

then X , and use 
DERIV to get 2 ⋅ X + 1.

Enter 
CYCLOTOMIC 3( ) , 

then X , and use ∂  to 
get 2 ⋅ X + 1.

3  then 
CYCLOTOMIC  
returns 

X2 + X +1. Enter 
X  and use DERIV 
to get 2 ⋅ X + 1.

3  then 
CYCLOTOMIC
returns 

X2 + X +1. 
Enter X  and use 
∂  to get 2 ⋅ X + 1.

CYCLOTOMIC

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 

DERIV FLOOR X( ),X( )
and EXPAND or EVAL to 
get d1FLOOR X( ) .

Enter 
∂

∂X
FLOOR X( )( )  and 

EXPAND or EVAL to get 
d1FLOOR X( ) .

Enter FLOOR X( ) , 

then X , and use 
DERIV to get 
d1FLOOR X( ) .

Enter FLOOR X( ) , 

then X , and use ∂  to 
get d1FLOOR X( ) .

X  then FLOOR  
returns 
FLOOR X( ) . 

Enter X  and use 
DERIV to get 
d1FLOOR X( ) .

X  then FLOOR  
returns 
FLOOR X( ) . 

Enter X  and use 
∂  to get 
d1FLOOR X( ) .

FLOOR

Enter 
DERIV FANNING X,Y( ),X( )  

and then EVAL or EXPAND 
to get d1FANNING X,Y( ) .

Enter 
∂

∂X
FANNING X,Y( )( )

and then EVAL or 
EXPAND to get 
d1FANNING X,Y( ) .

Enter FANNING X,Y( ), 
then X , and use 
DERIV to get 
d1FANNING X,Y( ) .

Enter FANNING X,Y( ), 
then X , and use ∂  to 
get d1FANNING X,Y( ) .

X , Y  then 
FANNING  
returns 
FANNING X,Y( ). 
Enter X  and use 
DERIV to get 
d1FANNING X,Y( ) .

X , Y  then 
FANNING  
returns 
FANNING X,Y( ). 
Enter X  and use 
∂  to get 
d1FANNING X,Y( ) .

FANNING

Enter 

DERIV FACT X( ),X( )  

and then EVAL or EXPAND 
to get d1! X( ) .

Enter 
∂

∂X
FACT X( )( )  

and then EVAL to get 
d1FACT X,Y( ) . 

EXPAND returns 
d1! X( ) .

Enter FACT X( ) , 

then X , and use 
DERIV to get 
d1FACT X( ) .

Enter FACT X( ) , then 

X , and use ∂  to get 
d1FACT X( ) .

X  then FACT  
returns X!. Enter 
X  and use DERIV 
to get d1! X( ) .

X  then FACT  
returns X!. Enter 
X  and use ∂  to 
get d1! X( ) .

FACT

Enter 

DERIV F0λ X,Y( ),X( )  

and then EVAL or EXPAND 
to get d1F0λ X,Y( ) .

Enter 
∂

∂X
F0λ X,Y( )( )  

and then EVAL or 
EXPAND to get 
d1F0λ X,Y( ) .

Enter F0λ X,Y( ) , 

then X , and use 
DERIV to get 
d1F0λ X,Y( ) .

Enter F0λ X,Y( ) , 

then X , and use ∂  to 
get d1F0λ X,Y( ) .

X , Y  then F0λ  
returns 
F0λ X,Y( ) . Enter 

X  and use DERIV 
to get 
d1F0λ X,Y( ) .

X , Y  then F0λ  
returns 
F0λ X,Y( ) . 

Enter X  and use 
∂  to get 
d1F0λ X,Y( ) .

F0λ

Enter 
DERIV EULER X( ),X( ) and 

then EVAL or EXPAND. 
The HP49G errors out 
"Bad Argument Type"

Enter 
∂

∂X
EULER X( )( )  and 

then EVAL or EXPAND 
to get d1EULER X( ) .

Enter EULER X( ) , 

then X , and use 
DERIV to get 
d1EULER X( ) .

Enter EULER X( ) , 

then X , and use ∂  to 
get d1EULER X( ) .

EULER  works 
only with integer 
arguments.

EULER  works 
only with integer 
arguments.

EULER

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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X , then FP  
returns FP X( ) . 

Enter X  and use 
∂  to get 
d1FP X( ) .

FP

Enter 
DERIV HERMITE 3( ),X( ), 
and use EVAL to get 

8 ⋅ 3 ⋅ X2 −12 . EXPAND 

returns 24 ⋅ X2 −12 .

Enter 
∂

∂X
HERMITE 3( )( ) , 

and use EVAL or 
EXPAND to get 0 .

Enter HERMITE 3( ) , 
then X  and use DERIV 

to get 8 ⋅ 3 ⋅ X2 −12 .

Enter HERMITE 3( ) , 

then X  and use ∂  to 

get 8 ⋅ 3 ⋅ X2 −12 .

3  then 
HERMITE  
returns 

8 ⋅ X3 −12 ⋅ X . 
Enter X  and use 
DERIV to get 

8 ⋅ 3 ⋅ X2 −12 .

3  then 
HERMITE  
returns 

8 ⋅ X3 −12 ⋅ X . 
Enter X  and use 
∂  to get 

8 ⋅ 3 ⋅ X2 −12 .

HERMITE

Enter 

DERIV GCD X2 −1,X +((
and then EVAL or EXPAND 
to get 1.

Enter 
∂

∂X
GCD X2 − 1,X + 1( )( ) 

and then EVAL to get 
d2GCD X2 −1,X + 1( ) +

2⋅ X ⋅ d1GCD X2 −1,X +1( )
. 

EXPAND returns 
2 ⋅X ⋅d1GCD X2 − 1,X +1( )+

d2GCD X2 −1,X + 1( ) .

Enter 

GCD X2 −1,X +1( ) , 

then X , and use 
DERIV to get 1.

Enter 

GCD X2 −1,X +1( ) , 

then X , and use ∂  to 
get 1.

X2 −1, X +1, 
then GCD  
returns X +1{ } . 

Enter X  and use 
DERIV to get 1{} .

X2 −1, X +1, 
then GCD  
returns X +1{ } . 

Enter X  and use 
∂  to get 1{} .

GCD

Enter 
DERIV GAMMA X( ),X( )  

and EXPAND or EVAL to 
get d1GAMMA X( ) .

Enter 
∂

∂X
GAMMA X( )( )  and 

EXPAND or EVAL to get 
d1GAMMA X( ) .

Enter GAMMA X( ) , 

then X , and use 
DERIV to get 
d1GAMMA X( ) .

Enter GAMMA X( ) , 

then X , and use ∂  to 
get d1GAMMA X( ) .

X , and then 
GAMMA  returns 
GAMMA X( ) . 

Enter X  and use 
DERIV to get 
d1GAMMA X( ) .

X , and then 
GAMMA  
returns 
GAMMA X( ) . 

Enter X  and use 
∂  to get 
d1GAMMA X( ) .

GAMMA

Enter 

DERIV FP X( ),X( )  and 

EXPAND or EVAL to get 
d1FP X( ) .

Enter 
∂

∂X
FP X( )( )  and 

EXPAND or EVAL to get 
d1FP X( ) .

Enter FP X( ) , then 

X , and use DERIV to 
get d1FP X( ) .

Enter FP X( ) , then X , 

and use ∂  to get 
d1FP X( ) .

X , then FP  
returns FP X( ) . 

Enter X  and use 
DERIV to get 
d1FP X( ) .

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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IBERNOULLI  
works only with 
integer 
arguments.

IBERNOULLI

In real mode enter 

DERIV IM X + X2 ⋅i( ),X( )  

and then EVAL or EXPAND 
to get 2 ⋅ X .  In complex 
mode enter 

DERIV IM Z( ),Z( )  and 

then EVAL or EXPAND to 
get d1IM Z( ) . 

In real mode enter 
∂

∂X
IM X + X2 ⋅ i( )( )  and 

then EVAL or EXPAND 

to get d1IM X + X2 ⋅ i( ) .  

In complex mode enter 
∂

∂Z
IM Z( )( )  and then 

EVAL or EXPAND to get 
d1IM Z( ) . 

In real mode enter 

IM X + X2 ⋅ i( ) , then 

X  and use DERIV to 

get d1IM X + X2 ⋅ i( ) .

In complex mode 
enter IM Z( ) , then Z  

and use ∂  to get 
d1IM Z( ) .

In real mode enter 

IM X + X2 ⋅ i( ) , then X  

and use ∂  to get 

d1IM X + X2 ⋅ i( ) .

In complex mode enter 
IM Z( ) , then Z  and 

use ∂  to get d1IM Z( ) .

In real mode enter 

X + X2 ⋅ i, then 

IM  to get X2
. 

Enter X  and use 
DERIV to get 2 ⋅ X .
In complex mode 
enter Z , then IM  
to get IM Z( ) . 

Enter Z  and use 
DERIV to get 
d1IM Z( ) .

In real mode 

enter X + X2 ⋅ i, 
then IM  to get 

X2
. Enter X  and 

use ∂  to get 
2 ⋅ X .
In complex mode 
enter Z , then IM  
to get IM Z( ) . 

Enter Z  and use 
∂  to get 
d1IM Z( ) .

IM

Enter 
DERIV IFTE A,X 2 ,X3( ),X( ) 
and EXPAND or EVAL to 
get 

IFTE A,2 ⋅X,3 ⋅ X2( ) .

Enter 
∂

∂X
IFTE A,X 2,X3( )( )  

and EXPAND to get 

IFTE A,2 ⋅X,3 ⋅ X2( )  

EVAL errors out with 
"CAS Internal Error".

Enter 

IFTE A,X2 ,X 3( ) , 

then X , and use 
DERIV to get 

IFTE A,2 ⋅X, 3⋅ X2( ) .

Enter 

IFTE A,X2 ,X 3( ) , 

then X , and use ∂  to 
get 

IFTE A,2 ⋅X,3 ⋅ X2( ) .

A , X2
, X3

 and 
then IFTE  
returns 

IFTE A,X2 ,X3( ) . 

Enter X  and use 
DERIV to get 
IFTE A,2 ⋅X,3 ⋅ X2( ) .

A , X2
, X3

 and 
then IFTE  
returns 

IFTE A,X2 ,X3( ) . 

Enter X  and use 
∂  to get 
IFTE A,2 ⋅X,3 ⋅ X2( ) .

IFTE

Enter 
DERIV IBERNOULLI X( ),X( )  
and EXPAND or EVAL. The 
HP49G errors out "Bad 
Argument Type"

Enter 
∂

∂X
IBERNOULLI X( )(

and EXPAND or EVAL to 
get 
d1IBERNOULLI X( ) .

Enter 
IBERNOULLI X( ) , 

then X , and use 
DERIV to get 
d1IBERNOULLI X( ) .

Enter 
IBERNOULLI X( ) , 

then X , and use ∂  to 
get 
d1IBERNOULLI X( ) .

IBERNOULLI  
works only with 
integer arguments.

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter ISPRIME ? X( ) , 

then X , and use ∂  to 
get 
d1IRSPRIME? X( ) .

ISPRIME?  
works only with 
integer arguments.

ISPRIME?  
works only with 
integer 
arguments.

Enter 
DERIV IREMAINDER X,Y( ),X( ) 
and EVAL or EXPAND.  
The HP49G errors out 
with "Bad Argument 
Type".

Enter 
∂

∂X
IREMAINDER X,Y( )( ) 

and EVAL or EXPAND to 
get 
d1IREMAINDER X,Y( ).

Enter 
IREMAINDER X, Y( ) , 
then X , and use 
DERIV to get 
d1IREMAINDER X,Y( ).

Enter 
IREMAINDER X,Y( ) , 

then X , and use ∂  to 
get 
d1IREMAINDER X,Y( ).

IREMAINDER  
works only with 
integer arguments.

IREMAINDER  
works only with 
integer 
arguments.

IREMAINDER

Enter 
DERIV IQUOT X,Y( ),X( ) 
and EVAL or EXPAND.  
The HP49G errors out 
with "Bad Argument 
Type".

Enter 
∂

∂X
IQUOT X,Y( )( )  

and EVAL or EXPAND to 
get d1IQUOT X,Y( ) .

Enter IQUOT X,Y( ) , 

then X , and use 
DERIV to get 
d1IQUOT X,Y( ) .

Enter IQUOT X,Y( ) , 

then X , and use ∂  to 
get d1IQUOT X,Y( ) .

IQUOT  works 
only with integer 
arguments.

IQUOT  works 
only with integer 
arguments.

IQUOT

X2
, X , X , and 

then INT  returns 
1
3

⋅ X3
. Enter X  

and use ∂  to get 
1
3

⋅ 3 ⋅ X2
.

INT

Enter 
DERIV ISPRIME? X( ),X( ), 
then X , EVAL or 
EXPAND.  The HP49G 
errors out with "Bad 
Argument Type".

Enter 
∂

∂X
ISPRIME? X( )( ) , 

then X , EVAL or 
EXPAND to get 
d1IRSPRIME? X( ) .

