
Calcul formel
et

Mathématiques
avec

la HP49G
en mode algébrique

Renée De Graeve
Maître de Conférence à Grenoble I

2
Remerciements

Je remercie:
• Bernard Parisse pour ses précieux conseils et ses remarques sur ce texte,
• Sylvain Daudé pour sa relecture,
• Jean Tavenas pour l'intérêt porté à l'achèvement de ce guide,
• les élèves de Terminale du lycée Notre-Dame des Victoires de Voiron,
ainsi que leur professeur Jean Marc Paucod, pour leur participation au
test du sujet de bac avec la HP49.

c© 09/1999 Renée De Graeve, degraeve@fourier.ujf-grenoble.fr 1
Reproduction, translation and redistribution of this document either stored
on an electronic support or written on paper are granted for non-commercial
purposes only. Any commercial use of this document is prohibited without
prior written permission of the copyright holder. This documentation is pro-
vided �as is�, without warranty of any kind. In no event the copyright holder
will be liable for damages arising out of the use of this document.

Its contents don't imply in any event the responsibility of either the
Hewlett-Packard Company or its distributors.

This document is also available at the following Internet address:

http://www-fourier.ujf-grenoble.fr/~degraeve/usflan.pdf
1Translation c©03/2001 Ivan Cibrario Bertolotti.Subject to the same licensing terms and conditions as the original.

3
Foreword

Sometimes, I am asked this question: why put symbolic manipulation
capabilities into a calculator, while specialized computer software for this is
now either cheap, or available for free?

In my opinion, a calculator is the most e�ective way to integrate calcula-
tion aids with the teaching of mathematics, because it is both easy to carry
out with you and to use in a classroom.

However, using a symbolic manipulation software package is not as simple
as its interface could suggest. . . Therefore, having an adequate documentation
for it is important. The HP49G user guide describes the computer algebra
system very brie�y, so this manual is its essential complement:

it describes the HP49G from the point of view of someone that �wants to
do maths�.

In fact, readers interested in maths can read only this book as well, because
the author starts with an introduction to the calculator, describes in more
detail the computer algebra system commands arranged by purpose (the index
allows the reader to �nd all commands in alphabetical order), and then focuses
on programming the calculator in algebraic mode.

Each command is demonstrated by an example, and many of them are
leveraged to solve a �baccalaureat� problem. The programming section has
several programs, arithmetic programs in particular.

Brie�y, this is the manual I should have written if I had enough patience!
I thank Renée for carrying it out.

Bernard Parisse
Maître de Conférences à l'Université de Grenoble I
Author of the Computer Algebra System of the HP49G

4

Getting started

0.1 Introduction

0.1.1 Turning on the calculator
Press the ON key.
When the calculator is turned on, the same key exits an application: it acts
as either EXIT or CANCEL.
To turn o� the calculator, press red-shift and then ON.
If the calculator does not respond in despite of several ON (CANCEL), press
both ON and F3 simultaneously to reinitialize it.

0.1.2 What am I looking at?
From top to bottom, you can see:
1. the screen

1.a the calculator status
1.b the calculation history
1.c a menu containing some commands
2. the keyboard

1. The screen:
1.a The calculator status describes the current calculator modes:

5

6
• RAD if the calculator is working in radians, DEG if it is working in degrees.
• XYZ shows that rectangular coordinates are in use.
• HEX shows that binary integers pre�xed by # are displayed in base 16.
• R if the calculator is in REAL mode, C if it is in COMPLEX mode.
• = if the calculator is in EXACT mode (symbolic calculations), ∼ if the
calculator is in APPROXIMATE mode (numeric calculations).
• 'X' denotes the name of the current variable stored in VX: usually it is
'X'.
• ALG if the calculator is in ALGEBRAIC mode, RPN if it is in RPN mode.
• {HOME} or {HOME ESSAI} to show the name of the current directory (for
example, the main directory HOME or the ESSAI subdirectory).

1.b The calculation history:
General principle: on the screen, the input expression (pre�xed by :) is
displayed left-justi�ed, and the result is right-justi�ed.

1.c The menu:
Menu commands are accessed using the following keys:
F1 F2 F3 F4 F5 F6.
When the menu has more than 6 commands, press the NXT key to display the
next portion of the menu. The menu can also contain subdirectories (which,
in turn, contain a set of commands): they can be recognized because their
menu item has a small bar across the upper-left corner. To execute a menu
command, simply press the corresponding Fi key.

2. The keyboard:
You should �nd:
• the ON key, to turn on the calculator, and to interrupt a calculation
while it is in progress. To turn o� the calculator, press red-shift and
then ON.
• two �shift� keys, one blue and one red; they allow a single key to have
more than one function.
• the ALPHA key, to enter alphabetical characters (uppercase by default).
To keep alphabetic mode active for more than one subsequent keystroke,
it is necessary to press ALPHA twice. To exit this mode, press ALPHA

0.2. CALCULATOR MODES 7
again. To toggle between uppercase and lowercase alphabetic entry
modes, press blue-shift ALPHA while the calculator is in alphabetic
entry mode.
• the ENTER key; it either enters or con�rms a command.
• four arrow keys (left, right, up, down); they move the cursor when you
are either in the editor or in a command list.

0.2 Calculator modes
The calculator can work in several modes.
You can choose: -algebraic or reverse poland notation mode (ALG or RPN)
-real or complex mode (R or C)
-exact or approximate mode (= or ∼)
-immediate or step-by-step mode...
Warning: this book assumes that the calculator is in algebraic, real, exact,
immediate mode (R = ALG).

Type: CASCFG (Computer Algebra System ConFiG) to set the calculator
in real, exact, immediate mode. While working, you can type CASCFG to re-
store this con�guration (the calculator automatically changes mode -asking
you for a permission- when it is appropriate!).

Check
Check now that your calculator is indeed in algebraic, real, exact mode. In
order to do this:

press MODE to check that the operating mode really is algebraic; if it is
not, select algebraic either with the choos menu item, or pressing the +/−key.

While you are in the MODE screen, activate the cas menu item and check
that neither numeric, nor approx, nor complex are enabled. If one ore more
of these modes are enabled, disable them all using the chk menu item.
Notice: for pedagogic applications, it is often interesting to enable the step/step
mode, to make the calculator execute its calculations step by step.

Now select the ok menu item to con�rm all changes made in cas, and then
ok again to con�rm the choices you made in MODE.

Now you are in algebraic, real, exact mode.
Warning:
this book assumes that the calculator is in this mode.

8
You are now in the HOME directory.
You can simply type in the calculation you want executed, for example:

1 + 1, and then press ENTER
The result is displayed (right justi�ed), and the input expression 1 + 1,

preceded by :, goes up in the history area (left justi�ed).
It is possible to copy this expression in the command line by pressing the

HIST key (the up arrow allows you to select the expression to copy, and the
echo menu item copies and simpli�es it).

It is also possible to reuse the last result (denoted ANS(1)) using the ANS
(red-shift ENTER) key, as well as previous results (denoted ANS(2)) and so
on.

You can do both exact calculations and approximate ones; for example:√
2 followed by ENTER does not evaluate √2 and keeps the result exact,

but the same expression followed by red-shift ENTER (→NUM) returns the
approximate value of √2 with 12 signi�cant digits, keeping the calculator in
exact mode.

Of course, if you want to do only numeric calculations, you can enable
approx mode (MODE key, and then cas menu item); in this mode, the ENTER
key does the calculation numerically, evaluating both constants and variables.

0.3 Notation
In this book, the four arrow keys are represented by the following four trian-
gles:

4 � � 5
The delete arrow (deletion of the character to the left of the cursor) is rep-
resented by:

⇐
The red arrow over the 0 (zero) key is represented by:

→

The STO key is represented, in a program, by:
STO . or .

The carriage return (in red, over the decimal point key), is represented by:
←↩

0.4. FLAGS 9
0.4 Flags
The vary majority of commands takes system �ags into account.
Each �ag has its own unique number, and has a default value. If you want to
change the value of a �ag, you can do it by pressing the MODE key, then F1 to
select the flags menu item and enter the �ag management screen.

When you toggle the �ag you want changed, its new function appears on
the screen.

If you know in advance the �ag number, you can also change its value with
the SF and CF commands.

For example, to change �ag number −117 (that is, the �ag controlling the
display of menus), you type:
SF(-117) (most menus are now displayed across the bottom of the screen,
instead of using pop-up command lists). After this command:
FS?(-117) returns 1. and FC?(-117) is 0.
To have most menus displayed using pop-up command lists again, you type:
CF(-117) (FS?(-117) is now 0. and FC?(-117) is 1.).

10

Chapter 1

Important keys

1.1 The APPS key
This key, when pressed, displays a list of all calculator's application.

1.1.1 Plot functions
This command list has the following items:
Equation entry. This item acts the same as the key sequence blue-shift
F1 (Y=3D).
Plot window. This item acts the same as the key sequence blue-shift F2
(WIN).
Graph display. This item acts the same as the key sequence blue-shift F3
(GRAPH).
Plot setup. This item acts the same as the key sequence blue-shift F4
(2D/3D).
Table setup. This item acts the same as the key sequence blue-shift F5
(TBLSET).
Table display. This item acts the same as the key sequence blue-shift F6
(TABLE).
For more information, refer to chapter 3.

