
Basic Calculus with the HP49G
Volume 1
By Nick Karagiaouroglou

Before you start working you should set your flags.
Enter the list { #A003008D8103F0h #0h #190101402000028h #0h } and press STOF

Key pressing conventions

Right shifted key

Unshifted key

Menu key (Soft key)

Left shifted key

Select the command from the
command catalog of the HP49G
or type it in the command line
and enter it

Alpha shifted key

- Press blue shift, hold it pressed,
press F1, and then release both
keys

- Press red shift, hold it pressed,
press key 6, and then release
both keys

Many, many special thanks to:

Thomas Rast for his ideas about formulae layout and font
usage for program listings and for the
humour.

Veli-Pekka Nousiainen for his ideas about key pressing conventions
and also for the humour.

And to all guys out there who still keep on wanting the marathons after so
many adventures.

Hi again everybody!

This marathon comes indeed with a long delay. Many reasons have
unfortunately made its completion a very hard job. It is as if problems
suddenly decided to appear all together. The worst of them is that
special kind of problem, because of which I exploded in the group. I
can hardly keep myself calm and sit down and write, but it seems that
mathematics has a calming influence on me. (Which can be used as
evidence that I can't be normal. ;-))

Anyway, before we start, some words and thoughts about
mathematics and the world. After some thousands of years of history
of humans, we have some real achievements and many mistakes.
Between these achievements we have sciences and poetry, economic
progress and technologies and many other things. But is there
anything else between our achievements, that resembles mathematics
in its search for the truth? Which of the human made achievements can
be said to have the same validity as for example, that A = A , that
something is identical to itself? (Might seem trivial, but its
consequences are huge!) Even what is considered today to be the most
beautiful poem, might be considered as trash after 1000 years. But
could we ever say that A ≠ A ? And if we do, what next? It turns out
that accepting the opposites of these basic axioms… makes everything
possible. We can accept these opposites and try to build new
mathematics out of them, but then each and every proposition will
automatically be a theorem. (This is a proven fact.) And that is simply
plain boring! If every statement is true, we have nothing interesting to
search for. We find automatically all possible truth, because then
everything is true. If we consider that we have great difficulties to
even grasp what A ≠ A should mean, we have to start suspecting that
our brain isn't made for boring things. That this built-in allergy
against A ≠ A is somehow protecting us from getting stupid.
(Though we can get stupid in myriad other ways. ;-)) So, having this
in mind, I ask again: Is there anything out there, with the same
endurance like mathematics? Empires rise and fall, technologies come
and go, religions appear and disappear, arts are in and then out. But
these simple things, like A = A remain. The tiny little letter, π , has a
career of some thousands of years behind it, and it doesn't look as if

its career would be approaching an end. It still is in your watch, in my
Mac, in our houses, literally everywhere. If we let aside anything to
which we hold because of belief, or tradition, or simply because we like
it, and if we keep only what we can trust most, what remains then? Isn't
that the simple crystal clear statements that built step by step the building
of mathematics? There is something true, something almost godly in
these statements. There is something about them, that makes it worthy
for everybody to get interested and start thinking about them. Perhaps
this is what made Paul Erdös say "he lives", when he meant "he does
mathematics", and "he died", when he meant "he stopped doing
mathematics". So, let's live again!

In the previous marathon, the Sequences, Series, and Limits Marathon,
we had a real hard time. The HP49G doesn't provide many things for
sequences and series, and so we had to program them ourselves. And in
order to program them, we had to first take a look many things in the
fields of sequences and series, which were of great importance and help.
But because the HP49G does provide a vast amount of built-in features
for calculus, this marathon will not be such a hard path. We will of
course have to program now and then, but most of the time we will use
the built-in features. There will be also a continuation of the calculus
marathon in future, after we will have examined vectors and matrices.
So this is going to be the Basic Calculus Marathon, or BACAMARA.
(Sounds like a card game, but we are still not at games theory.)

We start with the picture of a plot
of a function y = f x() , some
curve in general. If we consider
the difference ∆x = x1 − x0 = h ,
then the corresponding difference
of the values of y is:

∆y = y1 − y0 = f x1() − f x0() = f xo + ∆x() − f x0() = f xo + h() − f x0()

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-1

y1

y 0

x0 x1

P1

P0

y
1

− y
0

x
1

− x
0

α

The line that goes through
the points P0 and P1 is
one secant of the curve.
The slope of this line is:

∆y
∆x

= f x0 + h() − f x0()
h

= tan α()

The ratio
∆y
∆x

 is the

difference quotient. The
nearer the point P1 is to
the point P0 , the better
gets the description of the

curve with the difference
quotient at the point P0 . If
we slip the point P1 along
the curve towards the point
P0 , then the secant
approaches a limit
position, which is the
tangent of the curve at the
point P0 . The angle α
goes towards a limit, the
value ϕ0 , which is the
angle between the x-Axis
and the tangent. The
quantity tan ϕ0() is the
slope of the tangent and the slope of the curve itself at the point P0 .
That means, that when the point P1 approaches the point P0 , the

quotient
∆y
∆x

, approaches the slope of the curve at P0 . When the point

P1 approaches the point P0 , the difference ∆x approaches 0 . And so

we have that the slope of the curve at P0 is the limit of
∆y
∆x

 when

∆x → 0 . We can find the slope of any curve by finding lim
∆x→0

∆y
∆x

. This

limit, if it exists, is the differential quotient or derivative of y = f x() at

the point P0 It is denoted as ′ f x0() , or ′ y x= x0
, or

dy
dx





 x= x0

. From the

last marathon we remember that the limit from the left has to be equal to
the limit from the right. So, we have the definition of a function that has
a derivative at a given point:

A function has a derivative at x = x0 , iff both the
left and the right limits of the differential quotient
exist and they are equal to each other.

Another useful theorem for our purposes in this marathon is:

If a function has a derivative at x = x0 , then it is
for sure continuous at this point.

As we see, for a function to have a derivative at some point it is
necessary but not sufficient to be continuous at that point. There are
functions that are continuous at some point, but have no derivative there.
There are even functions that are continuous in some interval of x-values
and have no derivative at any point in this interval!

What does the HP49G provide considering all the above? Well, it
doesn't have a built-in function for finding difference quotients. But
why should it? Such things are piece of cake to program. A simple
program for this is on the next page.

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-2

y1

y0

x0 x1

P1

P0

y1 − y0

x1 − x0

y1

y0

x0 x1

P1

P0
y1 − y0

x1 − x0

<<
PUSH @Save current settings
→ f x x0 h @Store function, variable,
<< @point x0 and difference of

@x-values

f x x0 h + = SUBST @Find f xo + h()
f x x0 = SUBST @Find f xo()
- @Find f xo + h() − f x0()
h / @Find

f xo + h() − f x0()
h

EXPAND @make it beautiful.
>>
POP @Restore saved settings.

>>

Store that in ∆QUOT . (The character ∆ is , , .) Let's

try some examples. Enter X2 −1, then X , then 1, and then
1

10
. Press

the menu key . The result is
21
10

. Press to undo this

and get the previous stack. Drop the
1

10
, enter .1, and press

again to get 2.1, the numeric result for
21
10

. Notice that without

putting the whole thing between the pair PUSH−POP , the second
example would switch the calculator to approximate mode. Press
again , drop the .1 and the 1, and enter X0 and h. If you now
press , you get the result 2 ⋅ X0 + h , the symbolic expression
of the difference quotient. Of course we could use this result to find
that lim

h→ 0
2 ⋅ X0 + h = 2 ⋅ X0 . That is, we could use the difference

quotient to find the derivative of X2 −1 at X0 . Having 2 ⋅ X0 + h on
stack level 1, we could enter h = 0 and then press to get 2 ⋅ X0 .
But this isn't necessary, as the HP49G provides a big variety of
commands to find derivatives.

We stay a bit more at ∆QUOT . One could think that in case of numeric
calculation using the smallest possible numeric value for h would give
the best possible approximation for the slope of the function at some
point X0 . But there are problems. Let's try an example. We use
∆QUOT with decreasing values of h to calculate a good approximation
of the slope of SIN X() at X = π . Enter SIN X() , then X , then π , and
then 1E − 5 . Now press . The result is −.999999999984 ,
quite near to the correct exact result −1. Let's do the same for
h = 1E −10 . Press , drop the .00001 and enter 1E −10. Press
again . The result is now −.999999999996 , even nearer to
−1. Repeat for h = 1E −12 . Oops! Something went wrong here,
because now the result is 0. How can this happen? Well, in the
Sequences, Series and Limits Marathon we have examined many things
about the limited precision and accuracy of the HP49G. What we see
here is another result of these limitations. It helps to follow the program
for understanding what happens. So, we will debug it using the built-in
debugger of the HP49G. First of all, put all necessary arguments on the
stack. They are SIN X() , X , π and 1E −12. Press and then

 to recall the program to the stack. Now, press to go to the
menu PRG. Press twice and then to go to the debugger
menu. The first menu item from the left is . Press . This
starts the program on stack level 1, but halts it immediately before the
first command. (Note that the HLT announciator at the top of the screen
went on.) Now you can let the program run step for step. (This has
nothing to do with the step by step feature of the CAS.) Press .
This executes the next command in the program and halts the program
again. Since the first command was PUSH, nothing changes on the
stack. Note also that the command currently executed appears on the top
of the screen. Press to execute the next command. On the top of
the screen you see the local variables assignment: → f x x0 h .
Apparently the whole sequence counts as a single command. Notice also
how the arguments that stood on the stack, now are gone. They are
consumed because they are used by the command → . Pressing
again you see << t the top of the screen, which shows that we start
with the local variables procedure. The next displays f on the top

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-3

of the screen. Since this is a local variable without quotes, its
contents, SIN X() , are put on the stack. Continue pressing until
the command / is executed. Now stack level 1 contains

SIN π+ .000000000001() − SIN π()
.000000000001

We will need this expression again, so press to make a copy
of it on stack level 2. Notice that we affect the stack used by the
program, while the program is debugged. This is a very useful feature
of the HP49G, as it allows to test and check many things while a
program is single stepped. If you now press the menu key , the
next two commands in the program are displayed on the top of the
screen. These commands are EXPAND >> . Press . Here it
happens! The returned result is 0. . Press to let the program run
to the end and quit. Note that the announciator HLT is no more
displayed. Why did the HP49G returned 0. when it expanded

SIN π+ .000000000001() − SIN π()
.000000000001

 ?

Drop the 0. from stack level 1 and let's take a look at the above
expression. As you can see the expression contains real numbers
(numeric values). When we expand such expressions, the HP49G
"sees" the numeric values and decides to switch to approximate mode.
It uses then π 's numeric approximation, 3.14159265359 . The
expression is turned to

SIN3.14159265359 +.000000000001() − SIN 3.14159265359()
.000000000001

Then the sum 3.14159265359 + .000000000001 is evaluated,
which on an ideal machine with infinite precision should give
3.141592653591. But the HP49G has only 12 digits for real

numbers. And so 3.14159265359 + .000000000001 returns…
3.14159265359 ! So the expression has been converted to

SIN3.14159265359() − SIN 3.14159265359()
.000000000001

instead of

SIN3.141592653591() − SIN 3.14159265359()
.000000000001

From this point on it is clear that further evaluation will return 0. , since
on the numerator of the quotient we subtract SIN3.14159265359()

from SIN3.14159265359() . That shows that we can't just make h as
small as possible and expect to get the best possible numeric
approximation for the slope of a function. But fortunately we don't need
to bother which value of h is small enough for a good numeric result of
the slope, but also big enough to avoid such problems. (So why does
Nick write all this? He, he, just to have more stuff for the readers ;-))

And what happens if we don't use reals but exact numbers (integers)?
Let's see. Enter again SIN X() , then X , then π , and then 1E − 20.
Now, enter XQ to convert 1E − 20 to

1
100000000000000000000

Press . Now the result is the expression:

100000000000000000000⋅ SIN
100000000000000000000⋅ π +1

100000000000000000000



 



If you press at this point you will get −20676153.7357 ,

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-4

which means that the numeric problems strike back. In this case the
problems come because of two reasons. First, the numeric value of

100000000000000000000⋅ π + 1

100000000000000000000

is calculated as 3.14159265359 , and this is only an approximation.
The correct value should have been:

100000000000000000000⋅ π + 1

100000000000000000000
= π+ 1

100000000000000000000

That means that we should have at least a numeric approximation with
20 digits for π and in general for real numbers.

The second reason is that while the HP49G returns 0 if you expand
SIN π() , it returns −2.06761537357E − 13 if you expand

SIN3.14159265359() . While π is exact, the number

3.14159265359 is not exactly π .

In this particular case you can press with the expression

100000000000000000000⋅ SIN
100000000000000000000⋅ π +1

100000000000000000000



 



on stack level 1. This converts it to:

100000000000000000000⋅
COS

1
100000000000000000000



 


⋅ 0 +

SIN 1
100000000000000000000



 


⋅−1

















Pressing now will return the correct result, −1.

All the above shows us that caution is needed when working with
numeric expressions. (And that Nick will have enough stuff for all
marathons ;-))

As already said, the HP49G provides a great amount of commands for
finding derivatives and slopes. Let's take a look at them. We have the
function ∂ , which was also present at the HP48. This function has been
modified a little bit, so it doesn't work exactly like in the HP48. In RPL
syntax it takes the function from stack level 2, and the variable from
stack level 1, and returns the derivative of the function for the specified

variable. For example, enter e
SINW 2()

, then enter W and then press to

execute the function ∂ . The result is e
SINW 2() ⋅ COS W2()⋅ 2 ⋅ W . The

same can be done using algebraic syntax. Go to the EQW and press

to write the unfinished expression
∂
∂

() . The cursor blinks at the right

of the ∂ in the "denominator" to indicate that the HP49G expects you to

enter the variable of derivation. Enter W . Press to go inside the

parentheses and enter e
SINW 2()

. Now you have:

∂
∂W

e
SINW 2()





Press to put that on stack level 1. Before we go further, let's see
how the expression looks like when it isn't shown in pretty print. Press

 and then to edit the expression not in the EQW but in the
command line, where no pretty print is used. Now you see:
' ∂W EXP SIN W^2()()()' , which contains only one ∂ . The general

syntax of derivatives in the command line is ' ∂ var function()' , where
var stands for the variable of derivation and function for the function
whose derivative you want to find.

Press now to put the expression back to the stack. If you expand

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-5

it, then you get the same result as before, e
SINW 2() ⋅ COS W2()⋅ 2 ⋅ W .

Now we can see how we can find the slope of a function at a given
point. We can find the derivative and substitute the value of the
variable at that point. Our example from the previous page was to find
the slope of SIN X() at X = π . We enter SIN X() , then X , and then
we use ∂ . The result is COS X() . Now we enter X = π , we press

 and then , and we get −1. Or at the point where the
HP49G returns the result of the derivation COS X() , we enter the list
X{ } , then we enter π , we press to create the list X π{ } and then

we press to use the function (where). The result COS π() can
be expanded then to −1. In this case we didn't enter the list X π{ }
directly because this would create a list which contains the function π
and not the algebraic object π . If you enter π{ } , press and
then , you see that its object type is 18. (function). But if you
enter π alone and press , then the result is 9. (algebraic object).
That means that π is a function which puts the algebraic object π on
the stack. Since the function doesn't work with arguments of type
function, it would error out.

We can use the function in an easier way that also looks better. Go
to the EQW and enter:

∂
∂X

SINX()()

Select the whole expression and press to write to the right of the
expression. Complete the expression to

∂
∂X

SINX()()
X =π

Press to put the expression on the stack, and expand it to −1.

Another way to find a slope, inherited from the HP48, is to find the
derivative for some variable, in which we have stored a value. For
example, store π in variable T . Go to the EQW and enter:

∂
∂T

SIN T()()

Put that on the stack and expand. The result is −1. The HP49G found
the derivative of SIN T() to be COS T() , and then proceeded using the
value π stored in T , found COS π() , and expanded that to −1. But
note: If the variable is the current VX , then we get problems. Suppose
the current VX is X . If you store π in X , enter

∂
∂X

SINX()()

and then expand, you get the question to purge the current variable. If
you choose "No", then the operation errors out with
Mode Switch Cancelled". If you choose " Yes ", then X is
purged and the calculation returns COS X() , because the variable X
doesn't exist any more. In this case instead of expanding you can press

 twice, to avoid the question about purging the current variable.

We continue examining the behaviour of ∂ . A very interesting question
is, what happens when we take derivatives of expressions with variables
that themselves contain other expressions. Since there is a big number of
cases and sub cases, we try to go as systematically as we can. (Or
rather, as systematically as Nick can imagine ;-)) First we are going to
store some expressions in some variables.

Store X2 in R .

Store SIN Y() in S .

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-6

Store S2 −R in U.

We also need some user defined functions.

In the EQW enter:

V X() =
X3

X −1

Put the equation in the stack and press to create the user defined
function. The same way create the user functions:

W R() = R ⋅ R +1()

Z R,X() =
R − 1

X

Q S() =
S
R

Last thing, we create user functions with RPL syntax. Enter:

<< → X
 << 0 1 3 FOR I
 X I R→I ^ +
 NEXT
 >>
>>

Store it in Z1. Now enter the program:

<< → R X
 << R EXP S EXP + X / >>
>>

Store it in Z2 .

Now we are ready to start examining what ∂ does, when applied to
different combinations of functions and expressions
with variables that contain other expressions.

Enter 'R' (with quotes) and press to make
copy it on stack level 2. Press to take the
derivative of R for R . The result is 1, which
shows that ∂ didn't care about the fact that X2 is
stored in R . If you enter 'R' and then X , and take
the derivative, then you get a fat 0 , which again
shows: When some expression is on stack level 2
and we take its derivative for some of its variables
using the function ∂ , then derivation is carried out without first
evaluating that variable. This is good for finding slopes of functions by
storing something in the variable for which we take the derivative and
then using ∂ , as we already saw on the previous page. Another example
of this case: Enter S2 , then 'S' (with quotes) and press to get 2 ⋅ S .
The same will happen if you enter

∂
∂S

S2()

from the EQW and press . If you expand instead of evaluating,
then not only the derivative 2 ⋅ S will be returned, but also evaluation of
S will be carried out after derivation, and the result will be 2 ⋅ SIN Y() .

If you want to first evaluate some variable contained in an expression,
and then take the derivative, you have to press first. For example,
enter U2 . We stored S2 −R in U, SIN Y() in S , and X2 in R . If you

want to take the derivative of the evaluated expression U2 for X , then
press first. This completely evaluates U2 to
SIN Y()4 − 2 ⋅ X ⋅SIN Y()2 + X4 . Now you can enter X , press and

then expand, to get − 4 ⋅X ⋅ SIN Y()2 − 4 ⋅ X3() .

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-7

U2

S2 −R()2

SIN Y()2 − X2()2

A problem that we have is, how could we for example take the
derivative of the partially evaluated U2 for S? If we evaluate U2 ,
evaluation goes all the way down and doesn't stop at any intermediate
step. That's what the command SHOW is for. If you enter U2 , then

'S' (in quotes) and press , then evaluation will stop when the

variable S is shown. This will result in S2 −R()2
, allowing us to

enter 'S' and take the derivative, by pressing .

Until now we have seen that ∂ doesn't evaluate the variables of
expressions. However, ∂ shows a special behaviour when the
expression, which we take the derivative of, is a user defined
function. Let's take a look at that. Enter V X()2

 and then X . If you
now press then the derivation takes a bit longer, and returns:

2 ⋅
X3

X −1
⋅

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1()

This shows: Since V is a user defined function, V X()2
 is first

evaluated to:

X3

X −1



 



2

and then derivation for X is carried out! For the function ∂ , the user
defined functions are much like the built-in functions. Exactly the
same result will be returned if you enter

∂
∂X

V X()2()
and then evaluate. If you enter

∂
∂X

V X()2()
and expand, then you get the result:

4 ⋅X3 − 6 ⋅ X2()⋅
X3

X −1
X2 − 2 ⋅ X + 1

This is a bit strange, since it is indeed correct, but not completely
expanded. You can press once again, to get the completely
expanded form. If you enter

∂
∂X

V X()2()
and then press or , nothing happens and the
expression remains unchanged on stack level 1. This might seem not
good, but it allows to collect unevaluated differential forms, which for
example can be used to bring differential equations to a much more
readable form. For example, enter

∂
∂X

V X()2()⋅ X +
∂

∂X
V X()2()⋅ A

and press , to get

X + A()⋅
∂

∂X
V X()2()

If you want the opposite to happen, then don't press or ,
but press . (is the first menu item of menu
CONVERT/REWRITE. If you press with the last result still on
stack level 1, then you will get

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-8

X ⋅
∂

∂X
V X()2() + A ⋅

∂
∂X

V X()2()

Is there any way to transform the sub expression

∂
∂X

V X()2()
of the above expression to

2 ⋅ V X()⋅
∂

∂X
V X()()

getting thus a form that contains only differential forms of the function
V X() , but not of V X()2

? Yes, there is. Leave the last result on stack
and press . Then press the menu key , and activate the
option _Step/ Step. Press twice to return to the stack. Press

 to copy

X ⋅
∂

∂X
V X()2() + A ⋅

∂
∂X

V X()2()
to stack level 2. If you evaluate, then you get

2 ⋅ A + 2 ⋅ X() ⋅V X() ⋅
∂

∂X
V X()()

Press to swap stack levels 1 and 2. If you now expand, then you
get the result:

2 ⋅ A + 2 ⋅ X() ⋅
X3

X −1
⋅

X −1() ⋅
∂

∂X
X3() − X3 ⋅

∂
∂X

X −1()
SQ X −1()

This is the same like the result on stack level 2, but the user defined
function V X() has been additionally evaluated and the derivative

∂
∂X

X3

X −1



 



has been rewritten as

X −1()⋅
∂

∂X
X3() − X3 ⋅

∂
∂X

X − 1()
SQ X −1()

according to the rules for differentiating ratios. Now, deactivate the step
by step feature. We will see more about this feature later on.

The next question is: what happens when we take the derivative of some
user defined function, to which we have given a variable as argument,
that itself contains some expression? Enter the expression V R() . Now,
enter 'R' and press . The result is… 0 ! Perhaps it seems a bit
strange, because the expression V R() does contain R and taking the
derivative for R , we would expect some result different than 0 . But it is
completely understandable, if we think again about the special behaviour
of ∂ when we take derivatives of user defined functions. In this case the
user defined function is evaluated before derivation. This means that
V R() was first evaluated to

R3

R − 1

Then, R was evaluated, which returned

X6

X2 −1

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-9

since R contains X2 . It was this expression of which the derivative
for R was taken. And since the expression

X6

X2 −1

doesn't depend on R , the derivative was 0 . Enter V R() again, then
enter X and press to get the result

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1()
which is the derivative of the completely evaluated user defined
function V R() for variable X .

Things go different if you use algebraic syntax. Enter

∂
∂R

V R()()

If you evaluate this, then the result is:

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

which is the derivative of the user defined function V R() , where the

argument R hasn't been evaluated to X2 . But let's be organised and
get a systematical overview.

The problem that arises is, how to let V R() be evaluated up to

R3

R − 1

and then take the derivative, without replacing R by its contents first?
Well, here comes a hidden super command, the command QUOTE ,
which is perhaps one of the most underestimated commands of the
HP49G. QUOTE is much like putting variables in expressions in an
additional pair of single quotes, giving us the power to control exactly
what is evaluated. You know of course that for example entering R will
put X2 on the stack, because X2 is stored in R . But entering 'R' will
simply put 'R' on the stack without evaluating the variable. We extend
this concept for algebraic expressions. Go to the EQW and enter
V QUOTE R()() . This is much like as if we had entered V 'R'() . Press

 a couple of times, because we will need several copies of this
expression. If you now press , then the result will not be

X6

X2 −1

but

R3

R − 1

When we evaluate V R() , all possible evaluations are carried out before
the user defined function is evaluated itself. That means, that R itself is
evaluated, and since it contains X2 the user defined function V is given
the argument X2 . But when we evaluate V QUOTE R()() , it is as if we

were evaluating V 'R'() , and the quotes around R prevent it from being

evaluated, thus giving R and not X2 to the user defined function V .
Press to drop the result

R3

R − 1

and bring V QUOTE R()() on stack level 1. Enter 'R' (in quotes) and

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-10

press to get

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

This is the derivative of the user defined function V R() evaluated up
to:

R3

R − 1

The more demanding people will say now, "Yes, but the result is not
completely expanded and if I expand now, I will get again an
expression containing X s." And here we have the whole glory of
QUOTE . You can even quote more than once. Enter
V QUOTE QUOTE R()()() , which is much like V ''R''() . Enter 'R'

and press to get:

QUOTE R() −1()• 3 • QUOTE R()2 • d1QUOTE R() − QUOTE R()3 • d1QUOTE R()
SQ QUOTE R() − 1()

If you evaluate now, you will get

2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1

which is the fully expanded result that still contains R s and not X s!!
Superb, isn't it? The first QUOTE prevented variable R from being
evaluated when we took the derivative. The second prevented it from
being evaluated when with pressed . The sub expression
d1QUOTE R() might puzzle you, so here is a small explanation. This
expression means the derivative of the function QUOTE for its first
argument, R . When the HP49G has to take a derivative from a
function of which it doesn't know what the derivative is, it returns

such expressions. Since the function QUOTE simply returns its
argument quoted, the expression d1QUOTE R() is the same as:

∂
∂R

'R'()

which the next evaluation turned to 1, leaving the final result correct.
The bigger explanation about such expressions will be given later on.
Note also that in the above examples we used EVAL rather than
EXPAND , because the latter would have expanded the expression
completely. For example, if you enter V QUOTE R()() and expand,
then the user defined function V is given the argument R and the
intermediate result is:

R3

R − 1

But EXPAND goes further after this, finds out that R contains X2 and
evaluates R , giving you the final result,

X2()3

X2 −1

If you want to enter the derivative for R in algebraic syntax, then you
don't need to quote. You simply enter

∂
∂R

V R()()

If you evaluate this, then the result is:

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-11

the same like using QUOTE once in RPL syntax. For being able to
completely expand afterwards without evaluating R , you enter:

∂
∂R

V QUOTE R()()()

and evaluate twice to get:

2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1

which is the same result like using QUOTE twice in RPL syntax.

And further we go: What happens when a user defined function
contains a variable in which we have stored some expression
containing other variables? Take for example the user defined function
W R() = R ⋅ R +1() . Its argument, R , is also a global variable which

contains X2 . How are such things evaluated? Here we have to always
remember first: The local variables are completely different entities
from those that exist globally. As long as the user defined function is
evaluated, all evaluations of local variables do nothing more than
simply putting the contents of the local variables on the stack. The
user defined function W in RPL syntax would look like:

<< → R @Store argument in local R
@which doesn't have to do
@anything with the existing
@global R, that contains X^2

 << R @Put contents of local R on
 R @the stack twice. Don't evaluate

@these contents further.
 1 @Enter 1.
 + @Calculate R+1
 * @Calculate R*(R+1)
 >>
>>

If you enter X and press the menu key , then X is stored locally in
R . This local R exists only while the algebraic R ⋅ R +1() is evaluated.
It disappears afterwards. The variable R in the defining procedure
R ⋅ R +1() is not the global variable R which contains X2 . The result is

X ⋅ X +1() and not X2 ⋅ X2 +1() .

The question is, what happens if we give 'R' as argument for W ? Well,
then the global name R is stored in the local name R . Throughout
evaluation of R ⋅ R +1() , the contents of the local R are put on the stack,
but not evaluated any further! Since those contents are the global R , it is
the global R that is put on the stack and doesn't get evaluated. When the
user defined function finishes, it leaves R ⋅ R +1() on the stack, but now
R is the global name. Now we can evaluate or expand R ⋅ R +1() , to let

the global variable R be also evaluated and replaced by X2 .

If you on the other hand enter W R() and evaluate or expand, then the
evaluation will return R ⋅ R +1() , R being the global variable as above.

But this will be further evaluated, replacing R with its contents X2 . The
overall evaluation will return X2 ⋅ X2 +1() . Notice the difference to RPL
syntax. Why is there a difference? Well, this is completely logical. In
RPL syntax, you enter 'R' and apply the user function W on that
argument. Since all contents of the local variable are simply put on the
stack, the result is R ⋅ R +1() . But when you explicitly evaluate W R() ,
this includes EVALuation of the result R ⋅ R +1() , which results in

X2 ⋅ X2 +1() . Evaluating W R() is meant inclusively for the global

variable R that is contained in the result R ⋅ R +1() . The important thing

to note here is that it is not the local variable R that returns X2 in any
way. To understand this better, take a look at the following user defined
function (next page):

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-12

<< → R @Store argument in local R
@which doesn't have to do
@anything with the existing
@global R, that contains X^2

 << R @Put contents of local R on
EVAL @stack and evaluate.
R @Contents of local R on stack

@these contents further.
 1 @Enter 1.
 + @Calculate R+1
 * @Calculate R*(R+1)
 >>
>>

If you enter 'R' and let this program run, then the following happens:
First, the global name R is stored in the local name R . Then the
contents of the local name R are put on the stack. This puts 'R' on the
stack. Then we explicitly evaluate the object on stack level 1, which is
the global 'R' . This puts X2 on stack level 1. Then once again, the
contents of the local name R are put on the stack. This puts 'R' on the
stack once again. We add 1, and so we get R + 1. Then we multiply
and thus we get X2 ⋅ R + 1() as result.

Now what happens if we take derivatives of such functions? Here the
rule that we already know also applies. The user defined function gets
evaluated first, and then derivation follows. Enter W X() and then X .
Press to get the result X +1+ X . The user defined function W X()
was first evaluated, and that returned X ⋅ X +1() . Then the derivative
for X was found, X +1+ X . (If you enter X and press , then the
result is X ⋅ X +1() . If you enter X again and press then you get
the same result, X +1+ X .) Exactly the same if you enter

∂
∂X

W X()()

and press . If you press instead of , then the

result will be 2 ⋅ X +1, that is completely expanded.

Now the tricky part. If you enter W R() , then 'R' and then press , the
result is… 0 ! And it complies to the rule: The user function W R() is
evaluated first. We already said that evaluating W R() (algebraic syntax)

goes all the way down and returns X2 ⋅ X2 +1() . If we take the

derivative of this expression for R , we get 0 , because the expression
doesn't contain R . The same happens if you expand or evaluate the
expression

∂
∂R

W R()()

But if you enter 'R' , and then press , then enter 'R' again and then
press , the result will be R + 1+R . As we already saw, in RPL
syntax no evaluation of the global variable R took place. So, we get the
result R ⋅ R +1() when we apply the user defined function W on the
argument 'R' which is on the stack. After this there is no user defined
function that has to be evaluated before taking the derivative. The
expression R + 1+R doesn't contain any user defined function, and so
∂ simply takes the derivative of this expression.

The technique using QUOTE can also be used here. If you enter
W QUOTE R()() , then 'R' and then press , the result will be
R + 1+R and not 0 . In algebraic syntax, if you enter

∂
∂R

W QUOTE R()()()

and press , the HP49G returns the result:

d1QUOTE R()⋅ QUOTE R() +1() + QUOTE R() ⋅d1QUOTE R()

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-13

If you evaluate this again, you get 2 ⋅R + 1.

If you enter W R() , then X , and then press , then the result is

2 ⋅ X ⋅ X2 +1() + X2 ⋅2 ⋅ X . This shows again, the evaluation of W R()

took place, the way we already know, which returned X2 ⋅ X2 +1() ,

and then the derivative for X of this result was found. The strange
thing comes now. I would expect that evaluating

∂
∂X

W R()()

wouldn't return 0 . But it does! In this case the uniformity of the
behaviour breaks down. Because if the user defined function W R()
would be first evaluated following the rules on the previous page,
then the result of this evaluation should have been X2 ⋅ X2 +1() .
Taking the derivative afterwards should return
2 ⋅ X ⋅ X2 +1() + X2 ⋅2 ⋅ X and not 0 . So here we have a problem
because the rules are broken. The conditions that must be true in order
for this problem to appear are:

1) We have a user defined function that uses local names which also
exist globally.

2) We give that user function the global name as argument, which it
also uses itself locally.

3) We use ∂ in algebraic syntax.

I would be very glad if someone could put some light in this mystery,
so if somebody out there starts experimenting, then please post your
results and tell us more about this question.

For user defined functions that use both variables in which we didn't
store anything and variables that do contain something, the same rules
apply in combination. Try some examples for yourself using the user
defined function Z with different combinations of arguments.

Taking the derivatives of user defined functions follows the same rules,
also when the functions are nested. For example, enter W V X()() , enter

X and then press to get the expression:

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() ⋅
X3

X − 1
+1



 


+

X3

X − 1
⋅

X − 1() ⋅3 ⋅X2 − X3

SQ X −1()

How is this result produced? Let's follow what the HP49G does. First
the most inner function, V X() , was evaluated, and returned:

X3

X −1

which was used as argument for the function W . The calculator has
evaluated

W
X3

X − 1



 



This produced

X3

X −1
⋅

X3

X −1
+1



 



This result was then differentiated for X and produced the final result.
Exactly the same would happen, if we entered

∂
∂X

W V X()()()

and evaluated.

Now we do the same using variable R as argument. If you enter 'R' ,

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-14

then press , then press , enter 'R' again, and press , you
find:

R − 1() ⋅3 ⋅R2 −R3

SQR − 1() ⋅
R3

R − 1
+1



 


+

R3

R −1
⋅

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

If you enter W V R()() , then 'R' and then press , then you find 0 .
In the first case, the HP49G used the argument which we gave it,
namely 'R' and just applied the user functions V and W on this
argument. Since the result didn't contain any user defined functions
any more, the function ∂ just differentiated what it found on the
stack, without any evaluation. In the second case however, the
function ∂ found an expression that contained user defined functions,
so it evaluated them first, found

X6

X2 −1
⋅

X6

X2 −1
+ 1



 



and so the differentiation for R returned 0 .

Until now we used user defined functions with an algebraic
definition. But we can also use RPL definitions that return an
algebraic object. For example enter

∂
∂X

Z1X()()

and expand to get 3 ⋅ X2 + 2 ⋅X +1. Alternatively you can also enter
Z1X() , then X , and then press to find the derivative.

Using the same thoughts like before, we can predict what will happen
if we evaluate

∂
∂R

Z1R()()

Since Z1 has to be evaluated first, the following happens:

<< → X @Store global 'R' in local X
 << 0 @Enter 0
 1 3 FOR I @Do with I from 1 to 3
 X @Put contents of local X on

@the stack. This puts 'R' on
@the stack.

 I R→I @Put I on the stack, make it integer
 ^ @Find 'R^I'
 + @Add to the 0 that we entered at the

@start of the program. (The next
@times 'R^I' will be added to the sum
@that is already on the stack.)

 NEXT @Increment I, do again
 >>
>>

In all the above events, R never gets evaluated and so the result of this

function is R + R2 + R3 , and not X2 + X2()2
+ X2()3

. That means, the

next thing that happens, taking the derivative for R , will return
1+ 2 ⋅R + 3 ⋅R2 . Enter

∂
∂R

Z1R()()

and evaluate to see for yourself. Of course, if you enter

∂
∂R

Z1R()()

and expand instead of evaluating, then after the result 1+ 2 ⋅R + 3 ⋅R2
has been found, the HP49G doesn't stop but proceeds, replacing R

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-15

with its contents, which are X2 (and doing some reordering). So the

result of expanding is 3 ⋅ X2()2
+ 2 ⋅X2 + 1.

On the other hand, if we enter Z1R() , then 'R' and press to find
the derivative, the result is 0 . Evaluate Z1R() to understand why. In
this case R itself is evaluated before Z1. What will be returned if you
take the derivative of Z1QUOTE R()() for 'R' ?

The function ∂ can also be used for carrying out formal derivations.
For example, enter F X() and then X , and then press to get
d1F X() . This result denotes the derivative of F X() for the first
variable, which is X . Enter F X,Y() and then Y and press again to
get d2F X,Y() . This means the derivative of F X,Y() for the second
variable, which is Y . For now, we only note that such formal
derivations are "not clear to the users that the great makers1 left
uninformed". If you enter F X T()() then T and then press , the

result is d1X T()⋅ d1F X T()() . The result means the product of the

derivative of the "inner" function X T() for its first variable T , and the

first derivative of the function F X T()() for its first variable, which
is…? Yes, that's the question. If the HP49G means that the first
variable of F X T()() is X T() then the result is OK. But if it means that
it is T , then the result is wrong! This is one of the problems that
occur to us, uninformed users, if on the one hand, notions like

F X T()() or F
X
Y

,
Y
X





 are allowed, but on the other hand the notion

dnF X T()() , or dnF
X
Y

,
Y
X





 is used to represent formal derivatives,

where n gives the nth variable of the function. If only functions of
names as variables were allowed, like for example F X,Y() , then we
1 ACO and the professor.

could always say what the first and what the second variables are. But if

we allow such things like F
X
Y

,
Y
X





 , go figure out what the first variable

of that expression is. (If you tend to say that the first variable of

F
X
Y

,
Y
X





 is X then wait until we examine such formal derivatives in

much more detail.)

Especially for such expressions like F X T()() , we can't use X T() as the
variable of differentiation when we use ∂ because this function only
accepts as arguments a function (or name) on stack level 2 and a name
on stack level 1. This means also that it can't be used for finding such
things, like for example

∂
∂SIN X() SIN X()()

without any further manipulations. This example could be solved by

entering
∂

∂T
T() , then entering the list T SINX(){ } , and then using the

function . This returns the correct result 1. Note that entering
∂

∂T
T() ,

then T = SIN X() and pressing will error out. We will examine
such strange looking derivatives in more detail later on, and we will
return to them when we take a look at derivatives of parametric
functions.

We go a little further examining formal derivatives. They always appear
when the HP49G doesn't know how to take the derivative of a function.
This happens when some undefined abstract function has to be
differentiated. If the definition of F X() doesn't exist in the current path,
then using ∂ to take the derivative for X , will return d1F X() . This
means, as already said, the derivative of F X() for its first variable,

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-16

which is X . It is really amazing how much can be done with such
expressions. Enter for example F S() , then Y , and press to find
the derivative. The same considerations like on the previous pages,
are the explanation for the result that we get. Since S contains
SIN Y() , the result is COS Y()⋅ d1F SINY()() . The HP49G used the
chain rule to return the product of the derivative for Y of the inner
function SIN Y() , with the derivative of the outer function. As the

latter is totally undefined, the HP49G returns d1F SIN Y()() , to denote
that derivative in a general abstract way. If on the other hand, we

evaluate or expand
∂

∂Y
F S()() , we get 0 . In the first case, using RPL

syntax, the function ∂ evaluated the variable S in F S() , and the

result was F COS Y()() . Then, the derivation for Y was carried out,

and COS Y()⋅ d1F SINY()() was found. In the second case, using

algebraic syntax, The HP49G didn't care to evaluate S in F S() first,
and so the derivation for Y returned 0 . At this point, it would be
better to collect all the cases in a single table, for a better
understanding of the behaviour of the function ∂ . I made two tables
for this. The first is on the next page and contains cases of
differentiation of an expression or a user defined function. The second
table is on the page after the next and contains the cases of
differentiation of a function that isn't defined, that is cases of formal
differentiation. In both tables, regions with the same colour are those
which return their results using the same mechanism. That means, that
it is not the same result that makes up a region, but rather the same
way that is followed by the HP49G to return these results. The formal
derivatives, will be also our entrance to yet another neglected feature
of the HP49G, its further capabilities for handling formal derivatives
in combination with user defined derivatives. He, he, this machine
has much too much stuff that we forgot about. But what a marathon
would it be without presenting exactly this stuff?

Before we take a look to those forgotten features, let's do some
examples that are more complex. We use what we know until now, to

explain how the results are derived. Keep all variables and user defined
functions because the following examples use them.

Enter F V X()() , then enter 'R' (in quotes) and press . The result is 0 ,
as we expect, because as we have seen already, the user defined
function V X() (argument of F) is evaluated before differentiation. This
gives:

F
X3

X − 1



 



Now, the HP49G sees that this function, though undefined, doesn't
depend on R , because R doesn't appear as an argument of F . So the
derivative is found to be 0 .

If you enter F V X()() again, but then take the derivative with respect to
X using the function ∂ , then the result is:

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() ⋅ d1F
X3

X −1



 



How is that result produced? Let's follow again our known rules. First
of all the function V X() is evaluated. The result of this action is:

X3

X −1

This is used as argument for the undefined function F , that is we get:

F
X3

X − 1



 



This result is then differentiated for X . According to the rules of

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-17

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-18

 0

**

2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1
 0

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

V QUOTE R()()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R)

*

2 ⋅ X3 − 3 ⋅ X2

X2 − 2 ⋅ X + 1

 0
X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() 0

V QUOTE X()()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >>)

 0
R − 1() ⋅3 ⋅R2 −R3

SQR − 1()
X2 −1() ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1() 0

V R()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R)

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() 0
X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() 0

 0

 'X'

 2 ⋅R + 1

 'R'

V X()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >>)

 0

 'X'

 2 ⋅R + 1

 'R'

R2 +R
(X2

 stored in R)

 Variable of deri-
 vation
Expression

RPL Syntax: Enter expression then variable, then use ∂
Algebraic Syntax:

Enter
∂

∂ var
Expression() , then evaluate or expand

QUOTE R() −1()⋅ 3 ⋅QUOTE R()2 ⋅d1QUOTE R() − QUOTE R()3 ⋅d1QUOTE R()
SQ QUOTE R() −1()

* Result is
EVALuate again to
get the result in
the table** Result is

QUOTE X() −1() ⋅3 ⋅ QUOTE X()2 ⋅d1QUOTE X() − QUOTE X()3 ⋅d1QUOTE X()
SQ QUOTE X() − 1()

No evaluation
of expression
variables
before
differentiation.

Evaluation of
function
before
differentiation.

Evaluation
argument of
function and
of function
before
differentiation.

Evaluation of
function but
not of its
argument
before
differentiation.

derivation we get:

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() ⋅ d1F
X3

X −1



 



where the expression:

d1F
X3

X −1



 



stands for the formal derivative of:

F
X3

X − 1



 



Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-19

0*** d1F QUOTE R()()0d1F R()F QUOTE R()()
X2

 stored in R

02 ⋅R ⋅d1F R2()4 ⋅X3 ⋅d1F X4()0F R2()
X2

 stored in R

0d1F R()2 ⋅ X ⋅ d1F X2()0F R()
X2

 stored in R

* d1F QUOTE X()()d1F X()F QUOTE X()()
2 ⋅ X ⋅ d1F X2()02 ⋅ X ⋅ d1F X2()0F X2()

F X()

00

d1F X()

'X'

0

'R'

 d1F X()

'X'

0

'R'
 Variable of deri-
 vation
Expression

RPL Syntax:
Enter expression then variable,
then use ∂

Algebraic Syntax:

Enter
∂

∂var
Expression(), then evaluate

* EVALuate again to get d1F X()

Formal differentiation with expansion
of intermediate differential forms.

Expansion of differential forms like

d1F QUOTE X()() to d1F X() .

No expansion of the differential forms

like d1F QUOTE X()() . Using

EXPAND instead of two EVALs will
expand such forms to forms like

d1F X() .

** EVALuate again to get d1F X2()

Evaluation of the argument of the
undefined function before
differentiation.

No evaluation of the argument of the
undefined function before
differentiation.

No evaluation of the argument of the
undefined function before
differentiation. No expansion of the
differential forms like

d1F QUOTE R()() Using EXPAND

instead of two EVALs will expand

such forms to forms like d1F X2() .

*** EVALuate again to get d1F R() . An additional EVAL will return d1F X2()

That means a derivative which can't be explicitly found, since F is
undefined.

We make the last example trying to find the derivative of V F R()() for

R and for X . If you enter V F R()() , then 'R' , and then press , you
are going to get 0 . This shows again, that the argument of F , which
is R , gets evaluated to its contents, which are X2 . After this we have

V F X2()() , which differentiated for R must return 0 , since it doesn't

depend on R . But if you enter V F R()() , then X , and then press ,
you get:

F X2() −1()⋅ 3∗F X2()2
⋅ 2 ⋅ X ⋅ d1F X2() −F X2()3

2 ⋅ X ⋅d1F X2()
SQF X2() −1()

Let's see how this was produced. First, the argument of F was
evaluated. This argument was R , and since X2 is stored in R , the
result of the evaluation was X2 . This was used as argument for F ,
and since F is undefined, we simply get F X2() . This expression was

used as argument for V . So instead of getting

X3

X −1

we got

F X2()3

F X2() −1

Next, the differentiation for X was carried out. According to the rules
of differentiation for a ratio, we have:

∂
∂X

F X2()3

F X2() − 1









 =

F X2() −1() ⋅
∂

∂X
F X2()3() −F X2()3

⋅
∂

∂X
F X2() −1()

SQ F X2() −1()
If we carry out the derivations of the right hand side of the last equation,
keeping in mind that d1F X2() is the formal derivative of F X2() , then we
see that the result returned by the HP49G was correct (inside the frame
of its own evaluation rules).

Do some examples for yourself and try to predict the behaviour of the
function ∂ , using the knowledge that we have so far. Remember that
QUOTE can also be used with formal functions, which means that
F QUOTE R()() is perfectly OK.

We proceed with some unexpected features regarding such formal
derivations. First of all, the meaning the expressions d1F X() is: The
derivative of F , for its first variable. "First" means really the order of
appearance of the variable inside the parentheses. We make an example.
Enter:

∂
∂X

F Y,X()()

and expand. This will return d2F Y,X() , which means the derivative of
F for its second variable, which is X . Such derivatives add really great
power to the HP49G and they are not only of cosmetic nature. Suppose
for example that you have the expression

∂
∂X

F X() ⋅G X()()

Expanding this you will get the result G X() ⋅ d1F X() +F X()⋅ d1G X() .
This result has been calculated using the product rule of derivation. If
you have the derivative of some complex expression, in which many

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-20

functions are combined in many different ways, then this feature can
break the derivative into many small pieces, each of which contains a
derivative of a single function for a single variable. Consider for
example:

∂
∂X

F X()⋅ G X()2

G X() + X




 




In this form it is really hard to say how the derivatives of the functions
participate to built-up the whole derivative. Bur expanding this, you
get the result:

G X()3 − X ⋅ G X()2() ⋅d1F X() + G X()2 + 2 ⋅ X ⋅ G X()() ⋅F X() ⋅ d1G X() − G X()2 ⋅F X()
G X()2 + 2⋅ X ⋅G X() + X 2

This contains only derivatives of a single function for a single
variable, which makes easier to see how the differential forms
participate to built-up the derivative

∂
∂X

F X()⋅ G X()2

G X() + X




 




If you have taken some thermodynamics class, then you surely know
how easier life can get with this feature. We will have some examples
on this later on, when we know enough about derivatives on the
HP49G.

Another very special feature of such formal derivatives is that in some
sense they are not special at all! Enter for example d1F and press

 to find out that this is simply a name with object type 6. What
does this imply? Well, sometimes we know the derivative of some
function but we don't need the function itself for our work. On the
HP49G we can not only define functions but also derivatives, that is,
we can make not only user defined functions but also user defined
derivatives. Suppose for example that we know that the derivative of

F X,Y() for X is eX2 ⋅ Y ⋅ X − Y − 2() . We go to the EQW, we enter

d1F X,Y() = eX 2 ⋅Y ⋅ X − Y − 2() , we press to put the equation on
the stack and we press . Then a new variable d1F is created, which
contains:

<< → X Y 'EXP(X^2*Y)*(X-Y-2)' >>

Later on, we might have to calculate something like for example:

∂
∂X

F X,Y()()





2

eX⋅Y

If you expand this without having made the definition of d1F X,Y() , you
will get:

d1F X,Y()2

eY⋅X

But if the derivative d1F X,Y() is defined in the current path, you get:

eX2 ∗Y ⋅ X − Y − 2()()2

eY⋅X

If you now press and then , you get:

e2⋅Y⋅X 2 − Y⋅X ⋅ X − Y + 2()()2

The user defined derivative d1F X,Y() was evaluated just like any other
normal function. It used the arguments X and Y and returned the result

eX2 ⋅ Y ⋅ X − Y − 2() according to its definition.

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-21

Alternatively you can use it also in RPL syntax. Enter the arguments

X and Y and press to get the result eX2 ⋅ Y ⋅ X − Y − 2() .

We had good news until now, so it's time for some bad news. There
are also problems with the notation like d1F X() . One of the problems
is, as we already noticed, that we are allowed to build-up things like

d1G
X
Y





 that don't have a distinct order of their arguments. At the

same time the information about the variable of differentiation is coded
as a number between the small "d" and the name of the function. In
the above example, which is the first variable? If you say that it is X ,
then let's have an example to convince you about the problem. Enter

∂
∂X

G
X
Y









 



Press to get:

d1G
X
Y







Y

This agrees with the theory that the first variable is X , because we
differentiated for X and we got an answer that contains:

d1G
X
Y







But according to this, if we differentiate for Y , we must get an
answer that contains:

d2G
X
Y







Enter:

∂
∂Y

G
X
Y









 



and expand. You get:

−
X ⋅ d1G

X
Y







Y2 (Gasp!!!)

If X is the first variable, why then is Y ... also the first variable? The
result contains:

d1G
X
Y







which is the same like before, the derivative of G
X
Y





 for its first

variable, though we differentiated for Y and not for X this time.

The notation:

∂
∂X

Function arguments()()

is much more precise than the notation d1Functionarguments()
because the first explicitly shows the variable with respect to which we
are taking the derivative, no matter if it is the first, the second or the
twentieth.

This shows that the notation d1Functionarguments() is only thought
for a listing of arguments, be them simple names or expressions, inside
the parentheses. For example evaluating

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-22

∂
∂Y

G X,Y()()

or

∂
∂X

G X,Y()()

will return results that can be interpreted easily, like d2G X,Y() or
d1G X,Y() . When some argument is not a simple name, like for
example in

∂
∂X

G
X
Y









 



we run into troubles, because of the ambiguous interpretation of the
expression:

d1G
X
Y







in the result.

From the above I might have created the impression that for example
the expressions

∂
∂X

G X2()()
and d1G X2() are at least theoretically equal. But this isn't true (at least
in the CAS world of the HP49G). If you enter

∂
∂X

G X2()()

and expand, you get 2 ⋅ X ⋅ d1G X2() . This means that for the HP49G the
relation holds:

∂
∂X

G X2()() = 2 ⋅ X ⋅ d1G X2()

The two expressions,

∂
∂X

G X2()()
and

2 ⋅ X ⋅ d1G X2()
differ by a factor of 2 ⋅ X , and so the expressions

∂
∂X

G X2()()
and

d1G X2()
are not identical! Only in cases where the function has simple names as
arguments, like for example G X,Y() , the two notations

∂
∂X

G X,Y()()

and

d1G X,Y() are equivalent. The expression:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-23

∂
∂X

G X2()()
means the derivative of G X2() according to the chain rule, that is the
product of the "inner" derivative with the "outer" derivative. The
expression d1G X2() means the derivative of G X2() with respect to…

X2(!!!) Now we can perhaps see better, what is meant by first,
second, and so on arguments of such expressions. The expression:

dnG arg1,arg2,…,argm()

means the derivative of G for its nth argument, counting the "slots"
between the commas and not the names of variables that appear in the
arguments, which themselves can be arbitrary expressions. That
means, that for example:

d2G SIN X(),COS X()()
is equivalent to the expression:

∂
∂COS X() G SINX(),COS X()()()

which is impossible to write directly with the HP49G! It it also totally
impossible to do? Well, let's see. First, we have to get an idea of what
such a derivative means.

A derivative
∂f x()
∂x

 of a function f x() can be understood as the rate of

change of f x() in relation to the rate of change of x . This means that
knowing it, we also know how the values of f x() alter when x itself
alters. The notion f x() shows that the function f depends on x .

When x changes, then f x() (in general) also changes. But we can also
consider how some function f x() changes when some other function
g x() changes. For example, we can consider what SIN X() does, with
corresponding changes of COS X() . And this can be written as:

∂
∂COS X() SINX()()

How to deal with such expressions?

Since both things depend on X , we can use parametrisation. We define
t = COS X() , where t is a new variable, defined as a function of the
variable X . Enter the equation t = COS X() . Now, if we solve
t = COS X() for X , we are going to get X as a function of t . Enter X
and press . The result is:

X = − 2 ⋅ n1⋅π + ACOS t()() X = 2 ⋅n1⋅ π + ACOS t(){ } .

This can be substituted in SIN X() , in order to convert it to a function of

t . Enter SIN X() , press and then . Now you have:

SIN − 2 ⋅n1⋅ π + ACOS t()()() SIN2 ⋅ n1⋅π + ACOS t()(){ } .

Now, if we consider the expression

∂
∂COS X() SINX()()

again, we see that SIN X() can be replaced by either:

SIN − 2 ⋅n1⋅ π + ACOS t()()()

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-24

or:

SIN2 ⋅n1⋅ π + ACOS t()()

And COS X() can be replaced by t . So the derivative

∂
∂COS X() SINX()()

can be written as:

∂
∂t

SIN − 2 ⋅n1⋅ π + ACOS t()()()()
or:

∂
∂t

SIN 2 ⋅n1⋅ π + ACOS t()()() .