Enter ISPRIME? X( ), 
then X , and use 
DERIV to get 
d1IRSPRIME? X( ) .

ISPRIME?

Enter DERIV IP X( ),X( )  

and EVAL or EXPAND to 
get d1IP X( ) .

Enter 
∂

∂X
IP X( )( )  and 

EVAL or EXPAND to get 
d1IP X( ) .

Enter IP X( )  then X , 

and use DERIV to get 
d1IP X( ) .

Enter IP X( ) , then X , 

and use ∂  to get 
d1IP X( ) .

X  and then IP  
returns IP X( ) . 

Enter X  and use 
DERIV to get 
d1IP X( ) .

X  and then IP  
returns IP X( ) . 

Enter X  and use 
∂  to get d1IP X( ) .

IP

Enter 
DERIV INT X2,X,X( ),X( )  

and EVAL to get 
3 ⋅ 3 ⋅ X2

9
. EXPAND 

returns X2
.

Enter 
∂

∂X
INT X2 ,X,X( )( )  

and EXPAND to get 
3 ⋅ 3 ⋅ X2

9
. EVAL errors 

out with "Can't derive 
int. var"

Enter INT X2,X,X( ) , 

then X , and use 
DERIV. The HP49G 
errors out "Can't 
derive int. var"

Enter INT X2,X,X( ) , 

then X , and use ∂ . 
The HP49G errors out 
"Can't derive int. var"

X2
, X , X , and 

then INT  returns 
1
3

⋅ X3
. Enter X  

and use DERIV to 

get 
1
3

⋅ 3 ⋅ X2
.

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter MIN X,Y( ) , 

then X , and use ∂  to 
get d1MIN X,Y( ) .

X , Y  and then 
MIN  returns 
MIN X,Y( ) . Enter 

X  and use DERIV 
to get 
d1MIN X,Y( ) .

X , Y  and then 
MIN  returns 
MIN X,Y( ) . 

Enter X  and use 
∂  to get 
d1MIN X,Y( ) .

Enter 

DERIV MAX X,Y( ),X( )  

and EVAL or EXPAND to 
get d1MAX X,Y( ) .

Enter 
∂

∂X
MAX X,Y( )( )  and 

EVAL or EXPAND to get 
d1MAX X,Y( ) .

Enter MAX X,Y( ) , 

then X , and use 
DERIV to get 
d1MAX X,Y( ) .

Enter MAX X,Y( ) , 

then X , and use ∂  to 
get d1MAX X,Y( ) .

X , Y  and then 
MAX  returns 
MAX X,Y( ) . 

Enter X  and use 
DERIV to get 
d1MAX X,Y( ) .

X , Y  and then 
MAX  returns 
MAX X,Y( ) . 

Enter X  and use 
∂  to get 
d1MAX X,Y( ) .

MAX

Enter 

DERIV MANT X( ),X( )  

and EVAL or EXPAND to 
get d1IQUOT X,Y( ) .

Enter 
∂

∂X
MANT X( )( )  

and EVAL or EXPAND to 
get d1MANT X( ) .

Enter MANT X( ) , 

then X , and use 
DERIV to get 
d1MANT X( ) .

Enter MANT X( ) , 

then X , and use ∂  to 
get d1MANT X( ) .

X , and then 
MANT  returns 
MANT X( ) . Enter 

X  and use DERIV 
to get 
d1MANT X( ) .

X , and then 
MANT  returns 
MANT X( ) . 

Enter X  and use 
∂  to get 
d1MANT X( ) .

MANT

I → R  works 
only with integer 
arguments.

I → R

Enter 

DERIV MIN X,Y( ),X( )  

and EVAL or EXPAND to 
get d1MIN X,Y( ) .

Enter 
∂

∂X
MIN X,Y( )( )  

and EVAL or EXPAND to 
get d1MIN X,Y( ) .

Enter MIN X,Y( ) , 

then X , and use 
DERIV to get 
d1MIN X,Y( ) .

MIN

Enter 
DERIV LEGENDRE X( ),X( ) 
and EVAL or EXPAND.  
The HP49G errors out 
with "Bad Argument 
Type".

Enter 
∂

∂X
LEGENDRE X( )( )

and EVAL or EXPAND to 
get 
d1LEGENDRE X( ) .

Enter 
LEGENDRE X( ) , 

then X , and use 
DERIV to get 
d1LEGENDRE X( ) .

Enter 
LEGENDRE X( ) , 

then X , and use ∂  to 
get 
d1LEGENDRE X( ) .

LEGENDRE  
works only with 
integer arguments.

LEGENDRE  
works only with 
integer 
arguments.

LEGENDRE

Enter 

DERIV I → R X( ),X( )  

and EVAL or EXPAND to 
get d1I → R X( ) .

Enter 
∂

∂X
I → R X( )( )  

and EVAL or EXPAND to 
get d1I → R X( ) .

Enter I → R X( ) , 

then X , and use 
DERIV to get 
d1I → R X( ) .

Enter I → R X( ) , then 

X , and use ∂  to get 
d1I → R X( ) .

I → R  works only 
with integer 
arguments.

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter PA2B2 X( ) , 

then X , and use ∂  to 
get d1PA2B2 X( ) .

PA2B2  works 
only with integer 
arguments.

PA2B2  works 
only with integer 
arguments.

Enter 
DERIV X OR Y,X( )
and EVAL or EXPAND to 
get d1OR X,Y( ) .

Enter 
∂

∂X
X OR Y( )  and 

EVAL or EXPAND to get 
d1OR X,Y( ) .

Enter X OR Y , 

then X , and use 
DERIV to get 
d1OR X,Y( ) .

Enter X OR Y , 

then X , and use ∂  to 
get d1OR X,Y( ) .

X , Y , and then 
OR  returns 
X OR Y . 

Enter X  and use 
DERIV to get 
d1OR X,Y( ) .

X , Y , and then 
OR  returns 
X OR Y . 

Enter X  and use 
∂  to get 
d1OR X,Y( ) .

OR

Enter 
DERIV NOT X,X( )  

and EVAL or EXPAND to 
get d1NOT X( ) .

Enter 
∂

∂X
NOT X( )  

and EVAL or EXPAND to 
get d1NOT X( ) .

Enter NOT X , 

then X , and use 
DERIV to get 
d1NOT X( ) .

Enter NOT X , then 

X , and use ∂  to get 
d1NOT X( ) .

X , and then NOT
returns NOT X . 
Enter X  and use 
DERIV to get 
d1NOT X( ) .

X , and then 
NOT  returns 
NOT X . Enter 

X  and use ∂  to 
get d1NOT X( ) .

NOT

X , Y  and then 
MOD  returns 
X MOD Y . 

Enter X  and use 
∂  to get 
d1MOD X,Y( ) .

MOD

Enter 

DERIV PA2B2 X( ),X( )  

and EVAL or EXPAND. The 
HP49G errors out with 
"Bad Argument Type".

Enter 
∂

∂X
PA2B2 X( )( )  

and EVAL or EXPAND to 
get d1PA2B2 X( ) .

Enter PA2B2 X( ) , 

then X , and use 
DERIV to get 
d1PA2B2 X( ) .

PA2B2

Enter 
DERIV NEXTPRIME X( ),X( ) 
and EVAL or EXPAND.  
The HP49G errors out 
with "Bad Argument 
Type".

Enter 
∂

∂X
NEXTPRIME X( )( )  

and EVAL or EXPAND to 
get 
d1NEXTPRIME X( ) .

Enter 
NEXTPRIME X( ) , 

then X , and use 
DERIV to get 
d1NEXTPRIME X( ) .

Enter 
NEXTPRIME X( ) , 

then X , and use ∂  to 
get 
d1NEXTPRIME X( ) .

NEXTPRIME  
works only with 
integer arguments.

NEXTPRIME  
works only with 
integer 
arguments.

NEXTPRIME

Enter 
DERIV X MOD Y,X( ) 
and EVAL or EXPAND to 
get d1MOD X,Y( ) .

Enter 
∂

∂X
X MOD Y( )  

and EVAL or EXPAND to 
get d1MOD X,Y( ) .

Enter X MOD Y , 
then X , and use 
DERIV to get 
d1MOD X,Y( ) .

Enter X MOD Y , 

then X , and use ∂  to 
get d1MOD X,Y( ) .

X , Y  and then 
MOD  returns 
X MOD Y . 

Enter X  and use 
DERIV to get 
d1MOD X,Y( ) .

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 

DERIV PSIX,2( ),X( )  

and EVAL or EXPAND to 
get d1PSI X,2( ) .

Enter 
∂

∂X
PSI X,2( )( )  

and EVAL or EXPAND to 
get d1PSI X,2( ) .

Enter PSI X,2( ) , 

then X , and use 
DERIV to get 
d1PSI X,2( ) .

Enter PSI X,2( ) , then 

X , and use ∂  to get 
d1PSI X,2( ) .

X , 2 , and then 
PSI  returns 
PSI X,2( ) . Enter 

X  and use DERIV 
to get 
d1PSI X,2( ) .

X , 2 , and then 
PSI  returns 
PSI X,2( ) . Enter 

X  and use ∂  to 
get d1PSI X,2( ) .

PSI

X , Y  and then 
PERM  returns 

X!
X − Y( )! . Enter 

X  and use ∂  to 
get 

X − Y( )!⋅d1! X( ) −

X!⋅d1! X − Y( )

 

 
 

 

 
 

SQ X − Y( )!( ) .

PERM

Enter 
DERIV PREVPRIME X( ),X( )  
and EVAL or EXPAND.  
The HP49G errors out 
with "Bad Argument 
Type".

Enter 
∂

∂X
PREVPRIME X( )( )  

and EVAL or EXPAND to 
get 
d1PREVPRIME X( ) .

Enter 
PREVPRIME X( ) , 

then X , and use 
DERIV to get 
d1PREVPRIME X( ) .

Enter 
PREVPRIME X( ) , 

then X , and use ∂  to 
get 
d1PREVPRIME X( ) .

NEXTPRIME  
works only with 
integer arguments.

PREVPRIME  
works only with 
integer 
arguments.

PREVPRIME

Enter 
DERIV PERM X,Y( ),X( ) and 

EVAL to get 

X − Y( )!⋅d1! X( ) −

X!⋅d1! X − Y( )

 

 
 

 

 
 

SQ X − Y( )!( ) . 

EXPAND returns 

−

X!⋅d1! X − Y( ) −

X − Y( )! ⋅d1! X( )

 

 
 

 

 
 

X − Y( )!2 .

Enter 
∂

∂X
PERM X,Y( )( )  

and EVAL or EXPAND to 
get d1PERM X,Y( ) .

Enter PERM X,Y( ) , 

then X , and use 
DERIV to get 
d1PERM X,Y( ) .

Enter PERM X,Y( ) , 

then X , and use ∂  to 
get d1PERM X,Y( ) .

X , Y  and then 
PERM  returns 

X!
X − Y( )! . Enter 

X  and use DERIV 
to get 

X − Y( )!⋅d1! X( ) −

X!⋅d1! X − Y( )

 

 
 

 

 
 

SQ X − Y( )!( ) .

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 

DERIV RND X,2( ),X( )  

and EVAL or EXPAND to 
get d1RND X,2.( ) .

Enter 
∂

∂X
RND X,2( )( )  

and EVAL or EXPAND to 
get d1RND X,2( ) .

Enter RND X,2( ) , 

then X , and use 
DERIV to get 
d1RND X,2( ) .

Enter RND X,2( ) , 

then X , and use ∂  to 
get d1RND X,2( ) .

X , 2  and then 
RND  returns 
RND X,2.( ) . 

Enter X  and use 
DERIV to get 
d1RND X,2.( ) .

X , 2  and then 
RND  returns 
RND X,2.( ) . 

Enter X  and use 
∂  to get 
d1RND X,2.( ) .

RND

Enter 

DERIV R → D X( ),X( )  

and EXPAND or EVAL to 
get d1R → D X( ) .

Enter 
∂

∂X
R → D X( )( )  

and EXPAND or EVAL to 
get d1R → D X( ) .

Enter R → D X( ) , 

then X , and use 
DERIV to get 
d1R → D X( ) .

Enter R → D X( ) , 

then X , and use ∂  to 
get d1R → D X( ) .

X , and then 
R → D  returns 
R → D X( ) . Enter 

X  and use DERIV 
to get 
d1R → D X( ) .

X , and then 
R → D  returns 
R → D X( ) . 

Enter X  and use 
∂  to get 
d1R → D X( ) .

R → D

X , and then Psi  
returns Psi X( ) . 

Enter X  and use 
∂  to get 
d1Psi X( ) .

Psi

In real mode enter 
DERIV RE X + X2 ⋅ i( ),X( ) 
and then EVAL or EXPAND 
to get 1.  In complex 

mode enter 
∂

∂Z
RE Z( )( )  

and then EVAL or EXPAND 
to get d1RE Z( ) . 

In real mode enter 
∂

∂X
RE X + X2 ⋅ i( )( )  

and then EVAL or 
EXPAND to get 

d1RE X + X2 ⋅ i( ) .  In 

complex mode enter 
∂

∂Z
RE Z( )( )  and then 

EVAL or EXPAND to get 
d1RE Z( ) . 