1.1.2 I/O functions
This list contains the commands that allow your calculator to interface with
a computer.

11

12 CHAPTER 1. IMPORTANT KEYS

For example, the �fth item is: Transfer.
If you press 5, and then ok, the calculator opens the Transfer window

and displays:
Port : Wire
Type : Kermit (or XModem)
This window allows you to transfer a �le interactively. You can do the same
thing from the command line, too; for example, these are the steps you should
follow to use the Linux kermit program:
-Connect both the calculator and the computer to the serial link cable.
-On the computer, type:
kermit
and then serv
-On the HP49G type:
SEND('NOM')
to copy the NOM variable from your HP49G to your computer.
-Or else,
On the HP49G type:
KGET('NOM')
to copy the NOM variable from your computer to your HP49G.

1.1.3 Constants library
This item displays a list of 40 physical constants.
These constants are denoted by their symbol and either their name or their
value (if the value menu item is selected).
They are followed by their measurement units, if the unit menu item is se-
lected.
They can also be copied on the command line, by pressing the ->stk menu
key.

1.1.4 Numeric solver
This item acts the same as the sequence of keys: red-shift 7 (NUM.SLV).

1.1.5 Time & date
This item acts the same as the sequence of key: red-shift 9 (TIME).

1.1. THE APPS KEY 13
1.1.6 Equation writer
This item acts the same as the EQW key.
See section 2.1 for more details.

1.1.7 File manager
This item acts the same as the sequence of keys: blue-shift APPS (FILES).
See section 2.5 for more details.

1.1.8 Matrix writer
This item acts the same as the sequence of keys: blue-shift EQW (MTRW).
See section 2.2 for more details.

1.1.9 Text editor
This item opens the command line: notice that it is possible to write on more
than one line (by pressing red− shift • (←↩) to open a new line).

1.1.10 Math menu
This item acts the same as the sequence of keys: blue-shift SYMB (MTH).

1.1.11 CAS menu
This item opens a command list with the following entries:
1.ARITHMETIC corresponding to the blue-shift 1 (ARIT) menu
2.ALGEBRA corresponding to the red-shift 4 (ALG) menu
3.COMPLEX corresponding to the red-shift 1 (CMPLX) menu
4.CALCULUS corresponding to the blue-shift 4 (CALC) menu
5.EXP&LN corresponding to the blue-shift 8 (EXP&LN) menu
6.SYMBOLIC SOLVER corresponding to the blue-shift 7 (S.SLV) menu
7.MATRICES corresponding to the blue-shift 5 (MATRICES) menu
8.CONVERT corresponding to the blue-shift 6 (CONVERT) menu
9.TRIGONOMETRIC corresponding to the red-shift 8 (TRIG) menu
Refer to chapter 4 for more information.

14 CHAPTER 1. IMPORTANT KEYS

1.2 The MODE key

This key allows you to tune the operating mode of your calculator: Algebraic
or RPN mode, to examine and change the calculator's flags (F1 key), to tune
the cas (F3 key), and to change the way your calculator displays data on the
screen with disp (F4 key).

For example (see also page 9) the flag -117 can be either:
choose boxes to have the calculator display its menus using popup windows
or
soft menu to have the calculator display its menus across the bottom of the
screen.

1.3 The TOOL key

This key displays a menu containing:
edit, to edit the �rst line of the history (or the highlighted line).
view, to view the �rst line of the history (or the highlighted line).
rcl, the same as the key sequence blue− shift STO . (RCL) (see page 25).
sto . the same as the key STO..
purge, the same as the command PURGE (see page 25).
clear, to delete the current command line, leaving the cursor at the beginning
of the line (this isn't the same as CANCEL that kills the current command line!).
Beware, when the command line is not active, clear deletes the whole history;
in this case, it is the same as red− shift ← (CLEAR).

1.4 The UNDO key (red-shift HIST)

This key is very useful, because it undoes the last command executed.

1.5 The VAR key

This key displays, across the bottom of the screen, a menu containing the
names of all variables in the current directory (press NXT to view them all!).
See section 2.4 for more information.

1.6. THE EQW KEY 15
1.6 The EQW key
This key invokes the equation editor.
It can always be used, even in the matrix editor.
Also, from the equation editor it is possible to access the history (see 1.11).
For more information, see section 2.1.

1.7 The MTRW key (blue-shift EQW)
This key invokes the matrix editor, to enter a matrix. If you want to enter a
vector instead, make sure that the vect menu option is selected.

To enter a matrix:
you enter the �rst line, then you move the cursor to the beginning of the next
line; when you �nish entering the following lines, the cursor automatically
wraps around.

See section 2.2 for more details.

1.8 The SYMB key
This key opens a menu containing the most basic symbolic functions, divided
by category.
The sub-menus contain the cas functions an high-school student usually
needs. These functions, and many others, can be found in the corresponding
cas menus, too.

Example:
The SYMBOLIC ARITH MENU is a portion of the INTEGER sub-menu of ARITH
(blue-shift 1).

1.9 The MTH (blue-shift SYMB) key
This key opens the mathematics functions menu.
There are:
The hyperbolic functions (sub-menu 4), like:
SINH ASINH COSH ACOSH TANH ATANH
The functions:

16 CHAPTER 1. IMPORTANT KEYS

EXPM(X)=EXP(X)-1 LNP1(X)=LN(X+1)
and some functions used on real numbers (sub-menu 5), like:
FLOOR(X), returning the largest integral value not grater than X.
CEIL(X), returning the smallest integral value not less than X.
RND(X,n), that rounds X to n decimal digits.
TRNC(X,n), that truncates X to n decimal digits.

1.10 The UNITS (red-shift 6) key
The UNITS menu has 127 measurement units, divided by category.
To use a measurement unit, you must write the unit preceded by _ (red-shift
-).
You can convert from one measurement unit to another using the CONVERT
function (you can �nd it into the Tools sub-menu of the UNITS menu).
Example:
Enter:
CONVERT(12_cm,1_m)
The result is:
0.12_m

1.11 The HIST key
This key allows you to access the history while you are typing a command.
The same key allows also to access the history from inside either the equation
editor, or the matrix editor.
It is important to know that the object copied from the history is both copied
AND evaluated.
If you want to use a result again without reevaluating it, you must use:
ANS(1) or ANS(2)...(red-shift ENTER (ANS(1)).
If you want to reuse a command, you can also press blue-shift HIST (CMD);
this key gives you a list containing the last commmands you used.

Chapter 2

Data entry

2.1 The equation editor

2.1.1 Entering the equation writer
The EQW key (EQuationWriter) allows you to enter the equation editor at any
time, from the command line. It is a very e�cient editor useful to write,
simplify and work on mathematical expressions.

While you are in the equation editor you can type expressions in, knowing
that any operator you type always operates either on the expression next to
the cursor, on on the selected expression.

You must not be worried about entering parentheses, you simply select!
You must imagine that mathematical expressions are like a tree, (not nec-

essarily a binary one), and understand that the four arrow keys allow you to
visit the tree in a natural way (the right and left keys allow you to go from
a sub-tree to another, the up and down keys allow you to go up and down in
the tree hierarchy, the �shifted� right and left keys allow you to accomplish
various selections; see the second example on page 19).

2.1.2 How to select?
You can enter selection mode in two ways:
• The4 key enters selection mode and selects the expression element next
to the cursor.

17

18 CHAPTER 2. DATA ENTRY

Then, you can enlarge the selection to the sub-tree located immediately
to the right of your present selection, by pressing �.
• The � key enters selection mode and selects the sub-tree next to the
cursor.
• Warning: if you are entering a function with more than one argument,
(like, for example, ∑, ∫ or AND), the � arrow allows you go from one
argument to another. Therefore, you must always use the4 key to start
selection mode in this case (see 2.1.4).

Equation writer examples:
• Example 1
Type:

2 + X ∗ 3 − X

You obtain:
2 + X · 3− X

ENTER ENTER gives the following result:
2 + 2 · X

Type:
2 + X � ∗ 3 − X

You obtain:
(2 + X) · 3− X

ENTER ENTER gives the following result:
6 + 2 · X

Type:
2 + X � ∗ 3 4 − X

You obtain:
(2 + X) · (3− X)

ENTER ENTER gives the following result:
−(X2 − X− 6)

2.1. THE EQUATION EDITOR 19
• Example 2
If you want to enter:

X2 − 3 · X + 1

You type:
X yx 2 � − 3 X + 1

• Example 3
You want to enter:

1
2

+
1
3

+
1
4

+
1
5

Here, the root of the tree is a +, and there are four sub-trees; each
sub-tree has a ÷ as root, and has two leaves.
First of all, you must press EQW, and then you enter the �rst sub-tree:

1÷ 2

Then, you select this sub-tree with
�

press
+

and enter the second sub-tree:
1÷ 3

Then, you select this sub-tree with
�

press
+

and enter the third sub-tree:
1÷ 4

Then, you select this sub-tree with
�

20 CHAPTER 2. DATA ENTRY

press
+

and enter the fourth sub-tree:
1÷ 5

Last, press
�

again to select the last sub-tree you entered.
Now, the expression you want:

1

2
+

1

3
+

1

4
+

1

5

has been entered into the equation writer, and 1
5
is selected.

Visit the tree to select:
1

3
+

1

4

You must press
�

to select 1
4
; next,

red− shift�

allows you to extend the selection to two contiguous sub-trees, in this
example:

1

3
+

1

4

Notice that:
You can evaluate the selected portion of the expression with:

red− shift SYMB (EVAL)

You obtain:
1

2
+

7

12
+

1

5

Now, if you want to evaluate
1
2

+
1
5

2.1. THE EQUATION EDITOR 21
�rst of all you must do a permutation in order to make 1

2
and 1

5
adjacent,

pressing
blue− shift�

thus exchanging the selected element with his left neighbor.
You obtain:

7

12
+

1

2
+

1

5

and 7
12

is selected. Then,
�red− shift�

selects
1

2
+

1

5

You can now do EVAL again.
2.1.3 How to modify an expression
To replace the selection with another expression, you can directly type the
new expression.
To remove a selection without deleting the selected expression, press:

⇐

To delete the selected expression, press:
red− shift ⇐ (CLEAR)

To delete the unary operator at the root of the selected sub-tree, press:
blue− shift ⇐ (DEL)

For example, to replace sin(expr) with cos(expr), you delete sin (selecting
sin(expr) and pressing blue− shift ⇐), then you enter: cos.