With the list:

SIN − 2 ⋅n1⋅ π + ACOS t()()() SIN2 ⋅ n1⋅π + ACOS t()(){ }
on stack level 1, enter t and press to get the list:

COS 2 ⋅n1⋅ π + ACOS t()()() ⋅ 1

1−SQ t()

COS 2 ⋅n1⋅ π + ACOS t()() ⋅−
1

1− SQ t()

















Press to explode the list. Press to get rid of the element
count. Now the expression

COS 2 ⋅n1⋅ π + ACOS t()() ⋅−
1

1− SQ t()

is on stack level 1. Press to get :

− t ⋅ COS 2 ⋅n1⋅π() − − t2 −1() ⋅ SIN2 ⋅n1⋅π()() ⋅
1

1− SQ t()










Since the HP49G still has no integer assuming capabilities, we must do
a bit of work by hand. Press to get this in the EQW. Since n1 is
integer we know that COS 2 ⋅n1⋅π() is equal to 1 and SIN2 ⋅n1⋅π() is
equal to 0 . Edit the expression and change it to:

− t ⋅1− − t2 −1() ⋅ 0()⋅
1

1− SQ t()










Press to put it on the stack. Expand it to get:

t ⋅ − t2 −1()
t2 −1

Press and follow the same instructions to change the expression:

COS 2 ⋅n1⋅ π + ACOS t()()() ⋅
1

1− SQ t()

to:

−
t ⋅ − t2 −1()

t2 − 1

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-25

Now we rebuild the list. Enter 2 and press to get:

t ⋅ − t2 −1()
t2 −1

−
t ⋅ − t2 − 1()

t2 −1









These are the two possible results of

∂
∂COS X() SINX()()

written as functions of the variable t , for which we have defined
t = COS X() . We can use this formula to do back substitution. Enter
t = COS X() and press to get:

COS X() ⋅ − COS X()2 − 1()
COS X()2 −1

−
COS X() ⋅ − COS X()2 − 1()

COS X()2 −1





 





 

Press to convert − COS X()2 −1() to SIN X()2
 and get:

−
COS X() ⋅ SINX()

SINX()2

COS X() ⋅ SIN X()
SINX()2









The two expressions in the list are the results of the differentiation:

∂
∂COS X() SINX()()

Leave them on the stack, as we are going to use them in some
minutes.

If we want to visualise the above, then we can plot all points that have as
x-coordinate COS X() and as y-coordinate SIN X() . It sounds familiar,
doesn't it? Yes, this is the built-in plot type Parametric . Perhaps now
it is more clear, that we used parametrisation to find the above
derivative. Let's see how we do parametric plots on the HP49G. First of
all, for two dimensional parametric plots the HP49G uses complex
quantities. The real part is used for plotting the horizontal coordinate,
and the imaginary part is used for plotting the vertical coordinate. For
example, if you have some parametric function, like:

Y X() X = t2

Y = t − 1





where the coordinates X and Y depend on the parameter t , then the
complex quantity that the HP49G plots, is t2 + t −1()⋅ i . That's what
you have to store in EQ, in order to use the plot type Parametric . In
our example we have found how y = SINX() changes, when
x = COS X() changes. The horizontal and vertical coordinates depend
on the parameter X . So we will plot COS X() +SIN X() ⋅ i .

Press and hold down and while you hold this key down, press .
The PLOT SETUP screen appears. Choose Parametric plot type.
Move to the input field EQ: and enter COS X() +SIN X() ⋅ i . Enter X in
the input field Indep: , since X is our parameter. Note that in this type
of plot, Indep: is not the horizontal coordinate! Now, press and hold
down and while you hold this key down, press to go to the
PLOT WINDOW − PARAMETRIC screen. Set horizontal view
from −2 to 2 , and vertical view from −1 to 1. Set Low: to 0 and
High: to 6.28 . (This is approximately from 0 to 2 ⋅π .) Set Step: to

0.314 . (Approximately
π

10
.) Now press and then .

You get a circle, that starts at COS 0(),SIN0()() = 1,0() , goes once

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-26

around the plot origin in clockwise direction, and ends again at 1,0() .
The slope of the curve at any point of the circle is given by what we
have found, that is by both formulae in the list:

−
COS X() ⋅ SINX()

SINX()2

COS X() ⋅ SIN X()
SINX()2









In this list, the
variable X is no
more a parameter
but a coordinate,
namely the
h o r i z o n t a l
coordinate. This is
exactly why we
have two formulae
for the slope. If
you take an
arbitrary value for
the X coordinate between −1 and 1, then the are two vertical
coordinates Y that correspond to it. And so we also have two
derivatives. We want to superimpose the plot of the derivatives with
the parametric plot. The derivatives are functions and so we might be
inclined to change the plot type to Function . But this would cause
problems. While the horizontal coordinate of the parametric plot goes
from −1 to 1, the corresponding horizontal coordinate of the functions
should be from 0 to 6.28 , exactly like the values for the
parameter X of the parametric plot. This would plot the derivatives
in a way that corresponding horizontal coordinates of the parametric
plot and its derivatives wouldn't coincide. We must find another way
to plot the derivatives. One option is to plot them also as parametric
functions. Consider for example the first formula in the above list,
which defines the function:

y = −
COS X()⋅ SIN X()

SIN X()2

We can turn it to a parametric function by writing:

x = COS X()

y = −
COS X()⋅ SIN X()

SIN X()2

Note that we didn't simply set x = X , because we want to stay
compatible to the first plot, in which the horizontal coordinate x was set
equal to COS X() . (The variables x and X are not the same!) Our
parametric representation of the first derivative is:

COS X() + −
COS X() ⋅ SINX()

SINX()2




 


 ⋅ i

Since we have two derivatives, we must also plot two parametric
functions. That means that we must enter the list:

COS X() + −
COS X() ⋅ SIN X()

SIN X()2



 


 ⋅ i COS X() +

COS X() ⋅ SIN X()
SIN X()2 ⋅i









in the input field EQ: of the PLOT SETUP screen. (When the
reserved variable EQ contains a list of parametric functions rather than a
single parametric function, then all parametric functions are plotted
together.) Press to leave the plot, and then - to go back
to the PLOT SETUP screen. Select the input field EQ:. Because
entering a function can be a tedious task without the EQW, and because
you can't enter the list directly in the EQW, you can temporarily leave
the PLOT SETUP screen, build-up the list using the stack, and return
to the PLOT SETUP screen with the list later. Press to go to

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-27

the interactive stack, which still contains the list with the two
derivatives. The small arrow at the right of the stack level number 1
indicates that the object in this stack level can be used for further
operations. Press . This echoes the list to the command line,
which we came from. (The command line of the input field EQ:.)
Press to leave the interactive stack and return to the
PLOT SETUP screen. Now you see that the list waits in the
command line to be entered in the input field "EQ:". Press [ENTER]
to put it in the input field EQ:. This is not exactly the list that we have
to plot, so we must edit it. Select the menu input field EQ: and press

 until you see over the key . Press to
temporarily leave the PLOT SETUP screen. Now you are on the
stack. This is not the same operation like pressing , as it copies
the contents of the selected input field on a new empty stack. It also
starts the normal stack environment instead of sending you to the
interactive stack. This new stack can be thought a separate private
stack of the input field EQ:. The global stack is also preserved but is
temporarily hidden, so don't worry as we are not going to lose
anything. The top part of the screen still shows the title of the input
screen that you came from, as an aid for letting you know exactly
where you are. Also, the message Enter function(s) to plot
appears on the top of the screen to indicate exactly which input field
will receive what you enter now. The previous contents of the input
field EQ: are put on the stack. We have to change this list to:

COS X() + −
COS X() ⋅ SIN X()

SIN X()2



 


 ⋅ i COS X() +

COS X() ⋅ SIN X()
SIN X()2 ⋅i









We are going to use the list processing capabilities of the HP49G.
Enter i and press to multiply both objects in the list with the

imaginary unit. Now, enter COS X() and press to swap stack
levels 1 and 2. You might think now that you just have to press to
add COS X() to both objects in the list. But especially this operation
concatenates two lists or any object with a list, rather than adding an

object to all objects in a list. For this purpose there is the command
ADD . It is the sixth item of the menu MTH/LIST, so press , and
then press . Now press to add COS X() to both algebraic
objects in the list. The message on the top of the screen has changed to
Press [CONT] for menu . Press to return to the menu that
will allow to take the list on stack level 1 to the input field EQ:. Now
press to return to the PLOT SETUP screen and put the list to
that input field. Press . The two derivatives are plotted on the
same plot that contained the
circle. Press to
return to the (global) stack.
As you can see, it still
contains the original (not the
edited) list with the
derivatives.

In order to find such
derivatives, like for example

∂
∂COS X() SINX()()

we don't need to do all by hand, like we did on pages 1-24 to 1-26. We
can make a program that does (almost) everything automatically.
Consider the code:

<< → f1 f2 @Store in locals
 << f1 f2 @Recall locals

IF f2 TYPE 6. == @If f2 is a name
THEN @then

∂ @take derivative
ELSE @else

LNAME 1 GET @get first name that is in f2,
SWAP ttemp = @build up equation f2=ttemp
SWAP SOLVE @solve equation for first name
SUBST EXPAND @substitute in f1
ttemp ∂ @take derivative for ttemp

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-28

ttemp f2 = SUBST @back substitution
EXPAND @expand

END
 >>
>>

Store the program in dF1F2 and let's test it. The program takes two
arguments. On stack level 2 it expects to find the expression to
differentiate. In stack level 2 it expects the expression that specifies
what to differentiate for.

Enter X2 and make a copy of this expression on stack level 2. Press
the menu key . The result is the list 1 1{ } , which shows that
it worked. (Anything differentiated for itself has to return 1.) Perhaps
code should be added to remove duplicates from the list?

Enter eX2

 and then eX . Press again to get
2 ⋅ X ⋅ eX2

eX .

And one example in algebraic syntax. Go to the EQW and enter

dF1F1 X2 ,
1
X





 . Put that on the stack and EVALuate to get − 2 ∗X3() .

Let's try also the example that we used for parametric plots. Enter
SIN X() and then COS X() . Press . After some seconds the
HP49G returns the list:

−
− COS X()2 −1() ⋅ COS ACOS COS X() + 2 ⋅ n1⋅π()()

COS X()2 − 1

−
− COS X()2 −1() ⋅ COS ACOS COS X() + 2 ⋅n1⋅π()()

COS X()2 −1

























As you can see, the program didn't do the work that we did in the
example. But this would be too much to demand as there is a huge
number of possible results and possibilities to simplify them. The real
problem is that (as already said 100 times) we still have no integer
assumptions on the HP49G. In this case you can enter n1= 1 and then
press , to turn n1 from a name to an integer. Then press

 to get:

COS X() ⋅ SINX()
SIN X()2 −

COS X() ⋅ SIN X()
SINX()2









The program uses LNAME to find the first name returned in the vector
of names that appear in f2 . It assumes that this is the variable whose
variation causes the variations of f1 and f2 . But this doesn't have to be
always true. Instead of using the command LNAME, we could also
give an additional argument to the program, to specify the varying
variable. Another problem is that the program relies on SOLVE to solve
the equation f2 = ttemp . If this step fails, then the program will not
work. Since we will talk in much more detail about derivatives of
functions in parametric form, we leave the program dF1F2 as it is for
the time being.

A question that has been asked quite often in the group, is how to do
implicit differentiation on the HP49G. And the answer to this question is
rather simple: Use exactly the same method like for explicit
differentiation. Suppose for example that you have the implicit function
given by SIN Y() = Y − X . In this formula the variable Y means
actually Y X() , the quantity Y is a function of the quantity X . We can't
solve the equation SIN Y() = Y − X analytically for Y . That means, we
can't write Y X() = someFunctionX() . Nonetheless we can find the
derivative of Y X() as a function of Y X() and X by differentiating
implicitly. To do that on the HP49G, we must always keep in mind that
the calculator doesn't know that Y somehow depends on X . And in this
case it is a very good policy to not know. Consider for example what

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-29

would happen if you had to take the derivative of X ⋅ Y ⋅ Z for X . If
the HP49G would automatically consider all variables different than
X to be functions of X , then we would end up with very complicated
expressions containing all thinkable derivatives of all variables other
than X . And we would need a special mechanism for denoting that
some variables don't depend on X . Instead of this the HP49G
considers all variables in an expression that don't explicitly depend on
X (or any other variable of differentiation) as constants. If we have
some variable for which we know that it does depend on X (or any
other variable of differentiation), we have to write this explicitly. In
the example SIN Y() = Y − X , where Y is a variable that depends on

X , we write SIN Y X()() = Y X() − X . If you enter this, then enter X ,

and then press , then you get COS Y X()()⋅ d1Y X() = d1Y X() −1.

Now, you can enter d1Y X() and then press , to get the
solution:

d1Y X() =
1

COS Y X()() +1

The HP49G has done implicit derivation and solved for d1Y X() . The
last operation, solving for d1Y X() might look unfamiliar, since we
solved not for a variable but for an algebraic expression, but it is
exactly as good as solving for any variable. To get an idea of this
capability, enter SIN X() + COS Y X()() = eX +Y X() , then COS Y X()() ,

and the press to solve for COS Y X()() . The result is

COS Y X()() = eX+ Y X() − SIN X() , which shows that the whole

expression COS Y X()() was considered as a single variable. Still
about implicit derivation: If you enter the above example as
SIN Y() = Y − X , and take the derivative for X , then you are going to
find 0 = −1. This unusual result comes because the left and the right
hand sides of the equation SIN Y() = Y − X were differentiated
separately for X . Since the left hand side doesn't explicitly depend on

X , the differentiation for X (i.e.
∂

∂X
SIN Y()()) returned 0 . On the

other hand, the right hand side does depend on X , and so the

differentiation for X (i.e.
∂

∂X
Y − X()) returned −1. Both results were

then set equal and so the result was 0 = −1. This isn't a bug even if the
resulting equation is impossible. This "impossibility" was already
contained in the expression SIN Y() = Y − X in combination with
derivation for X . The concept used in the HP49G for derivation, says
that anything that doesn't explicitly depend on the variable of
differentiation, is a constant. If Y is a constant in the equation
SIN Y() = Y − X , then the equation is not an identity but a proposition.
It isn't valid for any value of Y but only for some particular values. In
this case we can't conclude equality of derivatives because of general
equality of the two sides of the equation, i.e., we can't say:

leftHandSide(Y,X) = rightHandSide(Y,X) ⇒

∂
∂X

leftHandSide(Y,X() =
∂

∂X
rightHandSide(Y,X()

To understand this better, consider the
equation F X() = G X() . (In this example we
only have the variable X , but for the
understanding this doesn't matter.) If this
equation is an identity, then the two things,
F X() and G X() are always equal. If we
plot them we are going to get two identical
graphs. And since the two curves are identical, so must also be their
derivatives. That means, in this case we can take the derivatives of both
sides and set them equal. (Technique used in implicit differentiation.)

On the other hand, if the equation F X() = G X() is not an identity but a
proposition, then it will hold only for some particular values of X .
Plotting the two things, F X() and G X() , will produce two different

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-30

G(X)

F(X)

graphs, which (eventually) intersect at
some particular values of X . We see that
in this case the derivatives of the two
things can't be equal (in general).

Thus, on the HP49G, we have the
possibility to do both. If the equation
which we use for implicit differentiation
is an identity, we have to denote this by explicitly writing all
dependencies on the variable of differentiation. If on the other hand,
we have some equation that is a proposition, and we (for some
reason) have to take the derivatives of the right and the left hand side
and set them equal to each other, we omit the explicit dependencies on
the variable of differentiation.

Last thing we are going to examine is how substitutions behave, when
use on expressions that contain ∂ . Enter:

∂
∂X

X2 −1()

then X = Y and then press . The result is 2 ⋅ Y , which is
correct, but doesn't allow us to tell if the substitution was made before
or after the differentiation. Undo the last operation, and edit the
equation in stack level 1 to X = Y2 . Press again . This time the
HP49G errors out: Bad Argument Type . This shows that the
HP49G tried to do the substitution before taking the derivative. It

tried to substitute X = Y2 for each occurrence of X in
∂

∂X
X2 −1() .

This would return:

∂
∂Y2 Y2()2

−1()
and as we already have seen, this is impossible on the HP49G right
out of the box. (That's why we made the program dF1F2 .)

On the other hand, we have also the command for substitutions. Drop

the equation X = Y2 , and enter the list X Y{ } . Press . The result is
again the correct expression 2 ⋅ Y , but now the operation took a bit
longer, which shows that some other mechanism was used. Undo the
operation, and edit the list to X Y2{ } . Press again to get 2 ⋅ Y2 .
Wow, it worked! The HP49G has found the result of:

∂
∂Y2 Y2()2

−1()
Does this make our program dF1F2 totally unnecessary? Unfortunately
not, because for derivatives like for example

∂
∂SIN X() COS X()()

we can't simply enter some
∂

∂…
…() and use some substitution list with

, to directly get the correct result. We have first to find some kind of
parametrisation, which is what dF1F2 mainly does. In the case of

∂
∂SIN X() COS X()()

as we already have seen, we can write:

∂
∂t

1− t2()
then enter t SINX(){ } , and then press , to get the result:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-31

G(X)

F(X)

− 2 ⋅SIN X()()
2 ⋅ 1− SIN X()2

If you expand and then press , you find:

−
SINX()⋅ COS X()

COS X()2

which is exactly one fo the two results that dF1F2 returns, if we give
it the arguments COS X() and SIN X() . However, the built-in
function can be used directly for derivatives with respect to
expressions f x() , when the derivatives are of the form:

∂
∂f x() G f x()()()

where G f x()() is a function that depends explicitly only on f x() . Such
derivatives are for example:

∂
∂SIN X() SIN X()2 − SINX()()
or:

∂
∂X2 SIN X2() − X2()
and so on. We can't enter them directly since the quantity for which
we differentiate isn't a single variable name. But we can enter first the
derivative in which all occurrences of f x() are replaced by a single

variable name, say S . Then we can enter the list S f x(){ } and use

the command to find the derivative. For example, if we have

∂
∂SIN X() SIN X()2 − SINX()()
we can enter:

∂
∂S

S2 − S()

then the list S SINX(){ } , and then press , to find the derivative

2 ⋅ SIN X() −1.

Let's move on now to the other command that the HP49G provides for
derivation, DERIV . This is the new command that came with the CAS,
that means the HP48 calculators do not have it. (Except of course if you
install ERABLE.) How does this command behave? You guessed right,
we are going to repeat what we did with ∂ , but now using DERIV .
Take a breath and here we go.

In RPL syntax the command DERIV takes the function from stack level
2, and the variable from stack level 1, and returns the derivative of the

function for the specified variable. For example, enter e
SIN Y2()

, then
enter Y and then press . (The command is the second item in

menu CALC/DERIV). The result is e
SIN Y2() ⋅ COS Y2()⋅ 2 ⋅ Y . The same

can be done using an algebraic syntax. Go to the EQW and press
to write the unfinished expression DERIV ,() . The cursor blinks
at the left of the comma to indicate that the HP49G expects you to enter

the function that must be differentiated. Enter e
SIN Y2()

. Press to go
to the second place holder to the right of the comma and enter Y . Now

you have DERIV e
SINY 2()

,Y



 . Press to put that on stack level

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-32

1. Let's see how the expression looks like when it isn't shown in
pretty print. Press and then to edit the expression not in the
EQW but in the command line, where no pretty print is used. Now
you see: 'DERIV EXP SIN Y^2()(),Y()' , which is quite different than

the syntax of ∂ . The general syntax of DERIV in the command line
is 'DERIV Function,Var()' , where Var stands for the variable of
derivation and Function for the function whose derivative you want
to find. Press now to put the expression back to the stack. If
you expand it, then you get the same result as before,

e
SIN Y2() ⋅ COS Y2()⋅ 2 ⋅ Y .

Can we find the slope of a function at a given point by finding the
derivative and substitute the value of the variable at that point? Let's
see. We try to find the slope of SIN X() at X = π . In the EQW we

type DERIV SIN X(),X() , and enter that on the stack. Then we enter

X = π and press . The result is DERIV SIN π(), π() , which is
not what we want, because the substitution has been carried out
before the derivation took place. Obviously we can't use SUBST
with DERIV this way. First we must explicitly expand the expression
DERIV SIN X(),X() to get COS X() , and then we can use SUBST
for finding the slope. Let's see what happens when we use SUBST
with DERIV in algebraic syntax. Go to the EQW and type
SUBSTDERIV SIN X(),X(),X = π() . Press to put his on the

stack and press . The result is COS π() which is correct but
not completely expanded. Obviously the expansion of the algebraic
object SUBSTDERIV SIN X(),X(),X = π() retains the order of
operations starting at the innermost sub expressions. Since the
innermost operation is the derivation, it is carried out before
substitution. But substituting in stack syntax just "puts the values" in
the object of stack level 2, without first expanding it. Note also that in
RPL mode you can't enter 'SUBSTDERIV SINX(),X(),X = π()'

from the command line. The built-in syntax checker will complain about
a syntax error at the position of the "= ". Strange? Well, it is even
stranger that the erroneous 'SUBSTexpression,val()' does not cause a
syntax error, if val is for example some number or name, but not an
equation! If you for some reason have to build up the algebraic object
'SUBSTDERIV f var(),var(),var = value()' in a program, then you
have to do that in some other way. The code snippet below takes an
expression and a substitution equation and returns
'SUBSTexpression,substitutionEquation()' .

'SUBST(0,0)' →LST @Turn the dummy subst to a list
1 4 ROLL PUT @Put expression in position 1
2 ROT PUT @and substitution equation in 2
→ALG @Turn it to algebraic object.

I like → LST , and → ALG very much. Nonetheless the usage of such
tricks just to enter something that is syntactically completely correct,
shouldn't be necessary. Another trick would be to store the substitution
equation in some variable. For example, enter X = π and store it in
variable Y . Then enter SUBSTDERIV SIN X(),X(),T() . This
expression in possible also from the command line since the second
argument of SUBST doesn't contain a "= ". If you expand, you get the
correct result −1. Not so much of a trick here, but still an unnecessary
complication. Purge now Y .

And what happens with ? We start again with RPL syntax. Go to the

EQW and enter DERIV SIN X(),X() . Enter the list X ' π'{ } . Be careful
to enter π in single quotes in the list. This is the other method to ensure
that π is an algebraic object in the list and not just the command π . (We
already used another method, namely entering X , π , and then
constructing the list by entering 2 and pressing .) Now, press

 to get COS π() , which isn't completely expanded but correct. Let's
try that in algebraic syntax. Go to the EQW and enter:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-33

DERIV SIN X(),X()
X=π

Expand that to get the correct result, −1.

And what about the way that was inherited from the HP48? Can we
store a value in some variable and find the derivative for this variable?
For example, store π in variable T . Enter SIN T() and then 'T' in
quotes. Press . You get COS T() which you can expand to get

−1. Go to the EQW and type DERIV SIN T(),T() . Put that on the
stack and expand. Now you get an error Bad Argument Value.
EVAL doesn't work either and you lose the last argument since you
get 0 , π , and the command DERIV on the stack. If you want to get
the correct result you have to use QUOTE . Enter
DERIV SIN QUOTE T()(),QUOTE T()() and expand to get −1. But

note again that if you have for example X as the current variable,
store π in X , then enter DERIV SIN QUOTE X()(),QUOTE X()()
and expand, then you get the question to purge the current variable. If
you choose "No", then the operation errors out with
Mode Switch Cancelled. If you choose " Yes ", then X is
purged and the calculation returns COS X() , because the variable X
doesn't exist any more. Instead of expanding in this case you can
press twice, to avoid the question about purging the current
variable.

We continue examining the behaviour of DERIV when we take
derivatives of expressions with variables that themselves contain other
expressions (just as we did with ∂). If you still have the following
variables, then you don't need to re-create them. We need:

X2 in R

SIN Y() in S

S2 −R in U.

<< → X 'X^3/(X-1)' >> in V

<< → R 'R*(R+1)' >> in W

<< → R X '(R-1)/X' >> in Z

<< → S 'S/R' >> in Q

We also need:

<< → X
 << 0 1 3 FOR I
 X I R→I ^ +
 NEXT
 >>
>>

in Z1.

And last thing:

<< → R X
 << R EXP S EXP + X / >>
>>

in Z2 .

Enter 'R' (with quotes) and press to make copy it on stack level
2. Press to take the derivative of R for R . The result is 1,
which shows that DERIV (like ∂) didn't care about the fact that X2 is
stored in R . If you enter 'R' and then X , and take the derivative, then
you get a 0 , which again shows: When some expression is on stack
level 2 and we take its derivative for some of its variables using the
command DERIV , then derivation is carried out without first evaluating
that variable. This is good for finding slopes of functions by storing

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-34

something in the variable for which we take the derivative and then
using DERIV , as we already saw on the previous page. Another
example of this case: Enter S2 , then 'S' (with quotes) and press

 to get 2 ⋅ S . If you enter DERIV S2 ,S() from the EQW and

press , you will get 2 ⋅ SIN Y() ⋅COS Y() . If you expand instead
of evaluating, then you get 2 ⋅ COS Y() ⋅SIN Y() , which is the same
but with the factors reordered. Obviously, expanding or evaluating
DERIV expression,variable() , when exp ression contains
variables where other expressions are stored, will first differentiate
and then replace the variables with their contents.

If you want to first evaluate some variable contained in an expression,
and then take the derivative with DERIV, you have to evaluate first.
For example, enter U2 . We stored S2 −R in U, SIN Y() in S , and

X2 in R . If you want to take the derivative of the evaluated
expression U2 for X , then you have to press first. This
completely evaluates U2 to SIN Y()4 − 2 ⋅ X ⋅SIN Y()2 + X4 . Now you
can enter X , press and then , to get the fully

expanded expression − 4 ⋅X ⋅ SIN Y()2 − 4 ⋅ X3() .

And what about taking the derivative of the partially evaluated U2 for
S? We try with SHOW again. Enter U2 , then 'S' (in quotes) and

press , to stop evaluation when the variable S is shown. This

will result in S2 −R()2
, allowing us to enter 'S' and take the

derivative pressing .

Now, what if the expression, which we take the derivative of, is a
user defined function? Let's take a look at that. Enter V X()2

 and then
X . If you now press then the derivation takes a bit longer,
and returns:

2 ⋅
X3

X −1
⋅

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1()

This shows: Since V is a user defined function, V X()2
 is first evaluated

to

X3

X −1



 



2

and then the differentiation for X is carried out! Exactly the same result

will be returned if you enter DERIV V X()2
,X() and then evaluate. If you

enter DERIV V X()2
,X() and expand, then you get the result:

4 ⋅ X6 − 6 ⋅ X5

X3 − 3 ⋅X2 + 3 ⋅X −1

which is the same as before, but completely expanded. If you enter

DERIV V X()2
,X() and then press or , nothing

happens and the expression remains unchanged on stack level 1. Like in
case of ∂ this allows to collect unevaluated differential forms, which for
example can be used to bring differential equations to a much more
readable form. For example, enter the expression

DERIV V X()2
,X() ⋅ X + DERIV V X()2

,X()⋅ A and press , to

get X + A()⋅DERIV V X()2
,X() . If you want the opposite to happen,

then don't press or , but . If you press
with the last result still on stack level 1, then you will get

X ⋅DERIV V X()2
,X() + A ⋅DERIV V X()2

,X() . And what about

transforming DERIV V X()2
,X() to 2 ⋅ V X()⋅DERIV V X(),X() , or some

equivalent form? Can we use step by step mode? Let's see. Switch to

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-35

step by step mode and enter DERIV V X()2
,X() . If you evaluate or

expand, then you see that… it doesn't work! You just get the same
results like in non step by step mode. Step by step seems to work
better with ∂ (as we already have seen) in this case. Deactivate the
step by step feature now.

Let's see now what happens when we take the derivative of some user
defined function, to which we have given a variable as argument, that
itself contains some expression. Enter the expression V R() . Now,
enter 'R' and press . The result is 0 because the user defined
function is evaluated before derivation. This means that V R() was
first evaluated to:

R3

R − 1

Then the variable R in this expression was evaluated, which returned:

X6

X2 −1

since R contains X2 . It was this expression of which the derivative
for R was taken. And since the expression

X6

X2 −1

doesn't depend on R , the derivative was 0 . If you enter V R() again,
then enter X and press , you get the result:

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1()

the derivative of the completely evaluated user defined function V R()
for variable X . Notice here that the variable of derivation, R is not
getting evaluated to X2 .

Now the same in algebraic syntax. Enter DERIV V R(),R() . If you
evaluate this, then the result is again:

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1()
which is the derivative of the user defined function V R() , where the

argument R has been evaluated to X2 , but also the variable of derivation
R has been evaluated to X2 . But let's see what happened stepwise. In
algebraic expressions, in general the innermost nested things get
evaluated first. In DERIV V R(),R() the argument of the function V was

first evaluated to X2 . Then the function V took X2 and returned:

X6

X2 −1

The variable of derivation, R , was also evaluated to X2 . So the
expression was converted to:

DERIV
X6

X2 −1
,X2


 



Here we must watch out! When the command DERIV takes the
derivative not for a single variable, but for an expression, then… it takes
the derivative for the first variable that it finds in the expression, for
which it takes the derivative. That means, that the returned result is the
result of the differentiation:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-36

∂
∂X

X6

X2 −1



 



and not the result of the differentiation:

∂
∂ X2()

X6

X2 − 1



 



If you enter:

X6

X2 −1

then X , and then press , you get the result:

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1()
If you enter again:

X6

X2 −1

then X2 and press again, you get again:

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1()
The same result as for taking the derivative for X was returned.
Expand it to get:

4 ⋅ X7 −6 ⋅ X5

X4 − 2 ⋅X2 + 1

Our program dF1F2 fed with
X6

X2 −1
 and X2 , returns the result:

2 ⋅X6 − 3 ⋅X4

X4 − 2 ⋅X2 + 1
2 ⋅ X6 − 3 ⋅ X4

X4 − 2 ⋅ X2 +1








which shows that:

∂
∂ X2()

X6

X2 − 1



 


=

2 ⋅ X6 − 3 ⋅ X4

X4 − 2 ⋅ X2 +1
.

If you have problems to understand what DERIV does in such cases,
do the following: Enter X2 , then X , and press to get 2 ⋅ X ,
which is OK. But now, enter X2 , then X2 , and press to get
2 ⋅ X again, which in this case is wrong, since

∂X2

∂ X2() = 1

Another example: Enter X ⋅ Y , then X and press to get Y ,
which is OK. But if you enter X ⋅ Y , then X + Y , and press ,
you get Y again, which is wrong. The command just took the derivative
for the first variable in X + Y , which is X . And if you enter X ⋅ Y , then
Y + X , and then press , you get X , which is also wrong. In this
case the derivative was taken for Y , because it was the first variable in
Y + X . The problem here is that DERIV allows expressions to be
written, where the variable of derivation is itself some expression, but it
differentiates for the first variable in this "expression of derivation", and
returns wrong results. So, when it comes to such derivatives we have to
use a program. For the time being use dF1F2 as it is now, though it will

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-37

also have its problems when taking derivatives for expression that
contain more than one variable, like for example

∂X ⋅ Y
∂ X + Y()

We will make it better later on.

We try now to let V R() be evaluated up to

R3

R − 1

and then take the derivative, without replacing R by its contents. We
have to use the command QUOTE again. Go to the EQW and enter
V QUOTE R()() . Enter 'R' (in quotes) and press to get:

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

This is the derivative of the user defined function V R() evaluated up
to

R3

R − 1

To get the fully expanded form without evaluating all occurrences of
R to X2 , you can enter V QUOTE QUOTE R()()() , then 'R' , then

press to get:

QUOTE R() −1()⋅ 3⋅QUOTE R()2 ⋅d1QUOTE R() − QUOTE R()3 ⋅d1QUOTE R()
SQ QUOTE R() −1()

If you evaluate now, you will get:

2 ⋅R3 − 3 ⋅R2

R2 − 2 ⋅R + 1

which is the fully expanded result that still contains R s and not X s.

If you want to enter the derivative for R in algebraic syntax, then you
have to QUOTE not only the variable R that appears as argument of the
user defined function V , but also the variable of derivation. You enter
DERIV V QUOTE R()(),QUOTE R()() , to control evaluation and let the
expression be converted to:

DERIV
R3

R − 1
,R



 



instead of:

DERIV
R3

R − 1
,X2


 



If you evaluate the expression DERIV V QUOTE R()(),QUOTE R()() ,
then the result is:

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

But if you would evaluate the expression DERIV V QUOTE R()(),R() ,

you would get 0 because it would be evaluated to:

DERIV
R3

R − 1
,X2


 



Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-38

Enter W X() and then X . Press to get the result X +1+ X .
The user defined function W X() was first evaluated, and that returned
X ⋅ X +1() . Then the derivative for X was found, X +1+ X . (If you
enter X and press the menu key [W], the the result is X ⋅ X +1() .

Entering DERIV W X(),X() and pressing returns the same
result. If you would have pressed instead of , then the
result would be 2 ⋅ X +1, the completely expanded form.

If you enter W R() , then 'R' and then press , the result is 0 ,
because: The user function W R() was first evaluated and returned

X2 ⋅ X2 +1() . Then the derivative of this expression for R was taken,

which was found to be 0 , because the expression didn't contain R .
But if you evaluate DERIV W R(),R() , then the result is

2 ⋅ X ⋅ X2 +1() + X2 ⋅2 ⋅ X . Remember, evaluation of algebraic objects,
includes evaluation of user defined functions and variables. So the
evaluation went the way:

1) DERIV W R(),R()
2) DERIV W X2(),X2()
3) DERIV X2 ⋅ X2 + 1(),X 2()
Then, because DERIV had an expression (X2) and not a single
variable to differentiate for, it differentiated for the first variable of this
expression (X), and found 2 ⋅ X ⋅ X2 +1() + X2 ⋅2 ⋅ X .

If you enter 'R' , press , then enter 'R' again and then press
, the result will be R + 1+R . In RPL syntax no evaluation of

the global variable R took place. So, we get the result R ⋅ R +1()
when we apply the user defined function W on the argument 'R'
which is on the stack. After this there is no user defined function that

has to be evaluated before taking the derivative. The expression
R + 1+R doesn't contain any user defined function, and so DERIV
simply takes the derivative of this expression.

If you enter W QUOTE R()() , then 'R' and then press , the result
will be R + 1+R . In algebraic syntax, if you enter
DERIV W QUOTE R()(),QUOTE R()() and press , the HP49G

returns the result 2 ⋅R + 1. Both results are what we expect to get
according to what we know until now.

If you enter W R() , then X , and then press , then the result is

2 ⋅ X ⋅ X2 +1() + X2 ⋅2 ⋅ X . This shows again, that W R() was evaluated

the way we already know, which returned X2 ⋅ X2 +1() , and then the

derivative of this result for X was found. The same result is found if
you evaluate DERIV W R(),X() .

Now we nest some user defined functions. For example, enter
W V X()() , enter X and then press to get the expression:

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() ⋅
X3

X − 1
+1



 


+

X3

X − 1
⋅

X − 1() ⋅3 ⋅X2 − X3

SQ X −1()

Exactly the same would happen, if we entered DERIV W V X()(),X() and
evaluated.

Now we do the same using variable R as argument. If you enter 'R' ,
press , press , enter 'R' again, and press , you find:

R − 1() ⋅3 ⋅R2 −R3

SQR − 1() ⋅
R3

R − 1
+1



 


+

R3

R −1
⋅

R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-39

If you enter W V R()() , then 'R' and then press , then you find
0 . In the first case, the HP49G used the argument which we gave it,
namely 'R' and just applied the user functions V and W on this
argument. Since the result didn't contain any user defined functions
any more, the function DERIV just differentiated what it found on the
stack, without any evaluation. In the second case however, the
command DERIV found an algebraic expression that contained user
defined functions, so it evaluated them first, found:

X6

X2 −1
⋅

X6

X2 −1
+ 1



 



and so the differentiation for R returned 0 .

We continue on user defined functions with RPL definitions that
return an algebraic object. Enter DERIV Z1X(),X() and expand to get

3 ⋅ X2 + 2 ⋅X +1. Alternatively you can also enter Z1X() , then X , and
then press to find the derivative.

If we evaluate DERIV Z1R(),R() we get 2 ⋅ X + 4 ⋅ X3 + 6 ⋅ X5 . Why
the difference? It seems that evaluating the above, triggers first
evaluation of the user defined function Z1 with argument R , which
results in R + R2 + R3 . But then R is also evaluated and this results in

X2 + X2()2
+ X2()3

. The variable of derivation is also evaluated, and

so the derivative is transformed to DERIV X2 + X2()2
+ X2()3

,X2() .

As we know, DERIV finds then the derivative for X and not for X2 .
This way we come to the result 2 ⋅ X + 4 ⋅ X3 + 6 ⋅ X5 . Notice how this

differs from evaluation of the analogous expression
∂

∂R
Z1R()() .

In RPL syntax, if we enter Z1R() , then 'R' and press , the

result is 0 . EVALuate Z1R() and take the derivative for 'R' to
understand why. What will be returned if you take the derivative of
Z1QUOTE R()() for 'R' ?

The command DERIV can also be used for carrying out formal
derivations. Enter F X() and then X , and press to get the formal
derivative d1F X() , which is returned because the function F depends on

X but the HP49G doesn't know how it depends on X . Enter F X T()()

then T and then press [DERIV], to get d1X T()⋅ d1F X T()() , exactly just
like if you had used ∂ instead.

But there are also differences to ∂ . Since DERIV accepts also
expressions as variables of differentiation, we can enter F X T()() , then

X T() , and then press . We can do this and we get the result

d1X T()⋅ d1F X T()() , where d1F X T()() means the derivative of F for

X T() .

We also see that the command DERIV can't be used for finding such
things like for example

∂SIN X()
∂SIN X()

right out of the box (simply because it returns the wrong result). If we
enter DERIV T,T() , then T = SIN X() , and then press , the

HP49G returns DERIV SIN X(),SINX()() , which isn't much of a help,

since the evaluation of this expression will still return COS X() and not

1. But entering DERIV T,T() , then entering the list T SINX(){ } , and
then pressing , does return the correct result 1. This works also in
algebraic syntax. Enter DERIV T,T()

T= SINX() and evaluate to get again 1.

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-40

Is that a hope for easy formulation and correct evaluation of arbitrary

∂expression1
∂ expression2

 ?

Might be. Let's try some more complicated examples, and see if we
get the correct results.

Suppose we want to find:

∂X2 − 3 ⋅ X + 3
∂ 2 ⋅ X2()

We can't enter directly DERIV X2 − 3 ⋅X + 3,2 ⋅ X2() , because this

would actually return the result of DERIV X2 − 3 ⋅X + 3,X() . But if

we think the expression of derivation 2 ⋅ X2 as a single variable, say
T , then we have:

2 ⋅ X2 = T ⇔ X2 =
T
2

 , 2 ⋅ X2 = T ⇔ X2 =
T
2

⇔ X = ±
T
2

So we can write the derivative as:

DERIV
T
2

− 3 ⋅
T
2

+ 3,T


 




or:

DERIV
T
2

+ 3 ⋅
T
2

+ 3,T


 




We try with the first expression. Enter:

DERIV
T
2

− 3 ⋅
T
2

+ 3,T


 




then enter the list T 2 ⋅ X2{ } and press to get:

2 ⋅ X − 3() ⋅ X

SQ X() ⋅4

which is OK. From the second derivative we get

2 ⋅ X + 3() ⋅ X

SQ X() ⋅ 4

The program dF1F2 finds exactly the same results, but it also does the
above parametrisation automatically. The advantage of using DERIV
with is that the derivation and the back substitution are carried out in
one step. So we keep this in mind as it might prove useful for our
improvements of dF1F2 . The real problem comes in cases like for
example:

∂ X + Y()2 + X
∂X + Y

that is when we derivative for an expression that contains more than one
variables. In such cases, if we do the parametrisation X + Y = T , then
writing DERIV T2 + T − Y,T() would be wrong (for the CAS logic of

the HP49G). We should write DERIV T2 + T − Y T(),T() , to denote that

the remaining Y , still is a function of the derivation variable T . But
then, if we enter T X + Y{ } and press , we get
2 ⋅ X + Y() +1− d1Y X + Y() . The last term in this expression,
d1Y X + Y() , denotes the derivative of Y for X + Y , i.e. a function Y

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-41

that depends on… the sum X + Y , i.e. on itself!!! This is apparently
somehow pathological. But if we remember that X + Y = T , we see
that d1Y X + Y() = d1Y T() . How to avoid such apparently
pathological results on the HP49G? Remember, d1Y X + Y() is the
result of using the list T X + Y{ } as argument for . In the

expression T2 + T − Y T() which must be differentiated, Y is a
function of T . But in the list T X + Y{ } the quantity Y doesn't
depend on anything, it is a free variable. We should rather have used
T X + Y T(){ } . Enter DERIV T2 + T − Y T(),T() , then

T X + Y T(){ } and then press . The result is

2 ⋅ X + Y T()() + 1− d1Y X + Y T()() . Now the formal derivative

d1Y X + Y T()() is no more so pathological, because since T = X + Y ,

we have Y = T − X , and so for the derivative d1Y X + Y() we have

d1Y X + Y T()() = d1Y X + T − X() = d1Y T() . We only had to make

the dependence of Y on T explicit by writing Y T() .

Anyway, we see that taking derivatives for expressions and not for
single variables is not always so straight forward. We will return to
them, as already said, when we see how to take derivatives of
functions in parametric representation.

We go on examining formal derivatives and DERIV . Enter F S() ,
then Y , and press to find the derivative. The result is
COS Y()⋅ d1F SINY()() . The HP49G used the chain rule to return the

product of the derivative for Y of the inner function SIN Y() , which
is stored in S , with the derivative of the outer function. As the latter is
totally undefined, the HP49G returns d1F SIN Y()() , to denote that
derivative in a general abstract way. If we evaluate or expand
DERIV F S(),Y() , we get COS Y()⋅ d1F SINY()() again. Notice here
the difference to ∂ , which returned 0 . In both cases the command

DERIV triggered evaluation of the variable S in F S() , and the result

was F COS Y()() . Then, the derivation for Y was carried out, and

COS Y()⋅ d1F SINY()() was found. At this point, we collect all the cases
in a single table again, for a better understanding of the behaviour of the
command DERIV . There are four tables for this. The first table is on
the next page and contains cases of differentiation of an expression or a
user defined function for a variable. The second table is on the page after
the next and contains cases of differentiation of an expression or a user
defined function for a quoted variable a' la QUOTE variable() . The
third table is on the page 1-45 and contains the cases of differentiation of
a function that isn't defined, that is cases of formal differentiation for a
variable. The fourth table is on the page 1-46 and contains the cases of
differentiation of a function that isn't defined, that is cases of formal
differentiation for a quoted variable a' la QUOTE variable() . In all
tables, regions with the same colour are those which return their results
using the same mechanism. Like in the tables for ∂ , it is not the same
result that makes up a region, but rather the same way that is followed
by the HP49G to return these results.

Let's do some examples that are more complex. We use what we know
until now, to explain how the results are derived. Keep all variables and
user defined functions because the following examples use them.

Enter F V X()() , then enter 'R' (in quotes) and press . The result
is 0 , as we expect, because as we have seen already, the user defined
function V X() (argument of F) is evaluated before differentiation. This
gives

F
X3

X − 1



 



Now, the HP49G sees that this function, though undefined, doesn't
depend on R , because R doesn't appear as an argument of F . As the
derivation variable R isn't evaluated the derivative is found to be 0 .

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-42

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-43

 0 0 0
R − 1() ⋅3 ⋅R2 −R3

SQR − 1()

V QUOTE R()()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R)

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1()
X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1()
X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() 0

V QUOTE X()()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >>)

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2⋅ X

SQ X2 − 1()

X2 −1() ⋅6 ⋅X5 − X6 ⋅2 ⋅X

SQ X2 − 1()

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2 ⋅ X

SQ X2 −1()
 0

V R()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R)

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1()
X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1()
X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() 0

 4 ⋅X3 + 2 ⋅X

 'X'

 4 ⋅X3 + 2 ⋅X

 'R'

V X()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >>)

 0

 'X'

 2 ⋅R + 1

 'R'

R2 +R
(X2

 stored in R)

 Variable of deri-
 vation
Expression

RPL Syntax:
Enter expression then variable, then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var() , then evaluate or expand

No evaluation
of expression
and derivation
variables
before
derivation.

Evaluation of
function and
function arguments
but not of derivation
variable before
derivation.

Evaluation of
function but not of
function
arguments and
derivation variable
before derivation.

Evaluation of
function and
derivation variable
but not of function
argument before
derivation.

Evaluation of
expression
and derivation
variables
before
derivation.

Evaluation of
function, function
arguments and
derivation
variable before
derivation.

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-44

 0
R − 1() ⋅3 ⋅R2 −R3

SQR − 1() ------------------- ------------------

V QUOTE R()()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R)

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() 0 ------------------- ------------------

V QUOTE X()()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >>)

X2 −1() ⋅6 ⋅ X5 − X6 ⋅2⋅ X

SQ X2 − 1() 0 ------------------- ------------------

V R()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >> ,

X2
 stored in R)

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() 0 ------------------- ------------------

 4 ⋅X3 + 2 ⋅X

 'QUOTE X()'

 0

 'QUOTE R()'

V X()
(User function V defined
 as:
<< -> X 'X^3/(X-1)' >>)

 'QUOTE X()'

 'QUOTE R()'

R2 +R
(X2

 stored in R)

 Variable of deri-
 vation
Expression

RPL Syntax:
Enter expression then variable, then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var() , then evaluate or expand

Evaluation of function
and function arguments
but not of derivation
variable before
derivation.

Evaluation of function
but not of function
arguments and
derivation variable
before derivation.

DERIV Error:
Bad argument value

If you enter F V X()() again, but then take the derivative with respect
to X using the command DERIV , then the result is:

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() ⋅ d1F
X3

X −1



 



Following again our known rules we can understand that. First of all
the function V X() is evaluated. The result of this action is:

X3

X −1

This is used as argument for the undefined function F , that is we get:

F
X3

X − 1



 



This result is then differentiated for X . According to the rules of
derivation we get:

X −1()⋅ 3 ⋅ X2 − X3

SQ X − 1() ⋅ d1F
X3

X −1



 



where the expression

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-45

2 ⋅ X ⋅ d1F X2()2 ⋅ X ⋅ d1F X2()0d1F R()F QUOTE R()()
X2

 stored in R

4 ⋅X3 ⋅d1F X4()4 ⋅X3 ⋅d1F X4()4 ⋅X3 ⋅d1F X4()0F R2()
X2

 stored in R

2 ⋅ X ⋅ d1F X2()2 ⋅ X ⋅ d1F X2()2 ⋅ X ⋅ d1F X2()0F R()
X2

 stored in R

d1F X()d1F X()F QUOTE X()()
2 ⋅ X ⋅ d1F X2()2 ⋅ X ⋅ d1F X2()2 ⋅ X ⋅ d1F X2()0F X2()

F X()

d1F X()0

d1F X()

'X'

d1F X()

'R'

 d1F X()

'X'

0

'R'
 Variable of deri-
 vation
Expression

RPL Syntax:
Enter expression then variable,
then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var() ,
then evaluate

In algebraic syntax quoting
arguments of functions of which we
take derivatives, seems not to have
any effect at all

Formal differentiation with expansion
of intermediate differential forms.

Formal differentiation with expansion
of intermediate differential forms but
no evaluation of the derivation
variable.

Formal differentiation with expansion
of intermediate differential forms but
no evaluation of function arguments
and derivation variable.

d1F
X3

X −1



 


 stands for the formal derivative of

F
X3

X − 1



 



that means a derivative which can't be explicitly given, since F is
undefined.

We try to find the derivative of V F R()() for R and for X . If you

enter V F R()() , then 'R' , and then press , get 0 . This shows
again, that the argument of F , which is R , gets evaluated to its

contents, which are X2 . After this we have V F X2()() , which

differentiated for R must return 0 , since it doesn't depend on R . But if
you enter V F R()() , then X , and then press , you get:

F X2() −1()⋅ 3 ⋅F X2()2
⋅ 2 ⋅ X ⋅d1F X2() −F X2()3

⋅ 2 ⋅ X ⋅d1F X2()
SQ F X2() −1() .

Let's see how this was produced. First, the argument of F was
evaluated. This argument was R , and since X2 is stored in R , the result
of the evaluation was X2 . This was used as argument for F , and
because F is undefined, we simply get F X2() . This expression was

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-46

2 ⋅ X ⋅ d1F X2()0--------------------------------------F QUOTE R()()
X2

 stored in R

4 ⋅X3 ⋅d1F X4()0--------------------------------------F R2()
X2

 stored in R

2 ⋅ X ⋅ d1F X2()0--------------------------------------F R()
X2

 stored in R

d1F X()-------------------F QUOTE X()()
2 ⋅ X ⋅ d1F X2()0--------------------------------------F X2()

F X()

0-------------------

d1F X()

'QUOTE X()'

0

'QUOTE R()'

'QUOTE X()'

'QUOTE R()'
 Variable of deri-
 vation
Expression

RPL Syntax:
Enter expression then variable,
then use DERIV

Algebraic Syntax:
Enter DERIV Expression,Var() ,
then evaluate

In algebraic syntax quoting
arguments of functions of which we
take derivatives, seems not to have
any effect at all

Formal differentiation with expansion
of intermediate differential forms but
no evaluation of the derivation
variable.

DERIV Error:
Bad Argument Value

used as argument for V . So instead of getting:

X3

X −1

we got:

F X2()3

F X2() −1

Next, the differentiation for X was carried out. According to the rules
of differentiation for a ratio, we have:

∂
∂X

F X2()3

F X2() − 1









 =

F X2() −1() ⋅
∂

∂X
F X2()3() −F X2()3

⋅
∂

∂X
F X2() −1()

SQ F X2() −1()
Carrying out the derivations of the right hand side of the last equation,
and keeping in mind that d1F X2() is the formal derivative of F X2() ,
we see that the result returned by the HP49G was correct (inside the
frame of its evaluation rules).

Do some examples for yourself and try to predict the behaviour of the
command DERIV , using the knowledge that we have so far.
Remember that QUOTE can also be used with formal functions,
which means that F QUOTE R()() is perfectly OK. Note that the
command DERIV (and also the function ∂) doesn't like
QUOTE variable() as the differentiation variable in RPL syntax. But
DERIV accepts QUOTE variable() as the differentiation variable in
algebraic syntax. Note also, that in algebraic syntax, quoting
arguments of functions doesn't seem to work at all. The arguments
seem to be always completely evaluated before differentiation.

Take heart, we almost finished this exhaustive study of the derivation
commands. We examine some more complex examples of derivation of
undefined functions with DERIV . Enter DERIV F Y,X(),X() and

expand. This will return d1F Y,X() , just as expected. Enter

DERIV F X() ⋅G X(),X() and expand this to get:

G X() ⋅ d1F X() +F X()⋅ d1G X()

Enter:

DERIV
F X() ⋅G X()2

G X() + X
,X




 




If you now expand you get:

G X()3 + X ⋅ G X()2() ⋅ d1F X() + G X()2 + 2 ⋅X ⋅ G X()() ⋅F X() ⋅ d1G X() − G X()2 ⋅F X()
G X()2 + 2⋅ X ⋅G X() + X 2

This contains only derivatives of a single function for a single variable,
which makes easier to see how the differential forms participate to built-
up the derivative

∂
∂X

F X()⋅ G X()2

G X() + X




 


 .

We see that DERIV behaves like ∂ when it finds some function of
which it doesn't know how to built the derivative. Also, exactly like

working with ∂ , the expressions DERIV G X2(),X() and d1G X2() are

not equal. In this particular case for the HP49G the relation holds:

DERIV G X2(),X() = 2 ⋅X ⋅ d1G X2()

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-47

Only in cases where the function has simple names as arguments, like
for example G X,Y() , the two notations DERIV G X,Y(),X() and

d1G X,Y() are equivalent.

The command DERIV can also be used for implicit derivations in the
same syntax like ∂ . Enter SIN Y X()() = Y X() − X , then enter X , and

then press , to get COS Y X()()⋅ d1Y X() = d1Y X() −1.

Last thing we are going to examine is how substitutions behave, when
used with expressions that contain DERIV. Enter DERIV X2 − 1,X() ,

then X = Y and then press . The result is DERIV Y2 −1,Y() ,

which shows that SUBST only substituted all occurrences of X with
Y but didn't do anything else. Undo the last operation, and edit the
equation in stack level 1 to X = Y2 . Press again . This time the

HP49G returns DERIV Y2()2
−1,Y2() , which as we know is exactly

the same as if we had entered DERIV Y2()2
−1,Y() .

On the other hand, we have also the command for substitutions.

Undo the last operation, drop the equation X = Y2 , and enter the list
X Y{ } . Press . The result is now the expression 2 ⋅ Y . The

function not only did the substitution but triggered also the CAS to
carry out the derivation, after the substitution. Undo the operation,
and edit the list to X Y2{ } . Press again to get 2 ⋅ Y2 , which as
we have seen is the correct result of

∂
∂Y2 Y2()2

−1()
Strange is only that if you enter directly DERIV Y2()2

−1,Y2() and

expand, you are going to get 4 ⋅Y3 , which is wrong because it is the
result of derivation for Y and not for Y2 . You get the right result too, if

you enter DERIV X2 − 1,X()
X =Y 2

 and expand or evaluate.

Another available command for derivation is the command DERVX . It
works like DERIV , but it always takes the derivative for the current
VX . It needs only one argument, namely the expression of which we
want to find the derivative.

From what we have seen until now, it seems that EVAL gives us more
detailed control of what and how we want to work with derivatives.
Especially in combination with QUOTE and SHOW , this command is
very flexible. And this makes it a very powerful tool for programming,
when we want to do something special exactly the way we want to. On
the other hand, the real power of EXPAND is that it is more "fire and
forget", as it (almost) always does its job from the beginning to the end
without any user intervention. (Goodness! I talk like a military man - too
much TV-war in the last days.)