In real mode enter 

RE X + X2 ⋅ i( ) , then 

X  and use DERIV to 

get d1RE X + X 2 ⋅ i( ) .

In complex mode 
enter RE Z( ) , then 

Z  and use DERIV to 
get d1RE Z( ).

In real mode enter 

RE X + X2 ⋅ i( ) , then 

X  and use ∂  to get 

d1RE X + X2 ⋅ i( ) .

In complex mode enter 
RE Z( ) , then Z  and 

use ∂  to get d1RE Z( ).

In real mode enter 

X + X2 ⋅ i, then 
RE  to get X . 
Enter X  and use 
DERIV to get 1.
In complex mode 
enter Z , then RE  
to get RE Z( ) . 

Enter Z  and use 
DERIV to get 
d1RE Z( ) .

In real mode 

enter X + X2 ⋅ i, 
then RE  to get 
X . Enter X  and 
use ∂  to get 1.
In complex mode 
enter Z , then 
RE  to get 
RE Z( ) . Enter Z  

and use ∂  to get 
d1RE Z( ) .

RE

Enter 

DERIV Psi X( ),X( )  and 

EVAL or EXPAND to get 
d1Psi X( ) .

Enter 
∂

∂X
Psi X( )( )  and 

EVAL or EXPAND to get 
d1Psi X( ) .

Enter Psi X( ) , then 

X , and use DERIV to 
get d1Psi X( ) .

Enter Psi X( ) , then X , 

and use ∂  to get 
d1Psi X( ) .

X , and then Psi  
returns Psi X( ) . 

Enter X  and use 
DERIV to get 
d1Psi X( ) .

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 
DERIV TDELTA X,Y( ),X( ) 
and EVAL or EXPAND to 
get d1TDELTA X,Y( ) .

Enter 
∂

∂X
TDELTA X,Y( )( )  

and EVAL or EXPAND to 
get d1TDELTA X,Y( ) .

Enter 
TDELTA X,Y( ) , 

then X , and use 
DERIV to get 
d1TDELTA X,Y( ) .

Enter 
TDELTA X,Y( ) , then 

X , and use ∂  to get 
d1TDELTA X,Y( ) .

X , Y , and then 
TDELTA  returns 
TDELTA X,Y( ) . 

Enter X  and use 
DEIV to get 
d1TDELTA X,Y( ) .

X , Y , and then 
TDELTA  
returns 
TDELTA X,Y( ) . 

Enter X  and use 
∂  to get 
d1TDELTA X,Y( ) .

TDELTA

Enter SIDENSX( ) , 

then X , and use ∂  to 
get d1SIDENSX( ) .

Enter 
DERIV TCHEBYCHEFF2( ),X( ) 
and EVAL to get 2 ⋅ 2 ⋅ X . 
EXPAND returns 4 ⋅X .

Enter 
∂

∂X
TCHEBYCHEFF 2( )( )  

and EVAL or EXPAND to 
get 0 .

Enter 
TCHEBYCHEFF 2( ), 
then X , and use 
DERIV to get 2 ⋅ 2 ⋅ X .

Enter 
TCHEBYCHEFF 2( ) , 
then X , and use ∂  to 
get 2 ⋅ 2 ⋅ X .

2  and then 
TCHEBYCHEFF 
returns 2⋅ X2 −1. 
Enter X  and use 
DERIV to get 
2 ⋅ 2 ⋅ X .

2  and then 
TCHEBYCHEFF 
returns 2⋅ X2 −1. 
Enter X  and use 
∂  to get 2 ⋅ 2 ⋅ X .

TCHEBYCHEFF

Enter 
DERIV TRNC X,2( ),X( ) 
and EVAL or EXPAND to 
get d1TRNC X,2.( ) .

Enter 
∂

∂X
TRNC X,2( )( )  and 

EVAL or EXPAND to get 
d1TRNC X,2( ) .

Enter TRNC X,2( ) , 

then X , and use 
DERIV to get 
d1TRNC X,2( ) .

Enter TRNC X,2( ) , 

then X , and use ∂  to 
get d1TRNC X,2( ) .

X , 2 , and then 
TRNC  returns 
TRNC X,2.( ) . 

Enter X  and use 
DERIV to get 
d1TRNC X,2.( ) .

X , 2 , and then 
TRNC  returns 
TRNC X,2.( ) . 

Enter X  and use 
∂  to get 
d1TRNC X,2.( ) .

TRNC

R → I  works 
only with integer 
arguments.

R → I

Enter 
DERIV SIDENSX( ),X( )  

and EVAL or EXPAND to 
get d1SIDENSX( ) .

Enter 
∂

∂X
SIDENSX( )( )  and 

EVAL or EXPAND to get 
d1SIDENSX( ) .

Enter SIDENSX( ) , 

then X , and use 
DERIV to get 
d1SIDENSX( ) .

X , and then 
SIDENS returns 
SIDENSX( ) . 

Enter X  and use 
DERIV to get 
d1SIDENSX( ) .

X , and then 
SIDENS 
returns 
SIDENSX( ) . 

Enter X  and use 
∂  to get 
d1SIDENSX( ) .

SIDENS

Enter 

DERIV R → I X( ),X( )  

and EVAL or EXPAND to 
get d1R → I X( ) .

Enter 
∂

∂X
R → I X( )( )  

and EVAL or EXPAND to 
get d1R → I X( ) .

Enter R → I X( ) , 

then X , and use 
DERIV to get 
d1R → I X( ) .

Enter R → I X( ) , then 

X , and use ∂  to get 
d1R → I X( ) .

R → I  works only 
with integer 
arguments.

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 

DERIV XPON X( ),X( )  

and EVAL or EXPAND to 
get d1XPON X( ) .

Enter 
∂

∂X
XPON X( )( )  

and EVAL or EXPAND to 
get d1XPON X( ) .

Enter XPON X( ) , 

then X , and use 
DERIV to get 
d1XPON X( ) .

Enter XPON X( ) , 

then X , and use ∂  to 
get d1XPON X( ) .

X , and then 
XPON  returns 
XPON X( ) . Enter 

X  and use DERIV 
to get 
d1XPON X( ) .

X , and then 
XPON  returns 
XPON X( ) . 

Enter X  and use 
∂  to get 
d1XPON X( ) .

XPON

In the command line 
enter 

UVAL X2 ⋅1_cm2( ) , 

then X , and use ∂  to 
get 

d1UVAL X2 ⋅1_cm2( ).

Enter 
DERIV X XOR Y,X( ) 
and EVAL or EXPAND to 
get d1XOR Y,X( ) .

Enter 
∂

∂X
X XOR Y( )  

and EVAL or EXPAND to 
get d1XOR Y,X( ) .

Enter X XOR Y , 
then X , and use 
DERIV to get 
d1XOR Y,X( ) .

Enter X XOR Y , 

then X , and use ∂  to 
get d1XOR Y,X( ) .

X , Y , and then 
XOR  returns 
Y XOR X . 

Enter X  and use 
DERIV to get 
d1XOR Y,X( ) .

X , Y , and then 
XOR  returns 
Y XOR X . 

Enter X  and use 
∂  to get 
d1XOR Y,X( ) .

XOR

In the command 
line enter 

X2 ⋅1_cm2
 and 

use UBASE to 
get 
UBASEX 2 ⋅1_cm2( ) . 
Enter X  and use 
∂  to get 
d1UBASE X2 ⋅1_cm2( ).

UBASE

In the command line enter 
DERIV UVALX

2 ⋅1_cm
2( ),X( )  

and EVAL or EXPAND to 
get d1UVAL X2 ⋅1_ cm2( ).

In the command line 
enter 

∂
∂X

UVAL X2 ⋅1_cm 2( )( ) 
and EVAL or EXPAND to 
get 
d1UVAL X2 ⋅1_ cm2( ).

In the command line 
enter 

UVAL X 2 ⋅1_cm 2( ) , 

then X , and use 
DERIV to get 
d1UVAL X2 ⋅1_ cm2( ).

In the command 
line enter 

X2 ⋅1_cm2
 and 

use UVAL  to get 
UVAL X2 ⋅1_ cm2( ) . 

Enter X  and use 
DERIV to get 
d1UVAL X2 ⋅1_ cm2( ) .

In the command 
line enter 

X2 ⋅1_cm2
 and 

use UVAL  to get 
UVAL X2 ⋅1_ cm2( ) . 

Enter X  and use 
∂  to get 
d1UVAL X2 ⋅1_ cm2( ) .

UVAL

In the command line enter 
DERIV UBASEX

2 ⋅1_cm
2( ),X( )  

and EVAL or EXPAND to 
get d1UBASE X2 ⋅1_cm 2( ).

In the command line 
enter 

∂
∂X

UBASE X2 ⋅1_cm 2( )( ) 
and EVAL or EXPAND to 
get 
d1UBASE X2 ⋅1_cm 2( ).

In the command line 
enter
UBASE X2 ⋅1_cm2( ) , 

then X , and use 
DERIV to get 
d1UBASE X2 ⋅1_cm 2( ).

In the command line 
enter 
UBASEX 2 ⋅1_cm2( ) , 

then X , and use ∂  to 
get 
d1UBASE X2 ⋅1_cm 2( ).

In the command 
line enter 

X2 ⋅1_cm2
 and 

use UBASE to 
get 
UBASEX 2 ⋅1_cm2( ) . 
Enter X  and use 
DERIV to get 
d1UBASE X2 ⋅1_cm2( ).

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function
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Enter 
DERIV X ≥ Y,X( )  and 

EXPAND or EVAL to get 
d1≥ X,Y( ) .

Enter 
∂

∂X
X ≥ Y( )  and 

EXPAND or EVAL to get 
d1≥ X,Y( ) .

Enter X ≥ Y , then 
X , and use DERIV to 
get d1≥ X,Y( ) .

Enter X ≥ Y , then X , 
and use ∂  to get 
d1≥ X,Y( ) .

X , Y , and then ≥  
returns X ≥ Y . 
Enter X  and use 
DERIV to get 
d1≥ X,Y( ) .

X , Y , and then 
≥  returns 
X ≥ Y . Enter X  
and use ∂  to get 
d1≥ X,Y( ) .

≥

Enter 
DERIV X ≠ Y,X( )  and 

EXPAND or EVAL to get 
d1≠ X,Y( ) .

Enter 
∂

∂X
X ≠ Y( )  and 

EXPAND or EVAL to get 
d1≠ X,Y( ) .

Enter X ≠ Y , then 
X , and use DERIV to 
get d1≠ X,Y( ) .

Enter X ≠ Y , then X , 
and use ∂  to get 
d1≠ X,Y( ) .

X , Y , and then ≠
returns X ≠ Y . 
Enter X  and use 
DERIV to get 
d1≠ X,Y( ) .

X , Y , and then 
≠  returns 
X ≠ Y . Enter X  
and use ∂  to get 
d1≠ X,Y( ) .

≠

Enter Y Y= 3⋅X , then X , 

and use ∂  to get 3 .

Enter 
DERIV X ≤ Y,X( )  and 

EXPAND or EVAL to get 
d1≤ X,Y( ) .

Enter 
∂

∂X
X ≤ Y( )  and 

EXPAND or EVAL to get 
d1≤ X,Y( ) .

Enter X ≤ Y , then 
X , and use DERIV to 
get d1≤ X,Y( ) .

Enter X ≤ Y , then X , 
and use ∂  to get 
d1≤ X,Y( ) .

X , Y , and then ≤  
returns X ≤ Y . 
Enter X  and use 
DERIV to get 
d1≤ X,Y( ) .

X , Y , and then 
≤  returns 
X ≤ Y . Enter X  
and use ∂  to get 
d1≤ X,Y( ) .

≤

X , Y , and then 
ZFACTOR  
returns 
ZFACTOR X,Y( ) . 
Enter X  and use 
∂  to get 
d1ZFACTOR X,Y( ).

ZFACTOR

Enter 

DERIV Y Y= 3⋅X,X( )  and 

EVAL or EXPAND to get 
3

Enter 
∂

∂X
Y Y = 3⋅X( )  and 

EVAL or EXPAND to get 

d1| Y, Y 3 ⋅ X{ }( )

Enter Y Y= 3⋅X , then 

X , and use DERIV to 
get 3 .

Y , Y 3 ⋅ X{ } , 

and then  returns 

3 ⋅ X . Enter X  and 
use DERIV to get 3
.

Y , Y 3 ⋅ X{ } , 

and then  

returns 3 ⋅ X . 
Enter X  and use 
∂  to get 3 .

Enter 
DERIV ZFACTOR X,Y( ),X( ) 
and EVAL or EXPAND to 
get d1ZFACTOR X, Y( ) .

Enter 
∂

∂X
ZFACTOR X,Y( )( )  

and EVAL or EXPAND to 
get 
d1ZFACTOR X,Y( ) .

Enter 
ZFACTOR X,Y( ) , 

then X , and use 
DERIV to get 
d1ZFACTOR X,Y( ).

Enter 
ZFACTOR X,Y( ) , 

then X , and use ∂  to 
get 
d1ZFACTOR X,Y( ) .