To delete a binary operatoy, you must use the edit menu option, make
the correction in the command-line editor, and return to the equation writer
with ENTER.

The HIST key (when used inside the equation editor) allows you to enter
the history and to copy a history element into the equation writer with the
echo menu option.

22 CHAPTER 2. DATA ENTRY

2.1.4 How to enter AND, ∫ and ∑
To enter AND, you type it in alpha mode and you press �.

To enter the ∫ symbol, you press:
red− shift TAN (

∫
)

To enter the ∑ symbol, you press:
red− shift SIN (

∑
)

The cursor automatically moves where input is required, and you can move
it using

�

The expressions you enter follow the selection rules explained above, but
you must use 4 to enter selection mode.

Warning: do not use the index variable i in summations, because i denotes
the complex number that solves the equation x2 + 1 = 0.

You must also understand that ∑ is able to calculate symbolically the
summations of rational fractions, and the hypergeometric series admitting a
discrete primitive (starting from ROM version 1.11).

In numeric mode, ∑ performs approximate calculations (for example,∑4
k=0

1
k! = 2.70833333334, instead of 1+ 1

1! + 1
2! + 1

3! + 1
4! = 65

24) (the ! symbol
can be typed in pressing alpha red− shift 2).

2.1.5 Cursor mode
Cursor mode allows you to select a big expression fast:
press red-shift EQW (') to enter cursor mode (or press on the curs menu
option). Next, use the arrows to enclose your selection in a box and press
ENTER to select the box contents, or CANCEL to cancel the operation.

2.1.6 To view all
Pressing on the big menu option, you make the font used to display the ex-
pression either bigger or smaller: sometimes, making the font smaller allows
you to view a big expression as a whole on the screen.

If this is not yet enough, select the view option of the TOOL menu.

2.2. THE MATRIX WRITER 23
2.2 The matrix writer

To invoke the matrix writer, press: blue-shift EQW (MTRW).
You can then enter the elements belonging to the �rst line of the matrix

by pressing ENTER after each entry (you can use the equation editor to write
them, too!). Next, you move the cursor to the beginning of the second line
with the arrow keys (the cursor automatically wraps around when you �nish
entering the following lines).

To enter a negative number, for example −2, enter +/− 2.
If you want to enter a vector, make sure that the vect menu option is

selected.
Notice that in Algebraic mode you must enter the matrix elements one

at a time (pressing ENTER after each element), but in RPN mode you can write
more than one element separating them with spaces; pressing ENTER then
enters them all.

2.3 The text editor

This is the line that opens under the history to type a command in.
It is a full-�edged text editor, where you can: select an expression (with BEGIN
END), either cut it (CUT) or copy it (COPY) into a bu�er, and then paste it at
the current cursor position (PASTE).

Notice also that these commands work in EQW and MTRW, too.

2.3.1 BEGIN END

Move the cursor on the �rst character of the text you want to select, then
press: red-shift APPS (BEGIN).

Then, move the cursor on the character that follows the last character to
select, and press:
red-shift MODE (END).

Your selection will be highlighted.

24 CHAPTER 2. DATA ENTRY

2.3.2 COPY

red-shift VAR (COPY) copies the selection into a bu�er.

2.3.3 CUT

red-shift STO (CUT) copies the selection into a bu�er, and deletes it from
the command line.

2.3.4 PASTE

red-shift NXT (PASTE) pastes the contents of the bu�er at the current cur-
sor position (you must have previously done either COPY, or CUT, to put some-
thing into the bu�er).

2.4 Variables

You can store objects into variables, and reference them using the variable
name.

Be sure to notice the di�erence between A et 'A' :
A is evaluated (it denotes the execution of variable contents), while 'A' is not
(it denotes the variable name).

For example:
STO(B,'A'): stores the contents of B into A.
STO('B','A'): means that B and A will have the same contents from now on.
VAR displays a menu listing all variables you have created in the current di-
rectory, as well as all its subdirectories (you can distinguish variables from
subdirectories because subdirectories have a small bar across the upper-left
corner of their menu item).

The blue-shift APPS (FILES) application displays the whole variable
tree starting from HOME, as well as the archive memory, and greatly simpli�es
variable management.

2.4.1 STO

STO allows you to create a variable and to store an object into it.
Warning: STO is pre�xed if you type it in alpha mode, and is in�xed if you

2.4. VARIABLES 25
use the STO key. (from now on, this key will be denoted by either STO. or .).

Examples:
Type:
STO(1,'A')
or
use the STO. key, displayed on screen with . :
to enter:
1 STO . A (1 . A).

Notice that, in the latter case, you don't put ' ' around A.
The variable A is created, and it contains 1.
Enter:

� 12� STO . P
P is a varialbe containing the program � 12� , that displays 12.

2.4.2 RCL

RCL takes a variable name, surrounded by ' , as argument, and displays the
variable contents.

To recall the contents of a variable, entering the variable name is enough,
unless the variable contains a program (because, in the latter case, the pro-
gram is executed).

In the last examples:
A displays 1 and P displays 12
but:
RCL('A') displays 1 and RCL('P') displays � 12� .

2.4.3 PURGE

PURGE allows you to delete a variable and its contents.
You can �nd PURGE in the TOOL menu.

Example:
PURGE('A')

26 CHAPTER 2. DATA ENTRY

2.4.4 Prede�ned variables
The name of the current symbolic variable is stored in VX (and it will usually
be X), therefore you should either not use X as an ordinary variable, or purge
X before doing symbolic calculations.

EPS holds the value of epsilon used by the EPSX0 command (see 4.20.1).
EQ holds the last equation you plotted.
MATRIX holds the last matrix used as argument to either JORDAN, EGV or

EGVL.
MODULO holds the value of p when you do symbolic calculations in the

Z/p.Z ring.
PERIOD holds the period of the function of which you want to calculate

the Fourier coe�cients (see 4.7.16).
PRIMIT holds the antiderivative of the last function you asked the calcu-

lator to integrate.
REALASSUME holds the names of the symbolic variables you want the cal-

culator assume to be reals (by default, X, t and all auxiliary integration
variables used).

SYSTEM holds the last system of equations used as argument to either rref
or RREF, if the system has at least a parameter.

2.5 Directories
At the beginning, you only have the HOME directory; it is the ancestor of any
other directory you will create in the future.

2.5.1 Creating a directory
Press blue-shift APPS (FILES) to display the tree structure of your direc-
tories.

2.5. DIRECTORIES 27
Select the directory you want to be the parent directory (for example HOME)

and press ok.
A menu containing edit copy move... is displayed; press NXT and select

new (new variable or directory) with F3.
Do not �ll the Object �eld, but �ll Name instead (to do this, simply type

the name you chose, and then press ok of the menu.
Then, select Directory with F3 (chk), and press ok of the menu.
Last, press CANCEL to return in HOME.
Check, by pressing VAR, that your directory has actually been created.
You can also create a directory with the CRDIR command.
You make the parent directory current, and then type:

CRDIR('NOMREP')
to create a subdirectory named NOMREP.

2.5.2 Working in a directory
Working in a directory is simple: simply press VAR to display the subdirectory
names in the menu area, and then open the subdirectory you want by pressing
on the Fi corresponding to its name, followed by ENTER.

To climb up in the directory tree, press:
blue-shift VAR (UPDIR)

2.5.3 Deleting, renaming, moving a directory
Press blue-shift APPS (FILES) to display your directory tree.
Select the directory you want to delete, rename, move, and press the ok menu
key.

A menu containing edit copy move...purge rename... is displayed.
purge deletes the directory, if it is empty.
rename gives the directory a new name.

28 CHAPTER 2. DATA ENTRY

copy copies the directory (the arrow keys are used to indicate the desti-
nation, and ok con�rms).

move moves the directory (the arrow keys are used to indicate the desti-
nation, and ok con�rms).

Chapter 3

Plotting graphs

3.1 Plot windows

3.1.1 Equation entry
This window is activated with the following sequence of keys:
blue-shift F1 (Y=). It allows you to de�ne the equation to be plotted.

3.1.2 Plot window
This window is activated with the following sequence of keys:
blue-shift F2 (WIN).
It allows you to de�ne the plot window and to enter the lower and upper
boundaries of the independent plot variable.
If boundaries are set to Default, they are assumed to be equal to the hori-
zontal size of the plot window.
To reset a parameter to Default, you must press NXT, and then press the
reset menu key.

3.1.3 Graph display
This window is activated with the following sequence of keys:
blue-shift F3 (GRAPH).
It allows you to draw the plot when you have set all its parameters.

29

30 CHAPTER 3. PLOTTING GRAPHS

3.1.4 Plot setup
This window is activated with the following sequence of keys:
blue-shift F4 (2D/3D).
It allows you to choose the plot type, the equation to be plotted and the plot
variables.

3.1.5 Table setup
This window is activated with the following sequence of keys:
blue-shift F5 (TBLSET).
It allows you to initialize a table.

3.1.6 Table display
This window is activated with the following sequence of keys:
blue-shift F6 (TABLE).
It displays the table you initialized with TBLSET.