Now that we have finished the long path of the workings of derivation
commands, we return to our main path. With the HP49G it is easy not
only to find some derivative or slope of a given expression, but also to
find if some expression has a derivative at some given point. Consider
for example X2 . How can we find out if this expression has a derivative
at X = X0? In this case it is a piece of cake. One of the many many ways
to do that is to enter

∂
∂X

X2()
X = X0

and expand. We get 2 ⋅ X0 which is defined everywhere. The derivative

exists at any point X0 . Another example: Does the expression X3 have
a derivative at X = 0? If we enter:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-48

∂
∂X

X3()
X =0

and expand, then we get ? . The derivative isn't defined at X = 0 .
Same with e X −2 at X = 2 . Enter:

∂
∂X

e X −2()
X =2

and expand to get ? , which shows that the derivative is not defined at
that point. Especially for the last example, e X −2 , we can use the
program ISCONT? of SESELIMA to check if it is continuous at
X = 2 . If you want to check that, enter e X −2 and X = 2 again and let
ISCONT? run. The result will be a 1, which shows that the
expression is continuous at that
point. If you plot the function,
then you see something like the
picture on the right. At X = 2
we have a sharp bent (indicated
by the small dot). Such bents,
peaks, and in general
"unsmoothnesses" are
candidates as points where the
derivative isn't defined. But
nonetheless the function is
continuous at that point. This is a demonstration for the fact that if the
derivative of a function exists at some point, then the function is
continuous. But if the derivative doesn't exist at that point, then we
can't say anything about the steadiness of the function at that point. It
could be continuous, it could jump, anything is possible. Actually
there are functions that are continuous everywhere and at the same
time their derivative isn't defined anywhere at all!!! (Trabakoulas
raises one eye brown and says "fascinating" ;-)) That means, dear
math freaks, that these functions consist in a way… of infinite many
infinitesimal small sharp bents. You wanna see one? Don't expect

anything spectacular. trigonometric functions are already enough. For
example the function:

w x() = an ⋅ cos bn ⋅ π ⋅x()
n=1

∞

∑

with:

0 < a < 1 , b > 0 , integer b , and a ⋅b > 1+
3 ⋅π

2

is such a beast. Don't even try to plot such a thing. You would need
infinite resolution which no computing device on this world can give
you. And if you still do, hopping to catch the real looking of the
function by building the sum for the first, say 10 summands, you are
going to get quite a surprise its time you zoom in. (OK, OK, I did that. I
expanded:

1
10







n

⋅ cos 60n ⋅ π ⋅X()
n=1

10

∑

and plotted the resulting expression. Each time I zoomed in, I had new
zig zags. And that with only the first 10 summands of the function.)

Btw, it was Weierstraß that discovered this function. And it was a quite
fascinating discovery, an unexpected event, which happened because
mathematics before him was practised the way it was practised. Let's
take a look at math history to understand that. For quite a long time there
was no clear and sharply defined definition for what "smooth function"
and should be. Though mathematicians worked already with functions
and derivatives, nobody knew how to sharply define what a point
should be, where a derivative isn't defined. It was believed that a
continuous function of one free variable is in general differentiable
everywhere, except for some "pathological points", where the derivative
doesn't exist. But then came the reconstruction of these terms,
"continuous" and "differentiable", in terms of ε −δ (look at

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-49

SESELIMA). After this, it appeared that such unbelievable functions
could be constructed, like the one above, that are nowhere
differentiable and still continuous everywhere. And because such a
function (still) looks like a marvel, and because mathematicians have
often the flair for marvels, they searched and found these marvellous
functions. All the magic of Copperfield is nothing compared to the
Weierstraß function. An even bigger marvel however is, how much
mathematics can be done, without these sharp definitions, simply by
intuition. In the times before the invention of ε −δ , there was still a
huge amount of knowledge about functions. Admittedly, the real
beauty was revealed after ε −δ , but nonetheless it is still amazing
how much was known before.

End of history, back to the present. The derivative of a function can

be considered itself as a function. For example, enter e− X2

and press

 to get − e− X2

⋅ X ⋅2() . This function has itself a derivative

which you can find if you press again: 2 ⋅ X2 −1() ⋅e− X2

⋅2 .

In algebraic syntax you could enter DERVX DERVX e−X 2()() , or

DERIV DERIV e− X2

,X(),X() , or
∂

∂X
∂

∂X
e −X2()



 , or any mixed form

like
∂

∂X
DERIV e− X2

,X()() . Expanding that will return the second

derivative in one step. Higher derivatives can be found for undefined
functions too. For example you can enter F X2() and press

twice to get the result 2 ⋅ d1d1F X2() ⋅ X2 + d1F X2()()⋅ 2 . The

expression d1d1F X2() denotes the derivative for the first variable of

the derivative for the first variable of F X2() . It is a formal derivative
of second order. Such higher order formal derivatives can be used
exactly like the formal derivatives of first order (including user
defined derivatives). And not only this. If you define the derivative of
some particular order, the HP49G is able to find any higher order

derivative using your definition. For example, if you enter
d1FUNC X() = X ⋅e −X and press , then the variable d1FUNC is
created, which takes one variable from the stack and returns the first
derivative of FUNC variable() for variable. If you now enter
d1d1FUNC X() and expand, then the HP49G uses your definition to
return the second derivative.

Another thing that I should tell here, is that such derivatives may also
appear when the function that is differentiated is a built-in function. For
example, if you take the derivative of X! for X , the HP49G returns
d1! X() . This means the derivative of the function ! for the first variable.
Here we see that the HP49G has also built-in functions of which it
doesn't know how to take the derivative. Don't worry however, these
functions are just a few and most of the time you can define a user
defined derivative which will be used much like the derivatives that the
HP49G knows how to take. Let's take for example the function
GAMMA for which the HP49G returns d1GAMMA X() as its
derivative. As you might already know:

∂ ln Γ x()()
∂x

= Ψ x() ⇔
1

Γ x() ⋅
∂Γ x()

∂x
= Ψ x() ⇔

∂Γ x()
∂x

= Γ x() ⋅Ψ x()

Since the HP49G has the functions Γ x() and Ψ x() built-in
(GAMMA x() and Psi x() respectively - unfortunately no greek letters Γ
and Ψ), we can make the use defined derivative. Enter
d1GAMMA X() = GAMMA X()⋅Psi X() and press to define the

derivative. Let's try it. Enter DERIV GAMMA SIN X()(),X() and expand

to get the result COS X() ⋅GAMMA SINX()()⋅Psi SIN X()() which
doesn't contain any formal derivative anymore. If you enter
GAMMA SIN X()() , then X , and then press , you get

COS X() ⋅ d1GAMMA SIN X()() . This doesn't mean that our user
defined derivative doesn't work in RPL syntax, you just have to press

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-50

 to convert the expression to
COS X() ⋅GAMMA SINX()()⋅Psi SIN X()() . Since Γ x +1() = x! (this
equation is an identity!), we obtain:

∂Γ x +1()
∂x

=
∂x!
∂x

⇔
∂x!
∂x

= Γ x +1() ⋅Ψ x +1()

which we can use to make a user defined derivative for the built-in
function !. We only need to define
d1! X() = GAMMA X +1()⋅Psi X + 1() . (Alternatively if we already
have defined d1GAMMA X() we can also define
d1! X() = d1GAMMA X + 1()). But the problem is that we can't enter
the name d1! because the HP49G things that we mean the factorial of
d1. So we have to search in the trick box again. As we have seen, the
expression d1! X() is returned when we try to take the derivative of !.
We can use this answer to built up our definition - somehow reminds
me of "anything that you say can be used against you ;-). Enter X!,
then X , and press to get d1!(X) . Now, enter the expression
GAMMA X + 1() ⋅Psi X +1() and press to get the result
d1!(X) = GAMMA X +1() ⋅Psi X +1() . Press to make the
definition. Let's try that. Enter:

∂
∂X

X!()

and expand. Oops, it stayed at d1! X() . Perhaps another expand?
Doesn't help either. The same happens if you start with
DERIV X!,X() or if you use RPL syntax. The resulting function d1!
in the algebraic object d1! X() doesn't seem to want to be evaluated.
You can evaluate it, expand it, do anything you want. The darn thing
is there, the HP49G is able to evaluate any user defined function that
exists in the current path, but this damned d1! just doesn't want to get
evaluated though the internal structure of the expression d1! X() is the

same like the structure of F X() , G(X), or even VPN X() . For me this is
one of the most mysterious questions about the HP49G. Why doesn't
d1! X() get evaluated when the user defined derivative exists?
But we don't give up yet. Let's try to see if there is any difference
between the d1! that exists as a variable in the current directory and the
d1! that the derivation of X! returns. Press (second page of menu
PRG/MEM/DIR) to get a list of the variables in the current directory. If
d1! was the last thing that you defined the list will look like
d1! … other names{ } . If the list looks different, then find out at

which position d1! is. Enter the number of the position of d1! in the list
and press to extract d1! from the list. (We do all this because we
can't directly enter the name d1!. If we do so the built-in command line
parser will thing that we mean the factorial of the variable d1, and not
the derivative of the function ! for the first variable.) Now, enter X!,
then X , and then press to get d1! X() . We have to extract the
name d1! out of the algebraic object. Press (second page of
menu 256) to get the list X 'd1!' #1h{ } . The object d1! is at
position 2, so enter 2 and press . Do you see the difference? The
object in stack level 2 is the name 'd1!' , while the object on stack level 1
is the algebraic object d1! that consists only of the name d1!. Enter X ,
and press to get a copy of d1! on stack level 1. Press .
Evaluation of the algebraic object d1! just puts the name 'd1!' on the
stack. You have to evaluate once again to get
GAMMA X + 1() ⋅Psi X +1() . This is the normal way of evaluation of an
algebraic object containing only one name of an existing user defined
function. And here is the question: Why isn't then the expression
d1! X() evaluated to GAMMA X + 1() ⋅Psi X +1() even after two
evaluations? If you had pressed instead of , then the first
EXPAND would turn the algebraic object d1! to the name 'd1!' and
subsequent expansions would leave the name d1! unchanged. Anyway,
the user defined derivative d1! is useless in this form. We must find
another way. But before we do that, let's allow my alter ego HULK
come out and speak for a moment:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-51

…thank you very much indeed, ACO, that you put so much power
in the HP49G, yet made it also so full of mysteries that its usage
requires such headaches. And for me, the user, explanations about
inner workings of the function !, or any other command, just don't
count. I don't want to know how the HP49G does its work, I want
a CAS that is uniform in its behaviour on the interface between
human and machine… grrrrr!

OK Hulk, de-green again :-)

Now we have to purge d1!. Since direct input of d1! wouldn't work,
you have to use again VARS , and extract the name d1! from the list
of variables. With the name d1! on stack level 1 press to get
rid of that beast.

Thanks goodness there is the synonym FACT for the function !. So
perhaps we use that? Hmm, let's try. Enter
d1FACT(X) = GAMMA X +1()⋅Psi X +1() and press . Now, go
to the EQW and enter:

∂
∂X

FACT X +1()()

Put that on the stack and expand to get
GAMMA X + 1+1()⋅Psi X +1+ 1() . It works! But we have a new
problem. We can't use that with RPL syntax. If you enter X +1 and
then FACT , the HP49G returns X!⋅ X +1() . (Automatic simplification
using the rule X +1()!= X!⋅ X + 1() . If you enter X and then FACT ,
then the result is X!. All occurrences of FACT are replaced by !. If
you now try to take the derivative for X you will of course end up
with expressions containing d1!, which we don't want to have. But
hey! We could make a program that converts all occurrences of ! to
FACT . Enter the program:

<<
 { '&A!' 'FACT(&A)' }

 ↑ MATCH DROP
>>

and store the program in → FACT . If you work with RPL syntax, you
can convert all occurrences of ! to FACT before derivation, in order to
get an expression that contains d1FACT . For example, enter again
X +1()!. Expand that to get X!⋅ X +1() . Now, press to convert

that to FACT X() ⋅ X + 1() . Enter X and press to get
d1FACT X()⋅ X +1() +FACT X() . Expand this to get
X +1()⋅ GAMMA X +1() ⋅Psi X +1() + X! .

Alternatively you can enter X +1()! and press without
expanding. The result is FACT X +1() . Now you can enter X and press

 to get d1FACT X +1() . Expanding this you will get
GAMMA X + 1+1()⋅Psi X +1+ 1() . If you want you could also make a
program that matches GAMMA something() to something−1()!, in
order to get results that contain only !, but no GAMMA . For example
the code

<<
 { 'GAMMA(&A!)' '(&A-1)!' }

 ↑ MATCH DROP
>>

would do this conversion.

Perhaps now that we have seen that there are built-in functions for
which the HP49G doesn't know how to take their derivatives out of the
box, it is a good time to say some words about operations, commands
functions and so on. Anything that the HP49G can perform is an
operation. When you press to add two numbers, the HP49G carries
out an operation. When you press to go to variables menu, the
HP49G carries out another operation. Of all operations, those that are

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-52

programmable are called commands. So for example, + is a
command, because it is programmable. But pressing the key
isn't programmable and so it isn't a command. There are of course
programmable equivalents for many operations that are not
programmable. For example you can use 2 MENU to get the
variables menu. On the HP49G when no other programmable
equivalent exists, there is always the possibility to use KEYEVAL , to
simulate a key press. For example, pressing can be also
programmed with 31 KEYEVAL . We see until now that the
commands are a subset of all available operations. Commands that are
allowed in algebraic objects are called functions. For example + is a
function because it is allowed in
an algebraic object, but the
command PATH is not a
function because you can't put
that in an algebraic object.
Again, functions are a subset of
commands. And last we have
those functions for which the
HP49G provides an inverse and
a derivative. These functions are
analytic functions in the
terminology of the HP49G.
They are a subset of the
functions. So we have an
architecture like the picture on
the right.

The sentence "provides an inverse and a derivative for a function"
means that the HP49G can solve function(x) = y analytically for x ,

and can find the derivative
∂
∂x

function(x)() without any user

intervention. In the terminology of the HP49G for example, the
functions, ! or GAMMA , are not analytic, because the HP49G can't
solve GAMMA X() = Y analytically (though it can do that numerically

for numeric values of Y), and can't find
∂

∂X
GAMMA(X)() (though we

can make a user defined derivative). Note that the meanings of
"function" and "analytic function" for the HP49G are not 100% identical
with their mathematical meanings.

The HP49G provides also powerful tools in the plotting environment for
finding slopes and derivatives in an interactive way. Let's try one
example. Go to the PLOT SETUP screen and choose plot type
Function . Enter:

SIN X()
X

as the function to plot, and X as the independent variable. After this, go
to the PLOT WINDOW − FUNCTION screen and set H− View
from −12.5 to 12.5 . Press and (for automatic scaling
of V − View). When the HP49G finishes automatic scaling, press

 to let the HP49G plot the function. Now we are going to add the
derivative of the function to the already existing plot. We don't need to
move out of the plotting environment, find the derivative, add it to the
functions to plot, and redraw. Press which brings up a menu with
many tools that relate to plotting functions. Move the graphics cursor
some 10 pixels to the
right and press .
This operation finds and
displays the slope of the
function at the current
horizontal coordinate. It
also puts a copy of the
slope on the stack. Press
any menu key to display the menu again, and press to go to the
second page of the menu. Now, press . This finds the derivative of
the function, adds it to the functions to plot, and redraws both functions.
It also leaves the menu FCN. Now the reserved variable EQ contains
the list:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-53

Operations

Commands

Functions

Analytic Functions

X ⋅ COS X() − SIN X()
X2

SIN X()
X









The HP49G added the derivative to the functions to be plotted. Press
 again. Since we have two functions in the list, the question is,

on which of them will the tools of the menu FCN operate? The
answer is: On the first. That means, if you for example move the
cursor somewhere and press , the slope will be found for

X ⋅ COS X() − SIN X()
X2

that is for the derivative that we found. You can take a look at the
function on which the tools operate by pressing and then .
This displays the first function in the list for about one second on the
top of the screen. If you want to switch to the next function in the list,
move the cursor a bit to the right or to the left, press and then

. The cursor moves then to the next function which gets
displayed on the bottom of the screen. (We move the cursor a bit

away from X = 0 , because the HP49G would use
SIN X()

X
 to find the

vertical coordinate. Since at X = 0 we have division by 0 , this causes
the HP49G to leave the plotting environment because of error.)
Pressing also rolls the items in the equation list. The first
equation is moved to the last place. The second moves to the first
place. The third to the second, and so on. Now press some menu key
again to display the menu, move the cursor again some 10 pixels to

the right and press , to draw the tangent line of
SIN X()

X
 at that

point and display its
equation on the bottom
of the screen. A copy of
this equation is placed
on the stack for later
use. If you leave the

plotting environment and return to the stack you will see the slope and
the equation of the tangential line that the HP49G put there for you. (The
equation of the tangential line isn't added in the list of equations to plot.)

Let's move on now to the other calculus stuff. First of all, automatic
scaling has created the variable X . You may want to purge it now, as it
is often the variable VX and this interferes with the CAS of the HP49G.
One of the calculus statements, that doesn't sound very interesting at
first, but nonetheless has immense consequences, is:

If a function y = f x() is continuous in a ≤ x ≤ b and
differentiable in a < x < b , then there exists always some

value ξ between a and b , such that
f b() − f a()

b − a
=

∂f x()
∂x x=ξ

.

That means geometrically that the slope of the tangent line
of f x() at x = ξ is equal to the slope of the secant that goes
though the points a,f a()() and b,f b()() .

If we have a function f x() , two
points a and b , can we then
find on the HP49G what the
equation of the secant line is,
that goes through the points
a,f a()() and b,f b()()? Yes, we

can. This operation wasn't
included in the tools of the menu
FCN of the plotting
environment, but nonetheless it
is easy to do that. Suppose that
we have the function

F X() = X2 −1()⋅ e
− X2()

 and we

want to find the equation of the line that goes through 0,F 0()() and

1,F 1()() . Enter:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-54

a b

f a()

f b()

ξ

F X() = X2 −1()⋅ e
− X2()

and press to create the user defined function F . We are going to
need the user defined function F and the commands R → C and
DROITE . Since they reside all in different menus, we make a new
temporary menu that contains them all. Enter the list
F R → C DROITE{ } and press . This creates a temporary

menu with the commands that we need. The menu exists only until we
leave it. Enter 0 , the first X -coordinate. Press to make a copy
of it on stack level 2, and press the menu key . This returns −1,
the Y -coordinate that corresponds to X = 0 . Press the menu key

 to create the complex number (point on the plane) 0., −1.() out
of the numbers on stack levels 1 and 2. Now, enter 1, press
to make a copy at stack level 2, press and then again to get
the second point, 1.,0.() . Now, press . The command
DROITE takes two points from the stack and returns the equation of
the line that goes through these points. The points can be two complex
numbers, in numeric or in algebraic style. That means that we can use
for example 0., −1.() and 1.,0.() (like we did), or 0 − i and 1. The
equation that DROITE returned is Y = X − 0. −1. . It contains
numeric (real) values because we used numeric complex numbers.

Press to turn them to exact integers and to get Y = X −1,

the equation of the line that goes through 0,−1() and 1,0() . All the
above is of course easy to program.

<<
 PUSH @Save user's settings
 → f v a b @Store in local variables
 <<
 a b 2 →LIST @Make a list of the two coords
 1 << →NUM >> @Turn them to numbers
 DOSUBS
 f
 v PICK3 = @make list {var=a var=b} and
 SUBST @substitute in function

 EXPAND R→C @Make list {(a,f(a) (b,f(b)}
 OBJ→ DROP @Explode it
 DROITE @Find secant line
 EXPAND
 RCLVX v = SUBST @Use variable of function
 >>
 POP @Restore user's settings
>>

Store the program in SECLINE. If you want, you can add XQ after
the last EXPAND . The program takes from the stack the function, its
variable, and the two x-coordinates. Let's test it. Enter SIN X()⋅ e− X , X ,
π
3

 and
3 ⋅π

4
, and press . The result is:

Y = − .180967365884⋅X − .493414050108() . Note that this
program will work only for points that are evaluable to numbers,
because the command DROITE doesn't work with symbolic
arguments. If we want a program that does its work with any possible
argument type, we unfortunately have to abandon the easiness of
DROITE and do all work ourselves. But we can get support from the
already existing program ∆QUOT . This program doesn't expect two x-
coordinates but rather one x-coordinate and ∆x . So, if we want to use it
for a secant, we have to transform the two x-coordinates. This is easily
done by not providing the x-coordinates a and b themselves, but a and
b − a (instead of ∆x). The program then returns the slope of the secant
line. The only thing that remains then is to program the calculation of the
constant of the equation of the secant line. If the function that we have is
f , and the x-coordinates are a and b respectively, then this constant is
given by:

f a()⋅ b − f b() ⋅a
b − a

The program SECLINE that comes with this document uses this
method.

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-55

<<
 PUSH @Save user's settings
 → f v a b @Store in local variables
 <<
 'Y' @Enter Y
 f v a = SUBST b * @Find (f(a)*b-f(b)*a)/(b-a)
 f v b = SUBST a *
 - b a - /
 f v a b a - @Create arguments for ∆QUOT
 ∆ QUOT @and call ∆QUOT
 v * + = @Built up secant line equation
 >>
 POP @Restore user's settings
>>

It has the disadvantage that we do all work ourselves. But it is more
flexible. Let's do an example. Enter eX , X , 0 and 1. Press

. The result is Y = X ⋅ e1 − X −1() , the equation of the

secant line that goes through the points 0,e0() and 1,e1() .

Now that we have that, you might suspect what comes next. Make a
program that finds the equation of the tangent line of some function at
a given point x0 . We can find the slope of the line easily by finding
the derivative and substituting x = x0 . That means, we have to find:

∂f x()
∂x x= x0

The constant of the equation of the tangent line is given by:

f x0() −
∂f x()
∂x x =x0

⋅ x0

which means that we can use the quantity

∂f x()
∂x x= x0

again. Here is the listing of the program TANLINE that takes a function
f , its variable x , and a coordinate x0 from the stack, and returns the

equation of the tangent line at the point x0,f x0()() .

<<
 PUSH @Save user's settings
 → f v a @Store in local variables
 <<
 'Y' @Enter Y
 f v ∂ @Find ∂f / ∂v
 v a = SUBST @Substitute v=a
 DUP v * @Find ∂f / ∂v |v= a

 f v a = SUBST @Find f(a)
 ROT a * - @Find f a() − a ∗∂f / ∂v |v= a

 + EXPAND = @Built up tangent line equation
 >>
 POP @Restore user's settings
>>

We test the program. Enter SIN X() , X and then 0 . Press to

get Y = X , the tangent line equation of SIN X() at 0,SIN 0()() .

Another interesting problem. Assume that you have a secant line that
goes through two points of some function. Then you search for a point
of the function, whose tangent line is parallel to the secant line. We can
make a program that takes a function f , its variable x , and two
coordinates a and b from the stack, finds the equation of the secant
line, and then finds the point whose tangent line is parallel to the secant
line. This problem is also easy to solve. In order for the two lines to be
parallel, they must have the same slope. The slope of the secant line is
given by:

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-56

f b() − f a()
b − a

The slope of the tangent line is given by the expression:

∂f x()
∂x x= x0

We have to find for which x0 the equation

f b() − f a()
b − a

=
∂f x()
∂x x= x0

is satisfied. On the HP49G it suffices to solve the equation

f b() − f a()
b − a

=
∂f x()
∂x

for x . Again we can use ∆QUOT for finding the quantity

f b() − f a()
b − a

Note however that in most cases the equation will not be analytically
solvable and so we will use also numerical solving. Here is the listing
of the program TANPARSEC (TANgent line PARallel to SECant
line - do you have a better name?)

<<
 PUSH @Save user's settings
 → f v a b @Store in local variables
 <<
 f v ∂ @Find ∂f / ∂v
 f v a b a - EXPAND @Find (f(b)-f(a))/(b-a)
 ∆ QUOT

 DUP "Slope" →TAG @Label result
 UNROT = v @Create arguments for ZEROS
 "Try analytically" @Inform user what's going on.
 1 DISP
 IFERR @If trying to solve errors
 ZEROS
 THEN @then
 "Failed.
Try numerically" @Inform user
 1 DISP

b a - 2. / ROOT @and try numerically
 v PURGE @Purge created variable
 END
 >>
 POP @Restore user's settings
>>

Let's try the program. Enter SIN X() , X ,
π
2

 and
3 ⋅π

2
. Press

to get:

Y =
2 ⋅π − 2 ⋅ X

π

This is the equation of the tangent line. Now, re-enter SIN X() , X ,
π
2

and
3 ⋅π

2
, and press . The results are the tagged objects:

Slope:
−2
π

and

X: − 2 ⋅n1⋅ π + ACOS
−2
π









 


2 ⋅n1⋅ π + ACOS

−2
π















Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-57

That means that the slope of the tangent (and the secant) line is
−2
π

,

and that the tangent line at the points given in the list has this slope.
We get more than one solutions because the sine is a periodic
function. Now, we want the equation of the tangent line at those
points. We work with the second solution:

2 ⋅ n1⋅π + ACOS
−2
π







Enter 2 and press to extract it from the list. We will work with
n1= 0 , so we must substitute this value in the solution. Enter n1= 0
and press , then to get:

ACOS
−2
π







This is the point where we want to find the tangent of SIN X() . Enter
SIN X() , then X , and then press to put the arguments in the
right order. Press to get:

Y =
2 ⋅ACOS

−2
π





 − 2 ⋅ X + π2 − 4

π

This is the equation of the tangent line. Let's plot the function, the
secant and the tangent line together. Press and to extract
the right hand side of the equation of the tangent line. Press

again to get rid of the slope. Press to bring the equation of the
secant line on stack level 1 and and to extract the right
hand side of the equation of the secant line. Enter SIN X() , then 3 ,

and then press and press to store the list in EQ . Set

plot type Function , independent variable X , horizontal view range

from 0 to 6.28 , and
vertical view range
from −1.2 to 1.5 .
Now to get a
plot that looks like
the picture on the
right. Of course all
this can also be
wrapped in a
program that does the all work automatically.

Another question that one might ask is, how can we represent
differentials of functions on the HP49G? Is there any way? For
example, suppose that we have the function Y = X2 . Its differential dY
is defined as:

dY =
∂X2

∂X
⋅ dX ⇔ dY = 2 ⋅X ⋅ dX

Of course we can take the derivative of the function, but how can we
denote the differential dX of the independent variable? One way would
be to simply append the small "d" in front of the name of the variable.
The question is how much work can be done with such an expression.
The answer is, at least it is the possible to store some value in variable
dX (or in general dvariableName), and evaluate to get the local
description of the function at some given point. Consider for example
the program:

<<
 → f v @Store in local variables
 <<
 f v ∂ @Find ∂f / ∂v
 "'d" v + "'" + @Make string "'dv'"
 OBJ→ @Turn string to name
 *
 >>
>>

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-58

Store this in DY. Enter SIN X() , X and then press to get
COS X() ⋅ dX . We see that the function SIN X() can be described
locally, i.e. in the neighbourhood of some given point X0 as

COS X0()⋅ dX , where dX is some tiny quantity. When X has a

change of dX , then SIN X() has a change of COS X0()⋅ dX . For

example let's see what SIN X() does at X = π . Enter X = π and
press and to get −dX . This means that at around
X = π , when X
has a variation of
dX , then SIN X()
has a variation of
−dX . As you can
see, the local
description of the
curve can be
approximated using
differentials. They
say how much the function varies at a given point, when the
independent variable varies a tiny little dX . Geometrically this is like
wanting to represent the function by many tangent lines, one at every
point. A good way to represent that is to draw them without drawing
the function itself. For example let's draw the tangent lines of X2
from −2 to 2 , in steps of 0.2 . We will use the program TANLINE
to find all the equations of the tangent lines. Enter <<'X^2' 'X' a
TANLINE EQ→ NIP>>, 'a' , −2 , 2 and .2 . Press to evaluate
(run) the program for all values of a from −2 to 2 in steps of 0.2 . It
takes some seconds to run, so be patient. When it finishes, stack level

1 contains a list with the equations of the tangent lines. Press to

store the list in EQ . Set plot type Function, independent variable X ,
horizontal view range from −2 to 2 , and vertical view from −1 to 4 .
Now press and then to see the plot. It takes quite a
long time to start plotting, and even longer to finish the plot, so be
patient. When it finishes you have the impression that the parabola
was drawn, though we plotted only straight lines.

The higher
differentials can be
calculated by using the
code in DY
repeatedly. If the
variable dX which is
introduced by DY is
not the variable of
derivation and is not in
the original function, it
will not interfere with our operations.

<<
 → f v n @Store in local variables
 <<
 f @Put f on stack
 1 n START @Do n times
 v ∂ @Find ∂f / ∂v
 "'d" v + "'" + @Make string "'dv'"
 OBJ→ @Turn string to name
 *
 NEXT
 FACTOR @Collect all dv
 >>
>>

Store the new code in DY and let's test it. We will find the second
differential of SIN X()⋅ e− X . Enter SIN X()⋅ e− X , then X and then 2 .

Press to get − 2 ⋅e− X ⋅ COS X() ⋅dX 2() . As you can see the
differential of the independent variable isn't at the very end of the
algebraic. But this is only a cosmetic problem.

The last thing at which we take a look here is a small comparison

between the notions
∂

∂X
F X()() and d1F X() that both are possible on the

HP49G. The algebraic (no pretty print) form of the notion
∂

∂X
F X()() is

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-59

∂X F X()() . It looks quite similar to d1F X() . But the differences are

huge. In the notion ∂X F X()() the sequence of characters ∂X is not a
name. The second character is the variable of differentiation and is the
second argument of the function ∂ . The HP49G displays ∂X F X()()

but internally it means ∂ F X(),X() . It is only a special display and

nothing more. Quite different in d1F X() , the sequence of character
d1F is a name. It is a normal name that you can type in, exactly like
any other name. There is no built-in function d1F or d2VPN or
d3RCOBO . So we can define our own functions, that is, we make
user defined derivatives. When the CAS of the HP49G has to
manipulate some expression, it apparently checks if names are
present, that are constructed in the way dNumberName. If it finds
any, then it uses its built-in knowledge about derivatives. So for
example it is possible to enter X X() , then X , and then press
to get d1X X() . This is a quite pathological example, and I use it only
for explanations, though it might as well have its usefulness. (He, he,
you guessed right, in some of the next parts we will perhaps use it...
perhaps! ;-)) In this example the dependence of the function X on
itself is somehow "hidden" in the derivative. The function name has
become d1X and its argument is X , i.e. we have two different names
out of two identical names of the expression X X() . There is yet
another difference, which I think will can be understood better, if we
focus on the difference between variables and names on the HP49G.
A name is a single object (object type 6.), like for example X , Y ,
VOLUME , or even Karagiaouroglou. (OK, the last example might
be no name at all ;-)) But a variable has become quite an abstract
concept on the HP49G. On the HP48 the world was easier, variables
were names, end of story. But on the HP49G a variable can be
sometimes a name, sometimes an expression. A variable is something
that can… vary, no matter if it is a name or an expression. What the
CAS considers a variable is a rational variable and not necessarily a
simple name. For example, if you enter SIN X ⋅Y() − COS Z() , and

press , then the HP49G returns the vector with the names that

appear in the expression, X Y Z[]. But if you press , the

HP49G returns the vector of rational variables, SIN X ⋅ Y() COS Z()[].
Apparently the two quantities SIN X ⋅Y() and COS Z() are for the
HP49G two entities, two things, that are treated as wholes in many
(all?) symbolic manipulations. And here we have a good starting point

for understanding the difference between the two notions
∂

∂X
F X()() and

d1F X() . (At this point it would be good to purge F if you still have it

from the previous pages.) The first notion,
∂

∂X
F X()() , is the derivative

for the name X . The second, d1F X() , is the derivative for the rational
variable X . Of course in this example both are the same, but if we write
X2 + X instead of X between the parentheses, then we get:

∂
∂X

F X2 + X()()
and:

d1F X2 + X()
Now we see that

∂
∂X

F X2 + X()()
still means the derivative for the name X . If you expand it you get
2 ⋅ X +1()⋅ d1F X2 + X() . On the other hand if there is no definition of the

derivative d1F X() , then expanding d1F X2 + X() returns d1F X2 + X()

unchanged, because this is the first derivative of F for whole rational
variable X2 + X . Note that the second notion counts arguments

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-60

(variables) simply by position. The construction
dNumberFunctionvar1,var2,…,varN() separates the arguments
by commas. Between the commas we have slots where the rational
variables go. So, entering

∂
∂X

F
X
Y

,
Y
X









 



and expanding, returns

−Y
SQ X() ⋅ d2F

X
Y

,
Y
X





 +

Y
SQ X() ⋅d1F

X
Y

,
Y
X







In these expressions, though we started with a derivative for a name,
we end up with derivatives for a rational variable. This doesn't mean
that the result is incorrect. Quite the contrary it is correct and if it is
used wisely it is also very useful.

Note also that the HP49G allows entering for example d100F X() .
Expanding this doesn't do anything, though the function F has only
one and not 100 variables. This means that we have a way to enter
derivatives of non-existing variables which will not disappear when

we expand or do something else. With the notation
∂

∂X
F X()() we

can't do that. If you expand for example
∂

∂Y
F X()() (i.e. derivation

for a non existing variable), then you get 0 . In the above comparison

one could as well use DERIV F X(),X() instead of
∂

∂X
F X()() .

We came to the end of the first part of this marathon. If the above
things were not very exciting, then wait until the next part, which will
definitely come without delays. What comes in the next part was
originally thought for this part. But then there would be too much

important stuff about the "technical" part of the commands for
derivation, which wouldn't have been covered at all. So I decided to
reorganise things (once again) and do first all that stuff that you should
know before we proceed. I hope you enjoyed it.

Greetings,
Nick.

Basic Calculus with the HP49G - Volume 1 - Part 1

Volume 1, 1-61

Hi again!

In the first part of the Basic Calculus Marathon, we spent a lot of time
by examining the "technical" part of the derivation commands and
their behaviour in many different cases of syntax and arguments. We
continue this marathon examining what rules of derivation are known
to the HP49G, and what we can program ourselves.

The HP49G is able to perform (almost) all rules of differentiation.
Most of the time you don't even notice that, but the HP49G finds
derivatives following those rules. We are going to take a closer look
to these processes by activate the step by step feature. When this
feature is activated then differentiations can be followed from one step
to the next.

Before we go further, purge the variables and user defined functions
that we used in the first part, because they may interfere with what we
are going to do now. Enter R S V W Z Q Z1 Z2{ } and
press to get rid of them. If the variables don't exist, then
PURGE will not error out. It will simply remove the list from the
stack. (PURGE behaves in the sense "Delete file if it exists".)

The first derivation rule that we are going to examine is:

∂
∂X

C ⋅F X()() = C ⋅
∂

∂X
C ⋅F X()()

Does the HP49G know that? Let's see. Enter

∂
∂X

C ⋅F X()()

and press to get

C ⋅
∂

∂X
F X()()

If you press again, then you get C ⋅ d1F X() . Notice that the step
by step feature works only for algebraic entry of the whole derivative
and evaluation. If you enter C ⋅F X() , then X , and then press , you
will get the end result, without the steps in-between. You have to enter
your derivative in the form

∂
∂name

expression()

and press . Any other way will give you the end result in one step.
Let's have a particular example, enter

∂
∂Y

A ⋅ Y2()

and evaluate to get

A ⋅
∂

∂Y
Y2()

Evaluate again to get 2 ⋅ Y ⋅ A . Of course you can also expand

∂
∂Y

A ⋅ Y2()

to get A ⋅ 2 ⋅ Y immediately without any steps in-between, but we
examine here if and how the HP49G applies derivation rules. The
opposite direction, collecting the constant in front of the derivative and
multiply it with the function inside the derivative, is not possible on the
HP49G out of the box. But we can (of course ;-)) program that. We can
use the command ↑ MATCH to convert any occurrence of the pattern

constant ⋅
∂

∂name
function()

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-1

to the pattern

∂
∂name

constant ⋅ function()

But we must watch out here. We can't blindly do this matching. We
must check first if constant is itself a function of name . If it is,
then we can't put it inside the parentheses of derivation. We are
allowed to do that only if constant doesn't depend on name . The
command ↑ MATCH offers the possibility to check some condition
and do the matching only if the condition is true. The condition that
we must use is in general "variable not in constant ". We have the
command LNAME, which returns a vector of all names in an
algebraic object, or an empty list if the algebraic object doesn't contain
any names. We can check if name is in that vector and decide what
to do accordingly. But… to do this we have to give the command
↑ MATCH a list containing three algebraic objects, the third of which
is the condition. And LNAME is a command, not a function, and thus
it can't be put in an algebraic object. What to do in such a case? We
have to somehow smuggle what LNAME does in an algebraic object.
Here comes the flexibility of the HP49G. Imagine some program that
does anything it does, but returns a single object which is allowed in
an algebraic. For example, suppose that you have the program

<<
 π →NUM
 1 10 START
 COS
 NEXT
 XQ
>>

stored in MULTPI10. If you enter the expression MULTPI102 ⋅X
and expand, then the program will be evaluated and its result,

36293
49621

will replace the variable MULTPI10 in the expression, giving:

36293
49621







2

⋅X .

The expansion then proceeds and returns the result

31317181849⋅ X
2462243641

Since the result of MULTPI10 something allowed in algebraic objects,
everything works OK. Another example: Suppose that you have the
program

<<
 → x
 <<
 x TVARS SIZE
 >>
>>

stored in NUMTVARS. The program takes a number as argument and
returns all variables in the current directory, that are of the same type like
the number. If you enter the algebraic object NUMTVARS 8() +10 and
expand, then the HP49G will return the sum of the number of programs
(type 8.) in the current directory and 2 .

In exactly the same way we write the program

<<
 SWAP LNAME NIP @Return list of names in alg.
 IF DUP TYPE 29. == @If result is symbolic vector
 THEN @then
 AXL @convert it to a list
 END
 SWAP POS @Position of name in list.
>>

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-2

and store it in POSNAME . The program takes two arguments. An
algebraic (or name) on stack level two, and a name on stack level 1. It
returns the position of the name in the vector of variables of the
algebraic object. If you enter X2 − Y + Z and Z , then pressing

 returns 2. because Y is in the second position of the
vector of names of X2 − Y + Z . If you enter X2 − Y + Z and A , then
pressing returns 0. , because A isn't contained in
X2 − Y + Z . The important thing is that you can also do the same in
algebraic syntax. You can enter POSNAME X2 − Y + Z,Y() and
EXPAND. This will also set approximate mode on, switch back if
you don't want it. Now we can use POSNAME expression,name()
in any algebraic object. We can use it as the testing condition for the
command ↑ MATCH . Let's do an example first. Enter

C ⋅
∂

∂X
F X()()

Now enter the list:

&c ⋅
∂

∂ &v
&f() ∂

∂ &v
&c ⋅ &f() NOT POSNAME&c,&v()








Press . The result is

∂
∂X

C ⋅F X()()

on stack level 2, and 1. on stack level 1, which shows that pattern
matching was performed. The HP49G evaluated
NOT POSNAME &c,&v() , the testing condition. Since variable &v
(i.e. X) was not in expression &c (i.e. C), the program
POSNAME returned a 0. This was negated and the result of the

testing condition was 1. , which stands for true. The testing condition
was evaluated to true and so pattern matching was performed. Enter

X ⋅
∂

∂X
F X()()

then press to get the popup with the last 4 commands. Select the
list with the pattern matching arguments and press to put it in the
command line. Press again to put it on the stack. Now, press

 again. The result now is

X ⋅
∂

∂X
F X()()

on stack level 2, and 0. on stack level 1, which shows that pattern
matching was not performed because &v (i.e. X) was in expression
&c (i.e. X). We will use this and other similar tricks later on, to make a
program that collects differential forms, something that the HP49G can't
do out of the box.

Next rule that we examine is the derivation rule for sums, which is:

∂
∂X

F X() + G X()() =
∂

∂X
F X()() +

∂
∂X

G X()()

Enter

∂
∂X

F X() + G X()()

and evaluate. The HP49G returns

∂
∂X

F X()() +
∂

∂X
G X()()

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-3

If you evaluate again then you get d1F X() + d1G X() . We also do a
particular example. Enter

∂
∂X

X2 ⋅ A − X ⋅ 2()

and evaluate. The result is

∂
∂X

X2 ⋅ A() −
∂

∂X
X ⋅2()

which shows that the HP49G used the derivation rule for sums.
Evaluate again to get

A ⋅
∂

∂X
X2() − 2

Here the HP49G used the rule of derivation of an expression
multiplied by some constant. Evaluation of the term

∂
∂X

X2 ⋅ A()

resulted in

A ⋅
∂

∂X
X2()

which still contains a derivative. Evaluation of the term

∂
∂X

X ⋅ 2()

resulted in

2 ⋅
∂

∂X
X()

which was directly simplified to 2 ⋅1= 2 . Evaluating again we get
2 ⋅ X ⋅ A − 2 , the final result, which the HP49G finds using again the
rule of derivation of an expression multiplied by a constant. Again the
opposite direction isn't possible. There is no command that collects
expressions like:

∂
∂X

F X()() +
∂

∂X
G X()()

to:

∂
∂X

F X() + G X()()

Here we could enter:

∂
∂X

F X()() +
∂

∂X
G X()()

then list that contains the patterns to match:

∂
∂ & v

&f() +
∂

∂ &v
&g() ∂

∂ &v
&f + &g()








and then use ↑ MATCH to convert the sum of the derivatives to the
derivative of the sum. We keep these idea in mind for using them later
for a program that does collection of differential forms. The rule for
taking the derivative of a sum is known by the CAS of the HP49G if we
build up the sum using + . But what about Σ ? Will it be able to handle
for example

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-4

∂
∂X

Xn

n=1

N

∑

 



and convert it to

∂
∂X

Xn()
n=1

N

∑ ?

Let's see. Enter:

∂
∂X

Xn

n=1

N

∑

 



and expand. The result is d1Σ n,1,N,X 2() . Unfortunately it doesn't
work this way. And this is a pity. The HP49G can do that. Enter

Xn

n=1

N

∑ , then X , and then press . You get:

X −1()⋅ e N+1() ⋅LNX() ⋅ N+ 1() ⋅ 1
X

− 1




 − e N +1()⋅LN X() − X()

SQ X −1()

Expand this to get:

X −1()⋅N +−1()⋅ X
N+1() + X

X3 − 2 ⋅ X2 + X

This result shows that the HP49G first found the result of Xn

n=1

N

∑ and

then took the derivative of the result for X . First of all the question is
why it doesn't do the same if we enter that in algebraic syntax? Then,
what will happen if the sum can't be handled by the built-in CAS? To

answer the second question, enter:

Xn

X −nn=1

N

∑

then X , and then press . After some seconds the HP49G returns:

d1Σ n,1,N,
Xn

X − n



 



It can't find what the result of

Xn

X −nn=1

N

∑

is and so it returns the formal derivative. There is no built in way to
convert derivatives of sums in the form:

∂
∂X

expressionX,n()
n=1

N

∑

 



to:

∂
∂X

expression X,n()()
n=1

N

∑

If the symbolic sum can be expanded to some other expression, then the
derivative of this resulting expression will be taken. If we use the
function ∂ , this works only if we first enter the sum, then a name and
then press . Entering the whole thing at once, namely

∂
∂X

expressionX,n()
n=1

N

∑

 



Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-5

will not work, even if the symbolic sum can be handled by the CAS.

On the other hand the command DERIV works in both RPL and
algebraic syntax. The expression

DERIV Xn

n=1

N

∑ ,X


 



can be directly expanded to

X −1()⋅N −1()⋅ X
N+1() + X

X3 − 2 ⋅ X2 + X

The same result we get if we enter Xn

n=1

N

∑ , then X , and then press

 and . But again, expanding the expression

DERIV
Xn

X −nn=1

N

∑ ,X


 



we get

d1Σ n,1,N,
Xn

X − n



 



because the CAS can't handle the sum
Xn

X −nn=1

N

∑ . We can't somehow

convert

DERIV
Xn

X −nn=1

N

∑ ,X


 



to

DERIV
Xn

X −n
,X



 

 n=1

N

∑

using the built-in commands. So the rule for derivation of sums seems
to be only implemented for + but not for Σ . The opposite direction,
namely conversion of:

∂
∂X

expression X,n()()
n=1

N

∑

to:

∂
∂X

expressionX,n()
n=1

N

∑

 



is also not possible out of the box. In this case the HP49G takes the
derivative of expressionX,n() , and then tries to find the sum:

∂
∂X

expression X,n()()
n=1

N

∑

If it can handle this, it returns some result that doesn't contain any
derivatives any more. If it can't find the sum, then it returns:

derivativeOfExpressionX,n()
n=1

N

∑

So we see that we have to program such conversions of sums built up
with Σ . We have to watch out because if the variable of derivation is the
same like the summation index, then we are not allowed to convert:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-6

∂
∂n

expressionX,n()
n=1

N

∑

 



to:

∂
∂n

expression X,n()()
n=1

N

∑

(This is also true for the opposite direction.) So we have to check first
if the derivation variable is different from the summation index, and
do our conversions only if this condition is true.

Next rule of derivation is the product derivation rule:

∂
∂X

F X() ⋅G X()() = F X() ⋅
∂

∂X
G X()() + G X()⋅

∂
∂X

F X()()

Enter the derivative:

∂
∂X

F X() ⋅G X()()

and evaluate it to get the result:

∂
∂X

F X()() ⋅G X() +F X() ⋅
∂

∂X
G X()()

We see that the HP49G knows also this rule of differentiation. But
here we start suspecting what one of the main problems of our
program will be, that collects differential forms. We have to do it in
such a way, that it will be able to collect:

∂
∂X

F X()() ⋅G X() +F X() ⋅
∂

∂X
G X()()

but also:

G X() ⋅
∂

∂X
F X()() +F X() ⋅

∂
∂X

G X()()

or any equivalent form, to:

∂
∂X

F X() ⋅G X()()

That means that we have to somehow make sure that it will do its work
with arbitrary differential forms, and not only with differential forms
written in some particular way. Let's have a particular example. Enter:

∂
∂X

X2 ⋅ SINX()()

and evaluate once to get the result:

∂
∂X

X2()⋅ SINX() + X2 ⋅
∂

∂X
SINX()()

The rule of derivation of products was used once. Press again to
get the result 2 ⋅ X ⋅ SINX() + X2 ⋅ COS X() .

Now we move on to the derivation rule of powers:

∂
∂X

F X()n() = n ⋅F X()n−1 ⋅
∂

∂X
F X()()

If you enter:

∂
∂X

F X()n()

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-7

and evaluate, you get the result:

n ⋅F X()n −1 ⋅
∂

∂X
F X()()

The opposite direction is again not possible, there is no available
command to collect the expression:

n ⋅F X()n −1 ⋅
∂

∂X
F X()()

to:

∂
∂X

F X()n()
For an example enter:

∂
∂A

A4()

and press to get 4 ⋅A3 .

We take a look to the derivation rule for quotients:

∂
∂X

F X()
G X()



 


 =

G X() ⋅
∂

∂X
F X()() −F X()⋅

∂
∂X

G X()()
G X()2

Enter:

∂
∂X

F X()
G X()



 




and evaluate. You get the result:

G X() ⋅
∂

∂X
F X()() −F X()⋅

∂
∂X

G X()()
SQ G X()()

which shows that also this rule is known to the CAS. But again re-
collecting the result to:

∂
∂X

F X()
G X()



 




is not possible. To have an example, enter:

∂
∂X

SINX()
X



 



and evaluate to get:

X ⋅
∂

∂X
SIN X()() −SIN X()

SQ X()

Next evaluation gives:

−
SINX() − X ⋅ COS X()

X2 .

Next comes the "chain rule", the rule for taking derivatives of nested
functions:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-8

∂
∂X

F G X()()() =
∂

∂G X() F G X()()()⋅
∂

∂X
G X()()

Enter:

∂
∂X

F G X()()()

and evaluate to get d1G X()⋅ d1F G X()() . Here the HP49G returned the
result using d1-notation, but the result is nonetheless correct.
Remember, d1F G X()() is the derivative of F G X()() for G X() . Let's

have an example again. We use G X() = X2 and

F G X()() = SIN G X()() = SIN X2() . Enter:

∂
∂X

SINX 2()()
and press to get:

COS X2()⋅
∂

∂X
X2()

The HP49G has found the "outer" derivative:

∂
∂X2 SIN X2()() = COS X2()

and multiplied this with the "inner" derivative:

∂
∂X

X2() , giving the result:

COS X2()⋅
∂

∂X
X2()

If you press once more, you get 2 ⋅ X ⋅ COS X2() (i.e. rule of
derivation of powers). As you might have expected, the is no available
command for collecting:

∂
∂G X() F G X()()()⋅

∂
∂X

G X()()

to:

∂
∂X

F G X()()() .

As we see all the above rules of differentiation are known to the CAS of
the HP49G, but only in one direction, namely in the "expanding"
direction. The opposite, call it "collecting" direction, is not possible.
However, sometimes it is quite useful to have that feature of collection
of differential forms. (We will see that this can be a quite a help for
solving some types of differential equations.) So we are going to make a
program for this. Let it be said here, that the program will not do
miracles. In many cases it will fail to collect the differential forms,
though they could be collected. However, it will do its work in many
other cases. In addition it will demonstrate some techniques of
programming and dealing with algebraic objects, which I hope will
generate appetite for more ideas and further improvements. Before we
continue, deactivate the step by step feature, as we don't want stepwise
evaluation of derivatives any more.

Let's consider first some general things about the program. In order to
collect differential forms, it will make heavy use of the pattern matching
commands ↑ MATCH and ↓ MATCH . But here we have the first
problem. The commands can't be used with differential forms written in
dn notation. Imagine for example that we have d1F X() + d1G X() ,

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-9

which can be collected to:

∂
∂X

F X() + G X()()

First of all, the undefined functions F X() and G X() could also be
H Y() and P Z() . That means that we have to use the pattern matching
commands with general patterns. But since the differential forms are
written as d1F X() and d1G X() , the names of the functions alone are
not available for pattern matching. We only have the names d1F and

d1G . Matching d1F X() to
∂

∂X
F X()() is only possible for this

particular case, namely using the pattern matching list:

d1F X() ∂
∂X

F X()()







We can't use any other more general pattern that would also match for

example d1G Y() to
∂

∂Y
G Y()() . We can't use the pattern matching

list:

&F &X() ∂
∂ & X

&F &X()()







This would of course match d1G Y() to
∂

∂Y
G Y()() and d1F X() to

∂
∂X

F X()() , but it would also match F X() to
∂

∂X
F X()() because, as

already said, for the calculator both d1F X() and F X() are the same
general pattern. (Remember, d1F is just a name.) In addition, the
expression d1F X() doesn't contain the variable of differentiation in a
way that makes it easy to do pattern replacement. So the first

requirement is that we have to convert first all derivatives written in d1

notation to derivatives written in
∂
∂

 notation. And for this we have to do

parsing. Since it could be useful to have such a program as a stand alone
utility for converting expressions with d1 derivatives to expressions

with
∂
∂

 derivatives, we are going to program that separately. Then, the

program that will do collection of differential forms, can just call this

stand alone utility and use it for the conversion of d1 derivatives to
∂
∂

derivatives. Let's take a look at the listing of the program dn → dv
which takes an expression from stack level 1, and returns it with all d1

derivatives converted to
∂
∂

 derivatives.

<<
PUSH @Save user flags
-100. CF @No step by step
"Converting ∂ to d" @Display message
1 DISP
IF

EXPAND LVAR {} ≠ @If expression has
@rational variables

OVER TYPE 9. == AND @and it is an algebraic
@object

THEN @then:
"Filtering names out" @Display message
1 DISP
LVAR AXL @Return list of rat. vars
{}
→ varl @Store empty list in local
<< @Local var. procedure

1.
<< @Start of DOSUBS procedure

IF @for all rational variables
DUP TYPE 6. @If rat var. is a name
==

THEN @then drop it
DROP

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-10

ELSE @else
'varl' STO+ @ add it to list varl.

END
>>
DOSUBS @Do to all rat. vars.
varl @Return varl

>>
IF

DUP {} ≠ @If result is not empty
THEN @then we parse all rat.

1. @variables
<< @Start of DOSUBS procedure

DUP →STR @Make a copy, conv. to str.
2. OVER SIZE @Substr. chars. 2 to length
1 - SUB @of string - 1
{} "" @Store in locals
→ dFormAlg dFormStr
dvars dTemp
<<

1. SF @Set flag 1 (indicator)
DO @Do

"Searching diff. forms"
1. DISP @Display message
IF @If

dFormStr @string starts with "d("
"d(" POS
1. ==

THEN @then
"No diff. forms"
1. DISP @Display message
1. CF @Clear flag 1

ELSE @else
IF @if

dFormStr
HEAD @If first char. is "d"
"d" ==

THEN @then
"Diff. form found"
1. DISP @Display message
"d" @Store "d" in dTEMP
'dTemp'
STO

dFormStr @Store tail of dFormStr
TAIL @in dFormStr
'dFormStr'
STO

ELSE @else
"No diff. forms"
1. DISP @Display message
1. CF @Clear flag 1

END
IF @If flag 1 is set

1. FS?
THEN @then

"Parsing diff. form"
1. DISP @Display message
WHILE @While

dFormStr @dFormStr starts with number
HEAD DUP @≥ 0 and ≤ 9
"0" ≥
SWAP "9"
≤ AND
dFormSTr @and it has an opening
"(" POS @parenthesis at a position
3. ≥ @≥ 3
AND @(We check pattern "dn(")

REPEAT @repeat
'dtemp' @add first char of dFormStr
dFormStr @to dTemp
HEAD STO+
dFromStr @put the rest in dFormStr
TAIL
'dFormStr'
STO

END
IF @If dFormStr has "(" in

dFormStr @first or second position
"(" POS
2. ≤

THEN @then
IF @If

dFormStr @dFormStr doesn't start
"0" ≥ @with char. between 0
dFormStr @and 9

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-11

"9" ≤
AND NOT

THEN @then
'dvars' @add object that results
dTemp @from substr 1 to length
2 OVER @-1 from dTemp
SIZE @to dvars
SUB OBJ→
STO+

ELSE @else
1. CF @clear flag 1

END
ELSE @else

'dvars' @add object that results
dTemp 2 @from substr 1 to length -1
OVER @from dTemp to dvars
SIZE SUB
OBJ→
STO+

END
END

END
UNTIL

1 FC? @until flag 1 is clear
END
IF

dvars {} ≠ @dvars contains something
THEN

dFormAlg
dvars REVLIST @Reverse dvars list
IF @If

dFormStr @dFormStr starts with char.
HEAD DUP @between "0" and "9"
"0" ≥
SWAP "9"
≤ AND

THEN @then
"d" @add "d" at start of
dFormStr + @dFormStr

ELSE @else
dFormStr @return dFormStr

END

"Build-up MATCH list"
1. DISP @Display message
DUPDUP "(" @Find number of deriv. var.
POS 1. + @Make list {nums deriv vars}
OVER ")"
POS 1 -
SUB "{" SWAP
+ "}" + OBJ→
→ vars @Store local
<<

SWAP 1.
<< @DOSUBS procedure

"∂ " vars @Make str "∂ var(expr)"
ROT GET
+ "(" +
SWAP +
")" +

>>
DOSUBS @Do with all list elements
"'" SWAP + @Add quotes and make alg.
"'" + OBJ→
2 →LIST @Make pattern match list

>>
END

>>
>>
DOSUBS ©Do with all list elements
IF @If we don't have an alg.