X , Y , and then 
ZFACTOR  
returns 
ZFACTOR X,Y( ) . 
Enter X  and use 
DERIV to get 
d1ZFACTOR X,Y( ).

DERIV FunctionX,…( ),X( ), 
then EXPAND or EVAL

∂
∂X

Function X,…( )( )  

then EXPAND or EVAL

Algebraic object 
Function X,…( )  

then X , then DERIV

Algebraic object 
Function X,…( )  then 

X , then ∂

Enter arguments, 
then use Function, 

and then DERIV

Enter arguments, 
then use Function, 

and then ∂

Function



defined derivative because the HP49G can't find the derivative in 
any syntax. If the cell is yellow, then the HP49G can find the 
derivative but only using some particular syntax. In such cases 
you can both make a user defined derivative or use always the 
particular syntax. The cells coloured green in the same row as the 
function will show you what the syntax is that you can use to find 
the derivative. Some times it can get tricky to make the user 
defined derivative, as we have seen in the case of ! and GAMMA . 
The tables contain some things that are quite surprising, so when 
you have time you might want to take a look at them. Mama mia! 
They were more than I suspected. But I'm through at last, so that 
we can continue with some more pleasant things. We are going to 
take a look at some parametric and polar plots on the HP49G, and 
see what we can do with the stuff we have covered in this part.

We start with the question: 
Can some body in universe, 
be it a planet, satellite, 
comet, or even a stone, be 
in noncircular, non-elliptic 
orbit? Before you answer, 
think again about our built-
in pattern recognition 
machine. We look at the 
sky, we see circular 
motions, we develop 
astronomy based on circular 
(and elliptical) motion. And 
so we project "circular" and 
"elliptical" motions to all bodies in the universe. But let's make a 
simple example. A planet moves in circular orbit around a start and a 
satellite in circular orbit around the planet. What will the motion of the 
satellite look like, seen from some ET that sits above the plain of the 
ecliptic? In other words, can we give the parametric or polar equations 
of the motion of the satellite, having the sun as the origin of our 
coordinates system? Let's try. We assume that the planet moves 
around the star in distance R  from the star and with angular velocity 
Ω . The satellite moves around the planet in distance d  from the planet 

and with angular velocity ω . The parametric representation of the planet 
coordinates is:

X = R ⋅cos Ω ⋅t( )
Y = R ⋅sin Ω ⋅t( )

No need to plot that, it is a circle. The parametric representation of the 
satellite coordinates (having the star as the origin of the coordinates 
system) is:

x = R ⋅cos Ω ⋅t( ) + d ⋅cos ω ⋅t( )
y = R ⋅sin Ω ⋅t( ) + d ⋅ sin ω ⋅ t( )

What kind of curve is that? If we assign some values to the variables R , 
Ω , d , and ω , we can make a parametric plot with the parameter t . For 
the sake of simplicity we store 1.  in R , making thus the distance from 
the star to the planet to our distance unit in space. The distance d  from 
the satellite to the planet then less than 1. Store .1 in d . Again for 
simplicity we store 1.  in Ω , making the angular velocity of the planet to 
our angular velocity unit in space. (You get the character Ω  by pressing 
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Star

Planet

Satelite

R

dr

Φ = Ω ⋅t

X = R ⋅cos Ω ⋅t( )

Y = R ⋅sin Ω ⋅t( )

x = R ⋅cos Ω ⋅t( ) + d ⋅cos ω ⋅t( )

ϕ = ω ⋅t

y = R ⋅sin Ω ⋅t( ) + d ⋅ sin ω ⋅ t( )



 and then  - .) The angular velocity of the satellite on 
its motion around the planet is in general greater than the angular 
velocity of the motion of the planet around the sun. Store 5.  in ω . 
(The character ω  is ,  and then .) We are going to 
make a parametric plot. Go to the PLOT SETUP  screen and select 
plot type Parametric . Enter 
R ⋅COS Ω ⋅t( ) + d ⋅COS ω ⋅t( ) + i ⋅ R ⋅SIN Ω ⋅t( ) + d ⋅SIN ω ⋅t( )( )  in 
the input field EQ:. Enter t  as the independent variable (the 
parameter). Now, in the PLOT WINDOW − PARAMETRIC  
screen, enter H− View: from −3  to 3 , and V − View:  from −1.5  to 
1.5 . Enter Indep Low:  0. , and High: 6.28 . Also enter Step: 1 
and activate the option 
_Pixels . Press 

 and then 
 and let the 

HP49G plot the orbit of 
the satellite around the 
star. Wow! Almost a 
square! Erase the plot, 
store .05  in d  and 
redraw. Wow2! Now it 
is even more like a 
square! It is interesting 
to add the orbit of the 
planet in the same plot. 
Press  - . Now 
you are in the equations 
catalogue screen. Press 

, to add the 
parametric equation of the planet motion. The HP49G switches to the 
EQW and enters automatically XY1t( ) = . Delete the unfinished 
expression XY1t( ) =  and enter R ⋅COS Ω ⋅t( ) + i ⋅R ⋅SIN Ω ⋅t( ) . Press 

 and then . Because of the limited resolution we can't 
see very well which the orbit of the planet and which the orbit of the 
satellite is. We can of course zoom-in to focus on some particular part 

of the orbits, but let's go 
the opposite way and 
enlarge the PICT  itself. 
The PICT  is per default 
131 pixels wide and 64 
pixels high, so let's double 
its dimensions. Go to the 
stack, enter #262d  and 
#128d , and press  
to resize it to 262 pixels wide and 128 pixels high. Redraw the plot. 
While the HP49G is plotting, you only see the central part of the plot. 

Wait until it finishes and then press  and  to activate scroll mode. 
In this mode all other graphics functions are deactivated and you can use 
the arrow keys to scroll around. When you had enough scrolling, press 

again  and  to leave scroll mode and return to the normal 
graphics environment. Here you can also use the arrow keys to move 
around, but 
the graphics 
cursor has 
to reach the 
edges of the 
s c r e e n  
before the 
s c r o l l i n g  
starts. Let's 
z o o m - i n  
now to get 
an even 
b e t t e r  
impression 
of what's 
going on. Use the area indicated in the above picture to zoom in and wait 
until the plot is done. Move around using the arrow keys to get a first 
overall impression of the orbits. Though the orbit of the satellite around 
the star is almost a square, its orbit around the planet is a perfect circle. 
The picture on the next side demonstrates this. The two orbits are 
connected with red line segments, which represent the distance d  of the 
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planet to the orbit at several times. At the right part of the picture the 
relative positions of the planet and the satellite are shown again, to 
emphasise on the circular motion of the satellite around the planet. The 
small circle represents the planet, while the red line represents the 
distance d . The satellite sits on the free end of the red line segments. 
If you imagine sitting on the planet and watching the satellite, you will 
"see" that it has a circular orbit around the planet. Nonetheless it 
moves in an almost square orbit around the star. Let's try some 
additional plots with other values for d  and ω . First of all, while you 
are in the graphics environment, press , then press twice  
to go to the third page of the zoom menu, and then press  to 
reset the plot to the view ranges before we zoomed in. Then go to the 
stack, enter #131d  and #64d  and press  to bring the PICT  to 

its default dimensions. 
Store .1 in d  and 8.  in 
ω . Redraw the orbits. 
Now you have a six-
fold flower (satellite 
orbit) and a circle 
(planet orbit). Return to 
the stack, store .3  in d  
and redraw to see better 
how the satellite moves 
around the planet, 
while the planet moves 
around the star.

We will try now to 
convert the parametric 
form of the orbit of the 
satellite to a polar form. 
Enter the list 
R Ω d ω{ }  and 

press  to delete the variables with numeric values. Press  
to get the variables menu, and press  to put the list of the two 
parametric expressions on the stack. Press  to extract the first 
expression for the satellite orbit 
R ⋅COS Ω ⋅t( ) + d ⋅COS ω ⋅t( ) + i ⋅ R ⋅SIN Ω ⋅t( ) + d ⋅SIN ω ⋅t( )( )
We could use the function ABS  to get the absolute value of the above 
parametric expression, but then we should add all variables contained in 
the expression to REALASSUME, because otherwise the HP49G will 
assume that they are complex, and will return a result containing for 
example RE R( ) , IM R( ) , and so on. Instead of using ABS  we find the 
absolute value "by hand". Switch to real mode (that's important). Press 

 to make a copy of the parametric expression. Then press  to 
get the real part of the expression, and square it, to get 

SQ R ⋅COS Ω ⋅t( ) + d ⋅ COS ω ⋅ t( )( ) . Press  to swap stack levels 1 
and 2. Press  to get the imaginary part, and square it, to get 
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SQ R ⋅SIN Ω ⋅t( ) + d ⋅SIN ω ⋅t( )( ) . Press  to add two squares and 
then  to transform this to 

R2 + d2 + 2 ⋅ d ⋅R ⋅COS ω −Ω( ) ⋅t( ) . Press  to get the square root 
of the result. The expression:

R2 + d2 + 2 ⋅d ⋅R ⋅COS ω −Ω( ) ⋅ t( )

is the distance from the coordinates origin (star) to the satellite. If you 
store this in EQ , restore the same values like before for variables R , 
Ω , d  and ω , select plot type Polar , and redraw, you are going to 
get the same satellite orbit, like in the examples above. Notice that this 
polar representation doesn't depend on the angle α  of the satellite in 
the coordinates system, in which the star is the origin. It depends on 
the angle difference between the angle ϕ  of the satellite in the 
coordinates system in which the planet is the origin, and the angle Φ  
of the planet in the coordinates system in which the star is the origin. 

If you want to plot R2 + d2 + 2 ⋅d ⋅R ⋅COS ω −Ω( ) ⋅ t( )  as a polar 
plot, then you must have t  as the independent variable.

We have seen that for some particular values of the variables R , Ω , d  
and ω , the satellite orbit looks almost like a square. Are there any other 
particular values of those variables, that make the orbit look like another 
polygon? We will examine this question in the next parts of this 
marathon, when we will have covered the additional stuff that is 
necessary.

Before closing this part, we do another example that shows what 
complicated curves can be generated by using very simple mechanisms. 
Consider the simple machine on the bottom of the next page. The 
(orange metal) arm is connected with the wheel and goes through the 
metal ring in a distance d  from the wheel. The ring itself can freely 
rotate, but it doesn't move along the x axis. When the wheel spins with 
angular velocity ω , what will be the curve that the end of the (orange 
metal) arm will create? In order to answer this (and plot this) we must 
find some analytic form of the coordinates of the end of the arm, or take 
the numeric way. In this case it is easy to follow the analytic way. We 
need to find the angle α , because if we have it, then we can use it to 
find the lengths of the projections of the arm on the x and on the y axis. 
This angle can be found by using the formula:

α = atan
R ⋅ sin ω ⋅t( )

d +R − R ⋅ cos ω ⋅t( )
 
 
  

 
 

Having this angle we can find the x coordinate of the end of the metal 
arm. Enter:

ATAN
R ⋅ SIN ω ⋅t( )

d +R −R ⋅COS ω ⋅t( )
 
 
  

 
 

and store the expression in variable α . Now enter 
R ⋅COS ω ⋅t( ) + l ⋅COS α( ) . In the EQW select the sub expression 
l ⋅COS α( )  and expand. Press  to put the expression for the x 
coordinate on the stack. The expression is:
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R

dr

Φ = Ω ⋅t

ϕ = ω ⋅t

Φ = Ω ⋅t

β = ϕ −Φ
= ω −Ω( )⋅ t

α



Alone the huge sub expression under the square root is reason for 
making us to lose any interest to handle the problem. It wouldn't fit 
the width of this page written in one line. But the HP49G is a much 
more powerful companion than it might look. Press  to take the 
whole expression in the EQW. Use the arrow keys to select the sub 
expression under the square root. Press  and then . 
The HP49G  converts this sub expression to:

R ⋅COS ω ⋅t( ) − R + d( )( )2
⋅

R2 ⋅SIN ω ⋅t( )2 +R2 ⋅COS ω ⋅t( )2 −

2 ⋅R2 + 2 ⋅d ⋅R( ) ⋅COS ω ⋅t( ) +

R2 + 2 ⋅ d ⋅R + d2

 

 

 
  

 

 

 
 

and this brings our hopes back that we will somehow 
come to an end ;-). While in the EQW select the term 

R2 ⋅ SIN ω ⋅t( )2 , press  and then  to extend the selection to 

R2 ⋅ SIN ω ⋅t( )2
. Press  to convert the selection to R2 . Using the 

same technique select the sub expression 2 ⋅R2 + 2 ⋅ d ⋅R  and collect it to 
R + d( ) ⋅R ⋅2 . Select the sub expression R2 + 2 ⋅ d ⋅R + d2  and collect it 

to R + d( )2
. Now we move on to the denominator. Use the arrow keys 

to select the sub expression R2 ⋅ SIN ω ⋅t( )2 + R2 ⋅ COS ω ⋅t( )2
 of the 
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ϕ = ω ⋅t