3.2 Plot setup

3.2.1 Plot type
You can select the plot type using the choos menu key of the PLOT SETUP
(blue-shift F4 (2D/3D)) window.

Here, the most common plot types will be described, such as:
Function to plot a function in cartesian coordinates.
Polar to plot a function in polar coordinates.
Parametric to plot a parametric function.
Truth to plot the solutions of an equation (the pixel at (x,y) is turned on

i� EQ is true).
Diff Eq to plot the solutions of the di�erential equation y′ = f(x, y).

You can plot the solution satisfying y(x0) = y0 on the interval [a, b].
To do this, put in H-View the values of a and b, then x0 into Init and y0 into
Init-Soln.

3.2. PLOT SETUP 31
The solution is plotted in two steps: �rst, set Final to b to plot the solution
on [x0,= b], draw the plot, then set Final to a to plot the solution on [a, x0]and draw the plot again.

Slopefield to draw the slope �eld of the di�erential equation y′ = f(x, y).
Fast3D to plot a surface de�ned by z = f(x, y).

The plot can be rotated using NXT, TOOL and the arrow 4 � � 5 keys, to
have a good view of the surface.

3.2.2 The equation
You can enter the equation in many ways:
-you can store it into the EQ variable.
-you can enter it in the window opened by blue-shift F1 (Y=).
-you can enter it in the EQ �eld of the PLOT SETUP window, opened by
blue-shift F4 (2D/3D).
-you can also use the cas function PLOT. It has a functions as argument, stores
it into EQ and opens the PLOT SETUP window.

Notice that EQ can be a list of equations; in this case, all of them will be
plotted on the same graphic.

You can also add en equation to the list of equations stored in EQ, with
the aid of the cas function PLOTADD.

3.2.3 Independent variable and equation types
The equation type depends on the plot type you have selected and on the
independent variable you chose.

Depending on this, you enter an equation of type:
f(x) to plot y = f(x) in cartesian coordinates, if x is the independent variable
and the plot type is Function.

f(t) to plot r = f(t) in polar coordinates, if t is the independent variable
and the plot type is Polar.

x(t) + i.y(t) to plot (x = x(t), y = y(t)) in parametric coordinates, if t is
the independent variable and the plot type is Parametric.

32 CHAPTER 3. PLOTTING GRAPHS

f(x, y) > 0 to highlight the corresponding portion of the x, y plane, if x
and y are the independent variables and the plot type is Truth.

f(t, y) to plot the solutions of the di�erential equation y′ = f(t, y) if t is
the independent variable, y is the solution variable and the plot type is Diff
Eq.

f(t, y) to plot the slope �eld of the di�erential equation y′ = f(t, y), if
t is the independent variable, y is the solution variable and the plot type is
Slopefield.

f(x, y) to plot the surface de�ned by z = f(x, y) if x and y are the inde-
pendent variables and the plot type is Fast3D.

Sometimes, the name of the second independent variable can be changed;
by default its name is y. This name is always tagged by Depend, even if it
does correspond to an independent variable! Do not take the word Depend
into account in this case.

3.3 Drawing the plot
Before drawing a plot, you must set up many parameters.
When you have set all parameters up, to draw a plot press on:
erase draw (if tou want to erase the last plot you made) or
draw (if you want yo keep the last plot you made).

Using the menu of one of the following windows:
PLOT SETUP (blue-shift F4 (2D/3D))
PLOT (blue-shift F1 (Y=3D))
PLOT WINDOW (blue-shift F2 (WIN)).

You can also press:
blue-shift F3 (GRAPH) to draw the new plot without erasing the previous
one.

You can review the last plot you made by pressing on �.

Chapter 4

Symbolic calculations

4.1 Integers (and Gauss integers)
In this chapter, all integers can be freely replaced by Gauss integers, as an
argument for all functions described here.

4.1.1 In�nite-precision integers
The calculator can handle in�nite-precision integers, for example:

100!

The symbol ! can be obtained either pressing alpha red− shift 2, or
using red-shift CAT (CHARS).

In the latter case, you select ! in CHARS (with the arrow keys), and then
copy it into the command line using the echo1 menu key.

Since the decimal representation of 100! is very long, you can view the
result using the TOOL key, followed by the view menu key.

The HIST and the up arrow keys allow you to climb up through the history,
and the view menu key allows you to review previous results.
4.1.2 DEFINE

Consider the following exercise:
Calculate the �rst six Fermat numbers Fk = 22k

+ 1 for k = 1..6, and check
33

34 CHAPTER 4. SYMBOLIC CALCULATIONS

whether they are prime.
Type the expression:

222
+ 1

to �nd 17, then invoke the ISPRIME?() command with ANS(1) as argument.
You can �nd this command in the ARITH (blue-shift 1) menu, sub-

menu 1 INTEGER (or you can type it in α mode).
The answer is 1., meaning true.
With the aid of the history, (HIST) you can copy the expression 222

+ 1
into the command line, and modify it to read as:

223
+ 1

Otherwise, you can type the expression 22K

+ 1 STO FK, then do 3 STO
K, and so on...

Otherwise, and it is the better choice, you can de�ne the function F(K)
with the aid of DEF (blue-shift 2), entering:

DEFINE(F(K) = 22
K

+ 1)

The result is NOVAL and F is added to the variables (press on VAR to check
this).

For K = 5 you enter:
F(5)

obtaining:
4294967297

You can factorize F5 with FACTOR ; you �nd it in the ALG (red-shift 4)
menu.

Type:
FACTOR(F(5))

You obtain:
641 · 6700417

For F(6) you �nd:
18446744073709551617

Factorizing the result with FACTOR, the result is:
274177 · 67280421310721

4.1. INTEGERS (AND GAUSS INTEGERS) 35
Notice the di�erence in notation between:

2.5 =
5
2

and
2 · 5 = 10

4.1.3 GCD

GCD denotes the greatest common divisor of two integers (or of two lists of
integers with the same size).
Enter:

GCD(18, 15)

You obtain:
3

Enter:
GCD({18, 28}, {15, 21})

You obtain:
{3, 7}

because GCD(18, 15) = 3 and GCD(28, 21) = 7.

4.1.4 LGCD

LGCD denotes the greatest common divisor of a list of integers.
Enter:

LGCD({18, 15, 21, 36})

You obtain:
3

4.1.5 SIMP2

SIMP2 has two integers as arguments (or two lists of integers). These integers
are assumed to represent a fraction: the �rst element of the list is the fraction's
numerator, the second is the denominator. SIMP2 returns a list of two integers
representing, under the same assumptions, the input fraction simpli�ed.
Enter:

SIMP2(18, 15)

36 CHAPTER 4. SYMBOLIC CALCULATIONS

You obtain:
{6, 5}

Enter:
SIMP2({18, 28}, {15, 21})

You obtain:
{6, 5, 4, 3}

4.1.6 LCM

LCM denotes the least common multiple of two integers (or of two lists of
integers).
Enter:

LCM(18, 15)

You obtain:
90

4.1.7 FACTOR

FACTOR factorizes its argument into a product of prime factors.
Enter:

FACTOR(90)

You obtain:
2.32.5

4.1.8 FACTORS

FACTORS does the same, but the result is given as a list, containing the prime
factors and their exponents.
Type:

FACTORS(90)

You obtain:
{2, 1., 3, 2., 5, 1.}

4.1. INTEGERS (AND GAUSS INTEGERS) 37
4.1.9 DIVIS

DIVIS returns a list containing all divisors of a given integer.
Type:

DIVIS(36)

You obtain:
{1, 3, 9, 2, 6, 18, 4, 12, 36}

4.1.10 IQUOT

IQUOT returns the integer quotient of the euclidean division of two integers.
Type:

IQUOT(148, 5)

You obtain:
29

4.1.11 IREMAINDER MOD

IREMAINDER returns the integer remainder of the euclidean division of two
integers.
You type:

IREMAINDER(148, 5)

or
148 MOD 5

You obtain:
3

The di�erence between IREMAINDER and MOD is that the former works with
both integers and Gauss integers.
Try:

IREMAINDER(148!, 5! + 2)

(you obtain ! with alpha red-shift 2).

4.1.12 IDIV2

IDIV2 returns a list containing the quotient and the remainder of the euclidean
division between two integers, in that order.
Type:

IDIV2(148, 5)

38 CHAPTER 4. SYMBOLIC CALCULATIONS

You obtain:
{29, 3}

In step-by-step mode, the calculator shows the division process like it is taught
at school.

4.1.13 ISPRIME?

ISPRIME?(N) returns 1. (true) if N is pseudo-prime, and returns 0. (false) if
N is not prime.
De�nition: For all integers less than 1014 pseudo-primality and primality are
the same! ...beyond 1014 a pseudo-prime integer has a very high probability
to be prime (see the Rabin algorithm in section 7.6).
Type:

ISPRIME?(13)

You obtain:
1.

Type:
ISPRIME?(14)

You obtain:
0.