DUPDUP TYPE 9. ≠ @or name
SWAP TYPE 6. ≠
AND

THEN @then
"MATCHing diff. forms"
1. DISP @display message
1.
<<

↑ MATCH DROP
>>
DOSUBS @MATCH every pattern

END
ELSE @else

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-12

DROP @Drop
END

END
POP @Restore user settings

>>

The program dn → dv which comes with this document (he, he, no
need to type it ;-)) is really no easy thing to read and to understand
how and why it works. I have made corrections and corrections of
corrections until it worked. So much of it is kind of patchwork. And it
isn't perfect also. For example it will crash if you give it d100F X()
because it will try to find out what the hundredth rational variable
(inside the parentheses) of F X() is. But it will work correctly if you

give it expressions that are convertible to the notation
∂
∂

. If no

derivative is contained in the expression that you give it, it returns the
expanded expression. Should we try it? But of course! Enter
d1d1F X() − d1G Y()⋅ d2F1X,Y() and press . The HP49G
displays some messages (that Nick finds informative ;-)) and then it
returns:

−
∂

∂Y
G Y()() ⋅

∂
∂Y

F1Y,Y()() −
∂

∂X
∂

∂X
F X()()







 



It works! (Even I wouldn't expect that ;-))

Let's comment some of the used techniques before we proceed, as
they seem to be interesting. First of all, we have that EXPAND at the
beginning of the program. Is it necessary? Well, the expression that
contains differential forms, could contain them in any possible
notation. For example, we could give the program:

∂
∂X

∂
∂X

F X()()





or:

∂
∂X

d1F X()()

or:

d1d1F X() . We expand at the beginning in order to convert the
expression to the standard fully expanded form. This way we are able to
know later on in the program, that the expression is in a particular form,
no matter how it was entered.

Another thing that should be noticed is how the list of rational variables
is constructed. Take for example the derivative d1F X,Y,Z() . The
program converts that to a string and extracts the sub string "X,Y,Z" .
Then the list delimiters are added and the string is converted to
" X,Y,Z{ }". This string is then converted to a list using the command
OBJ → . Notice here the commas between the list elements. The
sequence " X,Y,Z{ }" OBJ → is exactly the same as if you have entered
the list X,Y,Z{ } from the command line. Normally list elements are
separated by spaces but commas will also work. You can even enter
X,Y,Z , which is exactly the same like entering X Y Z and creates
the three names in stack levels 3 to 1. In this case it is very helpful not
having to replace the commas in the string to spaces before using
OBJ → . (However, if we had to do that, we could use the command
SREPL .)

The last thing that seems remarkable is that the same comparison
commands, like for example > , ≥ and so on, can be used to compare…
characters! Of course we don't compare the characters themselves but
rather their character number in the character table of the HP49G. This is
very helpful for alphabetising purposes, or for finding if some string
starts with a character, the character number of which is within a certain
range.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-13

Now that we have dn → dv , let's proceed and see what else we
need. The collection of differential forms can be very hard to
program, if we don't define the standard form in which the algebraic
form has to be delivered to our collecting algorithms. Of course we
have already used EXPAND to bring the expression in its standard
fully expanded form, but this is not enough. The command
EXPAND will sometimes return sums of products, sometimes sums
of terms, and so on. We can't predict what the general form of its
results will be. So we make a convention. The expression has to be
delivered to our collecting algorithm as a sum of products. This way
we will know that it has the form T1 + T2 +…+ Tn , where
T1,T2 ,…,Tn are all products (i.e. they don't contain any sums). The
HP49G has the command FDISTRIB , which fully distributes ⋅ and /
over + and − . This command has also the big advantage, that it
returns sums but no differences. For example, entering

A −B
C

and using FDISTRIB , returns:

A
C

+−
B
C

(i.e. the sum of
A
C

 and −
B
C

 rather than the difference of
A
C

 and
B
C

).

Don't underestimate this simple fact. If we had sometimes a sum and
sometimes a difference, then using the summands one after the other
in a program would be much more complicated because we would
have to check if they are connected by + or by − . If we have the
expression in its fully distributed form, then we can examine each
summand for itself, and decide if in some of them the differential
forms can be collected. Then we can add them pair wise and examine
every possible pair Ti + Tj , where i ≠ j , with pattern matching of the
differential forms. We need a program that returns all summands of
some expression separately and unfortunately the HP49G doesn't

have such a command. But fortunately the Sequences, Series and Limits
Marathon was done before the Basic Calculus Marathon. (There is
method in my insanity ;-)) In that marathon we had the program
→ TERMS that does exactly this. It returns a list with all summands of
some expression. If you don't have that marathon then it doesn't matter,
because the program → TERMS comes also with this marathon.

Let's see now the listing of the program dCOLLECT.1, which
(hopefully) collects differential forms. It uses all the ideas from above
and also the pattern matching commands quite often. It needs d1→dv
and → TERMS to run, so you should have these programs at the same
directory. The program is way from being perfect, but as already said,
all programs of the marathon are for demonstrating programming
techniques and creating appetite for improvement.

<<
PUSH @Save user's settings
dn→dv @Convert to ∂ notation
→TERMS @return list of terms
→ diffTerms @Store in local
<<

1. diffTerms SIZE @Do for each term
FOR I

"Checking " I + " term
" + 1. DISP @Display message

diffTerms I GET @Extract term from list
FACTORS @Return list of factors and
{ 1. 1.} {} @multiplicities
→ termFacts
facts difFacts @Store in locals
<<

termFacts 1.
<< @DOSUBS procedure starts

IF @If we have an element at
NSUB 2. MOD @an even position
NOT

THEN @then it is a power
2. →LIST @so make list {factor power}

END
>>

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-14

DOSUBS @Now the list is in the form
@{{fact1 pow1}{fact2 pow2}…}

"Separating ∂ " @Now we are going to
1. DISP @separate diff. forms from

@other factors
1.
<< @Another DOSUBS procedure

IF @If
DUP HEAD
{'∂ &V(&A)' '∂ &V(&A)'}

↓ MATCH NIP @factor is a diff. form
THEN @then convert it to a list

1. →LIST
'difFacts' @and enter 'difFacts

ELSE @else
'facts' @enter 'facts'

END
SWAP STO+ @Add factor to approp. list

>>
DOSUBS @Now we have all factors that

@are diff. forms in difFacts.
@All the others are in facts

IF @If there were more than one
difFacts SIZE @diff. forms
1. >

THEN @Then we take the highest
'facts' @derivative and add the others

@to the common factors
"Isolate highest diff.

" 2. DISP @Message
difFacts TAIL @Add all but the highest

@der.
1. @to common factors
<< OBJ→ DROP >>
DOSUBS STO+
difFacts HEAD @Put highest derivative
1. →LIST @in difFacts
'difFacts' STO

END
IF @If difFacts isn't empty

difFacts {} ≠

THEN @then
"(∂)^n → ∂ *(∂)^(n-1)"
2. DISP @We will convert all derivs.

@from (∂ X(F(X)))^n to
@∂ X(F(X))*(∂ X(F(X)))^(n-1)
@(See explanations after
@program listing.)

difFacts 1.
<< @Yet another DOSUBS proc.

OBJ→ DROP @Convert { deriv pow } to
OVER SWAP @{ deriv deriv pow-1 }
1. - R→I
3. →LIST

>>
DOSUBS
'difFacts' STO @Store in difFacts
"Collecting ∂ of powers"
2. DISP @Another message
difFacts 1.
<< @DOSUBS proc.

IF @If
facts OVER @Sub expression F(X)
HEAD OBJ→ @of ∂ X(F(X))
3. DROPN @appears in the factors
POS DUPDUP @that are not derivatives

THEN @then
facts SWAP @get factor and its power n
GET facts
ROT 1 +
GET
→ factor @Store locally
power
<<

"'∂ " @Construct ∂ X(F(X)^n+1)
OVER HEAD
OBJ→ DROP2
NIP + "(" +
factor power
1. + R→I
IF

DUP 0. <

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-15

THEN
NEG ^ INV

ELSE
^

END
→STR 2. OVER
SIZE 1. - SUB +
")'" + OBJ→
1. SWAP @Put ∂ X(F(X)^n+1) in first
PUT @place of difFact
'facts' @Construct {F(X) -n n+1 -1}
factor
power
NEG power
1. + R→I
-1. 4. →LIST
STO+ @Add to list facts

>>
ELSE @else

DROP2 @drop unnecessary objects
END

>>
DOSUBS @Do to every diff. Factor
'difFacts' STO @store in difFacts

END
'difTerms'
I facts 1.
<< @DOSUBS proc for each factor

IF @If we are at an even pos.
NSUB 2. MOD
NOT

THEN @then
R→I ^ @we raise to the power

END
>>
DOSUBS
1 + Π LIST @Add 1 to the list and

@make prod. of list elements
EXPAND dn→dv @Use dn→dv again
IF

difFacts {} ≠ @If there are diff. facts

THEN @then
difFacts 1.
<< @Product of diff. factors

OBJ→ DROP
R→I ^ *

>>
DOSUBS
1 +
Π LIST @Make product of derivs.
* @Mult. factors and derivs.

END
PUT @Put back in orig. list

>>
NEXT
1. SF @Flag 1 is our indicator
WHILE @While more than one term

diffTerms SIZE @and flag 1 is set
1. > 1 FS? AND

REPEAT @repeat
1. diffTerms SIZE
1. -
FOR I @for I=1 to number of diff.

@terms - 1
I 1 +
diffTerms SIZE @for J=2 to number of diff.
FOR J @terms

"Diff. terms "
I + " " + @Construct and display
J + 1. DISP @message
diffTerms @Make sum of Ith and Jth
I GET @term
diffTerms
J GET +
→ dTerm @Store in local
<<

"A*∂ B+B*∂ A → ∂ (A*B)"
2. DISP @Message
dTerm
CASE @Use product rule

{ '&A*∂ &V(&B)+&B*∂ &V(&A)'
'∂ &V(&A*&B)' }

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-16

↑ MATCH @Prod. patt. match
THEN

1. @return 1.
END @Same match written

different.
{ '&A*∂ &V(&B)+∂ &V(&A)*&B'
'∂ &V(&A*&B)' }

↑ MATCH
THEN

1.
END

COLLECT @Collect and retry
matches

{ '&A*∂ &V(&B)+&B*∂ &V(&A)'
'∂ &V(&A*&B)' }

↑ MATCH
THEN

1.
END

{ '&A*∂ &V(&B)+∂ &V(&A)*&B'
'∂ &V(&A*&B)' }

↑ MATCH
THEN

1.
END @If no match, return 0.
0.

END
"C*∂ (A) → ∂ (C*A)"
2. DISP @Message
SWAP
{ '&C*∂ &v(&v)' '∂ (&v*&f)'

'NOT POSNAME(&C,&v)' }

↑ MATCH @Match mult. with constant.
ROT OR
"∂ A+∂ B → ∂ (A+B)"
2. DISP @Message
SWAP @Match sums
{'∂ &V(&A)+∂ &V(&B)'

'∂ &V(&A+&B)' }

↑ MATCH ROT OR
SWAP
{'∂ &V(&A)-∂ &V(&B)'

'∂ &V(&A-&B)' }

↑ MATCH ROT OR
IF @If we had a match
THEN

1. SF @Set flag 1
diffTerms @Replace the two terms
1. I 1. - @of diffTerms that we used
SUB @with the matched one
diffTerms
I 1. +
OVER SIZE SUB
DUP 1. J.
diffTerms
SIZE 4. PIC
SIZE - - 1. -
SUB SWAP J
diffTerms
SIZE PICK3 SIZE
- - 1. +
OVER SIZE SUB
+ + +
'diffTerms' @Store in diffTerms
STO
diffTerms @Store numbers > than
SIZE I + @end of FOR loop
DUP 'I' STO @in I and J to exit
'J' STO @the FOR loops

ELSE @Else (no match)
DROP @Drop terms
1. CF @Clear flag 1

END
>>

NEXT
NEXT

END @End of WHILE
diffTerms 0 +
Σ LIST @Sum of all terms
{ '&C*∂ &v(&v)' '∂ (&v*&f)'

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-17

'NOT POSNAME(&C,&v)' }

↑ MATCH @Match mult. with constant.
DROP

>>
POP

>>

There are many interesting things in this program, but I guess you are
rather interested to see it in work first. So, let's have some tests and
then we can discuss what the program does and why.

In all the following examples I use
∂
∂

 notation but the d1 notation

could be used as well. The program takes differential forms in any of
the two notations or even mixed up. We start with an easy example.
Enter:

F X() ⋅
∂

∂X
F X()()

According to the rule for differentiating powers and to the chain rule
we have:

∂
∂X

F X()2() = 2 ⋅F X()⋅
∂

∂X
F X()() ⇔ F X()⋅

∂
∂X

F X()() =

∂
∂X

F X()2()
2

Since

F X() ⋅ d1F X() = F X()⋅
∂

∂X
F X()()

the program dCOLLECT.1 should return

∂
∂X

F X()2()
2

Press . In about 15 seconds the HP49G returns:

∂
∂X

1
2

⋅F X()2





Indeed it worked!

Enter:

∂
∂X

∂
∂X

G X()()



 + G X() ⋅

∂
∂X

F X()() + F X()⋅
∂

∂X
G X()()

Press to make a copy and then press . After about
1 minute and 10 seconds in agony the HP49G returns the result:

∂
∂X

G X() ⋅F X() +
∂

∂X
G X()()





This is the same expression with all differential forms collected in one
derivative. But is that really the same like what we entered? Press and
expand to get a fat 0 , which shows that the two expressions were
indeed equal to each other.

Enter:

∂
∂X

∂
∂X

F X()()



 +

∂
∂X

∂
∂X

G X()()



 +

∂
∂X

G X()()

and press . After about 47 seconds of dancing messages
at the top of the screen the HP49G returns:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-18

∂
∂X

∂
∂X

F X() + G X()() +G X()





Enter:

3 ⋅F X()2 + G X()2() ⋅
∂

∂X
F X()() + 2 ⋅G X()⋅F X() ⋅

∂
∂X

G X()()

and press again. This time the HP49G needs about 1
minute and 8 seconds, and returns the collected form:

∂
∂X

F X() ⋅G X()2 + F X()3()
Enter:

F X()2 ⋅
∂

∂X
∂

∂X
F X()()



 + 2 ⋅F X() ⋅

∂
∂X

F X()()2

Press to get the partially collected form:

∂
∂X

F X()2 ⋅
∂

∂X
F X()()





in about 39 seconds. The result could be further collected to:

∂
∂X

∂
∂X

1
3

⋅F X()3







 



After the examples we will see why the program didn't collected
completely.

Enter:

2 ⋅F X()2 ⋅
∂

∂X
F X()()⋅

∂
∂X

∂
∂X

F X()()



 + 2 ⋅F X() ⋅

∂
∂X

F X()()3

and press again . The HP49G returns:

∂
∂X

F X()2 ⋅
∂

∂X
F X()()2





in about 46 seconds. Equivalent forms of this result, having differential
forms collected differently, are:

∂
∂X

∂
∂X

1
3

⋅F X()3



 ⋅

∂
∂X

F X()()

 



and:

∂
∂X

∂
∂X

F X()3()⋅
∂

∂X
F

1
3

⋅ X








 




 




We will see how to get the second or the third form after the examples.

Enter:

F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2
+

∂
∂X

F X()()

and press . You get:

∂
∂X

F X()⋅
∂

∂X
F X()() + F X()





in about 46 seconds. Here again the result could be further collected to:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-19

∂
∂X

∂
∂X

1
2

⋅F X()2



 +F X()


 



Enter:

F X() + 1() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2

and press to get:

∂
∂X

∂
∂X

F X()()⋅F X() +
∂

∂X
F X()()





in about 46 seconds. In this case the result could also have been
collected further to:

∂
∂X

∂
∂X

1
2

⋅F X()2



 +

∂
∂X

F X()()

 



or to:

∂
∂X

F X() +1() ⋅
∂

∂X
F X()()





After the examples we will see how to get these forms using
dCOLLECT.1 or COLLECT .

Enter:

F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2

Pressing returns the collected form:

∂
∂X

F X()⋅
∂

∂X
F X()()





after 27 seconds. Also here we could go further and get:

∂
∂X

∂
∂X

1
2

⋅F X()2







 


.

Enter:

2 ⋅ G X() ⋅F X()⋅
∂

∂X
F X()() −F X()2 ⋅

∂
∂X

G X()()
G X()2

The program dCOLLECT.1 needs about 49 seconds to return:

∂
∂X

1
G X() ⋅F X()2


 


 .

Enter:

G X() ⋅
∂

∂X
F X()() − F X() − G X()2()⋅

∂
∂X

G X()()
G X()2

and press to get:

∂
∂X

1
G X() ⋅F X() + G X()



 




after about 57 seconds.

Last example. Enter:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-20

3 ⋅F X() ⋅
∂

∂X
F X()()2

− 3 ⋅F X()2 ⋅
∂

∂X
F X()()2

Press to get:

∂
∂X

3 ⋅F X()2 − 2 ⋅F X()3()⋅
∂

∂X
F X()()

2

in about 1 minute.

As we see the program works in many cases. In many other cases it
returns only partially collected results. And I am sure that you will
find even more cases in which it doesn't work at all or it even crashes.
Feel free to change its code and make it better, if you wish. But to
make it better, some details about its inner workings are necessary.

We start explaining the cases where the program gives only partially
collected results, and we try to find a way to make the collection of
differential forms complete in these cases. For example why was

F X()2 ⋅
∂

∂X
∂

∂X
F X()()



 + 2 ⋅F X() ⋅

∂
∂X

F X()()2

transformed to

∂
∂X

F X()2 ⋅
∂

∂X
F X()()





but not to

∂
∂X

∂
∂X

1
3

⋅F X()3







 


 ?

Let's follow what the program did. The second term of the original
expression was transformed to:

∂
∂X

F X()2() ⋅
∂

∂X
F X()()

using the rule of differentiation of powers. This happened at the point
where the message Collecting ∂ of powers was displayed. When
the program displayed A ∗∂B + B ∗∂A → ∂(A ∗B) , the rule of
differentiation was used, and the sum

F X()2 ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()2()⋅
∂

∂X
F X()()

was transformed to

∂
∂X

F X()2 ⋅
∂

∂X
F X()()





Now, from this point on, the rule of differentiation of powers could be
used again on the sub expression:

F X()2 ⋅
∂

∂X
F X()()

And this is exactly what the program doesn't do. It doesn't check if
using some differentiation rule results in a derivative, in which the
expression that is differentiated can itself be further collected. Can we do
something to achieve complete collection of differential forms in this
case? Let's consider first an interactive possibility. What would happen
if we had the expression

F X()2 ⋅
∂

∂X
F X()()

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-21

on the stack and we used dCOLLECT.1? Enter:

F X()2 ⋅
∂

∂X
F X()()

and press to get:

∂
∂X

1
3

⋅F X()3





The expression was collected. Of course it would be a tedious task to
have the result

∂
∂X

F X()2 ⋅
∂

∂X
F X()()





on stack, use OBJ → to explode it, then use dCOLLECT.1 on the
sub expression:

F X()2 ⋅
∂

∂X
F X()()

to transform it to:

∂
∂X

1
3

⋅F X()3





and then recombine this result and the rest of the objects returned by
OBJ → to:

∂
∂X

∂
∂X

1
3

⋅F X()3







 



But we don't need to do that. Since we are talking about sub

expressions of a given expression, the EQW comes into mind. There we
can select some sub expression, apply some built-in command on that
sub expression only, and get the result that we want to have. If there
would be some way to apply our own programs on some particular sub
expression, then we could take

∂
∂X

F X()2 ⋅
∂

∂X
F X()()





in the EQW, select the sub expression

F X()2 ⋅
∂

∂X
F X()()

and use dCOLLECT.1 to transform it to

∂
∂X

1
3

⋅F X()3





And guess what? There is a way. (Or else why should Nick tell all this?
;-)). We can make a user menu that is active when we are in the EQW.
In that menu we can put all things that we need. Let's see how we do
that. When the EQW is active and you have selected some sub
expression, pressing has a special meaning. Under these
conditions the HP49G checks if a program named STARTEQW exists
in the current path. If it does, then this program is executed. Now, we
can use this capability to display a pop up menu that contains all things
we need, including dCOLLECT.1. Actually we can add anything we
want in that menu, provided that the objects contained in that menu,
need one algebraic object as input and return one algebraic object as
output. (Or anything that is allowed in algebraic objects.) This is one of
the many great ideas of VPN for which I am very grateful. Let's make
the program STARTEQW . Consider the program on the next page.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-22

<<
"" @Pop-up has no title
{

COLCT @First menu item is the old
@command COLCT, which
@sometimes collects
@differently than COLLECT.

COLLECT @Second comes COLLECT.
dCOLLECT.1 @Then comes dCOLLECT.1.
dn→dv @Then comes dn→dv
{ "Edit in new EQW" @Then comes a menu item that

<< EQW >> @shows "Edit in new EQW" but
} @executes << EQW >> when

@selected.
}
1. @We display the pop-up with
CHOOSE @the first item selected
IF @If user pressed [ENTER]
THEN @then we evaluate (execute)

EVAL @the selected item
END

>>

Store that in STARTEQW . (Or simply use the program that comes
with this document.) Let's see that in action. Go to the EQW and
enter:

F X()2 ⋅
∂

∂X
∂

∂X
F X()()



 + 2 ⋅F X() ⋅

∂
∂X

F X()()2

again. Select the whole expression. Now the expression is displayed
inverse. Press to start the program STARTEQW . The
pop-up menu is displayed over the selected expression and the screen
of the calculator looks like the
picture to the right. Press
twice to select the item
dCOLLECT.1, and then
press . Wow! The
program dCOLLECT.1 runs

just as if it was one of the built-in commands. It displays its messages
and works just like
it does when we
use it from the
stack. In fact,
behind the scenes it
does work on the
stack. First it puts
the selected sub
expression on the
stack. Then the
selected menu item
takes the sub
expression, does
its work with it,
and returns its
output on the
stack. Then the
result is taken back
to the EQW, where
it replaces the
originally selected
sub expression. So
now the result

∂
∂X

F X()2 ⋅ ∂
∂X

F X()()





is displayed
inverse in the
EQW. Select the
sub expression:

F X()2 ⋅
∂

∂X
F X()()

Now the EQW
displays:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-23

COLCT
COLLECT
dCOLLECT.1
dn →dv
Edit in new EQW

Menu item selected
and [ENTER] pressed.
The selected expression
is put on the stack.

F X()2 ∗
∂

∂X
∂

∂X
F X()()



 + 2 ∗F X()∗

∂
∂X

F X()()2

COLCT
COLLECT
dCOLLECT.1
dn →dv
Edit in new EQW

The selected menu item
is evaluated and the
result is put on the
stack.

∂
∂X

F X()2 ∗
∂

∂X
F X()()





The result is replaces
the originally selected
sub expression in the
EQW.

Press again , and select again dCOLLECT.1. When the
program is ready, the EQW displays:

Voila! Press to put the completely collected expression on the
stack.

We will use the same technique for the next example that wasn't
completely collected, namely the expression:

2 ⋅F X()2 ⋅
∂

∂X
F X()()⋅

∂
∂X

∂
∂X

F X()()



 + 2 ⋅F X() ⋅

∂
∂X

F X()()3

Go to the EQW and enter the above expression. Select the whole
expression and use the pop-up like before for running the program
dCOLLECT.1. The result is:

∂
∂X

F X()2 ⋅
∂

∂X
F X()()2





Still in the EQW select the sub expression:

F X()2 ⋅
∂

∂X
F X()()2

and then use the pop-up again to run dCOLLECT.1. Now the result
is:

∂
∂X

1
3

⋅
∂

∂X
F X()3()⋅

∂
∂X

F X()()





We can go further and put the factor
1
3

 in one of the two derivatives,

getting one of the results:

∂
∂X

∂
∂X

1
3

⋅F X()3



 ⋅

∂
∂X

F X()()

 



or:

∂
∂X

∂
∂X

F X()3()⋅
∂

∂X
1
3

∗F X()







 



You have noticed that we put also the menu item
Edit in new EQW in the pop-up menu. This is the title of the
menu item. When this menu item is selected, then the corresponding
object << EQW >> will be executed. The command EQW is the
programmable command for starting the EQW. It just needs one
algebraic, which it then takes in the EQW for editing. In our case it is
not necessary to start a new EQW, but it demonstrates how flexible the
HP49G is. In the EQW select the sub expression:

1
3

⋅
∂

∂X
F X()3()

While the sub expression

1
3

⋅
∂

∂X
F X()3() ⋅

∂
∂X

F X()()

is selected, press to select
1
3

. Then press and then to add

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-24

the factor

∂
∂X

F X()3()
to the selected sub expression. Now

1
3

⋅
∂

∂X
F X()3()

is selected. Use the pop-up menu to select Edit in new EQW
and run the program << EQW >>. The expression

1
3

⋅
∂

∂X
F X()3()

appears in a new EQW alone, while the other EQW waits suspended
in the background. Select the whole expression

1
3

⋅
∂

∂X
F X()3()

in the new EQW and let dCOLLECT.1 run from the popup menu.
The result is:

∂
∂X

1
3

⋅F X()3





Press to quit the new EQW, take the algebraic object

∂
∂X

1
3

⋅F X()3





and replace the selected object of the old EQW, which was:

1
3

⋅ ∂
∂X

F X()3()
Now the old EQW is active again and contains the expression:

∂
∂X

∂
∂X

1
3

⋅F X()3



 ⋅

∂
∂X

F X()()

 



At this point you could press to put the expression on the stack.
But we want to see how the other possible result, namely:

∂
∂X

∂
∂X

F X()3()⋅
∂

∂X
1
3

⋅F X()







 



can be obtained. Press the last operation and turn the algebraic
again to:

∂
∂X

1
3

⋅
∂

∂X
F X()3()⋅

∂
∂X

F X()()





Select the factor
1
3

. Press and then to exchange the positions

of
1
3

 and
∂

∂X
F X()3() . Press and then to add

∂
∂X

F X()() to the

selection. Now use dCOLLECT.1 from the pop-up menu to convert the
selected sub expression:

1
3

⋅
∂

∂X
F X()()

to:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-25

∂
∂X

1
3

⋅F X()





Now the EQW contains:

∂
∂X

∂
∂X

F X()3()⋅
∂

∂X
1
3

⋅F X()







 



After these exciting interactive manoeuvres, let's see why
dCOLLECT.1 can't return the completely collected result. The
program took the expression:

2 ⋅F X()2 ⋅
∂

∂X
F X()()⋅

∂
∂X

∂
∂X

F X()()



 + 2 ⋅F X() ⋅

∂
∂X

F X()()3

and converted it to the two terms:

2 ⋅F X()2 ⋅
∂

∂X
F X()()⋅

∂
∂X

∂
∂X

F X()()





and:

2 ⋅F X() ⋅
∂

∂X
F X()()3

The first term was converted to:

F X()2 ⋅
∂

∂X
∂

∂X
F X()()2





using the rule of differentiation of powers. The second was converted
to:

∂
∂X

F X()()2() ⋅
∂

∂X
F X()()2

using the same rule. The sum of the two terms,

F X()2 ⋅
∂

∂X
∂

∂X
F X()()2



 +

∂
∂X

F X()()2()⋅
∂

∂X
F X()()2

was converted to:

∂
∂X

F X()2 ⋅
∂

∂X
F X()()2





using the rule of differentiation of products. After this, the program
didn't check if application of this rule, namely:

f x() ⋅
∂g x()

∂x
+ g x() ⋅

∂f x()
∂x

=
∂f x()⋅ g x()

∂x
, creates a product f x() ⋅g x() , in

our case F X()2 ⋅
∂

∂X
F X()()2

, which itself can be further collected using

the rule of differentiation of powers.

We do the same for the example

F X() + 1() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2

Enter this in the EQW, select the whole expression and use the pop-up
to run dCOLLECT.1 and get:

∂
∂X

∂
∂X

F X()()⋅F X() +
∂

∂X
F X()()





Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-26

Still in the EQW you can either select the sub expression:

∂
∂X

F X()() ⋅F X()

and run dCOLLECT.1 to transform the sub expression to:

∂
∂X

1
2

⋅F X()2





thus obtaining the result:

∂
∂X

∂
∂X

1
2

⋅F X()2



 +

∂
∂X

F X()()

 



Or you can select the sub expression:

∂
∂X

F X()() ⋅F X() +
∂

∂X
F X()()

and use the pop-up menu to evaluate COLLECT and transform the
sub expression to:

F X() + 1() ⋅
∂

∂X
F X()()

thus gaining the result:

∂
∂X

F X() +1() ⋅
∂

∂X
F X()()





In this example the program dCOLLECT.1 transformed the
expression:

F X() + 1() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2

to its terms,

∂
∂X

F X()()2
 ,

F X() ⋅
∂

∂X
∂

∂X
F X()()



 ,

and 1⋅
∂

∂X
∂

∂X
F X()()





The first term was transformed to:

∂
∂X

F X()() ⋅
∂

∂X
F X()()

Then the sum of the first and the second terms,

∂
∂X

F X()() ⋅
∂

∂X
F X()() + F X()⋅

∂
∂X

∂
∂X

F X()()





was transformed to:

∂
∂X

∂
∂X

F X()()⋅F X()





using the rule of differentiation of products. Then the result

∂
∂X

∂
∂X

F X()()⋅F X()





Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-27

replaced the two terms:

∂
∂X

F X()()2

and:

F X() ⋅
∂

∂X
∂

∂X
F X()()





in the list of terms. At this point, like in the previous example, the
program didn't check if the result of application of the rule

f x() ⋅
∂g x()

∂x
+ g x() ⋅

∂f x()
∂x

=
∂f x()⋅ g x()

∂x

created a product f x() ⋅g x() , in our case

∂
∂X

F X()() ⋅F X())

which itself can be further collected to

∂
∂X

1
2

⋅F X()2





using the rule of differentiation of powers. Instead of doing this, the
program constructed the sum of the new partially collected term

∂
∂X

∂
∂X

F X()()⋅F X()





and of the term

∂
∂X

∂
∂X

F X()()





and obtained the sum:

∂
∂X

∂
∂X

F X()()⋅F X()



 +

∂
∂X

∂
∂X

F X()()





It used the rule of differentiation of sums to convert this result to:

∂
∂X

∂
∂X

F X()()⋅F X() +
∂

∂X
F X()()





which was what it returned.

Then we had the example:

F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2

for which dCOLLECT.1 returned:

∂
∂X

F X()⋅
∂

∂X
F X()()





but not

∂
∂X

∂
∂X

1
2

⋅F X()2







 



Let's see what the program did. It first converted the expression to its
terms,

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-28

F X() ⋅
∂

∂X
∂

∂X
F X()()





and 2 ⋅F X() ⋅
∂

∂X
F X()()

Then it tried to apply the rule of differentiation of powers for each of
these terms. Doing that it converted the second term to:

∂
∂X

F X()() ⋅
∂

∂X
F X()()

though this is not collection of differential forms. Then it started
checking all possible pair wise sums of all terms for application of the
rule of differentiation of products, sums, etc. When it checked the
sum of the first and the second term:

F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()⋅
∂

∂X
F X()()

it saw that this is convertible to:

∂
∂X

F X()⋅
∂

∂X
F X()()





using the rule of product differentiation. And so it converted it. (Or
else why the trouble? ;-)) Then it removed the two terms from which
the collected term came from and kept the new collected term, which
was also the only one that remained. At this point the program didn't
bother to check if the new expression:

F X() ⋅
∂

∂X
F X()()

inside the parentheses can be converted to:

∂
∂X

1
2

⋅F X()2





and so it returned the result:

∂
∂X

F X()⋅
∂

∂X
F X()()





Of course you can again use the EQW to select

F X() ⋅
∂

∂X
F X()()

and convert it to:

∂
∂X

1
2

⋅F X()2





using dCOLLECT.1 from the pop-up menu of STARTEQW , gaining
thus the completely collected result:

∂
∂X

∂
∂X

1
2

⋅F X()2







 



Let's now get a closer look at the workings of the program. Doing this
we are going to see some very interesting behaviour patterns of the
HP49G too. First of all the program uses PUSH to store the current
settings of the user, because it males changes to flag settings and we
don't want a program to change the modes of the calculator behind the
back of the user. Then the program calls dn → dv and → TERMS .
This results in a list of all terms of an expression. Notice that dn → dv
replaces all occurrences of derivatives in the d1 notation to derivatives in

the
∂
∂

 notation. The program → TERMS uses the command

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-29

FDISTRIB . Fortunately FDISTRIB does completely distribution of
⋅ and / over + and − , but it expand otherwise and so it doesn't
change the derivatives of the expression back to d1 notation. That
means, if you enter for example

∂
∂X

F X()() ⋅ X + 3()

and press , then you will get:

X ⋅
∂

∂X
F X()() + 3 ⋅

∂
∂X

F X()()

This is very good because we can build up the list of all terms of an
arbitrary expression without having to care if some special syntax or
notation will be destroyed. Why do we want a list of all terms of the
original expression? Why don't we work with the expression itself?
Well, imagine how many possibilities there are, to built up arbitrary
expressions. We can use have them in an endless variety, and so
finding general patterns for matching, would simply become
impossible. Chopping the expression in a list of all terms, we can be
sure that each one of the terms is a product. When we can ensure that
some given expression is of a certain type, then we narrow the variety
of what must be done, to convert the expression according to our
needs. But, of course, we have to do what has to be done, for each of
the terms. Having the terms in a list, we use a loop to apply the first
of the converting procedures to each term.

Each one of the terms gets converted to a list of its factors using the
command FACTORS . First of all, we can use this command safely
because it also doesn't change the derivatives and leaves them in our
∂
∂

 notation. Why do we want the factors of each term? Well, the

answer has to do with the fact that we apply the rule for derivation of
powers first. Simply using pattern matching here would make our life
very difficult. Imagine for example that we have the term:

F X() ⋅
∂

∂X
F X()()

Here we can use the pattern matching with the pattern:

&A ⋅
∂

∂ &V
&A() ∂

∂ &V
&A2

2



 










But this is one of the many cases where the rule of differentiation of
powers can be used to collect differential forms. What would be for
example with:

F X() ⋅
∂

∂X
F X()2()

or:

F X()2 ⋅
∂

∂X
F X()()

or:

F X()2 ⋅
∂

∂X
F X()()2

or…? Obviously we must find a more general method. And to do that
we do a bit mathematics first. Suppose that we have the derivative:

∂
∂X

F X()n() = n ⋅F X()n−1 ⋅
∂

∂X
F X()()

This already shows that:

F X()n −1 ⋅
∂

∂X
F X()() =

1
n

⋅
∂

∂X
F X()n()

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-30

That means for us, that if we have some expression which contains
the pattern

F X()n ⋅
∂

∂X
F X()()

with arbitrary n , we can replace it with

1
n+ 1

⋅
∂

∂X
F X()n+1()

This is more general, but not as general as we wish. Because we
might also have the pattern

F X()n ⋅
∂

∂X
F X()m()

in an expression, where n and m are also arbitrary. In this case we
have:

F X()n ⋅
∂

∂X
F X()m() = F X()n ⋅m ⋅F X()m −1 ⋅

∂
∂X

F X()() ⇒

F X()n ⋅
∂

∂X
F X()m() = m ⋅F X()n+ m−1 ⋅

∂
∂X

F X()() ⇒

F X()n ⋅
∂

∂X
F X()m() =

m
n +m

⋅
∂

∂X
F X()n +m()

and thus we must replace

F X()n ⋅
∂

∂X
F X()m()

with

m
n+ m

⋅
∂

∂X
F X()n+m()

To understand this better, expand

F X()n ⋅
∂

∂X
F X()m()

and

m
n+ m

⋅
∂

∂X
F X()n+m()

The two results are equal. But this still isn't general enough. (We are
very demanding, aren't we? ;-)) We could also have some term that
contains

F X()n ⋅
∂

∂X
F X()m()p

What to do in such cases? Well, one of the possibilities that we have, is
to convert

F X()n ⋅
∂

∂X
F X()m()p

to

F X()n ⋅
∂

∂X
F X()m() ⋅

∂
∂X

F X()m()p −1

and then consider the sub product

F X()n ⋅
∂

∂X
F X()m()

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-31

We can do collection to:

m
n+ m

⋅
∂

∂X
F X()n+m()

and then multiply by:

∂
∂X

F X()m()p−1

getting the result:

F X()n ⋅
∂

∂X
F X()m() ⋅

∂
∂X

F X()m()p −1

This is what how the rule of differentiation of powers is implemented
in the program for collection of differential forms. First of all, the list
of factors and multiplicities (factor power) is converted to a list of
lists. Each of the sub lists contains the factor and its power. Right
after this, all factors are separated. If they contain any derivative then
they are added in the list of differential factors. Otherwise they are
added in the list of (normal) factors. At this point we consider the fact
that some terms will eventually contain more than one differential
factors. Take for example

∂
∂X

F X()() ⋅
∂

∂X
∂

∂X
F X()()





which contains two factors that are derivatives. In such cases the
program in its current incarnation prefers the highest derivative. (You
might started guessing that many incarnations will follow, what
Bhuvanesh? ;-)) The program leaves the highest derivative as the only
expression in the list of differential factors, and moves all the rest into
the list of the other factors. We can easily decide which one is the
highest derivative in the list of differential factors, because the
command FACTORS returns always the highest derivative as the

first element in the list of factors and multiplicities, while the lower
derivatives follow in order.

Then the program converts the differential factors list:

highestDerivative power{ }

to the differential factors list:

highestDerivative highestDerivative power−1{ }

This corresponds to the step:

∂
∂X

F X()m()p
=

∂
∂X

F X()m() ⋅
∂

∂X
F X()m()p −1

.

After this, the program checks to find if the expression inside the

parentheses of
∂

∂X
() in the highest derivative, occurs also in the list of

the other factors. If it does, then it puts the factor

∂
∂X

F X()n+ m()
into the first position of the list of differential factors:

highestDerivative highestDerivative power−1{ }

and adds the list:

F X() − n +m − 1() n +m −1{ }
to the list of other factors, which is equivalent to adding the factors

F X()− n +m−1()
 and n+ m()−1

 to the list of the other factors.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-32

We make an example for getting the idea of the whole procedure up to
now. Suppose that we have:

F X()2 ⋅
∂

∂X
F X()5()

This will be converted to:

5 ⋅F X()6 ⋅
∂

∂X
F X()()

by dn → dv . After this the program → TERMS converts that to:

5 ⋅F X()6 ⋅
∂

∂X
F X()()








The command FACTORS converts the term

5 ⋅F X()6 ⋅
∂

∂X
F X()()

to the list

5 1.
∂

∂X
F X()() 1. F X() 6.









Our program then converts this list to:

5 1.{ } ∂
∂X

F X()() 1.








F X() 6.{ }







and separates the list to

5 1. F X() 6.{ }

and

∂
∂X

F X()() 1.
















The list of the differential factors is converted to:

∂
∂X

F X()() ∂
∂X

F X()() 0.
















 Then the factor

∂
∂X

F X()7()
is put into the first position of the list of differential factors, turning it to:

∂
∂X

F X()7() ∂
∂X

F X()() 0.
















After this the list

F X() −6. 7 −1.{ }
is added to the list of other factors, turning it to

5 1. F X() 6. F X() −6. 7 −1.{ }
Then the list of factors is turned to

5 F X()6
F X()−6 1

7








Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-33

The product of the list is built up using ΠLIST and EXPAND ,

which returns
5
7

.

We proceed describing the program. Because the product of normal
factors might also contain derivatives (the lower derivatives which, if
they exist, are put in the list of normal factors), and because we used
EXPAND , which turns these derivatives to d1 notation, we call the

program dn → dv once again to convert back to
∂
∂

 notation. Then

we turn the list of differential factors to the product:

∂
∂X

F X()n+ m()⋅
∂

∂X
F X()()p−1

which for the above example translates to:

∂
∂X

F X()7() ⋅
∂

∂X
F X()()0

or simply:

∂
∂X

F X()7()
(Note that we don't need to expand in order to simplify our example,
because the operations are done with RPL syntax and so the sequence:

∂
∂X

F X()() 0 ^

automatically returns 1. Also,

∂
∂X

F X()7() 1 ∗

returns automatically
∂

∂X
F X()7() .)

We make another example in abbreviated form of the inner workings of
the program up to this point, using the expression:

∂
∂X

F X()2() ⋅
∂

∂X
∂

∂X
F X()()3





2

∂
∂X

F X()2() ⋅
∂

∂X
∂

∂X
F X()()3





2 dn->dv

18 ⋅F X() ⋅
∂

∂X
F X()()5

⋅
∂

∂X
∂

∂X
F X()()





2
->TERMS

18 ⋅F X() ⋅
∂

∂X
F X()()5

⋅
∂

∂X
∂

∂X
F X()()





2







FACTORS

18 1.
∂

∂X
∂

∂X
F X()()



 2.

∂
∂X

F X()() 5. F X() 1.








Conversion
to list
of lists

18 1.{ } ∂
∂X

∂
∂X

F X()()



 2.









∂
∂X

F X()() 5.








F X() 1.{ }







Separation of factors

∂
∂X

∂
∂X

F X()()



 2.









∂
∂X

F X()() 5. 


 










18 1. F X() 1.{ }

Hold only highest derivative

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-34

∂
∂X

∂
∂X

F X()()



 2.

















18 1. F X() 1.
∂

∂X
F X() 5.









Convert der^n to
der*der^(n-1)

∂
∂X

∂
∂X

F X()()





∂
∂X

∂
∂X

F X()()



 1.

















Put appropriate
factor into first
position

∂
∂X

∂
∂X

F X()()6





∂
∂X

∂
∂X

F X()()



 1.

















Add appropriate
factors and
powers

 18 1. F X() 1.
∂

∂X
F X() 5.

∂
∂X

F X() −5. 6 −1.








∂
∂X

∂
∂X

F X()()6



 ⋅

∂
∂X

∂
∂X

F X()()



 Conversion

18 F X() ∂
∂X

F X()5 ∂
∂X

F X()−5 1
6









Product

Π LIST
EXPAND
d1->dv

3∗F X()
3 ⋅F X() ⋅

∂
∂X

∂
∂X

F X()()6



 ⋅

∂
∂X

∂
∂X

F X()()





One question that you might ask is, why do we prefer the highest
derivative? Why not the lowest? Well, that presumably has to do with
the fact that the things I work with, demand quite often to do that. But if
it fits your needs better, you can of course tell me to change that. Just
mail me your wishes and I'll see what can be done. The perfect thing
would be of course to check all derivatives and select that particular one
which best fits for collection of differential forms according to the rule
of differentiation of power. (Yet another future incarnation? Or rather
inbitation;-))

Right after this rather complex part that deals with the rule of
differentiation of powers, we have a somewhat simpler part, which tries
to apply the rule of differentiation of products. It does this by using
pattern matching twice. The whole pattern matching is inside a
CASE− THEN −END clause. If one match works, then the
subsequent matches are not performed at all. Why do we do that this
way? Couldn't we just keep on doing pattern matching until nothing
changes? To answer this we must take a look at the matching patterns at
this point. In general, we will convert expressions of type:

F X() ⋅
∂G X()

∂X
+ G X()⋅

∂F X()
∂X

to expressions of type:

∂F X() ⋅G X()
∂X

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-35

We see that this match doesn't create a sum, that would eventually be
of exactly the same type. Because we do pattern matching to all
possible sums of two terms of the original expression, no new sum
can be created by pattern matching, so that no subsequent matching of
the same type is necessary. This fact, together with the fact that the
used command ↑ MATCH does pattern matching starting at the most
inner nested sub expressions and continues matching until the top
expressions are reached, makes a single pattern matching operation
sufficient. First we try to match:

F X() ⋅
∂G X()

∂X
+ G X()⋅

∂F X()
∂X

to:

∂F X() ⋅G X()
∂X

If it works, we leave the CASE− THEN −END clause. If it doesn't,
we try to match:

F X() ⋅
∂G X()

∂X
+

∂F X()
∂X

⋅G X()

to:

∂F X() ⋅G X()
∂X

If it works, we leave the clause. If it doesn't, then we collect and
repeat the two above pattern matching operations once again. We do
that because our expression might also be in the form:

A ⋅F X() ⋅
∂G X()

∂X
+ A ⋅ G X() ⋅

∂F X()
∂X

or similar. So we collect to convert it to:

A ⋅ F X()⋅
∂G X()

∂X
+ G X() ⋅

∂F X()
∂X



 



so that the hidden pattern:

F X() ⋅
∂G X()

∂X
+ G X()⋅

∂F X()
∂X

becomes visible for ↑ MATCH . Note that COLLECT will not destroy

the
∂
∂

 notation of our expressions. Also note that COLLECT will not

collect expressions inside the parentheses of
∂
∂

() . It only collects

"outside".

After this, the program uses pattern matching to apply the rule of
differentiation for expressions multiplied with some constant. At this
step we try to convert all expressions of type:

constant ⋅
∂F X()

∂X

to expressions of type:

∂constant ⋅F X()
∂X

 ,

only if the expression constant is really a constant, i.e. only if it
doesn't contain the variable of derivation. We use the program
POSNAME and the method described on pages 2-2 to 2-3.

The next step is to apply the rule of differentiation of sums, again by
doing pattern matching. We match expressions of the form:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-36

∂F X()
∂X

+
∂G X()

∂X

to:

∂F X() + G X()
∂X

and expressions of the form:

∂F X()
∂X

−
∂G X()

∂X

to:

∂F X() − G X()
∂X

During all the above operations we kept track of the success of the
application of the rules. After all rules are applied, we check if some
of them was successful. If so, then we remove the two terms of
which the currently examined sum consists from the list of terms of
the original expressions. Then we put the result of the pattern
matching operations in the same list. This makes the list shrink by one
element. Then we start over building up all possible sums of two
terms until all sums have been examined.

This is in brief the way dCOLLECT.1 works. There are some
additional things that are interesting. We are going to take a look at
them now. First of all, we have seen that there are commands, like

FACTORS or COLLECT , which retain our
∂
∂

 notation of

derivatives. FACTOR also belongs to these commands, but
EXPAND doesn't belong to them, as it will convert all formal
derivatives to d1 notation. In cases where the specific notation of

derivatives is of importance, you should always check to see if some
command that you want to use retains the notation, or converts it to d1.

We also saw that FACTORS will return the highest derivatives in
positions before the lower derivatives in the list of factors and
multiplicities. But this works only for "simple" expressions. For
example, if you enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()





and press , then you get the result:

∂
∂X

∂
∂X

F X()()



 1.

∂
∂X

F X()() 1. F X() 1.








But if you enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()⋅F X()

and press , then the HP49G will return the result:

∂
∂X

F X()() 1. F X() 1.
∂

∂X
F X()() +1 1.









.

This is an additional reason for chopping our expressions to its terms,
so that we can be sure that when we use FACTORS , there will not be
any factors that are themselves sums, and so the highest derivative will
be the first element in the list of factors. FACTOR works in a similar
way. If you enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()





Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-37

and press , then the result is:

∂
∂X

∂
∂X

F X()()



 ⋅

∂
∂X

F X()() ⋅F X() ,

in which again the derivatives appear in order higher to lower. If you
enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()⋅F X()

and press , then you get:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()



 +1



 


 ,

in which the factors appear in the same order like in the result of the
command FACTORS . COLLECT returns a result with the exactly
opposite order. Enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()





and press to get:

F X() ⋅
∂

∂X
F X()() ⋅

∂
∂X

∂
∂X

F X()()





Or enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()⋅F X()

and press to get:

∂
∂X

∂
∂X

F X()()



 +1



 


⋅F X() ⋅

∂
∂X

F X()()

EXPAND has also its distinct idiosyncrasy. Enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()





and press . The result is F X() ⋅ d1F X() ⋅d1d1F X() , which shows
that in products the command EXPAND puts the derivatives in the
order lower to higher. Enter:

∂
∂X

F X()() ⋅F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()⋅F X()

and expand again to get F X() ⋅ d1F X() ⋅d1d1F X() +F X()⋅ d1F X() , which
shows that the terms are ordered in a way, that terms containing the
highest derivative appear first, followed by terms with lower
derivatives. The order of the derivatives inside each term is again lower
to higher.

Another interesting thing that we see in the program dCOLLECT.1, is
the technique of breaking out of FOR loops by storing a value in the
counter, that exceeds the upper limit of iteration. Consider for the code:

<<
1 10
FOR I

IF
I 5 ≥

THEN
100 'I' STO

END
NEXT

>>

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-38

In this code, the loop will run until the iteration variable I has the
value 5. At this point, a value of 100 is stored in I, which makes the
program leave the loop when the NEXT command is executed, since
the value of 100 exceeds the upper iteration limit which is 10. The
iteration variable is a local variable that exists only inside the loop. As
long as we are inside the loop, we can not only use its current value,
but also store new values in it using STO , STO + and so on. So we
have a way to exit FOR loops in a polite and civilised way, by simply
adding the upper limit of iteration to the iteration variable. We can
check if something particular happens, that makes us wanting to leave
the loop, and if it happens we can use STO + to make the iteration
variable greater than the upper limit of iteration. Note however, that
the loop isn't exited automatically when we store some value in the
iteration variable. All the subsequent commands until NEXT will be
executed. Only when the command NEXT is executed does the
HP49G check the current value of the iteration variable, and decides
to leave the loop if it exceeds the upper limit of iteration. It is not an
emergency right now without any questions exit. But even such an
exit can be implemented. You just have to put all the commands that
shouldn't be executed when the iteration variable exceeds the upper
limit, into an IF − THEN− END clause. Consider the code:

<<
DUP SIZE
→ ourList up
<<

1 up
FOR I

ourList I GET SQ
IF DUP 1000 ≥
THEN up 'I' STO+
END
IF I up ≤
THEN 1 + 3 ^
END

NEXT
>>

This program takes a list of numbers as argument, and starts a loop in

which it calculates the square of the square of the number. If this square
is greater than or equal to 1000, the program adds the upper limit of
iteration to the iteration variable. Then it checks if the iteration variable
exceeds the upper limit iteration. If it doesn't, then it adds 1 to the
square of the number and raises the result to the third power. But if it
does, then it does nothing more and continues after the END of the
second IF − THEN− END clause. Since the next command is NEXT ,
the current value of the iteration variable is checked. Since it is greater
than the upper limit, the loop is exited without performing the code 1 +
3 ^, immediately.

Perhaps you have asked yourself, why do we add 1 1{ } to the list of
factors before we use ΠLIST ? And why do we add 0 to the list of terms
before we use ΣLIST ? Well, we do that to avoid the error "Invalid
dimension, in case the lists contain only one element or no elements at
all. In our case, instead of checking how many elements some list has,
we can add 1 1{ } to the list before we use ΠLIST , to make sure that
there will be a result in any case. If the list has only a single element,
then multiplying it with 1 will not cause any trouble. If it has no
elements at all, then we find the factor 1, which also doesn't change our
expression. The same considerations apply to adding 0 or 0 0{ } to a
list before we use ΣLIST . Note however that this technique is
applicable to our case and to other cases, but there can be cases where
we shouldn't use it. If for example some result does depend on the fact
that a list has only one element, then we should better check the size of
the list.

Talking about lists, we shouldn't forget another important feature of the
command SUB. This command can be used to build up sub parts of
many objects. When it is used with lists, it takes a list from stack level
3, the starting position from stack level 2, and the end position from
stack level 1. It returns a new list which contains the elements of the old
list, starting and ending at the specified positions. For example, entering
1 2 3 4 5{ } , 2 , 4 , and pressing , returns 2 3 4{ } . But

this command has also some very convenient properties. Enter again
1 2 3 4 5{ } , then 2 , and then 10 , and press . Though the

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-39

list has only 5 elements, the HP49G doesn't error out, but simply
returns 2 3 4 5{ } . Enter once more 1 2 3 4 5{ } , then
enter −3 (!) and 3 , and press to get 1 2 3{ } . And it gets
even better. enter 1 2 3 4 5{ } , then 10 , and then 15 , and
press to get an empty list as result. There is no "out of range"
error! (However, if you enter 1 2 3 4 5{ } , 5 , 3 , and then
press you don't get 3 4 5{ } , but an empty list as result.)