R

d

l
ϕ
R

d

R ⋅cos ω ⋅t( )
R − R ⋅ cos ω ⋅t( )

R ⋅sin ω ⋅t( )

α

R ⋅COS ω ⋅ t( ) +

l ⋅

R4 ⋅ COS ω ⋅ t( )2 − 2⋅ R4 + 2 ⋅ d⋅R 3( )⋅ COS ω ⋅ t( ) + R4 + 2 ⋅d ⋅R3 + d2 ⋅R 2( )⋅ SIN ω ⋅ t( )2 +

R 4 ⋅ COS ω ⋅ t( )4 − 4 ⋅R 4 + 4 ⋅ d⋅R3( ) ⋅COS ω ⋅ t( )3 + 6⋅R 4 +12 ⋅ d ⋅R3 + 6⋅ d2 ⋅R2( )⋅COS ω ⋅t( )2 −

4 ⋅R4 +12 ⋅ d ⋅R3 + 12 ⋅d2 ⋅R 2 + 4 ⋅d3 ⋅R( )⋅ COS ω ⋅ t( ) + R4 + 4 ⋅d ⋅R3 + 6⋅ d2 ⋅ R2 + 4 ⋅ d3 ⋅R + d4

R2 ⋅ SIN ω ⋅ t( )2 +R2 ⋅COS ω ⋅ t( )2 − 2 ⋅R2 + 2⋅ d ⋅R( )⋅ COS ω ⋅ t( )+ 2 ⋅R2 + 2⋅ d ⋅R + d2

ϕ
R

R ⋅cos ω ⋅t( ) l ⋅cos α( )

α l



denominator and press again  to convert it to R2 . Select the 
expression 2 ⋅R2 + 2 ⋅ d ⋅R  and collect it to R + d( ) ⋅R ⋅2 . Select the 

expression R2 + 2 ⋅ d ⋅R + d2  of the denominator and collect it to 
R + d( )2

. Press  to put the whole expression on the stack. 
Now it looks much better:

R ⋅COS ω ⋅t( ) +

l ⋅
R ⋅COS ω ⋅t( ) − R + d( )( )2

⋅

R2 − R + d( )⋅R ⋅2 ⋅ COS ω ⋅t( ) + R + d( )2( )
R2 − R + d( ) ⋅R ⋅2 ⋅COS ω ⋅t( ) + R + d( )2

Store this in variable x  (small letter).

Now we are going to find an expression for the coordinate y . Enter 
R ⋅SIN ω ⋅t( ) − l ⋅ SIN α( ) .  Press  to take the expression in the 
EQW. In the EQW select the sub expression −l ⋅SIN α( )  and expand. 
Press  to put the expression for the y coordinate on the stack. 
The expression is:

which is again a monster that the HP49G can tame. select the whole 
sub expression under the square root and collect it. The HP49G fights 
bravely and manages to collect the sub monster, errh, I mean sub 
expression to 

R ⋅COS ω ⋅t( ) − R + d( )( )2
⋅

R2 ⋅SIN ω ⋅t( )2 +R2 ⋅COS ω ⋅t( )2 −

2 ⋅R2 + 2 ⋅d ⋅R( ) ⋅COS ω ⋅t( ) +

R2 + 2 ⋅ d ⋅R + d2

 

 

 
  

 

 

 
 

While in the EQW select the sub expression  
R2 ⋅ SIN ω ⋅t( )2+R2 ⋅ SIN ω ⋅t( )2

, and press  

to convert the selection to R2 . Select the sub 
expression 2 ⋅R2 + 2 ⋅ d ⋅R  and collect it to 
R + d( ) ⋅R ⋅2 . Select the sub expression 

R2 + 2 ⋅ d ⋅R + d2  and collect it to R + d( )2
.  

Select the whole denominator and collect to get 
the sub expression:

R ⋅COS ω ⋅t( )− R + d( )( ) ⋅

R2 ⋅ SIN ω ⋅ t( )2 + R2 ⋅COS ω ⋅ t( )2 −

2 ⋅R2 + 2⋅ d ⋅R( ) ⋅COS ω ⋅ t( ) +

R2 + 2 ⋅d⋅R + d2

 

 

 
  

 

 

 
 
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R ⋅SIN ω ⋅ t( ) +

l ⋅R ⋅SIN ω ⋅ t( )⋅

R 4 ⋅COS ω ⋅ t( )2 − 2 ⋅R 4 + 2 ⋅ d⋅R3( ) ⋅COS ω ⋅ t( ) +R4 + 2⋅ d ⋅R3 + d2 ⋅R2( ) ⋅ SIN ω ⋅ t( )2 +

R4 ⋅COS ω ⋅ t( )4 − 4 ⋅R4 + 4 ⋅ d ⋅R3( )⋅ COS ω ⋅ t( )3 + 6⋅R4 +12 ⋅ d ⋅R3 +6 ⋅d2 ⋅R2( ) ⋅ COS ω ⋅ t( )2 −

4 ⋅R4 + 12 ⋅ d⋅R3 + 12 ⋅ d2 ⋅R2 + 4⋅ d3 ⋅R( ) ⋅ COS ω ⋅ t( ) + R4 + 4⋅ d⋅ R3 + 6⋅ d2 ⋅ R2 + 4 ⋅ d3 ⋅R + d4

R3 ⋅ COS ω ⋅ t( ) − R3 + d ⋅R 3( )( ) ⋅SIN ω ⋅ t( )2 −R 4 ⋅ COS ω ⋅ t( )4 − 3⋅R 3 + 3 ⋅d⋅R 2( )⋅ COS ω ⋅ t( )2 +

3⋅ R3 + 6⋅ d⋅ R2 + 3 ⋅d2 ⋅R( ) ⋅COS ω ⋅t( ) − R 3 + 3 ⋅ d⋅R 2 + 3 ⋅d2 ⋅R + d3( )

ϕ
R

R ⋅sin ω ⋅t( )

l ⋅sin α( )

α l



Press  to convert R
2 ⋅ SIN ω ⋅ t( )2 +R2 ⋅ SIN ω ⋅ t( )2

 to R2 . Then 
collect 2 ⋅R2 + 2 ⋅ d ⋅R  to R + d( ) ⋅R ⋅2 , and R2 + 2 ⋅ d ⋅R + d2  to 

R + d( )2
. The expression for the y coordinate of the end of the metal 

arm looks now also much better. We still can't tell that it is an "easy" 
expression, but comparing it to what we started with, it is simpler:

R ⋅SIN ω ⋅ t( ) +

l⋅R ⋅SIN ω ⋅ t( ) ⋅
R ⋅COS ω ⋅t( ) − R + d( )( )2 ⋅

R2 − R + d( )⋅R ⋅2 ⋅COS ω ⋅t( ) + R + d( )2( )
R ⋅COS ω ⋅t( ) − R + d( )( ) ⋅

R2 − R + d( ) ⋅R ⋅2 ⋅COS ω ⋅ t( ) + R + d( )2( )
 

 
 

 

 
 

Store it in y  (small letter).

Before we do the plot for this parametric function, some words about 
the math capabilities of the HP49G. As you saw the expressions we 
deal with in this example are way not "easy". Nonetheless the HP49G 
is a great help. Consider for example how long it would take to do the 
same by hand. It is not only a matter "knowing how to" but also a 
matter of mistakes that one could do, for example because of 
forgetting a power, and the like. The calculator is no substitute for our 
thinking (fortunately) but rather a help for freeing us from the "dirty 
work" and letting us concentrate on the important things. Also notice 
that we didn't simply said, "HP49G think for me and simplify this 
expression". We considered the expressions, we decided what would 
be best to do, and tried it out. Of course, often our decision will not 
bring any advantages when it comes to simplifications. But with the 
HP49G this is not bad at all. Quite the contrary, it is very good. 
Because this way, after a certain amount of experience, we start 
"knowing" what some particular operation will give us, before we 
carry it out. Not exactly each and every terms of the result, but rather 
the overall shape of the result. Pattern recognition?

Curious as we are, we want to see what the above parametric function 

looks like. In order to plot it, we must store some values in the variables 
R , d , l, and ω . Store 1.  in R , 1.  in d , 4.  in l, and 1.  in ω . In the 
variables menu, press , enter i, press , then  and then . 
Store the resulting expression in EQ . In the PLOT SETUP  screen, 
set plot type Parametric , and set independent variable t . In the 
PLOT WINDOW − PARAMETRIC  screen, set H− View: from 
0.  to 6.  and V − View:  from −1.5  to 1.5 . Set Indep Low:  to 0. . 
When the input field High: is selected, enter the sequence 
2 π ∗ → NUM, to enter the numeric approximation of 2 ⋅π . 
Finally, enter the sequence 
2 π ∗ 50 / → NUM 
in the input field Step:. 
Press  and then 

. You get the "drop" 
at the right. Let's try another 
plot but now with a much 
bigger l. Store 18.  in l, set 
H− View: from 0.  to 34.  
and V − View:  from −8.5  to 8.5 ., and erase and draw again. This time 
you get a banana. What are that curves between l = 4. and l = 18.? Let's 
see. We will do a 
small program that 
draws the curves 
inside the above 
limits for a step of 
2. , that is for l = 4., 
l = 6. , up to l = 18.. 
Enter the program:

<<
ERASE DRAX
4. 18.
FOR I

I 'l' STO DRAW
2. STEP

>>
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Press  to let 
it run and watch 
how the generated 
curves change 
shape as l gets 
bigger and bigger. 
When the program 
finishes, press 
[arrow-left] to go 
the graphics 
environment, turn 
the HP49G 90° in 
clockwise direction, and see how drops and bananas can be combine 
to give us a pine.

This example of a parametric function shows also that interesting 
curves can be produced out of simple mechanisms. It would be a 
good exercise to think about some "machines", with connected wheels 
and arms and axes and gear, and try to use the HP49G for plotting the 
curves of some point of the moving parts of the machine. The 
resulting parametric expressions are most of the time rather 
"inconvenient" but with the brave HP49G on your side you will be 
able to defeat most of the monsters. But some of them, often the most 
"easy looking", will prove very very "noncooperative". Like 
Trabakoulas said, "Pattern recognition can get quite dangerous, when 
it comes to easy and difficult. Exact examination is far better."

We finish this part, and I think that it is time for me to go sleep about 
one week. I see curves and lines instead of pines, which means that I 
need a good old Lagavulin to return to reality. Take care and 'till next 
time.

Parametric greetings,
Nick.
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Hoi zämme!2 

The last part of this marathon has been quite…, well, marathonial. 
After that we will surely enjoy a part with much stuff to play with. As 
Trabakoulas says, "Learning is best made in the game". So, while 
other people are playing "how to be become of the master of the 
world", we ignore that totally uninteresting (and questionable) games, 
and we play again, what we play best: How much maths is possible 
on the HP49G?. From what we've seen until now, the answer to this 
question is "much, much more than we could imagine considering 
only the size of the machine. And who knows what is yet to come.

Until now we focused on functions of a single variable. But a 
function can have more than one variables. Consider the function 
f u,v,w( ) , which depends on the variables u , v , and w . If we 
consider any two of these variables, say v  and w , as quantities, the 
values of which we "hold" constant, then the function f u,v,w( )  can 
be considered as a function of a single variable, namely of u . We 
"freeze" both v  and w  at some arbitrary values, and consider how the 
function behaves when u  varies. That means, we consider the partial 
dependency of f u,v,w( )  on variable u . Then, the partial derivative 

of f u,v,w( )  for u  is 
∂f
∂u

. Actually the "curly" ∂  is used in 

mathematics for such partial derivatives. The normal derivative is 

denoted with "normal" d , i.e. 
df
dx

. But because the HP49G considers 

any variable that doesn't depend on the differentiation variable as 
constant, it uses only the symbol ∂ . Let's do some examples.

Enter X3 + 7 ⋅X2 ⋅ Y + 3 ⋅X ⋅ Y5 − 5 ⋅ Y6  and press  to make a 
copy of this expression. Let's find the partial derivative for X . Enter 
X  and then press  to get 3 ⋅ X2 + Y ⋅7 ⋅ 2 ⋅ X + 3 ⋅ Y5 . Expanding 

2 Swiss "Hi everybody", pronounced "Hoi tsama", or something like that. The 
letters of the alphabet are simply not enough to represent this singing language 
accurately.

this you get 3 ⋅ X2 +14 ⋅ Y ⋅ X + 3 ⋅ Y5  . Press  and let's find the 
partial derivative for Y . Enter Y  and press  to get 
7 ⋅ X2 + 3 ⋅ X ⋅ 5 ⋅ Y4 − 5 ⋅6 ⋅ Y5 . Expand this to get 
7 ⋅ X2 +15 ⋅ Y4 ⋅ X − 30 ⋅ Y5 . As you can see the HP49G has ordered the 
powers of X  in descending order. If you want to order for Y  powers, 
enter Y  and press  to get − 30 ⋅ Y5 −15 ⋅ X ⋅ Y4 − 7 ⋅ X2( ) . If 
you don't like the minus sign in front of the whole expression, then 
press , to get − 30 ⋅ Y5( ) +15 ⋅ X ⋅ Y4 + 7 ⋅ X2 . If you want 
ascending ordering, then set flag -114 and expand. The result is 
− 30 ⋅ Y5 −15 ⋅ X ⋅ Y4 − 7 ⋅ X2( ) , that means in ascending order of 

powers of X . If you now enter Y  and press  again, then 
you get 7 ⋅ X2 +15 ⋅ Y4 ⋅ X − 30 ⋅ Y5 , in which the powers of Y  are 
sorted in ascending order. The command EXPAND  orders the powers 
according to the flag -114. It prefers automatically the variable that is 
lower in alphabetical order. That means, if you have an expression with 
variables A  and B , then it will try to order for A  according to the state 
of flag -114. The command REORDER  allows you to select which 
variable's powers will be used for ordering. Clear flag -114 now.