4.1.14 NEXTPRIME

NEXTPRIME(N) returns the smallest pseudo-prime number greater than N.
Type:

NEXTPRIME(75)

You obtain:
79

4.1.15 PREVPRIME

PREVPRIME(N) returns the largest pseudo-prime number less than N.
Type:

PREVPRIME(75)

You obtain:
73

4.1. INTEGERS (AND GAUSS INTEGERS) 39
4.1.16 IEGCD

IEGCD(A,B) returns the extended GCD (Bézout identity) of two integers, that
is, IEGCD(A,B) returns {D,U,V} so that AU+BV=D and D=GCD(A,B).
Type:

IEGCD(48, 30)

You obtain:
{6, 2,−3}

In fact:
2 · 48 + (−3) · 30 = 6

4.1.17 IABCUV

IABCUV(A,B,C) returns {U ,V} so that AU+BV=C.
C must be a multiple of GCD(A,B) for a solution to exist.
Type:

IABCUV(48, 30, 18)

You obtain:
{6,−9}

4.1.18 ICHINREM

ICHINREM([A,P],[B,Q]) returns a vector [X, N] so that:
X=A (mod P) and X=B (mod Q).
The solution X exists if P and Q are mutually prime, and all solutions are
congruent modulo N = P · Q
Example:
Solve: {

X = 3 (mod 5)
X = 9 (mod 13)

Type:
ICHINREM([3, 5], [9, 13])

You obtain:
[−147, 65]

that is, X=-147 (mod 65)

40 CHAPTER 4. SYMBOLIC CALCULATIONS

4.1.19 PA2B2

PA2B2 decomposes a prime integer p, congruent to 1 modulo 4, as follows:
p = a2 + b2. The calculator returns the result as a + b · i
Type:

PA2B2(17)

You obtain:
4 + i

that is, 17 = 42 + 12

4.1.20 EULER

EULER denotes the Euler's totient function of an integer.
EULER(n) is the number of integers less than n and prime with n.
Type:

EULER(21)

you obtain:
12

In fact, the set:
E={2,4,5,7,8,10,11,13,15,16,17,19} is the set of integers less than 21 and prime
with 21, and it has 12 elements.

4.2 Rationals
Type:

123
12

+
57
21

and then ENTER; the answer is:
363
28

with red-shift ENTER (→NUM) the answer is:
12.9642857143

If you mix both representations, for example:
1
2

+ 0.5

4.2. RATIONALS 41
the calculator demands to enable approx mode to carry out the calculation;
you should answer yes to obtain:

1.

Now, return to exact mode (MODE cas menu keys, and so on...).

4.2.1 PROPFRAC

PROPFRAC(A/B) rewrites the fraction A
B as:

Q +
R

B
with 0 ≤ R < B

Type:
PROPFRAC(43÷ 12)

You obtain:
3 +

7

12

4.2.2 FXND

FXND has a fraction as argument, and returns a list containing the fraction's
numerator and denominator simpli�ed.
Type:

FXND(42÷ 12)

You obtain:
{7, 2}

4.2.3 SIMP2

SIMP2 (see 4.1.5) has a list of two integers representing a fraction as argument
and, like FXND, returns a list containing the fraction's numerator and denom-
inator simpli�ed.
Type:

SIMP2({42, 12})

You obtain:
{7, 2}

42 CHAPTER 4. SYMBOLIC CALCULATIONS

4.3 Reals
Type:

EXP(π ∗
√
20)

followed by ENTER; the answer is:
EXP(2 ∗

√
5 ∗ π)

with red-shift ENTER (→NUM) the answer is:
1263794.7537

4.4 Complex numbers
Type:

(1 + 2.i)2

follower by ENTER.
If you aren't in complex mode, the calculator asks for a mode change: you

should answer yes to obtain the answer:
−(3− 4 · i)

Notice that this expression is not simpli�ed beforehand (all results always
put in evidence complex numbers with a positive real part in exact mode).

In the red-shift 1 (CMPLX) menu you will �nd the following functions,
having a complex-valued expression as argument:
ARG returns the argument of its input.
ABS returns the modulo of its argument.
CONJ returns the conjugate of its argument.
RE returns the real part of its argument.
IM returns the imaginary part of its argument.
NEG returns the opposite of its argument.
SIGN returns the quotient between its argument and its argument's modulo.
For example:
Type:

ARG(3 + 4 · i)
you obtain:

ATAN(
4

3
)

4.5. ALGEBRAIC EXPRESSIONS 43
4.5 Algebraic expressions

4.5.1 FACTOR

FACTOR factorizes the expression given as argument.
Example:
Factorize

x4 + 1
Type:

FACTOR(X4 + 1)
You can �nd FACTOR in the ALG (red-shift 4) menu (or you can type it
in α mode).
In real mode, the answer is:

(X2 +
√
2 · X + 1) · (X2 −

√
2 · X + 1)

In complex mode (to enable this mode, press MODE, then the cas menu key,
then check the complex �eld with chk and press ok ok) the answer is:
(2 · X + (1 + i) ·

√
2) · (2 · X− (1 + i) ·

√
2) · (2 · X + (1− i) ·

√
2) · (2 · X− (1− i) ·

√
2)

16

4.5.2 EXPAND EVAL

EXPAND and EVAL have an expression as argument; they expand and simplify
their input.
Example:
Doing EXPAND(ANS(1)), you obtain again

X4 + 1.

4.5.3 SUBST

SUBST has two arguments: an expression depending on a parameter, and an
equality (parameter=substitution value).
SUBST does the commanded substitution in the input expression, and returns
the result.
Type:

SUBST(A2 + 1, A = 2)
You obtain:

22 + 1

44 CHAPTER 4. SYMBOLIC CALCULATIONS

4.5.4 PREVAL

PREVAL has three arguments: an expression (F(VX)) depending on the variable
stored in VX and two expressions: A and B .
PREVAL evaluates F(B)-F(A).
PREVAL is useful to compute a de�nite integral given an antiderivative: you
evaluate the antiderivative between the upper and lower limits of the integral.
Type:

PREVAL(X2 + X, 2, 3)

You obtain:
12− 6

4.6 Functions

4.6.1 DERVX

Let f(x) be:
f(x) =

x

x2 − 1
+ ln(

x + 1
x− 1

)

Determine the derivative of f .
You can �nd DERVX in the menu:

CALC (blue-shift 4), sub-menu 1.DERIV. & INT..., third position (or
you can type it in mode α).

Type either:
DERVX(

X

X2 − 1
+ LN(

X + 1

X− 1
))

or, if you have previosuly stored f(x) into F:
DERVX(F)

or, if you have de�ned F (X) using DEFINE: (DEFINE(F(X) = X
X2−1

+ LN(X+1
X−1

)))
DERVX(F(X))

The result is an involved expression that you can simplify by copying it
into the command line (4 ENTER ENTER)).
You obtain:

− 3 · X2 − 1

X4 − 2 · X2 + 1

4.6. FUNCTIONS 45
4.6.2 DERIV

DERIV has two arguments: an expression (or a functions), and a variable (or
a vector containing more than one variable name) (see multivariate functions,
paragraph 4.16.1).
DERIV returns the derivative of the expression (or function) with respect to
the given variable(s) (useful to calculate partial derivatives!).
Example:
Suppose you should calculate:

∂(x · y2 · z3 + x · y)
∂z

Type:
DERIV(X · Y2 · Z3 + X · Y , Z)

You obtain:
3 · X · Y2 · Z2

4.6.3 INTVX

Let f(x) be:
f(x) =

x

x2 − 1
+ ln(

x + 1
x− 1

)

Determine an antiderivative of f .
You can �nd INTVX in the CALC (blue-shift 4)menu, 1. DERIV. & INT...
sub-menu, eighth position (or you can type it in α mode).
You type either:

INTVX(
X

X2 − 1
+ LN(

X + 1

X− 1
))

or, if you have previously stored f(x) into F:
INTVX(F)

or, if you have de�ned F (X) using DEFINE (DEFINE(F(X) = X
X2−1

+ LN(X+1
X−1

)):
INTVX(F(X))

You obtain:
X · LN(X + 1

X− 1
) +

3

2
· LN(|X− 1|) +

3 =
2
· LN(|X + 1|)

46 CHAPTER 4. SYMBOLIC CALCULATIONS

Exercise 1
Calculate: ∫

2
x6 + 2 · x4 + x2

dx

Type:
INTVX(

2

X6 + 2 · X4 + X2
)

You obtain:
−3 · ATAN(X)− 2

X
− X

X2 + 1

Notice:
You can also enter the expression using the equation writer (EQW key):∫ X

1

2

X6 + 2 · X4 + X2
dX

This gives the same result, barring an integration constant equal to
3 · π + 10

4

Exercise 2
Calculate: ∫

1
sin(x) + sin(2 · x)

dx

Type:
INTVX(

1

SIN(X) + SIN(2 · X)
)

You �nd:
−1
6
· LN(|COS(X)− 1|) +

1

2
· LN(|COS(X) + 1|) +

−2
3
· LN(|2 · COS(X) + 1|)− LN(2)

4.6.4 LIMIT

Find, for n > 2, the limit when x approaches 0 of:
n× tan(x)− tan(n× x)
sin(n× x)− n× sin(x)

You can use the LIMIT command, found in the menu:
CALC (blue-shift 4), sub-menu 2 LIMIT & SERIES (or you can type it in

4.6. FUNCTIONS 47
α mode).
Type:

LIMIT

(
N · TAN(X)− TAN(N · X)
SIN(N · X)− N · SIN(X)

, 0

)
You obtain:

2

Find the limit, when x approaches +∞, of:√
x +

√
x +
√

x−
√

x

Type:
LIMIT(

√
X +

√
X +
√
X−
√
X,+∞)

After a moment, you obtain:
1
2

Notice that you obtain +∞ pressing:
+/−

+/− ∞ (blue− shift 0)

4.6.5 LIMIT and
∫

Find the limit, when a approaches +∞, of:∫ a

2

(
x

x2 − 1
+ ln(

x + 1
x− 1

)) dx

In the equation writer, type:∫ +∞

2

(
X

X2 − 1
+ LN(

X + 1

X− 1
)) dX

Notice that tou obtain +∞ pressing:
+/−

+/− ∞ (blue− shift 0)

You obtain:
+∞− 7.LN(3)

2

and, after simpli�cation:
+∞

48 CHAPTER 4. SYMBOLIC CALCULATIONS

4.6.6 IBP

IBP has two arguments: an expression you can write as u(x) · v′(x) and v(x).
IBP returns a list containing u(x) · v(x) and −v(x) · u′(x), that is, the two
terms you must calculate when doing an integration by parts.
You must then integrate the second term and add the result to the �rst term
to obtain an antiderivative of u(x) · v′(x) (this is handy in RPN mode!).
Type:

IBP(LN(X), X)

You obtain:
{X.LN(X),−1}

Notice: If the �rst argument of IBP is a list of two elements, IBP only operates
on the last element of the list, and adds the integration result to the �rst
element (so that it is easy to invoke IBP multiple times in algebraic mode).