Enough peculiarities and nice properties. Time to return to our main
path again. If the fans of program reinbitation start feeling euphoric,
then this must be partly because we are about to think how the
program dCOLLECT.1 could get better. Let's first remember why
sometimes the program doesn't do complete collection of differential
forms. When some applied rule is successful in combining differential
forms, it could return a new differential form, which contains an

expression between the parentheses of
∂
∂

() , which itself can be

collected. One possible way to do that would be, to keep on doing
pattern matching until nothing more changes. But we can't use this
method for collection of differential forms using the rule of
differentiation of powers, because especially for this purpose we
don't work with pattern matching. Let's work out a method for this
case, that is able to continue collecting differential forms into the
depths of the algebraic expression. Imagine some hypothetical code,
that is able to detect the presence of differential forms, extract the

expression in the parentheses of
∂
∂

() , and give this expression to

dCOLLECT.1. If our code can do that for any nested level of
derivatives, then we are able to apply dCOLLECT.1 repeatedly, until
nothing changes. Consider the following code, which I will comment
after its listing:

<<
DO

"∂ → DERIV" 3. DISP @Message

DO @Convert all ∂ to DERIV
{ '∂ &V(&A)'

'DERIV(&A,&V' }

↑ MATCH
UNTIL

NOT
END
→LST @Convert alg. to list
'DERIV(A,B)' @Dummy
→LST @Convert it to list
DUP 3 GET @Get the object 'DERIV'
SWAP 5 GET @and the invisible APPLY
→ deralg apl @Store in locals
<<

"Object" 3. DISP @Message
1
<< @DOSUBS procedure

NSUB R→I " of " +
ENDSUB R→I +
4. DISP @Message
CASE

DUP deralg SAME @If we have a 'DERIV'
THEN @then do nothing
END

DUP apl SAME @If we have APPLY
THEN @then convert the function

ROT 1 →ALG @that is applied to alg.
UNROT EVAL @and evaluate APPLY
IF @If

DUP OBJ→ @we have DERIV(expression)
{DERIV} HEAD
SAME

THEN @then
DROP2 @apply dCOLLECT to expr.
dCOLLECT @(dCOLLECT is new! Its
OVER OBJ→ @description comes on
3 DROPN @page 2-31)
SWAP 2 →LIST @and match expression

↑ MATCH DROP @with matched expression.
ELSE

DROPN

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-40

END
END

EVAL @In all other cases EVAL
END

>>
DOSUBS
"DERIV → ∂ " 3. DISP @Message
HEAD
DO @Convert all DERIV to ∂

{ 'DERIV(&A,&V'

'∂ &V(&A)'} ↑ MATCH
UNTIL

NOT
END

>>
UNTIL

SWAP OVER SAME @Do until nothing changes
END

>>

Let's take a closer look to what the program does. First of all we

convert all patterns
∂

∂X
F() to DERIV F,X() . Why do we do that?

Well, we want later on to transform the algebraic object to an RPL
list, using the command list. The problem is that nested derivatives are
not exploded to the objects of which they consist. For example, if you
enter:

∂
∂X

∂
∂X

X2()





and press , then the result is the list:

X
∂

∂X
X2() ∂








and not X X X 2 ^ ∂ ∂{ } , which would be the complete

RPL decomposition of the algebraic object:

∂
∂X

∂
∂X

X2()





But if you enter the same algebraic object using DERIV , that is

DERIV DERIV X2 ,X(),X() , and press , then the result is

X 2 ^ X 'DERIV' #2d X 'DERIV' #2d{ } . This list is a
complete decomposition. It contains two invisible items. If you press

 to explode the list, then stack levels 2 and 6 seem to contain thin
air. If we represent these invisible objects with •, then the list in reality
looks like:

X 2 ^ X 'DERIV' #2d • X 'DERIV' #2d •{ }

The strange invisible object • is the command FCNAPPLY , which has
no visible representation on the HP49G. That means that we are "not
allowed" to use it. But because we don't accept any limits in the usage
of our machines, we are going to work with it. Actually the list says
nothing more, than a complete description of what to do, in order to get

the algebraic object DERIV DERIV X2 ,X(),X() . It says:

X Enter X .
2 Enter 2 . Now we have the arguments X and 2 .
^ Make X2 .
X Enter X again. Now we have X2 and X .
'DERIV' Enter the algebraic object (!) 'DERIV'. Now we

have X2 , X and 'DERIV'.
#2d Enter the system binary #2d . Now we have X2 , X ,

'DERIV' and #2d .
• Apply the function DERIV , to the number of

arguments, given by the system binary #2d . Now
we have DERIV X2,X() .

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-41

X Enter X . Now we have DERIV X2,X() and X .

'DERIV' Enter the algebraic object (!) 'DERIV'. Now we
have DERIV X2,X() , X and 'DERIV'.

#2d Enter the system binary #2d . Now we have
DERIV X2,X() , X , 'DERIV' and #2d .

• Apply the function DERIV , to the number of
arguments, given by the system binary #2d .

Now we have DERIV DERIV X2 ,X(),X() .

Since the list contains a complete RPL decomposition of the algebraic

object DERIV DERIV X2 ,X(),X() , we can use it to detect where the

object that we encounter is the algebraic object 'DERIV'. But we need
to compare the object in the list with 'DERIV', and we can't enter
'DERIV' ourselves. That is why we enter the dummy DERIV A,B() ,
decompose it, and put 'DERIV' in the local variable deralg. At this
point we also put the invisible FCNAPPLY in the local variable apl ,
because we are going to need it later in the program. The rest is easy.
Whenever we encounter an object different that 'DERIV' or •, we
simply evaluate it. This successively builds up our algebraic object.
When we encounter a 'DERIV', we don't do anything. When we
encounter a •, we turn the object on stack level 3 to an algebraic,
because • must have an algebraic object at that level. Then we evaluate
•, which builds up expressions of the form
someFunctionarg1,arg2…,argn() . Then we check if this
expression is actually DERIV arg1,arg2() . If it is, we give arg1 to
the new program dCOLLECT , which collects differentials. We keep
on doing this until nothing more changes.

We copy the old dCOLLECT.1 in dCOLLECT and we store the
above code in… dCOLLECT itself! This way the program
dCOLLECT calls itself over and over again, until it can do nothing
more. At the start of the program dCOLLECT we write (additional

code is bold):

<<
PUSH @Save user's settings
dn→dv @Convert to ∂ notation
→TERMS @return list of terms
<< @All the above code

…
>>
→ diffTerms rCode @Store in locals
>>

We also write in dCOLLECT before the application of the rule of
differentiation of an expression multiplied with a constant:

…
END
IF
THEN

rCode EVAL 1.
ELSE

0.
END
"C*∂ (A) → ∂ (C*A)"
…

Now we have a
program, that gives
itself a program as an
argument, that in turn
calls the program itself
again. The process of
calling each other ends,
when dCOLLECT
can't collect anything
more. Isn't that
amazing?

This is the program dCOLLECT which comes with this document.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-42

dCOLLECT

Enters rCode and gives
itself rCodeas an
argument

rCode

When rCode runs, it
executes dCOLLECT

Let's try the examples which we examined with dCOLLECT.1.

The expression:

F X() ⋅
∂

∂X
F X()()

will be converted to

∂
∂X

1
2

⋅F X()2





in 17 seconds.

The expression:

∂
∂X

∂
∂X

F X()()



 + G X()⋅

∂
∂X

F X()() + F X()⋅
∂

∂X
G X()()

gets converted to:

∂
∂X

G X() ⋅F X() +
∂

∂X
F X()()





in 97 seconds.

The expression:

∂
∂X

∂
∂X

F X()()



 +

∂
∂X

∂
∂X

G X()()



 +

∂
∂X

G X()()

gets converted to:

∂
∂X

∂
∂X

F X() + G X()() +G X()





in 51 seconds.

The expression:

3 ⋅F X()2 + G X()2() ⋅
∂

∂X
F X()() + 2 ⋅G X()⋅F X() ⋅

∂
∂X

G X()()

goes to:

∂
∂X

G X()2 ⋅F X() + F X()3()
in 116 seconds.

The expression:

∂
∂X

∂
∂X

F X()()



 + G X() ∂

∂X
F X()() +F X() ∂

∂X
G X()()

goes to:

∂
∂X

F X()⋅ G X() +
∂

∂X
F X()()





in 97 seconds.

The expression:

F X()2 ⋅
∂

∂X
∂

∂X
F X()()



 + 2 ⋅F X() ⋅

∂
∂X

F X()()2

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-43

goes to:

∂
∂X

∂
∂X

1
2

⋅F X()3







 



in 119 seconds.

The expression:

2 ⋅F X()2 ⋅
∂

∂X
F X()()⋅

∂
∂X

∂
∂X

F X()()



 + 2 ⋅F X()2 ⋅

∂
∂X

F X()()3

goes to:

∂
∂X

1
3

⋅
∂

∂X
F X()3()⋅

∂
∂X

F X()()





in 162 seconds.

The expression:

F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2
+

∂
∂X

F X()()

goes to

∂
∂X

∂
∂X

1
2

⋅F X()2



 +F X()


 



in 124 seconds.

The expression:

F X() + 1() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2

goes to:

∂
∂X

∂
∂X

1
2

⋅F X()2



 +

∂
∂X

F X()()

 



in 123 seconds.

The expression:

F X() ⋅
∂

∂X
∂

∂X
F X()()



 +

∂
∂X

F X()()2

goes to:

∂
∂X

∂
∂X

1
2

⋅F X()2







 



in 109 seconds.

The expression:

2 ⋅ G X() ⋅F X()⋅
∂

∂X
F X()() −F X()2 ⋅

∂
∂X

G X()()
G X()2

goes to:

∂
∂X

F X()2

G X()



 




Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-44

in 102 seconds.

The expression:

G X() ⋅
∂

∂X
F X()() − F X() − G X()2()⋅

∂
∂X

G X()()
G X()2

goes to

∂
∂X

F X()
G X() + G X()



 




in 110 seconds.

The expression:

− 3 ⋅F X()2 − 3 ⋅F X()()⋅
∂

∂X
F X()()2





goes to:

∂
∂X

3 ⋅F X()2 −2 ⋅F X()3() ⋅
∂

∂X
F X()()

2

in 61 seconds.

We do some additional examples.

The expression:

3 ⋅F X()3 ⋅
∂

∂X
F X()()

goes to:

∂
∂X

3
4

⋅F X()4





in 18 seconds.

The expression:

3 ⋅F X()3 ⋅
∂

∂X
F X()()2

goes to:

3
4

⋅
∂

∂X
F X()4()⋅

∂
∂X

F X()()

in 23 seconds.

The expression:

F X()2 +F X()() ⋅
∂

∂X
∂

∂X
F X()()



 + 2 ⋅F X() +1()⋅

∂
∂X

F X()()2

goes to:

∂
∂X

∂
∂X

1
2

⋅F X()2



 +

∂
∂X

1
3

⋅F X()3







 



in 260 seconds. Here the result could have been further collected to:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-45

∂
∂X

∂
∂X

1
2

⋅F X()2 +
1
3

⋅F X()3







 



We let rCode run only after the rule of differentiation of products has
been successfully applied. But if you want, you can do the same after
the rule of differentiation of sums is applied successfully. This way,
when some expression like:

∂
∂X

∂
∂X

F X()()



 +

∂
∂X

∂
∂X

G X()()





is successfully collected to:

∂
∂X

∂
∂X

F X()() +
∂

∂X
G X()()



 ,

then the sub expression inside the parentheses,:

∂
∂X

F X()() +
∂

∂X
G X()()

will itself be collected to:

∂
∂X

F X() + G X()()

This will of course cost even more time.

The expression:

F X() ⋅
∂

∂X
F X()() ⋅

∂
∂X

∂
∂X

F X()()





goes to:

F X()
2

⋅
∂

∂X
∂

∂X
F X()()2





in 31 seconds. Try to find out why no complete collection of differential
forms was done here.

The expression:

2⋅U X() ⋅G X()∗F X() ⋅ ∂
∂X

F X()() + U X() ⋅F X()2 ⋅ ∂
∂X

G X()() + G X()⋅F X()2 ⋅ ∂
∂X

U X()()

goes to:

∂
∂X

U X() ⋅G X() ⋅F X()2()
in 179 seconds.

Note that the program doesn't contain any explicit implementation of the
rule of differentiation of ratios. This is achieved implicitly as a
combination of the rule for powers and for products.

There are also other methods to make such a program. One of them will
be demonstrated in some future marathon and bases on isomorphism.

We already talked about the fact that the HP49G doesn't provide any
commands for conversion of:

∂ F X,n()
n =n0

N

∑
∂X

to:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-46

∂F X,n()
∂Xn= n0

N

∑

But it is not hard to program that. We can use pattern matching with
the condition that the derivation variable is different from the
summation index. We first make a program that smuggles the usage
of the command SAME in an algebraic object:

<<
SAME

>>

We store it in ALGSAME

Then we program:

<<
{'∂ &V(Σ (&n=&n0,&N,&F))'

'Σ (&n=n0,&N,∂ &V(&F))'
'NOT ALGSAME(&V,&n)'}

↑ MATCH DROP
>>

and we store that in dΣ → Σd .

Enter:

∂
∂X

n ⋅ Xn

n=1

N

∑

 



and press to get:

∂
∂X

n ⋅ Xn()
n=1

N

∑
The derivative:

∂
∂X

n ⋅Xn()

inside the sum isn't expanded. If you press now, the HP49G
will not only expand the derivative to n ⋅n ⋅ Xn−1 , but will also expand
the sum to:

X2 − 2 ⋅ X +1()⋅N2 − 2 ⋅X − 2()⋅N + X +1()⋅ X
N − X + 1()

X3 − 3 ⋅ X2 + 3 ⋅ X −1

If you don't want that, then you must use another strategy, since
smuggling even more RPL in algebraic objects will not work. The
customs officers started suspecting us ;-). If you would try to smuggle
EXPAND into an algebraic by storing

<<
EXPAND

>>

in ALGEXPAND and changing dΣ → Σd to:

<<
{'∂ &V(Σ (&n=&n0,&N,&F))'

'Σ (&n=n0,&N,ALGEXPAND(∂ &V(&F)))'
'NOT ALGSAME(&V,&n)'}

↑ MATCH DROP
>>

then it wouldn't work. If you would enter:

∂
∂X

n ⋅ Xn

n=1

N

∑

 


 ,

and press , then you would get:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-47

ALGEXPAND
∂

∂X
n ⋅ Xn()



 n=1

N

∑

But it doesn't have to be always pattern matching. Consider for
example the program:

<<
→ dsum
<<

dsum OBJ→ NIP ROT →LST
IF

DUP HEAD 4 PICK
SAME NOT

THEN
DUP 4 GET
4 ROLL 4 ROLL EVAL
4 SWAP PUT →ALG

ELSE
3 DROPN
dsum

END
>>

>>

Store that in dΣ → Σd2 . Enter again:

∂
∂X

n ⋅ Xn

n=1

N

∑

 



and press , to get:

n ⋅ n ⋅Xn−1

n=1

N

∑ . Of course this program works only for expressions of

the exact form:

∂
∂X

F X,n()
n=n0

N

∑



 




It will not work, or even crash, for any other expression, even if it is
just a little bit different, like for example:

A ⋅
∂

∂X
F X,n()

n =1

N

∑

 



The other program, dΣ → Σd , is a bit better, since it will also not work
for any expression the doesn't contain the pattern:

∂
∂X

F X,n()
n=n0

N

∑



 




but at least it will not crash. Making a program that works in more cases
than for some simple patterns, is a bit more difficult, but not very

difficult either. We know that the notation
∂
∂

 is problematic with Σ but

DERIV seems to work better. We must first convert all
∂
∂

 in some

given expression to DERIV . Then we can expand. The program:

<<
{'∂ &V(&F))' 'DERIV(&F,&V)'}

↑ MATCH DROP EXPAND
>>

will do that. Note also that if the HP49G can't handle the sum, then it
will return a result that can be questionable. Enter:

∂
∂X

F X,n()
n=1

N

∑

 



Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-48

and expand. You get d1Σ n,1,N,F X,n()() because the sum:

F X,n()
n=1

N

∑

can't be calculated. But in d1Σ n,1,N,F X,n()() the differentiation is
meant for the first rational variable in the parentheses, which is n . We
definitely didn't enter:

∂
∂n

F X,n()
n=1

N

∑

 



We had a derivative for X . And even worse: In d1Σ n,1,N,F X,n()()
the information about the variable of differentiation is completely lost
without a trace! Using DERIV instead of ∂ doesn't help either. We
seem to have hard problem here. On the one hand we can't be sure
that all differentiations of summations will follow the simple pattern:

∂
∂X

F X,n()
n=n o

N

∑



 




and so pattern matching will not always work. On the other hand if
we expand trying to convert all differentiations of summations to
patterns like d1Σ n,1,N,F X,n()() , we lose the variable of
differentiation. Is there any way to solve this problem?

If we want to make dCOLLECT good enough for being able to
handle arbitrary expressions that contain also sums, then we have add
special code that somehow takes care of them. One possibility would
be to convert all sums to temporary functions, say
tempFuncA derVar() , tempFuncB derVar() , and so on, that
contain the variable of differentiation. Then, using EXPAND , we can
can convert the given expression to an expression that only contains

simple patterns like d1tempFuncA X() . In these patterns the
information about the differentiation variable is fully preserved. We can
let the code of dCOLLECT run and so collect differential forms with
the temporary functions d1tempFuncA X() instead of the original sums.
This will work, because dCOLLECT is already able to handle such
abstract expressions, like d1F X() , d1G X() , and thus also
d1tempFuncA X() . When we are done with this, we reconvert all
tempFuncA X() back to:

F X,n()
n= n0

N

∑

and d1tempFuncA X() back to:

∂
∂X

F X,n()
n=n o

N

∑



 




And so we see that we must keep track of the corresponding expressions

tempFuncA X() and F X,n()
n= n0

N

∑ , in order to be able to make the

backwards conversion afterwards. Let's try first to make a program for
conversion of:

∂
∂X

F X,n()
n=n o

N

∑



 




to:

∂
∂X

F X,n()()
n= no

N

∑

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-49

Consider the code:

<<
"∂ → DERIV" 1. DISP @Message
DO

{'∂ &V(&F)' DERIV(&F,&V)'} @Convert all ∂ to DERIV

↑ MATCH DROP
UNTIL

NOT
END
→LST @Alg. to list
'DERIV(A,B)' →LST DUP 3 GET@Create 'DERIV', and the
SWAP 5 GET @invisible APPLY
{} {} 'X' 64.
→ deralg apl sums @Store in locals

tempFuncs dervar fnum
<<

"Object" 1. DISP @Message
1.
<< @DOSUBS for all objects

NSUB R→I " of " + @in list of alg.
ENDSUB R→I + 2. DISP @Message
CASE @In case

DUP deralg SAME @we have 'DERIV'
THEN @do nothing
END

DUP apl SAME @we have APPLY
THEN

ROT 1 →ALG @Convert object in
UNROT @stack level 3 to alg.
IF @If

PICK3 deralg @stack level 3 is DERIV
1. →ALG SAME

THEN @Store derivation
4 PICK @variable
'dervar' STO
EVAL @Evaluate invis. APPLY
IF @If

sums {} ≠ @sums already found
THEN

"tempFunction + (var)"

2. DISP @Message
tempFuncs 1.
<< @DOSUBS for all sums

IF @If tempFunction
DUP @doesn't contain
dervar @sub string "dervar,"
"," +
POS NOT

THEN @then add that sub
dervar @string
+ ","
+

END
>>
DOSUBS
'tempFuncs' @Store in 'tempFuncs'
STO

END
ELSE @else (stack 3 ≠ DERIV)

EVAL @evaluate object
END

END
DUP {Σ } HEAD SAME @In case object is Σ

THEN
"Σ → tempFunction"
2. DISP @Message
5. →ALG @Build-up sum
DUP 'sums' STO+ @Add it to sums
"tempFunction" fnum @Make string
INCR CHR + "(" + @tempFunctionX where X
'tempFuncs' STO+ @stands for capital letter

@and add to tempFuncs
END

EVAL @In case nothing of the
@above, then EVAL

END
>>
DOSUBS HEAD @*****
IF @If

sums {} ≠ @we found sums
THEN

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-50

"tempFunction → alg"
2. DISP @Message
sums tempFuncs {}
'tempFuncs' STO @Store {} in sums
2.
<< @For all sums, tempFuncs

1. OVER SIZE 1. - SUB
")'" +
IFERR @Try to convert

OBJ→ @tempFunction to alg.
THEN @In case of error get

rid
DROP2 @of sum and tempFunction

ELSE
2. →LIST 1. →LIST @else keep
'tempFuncs' STO+ @{sum tempFunction}

END
>>
DOLIST
IF @If we have

tempFuncs {} ≠ @tempFunctions
THEN

"MATCH Σ tempFunction"
2. DISP @Message
tempFuncs 1. @Match each sum to
<< @its corresponding

↑ MATCH DROP @temporary function
>>
DOSUBS

END
END
"" 2. DISP @Clear display line 2
dn→dv @Run dn→dv
IF @If we have

tempFuncs {} ≠ @temporary functions
THEN

"MATCH tempFunction Σ "
2. DISP @Message
tempFuncs
1. @Match temporary func.
<< @with sum

REVLIST ↑ MATCH
DROP

>>
DOSUBS

END
IF @If we have

tempFuncs {} ≠ @temporary functions
THEN

"∂Σ → Σ∂ " 2. DISP @Message
{ '∂ &V(Σ (&n=&n0,&N,&F))'
 'Σ (&n=&n0,&N,∂ &V(&F))'

'NOT ALGSAME(&V,&n)' }

↑ MATCH DROP @Match ∂Σ to Σ∂
END

>>
>>

We already had dΣ → Σd and dΣ → Σd2 , so let the program be
named derΣ → Σder . (We are running out of names!)

Enter the expression:

∂
∂X

F X,n()⋅ F X,n()
n=1

N

∑

 



which doesn't contain the pattern:

∂
∂X

F X,n()
n=n o

N

∑



 




but still can be expanded to:

F X,n() ⋅
∂

∂X
F X,n()

n=1

N

∑

 


+ F X,n()

n =1

N

∑ ⋅
∂

∂X
F X,n()()

which does contain the pattern:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-51

∂
∂X

F X,n()
n=n o

N

∑



 




Press . The HP49G flashes happily messages,
converts, reconverts, and after a while it returns:

F X,n() ⋅
∂

∂X
F X,n()()

n=1

N

∑ + F X,n()
n=1

N

∑ ⋅
∂

∂X
F X,n()()

Notice that the derivation is now inside the summation. The program
worked. The other two programs, dΣ → Σd and dΣ → Σd2 , would
live the expression:

∂
∂X

F X,n()⋅ F X,n()
n=1

N

∑

 



unchanged. Notice also that the code of the program up to the point
marked with ***** in the program listing, strongly resembles the part
rCode of dCOLLECT .

With almost the same code of derΣ → Σder we can also enhance our
dCOLLECT , in order to be able to collect differential forms. At the
point in the program, where we call dn → dv , we could also call the
current version of dCOLLECT . That means that we can make yet
another new version that handles also sums. But we can also combine
the two functionalities of collection of differential forms and of
converting:

∂
∂X

F X,n()
n=n o

N

∑



 




to:

∂
∂X

F X,n()()
n= n0

N

∑

in a single program. This program takes an expression with differential
forms from stack level 2, and a 1 or 0 from stack level 1. If the
argument on stack level 1 is a 1, the program collects differential forms.
If it is a 0 , it just converts:

∂
∂X

F X,n()
n=n o

N

∑



 




to:

∂
∂X

F X,n()()
n= n0

N

∑

by expanding the differential forms. We just have to make minor
modifications in derΣ → Σder . At the start of the program we write
(bold type face):

<<
SWAP
"∂ → DERIV" 1. DISP @Message
DO

{'∂ &V(&F)' DERIV(&F,&V)'} @Convert all ∂ to DERIV

↑ MATCH DROP
UNTIL

NOT
END
→LST @Alg. to list
SWAP
'DERIV(A,B)' →LST DUP 3 GET@Create 'DERIV', and the
SWAP 5 GET @invisible APPLY
{} {} 'X' 64.
→ dColFlag deralg apl sums @Store in locals

tempFuncs dervar fnum

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-52

At the middle of the program we add:

..........
"" 2. DISP @Clear display line 2
IF @If

dColFlag @the user entered 1
THEN @then do collection

dCOLLECT @of diff. forms.
ELSE @else

dn →dv @Run dn→dv
END
IF @If we have

tempFuncs {} ≠ @temporary functions
THEN

"MATCH tempFunction Σ "
...........

This is the program dCOLEX that comes with this document. Let's
try it. Enter:

∂
∂X

F X,n()⋅ G X()()

then 0 (for expansion of differential forms) and press . The
result is the expression:

G X() ⋅
∂

∂X
F X,n()() + F X,n() ⋅

∂
∂X

G X()()

If you now enter 1 (for collection of differential forms) and press
 again, then you get:

∂
∂X

G X() ⋅F X,n()() ,

the expression we started with. But the improvement becomes visible
when working with sums. Enter:

∂
∂X

G X,n()⋅ F X,n()
n=1

N

∑

 



then 0 , and press . You get the expanded result:

G X() ⋅
∂

∂X
F X,n()()

n =1

N

∑ +
∂

∂X
G X()() ⋅ F X,n()

n =1

N

∑

where the derivation is brought inside the parentheses of the sum.
Now, it would be good if the collection of differential forms would
already work, but we still need a tiny modification. Before calling
dCOLLECT we must convert all patterns:

∂
∂X

F X,n()()
n=1

N

∑

to:

∂
∂X

F X,n()
n=1

N

∑

 



We will modify slightly the code in dCOLEX almost since everything
we need is already there. At the beginning of the program, after the first
SWAP , we add:

"Σ ∂ → ∂ Σ " 1. DISP
DO

{'Σ (&n=&n0,&N,∂ &V(&F))' '∂ &V(Σ (&n=&n0,&N,&F))'

'NOT ALGSAME(&V,&n) } ↑ MATCH
UNTIL NOT
END

Now, having:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-53

G X() ⋅
∂

∂X
F X,n()()

n =1

N

∑ +
∂

∂X
G X()() ⋅ F X,n()

n =1

N

∑
or:

G X() ⋅
∂

∂X
F X,n()

n=1

N

∑

 


+ G X()() ⋅ F X,n()

n=1

N

∑

on stack level 1, you can enter a 1, and press to get:

∂
∂X

G X() ⋅ F X,n()
n=1

N

∑

 



The program still works with the examples that we had on the
previous page. If it doesn't, then call Trabakoulas and tell him the
story. He will be glad to "suggest" me to do more programming
exercises. ;-)

I think that it is time now to take a look at the interdependencies of our
programs, because we had so many of them, and we are going to lose
track, who is using whom, and what we need and we can through
away.

We don't need necessarily dΣ → Σd and dΣ → Σd2 . These two
programs can be purged if you don't need them. I only include them
with this document for studying purposes. (And to spare you the typing
on the hard keys of the HP49G ;-)) Also, dCOLLECT.1 is not needed.
The programs dCOLEX and dCOLLECT do that work better. You
could keep dCOLLECT , though dCOLEX does the same and more,
because dCOLLECT is faster, since it doesn't include special code for
sums. So perhaps you can use it for faster results, when no sums are
involved. If you purge dΣ → Σd , dΣ → Σd2 , and dCOLLECT.1,
then the program structure becomes a bit simpler. (The picture of the
simpler program structure is on the next page.) The two programs
ISCONT? and → TERMS come from the Sequences, Series and
Limits Marathon. Their complete documentation is there, but I include
them in the files of this marathon for convenience.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-54

∆QUOT

dF1F2

ISCONT?

->FACT

d1GAMMA

d1FACT

SECLINE

TANLINE

TANPARSEC

DYPOSNAME ->TERMSdn->dv

dCOLLECT.1

STARTEQW

dCOLLECT

ALGSAME

dΣ->Σd

dΣ->Σd2

derΣ->Σder

dCOLEX

If we bring the main ingredients of the programs dn → dv ,
dCOLLECT derΣ → Σder , or dCOLEX , then we see that they
use list processing very extensively. Algebraics objects are
transformed to the corresponding RPL lists, and then each of the list
objects is examined and used individually. The programs work in
many cases. Of course they will not work in other cases. But the main
picture that we get from them is that we are actually process lists, in
this case the particular RPL lists that are equivalent to the algebraic
objects of the HP49G. Without doubts the lists are a very powerful
object n the HP49G, because the are somewhere between algebraic
objects, programs, and data. Having commands like → LST ,
→ ALG and similar, we are able to start with an algebraic object,
convert it to a list, jumping thus in the world of listoids with all their
special capabilities, transform the list to a new list which corresponds
to some other algebraic objects, and finally jump back to the world of

algebraicoids with their special capabilities. When we transform the list,
using our rules of programming, we actually are performing operations
on algebraic objects in their list form. You can imagine some virtual
algebraic object, which experiences the corresponding changes, when
we somehow operate on its list form. For example, take the algebraic
object X + Y , and its RPL list form X Y +{ } . If we exchange the
elements X and Y in the list, we are actually transforming X + Y to
Y + X . There are of course countless ways to exchange elements X and
Y of the list, but all these possible algorithms, programs, name them
what you like, are actually doing the same. They use the commutative
property of addition. Any hypothetical built-in command
COMMUTEPLUS, would correspond to our element exchange
algorithm. But, not all elements exchanges would correspond to
commutation of the operands of addition. In the list we can also

exchange the
elements Y and
+ , transforming
it to
X + Y{ } ,

which is no
more the mirror
picture of some
valid algebraic
object in the
world of the
listoids. The list
X + Y{ } ,

would be like
trying to enter
'Y X,+()' which
isn't possible on
the HP49G.
(Well, usually at
least. ;-)) This
shows us that
we have ways

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-55

∆QUOT

dF1F2

ISCONT?

->FACT

d1GAMMA

d1FACT

SECLINE

TANLINE

TANPARSEC

DYPOSNAME ->TERMSdn->dv

STARTEQW

dCOLLECT

ALGSAME

derΣ->Σder

dCOLEX

on the HP49G, to extend the possible algebraic objects, to all those
which are representable through valid lists, but not through valid
algebraic expressions. ("Valid" means valid for the HP49G.) For
example, the object 'Y X,+()' , represented by X + Y{ } , could
mean some function Y , that acts upon two arguments, one of which
is itself a function! We can use it for any program, that we code
accordingly to what the function Y does with its arguments. We can
only not represent it using algebraic syntax, but that's the only
limitation. So we see that the world of listoids seems to be somehow
more extended, bigger than the world of algebraicoids. Imagine the
possibilities. (We already have experienced some of these
possibilities, think again of our programs.)

But one of the main disadvantages of the lists are, that they are harder
to understand by simply looking at them. Enter some lengthy
expression using derivatives, sums and whatever you want, and take
a look at it. A simple short look in the EQW. If you think that it is not
very readable, press , and think about the readability of the
RPL list. Perhaps because of years in school, perhaps because of
built-in preference of humans for algebraic syntax, we seem to be able
to understand algebraics (by looking at them) better than RPL. (Or did
anybody read any book of physics, that says that the one dimensional
Schrödinger equation is h 2 m ⋅ / NEG Ψ x ∂ x ∂ E Ψ = instead

of

−

h
2∗ m

⋅
∂2Ψ
∂x2 = E ⋅Ψ ?) Don't think that I am a fan of algebraic

syntax on calculators, or on any other CAS. I am a fan of the
algebraic syntax as it is used in mathematics, and that's (often)
quite different from that used on computer algebra systems. Compare

the mathematics formula

−

h
2∗ m

⋅
∂2Ψ
∂x2 = E ⋅Ψ with the calculator

formula − h / 2 ⋅m()⋅∂x ∂x Ψ()()() = E ⋅Ψ to understand what I mean.
They are way not the same. Only when some input software like the
EQW is available, somebody can say that algebraic is like it was
meant "on paper". Otherwise the similarity exists only on the
prospects of the device/CAS.

Why do I say the above things? Well, the lists may be as good and
powerful as they want, but they don't have the transparency of using an
algebraic, at least on the HP49G. Algebraic objects and the commands
available for them, are easier to understand. Somehow clearer. So, isn't
there any way to do, for example, collection of differential forms,
avoiding lists and their difficulties when it comes to understanding?
Can't we do the same, like what dΣ → Σd or dCOLLECT does, but
using only algebraic objects and the commands for them? Well, there is!
But in order to understand this (marvellous!) way, we have to take a
closer look to our old good friends ↑ MATCH and ↓ MATCH again.
We have met them in the Trigonometry Marathon for the first time. And
their power is waaaaay from being completely known. What follows is a
first short journey into the depths of pattern matching on the HP49G. I
think that many many journeys will follow in the next marathons.

Let's bring in mind again, why we avoided using pattern matching for
collecting differential forms in expressions that contain sums. The
problem was, that we can't be sure that all sums will be in a few simple
patterns, which we can then convert to other patterns with pattern
matching. In order to convert the whole expression in another
expression, in which only some few simple patterns with sums appear,
we have to expand it first. But then all expressions of the form:

∂
∂X

F X,n()
n=n o

N

∑



 




will be converted to d1Σ n,n0 ,N,F X,n()() and we lose the information
about the variable of derivation. That was the reason that we decided to
first convert every sum in a temporary function tempFunctionA X() ,
tempFunctionB X() and so on. This way any expression like:

∂
∂X

F X,n()
n=n o

N

∑



 




Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-56

gets converted to:

∂
∂X

tempFunctionA X()()

and then we are able to expand, because then the result is
d1tempFunctionA X() . After this we apply our algorithms for
collection of differential forms, and we reconvert all temporary
functions back to sums. One small but important detail of the
procedure is that each distinct sum should be converted to a distinct
temporary function, in order to keep the information that different
sums are involved. This is why we can't use pattern matching. If we
have an expression, like for example:

∂
∂X

F n,X()
n=1

N

∑ + G m,X()
m=1

N

∑

 



and we match all patterns &F
&n= &n0

&N

∑ to tempFunctionA X() , then the

expression:

∂
∂X

F n,X()
n=1

N

∑ + G m,X()
m=1

N

∑

 



will be converted to:

∂
∂X

tempFunctionA X() + tempFunctionA X()()

which is wrong since there were two different sums in the original
expression, but only a single temporary function in the result.

But if we were able to expand the differential forms in the expression
completely but without using EXPAND , then we would at least be
sure, that the only differential form where sums appear, would be of

the form:

∂
∂X

F X,n()
n=n o

N

∑



 




If we know that this is the only possible pattern, we are half the way
through. Of course, we can't expect that a single pattern matching could
do that. But using many of them, in a reasonable order, it is possible to
do what we want. Consider the program:

<<
DO

DUP →TERMS
0 + Σ LIST
"∂ (A/B)→(B*∂ A-A*∂ B)/B^2"
1. DISP
DO @Ratio rule

{'∂ &V(&A/&B)' '(&B*∂ &V(&A)-&A*∂ &V(&B))/&B^2' }

↑ MATCH
UNTIL

NOT
END
→TERMS 0 + Σ LIST
"∂ (A+B)→ ∂ A+∂ B"
1. DISP
DO @Sums rule

{'∂ &V(&A+&B)' '∂ &V(&A)+∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (Const*A)→Const*∂ A"
1. DISP
DO @Constant rule

{'∂ &V(&C*&A)' '&C*∂ &V(&A)' 'NOT POSNAME(&C,&V)' }

↑ MATCH
UNTIL

NOT

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-57

END
"∂ (A*B)→B*∂ A+A*∂ B"
1. DISP
DO @Product rule

{'∂ &V(&A*&B)' '&B*∂ &V(&A)+&A*∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A^n)→n*A^(n-1)*∂ A"
1. DISP
DO @Power rule

{'∂ &V(&A^&n)' '&n*&A^(&n-1)*∂ &V(&A)'
'NOT POSNAME(&n,&V)'}

↑ MATCH
UNTIL

NOT
END
"∂ Σ → Σ ∂ " @All other expansions of
1. DISP @diff. forms are done. So we
DO @start converting sums

{'∂ &V(Σ (&n=&n0,&N,&F))'
'Σ (&n=&n0,&N,∂ &V(&F))'
'NOT ALGSAME(&V,&n) }

↑ MATCH
UNTIL

NOT
END

UNTIL
SWAP OVER SAME

END
>>

This is the program PATdΣ → Σd . Let's see it in action. Enter:

∂
∂X

G X,n()⋅ F X,n()
n=1

N

∑

 



and press . The program returns:

F X,n()
n=1

N

∑ ⋅
∂

∂X
G X()() + G X()⋅

∂
∂X

F X,n()()
n=1

N

∑ ,

the correct result. Notice that we didn't use EXPAND a single time.
Notice also that we used → TERMS , which itself doesn't convert the
patterns:

∂
∂X

F X,n()
n=1

N

∑

 



to d1Σ n,n0 ,N,F X,n()() . Try some examples yourself. I'm sure that you
will find expressions that the program can't handle, but one thing is
sure. This program is a much clearer and easier to understand, than the
others. No DOSUBS of DOSUBS and procedures buried under
nested levels of loops. No tricks and dummies from which we extract
objects that we can't create directly. Just DO -loops, nicely ordered one
after the other, each one of which simply repeats a single kind of pattern
matching, until nothing more happens. And the whole thing wrapped in
an outer DO -loop which runs again and again, until nothing changes.

Now that we have this program, we know that whatever the form is, in
which differential forms are present in some expression, when the
program ends all derivatives of sums will be in the form of a single
simple pattern:

∂
∂& X

&F()
&n= &n0

&N

∑

This contains all information that we need in order to convert it to a
temporary function. So we can hope that we will be able to use again
pattern matching for collecting differential forms including differential
forms that contain sums. We can convert all patterns:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-58

∂
∂& X

&F()
&n= &n0

&N

∑

to:

∂
∂ & X

&F
&n= &n0

&N

∑

 



then convert all patterns:

∂
∂ & X

&F
&n= &n0

&N

∑

 



to patterns:

∂
∂ & X

tempFunction&X()()

then apply dCOLLECT , and then convert all patterns
tempFunction&X() back to:

&F
&n= &n0

&N

∑

The principle is clear, but…

As we have seen, if we try to match each pattern:

∂
∂ & X

&F
&n= &n0

&N

∑

 



to , say:

∂
∂ & X

REPLΣ &F
&n= &n0

&N

∑

 




 




having programmed REPLΣ before, as a program that takes the sum
and creates replacements, like tempFunctionA X() , then we have two
small problems. First of all, the replacements have to be different from
each other for different sums, and second, if we match some expression
like:

∂
∂X

F X()
n=n0

N

∑

 



using the pattern list:

∂
∂ & X

&F
&n= &n0

&N

∑

 


∂

∂ & X
repl &F

&n=&n0

&N

∑

 




 












then we get the result:

∂
∂X

REPLΣ F X()
n=n0

N

∑

 




 




where the replacement program wasn't evaluated. So we have to code
the program REPLΣ in a way, that is assigns distinct
temporaryFunction names to distinct sums. And we have to expand
the whole expression, in order to evaluate all sub expressions:

∂
∂X

REPLΣ F X()
n=n0

N

∑

 




 




Since the inner most nested sub expressions are evaluated first, we can
be sure that:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-59

REPLΣ F X()
n= n0

N

∑

 



will be evaluated before the differentiation, producing the result:

∂
∂X

tempFunctionA X()()

which will be further evaluated to d1tempFunctionA X() . Let's first
make the program REPLΣ . It just has to return an algebraic object,
but can do anything else in-between.

<<
→ sum derVar @Store in locals
<<

IF
VARS SLIST POS NOT @If SLIST doesn't exist

THEN @then
{} 'SLIST' STO @create SLIST and RLIST
{} 'TLIST' STO
64. 'nTemp' STO @initialise nTemp

END
IF

SLIST sum POS NOT @If sum not in SLIST
THEN @then

'SLIST' sum STO+ @Add sum to SLIST
'TLIST'
"'tempFunction" @Create distinct temporary
'nTemp' INCR CHR + @function for replacement
"(" + derVar + ")'" +
+ OBJ→ DUP UNROT @Copy of tempFunction for

@replacement in expression
STO+ @Add tempFunction to TLIST

END
>>

>>

This program takes a sum and a derivation variable, and updates the

list of sums SLIST and the list of temporary replacement functions
TLIST . It returns a distinct temporary replacement function for every
sum that it receives as argument.

Now we make PATdCOLLECT , the program for collection of
differential forms that uses pattern matching. Actually we can use much
of the code of the program PATdΣ → Σd .

<<
DO

DUP →TERMS
0 + Σ LIST
"∂ (A/B)→(B*∂ A-A*∂ B)/B^2"
1. DISP
DO @Ratio rule

{'∂ &V(&A/&B)' '(&B*∂ &V(&A)-&A*∂ &V(&B))/&B^2' }

↑ MATCH
UNTIL

NOT
END
→TERMS 0 + Σ LIST
"∂ (A+B)→ ∂ A+∂ B"
1. DISP
DO @Sums rule

{'∂ &V(&A+&B)' '∂ &V(&A)+∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (Const*A)→Const*∂ A"
1. DISP
DO @Constant rule

{'∂ &V(&C*&A)' '&C*∂ &V(&A)' 'NOT POSNAME(&C,&V)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A*B)→B*∂ A+A*∂ B"
1. DISP

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-60

DO @Product rule
{'∂ &V(&A*&B)' '&B*∂ &V(&A)+&A*∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A^n)→n*A^(n-1)*∂ A"
1. DISP
DO @Power rule

{'∂ &V(&A^&n)' '&n*&A^(&n-1)*∂ &V(&A)'
'NOT POSNAME(&n,&V)'}

↑ MATCH
UNTIL

NOT
END

UNTIL
SWAP OVER SAME

END @Except the part ∂ Σ → Σ ∂
@and conversion of derivat.
@of sums, this is the code
@of PAT∂ Σ → Σ ∂ .

"Σ ∂ → ∂ Σ "
1. DISP
DO @Match Σ ∂ to ∂ Σ

{'Σ (&n=&n0,&N,∂ &V(&F))'
 '∂ &V(Σ (&n=&n0,&N,&F))
 'NOT ALGSAME(&V,&n)'}

↑ MATCH
UNTIL

NOT
END

"∂ Σ → ∂ REPLΣ "
1. DISP
DO @Match ∂ Σ to ∂ (REPLΣ (Σ))

{'∂ &V(Σ (&n=&n0,&N,&F))'
 '∂ &V(REPLΣ (Σ (&n=&n0,&N,&F),&V))}

↑ MATCH
UNTIL

NOT
END

EXPAND @Create replacements

IF
SLIST {} ≠

THEN
"Σ → tempFunct"
1. DISP
SLIST TLIST 2. @Match Σ to replacement
<< @function

2. ->LIST MATCH DROP
>> DOLIST

END

dCOLLECT @Collect diff. forms

IF
SLIST {} ≠

THEN
"tempFunc → Σ "
1. DISP
TLIST SLIST 2. @Match replacement function
<< @back to original Σ

2. ->LIST MATCH DROP
>> DOLIST

"d1tempFunc → ∂ Σ "
1. DISP
TLIST 1.
<< @Create list of d1tempFunct

->STR 2. OVER SIZE
SUB "'d1" SWAP +
OBJ→

>> DOSUBS

SLIST TLIST 2. @Create list of ∂Σ
<<

OBJ-> DROP2
SWAP ->STR 2. OVER

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-61

SIZE 1. - SUB
"'∂ " ROT + "(" +
SWAP + ")'" +
OBJ->

>> DOLIST
2.
<< @Match d1tempFunc to ∂Σ

2. ->LIST ↑ MATCH DROP
>> DOLIST
{ SLIST TLIST nTemp }
PURGE

END
>>

Notice here the following remarkable thing. When we match all
patterns of the form:

∂
∂X

F X()
n=n0

N

∑

 



to:

∂
∂X

REPLΣ F X()
n=n0

N

∑

 




 




we do only a formal replacement. The real replacement follows much
later in two stages. The first stage is the evaluation of the expression
which creates the list of sums SLIST and the list of temporary
replacement functions TLIST . The second stage is the following
pattern matching, which matches not

∂
∂X

F X()
n=n0

N

∑

 



but rather F X()
n= n0

N

∑ to temporary replacement functions. This is a very

important thing to do! We don't want only

∂
∂X

F X()
n=n0

N

∑

 



but also F X()
n= n0

N

∑ to be matched to temporary replacement functions, in

order to retain the original structure of the expression regarding
differential forms. If for example we have:

F X,n()
n=1

N

∑ ⋅
∂

∂X
G X()() + G X()⋅

∂
∂X

F X,n()
n =1

N

∑

 



and we replace only the sums in differential forms, then we will get:

F X,n()
n=1

N

∑ ⋅
∂

∂X
G X()() + G X()⋅

∂
∂X

tempFunctionA X()()

in which dCOLLECT can't collect any differential forms, simply
because there is nothing to collect. But if we also replace the sums that
are not in differential forms, we get the expression:

tempFunctionA X()⋅
∂

∂X
G X()() + G X() ⋅

∂
∂X

tempFunctionA X()()

which dCOLLECT can convert to:

∂
∂X

tempFunctionA X() ⋅G X()()

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-62

and in which we can match tempFunctionA X() back to F X,n()
n=1

N

∑ ,

getting the result:

∂
∂X

F X,n()
n=1

N

∑ ⋅G X()

 



This is one example of delayed evaluation and delayed pattern
matching, a very powerful possibility that we have for formula
manipulation.

Let's try the program PATdCOLLECT . Enter the expression:

F X,n()
n=1

N

∑ ⋅
∂

∂X
G X()() + G X()⋅

∂
∂X

F X,n()()
n=1

N

∑

and press . The program returns:

∂
∂X

G X() ⋅ F X,n()
n=1

N

∑

 


 ,

the collected form.

In the program PATdCOLLECT much of the code is identical to the
code of PATdΣ → Σd . Again we can combine the functionalities of
the two programs in one program, PATdCOLEX , that needs an
additional argument, a 0 or a 1, that specifies if we want conversion
of ∂Σ to Σ∂ (i.e. expansion of differential forms), or collection of
differential forms. The following listing is PATdCOLEX .

<<
→dColFlag
<<

DO
DUP →TERMS

0 + Σ LIST
"∂ (A/B)→(B*∂ A-A*∂ B)/B^2"
1. DISP
DO @Ratio rule

{'∂ &V(&A/&B)'
'(&B*∂ &V(&A)-&A*∂ &V(&B))/&B^2' }

↑ MATCH
UNTIL

NOT
END
→TERMS 0 + Σ LIST
"∂ (A+B)→ ∂ A+∂ B"
1. DISP
DO @Sums rule

{'∂ &V(&A+&B)' '∂ &V(&A)+∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (Const*A)→Const*∂ A"
1. DISP
DO @Constant rule

{'∂ &V(&C*&A)' '&C*∂ &V(&A)'
'NOT POSNAME(&C,&V)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A*B)→B*∂ A+A*∂ B"
1. DISP
DO @Product rule

{'∂ &V(&A*&B)' '&B*∂ &V(&A)+&A*∂ &V(&B)' }

↑ MATCH
UNTIL

NOT
END
"∂ (A^n)→n*A^(n-1)*∂ A"
1. DISP
DO @Power rule

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-63

{'∂ &V(&A^&n)' '&n*&A^(&n-1)*∂ &V(&A)'
'NOT POSNAME(&n,&V)'}

↑ MATCH
UNTIL

NOT
END
IF

dColFlag @If we want collection.
THEN

"Σ ∂ → ∂ Σ "
1. DISP
DO @Match Σ ∂ to ∂ Σ

{'Σ (&n=&n0,&N,∂ &V(&F))'
 '∂ &V(Σ (&n=&n0,&N,&F))
 'NOT ALGSAME(&V,&n)'}

↑ MATCH
UNTIL

NOT
END
"∂ Σ → ∂ REPLΣ "
1. DISP
DO @Match ∂ Σ to ∂ (REPLΣ (Σ))

{'∂ &V(Σ (&n=&n0,&N,&F))'
'∂ &V(REPLΣ (Σ (&n=&n0,&N,&F),&V))}

↑ MATCH
UNTIL

NOT
END
EXPAND @Create replacements
IF

SLIST {} ≠
THEN

"Σ → tempFunct"
1. DISP
SLIST TLIST 2. @Match Σ to replacement
<< @function

2. ->LIST MATCH DROP
>> DOLIST

END
dCOLLECT @Collect diff. forms

IF
SLIST {} ≠

THEN
"tempFunc → Σ "
1. DISP
TLIST SLIST 2. @Match replacement
<< @function back to

2. ->LIST MATCH @original Σ
DROP

>> DOLIST
"d1tempFunc → ∂ Σ "
1. DISP
TLIST 1.
<< @Create list of

->STR 2. OVER @d1tempFunct
SIZE SUB "'d1"
SWAP + OBJ→

>> DOSUBS
SLIST TLIST 2. @Create list of ∂Σ
<<

OBJ-> DROP2
SWAP ->STR 2. OVER
SIZE 1. - SUB
"'∂ " ROT + "(" +
SWAP + ")'" +
OBJ->

>> DOLIST
2.
<< @Match d1tempFunc to ∂Σ

2. ->LIST ↑ MATCH DROP
>> DOLIST
{ SLIST TLIST nTemp }
PURGE

END
ELSE @we want expansion

"∂ Σ → Σ ∂ " @All other expansions of
1. DISP @diff. forms are done. So
DO @we start converting sums

{'∂ &V(Σ (&n=&n0,&N,&F))'
'Σ (&n=&n0,&N,∂ &V(&F))'
'NOT ALGSAME(&V,&n) }

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-64

↑ MATCH
UNTIL

NOT
END

END
UNTIL

SWAP OVER SAME
END

>>
>>

A small test to see that it works. Enter:

∂
∂X

G X,n()⋅ F X,n()
n=1

N

∑

 



then 0 , and press to get the expanded form:

G X() ⋅
∂

∂X
F X,n()()

n =1

N

∑ + F X,n()
n =1

N

∑ ⋅
∂

∂X
G X()()

Now enter 1 and press again to get back to:

∂
∂X

G X,n()⋅ F X,n()
n=1

N

∑

 


 ,

the form we started with.

The above might be nice, but the pattern matching commands have
even more depths, which we can explore. As we already saw, when
pattern matching is used, to replace some give pattern with the sub
expression programpatternArgs() , where program is a program
that we wrote previously, and patternArgs are arguments built-up
using the patterns, then the returned algebraic object contains sub
expressions programpatternArgs() , i.e. the program isn't

automatically evaluated when the pattern matching is successful. We
have to expand explicitly afterwards, to put the result of
programpatternArgs() in place of programpatternArgs() in the
algebraic object.
The program
has to be a
program that
returns one
single algebraic
object, or
anything else
that is allowed in
algebraics, like
for example a
number. The
whole procedure
works like on
the picture at the
right. It has to
be at least two
stages, because
program is not
automatical ly
evaluated at the moment of pattern matching. But as we also saw, if we
use pattern matching with a list of three elements, then the third element
is used as a condition for pattern matching. The pattern matching
commands first check to see if the patterns that must be matched exist. If
they don't exist, the algebraic object is returned to the stack unchanged.
But if the patterns do exist, then the condition for pattern matching
is evaluated, and the matching is done if the condition is true. Aha!
You see where it goes. Couldn't we make a program, name it test , that
not only returns a truth value, but also does other work before it
returns the truth value? Of course we can! Let's start with easy
examples. First of all, there are no special objects for true and false in
user RPL. Any number different than 0 is true, and 0 is false. (So the
HP49G is an extraordinary truth loving machine, since there are so
many more numbers that are equivalent to true. ;-)) We make first the

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-65

&A

↑ MATCH
All &A are replaced by program&A()

&A program&A(){ }

program&A()

EXPAND
program&A() is evaluated and does all
its work, returning some result &A()
which replaces all sub expressions
program&A()

result &A()

program TEST1.

<<
IF @If

VARS 'nIter' POS NOT @variable nIter doesn't
@exist

THEN @then
0. 'nIter' STO @initialise it

END
'nIter' INCR @Increment nIter

@and
1. DISP @display current

@value
1. @Return 1.

(true)
>>

It doesn't use any arguments and always evaluate to
true. That means that if the patterns exist, that we
specify in the pattern list, the pattern matching will be
always performed.

Enter F F F X()()() and &F &X() &X −1 TEST1{ } .

Now use the command ↑ MATCH to get F X −1() −1.
Did you see what happened in addition? The program
TEST1 was evaluated and it counted how many time
it was evaluated, that is how many passes ↑ MATCH
did. As we already saw, ↑ MATCH does not only
one pattern matching but it starts from the inner most
sub expressions and in direction of the outer most sub
expressions (almost) as long as there are patterns that
can be matched. In this example it could also match
F X −1() −1 to X −1−1− 1. Drop the 1. from stack

level 1, enter again &F &X() &X −1 TEST1{ } and

do another ↑ MATCH to get X −1−1− 1 and see a 3
displayed on the top of the screen while the pattern

matching is performed. Take a look what a cascade of events was
caused by a single command execution. Purge now variable nIter, as we
don't need it any more.

It could be interesting to see what the patterns &F &X() , &X , and
&X −1 were, each time the pattern matching is performed. We make the

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-66

F F F X()()()
↑ MATCH sees that the
pattern &F &X() exists and
triggers execution of TEST1

&F &X() &X −1 TEST1{ }

TEST1 runs for the first time. It
initialises nIter to 0. It increments nIter
to 1. It displays the current value of nIter
on display line 1. It returns 1. (true)

↑ MATCH sees that TEST1 evaluates to 1.
(true) and so it performs pattern matching.
After this it sees another pattern &F &X() and
does the same again.