Let's do some more examples. Enter:

∂
∂X

X + Y( )3 ⋅ eX⋅Y( )
and make a copy of the expression because we will need it more than 
once. If you press  now, you will get 

Y ⋅ X3 + 3 ⋅ Y2 + 3( ) ⋅X2 + 3 ⋅Y3 + 6 ⋅ Y( ) ⋅X + Y4 + 3 ⋅ Y2( )⋅ eX⋅Y . Press 

 to bring the expression:

∂
∂X

X + Y( )3 ⋅ eX⋅Y( )
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on stack level 1, and make another copy of it. Now press . The 
result this time is 3 ⋅ X + Y( )2 ⋅ eX⋅Y + X + Y( )3 ⋅ Y ⋅ eX⋅Y . This shows 
that EXPAND  and EVAL  are different things. They don't always 
return the same results when applied on algebraic expressions. The 
last result demonstrates also another fact. Suppose that for some 
reason you want to expand the factor 3 ⋅ X + Y( )2

 of the term 

3 ⋅ X + Y( )2 ⋅ eX⋅Y , but leave the rest of the expression unchanged. 
Interactively you would take the whole expression in the EQW, select 
3 ⋅ X + Y( )2

 using the arrow keys, and expand it. But there is no built-
in programmable command for doing the same from a program. We 
can't apply some command, like EXPAND  or COLLECT , to a part 
of an expression programmatically. One of the features I miss most on 
the HP49G is exactly this. The next pages will demonstrate an 
imperfect way to achieve this, which I nonetheless believe that it is 
good enough for generation of ideas.

Having the commands → LST  and → ALG , it is not difficult to 
make programs that apply some commands to a part of an expression. 
Let's examine these commands. With the expression 
3 ⋅ X + Y( )2 ⋅ eX⋅Y + X + Y( )3 ⋅ Y ⋅ eX⋅Y  on stack level 1, press  
to get:

3 X Y + 2 ^ ∗ EXP ∗ X Y + 3 ^ Y

∗ X Y ∗ EXP ∗ +
 
 
 

 
 
 

The first 7 list elements represent the expression 3 ⋅ X + Y( )2
 that we 

want to expand. Make a copy of the list. Enter 1, then 7 , and press 
 to create the sub list 3 X Y + 2 ^ ∗{ }. Now press 

 to convert the list to 3 ⋅ X + Y( )2
. Expand this expression to 

get 3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2  and press  to convert it to the list 
to 3 X 2 ^ ∗ 6 Y ∗ X ∗ + 3 Y 2 ^ ∗ +{ } . 

Press  to bring the big list to stack level 1. Now we will create the 

sub list of all elements that we didn't use, i.e elements 8  to last. Enter 8
and press  and then , to get 25. . Press  to get 
X Y ∗ EXP ∗ X Y + 3 ^ Y ∗ X Y ∗ EXP ∗ +{ } . 

Press  to add the the expanded sub expression to the list on stack level 
1. Now press  to get 
3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2( )⋅ eX⋅Y + X + Y( )3 ⋅ Y ⋅eX⋅ Y .

In general the method looks like this:

Step 1: Convert the algebraic object to its equivalent RPL list using 
the command → LST .

el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }
'arbitraryAlgebraic'

Step 2: Create the sub list that contains elements 1 up to n-1, where 
n is the first element that belongs to the sub expression 
which we want to manipulate.

el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }

el1 el2 … eln −1{ }

Step 3: Create the sub list that contains elements n up to n+m, 
where n is the first element and n+m is the last element of 
the sub expression which we want to manipulate.
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el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }

eln eln+1 … eln+m{ }

Step 4: Use → ALG  to convert the list eln eln+1 … eln+m{ }  
to its corresponding algebraic object.

eln eln+1 … eln+m{ }

'algebraicSubExpressionToBeManipulated'

Step 5: Apply the algebraic manipulation (EXPAND , 
COLLECT , etc.) to 
'algebraicSubExpressionToBeManipulated' .

'algebraicSubExpressionToBeManipulated'

'ManipulatedAlgebraicSubExpression'

Step 6: Convert 'ManipulatedAlgebraicSubExpression' to 

the list newEl1 newEel2 …{ }  with → LST .

NewEl1 NewEl2 …{ }

'ManipulatedAlgebraicSubExpression'

Step 7: Add NewEl1 NewEl2 …{ }  to the list 

el1 el2 … eln −1{ } .

NewEl1 NewEl2 …{ }el1 el2 … eln −1{ }

el1 el2 … eln −1 NewEl1 NewEl2 …{ }

Step 8: Create the sub list that contains elements n+m+1 up to the 
last, where n+m is the last element that belongs to the sub 
expression which we want to manipulate.

el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }

eln+ m+1 eln+ m+2 …{ }

Step 9: Add the sub list eln+ m+1 eln+ m+2 …{ }  to the list 

el1 el2 … eln −1 NewEl1 NewEl2 …{ } .
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el1 el2 … eln −1 NewEl1 NewEl2 …{ }
eln+ m+1 eln+m+2 …{ }

el1 el2 … eln −1 NewEl1 NewEl2 … eln+ m+1 eln+m+2 …{ }

Step 10: Use → ALG  to convert the last list to an algebraic 
object.

'NewAlgebraicWithManipulatedAlgebraicSubExpression'

el1 el2 … eln−1 NewEl1 NewEl2 … eln+ m+1 eln+m+2 …{ }

This is indeed a very easy thing to program. We will make a program 
that takes an algebraic object from stack level 2, and a list from stack 
level 1. The list contains will have three items. The first item is the 
manipulation that we want to apply to a sub expression of the 
algebraic object. It can be a command, like EXPAND , COLLECT , 
etc. But it can also be function, like SIN , COS , etc. It can be even a 
program, provided that the program takes exactly one algebraic object 
as input and returns exactly one algebraic as output. The second item 
is the position of the first RPL list element that belongs to the sub 
expression that we want to manipulate. The third item is the position 
of the last RPL list element that belongs to the sub expression that we 
want to manipulate. Here is the program listing:

<<
SWAP →LST
→ specs expr
<<

expr 1 specs 2 GET @Create first sub list

1 - SUB
expr specs 2 GET @Create sub list of alg.
specs 3 GET SUB @to be manipulated.
→ALG specs HEAD @Apply command. Add to
EVAL →LST + @first sub list.
expr 3 GET 1 + @Create third sub list,
OVER SIZE SUB + @add to the rest
→ALG @Convert to algebraic

>>
>>

This is the program APLAT (APpLy AT, name borrowed from 
Mathematica). To use this program we must first see how we number 
the elements of an algebraic expression, in order to be able to provide 
the program with correct information. If you didn't drop the last result 
of page 3-2, then stack level 1 must contain the expression 
3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2( )⋅ eX⋅Y + X + Y( )3 ⋅ Y ⋅eX⋅ Y . Let's see how the 

elements of this expression are numbered. 
We start numbering at the first element 
excluding parentheses, as parentheses are not 
included in the elements of the corresponding 
RPL list. (This is a result of the RPL 
method, which doesn't need any parentheses 
at all.) We count first the operands 
(arguments) and then the functions that act 
upon the operants. For example in the above 
expression, we start with 3 ⋅ X2 . The two 
arguments 3  and X2  are combined by ⋅  
(multiplication). The argument 3  has the 
number 1. The argument X2  is itself an 
expression, so we can't give it the number 2. 
This expression contains the two arguments 
X  and 2 , which are combined by ^  
(power). So, X  is number 2 , the power 2  is number 3, the power 
function ^  is number 4, and the multiplication of 3  with X2  is number 
5. The picture on the top of the right column illustrates this. That means, 
when we want to somehow manipulate the sub expression 3 ⋅ X2 , we 
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have to give the numbers 1 and 5  to our program.

The sub expression 3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2  includes elements 1 to 
17. Let' try our program. We will collect the sub expression 
3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2  but will leave the rest unchanged. Since the 
expression 3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2( )⋅ eX⋅Y + X + Y( )3 ⋅ Y ⋅eX⋅ Y  is on 
stack level 1, we don't need to type it again. Enter the list 
COLLECT 1 17{ }  and press . The result is 

X + Y( )2 ⋅3 ⋅ eX⋅Y + X + Y( )3 ⋅ Y ⋅ eX⋅Y . It worked!

But there are shadows on our way. The corresponding RPL list of an 
algebraic object contains no parentheses, but the algebraic object itself 
can contain parentheses. To understand the problem better we 
consider a simple example. Enter the algebraic object A + B + C . 
What problems can this simple expression bring? Well, set flag -53 
(to let all parentheses be shown), press  and then  to edit the 
expression in the command line. The expression is shown as 
'(A + B) + C' . There are invisible parentheses in this simple object!!! 
What does this mean for us? First of all, suppose we have A + B + C  
and we want to do something with the sub expression B + C . This 
means that we should give the program APLAT  the numbers 3  and 
5 , according to our numbering system. Press  to put the 
expression to the stack, and enter the list EXPAND 3 5{ }. Press 

 to (try to) expand the sub expression B + C . Of course in 
this example you can't expand anything, but this is only for 
demonstration purposes. The HP49G errors out with 
Bad Argument Type  and leaves 'Invalid Expression'  on stack 
level 1. What happened here? Press  and then drop the list. 
Now the object A + B + C  must be back on stack level 1. Press 

. The result is the list A B + C +{ } . Elements 3 to 5 
build up the sub list + C +{ } , out of which the program APLAT  
tried to make a sub expression. This list is of course not the 
corresponding RPL list of the sub expression B + C . Can we build up 
the sub expression B + C  out of the (current) algebraic object 

A + B + C? What numbers do we have to give to APLAT  to achieve 
this? The answer is: The current inner structure of the algebraic object 
A + B + C  makes this task impossible. In reality the object, as it is now, 
is A +B( ) + C . In this object the sub expression B + C  doesn't exist!!! 
Don't confuse this with the well known (and almost spontaneous) 
recognition of the pattern A +B( ) + C = A + B + C( ) , which 
"automatically" implies that our object is equivalent to A + B + C( ) , in 
which the sub expression B + C  does exist. The calculator doesn't have 
such "spontaneous" cognition capabilities. Before we go further take a 
look at the following table:

Algebraic Object RPL List Sub expression B + C
A +B( ) + C A B + C +{ } Doesn't exist

A + B + C( ) A B C + +{ } Elements 2 to 4

Though the two objects A +B( ) + C  and A + B + C( )  are mathematically 
equivalent, for the HP49G they are different!!

In this example, if you expand the current version of A + B + C , the 
calculator alters its inner structure from A +B( ) + C  to A + B + C( ) , i.e. 
from A B + C +{ }  to A B C + +{ } . Press , then 

, and then , to see the object in the form A + B + C( ) . Press 
 to put it back to the stack. Now of course you can enter the list 

EXPAND 2 4{ }  and press . But now the sub expression 
A + B  has become unavailable for partial manipulations. And the big 
problem is that there are simply too many internal rules that the HP49G 
uses in order to decide which sub expressions to put in parentheses. 
(And these rules are kept secret by the makers.) Wanting to make a 
program that will run successfully in any possible case, is like wanting 
to do reverse engineering on the whole CAS of the HP49G, and then 
make a program that "knows" all rules and all possible way to rearrange 
an expression. This would be also similar to mapping all properties like 
commutativity, associativity etc., to a single program… errrh, who's 
gonna do that? ;-)
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From the above paragraphs we see that it is not so easy to specify a 
mathematically valid sub expression of an expression on the HP49G. 
And since there are no built in commands that can give us some 
particular (mathematically valid) sub part of a given expression, I 
think we have a major disadvantage. We will return to these fields 
some day, in a special marathon run, but for now we take a look at 
three small programs that can bring us some light when we want to 
know exactly, what the internal structure of an algebraic object looks 
like.