4.6.7 RISCH

RISCH has two arguments: an expression and the name of a variable.
RISCH returns an antiderivative of the �rst argument with respect to the
variable given as the second argument.
Type:

RISCH((2 · X2 + 1) · EXP(X2 + 1), X)

You obtain:
X · EXP(X2 + 1)

4.7 Trigonometric expressions

4.7.1 TEXPAND

TEXPAND has a trigonometric expression as argument.
TEXPAND expands this expression with respect to sin(x) and cos(x).
Example 1:
Type:

TEXPAND(COS(X + Y))

You obtain:
COS(Y) · COS(X)− SIN(Y) · SIN(X)

4.7. TRIGONOMETRIC EXPRESSIONS 49
Example 2:
Type:

TEXPAND(COS(3 · X))

You obtain:
4 · COS(X)3 − 3 · COS(X)

Example 3:
Type:

TEXPAND(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X)
)

You obtain, after one simpli�cation step (4 ENTER) :
4 · COS(X)2 − 2

4.7.2 TLIN

TLIN has a trigonometric expression as argument.
TLIN linearizes this expression in function of sin(n · x) and cos(n · x).
Example:
Type:

TLIN(COS(X) · COS(Y))

You obtain:
1

2
· COS(X− Y) +

1

2
· COS(X + Y)

Example 2:
Type:

TLIN(COS(X)3)

You obtain:
1

4
· COS(3 · X) +

3

4
· COS(X)

50 CHAPTER 4. SYMBOLIC CALCULATIONS

Example 3:
Type:

TLIN(4 · COS(X)2 − 2)

You obtain:
2 · COS(2 · X)

4.7.3 TCOLLECT

TCOLLECT has a trigonometric expression as argument.
TCOLLECT linearizes this expression in function of sin(n ·x) and cos(n ·x), then
collects in real mode sines and cosines of the same angle.
Type:

TCOLLECT(SIN(X) + COS(X))

You obtain:
√
2 · COS(X− π

4
)

4.7.4 ACOS2S

ACOS2S has a trigonometric expression as argument.
ACOS2S rewrites this expression replacing arccos(x) with π

2 − arcsin(x).
Type:

ACOS2S(ACOS(X) + ASIN(X))

You obtain:
π

2

4.7.5 ASIN2C

ASIN2C has a trigonometric expression as argument.
ASIN2C rewrites this expression replacing arcsin(x) with π

2 − arccos(x).
Type:

ASIN2C(ACOS(X) + ASIN(X))

4.7. TRIGONOMETRIC EXPRESSIONS 51
You obtain:

π

2

4.7.6 ASIN2T

ASIN2T has a trigonometric expression as argument.
ASIN2T rewrites this expression replacing arcsin(x) with arctan(x√

1−x2).
Type:

ASIN2T(ASIN(X))

You obtain:
ATAN(

X√
1− X2

)

4.7.7 ATAN2S

ATAN2S has a trigonometric expression as argument.
ATAN2S rewrites this expression replacing arctan(x) with arcsin(x√

1+x2).
Type:

ATAN2S(ATAN(X))

You obtain:
ASIN(

X√
X2 + 1

)

4.7.8 SINCOS

SINCOS accepts as argument an expression containing complex exponentials.
SINCOS rewrites this expression in function of sin(x) and cos(x).
Type:

SINCOS(EXP(i.X))

You obtain:
COS(X) + i.SIN(X)

52 CHAPTER 4. SYMBOLIC CALCULATIONS

4.7.9 TAN2SC

TAN2SC has a trigonometric expression as argument.
TAN2SC rewrites this expression replacing tan(x) with sin(x)

cos(x) .Type:
TAN2SC(TAN(X))

You obtain:
SIN(X)
COS(X)

4.7.10 TAN2SC2

TAN2SC2 has a trigonometric expression as argument.
TAN2SC2 rewrites this expression replacing tan(x) with sin(2·x)

1+cos(2·x) (or with
1−cos(2·x)

sin(2·x) if you prefer sines, that is, when �ag -116 is set to Prefer sin();
see 0.4 for more details).
Type:

TAN2SC2(TAN(X))

You obtain:
SIN(2 · X)

1 + COS(2 · X)

4.7.11 HALFTAN

HALFTAN has a trigonometric expression as argument.
HALFTAN rewrites sin(x), cos(x) and tan(x) terms of the expression in function
of tan(x

2).
Type:

HALFTAN(
SIN(2 · X)

1 + COS(2 · X)
)

You obtain, after simpli�cation:
TAN(X)

4.7. TRIGONOMETRIC EXPRESSIONS 53
Type:

HALFTAN(SIN(X)2 + COS(X)2)

You obtain (SQ(X) = X2):
(

2 · TAN(X
2
)

SQ(TAN(X
2
)) + 1

)2

+
(
1− SQ(TAN(X

2
))

SQ(TAN(X
2
)) + 1

)2

You obtain, after simpli�cation:

1

4.7.12 TRIG

TRIG has a trigonometric expression as argument.
TRIG simpli�es this expression using the identity: sin(x)2 + cos(x)2 = 1.
Type:

TRIG(SIN(X)2 + COS(X)2 + 1)

You obtain:

2

4.7.13 TRIGSIN

TRIGSIN has a trigonometric expression as argument.
TRIGSIN simpli�es this expression using the identity: sin(x)2 + cos(x)2 = 1,
privileging and preserving sin(x) terms.
Type:

TRIGSIN(SIN(X)4 + COS(X)2 + 1)

You obtain:

SIN(X)4 − SIN(X)2 + 2

54 CHAPTER 4. SYMBOLIC CALCULATIONS

4.7.14 TRIGCOS

TRIGCOS has a trigonometric expression as argument.
TRIGCOS simpli�es this expression using the identity: sin(x)2 + cos(x)2 = 1,
privileging and preserving cos(x) terms.
Type:

TRIGCOS(SIN(X)4 + COS(X)2 + 1)

You obtain:
COS(X)4 − COS(X)2 + 2

4.7.15 TRIGTAN

TRIGTAN has a trigonometric expression as argument.
TRIGTAN simpli�es this expression using the identity: sin(x)2 + cos(x)2 = 1,
privileging and preserving tan(x) terms.
Type:

TRIGTAN(SIN(X)4 + COS(X)2 + 1)

You obtain:
2 · TAN(X)4 + 3 · TAN(X)2 + 2

TAN(X)4 + 2 · TAN(X)2 + 1

4.7.16 FOURIER

FOURIER has two arguments: an expression f(x) and an integer n.
FOURIER returns the Fourier coe�cient cn of f(x). f(x) is assumed to be
a periodic function de�ned on the interval [0, T], with period T . (T is the
current value of the PERIOD variable).
If f is piecewise continuous:

f(x) =
+∞∑

n=−∞
cne

2inxπ
T

Example: Find the Fourier coe�cients of the function f ; the period of f is
2.π, and f is de�ned on [0 2.π[as f(x) = x2.
Type:

2 · π STO . PERIOD

4.8. EXPONENTIALS AND LOGARITHMS 55
FOURIER(X2, N)

You obtain after simpli�cation:
2 · i · N · π + 2

N2

So, if n 6= 0:
cn =

2 · i ·N · π + 2
N2

Then, type:
FOURIER(X2, 0)

You obtain:
4 · π2

3

So, if n = 0:
c0 =

4 · π2

3

4.8 Exponentials and Logarithms

4.8.1 EXPLN

EXPLN has a trigonometric expression as argument.
EXPLN rewrites the trigonometric expression in terms of exponentials and log-
arithms without linearization.
EXPLN demands to put the calculator in complex mode.
Type:

EXPLN(SIN(X))

You obtain:
EXP(i · X)− 1

EXP(i·X)

2 · i

4.8.2 LIN

LIN has an expression containing exponentials and trigonometric functions as
argument.
LIN linearizes the expression (that is, it rewrites the expression in terms of
exp(n · x)).

56 CHAPTER 4. SYMBOLIC CALCULATIONS

LIN demands to put the calculator in complex mode when the input expres-
sion contains trigonometric functions.