F F X − 1()()

TEST1 runs for the second time. It
increments nIter to 2. It displays the
current value of nIter on display line 1. It
returns 1. (true)

&F &X() &X −1 TEST1{ }

↑ MATCH sees that TEST1 evaluates to 1. (true) and so it
performs pattern matching. Then it stops though there is
an additional (last) pattern &F &X() .

F X −1() −1

F F X − 1()()

program TEST4 , which needs arguments. These are going to be
exactly the patterns that we want to examine, after the pattern
matching has been performed. Don't be confused about TEST4
coming directly after TEST1, since these programs are only
examples. We could name them TESTWHATEVER ,
TESTASYOUWISH or anything else. The program TEST4 should
create log records for each pattern matching in a nice readable form.
So here we have TEST4 :

<<
IF

VARS 'MATCHLOG' POS NOT
THEN

"" 'MATCHLOG' STO
END

'MATCHLOG' "Detected: F(X)=" 5. PICK +
"

with: X=" 4. ROLL + ".
Replaced " + 4. ROLL + " with " + ROT +
"

" + STO+ 1.
>>

Now enter a program that does pattern matching using the condition
TEST &F &X(),&X,&X −1() until nothing changes any more:

<<
'F(F(F(X)))'
DO

{'&F(&X)' '&X-1' 'TEST4(&F(&X),&X,&X-1)' }

↑ MATCH
UNTIL

NOT
END

>>

Evaluate the program to get the fully matched result X −1−1− 1.
Press to get the variables menu. Then press and

then to take a look at the log file. You see:

Detected: F(X)='F(X)'
with X=X.
Replaced 'F(X)' with 'X-1'

Detected: F(X)='F(F(X-1))'
with X=F(X-1).
Replaced 'F(F(X-1))' with 'F(X-1)-1'

Detected: F(X)='F(X-1)'
with X=X-1.
Replaced 'F(X-1)' with '(X-1)-1'

This tells you exactly how the pattern matching was performed. Purge
variable MATCHLOG now, since we don't need it any more. Now,
enter the same program as before, but using the command ↓ MATCH
instead of ↑ MATCH . Let the program run. The result is again
X −1−1− 1, but it was produced in another way. Take a look at the
contents of MATCHLOG . Now you see:

Detected: F(X)='F(F(F(X)))'
with X=F(F(X)).
Replaced 'F(F(F(X)))' with 'F(F(X))-1'

Detected: F(X)='F(F(X))'
with X=F(X).
Replaced 'F(F(X))' with 'F(X)-1'

Detected: F(X)='F(X)'
with X=X.
Replaced 'F(X)' with 'X-1'

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-67

F F F X()()()

F F X − 1()()

F X −1() −1

X −1−1− 1

F F F X()()()

F F X()() −1

F X() −1−1

X −1−1− 1

Purge again MATCHLOG .

In our example, when we successively match all patterns F X() with
X −1, we end up with X −1−1− 1, in which all information about
where the expression came from is lost. Of course, in this case we
know that each pattern X −1 came out of a pattern F X() . But there are
many cases in which losing the information about the expression
before the match can be a big problem. You remember of course,
what a problem it is, when expanding the derivative of a sum we just
evaporate the variable of differentiation. But we can use the pattern
matching commands with a condition that evaluates to true, and that
creates all information for being able to reconstruct the original
expression by doing the inverse pattern matching. Enter the program:

<<
IF

VARS 'RLIST' POS NOT
THEN

{} 'RLIST' STO
END
2. →LIST 1. →LIST 'RLIST' STO+
1.

>>

and store it in TEST2 . Now enter F F F X()()() and then the list

&F &X() &X −1 TEST2 &F &X(),&X −1(){ } . Do a ↑ MATCH to

get F X −1() −1 and a 1. Drop the 1. , enter the list

&F &X() &X −1 TEST2 &F &X(),&X −1(){ } again and do another

↑ MATCH to get X −1−1− 1 and a 1. . Drop the 1. from the stack.
The variable RLIST was created by TEST2 , the execution of which
was triggered by the command ↑ MATCH . Recall RLIST on the
stack, and take a look at its contents which are:

F X −1() X −1−1{ } F F X −1()() F X −1() −1{ } F X() X −1{ }{ } .

With this list we can do the reverse match and reconvert the result

X −1−1− 1 to what we started with. Enter a 1. and press . The
stack must contain now: On level 3 the algebraic X −1−1− 1, on level 2
a 1. , and on level 1 the list of the patterns for pattern matching

F X −1() X −1−1{ } F F X −1()() F X −1() −1{ } F X() X −1{ }{ } .
Enter the program:

<<

REVLIST ↓ MATCH DROP
>>

Press to get the original expression, F F F X()()() . The

recorded patterns that were used to convert F F F X()()() to X −1−1− 1,

were used again in reverse direction to convert X −1−1− 1 to
F F F X()()() . Purge now RLIST . This manual purging of the variables
that are created is getting on our nervous. Can't it be done automatically?
Of course! And there are many methods.

One of them would be to use local variables. Consider the program:

<<
{} → rlist
<<

'F(F(F(X))'
DO

{'&F(&X)' '&X-1' 'TEST2(&F(&X),&X-1)' }

↓ MATCH
UNTIL

NOT
END
rlist

>>
>>

It would return the list of patterns and would create no global variable
that must be explicitly purged. Another possibility is to use alarms. Let's

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-68

have a look at the programmable commands for alarms on the
HP49G. First of all we have STOALARM . This command takes data
from the stack and creates an alarm. It needs one argument, which can
be:

1) A real number that specifies the time when the alarm will go off.
2) A list with two real numbers. The first specifies the date and the

second specifies the time when the alarms will go off.
3) A list containing the date and the time as well the object that will

be evaluated when the alarm will go off.
4) A list containing the date and the time, the object that will be

evaluated when the alarm will go off, and a repeat interval for the
alarm.

We will use the third variant, so let's see in more details what the
contents of the list are. The first number is a real, which specifies the
date of the alarm. It must be in format dd.mmyyyy or mm.ddyyyy
accordingly to your setting of the date format. The second number is a
real, which specifies the time of the alarm. It must be in format
hh.mmss, with the part hh going from 0 to 24. The third element in
the list can be any object. If it is a string, then we have an appointment
alarm. At the specified date and time, the string is displayed and the
HP49G beeps. But if it is anything else, a number, an expression, or
a program, then we have a control alarm and the object is evaluated.
STOALARM returns a number, the index of the alarm that it stores in
the alarm list. The next command we examine is the command
FINDALARM . It takes one argument from the stack, which can be:

1) A real number that specifies a date.
2) A list with two real numbers. The first specifies a date and the

second specifies a time.
3) The number 0.

If the command is given a date, then it returns the index of the first
alarm that comes due after 12:00 of the specified date. If it is given a
list with a date and a time, then it returns the index of the first alarm
that comes due after the specified date and time. If it is given a 0.,
then it returns the index of the first past due alarm. We also have the

command DELALARM , which simply takes an alarm index an deletes
the corresponding alarm from the alarm list.

What we also should know about alarms on the HP49G is that they
won't interrupt running programs. If an alarm comes due while a
program is running, it will wait for the program to complete execution,
and then it will go off. That means for us, that if we make the pattern
matching condition program in such a way, that it sets an alarm to purge
the variables created by the program, then it will not conflict with the
program because it will come off after the program has completed. Let's
try that. Enter the program:

<<
IF @If RLIST doesn't exist

VARS 'RLIST' POS NOT
THEN @then initialise it

{} 'RLIST' STO
DATE TIME 0.0003 @Current date and time + 3s
<< @Object to be executed

RLIST 'RLIST' PURGE @when the alarm comes due
0. FINDALARM DELALARM

>> 3. →LIST STOALARM DROP
END
2. →LIST 1. →LIST 'RLIST' STO+ 1.

>>

Store that in TEST3 . Enter F F F X()()() and then

&F &X() &X −1 TEST2 &F &X(),&X −1(){ } . Do a ↑ MATCH . The

pattern matching is performed, and after that you get the variable RLIST
recalled on the stack, and purged. The program

<<
RLIST 'RLIST' PURGE
0. FINDALARM DELALARM

>>

which runs when the pattern matching completes, also removes the
alarm that triggered its execution from the the alarm list. Take a look at

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-69

the events as they take place as the time is passing by.
For our purposes the evaluation of the condition for pattern matching
is a back door that enables us to enter the domain of "things that aren't
possible". Consider for example some arbitrary expression containing
derivatives of sums. In our programs we used pattern matching to
prepare the expression so that only patterns of the form:

∂
∂X

F X()
n=n0

N

∑

 



exist. After this we want to convert all sums that appear inside the

parentheses of
∂

∂ var
() to

temporary replacement functions.
We want to have distinct replacement
functions for distinct sums, and we
want to retain he variable of
differentiation, because if we don't,
then expanding

∂
∂ var

tempFunction() would return

0 , and the temporary replacement
function would evaporate. We can
make a program, name it for example
CREATEMP , that we use as a
condition for pattern matching. The
next program listing demonstrates
this.

<<
IF @If RLIST doesn't exist

VARS 'RLIST' POS NOT
THEN @then initialise it

{} 'RLIST' STO
64. 'nTemp' STO @initialise nTemp

END
"'tempFunction" @Create tempFunction
'nTemp' INCR CHR +
"(" + SWAP +
")'" + OBJ->
2. →LIST 1. →LIST
'RLIST' STO+ 1. @Add to replacement list

>> @and return 1. (true)

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-70

↑ MATCH triggers execution of a testing program one or more times.

Testing program runs one or more times. The first time it
runs, it sets an alarm for now+3 seconds.

now+3 seconds.
Alarm comes due, but
↑ MATCH didn't
finish yet, so the alarm
waits.

↑ MATCH finishes.
Alarm goes off.
Alarm program runs,
recalls RLIST, purges
RLIST, and deletes
alarm from the alarm
list

time

now
Alarm program
finishes here

Running time of ↑ MATCH and testing program
Running time of alarm program, a "tail" to the execution
of the original procedure.

Store this in CREATEMP . Now, enter the expression:

∂
∂X

G X,n()
n= a

b

∑

 


+

∂
∂X

F X,n()3

n=1

N

∑

 



that contains two different sums. Enter the pattern list:

∂
∂ &V

&F
&n= &n0

&N

∑

 


∂

∂ &V
&F

&n= &n0

&N

∑

 


CREATEMP &F

&n= &n0

&N

∑ ,&V


 






 





 

and do a ↑ MATCH . When the pattern matching is done, you have
exactly the same expression like before. But now you have the
variable RLIST in the current directory, which contains sub lists with
all the pairs of distinct sums and distinct temporary replacement
functions. Now these pairs can be used for pattern matching.
Remember that we did almost the same a few pages ago, when we
used the program REPLΣ as a condition for pattern matching. But
the difference was that we created an expression in which we had
unevaluated patterns of the form:

∂
∂X

tempFunctionA X()()

But now we just use pattern matching to trigger execution of the
condition program, which in turn creates the list of replacements. The
pattern matching command replaces each sum with itself, leaving the
expression unchanged. The real replacement is to be done in a
subsequent pattern matching operation using the created replacement
list RLIST . Take a look its contents:

F X,n()3

n=1

N

∑ tempFunctionB X()







G X,n()
n=a

b

∑ tempFunctionA X()















It has all necessary information for replacement of sums with temporary
functions that depend on the differentiation variable. Notice also how we
use nTemp as a counter for adding a single capital letter to the string
" 'tempFunction", for creating distinct replacements for distinct
sums. This method limits the number of possible distinct temporary
replacement functions to 26, but even if this shouldn't be enough, we
can improve it adding another letter, or finding some other method for
creating distinct names of temporary replacement functions. Also, using
the names tempFunctionA , tempFunctionB, and so on, means that
these names must not appear in the original expression. If you for some
reason have them in your expression, you could use replacement names
like TrabakoulasA, or even KaragiaouroglouZ. (And hope that the
HP49G will not crash. ;-))

We stay a little bit longer at pattern matching. In the marathons (under
the heavy influence of VPN ;-)) we often encountered a major
shortcoming of the CAS of the HP49G. It has no INTEGERASSUME,
and so it can't simplify for example SINn ⋅π() to 0 , when n is integer.
But does it really have no integer assuming capabilities? I would say that
using pattern matching with conditions we can not only construct integer
assumptions but also odd and even integer assumptions, or any other
assumptions we want. Suppose that you want to expand the expression
SINn ⋅π() + COSn ⋅π() using integer assumptions for variable n . First
of all go to directory CASDIR and store there the list n{ } in variable
INTEGERASSUME . Store the list n{ } in variable ODDASSUME.
Now enter the program:

<<
{HOME CASDIR INTEGERASSUME} RCL SWAP POS

>>

Store it in HOME in variable ISINTEG? . Enter

<<
{HOME CASDIR ODDASSUME} RCL SWAP POS

>>

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-71

Store it in HOME in variable ISODD? Now, suppose that you want
to have a command, name it IEXPAND , that does expanding for
trigonometrics using assumptions for integers and odd integers. Enter
the program:

<<
TEXPAND
DO

{'SIN(&n*π)' 0 'ISINTEG?(&n)'}
↑ MATCH SWAP
{'COS(&n*π)' -1 'ISODD?(&n)'}
↑ MATCH ROT OR

UNTIL
NOT

END
EXPAND

>>

Store it in HOME in variable IEXPAND . Now return to your
working directory. Since ISINTEG? , ISODD? and IEXPAND are
in HOME , they are accessible from every directory in your directory
structure. Enter SINn ⋅π() + COSn ⋅π() . Enter IEXPAND and watch
your HP49G using its new created knowledge to return −1. Imagine
now, how many assumptions are possible using this simple method.

Another shortcoming of the HP49G is that the upwards pattern
matching command ↑ MATCH does (almost) all possible matches at
any level of nesting, starting at the most inner nested sub expressions
and making its way to the outer nestings. But using conditions we can
make a new command, say ↑ MATCH1, that does a single pattern
matching at the inner most nested sub expression. Store the mini
program

<<
1. FS?C

>>

in TEST ↑ MATCH1. Store the program

<<
PUSH 1. SF

'TEST↑ MATCH1' +

↑ MATCH POP
>>

in ↑ MATCH1. Now enter F F F X()()() , and then the pattern list

&F &X() &X −1{ } . Press to get F F X − 1()() and 1. .

The expression F F X − 1()() shows that pattern matching was performed
only at the innermost nested sub expression.

Enough patterns (for this time ;-)). In the next part of this marathon we
are going to examine how to… put pattern matching in pattern matching.
(Well, it seems that Nick has a preoccupation with such things ;-)) We
are going to see, what would happen if we use some condition program
for pattern matching that itself does pattern matching. And what happens
if the program does pattern matching using itself as a condition
program?

Before we go any further, let's take a look once more at our collection of
programs, which has grown again (first picture on next page). I left out
STARTEQW since it can use any other program, which means that its
dependence on other programs will vary. If we through out
PATdCOLLECT , whose functionality is implemented in
PATdCOLEX , then the whole building gets a bit clearer (second
picture on next page). The programs TEST1, TEST2 , TEST3 ,
TEST4 and CREATEMP are also left out, because they were
introduced as examples for a possible usage of the pattern matching
commands, but otherwise they aren't needed by any of our main
programs. Notice that dCOLEX and PATdCOLEX (should) have the
same functionality. Nonetheless I guess that there will be cases where
the one works and the other doesn't work or even crashes. Decide for
yourself which of them you find easier to understand and to make better.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-72

Anyway, it looks quite crowded in the neighbourhood of dn → dv ,
ALGSAME , POSNAME , → TERMS , and dCOLLECT . This

shows that the functionality of these programs is essential. They are the
fundament upon which the rest of the building stands. If they fall, all
programs which base upon them will also fall.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-73

∆QUOT

dF1F2

ISCONT?

->FACT

d1GAMMA

d1FACT

SECLINE

TANLINE

TANPARSEC

DY

POSNAME->TERMSdn->dv

dCOLLECT

ALGSAME

derΣ->Σder

dCOLEX

PATdΣ->Σd

REPLΣ

PATdCOLLECTPATdCOLEX

TEST MATCH1

MATCH1

∆QUOT

dF1F2

ISCONT?

->FACT

d1GAMMA

d1FACT

SECLINE

TANLINE

TANPARSEC

DY

POSNAME->TERMSdn->dv

dCOLLECT

ALGSAME

derΣ->Σder

dCOLEX

PATdΣ->Σd

REPLΣ

PATdCOLEX

TEST MATCH1

MATCH1

We come now to derivatives of
inverse functions. The inverse
function y = φ x() of a monotonic
and continuous function y = f x() in
the interval a < x < b can be
constructed geometrically, if we
mirror the plot of the function on the
line y = x . Analytically the function
y = φ x() is found if we solve

y = f x() for x , and exchange variables y and x in the solution. On
the HP49G it is much easier to work analytically than geometrically
for finding inverses. (And in general this is also the way to do this, as
it provides us the equation of the inverse function, which we can use
for potting and other purposes. For example, let's suppose that we
have Y = LN X() and we want the inverse function. Go to the EQW,
enter Y = LN X() , and put that on the stack. Press to copy the

equation on stack level 2. Enter X and press , to get X = eY .
Now we must exchange variables Y and X to get Y = eX . If we use
SUBST here, then we will have a problem. For example, if we enter
X = Y and press , then the result will be Y = ey and we will
not be able to replace Y with X only in the exponential function,
because if we enter Y = X and substitute again, then we will get
X = eX (i.e.
both Y s
will be
substituted
with X s).
But we can
do what we
want using

. Though
in algebraic
syntax the function can perform one replacement at a time, in RPL
syntax it can perform several replacements at once. If you enter

X Y Y X{ } and press , then the two replacements will be
performed simultaneously on the original expression. The result is then
Y = eX . In RPL syntax the command gets one expression from stack
level 2, and one list from stack level 1. The list contains in pairs the
name that has to be replaced, and the expression that it has to be replaced
with. The important thing here is that the replacements do not interfere
with each other, even if some variable is replaced with another variable
that already exists in the original expression and that itself has to be
replaced with something else. Using with the list X Y Y X{ } on
the HP49G is not equivalent to using SUBST once with X = Y and
right after this another time with Y = X ! Now we have Y = LN X() and

Y = eX , that is the function and its inverse on the stack. Enter Y = X ,
the line on which we must mirror some function, in order to get its
inverse. Now, enter 3 and press to make a list of all equations.

Press to store the list of equations in EQ . Set the plot type to

Function , independent variable to X , horizontal view from −7.5 to
12.5 , vertical view from −4.2 to 5.8 , and press and
to plot the three functions. (If you have the Rcobo's HP49G with laser
plasma screen, then you will see the plots in colour ;-)). But if rigourous
mode is on, you are going to get an additional part of Y = LN X() which
shouldn't be there. Exit the plot, return to the stack, enter X , and press

. In rigourous mode the result is LN X() , which explains how the

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-74

y = x
y = φ x()

y = f x()

y

x

X Y Y X{ }

Replace every X
by Y

Replace every Y
by X

X = eY

Y = eX

additional part in the plot was drawn. The HP49G didn't actually plot
Y = LN X() , but rather Y = LN X() , because the CAS was in
rigourous mode. Here we have another (unneeded) complication.
While in general it is good to work in rigourous more (i.e. not to
assume that X = X), for the plot of LN X() this brings an additional
thing that we must do.
Press , then the
menu key , and then
deactivate the option
_Rigorous. Press

 to accept the
changes, then
again to leave the screen
CALCULATOR MODES,
and finally press
and again, to re-
plot. Now you get the
correct plot without the
additional part.

If we have the inverse function x = φ y() of some function y = f x() ,
but not the function y = f x() itself, and we want the derivative of
y = f x() , then we don't need to find the function y = f x() first.
Instead of this we can use the relation:

∂f
∂x

=
1
∂φ
∂y

Which on the HP49G is piece of cake. We do a simple example first.
We use X Y() = LN Y() which is the inverse of Y X() = eX . In this
example it is easy to find the function out of its inverse, but this
doesn't always have to be this case, as we will see in the next
example. Enter now LN Y() , then Y , and then press or to

get
1
Y

. Press to get Y . The derivative of the original function

Y = eX is Y . Notice that we find the derivative in terms of Y and not in
terms of X . Indeed the derivative of Y X() = eX is:

∂Y X()
∂X

=
∂eX

∂X
= eX = Y X()

We continue with an example in which it isn't possible to find the
analytic closed form of the original function. We use as the inverse
function X Y() = Y ⋅eY . Enter Y ⋅ eY , then Y , and then press or

 to get eY + Y ⋅ eY . Press to get:

1
eY + Y ⋅ eY

which is the derivative of the original function Y X() , in terms of Y .
The function Y X() itself that can't be written in an analytic closed form
in terms of X . But nonetheless we have found out that:

∂Y X()
∂X

=
1

eY X() + Y X()⋅ eY X()

i.e. the derivative of Y X() in terms of Y X() .

An additional problem that we have when we know the inverse function
but we can't find the original function, is how to plot the original
function. In our example from above, X = Y ⋅ eY we can plot of course
Y ⋅ eY , but this will be the picture of the inverse function, and we must
imagine what it would look like, if we mirrored the function curve on
the line Y = X . Let's see how we can do that without having to imagine
mirror worlds. Set up a function plot with Y ⋅ eY as EQ and Y as
indep. Set horizontal view range from −2 to 2 , and vertical view range

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-75

from −1 to 1. Plot the
function to get a curve like
in the picture to the right.
Now set up a parametric
plot with Y ⋅ eY + i ⋅ Y as
EQ. The equation of the
parametric function for
plotting the original
equation is easily found.
Since we want to have
X = Y ⋅ eY , we write this
in parametric form using Y
itself as parameter:

X = Y ⋅ eY

Y = Y

This parameter representation, translated in HP49G-ish, is the same
as Y ⋅ eY + i ⋅ Y . Now the
plot contains both the
original function, of which
we can't have an analytic
closed form, and the inverse
function. This technique can
be used for visualising the
curve of the original
function, when we can't
represent it by means of an
algebraic equation of the
form y = f x() . Notice that in
many cases the original
"function" is actually no function at all, but rather a relation. The
above example is one of these cases.

While we are talking about functions in parameter representation, the

strange derivatives of the form
∂f x()
∂g x() come into mind, which we

already encountered. Let's take a look at parametric functions and their
derivatives. A function y = f x() is given in parametric form:

y = ϕ t()
x = ψ t()

We don't know how y depends on x , but we know how x and y both
depend on the parameter t . From the parametric representation we can

find the derivative
∂y x()

∂x
 without having to find y x() itself. For the

derivative
∂y x()

∂x
 we have:

∂y x()
∂x

=

∂y t()
∂t

∂x t()
∂t

That means that we can find the derivative
∂y x()

∂x
 using the derivatives

∂y t()
∂t

 and
∂x t()

∂t
. Let's have an example. The equation of an ellipse:

X2

A
+

Y2

B
= 1

in parametric form is:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-76

X = A ⋅ COS t()
Y = B ⋅ SIN t()

Now we find the derivative. Enter B ⋅ SINt() , then t , and press or
 to get B ⋅ COS t() . This is the derivative:

∂y t()
∂t

Now, enter A ⋅ COS t() , then t , and press or to get
A ⋅−SIN t() . This is the derivative:

∂x t()
∂t

Press and then to get:

−
B ⋅COS t()
A ⋅SIN t()

This is the derivative:

∂y x()
∂x

written in terms of t . But of course we can write it also as a function
of X , or of Y , or of both X and Y , if we want. For example, since
X = A ⋅ COS t() , we have:

COS t() =
X
A

And since Y = B ⋅ SIN t() , we have:

SIN t() =
Y
B

How to substitute

COS t() =
X
A

and

SIN t() =
Y
B

in

−
B ⋅COS t()
A ⋅SIN t() ?

Let's do that all on the HP49G. Press a couple of times to make
several copies of:

−
B ⋅COS t()
A ⋅SIN t()

on the stack, because we are going to need the expression more than one
times. Enter X = A ⋅ COS t() and then COS t() . Press to solve
for COS t() . As we already saw, the command SOLVE allows to solve
for any rational variable of a given equation. The result is:

COS t() =
X
A

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-77

Press , and you will not get:

−
B ⋅

X
A

A ⋅ SINt()

but rather:

−
B ⋅

X
A

A ⋅ SIN ACOS
X
A









 



How and why is this result obtained? The command SUBST didn't

really substitute
X
A

 for all COS t() that it found. In fact it didn't even

search for COS t() . What it did seems to be:

1) Solve the equation COS t() =
X
A

 for the first variable (not rational

variable) on the left hand side, which is t . This returns

t = ACOS
X
A





 . Notice that this is not the general solution that

SOLVE would return.

2) Substitute t = ACOS
X
A





 in −

B ⋅COS t()
A ⋅SIN t() . This returned the

result −
B ⋅

X
A

A ⋅ SIN ACOS
X
A









 



.

In the first step, the solution of COS t() =
X
A

 for t , was found to be:

t = ACOS
X
A







This is the principal solution of the equation. The general solution that
SOLVE would return, would be:

t = − 2 ⋅n1⋅ π + ACOS
X
A









 


t = 2 ⋅n1⋅ π + ACOS

X
A















The same solution is returned by ISOL , when flag -1 is clear. But when
flag -1 is set, then ISOL returns the principal solution:

t = ACOS
X
A







SUBST returns always the principal solution. You don't believe that
SUBST can be used for this? Very well! Enter:

COS t() =
X
A

then t , and press to get:

t = ACOS
X
A





 . When SUBST is used with an equation on stack level

1, it does substitution. When it is used with an expression or name (no
equation) on stack level 1, it solves the expression on stack level 2 for
the expression or name on stack level 1. So we have:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-78

SUBST doesn't care about flag -1 and always
returns principal solutions.

SUBST

Principal solution.General solution.ISOL

SOLVE doesn't care about flag -1 and always
returns general solutions.

SOLVE

Flag -1 set for
principal solutions

Flag -1 clear for
general solutions

Notice how wonderful the three commands cover the whole spectrum
of possibilities.

Now, let's go on with our problem. In the expression:

−
B ⋅

X
A

A ⋅ SIN ACOS
X
A









 



we can't do the second substitution SIN t() =
Y
B

, because the variable

t doesn't exist anymore. We can only expand the expression to get:

−
X ⋅B ⋅ A2 − X2 ⋅ A

A4 − X2 ⋅ A2

This is the derivative
∂y x()

∂x
, written as a function of X . But we

wanted it as a function of X and Y . Drop the expression:

−
X ⋅B ⋅ A2 − X2 ⋅ A

A4 − X2 ⋅ A2

from the stack and let's start over. What we need is to replace COS t()

with
X
A

, and SIN t() with
Y
B

 in:

−
B ⋅COS t()
A ⋅SIN t()

without doing anything else. This is clearly a mission for pattern
matching. With:

−
B ⋅COS t()
A ⋅SIN t() on stack level 1, enter the list:

COS t() X
A









and press , to get:

−
B ⋅

X
A

A ⋅ SINt()

and a 1. Drop the 1. , enter:

SIN t() Y
A









and press a second time, to get:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-79

−
B ⋅

X
A

A ⋅
Y
B

and a 1. Drop the 1. and expand to get:

−
X ⋅B2

Y ⋅ A2

the derivative as a function of X and Y .

Obtaining the derivative as function of Y alone is also easy. Drop the
expression:

−
X ⋅B2

Y ⋅ A2

Now the expression:

−
B ⋅COS t()
A ⋅SIN t()

should be on stack level 1. Enter Y = B ⋅ SIN t() , the definition of Y
as a function of the parameter t . Enter t , and press , to get the
principal solution:

t = ASIN
Y
B







Press again to get:

−
B ⋅COS ASIN

Y
B









 



A ⋅SIN ASIN
Y
B









 



Expand the expression to get:

−
B2 ⋅ B2 − Y2 ⋅ B

SQ B()⋅ Y ⋅ A

This is not completely expanded, so press again. You get:

−
B2 − Y2 ⋅ B

Y ⋅ A

This is the derivative as a function of Y alone.

We see from the above that when we have a function y x() written in
parametric form:

x = ϕ t()
y = ψ t()

it is easy to get the derivative
∂y x()

∂x
 as a function of the parameter t .

We only need to calculate:

∂y t()
∂t

∂x t()
∂t

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-80

The problem is how to convert it to a function of x , or of y , or of x
and y . The conversion to a function of x or of y alone is
systematically easier. We just solve the equation of the parametric
definition of x of or y for the parameter t . Then we substitute the
solution for t in the expression:

∂y t()
∂t

∂x t()
∂t

The difficulties here arise from the fact that it will not always be
possible to solve the parametric definition of x or y for the parameter
t . But this is not a systematical difficulty. The procedure is clear and
very easily to implement on a machine. On the other hand, turning

∂y t()
∂t

∂x t()
∂t

to a function of x and y by "seeing" what patterns are best available
for matching, is for us humans an easy thing. But how can we do that
systematically, so that we can show the poor HP49G what it should
do? There is no general recipe for "seeing", like we do. For pattern
recognition we, humans, are still unbeatable. We can recognise
patterns by just taking a look at them. As Trabakoulas says, "…this is
our strength. We can recognise a face instantly, without the need to
calculate angles between the nose and the eyes, and distances from
one ear to the other. We just see that. The HP49G can't see that. But
that might be also our weakness. We sometimes "see" to much,
without really taking care to derive truth of falseness of what we
"see". In this category of phenomena belongs the old picture of
automatically "knowing who the bad guys and who the good guys
are". Just because we "saw" what kind of clothes they have, what
they believe to be God, or what their opinions about this world are.

No matter what we say about our progress in these things, the old devil
of pattern recognition is in our minds since the first humans walked on
this planet. This is the way biosystems work. If we had to calculate
first, if the beautiful animal that comes running to us, is a lion, we
would presumably not have any need for discussing about capabilities of
CAS, simply because we would be eaten out, long before getting the
idea to make a CAS. Of course it is not impossible that some of these
lions would suddenly decide to not eat us, but the pattern recognition
machine says that this is rather unlikely - almost impossible - and so it
puts the 2 hypothetical lions that wouldn't eat us in the same category of
lions that would eat us. It is a safe method, good for surviving. But
think about the lost possibilities. A powerful friend, the vegetarian lion,
is lost right from the start. If we are to make real progress in these
things, if we want to face the world without prejudice and ad hoc
categories, we have to diminish the importance of the pattern recognition
unit in our brains. To control it with logic, when it is telling us
something about a pattern. And we can do that only after accepting that
the pattern recognition unit it still is there, it still works, it still produces
patterns - the fundaments of our amazing capabilities, and also the
fundament of our too fast categorising everything." Enough philosophy,
let's continue our marathon.

Let's make a program for finding the derivative of a function in
parametric form. The program should return the derivative as a function
of the parameter, as a function of the independent variable, and as a
function of the dependent variable. It should also try to give us the
derivative as a function of the independent and the dependent variable.
Of course the latter will be rather imperfect, but at least we can try to
imitate our built-in pattern recognition unit on the HP49G. This naive
imitation is based on the above example. The program finds the rational
variables of the definitions of x and y as functions of the parameter. It
picks the first rational variable in each definition, solves for this
variable, and tries to replace this rational variable with the solution in the
derivative. In the above example, the derivative as a function of the
parameter is:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-81

−
B ⋅COS t()
A ⋅SIN t()

The definitions for x and y are: X = A ⋅ COS t() and Y = B ⋅ SIN t() .
The rational variables that appear in the first definition are COS t()
and A . The program solves X = A ⋅ COS t() for COS t() and finds:

COS t() =
X
A

Then it matches COS t() to
X
A

 in the derivative:

−
B ⋅COS t()
A ⋅SIN t()

and finds:

−
B ⋅

X
A

A ⋅ SINt()

The same it does for the other definition, Y = B ⋅ SIN t() . (Very naive,
I know, but perhaps somebody is going to find out how we do it, in
our brains ;-)) Since the representation of a function in parametric
form (for plotting) is X + i ⋅Y , we retain this syntax. The program
will take four arguments from the stack. The parametric function, the
X-variable, the Y-variable and the parameter. It will return the
representations of the derivative, which we already examined. That is,
it will return the derivative as a function of the parameter, as a
function of the X-variable, as a function of the Y-variable and as a
function of the X and the Y variable. All outputs will be labelled.

<<
→ paramFunc var1 var2 param
<<

PUSH {1. 2.} CF @Flags 1 and 2 are used
paramFunc RE
paramFunc IM
2. →LIST DUP param ∂ @Find der.
OBJ→ DROP SWAP /
EXPAND DUP
"der(" param + ")" + @Label der. as function of
→TAG @the parameter
OVER 4. PICK HEAD var1 @Try to solve x=ϕ (t) for t
= param
IFERR @If error during solving

SOLVE
THEN @then wrap der., x=ϕ (t) and t

3. →LIST "Error" @in a list and label it
→TAG @with "Error".

ELSE @Else (no error during SOLVE)
IF @If

DUP {} SAME @no solutions found
THEN @then

DROP @drop the empty list
"No sol. for " @Make label for no solution
var1 +

ELSE @Else (we have solutions)
SUBST @substitute them in deriv.
"der(" var1 + ")" @Make label
+

END
END
→TAG @Label result
PICK3 5. PICK 2. GET

 var2 = param @Try to solve y=ψ (t) for t
IFERR @If error during solving

SOLVE
THEN @then wrap der., x=ϕ (t) and t

3. →LIST "Error" @in a list and label it
→TAG @with "Error".

ELSE @Else (no error during SOLVE)
IF @If

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-82

DUP {} SAME @no solutions found
THEN @then

DROP @drop the empty list
"No sol. for " @Make label for no solution
var2 +

ELSE @Else (we have solutions)
SUBST @substitute them in deriv.
"der(" var2 + ")" @Make label
+

END
END
→TAG
4. ROLL 5. ROLL @Here starts the naive code
OBJ→ DROP
→ derParm x y
<<

x LVAR @Find rational vars. of x
1. OVER SIZE HEAD
FOR I

IF
DUP I GET LNAME @Find all names in rat. var.
IF @Convert to list if

DUP {} ≠ @necessary
THEN

AXL
END
param POS @If param. in rat var.

THEN @then we use this rat. var.
9.99999999999E499
'I' STO @Store MAXR in I (to exit
1. SF @loop). Set flag 1.
NIP SWAP var1 = @Try to solve x=ϕ (t) for
SWAP @the 1st. rat. var. that
IFERR @contains the param.

SOLVE @In case of error
THEN @Return labelled list with

2. →LIST @x=ϕ (t) and t.
"Error" →TAG
2. SF @and set flag 2.

ELSE @else (no err. during SOLVE)
OBJ→ DROP @make list for matching

→LIST
derParm SWAP

↑ MATCH DROP
'derParm' STO

END
ELSE @Else (param. not in rat.

DROP @var.) drop rat. var.
END

NEXT
IF @If we didn't find a rat. var.

1. FC?C @that contains the param.
THEN @then

DROP2 @drop 2 objects.
END
IF @If no error while solving

2. FC?C @x=ϕ (t) for rat. var.
THEN @then we try to solve also

y LVAR 1. OVER @y=ψ (t) for a rat. var. that
SIZE HEAD @contains the parameter.
FOR I @We do the same like for

IF @x=ϕ (t)
DUP I GET
LNAME
IF

DUP {} ≠
THEN

AXL
END
param POS

THEN
9.99999999999E499
'I' STO
1. SF NIP
SWAP var2 =
SWAP
IFERR

SOLVE
THEN

2. →LIST
2. →LIST
"Error" →TAG

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-83

2. SF
ELSE

OBJ→ DROP
→LIST derParm

SWAP ↑ MATCH DROP
END

ELSE
DROP

END
NEXT
IF

1. FC?
THEN

DROP2
END
IF @If there was a rat. var.

1. FS? 2. FC? @that contained the param.
AND @and a solution was found

THEN @then expand and label
EXPAND "der("
var1 + "," var2 +
")" + →TAG

END
END

>>
POP

>>
>>

This is the program dPARMF that comes with this document. The
coloured code is the naive part of the program. (That's why it is in
baby blue ;-)) If you don't want to have it, rip it off out of the
program, (Poor baby, away from mama ;-)) Let's test the program
and see what it does. Enter the parametric function of our example
from above as: A ⋅ COS t() + i ⋅B ⋅SIN t() . Enter X (the independent
variable), then Y (the dependent variable), and then t (the parameter).
Switch to real mode. That's important!!! If you are in complex more,
and some of the variables A , B , X , Y or t is not assumed to be real,
then the HP49G will consider it as a complex quantity and will not

five the results that are described in the next paragraphs. Press
 and wait some seconds. When the program finishes, you

have the following results:

On stack level 4 the derivative of the parametric function, written as a
function of the parameter t :

der t(): −
B ⋅COS t()
A ⋅SIN t()



 


 .

On stack level 3 the derivative of the parametric function, written as a
function of the independent variable X :

der X(): −
B ⋅COS − 2 ⋅n1⋅π + ACOS

X
A









 




 




A ⋅ SIN − 2 ⋅n1⋅ π + ACOS
X
A









 




 




−
B ⋅COS 2⋅n1⋅π + ACOS

X
A









 



A ⋅SIN 2 ⋅n1⋅ π + ACOS
X

A








 



















The program returns the general solution because the might be cases in
which the principal solution is not what we want. Substituting n1= 0 ,
and expanding will give us the result:

−
X ⋅B ⋅ A2 − X2 ⋅ A

A4 − X2 ⋅ A2

that we had on page 2-79.

On stack level 2 the derivative of the parametric function, written as a
function of the dependent variable Y :

der Y(): −
B ⋅ COS − 2 ⋅ n1⋅π + ASIN

Y
B









 




 




A ⋅ SIN − 2 ⋅n1⋅ π + ASIN
Y
B









 




 




−
B ⋅COS 2 ⋅ n1⋅π + ASIN

Y
B









 



A ⋅SIN 2 ⋅n1⋅ π + ASIN
Y

B








 



















Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-84

Again, the program returns the general solution because the might be
cases in which we don't want the principal solution. Substituting with
n1= 0 , and expanding will give us the result:

−
B2 − Y2 ⋅ B

Y ⋅ A

that we had on page 2-80.

On stack level 1 the derivative of the parametric function, written as a
function of the independent variable X and the dependent variable Y :

der X,Y(): −
X ⋅B2

Y ⋅ A2



 



The naive part of the code, did its work OK in this case.

We try another example. The parametric representation of the
epicycloid (on the HP49G) is A ⋅ t − SIN t()() + i ⋅ A ⋅ 1− COS t()() .
enter this expression, and then X , Y , and t . (Again, make sure you
are in real mode). Press and wait. After some seconds you
get:

der t(): −
SIN t()

A ⋅COS t() − A



 




Error: −
SIN t()

A ⋅ COS t() − A
A ⋅ t − SIN t()() = X t









der Y():
−

SIN − 2 ⋅n1+1() ⋅π − ACOS Y −1()()()
A ⋅ COS − 2 ⋅n1+1()⋅ π − ACOS Y − 1()()() − A

−
SIN 2 ⋅ n1+1() ⋅ π − ACOS Y −1()()

A ⋅ COS 2 ⋅n1+1()⋅ π − ACOS Y −1()() − A




 








 





der X,Y(): t ⋅ A − X
Y ⋅A2

The result labelled with Error on stack level 3 shows that the HP49G
couldn't solve A ⋅ t − SIN t()() = X for t , and so it couldn't substitute

t = someFunctionOf X() in:

−
SIN t()

A ⋅ COS t() − A

(But who can solve A ⋅ t − SIN t()() = X for t analytically?)

The result on stack level 1 shows that the naive code already had
problems. It couldn't convert the derivative to a function that depends on
X and Y , but not on t . Oh well, we are just at the beginning of
programming automatic pattern recognition and artificial intelligence.
Except of course if somebody connects a brain directly to the HP49G.
Then two things may happen:

1) The HP49G will be glad to have artificial intelligence. This is the
case for most people out there.

2) The human will start beeping. (This is the case for Nick ;-))

Perhaps you already noticed that the program dF1F2 of the first part of
this marathon is a relative of the program dPARMF . The program

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-85

dF1F2 finds derivatives of the form
∂f x()
∂g x() . It uses the

following technique to do its work.

First it sets g x() = ttemp , introducing ttemp as a new
variable. Then it (tries to) solve g x() = ttemp for x
creating the solution x = someFunctionOf ttemp() . (The
function someFunctionOf ttemp() is the returned
solution x =… .) Then it substitutes g x() = ttemp and

x = someFunctionOf ttemp() in
∂f x()
∂g x() , creating:

∂someFunctionOf ttemp()
∂ttemp

This derivative is evaluated returning the function
firstDerivativeOfsomeFunctionOf ttemp() . Then ttemp = g x() is
substituted in this function, creating
firstDerivativeOfsomeFunctionOf g x()() , which is returned by
dF1F2 . The relation of the two programs is best seen in a table on the
top right. For dF1F2 that means that we can also use the same
mechanism as in dPARMF . We only have to do some re-
constructing in order to create the parametric definition. For example,
let's reconsider the derivative:

∂SIN X()
∂COS X()

that we had to do with on page 1-24. If we consider X as a
parameter, then we can write:

y = SINX()
x = COS X()

(The variables x and X are not the same.) To find the derivative:

∂SIN X()
∂COS X()

we simply have to find:

∂SIN X()
∂X

∂COS X()
∂X

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-86

Explanations Consider the definitions as
y = ψ x()

ttemp = ϕ x() , rename ttemp to x ,

and x to t , and you have the same
situation as for dPARMF.

Consider the definitions as
ψ t() = y

ϕ t() = x
, rename t to x , and

x to ttemp , and you have the

same situation as for dF1F2.

f x()
g x() = ttemp





⇒

f x()
x = someFunctionOf ttemp()





⇒

f x() = f someFunctionOf ttemp()()

y = ψ t()
x = ϕ t()





⇒ y x() = y ϕ t()()
Definition of
the function
that is
differentiated

 Program

Properties

dF1F2dPARMF

Ha! That means that dF1F2 can be rewritten simpler and shorter.

<<
→ y x param
<<

y param ∂ x param ∂
/ EXPAND

>>
>>

The program in its new version requires an additional argument,
namely the name for the parameter on which y and x depend.
Generally speaking it is a good policy to make programs that must
have the name for which we do something (in our case
differentiation). We could have to find:

∂SINX ⋅ A()⋅ eZ

∂A ⋅ Z ⋅COS X()

or any other derivative in which more than one variables are involved,
and so we must know what to consider as the parameter for which we
differentiate. Before we store the new program in dF1F2 , we test the
old version of dF1F2 . Let's use the above example. Enter
SIN X ⋅A()⋅ eZ , then A ⋅ Z ⋅ COS X() , and press . The
program returns:

X ⋅ ez ⋅ COS X ⋅ A()
Z ⋅ COS X()

which is correct… only if the variable A was meant as the parameter.
The program in its old version automatically assumes the first name in
the vector of names to be the parameter. Type in the small program on
the top of this column and store it in dF1F2 . Enter SIN X ⋅A()⋅ eZ ,
A ⋅ Z ⋅ COS X() and X . Press to get:

−
ez ⋅ COS X ⋅A()

Z ⋅SIN X()

the correct result if we consider X as the parameter. The result that the
old version returned, considering A as the parameter, can be obtained
by the new version, if you enter SIN X ⋅A()⋅ eZ , A ⋅ Z ⋅ COS X() and A ,
and press . The program dPARMF does the work of dF1F2
but it also does additional work, trying to convert the derivative to
expressions that depend on the variables instead on the parameter. We
can use it to find:

∂SINX ⋅ A()⋅ eZ

∂A ⋅ Z ⋅COS X()

We enter A ⋅ Z ⋅ COS X() + i ⋅SIN X ⋅ A() ⋅eZ , x , y , X , and press
. Notice that in this example the variables are the small letters

x and y , and the parameter is the capital letter X . The program returns
the result:

der X(): −
ez ⋅COS X ⋅ A()

Z ⋅ SINX()


 




on stack level 4, and the other results on stack levels 3 to 1.

Before we proceed we notice that the differentiation commands work
also with lists. The following picture on the next page demonstrates how
these commands behave when one or both arguments are lists.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-87

Now that we have examined derivatives of parametric functions, we
can proceed to derivatives of functions in polar form. A function in
polar form is given as r ϕ() , which denotes the dependence of the
radius r on the angle ϕ . For the coordinates x and y we have:

y = r ϕ() ⋅sin ϕ()
x = r ϕ() ⋅ cos ϕ()

According to our
previous considerations
this means that we can
consider this as a
function in parametric
form with the parameter ϕ , and thus:

∂y
∂x

=

∂y
∂ϕ
∂x
∂ϕ

=

∂r ϕ()⋅ sin ϕ()
∂ϕ

∂r ϕ()⋅ cos ϕ()
∂ϕ

=

∂r ϕ()
∂ϕ

⋅sin ϕ() + r ϕ()⋅ cos ϕ()
∂r ϕ()

∂ϕ
⋅cos ϕ() − r ϕ() ⋅sin ϕ()

Let's consider as example the logarithmic spiral r = a ⋅ek⋅ϕ . Its

derivative
∂r
∂ϕ

 of the polar coordinates written in terms of polar

coordinates is given by:

∂r
∂ϕ

=
∂a ⋅ek⋅ϕ

∂ϕ
= a ⋅ k ⋅ek⋅ϕ

Its derivative
∂y
∂x

 of the cartesian coordinates written in terms of

polar coordinates is given by:

∂y
∂x

=

∂r
∂ϕ

⋅ sin ϕ() + r ϕ()⋅ cos ϕ()
∂r
∂ϕ

⋅ cos ϕ() − r ϕ()⋅ sin ϕ()
=

a ⋅k ⋅ek⋅ϕ ⋅ sin ϕ() + a ⋅ek⋅ϕ ⋅ cos ϕ()
a ⋅k ⋅ek⋅ϕ ⋅ cos ϕ() − a ⋅ek⋅ϕ ⋅ sin ϕ()

=

k ⋅ sin ϕ() + cos ϕ()
k ⋅ cos ϕ() − sin ϕ()

To obtain the derivative
∂r
∂ϕ

 we only have to differentiate r for ϕ using

one of the many possible methods of the HP49G. That means we can
enter r ϕ() , then ϕ , and then use ∂ or DERIV , and so on. To obtain the

derivative
∂y
∂x

, we can use one of the programs dF1F2 or dPARMF ,

after transforming r ϕ() to its parametric form. And this is easily done.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-88

f x() g x() …{ }
x

∂ or DERIV ∂f x()
∂x

∂g x()
∂x

…








x y …{ }
f x,y,…() ∂ or DERIV ∂f x,y,…()

∂x
∂f x,y,…()

∂y
…









f x() g y() …{ }
x y …{ }

∂ or DERIV ∂f x()
∂x

∂g y()
∂y

…








ϕ

r ϕ()

x = r ϕ() ⋅ cos ϕ()

y = r ϕ() ⋅ sin ϕ()

Let's see what we have to do to use dF1F2 for finding
∂y
∂x

 of the

logarithmic spiral. Enter a ⋅ek⋅ϕ ⋅ SIN ∅() , then a ⋅ek⋅ϕ ⋅ COS ∅() . For
the character ∅ , enter a capital O , press if you aren't already
in alpha mode, then and to change the capital O to ∅ , the
character that resembles ϕ most in the HP49G character table. Enter
∅ (the parameter) and press . The result is:

−
k ⋅sin ϕ() + cos ϕ()
sin ϕ() −k ⋅cos ϕ()

We can make a small program that takes a function in its polar form
r ϕ() , creates the algebraic objects a ⋅ek⋅ϕ ⋅ SIN ∅() and

a ⋅ek⋅ϕ ⋅ COS ∅() , and then uses dF1F2 to find the derivative
∂y
∂x

.

<<
→ polarF ∅ @To get ∅, enter a small o and then
<< @press [ALPHA] if not already in

polarF ∅ SIN * @alpha more, then [red shift], [9]
polarF ∅ COS *
∅
dF1F2

>>
>>

This is the program dYXr ∅. Let's try it with a function in polar form.
We use the function r = COS ∅()2 + 3 ⋅COS ∅() −1. Enter

COS ∅()2 + 3 ⋅COS ∅() −1, then ∅ , and press to get:

2⋅ COS ∅() + 3() ⋅SIN ∅()2 − COS ∅()3 + 3 ⋅COS ∅()2 − COS ∅()()
3 ⋅COS ∅()2 + 6 ⋅COS ∅() −1() ⋅SIN ∅()

How does r = COS ∅()2 + 3 ⋅COS ∅() −1 look, anyway? For plotting
such polar functions the HP49G has the built-in plot type polar. Let's do
a polar plot. Go to the PLOT SETUP screen and select Polar plot

type. Enter COS ∅()2 + 3 ⋅COS ∅() −1 in the input field EQ:. Enter ∅
in the input field Indep: . Go to the
PLOT WINDOW − POLAR
screen and enter horizontal view from
−3 to 5 and vertical view from −2 to
2 . Press and then to
plot the polar function. Let's see how
the data stored in the system reserved
variable PPAR are used when the
plot type is polar.

PPAR is a list with 7 items, which the plotting commands use for
drawing according to the settings of the user. The list has the form:

xmin,ymin() xmax,ymax() indep res axes ptype depend{ }
For the plot type POLAR these elements have the following meaning:

xmin,ymin() A complex number which specifies the lower left
corner of the display range. Default value is
−6.5, −3.1() . The programmable command for

setting this parameter is PMIN . This command takes
a complex number from the stack and puts it in the
first position of PPAR .

xmax,ymax() As you might have imagine, a complex number
which specifies the upper right corner of the display
range. Default value is 6.5,3.2() . The programmable
command for setting this parameter is PMAX . This
command takes a complex number from the stack and
puts it in the second position of PPAR .

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-89

There are two additional commands for setting up
the display range. The first is XRNG . It takes two
real numbers from the stack (the minimum and
maximum of the view range of the X-axis) and sets
up the parameters of and of . The other is
YRNG and as you can think it does the same for
the Y-axis.

indep This element can be either a name specifying the
independent variable of the expression that we
want to plot. Or it can be a list which contains the
name of the independent variable and the minimum
and maximum of the plotting range. This allows to
have different values for the viewing and plotting
range. Default for this parameter is X . There are
two programmable commands that can be used for
setting this parameter. We have the command
INDEP , which can take as arguments:

• 1) The name of the independent variable. If a
name is given to INDEP then this name
replaces the third element of PPAR , that is if
you already have specified a plotting range,
then this will be lost and the viewing range
from the parameters xmin,ymin() and
xmax,ymax() will be used.

• 2) A list which contains the name of the
independent variable. In this case the
independent variable is replaced but an
existing plotting range will not be touched.

• 3) A list with the name of the independent
variable, a real number that specifies the
minimum of the plotting range and a real
number that specifies the maximum of the
plotting range.

• 4) A list with two numbers specifying the
minimum and maximum of the plotting range.
The independent variable remains untouched.

• 5) Two real numbers that specify the minimum and
the maximum of the plotting range. The
independent variable remains untouched.

res A real number that specifies the interval in user
coordinates between the values of the independent
variable. The default value is 0 and specifies an

interval of 2 degrees, 2 grads or
π
90

 radians. The

command that sets this parameter is RES .

axes This element is either a complex number specifying
the coordinates of intersection of the axes. Or a list
that has one or more of the following elements in
order. A complex number specifying the coordinates
of intersection of the axes, a list that specifies the tick
marks of the axes and two strings that are used as
labels for the X- and the Y-axes. Commands for this
parameter are: AXES , which takes as arguments a
complex number representing the coordinates of axes
intersection, or a list that has the parameters listed
above. ATICK , which sets up the distance between
tick marks on the axes. This command takes as
arguments either a real number that specifies the
distance between tick marks in user units for both
axes, or a list with two real numbers that specify this
distance separately for the X- and Y-axis, or a binary
integer that specifies the distance between tick marks
in pixels for both axes, or a list with two binary
integers that specify this distance separately for the
X- and Y-axis.

ptype One of the plot types available on the HP49G out of

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-90

the box. These are: BAR , CONIC , DIFFEQ ,
FUNCTION , GRIDMAP , HISTOGRAM,
PARAMETRIC , PARSURFACE ,
PCONTOUR , POLAR , SCATTER ,
SLOPEFIELD , TRUTH , WIREFRAME ,
YSLICE and FAST − 3D. The commands for
setting the appropriate plot type are the same like
the parameters above, that is, if you want to set up
the plot type polar from a program, you just enter
the command POLAR.

depend A name that specifies the dependent variable.
Default for this parameter is Y . The command for
setting the dependent variable is DEPND and its
arguments have the same forms as the arguments
for INDEP . Note that a plot range for the
independent variable is only used for the plot type
TRUTH but is ignored otherwise.

We examined a lot of things about the capabilities of the HP49G when
it comes to derivatives, but we still didn't answer a simple question.
The HP49G has a huge amount of built-in functions. Which of them
can it differentiate out of the box? As we have seen, there are at least
two built-in functions that it doesn't know how to differentiate,
namely GAMMA and !. For most of the built-in functions the
HP49G provides a derivative. So most of the time you will just use
DERIV or DERVX or ∂ in any possible syntax and the HP49G will
find the derivative. But for some functions you will have to define the
derivative the way we did for GAMMA , because the HP49G doesn't
provide a built-in derivative for them. There are also some built-in
functions which show an unusual behaviour. Enter X , Y and press

. The HP49G returns:

X ⋅
Y

100

which of course can be differentiated for X or Y using one of the
differentiation commands. For example enter X and press to get:

Y
100

But if you enter the algebraic object % X,Y() , then X , and use ∂ or
DERIV , then the result is d1% X,Y() , though the HP49G knows how
to differentiate the function % because it knows its simple definition:

X ⋅
Y

100

If you enter the algebraic object:

∂
∂X

% X,Y()() and expand or evaluate, then the result will be again

d1% X,Y() . We would expect that expanding or evaluating

DERIV % X,Y(),X() also returns d1% X,Y() , wouldn't we? But no,
this time the HP49G returns the result:

Y
100

And so we have yet another unexpected and puzzling behaviour.
Sometimes the one way, some times the other way. Let's say that this
machine has "character" ;-) The functions for which the HP49G doesn't
provide a derivative, or for which it behaves the above ambiguous way
are summarised on the tables from the next page up to page 2-106.
Those functions are only functions in the HP49G sense, that means that
they are allowed in algebraics and thus we can formally construct a
derivative of them. The red cells contain the cases where the derivative
can't be found. The green cells contain the cases where the analytic
derivative is returned. The first column contains the functions. If a cell
that contains the function is red, that means that you have to make a user

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-91

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-92

Enter

DERIV %T X,Y(),X()

and EVAL to get

100 ⋅
−Y

SQ X() , or

EXPAND to get −
100 ⋅Y

X2

Enter
∂

∂X
%T X,Y()()

and EXPAND or EVAL to
get d1%T X,Y() .