First of all we make a program that 
converts a given algebraic object to a 
structured list. We continue using the 
example A + B + C  in its two different 
versions, A +B( ) + C  and A + B + C( ) . 
When the program is fed with 
A +B( ) + C , it should return the list 

A B +{ } C +{ }{ } , in which the sub 

expression A +B( )  (in the invisible 
parentheses) is put in a sub list, which 
itself is element of another sub list that 
contains the "rest". But when the program 
is fed with A + B + C( ) , it should return 

the list A B C +{ } +{ }{ } , in which 

the sub expression B + C( )  (in the 
invisible parentheses) is put in a sub list, 
which itself is element of another sub list 
that contains the "rest". The structured list 
that the program returns is one 
representation of the algebraic tree that 
builds up the algebraic object. Consider 
the following code:

<<
IF

DUP TYPE 9. ==
THEN

1. →LIST
END
1.
<<

IF
DUP TYPE 9. ==

THEN
OBJ→ SWAP 1. + →LIST
ALG→TREE

END
>>
DOSUBS

>>

This is the program ALG → TREE  that comes with this document. It 
takes one algebraic object from the stack and it returns its algebraic tree 
list. As you can see it calls itself over and over again, until the whole 
object has been processed. Let's try it. Enter:

Y ⋅ SIN X( )2 + Y −
1
2

 
 

 
 ⋅ COS X( )2

and make one copy of this algebraic object. Now press . 
The result is the list:

Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }{ }
If you imagine all but the outermost brackets away, then you have the 

list that the command → LST  would return. Press  and then 
. You get the list:

Y X SIN 2 ^ ∗ Y 1 2 / − X COS 2 ^ ∗ +{ }
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which indeed is equivalent to the tree list, up to additional structuring. 
The tree list, so to speak, includes the (invisible) parentheses that are 
present to algebraic objects, while the RPL list is the command 
sequence that produces exactly the same algebraic object.

Since we have a the program ALG → TREE , we are inclined to 
program the opposite, TREE → ALG . If we could somehow flatten 
the tree list, we would get the RPL list of the algebraic object, which 
we can convert to an algebraic object using → ALG . Here we can use 
the program FLATTEN  again, which we made in the Complex 
Numbers Marathon:

<<
1. CF
1.
<<

IF
DUP TYPE 5. ==

THEN
OBJ→ DROP
1. SF

END
>>
DOSUBS
IF

1. FS?
THEN

FLATTEN
END

>>

As you can see the program FLATTEN  is one of those that call 
themselves until some condition (here: flag 1 is clear) is true. Press 

 and then , to convert the tree list to the RPL list. Now 
you can press  to get the original algebraic object:

Y ⋅ SIN X( )2 + Y −
1
2

 
 

 
 ⋅ COS X( )2

The program TREE → ALG  can be easily made:

<<
FLATTEN →ALG

>>

Sometimes programs are easy ;-)

With the algebraic expression:

Y ⋅ SIN X( )2 + Y −
1
2

 
 

 
 ⋅ COS X( )2

on stack level 1, press  to get the algebraic tree list again. 
Now, press  to get the algebraic object out of the tree list.

Using the tree list we can introduce another numbering system for sub 
expressions. The first one that we used, was simply the range of 
position numbers in the RPL list of an algebraic object. For example the 
sub expression:

Y −
1
2

of the algebraic object:

Y ⋅ SIN X( )2 + Y −
1
2

 
 

 
 ⋅ COS X( )2

can be specified by the range 7…11 in the corresponding RPL list:

Y X SIN 2 ^ ∗ Y 1 2 / − X COS 2 ^ ∗ +{ }

The same sub expression can be specified by giving the position 
numbers of the sub lists, sub sub lists, and so on, of the corresponding 
tree list. The tree list of the above expression was:
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Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }{ }
In this list the sub expression:

Y −
1
2

is the 1st. element of the 2nd. 
element of the 1st. element of 
the tree list. That means that 
we can specify this sub 
expression by giving the 
"coordinates list" 1 2 1{ } . 
If we put away the first 
coordinate which is always 1 
(i.e. the expression itself) 
then we can specify the sub 
expression with 2 1{ } . 
Programming the extraction 
of sub expressions from 
algebraic objects is then easy:

<< DEPTH PICK3 ALG→TREE HEAD
→ alg part depth tree
<< tree part 1. << GET >>

IFERR
DOSUBS

THEN
DEPTH depth - 2 + DROPN
alg part
"Bad Part Specification" DOERR

ELSE
IF DUP TYPE 5. ==
THEN TREE→ALG
END

END
>>

>>

This is the program GETSUBEX  that comes with this document. It 
takes an algebraic object and a list with the sequence of sub parts that 
specifies the sub expression that we want. This list must not contain the 
first 1, which is the algebraic object itself. The program uses 
ALG → TREE  to convert the algebraic object to a tree list. Then it takes 
the parts specified by the "coordinates list". If it fails because of wrong 
part specification, it cleans up the stack and exits giving you a message 
Bad Part Specification . Else, you get the corresponding sub 
expression. In case the part specification specifies something different 
than a sub expression (a function, a variable, etc.) you get the 
corresponding object alone. (Not in an algebraic object). Let's give it a 
try.

Enter again:
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Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }{ }

First element of the 
tree list
(the expression itself)

Second element of 
the first element of 
the tree list

Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }

Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ }

First element of the 
second element of the 
first element of the 
tree list.

Y 1 2 /{ } −{ }



Y ⋅ SIN X( )2 + Y −
1
2

 
 

 
 ⋅ COS X( )2

then 2 1{ } , and press  to get:

Y −
1
2

The program GETSUBEX  can be used to implement partial algebraic 
object manipulation.

<<
→ alg manipart
<<

alg DUP
manipart 2. GET
GETSUBEX DUP
manipart HEAD EVAL
2. →LIST

↑ MATCH DROP
>>

>>

This is the program APLSUBEX. It takes an algebraic object from 
stack level 2, and a list from stack level 1. The list has two elements. 
The first is the command or program that has to be applied on some 
sub expression of the algebraic object. The second is a list that 
specifies the sub expression. Try it? OK! Enter:

Y ⋅ SIN X( )2 + Y −
1
2

 
 

 
 ⋅ COS X( )2

We will linearise the sub expression

SIN X( )2
.

This is sub expression 1 2{ }  of the algebraic object. Enter the list:

TLIN 1 2{ }{ }
Now press  to get:

Y ⋅
−1
2

⋅COS 2 ⋅X( ) +
1
2

 
 

 
 + Y −

1
2

 
 

 
 ⋅ COS X( )2

What problems does this program have?

Last thing that we do before returning to calculus is visualisation of such 
algebraic trees using a quite unorthodox method. It would be a 
cumbersome thing to program a graphics representation of the algebraic 
tree, but we don't need to do it. The HP49G has a built-in tree graphics 
generator. It is… the built-in filer!!! If we create an algebraic tree, then 
we can also create a directory structure based on that tree. For example 
consider the expression A + B . We can create a directory with the name 
+  (!) and in this directory we can create two sub directories with 
the names A and B . The filer of the HP49G will display the tree 
at the right. You may wonder how we can create a directory 
named + . But this is easy. We can enter the string "+ " and used 
the command S ~ N  to convert it to a name. So let's make a 
program that takes an algebraic tree and creates the appropriate directory 
structure:

<<
PATH @Store current path
→ path
<<

1. @Do to all elements
<< @of algebraic tree

CASE
DUP TYPE 5. == @If element is list

THEN @then call yourself
REVLIST TREE→DSTRUCT

END
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DUP TYPE {18. 14.} @If element is command
SWAP POS @or function

THEN
→STR S~N @then convert it to name
WHILE @Add character "´" to

VARS OVER POS @the name until it is
REPEAT @unique

"´" + S~N
END @Create sub directory
DUP CRDIR EVAL @and switch to that

END @sub directory
IF @If none of the above

DUP TYPE 6. ≠ @then if element is not a
THEN @name, then convert it

→STR S~N @to a name
WHILE @Add character "´" to

VARS OVER POS @the name until it is
REPEAT @unique

"´" + S~N
END

CRDIR @Create sub directory
END

>>
DOSUBS
path EVAL @switch to sub directory

>> @we came from
>>

This is the program TREE → DSTRUCT . It doesn't display the 
tree, it only creates the appropriate directory structure. We wrap it in a 
program that displays the directory structure as a tree.

<<
ALG→TREE @Create tree list
TREE→DSTRUCT @Create directory struct.
FILER @Run filer to view it
VARS HEAD PGDIR @Purge directory struct.

>>

This is the program VIEWALGTREE .  Let's try it. Enter 

A2 − 1⋅SIN ω ⋅t( )  and press . After some seconds the 
HP49G starts the filer and highlights the current directory in the 
directory tree. Press  a couple of times. You see the tree of the 
algebraic object in the 
filer. So that's another 
possible (mis)usage of 
the filer as a visualisation 
tool for algebraic trees. 
When you have 
wondered enough about 
other possible 
(mis)usage of the filer, 
press . This 
program will purge the 
root directory of the tree 
and all sub directories 
that were created in it, 
and then it will exit, The 
moral of the story is that 
we can use a screwdriver 
as a hammer or any other 
tool, if we only have 
enough fantasy.

Another consequence of the possible conversion of functions or 
command to names, is that we can have our own definition of any 
function. Consider the following example. e. Enter the program:

<< → x y
<< IF @If we have two numeric

x TYPE 3. == @vectors
y TYPE 3. == AND @then find dot product

THEN x y DOT @else find product
ELSE x y *
END

>>
>>
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Enter the string "∗" and press . You get '∗' , which is no more 
the function ∗ , but a name. Press . Now you have a new 
program named '∗' , which can be used for dot and normal products. 
For example enter 1. 2. 3.[ ]  and then 4. 5. 6.[ ]  (with decimal 

points after the numbers - we want numeric vectors), and press  
to get 32 . But enter 2  and 3  and press  to get 6 . Whenever 
you press the menu key , the new extended functionality will be 
used. But the normal multiplication key  still retains its normal 
functionality. The same applies when writing programs. When you 
press  while writing a program, then the multiplication sign ∗  
which refers to the new program will be placed in the program text. 
But when you press , the sign ∗  refers to the built-in multiplication. 
Now, press , then , and then  to put the quoted name 
'∗'  on the stack. Then press  to delete the program named '∗' . 
Just imagine how strongly extendable the command set of the HP49G 
can be, if we use this capability. And since only the variables are 
accessible that exist in the current path, we can even have many 
differently extended functions available in different directories. This is 
extensibility!!!

After this excursion to the forests of algebraic trees, let's return to the 
rocky paths of calculus. We examine partial derivatives of higher 
order. Consider a function f x,y( ) . We can differentiate this more than 
once. For example we can take the derivative for x  twice. Then we 
write (in mathematics text books):

∂2f x,y( )
∂x2

and on the HP49G:

∂
∂x

∂
∂x

f x,y( )( ) 
 

 
  or DERIV DERIV f x,y( ),x( ),x( )

We can of course also take the "mixed" derivatives, like:

∂2f x,y( )
∂x∂y

for which on the HP49G we write:

∂
∂x

∂
∂y

f x,y( )( ) 
 
  

 
 or DERIV DERIV f x,y( ),y( ),x( )

Let's have an example. We will find:

∂
∂X

∂
∂Y

X ⋅SIN Y( ) − Y ⋅COS X( )( ) 
 

 
 

using RPL syntax.

Enter X ⋅ SINY( ) − Y ⋅COS X( ) . Now enter Y  and press  to get 
X ⋅ COS Y( ) − Y ⋅COS X( ) . Enter X  and press  again to get 
COS Y( ) + SINX( ) . We do the same example using algebraic objects. 
Enter:

∂
∂X

∂
∂Y

X ⋅SIN Y( ) − Y ⋅COS X( )( ) 
 

 
 

or 

DERIV DERIV X ⋅ SIN Y( ) − Y ⋅COS X( ),Y( ),X( )
and press  to get SIN X( ) + COS Y( ) .

The "mixed" derivatives depend on the order of differentiation, i.e. in 
general:
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∂2f x,y( )
∂x∂y

≠
∂2f x,y( )

∂y∂x

But if the mixed derivatives are continuous functions of x  and y  in a 
given domain, then the mixed derivatives are equal to each other in 
this domain.

You remember that we have done a program for finding the 
differential of a monovariate function. Now we will extend this 
concept to functions of more than one variables. The total differential 
of such a function z = f x,y( )  is given by:

dz =
∂f x,y( )

∂x
⋅ dx +

∂f x,y( )
∂y

⋅dy

The same concept can be extended to functions of even more 
variables. For example consider z = f x1,x 2,x3 ,…( ) . The total 
differential of this function is:

dz =
∂f x1,x 2,x 3,…( )

∂x1

⋅dx1 +
∂f x1,x 2,x 3,…( )

∂x2

⋅dx2 +
∂f x1,x 2, x3 ,…( )

∂x3

⋅dx3 +…

If the partial derivatives are themselves continuous differentiable 
functions, then we can have total differentials of higher order. For 
example, consider the function z = f x,y( )  again. The total differential 
of second order is:

dz2 =
∂ ∂f x,y( )

∂x
⋅dx + ∂f x,y( )

∂y
⋅dy

 
 
  

 
∂x

+
∂ ∂f x,y( )

∂x
⋅ dx + ∂f x,y( )

∂y
⋅dy

 
 
  

 
∂y

=

∂2f x, y( )
∂x2

⋅dx2 + 2 ⋅ ∂f x,y( )
∂x∂y

⋅dxdy + ∂2f x, y( )
∂y2

⋅dy 2

The tiny quantities dx , dy , and so on, are considered to be constant.

We already made a program for finding the total derivative of a 
monovariate function. Now we make a program for finding the total 
derivative of a given order of a function of more variables. The program 
will take the function from stack level 3, the list of variables from stack 
level 2, and the order from stack level 1, and will return the total 
derivative introducing new variables dx , dy , which of course must not 
appear in the function.

<<
OVER
1 @Make list of dx , dy , 

etc.
<<

"d" SWAP + S~N
>>
DOSUBS
→ f vars ord dvars
<<

1 ord
START

f vars ∂ @Differentiate for all vars
dvars * @Multiply each partial
0 + Σ LIST @derivative by the approp.
EXPAND 'f' STO @dvar . Add all expressions

NEXT
f

>>
>>

This is the program Td  that comes with this document. To try it enter 
TAN X + Y( ) , then X Y{ } , and then 2  (second order), and press  
to get:

2 ⋅ dX2 + 4 ⋅dY ⋅dX +2 ⋅ dY2( ) ⋅TAN X + Y( )3 + 2 ⋅dX 2 +4 ⋅ dY ⋅ dX+ 2 ⋅ dY2( )⋅ TANX +Y( )
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If you want to focus on the tiny quantities dx , dy , then enter dx  and 
press  to get:

2 ⋅ TAN X + Y( )3 + 2 ⋅ TAN X + Y( )( )⋅ dX2 +

4 ⋅ TAN X + Y( )3 + 4 ⋅ TAN X + Y( )( )⋅ dY ⋅ dX +

2 ⋅ TAN X + Y( )3 + 2 ⋅ TAN X + Y( )( )⋅ dY 2

The meaning of the total differential can be made understandable by a 
geometric visualisation. It is the total change of a function of more 
than one variables, when each of the variables changes from x  to 
x + dx . The quantity dx  is arbitrary small but positive. The total 
differential is the fundament out of which we can calculate the 
maximum error of some quantity that is a function of more than one 
variables. For example, suppose that you are 
experimenting with an (approximately) ideal 
gas. You want to calculate its pressure P  by 
measuring its mass m , its temperature T , and 
its volume V , and use the formula:

P =
m ⋅R ⋅ T

M ⋅ V

In this formula the gas constant R , and the 
molecular weight of the gas M  are considered 
to be known without error. But the 
measurements of m , T  and V  can't be 
perfect. They will be measured with errors 
∆m , ∆T  and ∆V . The total change of the 
calculated pressure caused by the error in 
measurements will be:

∆P =
∂

m ⋅R ⋅ T
M ⋅ V
∂m

⋅∆m +
∂

m ⋅R ⋅ T
M ⋅ V
∂T

⋅∆T +
∂

m ⋅R ⋅T
M ⋅ V
∂V

⋅∆V =

R ⋅T
M ⋅ V

⋅∆m +
m ⋅R
M ⋅V

⋅∆T +
m ⋅R ⋅T
M ⋅V2 ⋅∆V

We use the absolute values of the partial derivatives, because they can 
sometimes be positive and sometimes negative. If we wouldn't use the 
absolute values, then the error ∆P  could be calculated less than its 
maximum value. We can make a program that derives the expression of 
the error of a calculated quantity out of the errors of the measured 
quantities, on which the calculated quantity depends. The program takes 
as arguments: The calculated quantity as a function of the measured 
variables from stack level 5, the list of measured 
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variables from stack level 4, the list of variables that are greater than 0 
from stack level 3, the list of variables that are less than 0 from stack 
level 2, and the list of maximum errors of the measured quantities 
from stack level 1. It returns the expression 
∆ variables( ) = function(variables)  out of which we can create a 
user defined function by pressing .

<<
PUSH
{ HOME CASDIR REALASSUME } RCL
→ alg vars posvvars negvvars

maxerrvvars assums
<<

-103 CF @Set real mode
vars '∆ ' APPLY @Create expression ∆ vars( )
IF

posvvars {} ≠ @If we have positive vars.
THEN

posvvars 1 @make appropriate assumptions
<< @for calculating the abs. value

"≥0" + "'" SWAP +
"'" + OBJ→ ASSUME
DROP

>>
DOSUBS

END
IF

negvvars {} ≠ @If we have negative vars.
THEN

negvvars 1 @make appropriate assumptions
<< @for calculating the abs. value

"≤0" + "'" SWAP +
"'" + OBJ→ ASSUME
DROP

>>
DOSUBS

END
alg vars ∂  ABS @Find maximum error
EXPAND
vars 1

<< @Create ∆ vars
"∆ " SWAP + S~N

>>
DOSUBS
DUP UNROT * 0 +
Σ LIST
SWAP maxerrvvars 2 @Create equations
<< = >> @∆ var=value
DOLIST
1 @and substitute in
<< SUBST >> @expression
DOSUBS =
{ HOME CASDIR } EVAL @Restore original
assums 'REALASSUME' STO @assumptions

>>
POP

>>

This is the program ∆MSRM . We test it with the above example of the 
ideal gas. Enter:

m ⋅R ⋅ T
M ⋅V

then the list of measured quantities m T V{ } , the list of positive 
quantities m T V M R{ } , the list of negative quantities { } , and 
the list of maximum errors in the measured quantities 
.00001 .01 .001{ } . (We could also enter ∆m ∆T ∆V{ }  if we 

want to have the symbolic result.) Press  to get:

∆ m,T,V( ) =
T ⋅R
V ⋅M

⋅.00001+
m ⋅R
V ⋅M

⋅.01+
m ⋅ T ⋅R
V2 ⋅M

⋅.001

If you now press  you will have the user function ∆  which will take 
the measured values of m , T  and V  from the stack, and return the 
maximum error for P , under the specified maximum errors of the 
measured quantities. (Of course you must substitute a numeric value for 
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the gas constant R in the formula.)

Since we have examine derivatives of functions of more than one 
variables, it is time to take a look at further possible usage of formal 

derivatives of more than one variables. For the derivative 
∂f x,y( )

∂x
 the 

HP49G writes d1f x,y( ) , when the function f  is undefined. Similarly, 

for the derivative 
∂f x,y( )

∂y
 it writes d2f x,y( ) , and for the derivative 

∂2f x,y( )
∂x∂y

 it writes d1d2f x,y( ) . We make an example of the usage of 

such formal derivatives as user defined functions.

We create first a sub directory. We are going to create some variables 
and so it is a good policy to create them in a separate directory for 
clarity and for preventing cluttering of the menu VAR. Enter 
something like 'EXMP1'  or similar and press . Switch to 
directory 'EXMP1' . Here we will do the whole work for the first 
example.

In the first example we want to find a formula for the difference 
CP −CV  between the heat capacity of a system at constant pressure 
and its heat capacity at constant volume. First the theory.

From general thermodynamics we have the definition of heat capacity 
Cv  of a system at constant volume:

Cv =
∂U
∂T

 
 

 
 V

(1)

U is the inner energy of the system, a function of its absolute 

temperature T  and of  its volume V . The differential quotient 
∂U
∂T

 
 

 
 V

 

in parentheses with the index V , denotes that we take the partial 

derivative for T  by holding the volume V  constant.

Similarly the definition of heat capacity CP  of a system at constant 
pressure is:

CP =
∂H
∂T

 
 

 
 P

(2)

H is the enthalpy of the system, a function of its absolute temperature T  

and of the pressure P . The differential quotient 
∂H
∂T

 
 

 
 P

 in parentheses 

with the index P , denotes that we take the partial derivative for T  by 
holding the pressure P  constant.

The definition of the enthalpy H  is:

H = U+ P ⋅ V (3)

Substituting this in (2) we get:

CP =
∂H
∂T

 
 

 
 P

=
∂ U+ P ⋅ V( )

∂T

 
 
  

 
P

=
∂U
∂T

 
 

 
 P

+
∂P
∂T

 
 

 
 P

⋅ V + P ⋅
∂V
∂T

 
 

 
 P

Now, since in this derivation we hold the pressure P  constant, the term

∂P
∂T

 
 

 
 P

⋅V

is 0 . So we get:

CP =
∂H
∂T

 
 

 
 P

=
∂U
∂T

 
 

 
 P

+P ⋅
∂V
∂T

 
 

 
 P
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We build up the difference CP −CV :

CP −CV =
∂U
∂T

 
 

 
 P

+ P ⋅
∂V
∂T

 
 

 
 P

−
∂U
∂T

 
 

 
 V

Now let's do that on the HP49G. Enter the definition of CP :

Cp =
∂

∂T
H T( )( )

and press , which stores the expression 
∂

∂T
H T( )( )  in variable 

Cp . Enter the definition of Cv :

Cv =
∂

∂T
U1T( )( )

and press  again to store 
∂

∂T
U1T( )( )  in Cv . We use U1T( )  to 

distinguish between the inner energy as a function of the temperature 
T  and the volume V  from the inner energy U2 as a function of the 
pressure P  and the temperature T . Enter the definition of the 
enthalpy:

H T( ) = U2 T( ) +P ⋅ V T( )

and press  to create the user defined function H.

Enter Cp − Cv  and press  to get the result 

− d1U1T( ) − d1U2 T( ) +P ⋅d1V T( )( )( ) , which is the same as:

∂U
∂T

 
 

 
 P

+P ⋅
∂V
∂T

 
 

 
 P

−
∂U
∂T

 
 

 
 V

but written differently. If you want you can use now our program 
dn → dv  to beautify the result and get:

−
∂

∂T
U1T( )( ) −

∂
∂T

U2 T( )( ) +P ⋅
∂

∂T
V T( )( ) 

 
 
 

 
 
  

 

For an ideal gas we have:

∂V
∂T

 
 

 
 P

= α ⋅V

where α  is the expansivity of the ideal gas. Enter d1V T( ) = α ⋅V T( )  
and press  to create the user defined derivative d1V. Let's find the 
difference CP −CV  for an ideal gas. Enter again Cp − Cv  and expand to 

get − d1U1T( ) − d1U2 T( ) +P ⋅α ⋅V T( )( )( ) . Again you can beautify this 

with dn → dv  to get:

−
∂

∂T
U1T( )( ) −

∂
∂T

U2 T( )( ) +P ⋅ α ⋅V T( ) 
 

 
 

 
 
  

 

Now enter CLVAR  to purge all variables in the directory. We will do 
the same example using different variable definitions. Enter 
Cp = d1H T( )  and press . Then enter Cv = d1U1T( )  and press  
again. We have defined the heat capacities using dn  syntax. We will 
work with an ideal gas again, so enter d1V T( ) = α ⋅V T( )  and press  
to create the user defined derivative d1V. Now instead of the user 
function H we are going to use the user defined derivative d1H . Enter 
d1H T( ) = d1U2 T( ) +P ⋅ d1V T( ) . Press  to make the definition. Enter 

Cp − Cv  and expand to get − d1U1T( ) − d1U2 T( ) +P ⋅α ⋅V T( )( )( )  again.

Yet another way to so that. Enter CLVAR  to clean up the directory. 
Now we will use the definition of the inner energy as a user function. 
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Enter U2 T( ) = H T( ) −P ⋅ V T( )  and press  to create the user 
function U2. We will use the derivative:

∂
∂T

U1T( )( ) = Cv

Enter d1U1T( ) = Cv  and press . This creates the user defined 
derivative d1U1T( ) .

We will also use the derivative of the enthalpy:

∂
∂T

H T( )( ) = Cp

Enter d1H T( ) = Cp  and press  to create the definition of the user 
defined derivative.

Now, enter:

∂
∂T

U2 T( )( ) −
∂
∂T

U1T( )( )

and expand to get − Cp − Cv −P ⋅ d1V T( )( )( ) , which beautified would 
be:

− Cp − Cv −P ⋅
∂

∂T
V T( )( ) 

 
 
 

 
 
  

 

Enter:

∂
∂T

U2 T( )( ) −
∂
∂T

U1T( )( ) +P ⋅
∂
∂T

V T( )( )

and expand again to get − Cp − Cv( ) .

The above examples show how well the HP49G can handle such formal 
derivatives. Especially the third demonstrates how to get results with 
"normal" variables out of only formally defined derivatives.

We are at the end of the first volume of the Basic Calculus Marathon. In 
the second volume we will continue with extrema of functions and other 
interesting things.

Before we go to sleep with smoking heads dreaming of the derivative of 
the derivative of Ouzo(Trabakoulas), we take a look at our program 
building (next page), which gets more and more crowded. How am I 
going to represent it when even more programs come?

∂
∂Nick

Greetings Nick( )( )
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∆QUOT

dF1F2

ISCONT?

->FACT

d1GAMMA

d1FACT

SECLINE

TANLINE

TANPARSEC

DY

POSNAME->TERMSdn->dv

dCOLLECT

ALGSAME

derΣ->Σder

dCOLEX

PATdΣ->Σd

REPLΣ

PATdCOLEX

TEST MATCH1

MATCH1

APLAT

TREE->ALG

FLATTEN ALG->TREE

GETSUBEX

APLSUBEX

TREE->DSTRUCT

VIEWALGTREE

Td

∆MSRM