Enter %T X,Y() ,

then X , and use
DERIV to get
d1%T X,Y() .

Enter %T X,Y() , then

X , and use ∂ to get
d1%T X,Y() .

X , Y , then %T

returns
Y
X

⋅100 .

Enter X and use
DERIV to get

100 ⋅
−Y

SQ X() .

X , Y , then %T

returns
Y
X

⋅100 .

Enter X and use
∂ to get

100 ⋅
−Y

SQ X() .

%T

Enter

DERIV %CH X,Y(),X()

and EVAL to get

100 ⋅
−Y

SQ X() , or

EXPAND to get −
100 ⋅Y

X2 .

Enter
∂

∂X
%CH X,Y()() and

EXPAND or EVAL to get
d1%CH X,Y() .

Enter %CH X,Y() ,

then X , and use
DERIV to get
d1%CH X,Y() .

Enter %CH X,Y() ,

then X , and use ∂ to
get d1%CH X,Y() .

X , Y , then
%CH returns

Y
X

−1




 ⋅100 .

Enter X and use
DERIV to get

100 ⋅
−Y

SQ X() .

X , Y , then
%CH returns

Y
X

−1




 ⋅100 .

Enter X and use
∂ to get

100 ⋅
−Y

SQ X() .

%CH

Enter

DERIV % X,Y(),X()

and EXPAND or EVAL to

get
Y

100
.

Enter
∂

∂X
% X,Y()()

and EXPAND or EVAL to
get d1% X,Y() .

Enter % X,Y() , then

X , and use DERIV to
get d1% X,Y() .

Enter % X,Y() , then

X , and use ∂ to get
d1% X,Y() .

X , Y , then %

returns X ⋅
Y

100
.

Enter X and use

DERIV to get
Y

100
.

X , Y , then %

returns X ⋅
Y

100
.

Enter X and use

∂ to get
Y

100
.

%

Enter DERIV X!,X()

and EXPAND or EVAL to
get d1! X() .

Enter
∂

∂X
X!() and

EXPAND or EVAL to get
d1! X() .

Enter X!, then X ,
and use DERIV to get
d1! X() .

Enter X!, then X , and
use ∂ to get d1! X() .

X and then !
returns X!. Enter
X and use DERIV
to get d1! X() .

X and then !
returns X!. Enter
X and use ∂ to
get d1! X() .

!

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-93

Enter
DERIV X AND Y,X()

and EXPAND or EVAL to
get d1AND X,Y() .

Enter
∂

∂X
X AND Y()

and EXPAND or EVAL to
get d1AND X,Y() .

Enter X AND Y ,

then X , and use
DERIV to get
d1AND X,Y() .

Enter X AND Y ,

then X , and use ∂ to
get d1AND X,Y() .

X , Y , and then
AND returns
X AND Y .

Enter X and use
DERIV to get
d1AND X,Y() .

X , Y , and then
AND returns
X AND Y .

Enter X and use
∂ to get
d1AND X,Y() .

AND

Enter
DERIV APPLY F,X,Y(),X()
from the command line to
get
Invalid Expression.

EXPAND or EVAL to get
d1F X,Y() .

Enter

∂X APPLY F,X,Y()()

from the command line
to get
∂X Invalid Expression() .

EXPAND or EVAL to get
d1APPLY F, X Y{ }() .

Enter
APPLY F,X,Y()

from the command
line to get
Invalid Expression.
Enter X , and use
DERIV to get
d1F X,Y() .

Enter
APPLY F,X,Y()

from the command line
to get
Invalid Expression.
Enter X , and use ∂ to
get d1F X,Y() .

X Y{ } , Y , then

APPLY returns
F X,Y() . Enter X

and use DERIV to
get d1F X,Y() .

X Y{ } , Y ,

then APPLY
returns F X,Y() .

Enter X and use
∂ to get
d1F X,Y() .

APPLY

Enter
DERIV X > Y,X() and

EVAL or EXPAND to get
d1> X,Y() .

Enter
∂

∂X
X > Y() and

EXPAND or EVAL to get
d1> X,Y() .

Enter X > Y , then
X , and use DERIV to
get d1> X,Y() .

Enter X > Y , then X ,
and use ∂ to get
d1> X,Y() .

X , Y , and then >
returns X > Y .
Enter X and use
DERIV to get
d1> X,Y() .

X , Y , and then
> returns
X > Y . Enter X
and use ∂ to get
d1> X,Y() .

>

Enter
DERIV X == Y,X() and

EXPAND or EVAL to get
d1== X,Y() .

Enter
∂

∂X
X == Y()

and EXPAND or EVAL to
get d1== X,Y() .

Enter X == Y , then
X , and use DERIV to
get d1== X,Y() .

Enter X == Y , then
X , and use ∂ to get
d1== X,Y() .

X , Y , and then
== returns
X == Y . Enter X
and use DERIV to
get d1== X,Y() .

X , Y , and then
== returns
X == Y . Enter
X and use ∂ to
get d1== X,Y() .

==

Enter
DERIV X < Y,X() and

EXPAND or EVAL to get
d1< X,Y() .

Enter
∂

∂X
X < Y() and

EXPAND or EVAL to get
d1< X,Y() .

Enter X < Y , then
X , and use DERIV to
get d1< X,Y() .

Enter X < Y , then X ,
and use ∂ to get
d1< X,Y() .

X , Y , and then <
returns X < Y .
Enter X and use
DERIV to get
d1< X,Y() .

X , Y , and then
< returns
X < Y . Enter X
and use ∂ to get
d1< X,Y() .

<

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-94

In real mode enter
DERIV CONJ X + Y ⋅ i(),X(),
and use EXPAND or EVAL
to get 1.
In complex mode enter

DERIV CONJ Z(),Z() ,

and use EVAL or EXPAND
to get d1CONJ Z() .

In real mode enter
∂

∂X
CONJ X + Y ⋅i()() ,

and use EXPAND or
EVAL to get
d1CONJ X + i ⋅ Y() .

In complex mode enter
∂

∂X
CONJ Z()() , and

use EVAL or EXPAND to
get d1CONJ Z() .

In real mode enter
CONJ X + Y ⋅ i() ,

then X , and use
DERIV to get
d1CONJ X + i ⋅ Y() .

In complex mode
enter CONJ Z() ,

and use ∂ to get
d1CONJ Z() .

In real mode enter
CONJ X + Y ⋅ i() ,

then X and use ∂ to
get
d1CONJ X + i ⋅ Y() .

In complex mode enter
CONJ Z() , and use ∂

to get d1CONJ Z() .

In real mode enter
X + Y ⋅ i, then
CONJ to get
X +−Y ⋅ i . Enter
X and use
DERIV to get 1.
In complex mode
enter Z , then
CONJ to get
CONJ Z() . Enter

Z and use DERIV
to get
d1CONJ Z() .

In real mode
enter X + Y ⋅ i,
then CONJ to
get X +−Y ⋅ i .
Enter X and use
∂ to get 1.
In complex mode
enter Z , then
CONJ to get
CONJ Z() . Enter

Z and use ∂ to
get d1CONJ Z() .

CONJ

Enter
DERIV COMB X,Y(),X()

and EXPAND to get

−

X!⋅d1! X − Y() −

X − Y()! ⋅d1! X()











Y!⋅ X − Y()!2

or EVAL to get

X − Y()!⋅Y! ⋅d1! X() −

X!⋅d1! X − Y()⋅ Y!











SQ X − Y()!⋅Y!() .

Enter
∂

∂X
COMB X,Y()()

and EXPAND or EVAL to
get d1COMB X,Y() .

Enter COMB X,Y() ,

then X , and use
DERIV to get
d1COMB X,Y() .

Enter COMB X,Y() ,

then X , and use ∂ to
get d1COMB X,Y() .

X , Y , and then
COMB returns

X!
X − Y()! ⋅Y!

.

Enter X and use
DERIV to get

X − Y()! ⋅Y!⋅d1! X() −

X!⋅d1! X − Y() ⋅Y!











SQ X − Y()! ⋅Y!()
.

X , Y , and then
COMB returns

X!
X − Y()! ⋅Y!

.

Enter X and use
∂ to get

X − Y()! ⋅Y!⋅d1! X() −

X!⋅d1! X − Y() ⋅Y!











SQ X − Y()! ⋅Y!() .

COMB

Enter

DERIV CEIL X(),X()

and EXPAND or EVAL to
get d1CEIL X() .

Enter
∂

∂X
CEIL X()()

and EXPAND or EVAL to
get d1CEIL X() .

Enter CEIL X() ,

then X , and use
DERIV to get
d1CEIL X() .

Enter CEIL X() , then

X , and use ∂ to get
d1CEIL X() .

X then CEIL
returns CEIL X() .

Enter X and use
DERIV to get
d1CEIL X() .

X then CEIL
returns
CEIL X() . Enter

X and use ∂ to
get d1CEIL X() .

CEIL

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-95

Enter

DERIV D → R X(),X()

and EXPAND or EVAL to
get d1D → R X() .

Enter
∂

∂X
D → R X()()

and EXPAND or EVAL to
get d1D → R X() .

Enter D → R X() ,

then X , and use
DERIV to get
d1D → R X() .

Enter D → R X() ,

then X , and use ∂ to
get d1D → R X() .

X , and then
D → R returns
D → R X() . Enter X
and use DERIV to
get d1D → R X() .

X , and then
D → R returns
D → R X() . Enter

X and use ∂ to
get d1D→ R X() .

D → R

Enter

DERIV DROITE X,Y(),(
and EXPAND or EVAL. The
HP49G errors out with
"Bad Argument Type"

Enter
∂

∂X
DROITE X,Y()()

and EXPAND or EVAL to
get d1DROITE X,Y() .

Enter DROITE X,Y() ,
then X , and use
DERIV to get
d1DROITE X,Y() .

Enter DROITE X,Y() ,

then X , and use ∂ to
get d1DROITE X,Y() .

DROITE works
only with
arguments
evaluable to reals
or complex.

DROITE works
only with
arguments
evaluable to reals
or complex.

DROITE

From the EQW enter
DERIV DEF F X() = X

2 − X(),X()
and then EVAL or EXPAND
to get
2 ⋅ X −1= 2 ⋅ X −1. This
also creates the user
defined function.

From the EQW enter
∂

∂X
DEF F X() = X2 − X()()

and then EVAL to get
2 ⋅ X −1= 2 ⋅ X −1. If
you use EXPAND, you
get 0 . Both EVAL and
EXPAND also create the
user defined function.

From the EQW enter

DEF F X() = X2 − X(
and then enter X and
use DERIV to get
2 ⋅ X −1= 2 ⋅ X −1.
This also creates the
user defined function.

From the EQW enter

DEF F X() = X2 − X()

and then enter X and
use ∂ to get
2 ⋅ X −1= 2 ⋅ X −1.
This also creates the
user defined function.

Enter

F X() = X2 − X

and then DEF .
Enter F X() , then

X and use DERIV
to get 2 ⋅ X −1.

Enter

F X() = X2 − X

and then DEF .
Enter F X() , then

X and use ∂ to
get 2 ⋅ X −1.

DEF

Enter
DERIV DARCY X,Y(),X()
and EXPAND or EVAL to
get d1DARCY X,Y() .

Enter
∂

∂X
DARCY X,Y()()

and EXPAND or EVAL to
get d1DARCY X,Y() .

Enter
DARCY X,Y() ,

then X , and use
DERIV to get
d1DARCY X,Y() .

Enter DARCY X,Y() ,

then X , and use ∂ to
get d1DARCY X,Y() .

X , Y , and then
DARCY returns
DARCY X,Y() .

Enter X and use
DERIV to get
d1DARCY X,Y() .

X , Y , and then
DARCY returns
DARCY X,Y() .

Enter X and use
∂ to get
d1DARCY X,Y() .

DARCY

Enter
DERIV CYCLOTOMIC 3(),X()
and EXPAND or EVAL to
get 2 ⋅ X + 1.

Enter
∂

∂X
CYCLOTOMIC 3()()

and EXPAND or EVAL to
get 0 .

Enter
CYCLOTOMIC 3() ,

then X , and use
DERIV to get 2 ⋅ X + 1.

Enter
CYCLOTOMIC 3() ,

then X , and use ∂ to
get 2 ⋅ X + 1.

3 then
CYCLOTOMIC
returns

X2 + X +1. Enter
X and use DERIV
to get 2 ⋅ X + 1.

3 then
CYCLOTOMIC
returns

X2 + X +1.
Enter X and use
∂ to get 2 ⋅ X + 1.

CYCLOTOMIC

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-96

Enter

DERIV FLOOR X(),X()
and EXPAND or EVAL to
get d1FLOOR X() .

Enter
∂

∂X
FLOOR X()() and

EXPAND or EVAL to get
d1FLOOR X() .

Enter FLOOR X() ,

then X , and use
DERIV to get
d1FLOOR X() .

Enter FLOOR X() ,

then X , and use ∂ to
get d1FLOOR X() .

X then FLOOR
returns
FLOOR X() .

Enter X and use
DERIV to get
d1FLOOR X() .

X then FLOOR
returns
FLOOR X() .

Enter X and use
∂ to get
d1FLOOR X() .

FLOOR

Enter
DERIV FANNING X,Y(),X()

and then EVAL or EXPAND
to get d1FANNING X,Y() .

Enter
∂

∂X
FANNING X,Y()()

and then EVAL or
EXPAND to get
d1FANNING X,Y() .

Enter FANNING X,Y(),
then X , and use
DERIV to get
d1FANNING X,Y() .

Enter FANNING X,Y(),
then X , and use ∂ to
get d1FANNING X,Y() .

X , Y then
FANNING
returns
FANNING X,Y().
Enter X and use
DERIV to get
d1FANNING X,Y() .

X , Y then
FANNING
returns
FANNING X,Y().
Enter X and use
∂ to get
d1FANNING X,Y() .

FANNING

Enter

DERIV FACT X(),X()

and then EVAL or EXPAND
to get d1! X() .

Enter
∂

∂X
FACT X()()

and then EVAL to get
d1FACT X,Y() .

EXPAND returns
d1! X() .

Enter FACT X() ,

then X , and use
DERIV to get
d1FACT X() .

Enter FACT X() , then

X , and use ∂ to get
d1FACT X() .

X then FACT
returns X!. Enter
X and use DERIV
to get d1! X() .

X then FACT
returns X!. Enter
X and use ∂ to
get d1! X() .

FACT

Enter

DERIV F0λ X,Y(),X()

and then EVAL or EXPAND
to get d1F0λ X,Y() .

Enter
∂

∂X
F0λ X,Y()()

and then EVAL or
EXPAND to get
d1F0λ X,Y() .

Enter F0λ X,Y() ,

then X , and use
DERIV to get
d1F0λ X,Y() .

Enter F0λ X,Y() ,

then X , and use ∂ to
get d1F0λ X,Y() .

X , Y then F0λ
returns
F0λ X,Y() . Enter

X and use DERIV
to get
d1F0λ X,Y() .

X , Y then F0λ
returns
F0λ X,Y() .

Enter X and use
∂ to get
d1F0λ X,Y() .

F0λ

Enter
DERIV EULER X(),X() and

then EVAL or EXPAND.
The HP49G errors out
"Bad Argument Type"

Enter
∂

∂X
EULER X()() and

then EVAL or EXPAND
to get d1EULER X() .

Enter EULER X() ,

then X , and use
DERIV to get
d1EULER X() .

Enter EULER X() ,

then X , and use ∂ to
get d1EULER X() .

EULER works
only with integer
arguments.

EULER works
only with integer
arguments.

EULER

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-97

X , then FP
returns FP X() .

Enter X and use
∂ to get
d1FP X() .

FP

Enter
DERIV HERMITE 3(),X(),
and use EVAL to get

8 ⋅ 3 ⋅ X2 −12 . EXPAND

returns 24 ⋅ X2 −12 .

Enter
∂

∂X
HERMITE 3()() ,

and use EVAL or
EXPAND to get 0 .

Enter HERMITE 3() ,
then X and use DERIV

to get 8 ⋅ 3 ⋅ X2 −12 .

Enter HERMITE 3() ,

then X and use ∂ to

get 8 ⋅ 3 ⋅ X2 −12 .

3 then
HERMITE
returns

8 ⋅ X3 −12 ⋅ X .
Enter X and use
DERIV to get

8 ⋅ 3 ⋅ X2 −12 .

3 then
HERMITE
returns

8 ⋅ X3 −12 ⋅ X .
Enter X and use
∂ to get

8 ⋅ 3 ⋅ X2 −12 .

HERMITE

Enter

DERIV GCD X2 −1,X +((
and then EVAL or EXPAND
to get 1.

Enter
∂

∂X
GCD X2 − 1,X + 1()()

and then EVAL to get
d2GCD X2 −1,X + 1() +

2⋅ X ⋅ d1GCD X2 −1,X +1()
.

EXPAND returns
2 ⋅X ⋅d1GCD X2 − 1,X +1()+

d2GCD X2 −1,X + 1() .

Enter

GCD X2 −1,X +1() ,

then X , and use
DERIV to get 1.

Enter

GCD X2 −1,X +1() ,

then X , and use ∂ to
get 1.

X2 −1, X +1,
then GCD
returns X +1{ } .

Enter X and use
DERIV to get 1{} .

X2 −1, X +1,
then GCD
returns X +1{ } .

Enter X and use
∂ to get 1{} .

GCD

Enter
DERIV GAMMA X(),X()

and EXPAND or EVAL to
get d1GAMMA X() .

Enter
∂

∂X
GAMMA X()() and

EXPAND or EVAL to get
d1GAMMA X() .

Enter GAMMA X() ,

then X , and use
DERIV to get
d1GAMMA X() .

Enter GAMMA X() ,

then X , and use ∂ to
get d1GAMMA X() .

X , and then
GAMMA returns
GAMMA X() .

Enter X and use
DERIV to get
d1GAMMA X() .

X , and then
GAMMA
returns
GAMMA X() .

Enter X and use
∂ to get
d1GAMMA X() .

GAMMA

Enter

DERIV FP X(),X() and

EXPAND or EVAL to get
d1FP X() .

Enter
∂

∂X
FP X()() and

EXPAND or EVAL to get
d1FP X() .

Enter FP X() , then

X , and use DERIV to
get d1FP X() .

Enter FP X() , then X ,

and use ∂ to get
d1FP X() .

X , then FP
returns FP X() .

Enter X and use
DERIV to get
d1FP X() .

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-98

IBERNOULLI
works only with
integer
arguments.

IBERNOULLI

In real mode enter

DERIV IM X + X2 ⋅i(),X()

and then EVAL or EXPAND
to get 2 ⋅ X . In complex
mode enter

DERIV IM Z(),Z() and

then EVAL or EXPAND to
get d1IM Z() .

In real mode enter
∂

∂X
IM X + X2 ⋅ i()() and

then EVAL or EXPAND

to get d1IM X + X2 ⋅ i() .

In complex mode enter
∂

∂Z
IM Z()() and then

EVAL or EXPAND to get
d1IM Z() .

In real mode enter

IM X + X2 ⋅ i() , then

X and use DERIV to

get d1IM X + X2 ⋅ i() .

In complex mode
enter IM Z() , then Z

and use ∂ to get
d1IM Z() .

In real mode enter

IM X + X2 ⋅ i() , then X

and use ∂ to get

d1IM X + X2 ⋅ i() .

In complex mode enter
IM Z() , then Z and

use ∂ to get d1IM Z() .

In real mode enter

X + X2 ⋅ i, then

IM to get X2
.

Enter X and use
DERIV to get 2 ⋅ X .
In complex mode
enter Z , then IM
to get IM Z() .

Enter Z and use
DERIV to get
d1IM Z() .

In real mode

enter X + X2 ⋅ i,
then IM to get

X2
. Enter X and

use ∂ to get
2 ⋅ X .
In complex mode
enter Z , then IM
to get IM Z() .

Enter Z and use
∂ to get
d1IM Z() .

IM

Enter
DERIV IFTE A,X 2 ,X3(),X()
and EXPAND or EVAL to
get

IFTE A,2 ⋅X,3 ⋅ X2() .

Enter
∂

∂X
IFTE A,X 2,X3()()

and EXPAND to get

IFTE A,2 ⋅X,3 ⋅ X2()

EVAL errors out with
"CAS Internal Error".

Enter

IFTE A,X2 ,X 3() ,

then X , and use
DERIV to get

IFTE A,2 ⋅X, 3⋅ X2() .

Enter

IFTE A,X2 ,X 3() ,

then X , and use ∂ to
get

IFTE A,2 ⋅X,3 ⋅ X2() .

A , X2
, X3

 and
then IFTE
returns

IFTE A,X2 ,X3() .

Enter X and use
DERIV to get
IFTE A,2 ⋅X,3 ⋅ X2() .

A , X2
, X3

 and
then IFTE
returns

IFTE A,X2 ,X3() .

Enter X and use
∂ to get
IFTE A,2 ⋅X,3 ⋅ X2() .

IFTE

Enter
DERIV IBERNOULLI X(),X()
and EXPAND or EVAL. The
HP49G errors out "Bad
Argument Type"

Enter
∂

∂X
IBERNOULLI X()(

and EXPAND or EVAL to
get
d1IBERNOULLI X() .

Enter
IBERNOULLI X() ,

then X , and use
DERIV to get
d1IBERNOULLI X() .

Enter
IBERNOULLI X() ,

then X , and use ∂ to
get
d1IBERNOULLI X() .

IBERNOULLI
works only with
integer arguments.

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-99

Enter ISPRIME ? X() ,

then X , and use ∂ to
get
d1IRSPRIME? X() .

ISPRIME?
works only with
integer arguments.

ISPRIME?
works only with
integer
arguments.

Enter
DERIV IREMAINDER X,Y(),X()
and EVAL or EXPAND.
The HP49G errors out
with "Bad Argument
Type".

Enter
∂

∂X
IREMAINDER X,Y()()

and EVAL or EXPAND to
get
d1IREMAINDER X,Y().

Enter
IREMAINDER X, Y() ,
then X , and use
DERIV to get
d1IREMAINDER X,Y().

Enter
IREMAINDER X,Y() ,

then X , and use ∂ to
get
d1IREMAINDER X,Y().

IREMAINDER
works only with
integer arguments.

IREMAINDER
works only with
integer
arguments.

IREMAINDER

Enter
DERIV IQUOT X,Y(),X()
and EVAL or EXPAND.
The HP49G errors out
with "Bad Argument
Type".

Enter
∂

∂X
IQUOT X,Y()()

and EVAL or EXPAND to
get d1IQUOT X,Y() .

Enter IQUOT X,Y() ,

then X , and use
DERIV to get
d1IQUOT X,Y() .

Enter IQUOT X,Y() ,

then X , and use ∂ to
get d1IQUOT X,Y() .

IQUOT works
only with integer
arguments.

IQUOT works
only with integer
arguments.

IQUOT

X2
, X , X , and

then INT returns
1
3

⋅ X3
. Enter X

and use ∂ to get
1
3

⋅ 3 ⋅ X2
.

INT

Enter
DERIV ISPRIME? X(),X(),
then X , EVAL or
EXPAND. The HP49G
errors out with "Bad
Argument Type".

Enter
∂

∂X
ISPRIME? X()() ,

then X , EVAL or
EXPAND to get
d1IRSPRIME? X() .

Enter ISPRIME? X(),
then X , and use
DERIV to get
d1IRSPRIME? X() .

ISPRIME?

Enter DERIV IP X(),X()

and EVAL or EXPAND to
get d1IP X() .

Enter
∂

∂X
IP X()() and

EVAL or EXPAND to get
d1IP X() .

Enter IP X() then X ,

and use DERIV to get
d1IP X() .

Enter IP X() , then X ,

and use ∂ to get
d1IP X() .

X and then IP
returns IP X() .

Enter X and use
DERIV to get
d1IP X() .

X and then IP
returns IP X() .

Enter X and use
∂ to get d1IP X() .

IP

Enter
DERIV INT X2,X,X(),X()

and EVAL to get
3 ⋅ 3 ⋅ X2

9
. EXPAND

returns X2
.

Enter
∂

∂X
INT X2 ,X,X()()

and EXPAND to get
3 ⋅ 3 ⋅ X2

9
. EVAL errors

out with "Can't derive
int. var"

Enter INT X2,X,X() ,

then X , and use
DERIV. The HP49G
errors out "Can't
derive int. var"

Enter INT X2,X,X() ,

then X , and use ∂ .
The HP49G errors out
"Can't derive int. var"

X2
, X , X , and

then INT returns
1
3

⋅ X3
. Enter X

and use DERIV to

get
1
3

⋅ 3 ⋅ X2
.

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-100

Enter MIN X,Y() ,

then X , and use ∂ to
get d1MIN X,Y() .

X , Y and then
MIN returns
MIN X,Y() . Enter

X and use DERIV
to get
d1MIN X,Y() .

X , Y and then
MIN returns
MIN X,Y() .

Enter X and use
∂ to get
d1MIN X,Y() .

Enter

DERIV MAX X,Y(),X()

and EVAL or EXPAND to
get d1MAX X,Y() .

Enter
∂

∂X
MAX X,Y()() and

EVAL or EXPAND to get
d1MAX X,Y() .

Enter MAX X,Y() ,

then X , and use
DERIV to get
d1MAX X,Y() .

Enter MAX X,Y() ,

then X , and use ∂ to
get d1MAX X,Y() .

X , Y and then
MAX returns
MAX X,Y() .

Enter X and use
DERIV to get
d1MAX X,Y() .

X , Y and then
MAX returns
MAX X,Y() .

Enter X and use
∂ to get
d1MAX X,Y() .

MAX

Enter

DERIV MANT X(),X()

and EVAL or EXPAND to
get d1IQUOT X,Y() .

Enter
∂

∂X
MANT X()()

and EVAL or EXPAND to
get d1MANT X() .

Enter MANT X() ,

then X , and use
DERIV to get
d1MANT X() .

Enter MANT X() ,

then X , and use ∂ to
get d1MANT X() .

X , and then
MANT returns
MANT X() . Enter

X and use DERIV
to get
d1MANT X() .

X , and then
MANT returns
MANT X() .

Enter X and use
∂ to get
d1MANT X() .

MANT

I → R works
only with integer
arguments.

I → R

Enter

DERIV MIN X,Y(),X()

and EVAL or EXPAND to
get d1MIN X,Y() .

Enter
∂

∂X
MIN X,Y()()

and EVAL or EXPAND to
get d1MIN X,Y() .

Enter MIN X,Y() ,

then X , and use
DERIV to get
d1MIN X,Y() .

MIN

Enter
DERIV LEGENDRE X(),X()
and EVAL or EXPAND.
The HP49G errors out
with "Bad Argument
Type".

Enter
∂

∂X
LEGENDRE X()()

and EVAL or EXPAND to
get
d1LEGENDRE X() .

Enter
LEGENDRE X() ,

then X , and use
DERIV to get
d1LEGENDRE X() .

Enter
LEGENDRE X() ,

then X , and use ∂ to
get
d1LEGENDRE X() .

LEGENDRE
works only with
integer arguments.

LEGENDRE
works only with
integer
arguments.

LEGENDRE

Enter

DERIV I → R X(),X()

and EVAL or EXPAND to
get d1I → R X() .

Enter
∂

∂X
I → R X()()

and EVAL or EXPAND to
get d1I → R X() .

Enter I → R X() ,

then X , and use
DERIV to get
d1I → R X() .

Enter I → R X() , then

X , and use ∂ to get
d1I → R X() .

I → R works only
with integer
arguments.

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-101

Enter PA2B2 X() ,

then X , and use ∂ to
get d1PA2B2 X() .

PA2B2 works
only with integer
arguments.

PA2B2 works
only with integer
arguments.

Enter
DERIV X OR Y,X()
and EVAL or EXPAND to
get d1OR X,Y() .

Enter
∂

∂X
X OR Y() and

EVAL or EXPAND to get
d1OR X,Y() .

Enter X OR Y ,

then X , and use
DERIV to get
d1OR X,Y() .

Enter X OR Y ,

then X , and use ∂ to
get d1OR X,Y() .

X , Y , and then
OR returns
X OR Y .

Enter X and use
DERIV to get
d1OR X,Y() .

X , Y , and then
OR returns
X OR Y .

Enter X and use
∂ to get
d1OR X,Y() .

OR

Enter
DERIV NOT X,X()

and EVAL or EXPAND to
get d1NOT X() .

Enter
∂

∂X
NOT X()

and EVAL or EXPAND to
get d1NOT X() .

Enter NOT X ,

then X , and use
DERIV to get
d1NOT X() .

Enter NOT X , then

X , and use ∂ to get
d1NOT X() .

X , and then NOT
returns NOT X .
Enter X and use
DERIV to get
d1NOT X() .

X , and then
NOT returns
NOT X . Enter

X and use ∂ to
get d1NOT X() .

NOT

X , Y and then
MOD returns
X MOD Y .

Enter X and use
∂ to get
d1MOD X,Y() .

MOD

Enter

DERIV PA2B2 X(),X()

and EVAL or EXPAND. The
HP49G errors out with
"Bad Argument Type".

Enter
∂

∂X
PA2B2 X()()

and EVAL or EXPAND to
get d1PA2B2 X() .

Enter PA2B2 X() ,

then X , and use
DERIV to get
d1PA2B2 X() .

PA2B2

Enter
DERIV NEXTPRIME X(),X()
and EVAL or EXPAND.
The HP49G errors out
with "Bad Argument
Type".

Enter
∂

∂X
NEXTPRIME X()()

and EVAL or EXPAND to
get
d1NEXTPRIME X() .

Enter
NEXTPRIME X() ,

then X , and use
DERIV to get
d1NEXTPRIME X() .

Enter
NEXTPRIME X() ,

then X , and use ∂ to
get
d1NEXTPRIME X() .

NEXTPRIME
works only with
integer arguments.

NEXTPRIME
works only with
integer
arguments.

NEXTPRIME

Enter
DERIV X MOD Y,X()
and EVAL or EXPAND to
get d1MOD X,Y() .

Enter
∂

∂X
X MOD Y()

and EVAL or EXPAND to
get d1MOD X,Y() .

Enter X MOD Y ,
then X , and use
DERIV to get
d1MOD X,Y() .

Enter X MOD Y ,

then X , and use ∂ to
get d1MOD X,Y() .

X , Y and then
MOD returns
X MOD Y .

Enter X and use
DERIV to get
d1MOD X,Y() .

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-102

Enter

DERIV PSIX,2(),X()

and EVAL or EXPAND to
get d1PSI X,2() .

Enter
∂

∂X
PSI X,2()()

and EVAL or EXPAND to
get d1PSI X,2() .

Enter PSI X,2() ,

then X , and use
DERIV to get
d1PSI X,2() .

Enter PSI X,2() , then

X , and use ∂ to get
d1PSI X,2() .

X , 2 , and then
PSI returns
PSI X,2() . Enter

X and use DERIV
to get
d1PSI X,2() .

X , 2 , and then
PSI returns
PSI X,2() . Enter

X and use ∂ to
get d1PSI X,2() .

PSI

X , Y and then
PERM returns

X!
X − Y()! . Enter

X and use ∂ to
get

X − Y()!⋅d1! X() −

X!⋅d1! X − Y()











SQ X − Y()!() .

PERM

Enter
DERIV PREVPRIME X(),X()
and EVAL or EXPAND.
The HP49G errors out
with "Bad Argument
Type".

Enter
∂

∂X
PREVPRIME X()()

and EVAL or EXPAND to
get
d1PREVPRIME X() .

Enter
PREVPRIME X() ,

then X , and use
DERIV to get
d1PREVPRIME X() .

Enter
PREVPRIME X() ,

then X , and use ∂ to
get
d1PREVPRIME X() .

NEXTPRIME
works only with
integer arguments.

PREVPRIME
works only with
integer
arguments.

PREVPRIME

Enter
DERIV PERM X,Y(),X() and

EVAL to get

X − Y()!⋅d1! X() −

X!⋅d1! X − Y()











SQ X − Y()!() .

EXPAND returns

−

X!⋅d1! X − Y() −

X − Y()! ⋅d1! X()











X − Y()!2 .

Enter
∂

∂X
PERM X,Y()()

and EVAL or EXPAND to
get d1PERM X,Y() .

Enter PERM X,Y() ,

then X , and use
DERIV to get
d1PERM X,Y() .

Enter PERM X,Y() ,

then X , and use ∂ to
get d1PERM X,Y() .

X , Y and then
PERM returns

X!
X − Y()! . Enter

X and use DERIV
to get

X − Y()!⋅d1! X() −

X!⋅d1! X − Y()











SQ X − Y()!() .

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-103

Enter

DERIV RND X,2(),X()

and EVAL or EXPAND to
get d1RND X,2.() .

Enter
∂

∂X
RND X,2()()

and EVAL or EXPAND to
get d1RND X,2() .

Enter RND X,2() ,

then X , and use
DERIV to get
d1RND X,2() .

Enter RND X,2() ,

then X , and use ∂ to
get d1RND X,2() .

X , 2 and then
RND returns
RND X,2.() .

Enter X and use
DERIV to get
d1RND X,2.() .

X , 2 and then
RND returns
RND X,2.() .

Enter X and use
∂ to get
d1RND X,2.() .

RND

Enter

DERIV R → D X(),X()

and EXPAND or EVAL to
get d1R → D X() .

Enter
∂

∂X
R → D X()()

and EXPAND or EVAL to
get d1R → D X() .

Enter R → D X() ,

then X , and use
DERIV to get
d1R → D X() .

Enter R → D X() ,

then X , and use ∂ to
get d1R → D X() .

X , and then
R → D returns
R → D X() . Enter

X and use DERIV
to get
d1R → D X() .

X , and then
R → D returns
R → D X() .

Enter X and use
∂ to get
d1R → D X() .

R → D

X , and then Psi
returns Psi X() .

Enter X and use
∂ to get
d1Psi X() .

Psi

In real mode enter
DERIV RE X + X2 ⋅ i(),X()
and then EVAL or EXPAND
to get 1. In complex

mode enter
∂

∂Z
RE Z()()

and then EVAL or EXPAND
to get d1RE Z() .

In real mode enter
∂

∂X
RE X + X2 ⋅ i()()

and then EVAL or
EXPAND to get

d1RE X + X2 ⋅ i() . In

complex mode enter
∂

∂Z
RE Z()() and then

EVAL or EXPAND to get
d1RE Z() .

In real mode enter

RE X + X2 ⋅ i() , then

X and use DERIV to

get d1RE X + X 2 ⋅ i() .

In complex mode
enter RE Z() , then

Z and use DERIV to
get d1RE Z().

In real mode enter

RE X + X2 ⋅ i() , then

X and use ∂ to get

d1RE X + X2 ⋅ i() .

In complex mode enter
RE Z() , then Z and

use ∂ to get d1RE Z().

In real mode enter

X + X2 ⋅ i, then
RE to get X .
Enter X and use
DERIV to get 1.
In complex mode
enter Z , then RE
to get RE Z() .

Enter Z and use
DERIV to get
d1RE Z() .

In real mode

enter X + X2 ⋅ i,
then RE to get
X . Enter X and
use ∂ to get 1.
In complex mode
enter Z , then
RE to get
RE Z() . Enter Z

and use ∂ to get
d1RE Z() .

RE

Enter

DERIV Psi X(),X() and

EVAL or EXPAND to get
d1Psi X() .

Enter
∂

∂X
Psi X()() and

EVAL or EXPAND to get
d1Psi X() .

Enter Psi X() , then

X , and use DERIV to
get d1Psi X() .

Enter Psi X() , then X ,

and use ∂ to get
d1Psi X() .

X , and then Psi
returns Psi X() .

Enter X and use
DERIV to get
d1Psi X() .

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-104

Enter
DERIV TDELTA X,Y(),X()
and EVAL or EXPAND to
get d1TDELTA X,Y() .

Enter
∂

∂X
TDELTA X,Y()()

and EVAL or EXPAND to
get d1TDELTA X,Y() .

Enter
TDELTA X,Y() ,

then X , and use
DERIV to get
d1TDELTA X,Y() .

Enter
TDELTA X,Y() , then

X , and use ∂ to get
d1TDELTA X,Y() .

X , Y , and then
TDELTA returns
TDELTA X,Y() .

Enter X and use
DEIV to get
d1TDELTA X,Y() .

X , Y , and then
TDELTA
returns
TDELTA X,Y() .

Enter X and use
∂ to get
d1TDELTA X,Y() .

TDELTA

Enter SIDENSX() ,

then X , and use ∂ to
get d1SIDENSX() .

Enter
DERIV TCHEBYCHEFF2(),X()
and EVAL to get 2 ⋅ 2 ⋅ X .
EXPAND returns 4 ⋅X .

Enter
∂

∂X
TCHEBYCHEFF 2()()

and EVAL or EXPAND to
get 0 .

Enter
TCHEBYCHEFF 2(),
then X , and use
DERIV to get 2 ⋅ 2 ⋅ X .

Enter
TCHEBYCHEFF 2() ,
then X , and use ∂ to
get 2 ⋅ 2 ⋅ X .

2 and then
TCHEBYCHEFF
returns 2⋅ X2 −1.
Enter X and use
DERIV to get
2 ⋅ 2 ⋅ X .

2 and then
TCHEBYCHEFF
returns 2⋅ X2 −1.
Enter X and use
∂ to get 2 ⋅ 2 ⋅ X .

TCHEBYCHEFF

Enter
DERIV TRNC X,2(),X()
and EVAL or EXPAND to
get d1TRNC X,2.() .

Enter
∂

∂X
TRNC X,2()() and

EVAL or EXPAND to get
d1TRNC X,2() .

Enter TRNC X,2() ,

then X , and use
DERIV to get
d1TRNC X,2() .

Enter TRNC X,2() ,

then X , and use ∂ to
get d1TRNC X,2() .

X , 2 , and then
TRNC returns
TRNC X,2.() .

Enter X and use
DERIV to get
d1TRNC X,2.() .

X , 2 , and then
TRNC returns
TRNC X,2.() .

Enter X and use
∂ to get
d1TRNC X,2.() .

TRNC

R → I works
only with integer
arguments.

R → I

Enter
DERIV SIDENSX(),X()

and EVAL or EXPAND to
get d1SIDENSX() .

Enter
∂

∂X
SIDENSX()() and

EVAL or EXPAND to get
d1SIDENSX() .

Enter SIDENSX() ,

then X , and use
DERIV to get
d1SIDENSX() .

X , and then
SIDENS returns
SIDENSX() .

Enter X and use
DERIV to get
d1SIDENSX() .

X , and then
SIDENS
returns
SIDENSX() .

Enter X and use
∂ to get
d1SIDENSX() .

SIDENS

Enter

DERIV R → I X(),X()

and EVAL or EXPAND to
get d1R → I X() .

Enter
∂

∂X
R → I X()()

and EVAL or EXPAND to
get d1R → I X() .

Enter R → I X() ,

then X , and use
DERIV to get
d1R → I X() .

Enter R → I X() , then

X , and use ∂ to get
d1R → I X() .

R → I works only
with integer
arguments.

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-105

Enter

DERIV XPON X(),X()

and EVAL or EXPAND to
get d1XPON X() .

Enter
∂

∂X
XPON X()()

and EVAL or EXPAND to
get d1XPON X() .

Enter XPON X() ,

then X , and use
DERIV to get
d1XPON X() .

Enter XPON X() ,

then X , and use ∂ to
get d1XPON X() .

X , and then
XPON returns
XPON X() . Enter

X and use DERIV
to get
d1XPON X() .

X , and then
XPON returns
XPON X() .

Enter X and use
∂ to get
d1XPON X() .

XPON

In the command line
enter

UVAL X2 ⋅1_cm2() ,

then X , and use ∂ to
get

d1UVAL X2 ⋅1_cm2().

Enter
DERIV X XOR Y,X()
and EVAL or EXPAND to
get d1XOR Y,X() .

Enter
∂

∂X
X XOR Y()

and EVAL or EXPAND to
get d1XOR Y,X() .

Enter X XOR Y ,
then X , and use
DERIV to get
d1XOR Y,X() .

Enter X XOR Y ,

then X , and use ∂ to
get d1XOR Y,X() .

X , Y , and then
XOR returns
Y XOR X .

Enter X and use
DERIV to get
d1XOR Y,X() .

X , Y , and then
XOR returns
Y XOR X .

Enter X and use
∂ to get
d1XOR Y,X() .

XOR

In the command
line enter

X2 ⋅1_cm2
 and

use UBASE to
get
UBASEX 2 ⋅1_cm2() .
Enter X and use
∂ to get
d1UBASE X2 ⋅1_cm2().

UBASE

In the command line enter
DERIV UVALX

2 ⋅1_cm
2(),X()

and EVAL or EXPAND to
get d1UVAL X2 ⋅1_ cm2().

In the command line
enter

∂
∂X

UVAL X2 ⋅1_cm 2()()
and EVAL or EXPAND to
get
d1UVAL X2 ⋅1_ cm2().

In the command line
enter

UVAL X 2 ⋅1_cm 2() ,

then X , and use
DERIV to get
d1UVAL X2 ⋅1_ cm2().

In the command
line enter

X2 ⋅1_cm2
 and

use UVAL to get
UVAL X2 ⋅1_ cm2() .

Enter X and use
DERIV to get
d1UVAL X2 ⋅1_ cm2() .

In the command
line enter

X2 ⋅1_cm2
 and

use UVAL to get
UVAL X2 ⋅1_ cm2() .

Enter X and use
∂ to get
d1UVAL X2 ⋅1_ cm2() .

UVAL

In the command line enter
DERIV UBASEX

2 ⋅1_cm
2(),X()

and EVAL or EXPAND to
get d1UBASE X2 ⋅1_cm 2().

In the command line
enter

∂
∂X

UBASE X2 ⋅1_cm 2()()
and EVAL or EXPAND to
get
d1UBASE X2 ⋅1_cm 2().

In the command line
enter
UBASE X2 ⋅1_cm2() ,

then X , and use
DERIV to get
d1UBASE X2 ⋅1_cm 2().

In the command line
enter
UBASEX 2 ⋅1_cm2() ,

then X , and use ∂ to
get
d1UBASE X2 ⋅1_cm 2().

In the command
line enter

X2 ⋅1_cm2
 and

use UBASE to
get
UBASEX 2 ⋅1_cm2() .
Enter X and use
DERIV to get
d1UBASE X2 ⋅1_cm2().

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-106

Enter
DERIV X ≥ Y,X() and

EXPAND or EVAL to get
d1≥ X,Y() .

Enter
∂

∂X
X ≥ Y() and

EXPAND or EVAL to get
d1≥ X,Y() .

Enter X ≥ Y , then
X , and use DERIV to
get d1≥ X,Y() .

Enter X ≥ Y , then X ,
and use ∂ to get
d1≥ X,Y() .

X , Y , and then ≥
returns X ≥ Y .
Enter X and use
DERIV to get
d1≥ X,Y() .

X , Y , and then
≥ returns
X ≥ Y . Enter X
and use ∂ to get
d1≥ X,Y() .

≥

Enter
DERIV X ≠ Y,X() and

EXPAND or EVAL to get
d1≠ X,Y() .

Enter
∂

∂X
X ≠ Y() and

EXPAND or EVAL to get
d1≠ X,Y() .

Enter X ≠ Y , then
X , and use DERIV to
get d1≠ X,Y() .

Enter X ≠ Y , then X ,
and use ∂ to get
d1≠ X,Y() .

X , Y , and then ≠
returns X ≠ Y .
Enter X and use
DERIV to get
d1≠ X,Y() .

X , Y , and then
≠ returns
X ≠ Y . Enter X
and use ∂ to get
d1≠ X,Y() .

≠

Enter Y Y= 3⋅X , then X ,

and use ∂ to get 3 .

Enter
DERIV X ≤ Y,X() and

EXPAND or EVAL to get
d1≤ X,Y() .

Enter
∂

∂X
X ≤ Y() and

EXPAND or EVAL to get
d1≤ X,Y() .

Enter X ≤ Y , then
X , and use DERIV to
get d1≤ X,Y() .

Enter X ≤ Y , then X ,
and use ∂ to get
d1≤ X,Y() .

X , Y , and then ≤
returns X ≤ Y .
Enter X and use
DERIV to get
d1≤ X,Y() .

X , Y , and then
≤ returns
X ≤ Y . Enter X
and use ∂ to get
d1≤ X,Y() .

≤

X , Y , and then
ZFACTOR
returns
ZFACTOR X,Y() .
Enter X and use
∂ to get
d1ZFACTOR X,Y().

ZFACTOR

Enter

DERIV Y Y= 3⋅X,X() and

EVAL or EXPAND to get
3

Enter
∂

∂X
Y Y = 3⋅X() and

EVAL or EXPAND to get

d1| Y, Y 3 ⋅ X{ }()

Enter Y Y= 3⋅X , then

X , and use DERIV to
get 3 .

Y , Y 3 ⋅ X{ } ,

and then returns

3 ⋅ X . Enter X and
use DERIV to get 3
.

Y , Y 3 ⋅ X{ } ,

and then

returns 3 ⋅ X .
Enter X and use
∂ to get 3 .

Enter
DERIV ZFACTOR X,Y(),X()
and EVAL or EXPAND to
get d1ZFACTOR X, Y() .

Enter
∂

∂X
ZFACTOR X,Y()()

and EVAL or EXPAND to
get
d1ZFACTOR X,Y() .

Enter
ZFACTOR X,Y() ,

then X , and use
DERIV to get
d1ZFACTOR X,Y().

Enter
ZFACTOR X,Y() ,

then X , and use ∂ to
get
d1ZFACTOR X,Y() .

X , Y , and then
ZFACTOR
returns
ZFACTOR X,Y() .
Enter X and use
DERIV to get
d1ZFACTOR X,Y().

DERIV FunctionX,…(),X(),
then EXPAND or EVAL

∂
∂X

Function X,…()()

then EXPAND or EVAL

Algebraic object
Function X,…()

then X , then DERIV

Algebraic object
Function X,…() then

X , then ∂

Enter arguments,
then use Function,

and then DERIV

Enter arguments,
then use Function,

and then ∂

Function

defined derivative because the HP49G can't find the derivative in
any syntax. If the cell is yellow, then the HP49G can find the
derivative but only using some particular syntax. In such cases
you can both make a user defined derivative or use always the
particular syntax. The cells coloured green in the same row as the
function will show you what the syntax is that you can use to find
the derivative. Some times it can get tricky to make the user
defined derivative, as we have seen in the case of ! and GAMMA .
The tables contain some things that are quite surprising, so when
you have time you might want to take a look at them. Mama mia!
They were more than I suspected. But I'm through at last, so that
we can continue with some more pleasant things. We are going to
take a look at some parametric and polar plots on the HP49G, and
see what we can do with the stuff we have covered in this part.

We start with the question:
Can some body in universe,
be it a planet, satellite,
comet, or even a stone, be
in noncircular, non-elliptic
orbit? Before you answer,
think again about our built-
in pattern recognition
machine. We look at the
sky, we see circular
motions, we develop
astronomy based on circular
(and elliptical) motion. And
so we project "circular" and
"elliptical" motions to all bodies in the universe. But let's make a
simple example. A planet moves in circular orbit around a start and a
satellite in circular orbit around the planet. What will the motion of the
satellite look like, seen from some ET that sits above the plain of the
ecliptic? In other words, can we give the parametric or polar equations
of the motion of the satellite, having the sun as the origin of our
coordinates system? Let's try. We assume that the planet moves
around the star in distance R from the star and with angular velocity
Ω . The satellite moves around the planet in distance d from the planet

and with angular velocity ω . The parametric representation of the planet
coordinates is:

X = R ⋅cos Ω ⋅t()
Y = R ⋅sin Ω ⋅t()

No need to plot that, it is a circle. The parametric representation of the
satellite coordinates (having the star as the origin of the coordinates
system) is:

x = R ⋅cos Ω ⋅t() + d ⋅cos ω ⋅t()
y = R ⋅sin Ω ⋅t() + d ⋅ sin ω ⋅ t()

What kind of curve is that? If we assign some values to the variables R ,
Ω , d , and ω , we can make a parametric plot with the parameter t . For
the sake of simplicity we store 1. in R , making thus the distance from
the star to the planet to our distance unit in space. The distance d from
the satellite to the planet then less than 1. Store .1 in d . Again for
simplicity we store 1. in Ω , making the angular velocity of the planet to
our angular velocity unit in space. (You get the character Ω by pressing

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-107

Star

Planet

Satelite

R

dr

Φ = Ω ⋅t

X = R ⋅cos Ω ⋅t()

Y = R ⋅sin Ω ⋅t()

x = R ⋅cos Ω ⋅t() + d ⋅cos ω ⋅t()

ϕ = ω ⋅t

y = R ⋅sin Ω ⋅t() + d ⋅ sin ω ⋅ t()

 and then - .) The angular velocity of the satellite on
its motion around the planet is in general greater than the angular
velocity of the motion of the planet around the sun. Store 5. in ω .
(The character ω is , and then .) We are going to
make a parametric plot. Go to the PLOT SETUP screen and select
plot type Parametric . Enter
R ⋅COS Ω ⋅t() + d ⋅COS ω ⋅t() + i ⋅ R ⋅SIN Ω ⋅t() + d ⋅SIN ω ⋅t()() in
the input field EQ:. Enter t as the independent variable (the
parameter). Now, in the PLOT WINDOW − PARAMETRIC
screen, enter H− View: from −3 to 3 , and V − View: from −1.5 to
1.5 . Enter Indep Low: 0. , and High: 6.28 . Also enter Step: 1
and activate the option
_Pixels . Press

 and then
 and let the

HP49G plot the orbit of
the satellite around the
star. Wow! Almost a
square! Erase the plot,
store .05 in d and
redraw. Wow2! Now it
is even more like a
square! It is interesting
to add the orbit of the
planet in the same plot.
Press - . Now
you are in the equations
catalogue screen. Press

, to add the
parametric equation of the planet motion. The HP49G switches to the
EQW and enters automatically XY1t() = . Delete the unfinished
expression XY1t() = and enter R ⋅COS Ω ⋅t() + i ⋅R ⋅SIN Ω ⋅t() . Press

 and then . Because of the limited resolution we can't
see very well which the orbit of the planet and which the orbit of the
satellite is. We can of course zoom-in to focus on some particular part

of the orbits, but let's go
the opposite way and
enlarge the PICT itself.
The PICT is per default
131 pixels wide and 64
pixels high, so let's double
its dimensions. Go to the
stack, enter #262d and
#128d , and press
to resize it to 262 pixels wide and 128 pixels high. Redraw the plot.
While the HP49G is plotting, you only see the central part of the plot.

Wait until it finishes and then press and to activate scroll mode.
In this mode all other graphics functions are deactivated and you can use
the arrow keys to scroll around. When you had enough scrolling, press

again and to leave scroll mode and return to the normal
graphics environment. Here you can also use the arrow keys to move
around, but
the graphics
cursor has
to reach the
edges of the
s c r e e n
before the
s c r o l l i n g
starts. Let's
z o o m - i n
now to get
an even
b e t t e r
impression
of what's
going on. Use the area indicated in the above picture to zoom in and wait
until the plot is done. Move around using the arrow keys to get a first
overall impression of the orbits. Though the orbit of the satellite around
the star is almost a square, its orbit around the planet is a perfect circle.
The picture on the next side demonstrates this. The two orbits are
connected with red line segments, which represent the distance d of the

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-108

planet to the orbit at several times. At the right part of the picture the
relative positions of the planet and the satellite are shown again, to
emphasise on the circular motion of the satellite around the planet. The
small circle represents the planet, while the red line represents the
distance d . The satellite sits on the free end of the red line segments.
If you imagine sitting on the planet and watching the satellite, you will
"see" that it has a circular orbit around the planet. Nonetheless it
moves in an almost square orbit around the star. Let's try some
additional plots with other values for d and ω . First of all, while you
are in the graphics environment, press , then press twice
to go to the third page of the zoom menu, and then press to
reset the plot to the view ranges before we zoomed in. Then go to the
stack, enter #131d and #64d and press to bring the PICT to

its default dimensions.
Store .1 in d and 8. in
ω . Redraw the orbits.
Now you have a six-
fold flower (satellite
orbit) and a circle
(planet orbit). Return to
the stack, store .3 in d
and redraw to see better
how the satellite moves
around the planet,
while the planet moves
around the star.

We will try now to
convert the parametric
form of the orbit of the
satellite to a polar form.
Enter the list
R Ω d ω{ } and

press to delete the variables with numeric values. Press
to get the variables menu, and press to put the list of the two
parametric expressions on the stack. Press to extract the first
expression for the satellite orbit
R ⋅COS Ω ⋅t() + d ⋅COS ω ⋅t() + i ⋅ R ⋅SIN Ω ⋅t() + d ⋅SIN ω ⋅t()()
We could use the function ABS to get the absolute value of the above
parametric expression, but then we should add all variables contained in
the expression to REALASSUME, because otherwise the HP49G will
assume that they are complex, and will return a result containing for
example RE R() , IM R() , and so on. Instead of using ABS we find the
absolute value "by hand". Switch to real mode (that's important). Press

 to make a copy of the parametric expression. Then press to
get the real part of the expression, and square it, to get

SQ R ⋅COS Ω ⋅t() + d ⋅ COS ω ⋅ t()() . Press to swap stack levels 1
and 2. Press to get the imaginary part, and square it, to get

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-109

SQ R ⋅SIN Ω ⋅t() + d ⋅SIN ω ⋅t()() . Press to add two squares and
then to transform this to

R2 + d2 + 2 ⋅ d ⋅R ⋅COS ω −Ω() ⋅t() . Press to get the square root
of the result. The expression:

R2 + d2 + 2 ⋅d ⋅R ⋅COS ω −Ω() ⋅ t()

is the distance from the coordinates origin (star) to the satellite. If you
store this in EQ , restore the same values like before for variables R ,
Ω , d and ω , select plot type Polar , and redraw, you are going to
get the same satellite orbit, like in the examples above. Notice that this
polar representation doesn't depend on the angle α of the satellite in
the coordinates system, in which the star is the origin. It depends on
the angle difference between the angle ϕ of the satellite in the
coordinates system in which the planet is the origin, and the angle Φ
of the planet in the coordinates system in which the star is the origin.

If you want to plot R2 + d2 + 2 ⋅d ⋅R ⋅COS ω −Ω() ⋅ t() as a polar
plot, then you must have t as the independent variable.

We have seen that for some particular values of the variables R , Ω , d
and ω , the satellite orbit looks almost like a square. Are there any other
particular values of those variables, that make the orbit look like another
polygon? We will examine this question in the next parts of this
marathon, when we will have covered the additional stuff that is
necessary.

Before closing this part, we do another example that shows what
complicated curves can be generated by using very simple mechanisms.
Consider the simple machine on the bottom of the next page. The
(orange metal) arm is connected with the wheel and goes through the
metal ring in a distance d from the wheel. The ring itself can freely
rotate, but it doesn't move along the x axis. When the wheel spins with
angular velocity ω , what will be the curve that the end of the (orange
metal) arm will create? In order to answer this (and plot this) we must
find some analytic form of the coordinates of the end of the arm, or take
the numeric way. In this case it is easy to follow the analytic way. We
need to find the angle α , because if we have it, then we can use it to
find the lengths of the projections of the arm on the x and on the y axis.
This angle can be found by using the formula:

α = atan
R ⋅ sin ω ⋅t()

d +R − R ⋅ cos ω ⋅t()


 




Having this angle we can find the x coordinate of the end of the metal
arm. Enter:

ATAN
R ⋅ SIN ω ⋅t()

d +R −R ⋅COS ω ⋅t()


 




and store the expression in variable α . Now enter
R ⋅COS ω ⋅t() + l ⋅COS α() . In the EQW select the sub expression
l ⋅COS α() and expand. Press to put the expression for the x
coordinate on the stack. The expression is:

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-110

R

dr

Φ = Ω ⋅t

ϕ = ω ⋅t

Φ = Ω ⋅t

β = ϕ −Φ
= ω −Ω()⋅ t

α

Alone the huge sub expression under the square root is reason for
making us to lose any interest to handle the problem. It wouldn't fit
the width of this page written in one line. But the HP49G is a much
more powerful companion than it might look. Press to take the
whole expression in the EQW. Use the arrow keys to select the sub
expression under the square root. Press and then .
The HP49G converts this sub expression to:

R ⋅COS ω ⋅t() − R + d()()2
⋅

R2 ⋅SIN ω ⋅t()2 +R2 ⋅COS ω ⋅t()2 −

2 ⋅R2 + 2 ⋅d ⋅R() ⋅COS ω ⋅t() +

R2 + 2 ⋅ d ⋅R + d2






 








and this brings our hopes back that we will somehow
come to an end ;-). While in the EQW select the term

R2 ⋅ SIN ω ⋅t()2 , press and then to extend the selection to

R2 ⋅ SIN ω ⋅t()2
. Press to convert the selection to R2 . Using the

same technique select the sub expression 2 ⋅R2 + 2 ⋅ d ⋅R and collect it to
R + d() ⋅R ⋅2 . Select the sub expression R2 + 2 ⋅ d ⋅R + d2 and collect it

to R + d()2
. Now we move on to the denominator. Use the arrow keys

to select the sub expression R2 ⋅ SIN ω ⋅t()2 + R2 ⋅ COS ω ⋅t()2
 of the

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-111

ϕ = ω ⋅t

R

d

l
ϕ
R

d

R ⋅cos ω ⋅t()
R − R ⋅ cos ω ⋅t()

R ⋅sin ω ⋅t()

α

R ⋅COS ω ⋅ t() +

l ⋅

R4 ⋅ COS ω ⋅ t()2 − 2⋅ R4 + 2 ⋅ d⋅R 3()⋅ COS ω ⋅ t() + R4 + 2 ⋅d ⋅R3 + d2 ⋅R 2()⋅ SIN ω ⋅ t()2 +

R 4 ⋅ COS ω ⋅ t()4 − 4 ⋅R 4 + 4 ⋅ d⋅R3() ⋅COS ω ⋅ t()3 + 6⋅R 4 +12 ⋅ d ⋅R3 + 6⋅ d2 ⋅R2()⋅COS ω ⋅t()2 −

4 ⋅R4 +12 ⋅ d ⋅R3 + 12 ⋅d2 ⋅R 2 + 4 ⋅d3 ⋅R()⋅ COS ω ⋅ t() + R4 + 4 ⋅d ⋅R3 + 6⋅ d2 ⋅ R2 + 4 ⋅ d3 ⋅R + d4

R2 ⋅ SIN ω ⋅ t()2 +R2 ⋅COS ω ⋅ t()2 − 2 ⋅R2 + 2⋅ d ⋅R()⋅ COS ω ⋅ t()+ 2 ⋅R2 + 2⋅ d ⋅R + d2

ϕ
R

R ⋅cos ω ⋅t() l ⋅cos α()

α l

denominator and press again to convert it to R2 . Select the
expression 2 ⋅R2 + 2 ⋅ d ⋅R and collect it to R + d() ⋅R ⋅2 . Select the

expression R2 + 2 ⋅ d ⋅R + d2 of the denominator and collect it to
R + d()2

. Press to put the whole expression on the stack.
Now it looks much better:

R ⋅COS ω ⋅t() +

l ⋅
R ⋅COS ω ⋅t() − R + d()()2

⋅

R2 − R + d()⋅R ⋅2 ⋅ COS ω ⋅t() + R + d()2()
R2 − R + d() ⋅R ⋅2 ⋅COS ω ⋅t() + R + d()2

Store this in variable x (small letter).

Now we are going to find an expression for the coordinate y . Enter
R ⋅SIN ω ⋅t() − l ⋅ SIN α() . Press to take the expression in the
EQW. In the EQW select the sub expression −l ⋅SIN α() and expand.
Press to put the expression for the y coordinate on the stack.
The expression is:

which is again a monster that the HP49G can tame. select the whole
sub expression under the square root and collect it. The HP49G fights
bravely and manages to collect the sub monster, errh, I mean sub
expression to

R ⋅COS ω ⋅t() − R + d()()2
⋅

R2 ⋅SIN ω ⋅t()2 +R2 ⋅COS ω ⋅t()2 −

2 ⋅R2 + 2 ⋅d ⋅R() ⋅COS ω ⋅t() +

R2 + 2 ⋅ d ⋅R + d2






 








While in the EQW select the sub expression
R2 ⋅ SIN ω ⋅t()2+R2 ⋅ SIN ω ⋅t()2

, and press

to convert the selection to R2 . Select the sub
expression 2 ⋅R2 + 2 ⋅ d ⋅R and collect it to
R + d() ⋅R ⋅2 . Select the sub expression

R2 + 2 ⋅ d ⋅R + d2 and collect it to R + d()2
.

Select the whole denominator and collect to get
the sub expression:

R ⋅COS ω ⋅t()− R + d()() ⋅

R2 ⋅ SIN ω ⋅ t()2 + R2 ⋅COS ω ⋅ t()2 −

2 ⋅R2 + 2⋅ d ⋅R() ⋅COS ω ⋅ t() +

R2 + 2 ⋅d⋅R + d2






 








Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-112

R ⋅SIN ω ⋅ t() +

l ⋅R ⋅SIN ω ⋅ t()⋅

R 4 ⋅COS ω ⋅ t()2 − 2 ⋅R 4 + 2 ⋅ d⋅R3() ⋅COS ω ⋅ t() +R4 + 2⋅ d ⋅R3 + d2 ⋅R2() ⋅ SIN ω ⋅ t()2 +

R4 ⋅COS ω ⋅ t()4 − 4 ⋅R4 + 4 ⋅ d ⋅R3()⋅ COS ω ⋅ t()3 + 6⋅R4 +12 ⋅ d ⋅R3 +6 ⋅d2 ⋅R2() ⋅ COS ω ⋅ t()2 −

4 ⋅R4 + 12 ⋅ d⋅R3 + 12 ⋅ d2 ⋅R2 + 4⋅ d3 ⋅R() ⋅ COS ω ⋅ t() + R4 + 4⋅ d⋅ R3 + 6⋅ d2 ⋅ R2 + 4 ⋅ d3 ⋅R + d4

R3 ⋅ COS ω ⋅ t() − R3 + d ⋅R 3()() ⋅SIN ω ⋅ t()2 −R 4 ⋅ COS ω ⋅ t()4 − 3⋅R 3 + 3 ⋅d⋅R 2()⋅ COS ω ⋅ t()2 +

3⋅ R3 + 6⋅ d⋅ R2 + 3 ⋅d2 ⋅R() ⋅COS ω ⋅t() − R 3 + 3 ⋅ d⋅R 2 + 3 ⋅d2 ⋅R + d3()

ϕ
R

R ⋅sin ω ⋅t()

l ⋅sin α()

α l

Press to convert R
2 ⋅ SIN ω ⋅ t()2 +R2 ⋅ SIN ω ⋅ t()2

 to R2 . Then
collect 2 ⋅R2 + 2 ⋅ d ⋅R to R + d() ⋅R ⋅2 , and R2 + 2 ⋅ d ⋅R + d2 to

R + d()2
. The expression for the y coordinate of the end of the metal

arm looks now also much better. We still can't tell that it is an "easy"
expression, but comparing it to what we started with, it is simpler:

R ⋅SIN ω ⋅ t() +

l⋅R ⋅SIN ω ⋅ t() ⋅
R ⋅COS ω ⋅t() − R + d()()2 ⋅

R2 − R + d()⋅R ⋅2 ⋅COS ω ⋅t() + R + d()2()
R ⋅COS ω ⋅t() − R + d()() ⋅

R2 − R + d() ⋅R ⋅2 ⋅COS ω ⋅ t() + R + d()2()










Store it in y (small letter).

Before we do the plot for this parametric function, some words about
the math capabilities of the HP49G. As you saw the expressions we
deal with in this example are way not "easy". Nonetheless the HP49G
is a great help. Consider for example how long it would take to do the
same by hand. It is not only a matter "knowing how to" but also a
matter of mistakes that one could do, for example because of
forgetting a power, and the like. The calculator is no substitute for our
thinking (fortunately) but rather a help for freeing us from the "dirty
work" and letting us concentrate on the important things. Also notice
that we didn't simply said, "HP49G think for me and simplify this
expression". We considered the expressions, we decided what would
be best to do, and tried it out. Of course, often our decision will not
bring any advantages when it comes to simplifications. But with the
HP49G this is not bad at all. Quite the contrary, it is very good.
Because this way, after a certain amount of experience, we start
"knowing" what some particular operation will give us, before we
carry it out. Not exactly each and every terms of the result, but rather
the overall shape of the result. Pattern recognition?

Curious as we are, we want to see what the above parametric function

looks like. In order to plot it, we must store some values in the variables
R , d , l, and ω . Store 1. in R , 1. in d , 4. in l, and 1. in ω . In the
variables menu, press , enter i, press , then and then .
Store the resulting expression in EQ . In the PLOT SETUP screen,
set plot type Parametric , and set independent variable t . In the
PLOT WINDOW − PARAMETRIC screen, set H− View: from
0. to 6. and V − View: from −1.5 to 1.5 . Set Indep Low: to 0. .
When the input field High: is selected, enter the sequence
2 π ∗ → NUM, to enter the numeric approximation of 2 ⋅π .
Finally, enter the sequence
2 π ∗ 50 / → NUM
in the input field Step:.
Press and then

. You get the "drop"
at the right. Let's try another
plot but now with a much
bigger l. Store 18. in l, set
H− View: from 0. to 34.
and V − View: from −8.5 to 8.5 ., and erase and draw again. This time
you get a banana. What are that curves between l = 4. and l = 18.? Let's
see. We will do a
small program that
draws the curves
inside the above
limits for a step of
2. , that is for l = 4.,
l = 6. , up to l = 18..
Enter the program:

<<
ERASE DRAX
4. 18.
FOR I

I 'l' STO DRAW
2. STEP

>>

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-113

Press to let
it run and watch
how the generated
curves change
shape as l gets
bigger and bigger.
When the program
finishes, press
[arrow-left] to go
the graphics
environment, turn
the HP49G 90° in
clockwise direction, and see how drops and bananas can be combine
to give us a pine.

This example of a parametric function shows also that interesting
curves can be produced out of simple mechanisms. It would be a
good exercise to think about some "machines", with connected wheels
and arms and axes and gear, and try to use the HP49G for plotting the
curves of some point of the moving parts of the machine. The
resulting parametric expressions are most of the time rather
"inconvenient" but with the brave HP49G on your side you will be
able to defeat most of the monsters. But some of them, often the most
"easy looking", will prove very very "noncooperative". Like
Trabakoulas said, "Pattern recognition can get quite dangerous, when
it comes to easy and difficult. Exact examination is far better."

We finish this part, and I think that it is time for me to go sleep about
one week. I see curves and lines instead of pines, which means that I
need a good old Lagavulin to return to reality. Take care and 'till next
time.

Parametric greetings,
Nick.

Basic Calculus with the HP49G - Volume 1 - Part 2

Volume 1, 2-114

Hoi zämme!2

The last part of this marathon has been quite…, well, marathonial.
After that we will surely enjoy a part with much stuff to play with. As
Trabakoulas says, "Learning is best made in the game". So, while
other people are playing "how to be become of the master of the
world", we ignore that totally uninteresting (and questionable) games,
and we play again, what we play best: How much maths is possible
on the HP49G?. From what we've seen until now, the answer to this
question is "much, much more than we could imagine considering
only the size of the machine. And who knows what is yet to come.

Until now we focused on functions of a single variable. But a
function can have more than one variables. Consider the function
f u,v,w() , which depends on the variables u , v , and w . If we
consider any two of these variables, say v and w , as quantities, the
values of which we "hold" constant, then the function f u,v,w() can
be considered as a function of a single variable, namely of u . We
"freeze" both v and w at some arbitrary values, and consider how the
function behaves when u varies. That means, we consider the partial
dependency of f u,v,w() on variable u . Then, the partial derivative

of f u,v,w() for u is
∂f
∂u

. Actually the "curly" ∂ is used in

mathematics for such partial derivatives. The normal derivative is

denoted with "normal" d , i.e.
df
dx

. But because the HP49G considers

any variable that doesn't depend on the differentiation variable as
constant, it uses only the symbol ∂ . Let's do some examples.

Enter X3 + 7 ⋅X2 ⋅ Y + 3 ⋅X ⋅ Y5 − 5 ⋅ Y6 and press to make a
copy of this expression. Let's find the partial derivative for X . Enter
X and then press to get 3 ⋅ X2 + Y ⋅7 ⋅ 2 ⋅ X + 3 ⋅ Y5 . Expanding

2 Swiss "Hi everybody", pronounced "Hoi tsama", or something like that. The
letters of the alphabet are simply not enough to represent this singing language
accurately.

this you get 3 ⋅ X2 +14 ⋅ Y ⋅ X + 3 ⋅ Y5 . Press and let's find the
partial derivative for Y . Enter Y and press to get
7 ⋅ X2 + 3 ⋅ X ⋅ 5 ⋅ Y4 − 5 ⋅6 ⋅ Y5 . Expand this to get
7 ⋅ X2 +15 ⋅ Y4 ⋅ X − 30 ⋅ Y5 . As you can see the HP49G has ordered the
powers of X in descending order. If you want to order for Y powers,
enter Y and press to get − 30 ⋅ Y5 −15 ⋅ X ⋅ Y4 − 7 ⋅ X2() . If
you don't like the minus sign in front of the whole expression, then
press , to get − 30 ⋅ Y5() +15 ⋅ X ⋅ Y4 + 7 ⋅ X2 . If you want
ascending ordering, then set flag -114 and expand. The result is
− 30 ⋅ Y5 −15 ⋅ X ⋅ Y4 − 7 ⋅ X2() , that means in ascending order of

powers of X . If you now enter Y and press again, then
you get 7 ⋅ X2 +15 ⋅ Y4 ⋅ X − 30 ⋅ Y5 , in which the powers of Y are
sorted in ascending order. The command EXPAND orders the powers
according to the flag -114. It prefers automatically the variable that is
lower in alphabetical order. That means, if you have an expression with
variables A and B , then it will try to order for A according to the state
of flag -114. The command REORDER allows you to select which
variable's powers will be used for ordering. Clear flag -114 now.

Let's do some more examples. Enter:

∂
∂X

X + Y()3 ⋅ eX⋅Y()
and make a copy of the expression because we will need it more than
once. If you press now, you will get

Y ⋅ X3 + 3 ⋅ Y2 + 3() ⋅X2 + 3 ⋅Y3 + 6 ⋅ Y() ⋅X + Y4 + 3 ⋅ Y2()⋅ eX⋅Y . Press

 to bring the expression:

∂
∂X

X + Y()3 ⋅ eX⋅Y()

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-1

on stack level 1, and make another copy of it. Now press . The
result this time is 3 ⋅ X + Y()2 ⋅ eX⋅Y + X + Y()3 ⋅ Y ⋅ eX⋅Y . This shows
that EXPAND and EVAL are different things. They don't always
return the same results when applied on algebraic expressions. The
last result demonstrates also another fact. Suppose that for some
reason you want to expand the factor 3 ⋅ X + Y()2

 of the term

3 ⋅ X + Y()2 ⋅ eX⋅Y , but leave the rest of the expression unchanged.
Interactively you would take the whole expression in the EQW, select
3 ⋅ X + Y()2

 using the arrow keys, and expand it. But there is no built-
in programmable command for doing the same from a program. We
can't apply some command, like EXPAND or COLLECT , to a part
of an expression programmatically. One of the features I miss most on
the HP49G is exactly this. The next pages will demonstrate an
imperfect way to achieve this, which I nonetheless believe that it is
good enough for generation of ideas.

Having the commands → LST and → ALG , it is not difficult to
make programs that apply some commands to a part of an expression.
Let's examine these commands. With the expression
3 ⋅ X + Y()2 ⋅ eX⋅Y + X + Y()3 ⋅ Y ⋅ eX⋅Y on stack level 1, press
to get:

3 X Y + 2 ^ ∗ EXP ∗ X Y + 3 ^ Y

∗ X Y ∗ EXP ∗ +








The first 7 list elements represent the expression 3 ⋅ X + Y()2
 that we

want to expand. Make a copy of the list. Enter 1, then 7 , and press
 to create the sub list 3 X Y + 2 ^ ∗{ }. Now press

 to convert the list to 3 ⋅ X + Y()2
. Expand this expression to

get 3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2 and press to convert it to the list
to 3 X 2 ^ ∗ 6 Y ∗ X ∗ + 3 Y 2 ^ ∗ +{ } .

Press to bring the big list to stack level 1. Now we will create the

sub list of all elements that we didn't use, i.e elements 8 to last. Enter 8
and press and then , to get 25. . Press to get
X Y ∗ EXP ∗ X Y + 3 ^ Y ∗ X Y ∗ EXP ∗ +{ } .

Press to add the the expanded sub expression to the list on stack level
1. Now press to get
3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2()⋅ eX⋅Y + X + Y()3 ⋅ Y ⋅eX⋅ Y .

In general the method looks like this:

Step 1: Convert the algebraic object to its equivalent RPL list using
the command → LST .

el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }
'arbitraryAlgebraic'

Step 2: Create the sub list that contains elements 1 up to n-1, where
n is the first element that belongs to the sub expression
which we want to manipulate.

el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }

el1 el2 … eln −1{ }

Step 3: Create the sub list that contains elements n up to n+m,
where n is the first element and n+m is the last element of
the sub expression which we want to manipulate.

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-2

el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }

eln eln+1 … eln+m{ }

Step 4: Use → ALG to convert the list eln eln+1 … eln+m{ }
to its corresponding algebraic object.

eln eln+1 … eln+m{ }

'algebraicSubExpressionToBeManipulated'

Step 5: Apply the algebraic manipulation (EXPAND ,
COLLECT , etc.) to
'algebraicSubExpressionToBeManipulated' .

'algebraicSubExpressionToBeManipulated'

'ManipulatedAlgebraicSubExpression'

Step 6: Convert 'ManipulatedAlgebraicSubExpression' to

the list newEl1 newEel2 …{ } with → LST .

NewEl1 NewEl2 …{ }

'ManipulatedAlgebraicSubExpression'

Step 7: Add NewEl1 NewEl2 …{ } to the list

el1 el2 … eln −1{ } .

NewEl1 NewEl2 …{ }el1 el2 … eln −1{ }

el1 el2 … eln −1 NewEl1 NewEl2 …{ }

Step 8: Create the sub list that contains elements n+m+1 up to the
last, where n+m is the last element that belongs to the sub
expression which we want to manipulate.

el1 el2 … eln eln +1 … eln+ m eln+m+1 eln +m+1 …{ }

eln+ m+1 eln+ m+2 …{ }

Step 9: Add the sub list eln+ m+1 eln+ m+2 …{ } to the list

el1 el2 … eln −1 NewEl1 NewEl2 …{ } .

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-3

el1 el2 … eln −1 NewEl1 NewEl2 …{ }
eln+ m+1 eln+m+2 …{ }

el1 el2 … eln −1 NewEl1 NewEl2 … eln+ m+1 eln+m+2 …{ }

Step 10: Use → ALG to convert the last list to an algebraic
object.

'NewAlgebraicWithManipulatedAlgebraicSubExpression'

el1 el2 … eln−1 NewEl1 NewEl2 … eln+ m+1 eln+m+2 …{ }

This is indeed a very easy thing to program. We will make a program
that takes an algebraic object from stack level 2, and a list from stack
level 1. The list contains will have three items. The first item is the
manipulation that we want to apply to a sub expression of the
algebraic object. It can be a command, like EXPAND , COLLECT ,
etc. But it can also be function, like SIN , COS , etc. It can be even a
program, provided that the program takes exactly one algebraic object
as input and returns exactly one algebraic as output. The second item
is the position of the first RPL list element that belongs to the sub
expression that we want to manipulate. The third item is the position
of the last RPL list element that belongs to the sub expression that we
want to manipulate. Here is the program listing:

<<
SWAP →LST
→ specs expr
<<

expr 1 specs 2 GET @Create first sub list

1 - SUB
expr specs 2 GET @Create sub list of alg.
specs 3 GET SUB @to be manipulated.
→ALG specs HEAD @Apply command. Add to
EVAL →LST + @first sub list.
expr 3 GET 1 + @Create third sub list,
OVER SIZE SUB + @add to the rest
→ALG @Convert to algebraic

>>
>>

This is the program APLAT (APpLy AT, name borrowed from
Mathematica). To use this program we must first see how we number
the elements of an algebraic expression, in order to be able to provide
the program with correct information. If you didn't drop the last result
of page 3-2, then stack level 1 must contain the expression
3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2()⋅ eX⋅Y + X + Y()3 ⋅ Y ⋅eX⋅ Y . Let's see how the

elements of this expression are numbered.
We start numbering at the first element
excluding parentheses, as parentheses are not
included in the elements of the corresponding
RPL list. (This is a result of the RPL
method, which doesn't need any parentheses
at all.) We count first the operands
(arguments) and then the functions that act
upon the operants. For example in the above
expression, we start with 3 ⋅ X2 . The two
arguments 3 and X2 are combined by ⋅
(multiplication). The argument 3 has the
number 1. The argument X2 is itself an
expression, so we can't give it the number 2.
This expression contains the two arguments
X and 2 , which are combined by ^
(power). So, X is number 2 , the power 2 is number 3, the power
function ^ is number 4, and the multiplication of 3 with X2 is number
5. The picture on the top of the right column illustrates this. That means,
when we want to somehow manipulate the sub expression 3 ⋅ X2 , we

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-4

3 ⋅ X2

⋅

3 X 2

X2

^

1 2 3

4

5

have to give the numbers 1 and 5 to our program.

The sub expression 3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2 includes elements 1 to
17. Let' try our program. We will collect the sub expression
3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2 but will leave the rest unchanged. Since the
expression 3 ⋅ X2 + 6 ⋅ X ⋅ Y + 3 ⋅ Y2()⋅ eX⋅Y + X + Y()3 ⋅ Y ⋅eX⋅ Y is on
stack level 1, we don't need to type it again. Enter the list
COLLECT 1 17{ } and press . The result is

X + Y()2 ⋅3 ⋅ eX⋅Y + X + Y()3 ⋅ Y ⋅ eX⋅Y . It worked!

But there are shadows on our way. The corresponding RPL list of an
algebraic object contains no parentheses, but the algebraic object itself
can contain parentheses. To understand the problem better we
consider a simple example. Enter the algebraic object A + B + C .
What problems can this simple expression bring? Well, set flag -53
(to let all parentheses be shown), press and then to edit the
expression in the command line. The expression is shown as
'(A + B) + C' . There are invisible parentheses in this simple object!!!
What does this mean for us? First of all, suppose we have A + B + C
and we want to do something with the sub expression B + C . This
means that we should give the program APLAT the numbers 3 and
5 , according to our numbering system. Press to put the
expression to the stack, and enter the list EXPAND 3 5{ }. Press

 to (try to) expand the sub expression B + C . Of course in
this example you can't expand anything, but this is only for
demonstration purposes. The HP49G errors out with
Bad Argument Type and leaves 'Invalid Expression' on stack
level 1. What happened here? Press and then drop the list.
Now the object A + B + C must be back on stack level 1. Press

. The result is the list A B + C +{ } . Elements 3 to 5
build up the sub list + C +{ } , out of which the program APLAT
tried to make a sub expression. This list is of course not the
corresponding RPL list of the sub expression B + C . Can we build up
the sub expression B + C out of the (current) algebraic object

A + B + C? What numbers do we have to give to APLAT to achieve
this? The answer is: The current inner structure of the algebraic object
A + B + C makes this task impossible. In reality the object, as it is now,
is A +B() + C . In this object the sub expression B + C doesn't exist!!!
Don't confuse this with the well known (and almost spontaneous)
recognition of the pattern A +B() + C = A + B + C() , which
"automatically" implies that our object is equivalent to A + B + C() , in
which the sub expression B + C does exist. The calculator doesn't have
such "spontaneous" cognition capabilities. Before we go further take a
look at the following table:

Algebraic Object RPL List Sub expression B + C
A +B() + C A B + C +{ } Doesn't exist

A + B + C() A B C + +{ } Elements 2 to 4

Though the two objects A +B() + C and A + B + C() are mathematically
equivalent, for the HP49G they are different!!

In this example, if you expand the current version of A + B + C , the
calculator alters its inner structure from A +B() + C to A + B + C() , i.e.
from A B + C +{ } to A B C + +{ } . Press , then

, and then , to see the object in the form A + B + C() . Press
 to put it back to the stack. Now of course you can enter the list

EXPAND 2 4{ } and press . But now the sub expression
A + B has become unavailable for partial manipulations. And the big
problem is that there are simply too many internal rules that the HP49G
uses in order to decide which sub expressions to put in parentheses.
(And these rules are kept secret by the makers.) Wanting to make a
program that will run successfully in any possible case, is like wanting
to do reverse engineering on the whole CAS of the HP49G, and then
make a program that "knows" all rules and all possible way to rearrange
an expression. This would be also similar to mapping all properties like
commutativity, associativity etc., to a single program… errrh, who's
gonna do that? ;-)

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-5

From the above paragraphs we see that it is not so easy to specify a
mathematically valid sub expression of an expression on the HP49G.
And since there are no built in commands that can give us some
particular (mathematically valid) sub part of a given expression, I
think we have a major disadvantage. We will return to these fields
some day, in a special marathon run, but for now we take a look at
three small programs that can bring us some light when we want to
know exactly, what the internal structure of an algebraic object looks
like.

First of all we make a program that
converts a given algebraic object to a
structured list. We continue using the
example A + B + C in its two different
versions, A +B() + C and A + B + C() .
When the program is fed with
A +B() + C , it should return the list

A B +{ } C +{ }{ } , in which the sub

expression A +B() (in the invisible
parentheses) is put in a sub list, which
itself is element of another sub list that
contains the "rest". But when the program
is fed with A + B + C() , it should return

the list A B C +{ } +{ }{ } , in which

the sub expression B + C() (in the
invisible parentheses) is put in a sub list,
which itself is element of another sub list
that contains the "rest". The structured list
that the program returns is one
representation of the algebraic tree that
builds up the algebraic object. Consider
the following code:

<<
IF

DUP TYPE 9. ==
THEN

1. →LIST
END
1.
<<

IF
DUP TYPE 9. ==

THEN
OBJ→ SWAP 1. + →LIST
ALG→TREE

END
>>
DOSUBS

>>

This is the program ALG → TREE that comes with this document. It
takes one algebraic object from the stack and it returns its algebraic tree
list. As you can see it calls itself over and over again, until the whole
object has been processed. Let's try it. Enter:

Y ⋅ SIN X()2 + Y −
1
2





 ⋅ COS X()2

and make one copy of this algebraic object. Now press .
The result is the list:

Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }{ }
If you imagine all but the outermost brackets away, then you have the

list that the command → LST would return. Press and then
. You get the list:

Y X SIN 2 ^ ∗ Y 1 2 / − X COS 2 ^ ∗ +{ }

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-6

A B +{ } C +{ }{ }

A + B

A +B() + C

A B C +{ } +{ }{ }

B + C

A + B + C()

which indeed is equivalent to the tree list, up to additional structuring.
The tree list, so to speak, includes the (invisible) parentheses that are
present to algebraic objects, while the RPL list is the command
sequence that produces exactly the same algebraic object.

Since we have a the program ALG → TREE , we are inclined to
program the opposite, TREE → ALG . If we could somehow flatten
the tree list, we would get the RPL list of the algebraic object, which
we can convert to an algebraic object using → ALG . Here we can use
the program FLATTEN again, which we made in the Complex
Numbers Marathon:

<<
1. CF
1.
<<

IF
DUP TYPE 5. ==

THEN
OBJ→ DROP
1. SF

END
>>
DOSUBS
IF

1. FS?
THEN

FLATTEN
END

>>

As you can see the program FLATTEN is one of those that call
themselves until some condition (here: flag 1 is clear) is true. Press

 and then , to convert the tree list to the RPL list. Now
you can press to get the original algebraic object:

Y ⋅ SIN X()2 + Y −
1
2





 ⋅ COS X()2

The program TREE → ALG can be easily made:

<<
FLATTEN →ALG

>>

Sometimes programs are easy ;-)

With the algebraic expression:

Y ⋅ SIN X()2 + Y −
1
2





 ⋅ COS X()2

on stack level 1, press to get the algebraic tree list again.
Now, press to get the algebraic object out of the tree list.

Using the tree list we can introduce another numbering system for sub
expressions. The first one that we used, was simply the range of
position numbers in the RPL list of an algebraic object. For example the
sub expression:

Y −
1
2

of the algebraic object:

Y ⋅ SIN X()2 + Y −
1
2





 ⋅ COS X()2

can be specified by the range 7…11 in the corresponding RPL list:

Y X SIN 2 ^ ∗ Y 1 2 / − X COS 2 ^ ∗ +{ }

The same sub expression can be specified by giving the position
numbers of the sub lists, sub sub lists, and so on, of the corresponding
tree list. The tree list of the above expression was:

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-7

Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }{ }
In this list the sub expression:

Y −
1
2

is the 1st. element of the 2nd.
element of the 1st. element of
the tree list. That means that
we can specify this sub
expression by giving the
"coordinates list" 1 2 1{ } .
If we put away the first
coordinate which is always 1
(i.e. the expression itself)
then we can specify the sub
expression with 2 1{ } .
Programming the extraction
of sub expressions from
algebraic objects is then easy:

<< DEPTH PICK3 ALG→TREE HEAD
→ alg part depth tree
<< tree part 1. << GET >>

IFERR
DOSUBS

THEN
DEPTH depth - 2 + DROPN
alg part
"Bad Part Specification" DOERR

ELSE
IF DUP TYPE 5. ==
THEN TREE→ALG
END

END
>>

>>

This is the program GETSUBEX that comes with this document. It
takes an algebraic object and a list with the sequence of sub parts that
specifies the sub expression that we want. This list must not contain the
first 1, which is the algebraic object itself. The program uses
ALG → TREE to convert the algebraic object to a tree list. Then it takes
the parts specified by the "coordinates list". If it fails because of wrong
part specification, it cleans up the stack and exits giving you a message
Bad Part Specification . Else, you get the corresponding sub
expression. In case the part specification specifies something different
than a sub expression (a function, a variable, etc.) you get the
corresponding object alone. (Not in an algebraic object). Let's give it a
try.

Enter again:

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-8

Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }{ }

First element of the
tree list
(the expression itself)

Second element of
the first element of
the tree list

Y X SIN{ } 2 ^{ } ∗{ } Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ } +{ }

Y 1 2 /{ } −{ } X COS{ } 2 ^{ } ∗{ }

First element of the
second element of the
first element of the
tree list.

Y 1 2 /{ } −{ }

Y ⋅ SIN X()2 + Y −
1
2





 ⋅ COS X()2

then 2 1{ } , and press to get:

Y −
1
2

The program GETSUBEX can be used to implement partial algebraic
object manipulation.

<<
→ alg manipart
<<

alg DUP
manipart 2. GET
GETSUBEX DUP
manipart HEAD EVAL
2. →LIST

↑ MATCH DROP
>>

>>

This is the program APLSUBEX. It takes an algebraic object from
stack level 2, and a list from stack level 1. The list has two elements.
The first is the command or program that has to be applied on some
sub expression of the algebraic object. The second is a list that
specifies the sub expression. Try it? OK! Enter:

Y ⋅ SIN X()2 + Y −
1
2





 ⋅ COS X()2

We will linearise the sub expression

SIN X()2
.

This is sub expression 1 2{ } of the algebraic object. Enter the list:

TLIN 1 2{ }{ }
Now press to get:

Y ⋅
−1
2

⋅COS 2 ⋅X() +
1
2





 + Y −

1
2





 ⋅ COS X()2

What problems does this program have?

Last thing that we do before returning to calculus is visualisation of such
algebraic trees using a quite unorthodox method. It would be a
cumbersome thing to program a graphics representation of the algebraic
tree, but we don't need to do it. The HP49G has a built-in tree graphics
generator. It is… the built-in filer!!! If we create an algebraic tree, then
we can also create a directory structure based on that tree. For example
consider the expression A + B . We can create a directory with the name
+ (!) and in this directory we can create two sub directories with
the names A and B . The filer of the HP49G will display the tree
at the right. You may wonder how we can create a directory
named + . But this is easy. We can enter the string "+ " and used
the command S ~ N to convert it to a name. So let's make a
program that takes an algebraic tree and creates the appropriate directory
structure:

<<
PATH @Store current path
→ path
<<

1. @Do to all elements
<< @of algebraic tree

CASE
DUP TYPE 5. == @If element is list

THEN @then call yourself
REVLIST TREE→DSTRUCT

END

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-9

+
A
B

DUP TYPE {18. 14.} @If element is command
SWAP POS @or function

THEN
→STR S~N @then convert it to name
WHILE @Add character "´" to

VARS OVER POS @the name until it is
REPEAT @unique

"´" + S~N
END @Create sub directory
DUP CRDIR EVAL @and switch to that

END @sub directory
IF @If none of the above

DUP TYPE 6. ≠ @then if element is not a
THEN @name, then convert it

→STR S~N @to a name
WHILE @Add character "´" to

VARS OVER POS @the name until it is
REPEAT @unique

"´" + S~N
END

CRDIR @Create sub directory
END

>>
DOSUBS
path EVAL @switch to sub directory

>> @we came from
>>

This is the program TREE → DSTRUCT . It doesn't display the
tree, it only creates the appropriate directory structure. We wrap it in a
program that displays the directory structure as a tree.

<<
ALG→TREE @Create tree list
TREE→DSTRUCT @Create directory struct.
FILER @Run filer to view it
VARS HEAD PGDIR @Purge directory struct.

>>

This is the program VIEWALGTREE . Let's try it. Enter

A2 − 1⋅SIN ω ⋅t() and press . After some seconds the
HP49G starts the filer and highlights the current directory in the
directory tree. Press a couple of times. You see the tree of the
algebraic object in the
filer. So that's another
possible (mis)usage of
the filer as a visualisation
tool for algebraic trees.
When you have
wondered enough about
other possible
(mis)usage of the filer,
press . This
program will purge the
root directory of the tree
and all sub directories
that were created in it,
and then it will exit, The
moral of the story is that
we can use a screwdriver
as a hammer or any other
tool, if we only have
enough fantasy.

Another consequence of the possible conversion of functions or
command to names, is that we can have our own definition of any
function. Consider the following example. e. Enter the program:

<< → x y
<< IF @If we have two numeric

x TYPE 3. == @vectors
y TYPE 3. == AND @then find dot product

THEN x y DOT @else find product
ELSE x y *
END

>>
>>

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-10

∗

−

A

2

^

1

COS

∗
ω

t

The product of:
the square root of:

the difference of:
the power of:

A
 raised to
2:

and1

and the cosine of:

the product of:

ω

andt

Enter the string "∗" and press . You get '∗' , which is no more
the function ∗ , but a name. Press . Now you have a new
program named '∗' , which can be used for dot and normal products.
For example enter 1. 2. 3.[] and then 4. 5. 6.[] (with decimal

points after the numbers - we want numeric vectors), and press
to get 32 . But enter 2 and 3 and press to get 6 . Whenever
you press the menu key , the new extended functionality will be
used. But the normal multiplication key still retains its normal
functionality. The same applies when writing programs. When you
press while writing a program, then the multiplication sign ∗
which refers to the new program will be placed in the program text.
But when you press , the sign ∗ refers to the built-in multiplication.
Now, press , then , and then to put the quoted name
'∗' on the stack. Then press to delete the program named '∗' .
Just imagine how strongly extendable the command set of the HP49G
can be, if we use this capability. And since only the variables are
accessible that exist in the current path, we can even have many
differently extended functions available in different directories. This is
extensibility!!!

After this excursion to the forests of algebraic trees, let's return to the
rocky paths of calculus. We examine partial derivatives of higher
order. Consider a function f x,y() . We can differentiate this more than
once. For example we can take the derivative for x twice. Then we
write (in mathematics text books):

∂2f x,y()
∂x2

and on the HP49G:

∂
∂x

∂
∂x

f x,y()()



 or DERIV DERIV f x,y(),x(),x()

We can of course also take the "mixed" derivatives, like:

∂2f x,y()
∂x∂y

for which on the HP49G we write:

∂
∂x

∂
∂y

f x,y()()

 


 or DERIV DERIV f x,y(),y(),x()

Let's have an example. We will find:

∂
∂X

∂
∂Y

X ⋅SIN Y() − Y ⋅COS X()()





using RPL syntax.

Enter X ⋅ SINY() − Y ⋅COS X() . Now enter Y and press to get
X ⋅ COS Y() − Y ⋅COS X() . Enter X and press again to get
COS Y() + SINX() . We do the same example using algebraic objects.
Enter:

∂
∂X

∂
∂Y

X ⋅SIN Y() − Y ⋅COS X()()





or

DERIV DERIV X ⋅ SIN Y() − Y ⋅COS X(),Y(),X()
and press to get SIN X() + COS Y() .

The "mixed" derivatives depend on the order of differentiation, i.e. in
general:

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-11

∂2f x,y()
∂x∂y

≠
∂2f x,y()

∂y∂x

But if the mixed derivatives are continuous functions of x and y in a
given domain, then the mixed derivatives are equal to each other in
this domain.

You remember that we have done a program for finding the
differential of a monovariate function. Now we will extend this
concept to functions of more than one variables. The total differential
of such a function z = f x,y() is given by:

dz =
∂f x,y()

∂x
⋅ dx +

∂f x,y()
∂y

⋅dy

The same concept can be extended to functions of even more
variables. For example consider z = f x1,x 2,x3 ,…() . The total
differential of this function is:

dz =
∂f x1,x 2,x 3,…()

∂x1

⋅dx1 +
∂f x1,x 2,x 3,…()

∂x2

⋅dx2 +
∂f x1,x 2, x3 ,…()

∂x3

⋅dx3 +…

If the partial derivatives are themselves continuous differentiable
functions, then we can have total differentials of higher order. For
example, consider the function z = f x,y() again. The total differential
of second order is:

dz2 =
∂ ∂f x,y()

∂x
⋅dx + ∂f x,y()

∂y
⋅dy



 


∂x

+
∂ ∂f x,y()

∂x
⋅ dx + ∂f x,y()

∂y
⋅dy



 


∂y

=

∂2f x, y()
∂x2

⋅dx2 + 2 ⋅ ∂f x,y()
∂x∂y

⋅dxdy + ∂2f x, y()
∂y2

⋅dy 2

The tiny quantities dx , dy , and so on, are considered to be constant.

We already made a program for finding the total derivative of a
monovariate function. Now we make a program for finding the total
derivative of a given order of a function of more variables. The program
will take the function from stack level 3, the list of variables from stack
level 2, and the order from stack level 1, and will return the total
derivative introducing new variables dx , dy , which of course must not
appear in the function.

<<
OVER
1 @Make list of dx , dy ,

etc.
<<

"d" SWAP + S~N
>>
DOSUBS
→ f vars ord dvars
<<

1 ord
START

f vars ∂ @Differentiate for all vars
dvars * @Multiply each partial
0 + Σ LIST @derivative by the approp.
EXPAND 'f' STO @dvar . Add all expressions

NEXT
f

>>
>>

This is the program Td that comes with this document. To try it enter
TAN X + Y() , then X Y{ } , and then 2 (second order), and press
to get:

2 ⋅ dX2 + 4 ⋅dY ⋅dX +2 ⋅ dY2() ⋅TAN X + Y()3 + 2 ⋅dX 2 +4 ⋅ dY ⋅ dX+ 2 ⋅ dY2()⋅ TANX +Y()

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-12

If you want to focus on the tiny quantities dx , dy , then enter dx and
press to get:

2 ⋅ TAN X + Y()3 + 2 ⋅ TAN X + Y()()⋅ dX2 +

4 ⋅ TAN X + Y()3 + 4 ⋅ TAN X + Y()()⋅ dY ⋅ dX +

2 ⋅ TAN X + Y()3 + 2 ⋅ TAN X + Y()()⋅ dY 2

The meaning of the total differential can be made understandable by a
geometric visualisation. It is the total change of a function of more
than one variables, when each of the variables changes from x to
x + dx . The quantity dx is arbitrary small but positive. The total
differential is the fundament out of which we can calculate the
maximum error of some quantity that is a function of more than one
variables. For example, suppose that you are
experimenting with an (approximately) ideal
gas. You want to calculate its pressure P by
measuring its mass m , its temperature T , and
its volume V , and use the formula:

P =
m ⋅R ⋅ T

M ⋅ V

In this formula the gas constant R , and the
molecular weight of the gas M are considered
to be known without error. But the
measurements of m , T and V can't be
perfect. They will be measured with errors
∆m , ∆T and ∆V . The total change of the
calculated pressure caused by the error in
measurements will be:

∆P =
∂

m ⋅R ⋅ T
M ⋅ V
∂m

⋅∆m +
∂

m ⋅R ⋅ T
M ⋅ V
∂T

⋅∆T +
∂

m ⋅R ⋅T
M ⋅ V
∂V

⋅∆V =

R ⋅T
M ⋅ V

⋅∆m +
m ⋅R
M ⋅V

⋅∆T +
m ⋅R ⋅T
M ⋅V2 ⋅∆V

We use the absolute values of the partial derivatives, because they can
sometimes be positive and sometimes negative. If we wouldn't use the
absolute values, then the error ∆P could be calculated less than its
maximum value. We can make a program that derives the expression of
the error of a calculated quantity out of the errors of the measured
quantities, on which the calculated quantity depends. The program takes
as arguments: The calculated quantity as a function of the measured
variables from stack level 5, the list of measured

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-13

x

y

dxz =
∂z
∂x

dx

dyz =
∂z
∂y

dy

dx
dy

dz =
∂z
∂x

dx +
∂z
∂y

dy

variables from stack level 4, the list of variables that are greater than 0
from stack level 3, the list of variables that are less than 0 from stack
level 2, and the list of maximum errors of the measured quantities
from stack level 1. It returns the expression
∆ variables() = function(variables) out of which we can create a
user defined function by pressing .

<<
PUSH
{ HOME CASDIR REALASSUME } RCL
→ alg vars posvvars negvvars

maxerrvvars assums
<<

-103 CF @Set real mode
vars '∆ ' APPLY @Create expression ∆ vars()
IF

posvvars {} ≠ @If we have positive vars.
THEN

posvvars 1 @make appropriate assumptions
<< @for calculating the abs. value

"≥0" + "'" SWAP +
"'" + OBJ→ ASSUME
DROP

>>
DOSUBS

END
IF

negvvars {} ≠ @If we have negative vars.
THEN

negvvars 1 @make appropriate assumptions
<< @for calculating the abs. value

"≤0" + "'" SWAP +
"'" + OBJ→ ASSUME
DROP

>>
DOSUBS

END
alg vars ∂ ABS @Find maximum error
EXPAND
vars 1

<< @Create ∆ vars
"∆ " SWAP + S~N

>>
DOSUBS
DUP UNROT * 0 +
Σ LIST
SWAP maxerrvvars 2 @Create equations
<< = >> @∆ var=value
DOLIST
1 @and substitute in
<< SUBST >> @expression
DOSUBS =
{ HOME CASDIR } EVAL @Restore original
assums 'REALASSUME' STO @assumptions

>>
POP

>>

This is the program ∆MSRM . We test it with the above example of the
ideal gas. Enter:

m ⋅R ⋅ T
M ⋅V

then the list of measured quantities m T V{ } , the list of positive
quantities m T V M R{ } , the list of negative quantities { } , and
the list of maximum errors in the measured quantities
.00001 .01 .001{ } . (We could also enter ∆m ∆T ∆V{ } if we

want to have the symbolic result.) Press to get:

∆ m,T,V() =
T ⋅R
V ⋅M

⋅.00001+
m ⋅R
V ⋅M

⋅.01+
m ⋅ T ⋅R
V2 ⋅M

⋅.001

If you now press you will have the user function ∆ which will take
the measured values of m , T and V from the stack, and return the
maximum error for P , under the specified maximum errors of the
measured quantities. (Of course you must substitute a numeric value for

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-14

the gas constant R in the formula.)

Since we have examine derivatives of functions of more than one
variables, it is time to take a look at further possible usage of formal

derivatives of more than one variables. For the derivative
∂f x,y()

∂x
 the

HP49G writes d1f x,y() , when the function f is undefined. Similarly,

for the derivative
∂f x,y()

∂y
 it writes d2f x,y() , and for the derivative

∂2f x,y()
∂x∂y

 it writes d1d2f x,y() . We make an example of the usage of

such formal derivatives as user defined functions.

We create first a sub directory. We are going to create some variables
and so it is a good policy to create them in a separate directory for
clarity and for preventing cluttering of the menu VAR. Enter
something like 'EXMP1' or similar and press . Switch to
directory 'EXMP1' . Here we will do the whole work for the first
example.

In the first example we want to find a formula for the difference
CP −CV between the heat capacity of a system at constant pressure
and its heat capacity at constant volume. First the theory.

From general thermodynamics we have the definition of heat capacity
Cv of a system at constant volume:

Cv =
∂U
∂T





 V

(1)

U is the inner energy of the system, a function of its absolute

temperature T and of its volume V . The differential quotient
∂U
∂T





 V

in parentheses with the index V , denotes that we take the partial

derivative for T by holding the volume V constant.

Similarly the definition of heat capacity CP of a system at constant
pressure is:

CP =
∂H
∂T





 P

(2)

H is the enthalpy of the system, a function of its absolute temperature T

and of the pressure P . The differential quotient
∂H
∂T





 P

 in parentheses

with the index P , denotes that we take the partial derivative for T by
holding the pressure P constant.

The definition of the enthalpy H is:

H = U+ P ⋅ V (3)

Substituting this in (2) we get:

CP =
∂H
∂T





 P

=
∂ U+ P ⋅ V()

∂T



 


P

=
∂U
∂T





 P

+
∂P
∂T





 P

⋅ V + P ⋅
∂V
∂T





 P

Now, since in this derivation we hold the pressure P constant, the term

∂P
∂T





 P

⋅V

is 0 . So we get:

CP =
∂H
∂T





 P

=
∂U
∂T





 P

+P ⋅
∂V
∂T





 P

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-15

We build up the difference CP −CV :

CP −CV =
∂U
∂T





 P

+ P ⋅
∂V
∂T





 P

−
∂U
∂T





 V

Now let's do that on the HP49G. Enter the definition of CP :

Cp =
∂

∂T
H T()()

and press , which stores the expression
∂

∂T
H T()() in variable

Cp . Enter the definition of Cv :

Cv =
∂

∂T
U1T()()

and press again to store
∂

∂T
U1T()() in Cv . We use U1T() to

distinguish between the inner energy as a function of the temperature
T and the volume V from the inner energy U2 as a function of the
pressure P and the temperature T . Enter the definition of the
enthalpy:

H T() = U2 T() +P ⋅ V T()

and press to create the user defined function H.

Enter Cp − Cv and press to get the result

− d1U1T() − d1U2 T() +P ⋅d1V T()()() , which is the same as:

∂U
∂T





 P

+P ⋅
∂V
∂T





 P

−
∂U
∂T





 V

but written differently. If you want you can use now our program
dn → dv to beautify the result and get:

−
∂

∂T
U1T()() −

∂
∂T

U2 T()() +P ⋅
∂

∂T
V T()()







 



For an ideal gas we have:

∂V
∂T





 P

= α ⋅V

where α is the expansivity of the ideal gas. Enter d1V T() = α ⋅V T()
and press to create the user defined derivative d1V. Let's find the
difference CP −CV for an ideal gas. Enter again Cp − Cv and expand to

get − d1U1T() − d1U2 T() +P ⋅α ⋅V T()()() . Again you can beautify this

with dn → dv to get:

−
∂

∂T
U1T()() −

∂
∂T

U2 T()() +P ⋅ α ⋅V T()







 



Now enter CLVAR to purge all variables in the directory. We will do
the same example using different variable definitions. Enter
Cp = d1H T() and press . Then enter Cv = d1U1T() and press
again. We have defined the heat capacities using dn syntax. We will
work with an ideal gas again, so enter d1V T() = α ⋅V T() and press
to create the user defined derivative d1V. Now instead of the user
function H we are going to use the user defined derivative d1H . Enter
d1H T() = d1U2 T() +P ⋅ d1V T() . Press to make the definition. Enter

Cp − Cv and expand to get − d1U1T() − d1U2 T() +P ⋅α ⋅V T()()() again.

Yet another way to so that. Enter CLVAR to clean up the directory.
Now we will use the definition of the inner energy as a user function.

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-16

Enter U2 T() = H T() −P ⋅ V T() and press to create the user
function U2. We will use the derivative:

∂
∂T

U1T()() = Cv

Enter d1U1T() = Cv and press . This creates the user defined
derivative d1U1T() .

We will also use the derivative of the enthalpy:

∂
∂T

H T()() = Cp

Enter d1H T() = Cp and press to create the definition of the user
defined derivative.

Now, enter:

∂
∂T

U2 T()() −
∂
∂T

U1T()()

and expand to get − Cp − Cv −P ⋅ d1V T()()() , which beautified would
be:

− Cp − Cv −P ⋅
∂

∂T
V T()()







 



Enter:

∂
∂T

U2 T()() −
∂
∂T

U1T()() +P ⋅
∂
∂T

V T()()

and expand again to get − Cp − Cv() .

The above examples show how well the HP49G can handle such formal
derivatives. Especially the third demonstrates how to get results with
"normal" variables out of only formally defined derivatives.

We are at the end of the first volume of the Basic Calculus Marathon. In
the second volume we will continue with extrema of functions and other
interesting things.

Before we go to sleep with smoking heads dreaming of the derivative of
the derivative of Ouzo(Trabakoulas), we take a look at our program
building (next page), which gets more and more crowded. How am I
going to represent it when even more programs come?

∂
∂Nick

Greetings Nick()()

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-17

Basic Calculus with the HP49G - Volume 1 - Part 3

Volume 1, 3-18

∆QUOT

dF1F2

ISCONT?

->FACT

d1GAMMA

d1FACT

SECLINE

TANLINE

TANPARSEC

DY

POSNAME->TERMSdn->dv

dCOLLECT

ALGSAME

derΣ->Σder

dCOLEX

PATdΣ->Σd

REPLΣ

PATdCOLEX

TEST MATCH1

MATCH1

APLAT

TREE->ALG

FLATTEN ALG->TREE

GETSUBEX

APLSUBEX

TREE->DSTRUCT

VIEWALGTREE

Td

∆MSRM