Example 1 :
Type:

LIN((SIN(X))

You obtain:
−(

i

2
· EXP(i · X)) +

i

2
· EXP(−(i · X))

Example 2 :
Type:

LIN((COS(X)2)

You obtain:
−(

1

4
· EXP(2 · i · X)) +

1

2
+

1

4
· EXP(−(2 · i · X))

Example 3 :
Type:

LIN((EXP(X) + 1)3)

You obtain:
3 · EXP(X) + 1 + 3 · EXP(2 · X) + EXP(3 · X)

4.8.3 LNCOLLECT

LNCOLLECT has an expression containing logarithms as argument.
LNCOLLECT collects the logarithmic terms. Therefore, it is better to use it on
a factorized expression (using FACTOR beforehand).
Type:

LNCOLLECT(LN(X + 1) + LN(X− 1))

You obtain:
LN((X + 1)(X− 1))

4.9. POLYNOMIALS 57
4.8.4 TSIMP

TSIMP has an expression as argument; it simpli�es the expression rewriting it
in function of complex exponentials (enabling complex mode in the process),
and then reducing the number of variables as returned by LVAR (see section
4.20.2).
Use TSIMP only as a last resort.
Type:

TSIMP(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X)
)

You obtain after simpli�cation (that is, after copying the result 2 times):
EXP(i · X)4 + 1

EXP(i · X)2

4.9 Polynomials

4.9.1 GCD

GCD returns the gcd (greatest common divisor) of two polynomials (or of two
lists of polynomials with the same length).
Type:

GCD(X2 + 2 · X + 1, X2 − 1)

You obtain:
X + 1

Type:
GCD({X2 + 2 · X + 1, X3 − 1}, {X2 − 1, X2 + X− 2})

You obtain:
{X + 1, X− 1}

4.9.2 LGCD

LGCD denotes the gcd (greatest common divisor) of a list of polynomials.
LGCD returns a list containing the given list of polynomials and the GCD of all
polynomials of the list.
Type:

LGCD({X2 + 2 · X + 1, X3 + 1, X2 − 1, X2 + X})

58 CHAPTER 4. SYMBOLIC CALCULATIONS

You obtain:
{{X2 + 2 · X + 1, X3 + 1, X2 − 1, X2 + X} , X + 1}

4.9.3 SIMP2

SIMP2 has two polynomials (or two lists of polynomials with the same length)
as arguments. These two polynomials are considered as representing a rational
fraction. SIMP2 returns the simpli�ed rational fraction, represented as a list
of two polynomials.
Type:

SIMP2(X3 − 1, X2 − 1)

You obtain:
{X2 + X + 1, X + 1}

4.9.4 LCM

LCM returns the lcm (least common multiple) of two polynomials (or of two
lists of polynomials with the same length).
Type:

LCM(X2 + 2 · X + 1, X2 − 1)

You obtain:
(X2 + 2 · X + 1) · (X− 1)

4.9.5 FACTOR

FACTOR has either a polynomal or a list of polynomials as argument.
FACTOR factors its input.
Type:

FACTOR(X2 + 2 · X + 1)

You obtain:
(X + 1)2

Type:
FACTOR(X4 − 2.X2 + 1)

You obtain:
(X− 1)2.(X + 1)2

Type:
FACTOR({X3 − 2.X2 + 1, X2 − X})

4.9. POLYNOMIALS 59
You obtain:

{ (X− 1) · (2 · X +−1 +
√
5) · (2 · X− (1 +

√
5))

4
, X · (X− 1)}

4.9.6 FACTORS

FACTORS has either a polynomial or a list of polynomials as argument.
FACTORS returns a list containing the factors of the polynomial and their
exponents.
Type:

FACTORS(X2 + 2 · X + 1)

you obtain:
{X + 1, 2.}

Type:
FACTORS(X4 − 2 · X2 + 1)

You obtain:
{X− 1, 2. , X + 1, 2.}

Type:
FACTORS({X3 − 2 · X2 + 1, X2 − X})

You obtain:
{{X− 1, 1. , 2 · X +−1 +

√
5, 1. , 2 · X− (1 +

√
5), 1. , 4,−1.},

{X, 1. , X− 1, 1.}}

4.9.7 DIVIS

DIVIS has either a polynomial or a list of polynomials as argument, and
returns the list of its divisors.
Type:

DIVIS(X4 − 1)

You obtain:
{1, X2 + 1, X− 1, X3 − X2 + X− 1, X + 1, X3 + X2 + X + 1, X2 − 1, X4 − 1}

60 CHAPTER 4. SYMBOLIC CALCULATIONS

4.9.8 QUOT

QUOT returns the quotient of the division between two polynomials.
Type:

QUOT(X2 + 2 · X + 1, X)

You obtain:
X + 2

4.9.9 REMAINDER

REMAINDER returns the remainder of the division between two polynomials.
Type:

REMAINDER(X3 − 1, X2 − 1)

you obtain:
X− 1

4.9.10 DIV2

Returns a list containing both the quotient and the remainder of the division
between two polynomials.
Type:

DIV2(X2 + 2 · X + 1, X)

You obtain:
{X + 2, 1}

The step-by-step mode can be of interest here, because it displays the inter-
mediate steps of the division process.

4.9.11 EGCD

This command applies the Bézout identity (Extended Greatest Common Di-
visor). EGCD(A[X], B[X]) returns {D[X], U[X], V[X]}, where D,U, V satisfy the fol-
lowing relation:

D[X] = U[X] ∗ A[X] + V[X] ∗ B[X]

Type:
EGCD(X2 + 2 · X + 1, X2 − 1)

You obtain:
{2 · X + 2, 1,−1}

4.9. POLYNOMIALS 61
4.9.12 ABCUV

This command applies the Bézout identity like EGCD but, now, the arguments
are three polynomials, A,B, C (C must be a multiple of GCD(A,B)):
ABCUV(A[X], B[X], C[X]) returns {U[X], V[X]}, where U, V satisfy the following:

C[X] = U[X] ∗ A[X] + V[X] ∗ B[X]

Type:
ABCUV(X2 + 2 · X + 1, X2 − 1, X + 1)

You obtain:
{1
2
,
−1
2
}

Type:
ABCUV(X2 + 2 · X + 1, X2 − 1, X3 + 1)

You obtain:
{X

2 − X + 1

2
,−X

2 − X + 1

2
}

4.9.13 HORNER

HORNER has two arguments: a polynomial P [X] and a number a; it returns a
list containing Q[X] (quotient of P [X] divided by X − a), a, and P [a].
Type:

HORNER(X4 + 2 · X3 − 3 · X2 + X− 2, 1)

You obtain:
{X3 + 3 · X2 + 1 , 1 , −1}

4.9.14 PTAYL

Rewrites a polynomial P [X] in function of the powers of X − a.
PTAYL has two arguments: a polynomial P and a number a.
Type:

PTAYL(X2 + 2 · X + 1, 2)

you obtain the polynomial Q[X]:
X2 + 6 · X + 9

Warning, notice that:
P(X) = Q(X− 2)

62 CHAPTER 4. SYMBOLIC CALCULATIONS

4.9.15 ZEROS

ZEROS has two arguments: a polynomial P and a variable name.
ZEROS returns a list containing the zeros of P with respect to the given vari-
able, without their multiplicity.
Type:

ZEROS(X4 − 1, X)

You obtain:
-in real mode

{−1 , 1}

-in complex mode
{−1 , 1 , −i , i}

4.9.16 PROOT

PROOT is the numeric command of the HP48.
PROOT has a vector containing the coe�cients of a monovariate polynomial
(ordered by decreasing powers of the polynomial's variable) as argument.
PROOT returns a vector whose elements are the roots of the polynomial.
To �nd the roots of P [x] = x5 − 2 · x4 + x3, type:

PROOT([1,−2, 1, 0, 0, 0])

You obtain:
[0., 0., 0., 1., 1.]

The result means that 0 is a triple root, and 1 is a double root of P [x].

4.9.17 FROOTS

FROOTS has a rational function F [x] as argument.
FROOTS returns a vector whose components are the roots and the poles of
F [x], followed by their multiplicity.
Type:

FROOTS(
X5 − 2 · X4 + X3

X− 2
)

You obtain:
[2,−1., 0, 3., 1, 2.]

The result means that: 2 is a pole of order 1, 0 is a triple root, and 1 is a
double root of F [x] = x5−2·x4+x3

x−2 .

4.9. POLYNOMIALS 63
4.9.18 PCOEF

PCOEF is the numeric command of the HP48.
PCOEF has a vector containing the roots of a polynomial P [x] as argument.
PCOEF returns a vector whose components are the coe�cients of the polyno-
mial P [x] (ordered by decreasing powers of the polynomial's variable).
Type:

PCOEF([1, 2, 0, 0, 3])

You obtain:
[1.,−6., 11.,−6., 0., 0.]

This means that P [x] = (x− 1) · (x− 2) · x · x · (x− 3) is equal to:
x5 − 6 · x4 + 11 · x3 − 6 · x2.
4.9.19 FCOEF

FCOEF has as argument a vector whose components are the roots and poles of
a rational function F [x], followed by their multiplicity.
FCOEF returns the rational function F [x].
Type:

FCOEF([1, 2, 0, 3, 2,−1])

You obtain:
X5 − 2 · X4 + X3

X− 2

since (x− 1)2 · x3 = x5 − 2 · x4 + x3

4.9.20 CHINREM

CHINREM has two vectors as arguments; each vector has two polynomials as
components.
CHINREM returns a vector with two polynomials as components.
CHINREM([A[X],R[X]],[B[X],Q[X]]) �nds the polyonimals P[X] and S[X]
satisfying the following relations:
S[X] = R[X] · Q[X],
P[X] = A[X](modR[X]) and P[X] = B[X](modQ[X]).
There always is a solution P[X] if R[X] and Q[X] are mutually primes, and
all solutions are congruent modulo S[X] = R[X] · Q[X].
Find the solutions P [X] of:{

P [X] = X (mod X2 + 1)
P [X] = X − 1 (mod X2 − 1)

64 CHAPTER 4. SYMBOLIC CALCULATIONS

Type:
CHINREM([X, X2 + 1], [X− 1, X2 − 1])

You obtain:
[−X

2 − 2 · X + 1

2
,−X

4 − 1

2
]

that is, P [X] = −X2−2·X+1
2 (mod − X4−1

2)

4.9.21 TRUNC

TRUNC truncates a polynomial to a given order.
TRUNC has two arguments: a polynomial and Xn.
TRUNC returns the polynomial truncated to order n − 1 (no terms of order
≥ Xn).
Type:

TRUNC((1 + X +
1

2
· X2)

3

, X4)

You obtain:
4 · X3 +

9

2
· X2 + 3 · X + 1

4.9.22 LAGRANGE

LAGRANGE has as argument a matrix with two rows and n columns:
the �rst row corresponds to the abscissa values xi, and the second row corre-
sponds to ordinate values yi (i = 1..n).
LAGRANGE returns the polynomial P of degree n− 1, so that P (xi) = yi.Type:

LAGRANGE([[1, 3], [0, 1]])

You obtain:
X− 1

2

in fact x−1
2 = 0 for x = 1 and x−1

2 = 1 for x = 3

4.9.23 LEGENDRE

LEGENDRE has as argument an integer value n.
LEGENDRE returns the non trivial polynomial solution of the di�erential equa-
tion:

(x2 − 1) · y′′ − 2 · x · y′ − n(n + 1) · y = 0

4.9. POLYNOMIALS 65
Type:

LEGENDRE(4)

You obtain:
35 · X4 − 30 · X2 + 3

8

4.9.24 HERMITE

HERMITE has as argument an integer value n.
HERMITE returns the Hermite polynomial of degree n.
Type:

HERMITE(6)

You obtain:
64 · X6 − 480 · X4 + 720 · X2 − 120

4.9.25 TCHEBYCHEFF

TCHEBYCHEFF has as argument an integer value n.
If n > 0, TCHEBYCHEFF returns the polynomial Tn:

Tn[x] = cos(n · arccos(x))

If n < 0 TCHEBYCHEFF returns the the polynomial Tn:
Tn[x] =

sin(n · arccos(x))
sin(arccos(x))

Type:
TCHEBYCHEFF(4)

You obtain:
8 · X4 − 8 · X2 + 1

in fact:
cos(4 · x) = Re((cos(x) + i · sin(x))4)
cos(4 · x) = cos(x)4 − 6 · cos(x)2 · (1− cos(x)2) + ((1− cos(x)2)2.
cos(4 · x) = T4(cos(x)).
Type:

TCHEBYCHEFF(−4)

You obtain:
8 · X3 − 4 · X

66 CHAPTER 4. SYMBOLIC CALCULATIONS

in fact:
sin(4 · x) = sin(x) · (8 · cos(x)3 − 4 · cos(x)).

4.9.26 REORDER

REORDER has two arguments: an expression and a vector containing an ordered
list of variables.
REORDER reorders the input expression following the order of variables given
by its second argument.
Type:

REORDER(X2 + 2 · X · A + A2 + Z2 − X · Z, [A, X, Z])

You obtain:
A2 + 2 · X · A + X2 − Z · X + Z2

4.10 Rational fractions

4.10.1 FXND

FXND has a rational fraction as argument, and returns a list containing the
simpli�ed numerator and denominator of this fraction.
Type:

FXND(
X2 − 1

X− 1
)

You obtain:
{X + 1, 1}

4.10.2 SIMP2

SIMP2 has two polynomials (or two lists of polynomials with the same length)
as arguments. These two polynomials are considered as representing a rational
fraction.
SIMP2 simpli�es the rational fraction and returns the result as a list of two
polynomials.
Type:

SIMP2(X3 − 1, X2 − 1)

You obtain:
{X2 + X + 1, X + 1}

4.10. RATIONAL FRACTIONS 67
4.10.3 PROPFRAC

PROPFRAC has a rational fraction as argument.
PROPFRAC rewrites the rational fraction to put its integer part in evidence and
returns the result. In other words, PROPFRAC(A(X)/B(X)) rewrites the rational
fraction A[X]

B[X] as:
Q[X] +

R[X]
B[X]

where R[X] = 0 or 0 ≤ deg(R[X]) < deg(B[X]).
Type:

PROPFRAC(
(5 · X + 3) · (X− 1)

X + 2
)

You obtain:
5 · X− 12 +

21

X + 2

4.10.4 PARTFRAC

To decompose into partial fractions a rational fraction like
x5 − 2× x3 + 1

x4 − 2× x3 + 2× x2 − 2× x + 1

you can use the PARTFRAC command.
You can �nd this command in the ARITH (blue-shift 1) menu, sub-menu
2.POLYNOMIAL..., position 14 (or you can type it in α mode).
Type:

PARTFRAC(
X5 − 2 ∗ X3 + 1

X4 − 2 ∗ X3 + 2 ∗ X2 − 2 ∗ X + 1
)

In real mode, you obtain:

X + 2 +
−1
2

X− 1
+

X−3
2

X2 + 1

In complex mode, you obtain instead:

X + 2 +
1−3.i

4

X + i
+

−1
2

X− 1
+

1+3.i
4

X− i

68 CHAPTER 4. SYMBOLIC CALCULATIONS

4.11 Modular calculations

You can do calculations �modulo p�, that is, in either Z/pZ or Z/pZ[X].
Warning: for some commands, p must be a prime number.
The calculator uses the symmetrical representation of elements (-1 instead of
6 modulo 7).
The value of p must be stored into the MODULO variable in the HOME directory.
All the following examples assume that p=13.

4.11.1 MODSTO

To store into MODULO the value of p (for example p=13) you can use either:
MODE cas MODULO ..., or 13 STO . MODULO (if the current directory is HOME),
or MODSTO(13).
MODSTO allows you to change the value of the MODULO variable in the HOME
directory.
For example, you will type: MODSTO(5) or 5 STO . MODULO to do your calcula-
tions modulo 5.
All the following examples assume that p=13.

4.11.2 ADDTMOD

ADDTMOD performs an addition in Z/pZ[X].
Type:

ADDTMOD(11X + 5, 8X + 6)

You obtain:
6X− 2

4.11.3 SUBTMOD

SUBTMOD peforms a subtraction in Z/pZ[X].
Type:

SUBTMOD(11X + 5, 8X + 6)

You obtain:
3X− 1

4.11. MODULAR CALCULATIONS 69
4.11.4 MULTMOD

MULTMOD performs a multiplication in Z/pZ[X].
Type:

MULTMOD(11X + 5, 8X + 6)

You obtain:
−(3X2 − 2X− 4)

4.11.5 DIV2MOD

The arguments of DIV2MOD are two polynomials A[X] and B[X]. The result is
a list containing both the quotient and the remainder of the euclidean division
of A[X] by B[X] in Z/pZ[X].
Type:

DI2VMOD(X3 + X2 + 1, 2X2 + 4)

Since:
X3 + X2 + 1 = (2X2 + 4) · (X + 1

2
) +

5X − 4
4

you obtain:
{X + 1

2
,
5X− 4

4
}

Then, with
EXPANDMOD({X + 1

2
,
5X− 4

4
})

you obtain:
{−(6X + 6) , −(2X + 1)}

4.11.6 DIVMOD

The arguments of DIVMOD are two polynomials A[X] and B[X]. The result is
the rational fraction A[X]

B[X] simpli�ed in Z/pZ[X].
Type:

DIVMOD(2X2 + 5, 5X2 + 2X− 3)

You obtain:
5X + 3

6X + 6

70 CHAPTER 4. SYMBOLIC CALCULATIONS

4.11.7 POWMOD

POWMOD(X,N) returns X raised to N in Z/pZ[X].
The current value p of MODULO must be a prime number less than 100.
Type:

POWMOD(2X + 1, 5)

You obtain:
6 · X5 + 2 · X4 + 2 · X3 + X2 − 3 · X + 1

because:
10 = −3 (mod 13) 40 = 1 (mod 13) 80 = 2 (mod 13 =) 32 = 6 (mod 13).

4.11.8 INVMOD

INVMOD has an integer as argument.
INVMOD returns the reciprocal of this integer in Z/pZ.
Type:

INVMOD(5)

You obtain (since 5×−5 = −25 = 1 (mod 13)) :
−5

4.11.9 GCDMOD

GCDMOD has two polynomials as arguments.
GCDMOD returns the GCD of the polynomials in Z/pZ[X].
Type:

GCDMOD(2X2 + 5, 5X2 + 2X− 3)

You obtain:
−(4X− 5)

4.11.10 EXPANDMOD

EXPANDMOD has a polynomial expression as argument.
EXPANDMOD expands this expression in Z/pZ[X].
Type:

EXPANDMOD((2X2 + 12).(5X− 4))

You obtain:
−(3X3 − 5X2 + 5X− 4)

4.12. LIMITED AND ASYMPTOTIC EXPANSIONS 71
4.11.11 FACTORMOD

FACTORMOD has a polynomial as argument.
FACTORMOD factorizes the polynomial in Z/pZ[X] if p ≤ 97 and p is prime.
Type:

FACTORMOD(−(3X3 − 5X2 + 5X− 4))

You obtain:
−((3X− 5)(X2 + 6))

4.11.12 RREFMOD

RREFMOD solves a system of linear equations AX = B in Z/pZ.
The argument is the matrix A augmented with the vector B as its rightmost
column. The result is a matrix composed of A1 and B1, where A1 has zeros
both above and under its principal diagonal, and the system A1X = B1 is
equivalent to AX = B.
Type:

RREFMOD([[1, 2, 9][3, 10, 0]])

to solve {
x + 2 · y = 9

3 · x + 10 · y = 0

You obtain: [
2 0 6
0 4 −1

]
that is, 2.X = 6 and 4.Y = −1 or, which is the same, X = 3 Y = 3 (since −4 ∗
3 = 1 (mod13)).

4.12 Limited and asymptotic expansions

4.12.1 DIVPC

DIVPC has three arguments: two polynomials A(X), B(X) (with B(0) 6= 0) and
an integer n.
DIVPC returns the quotient Q(X) of the division of A(X) by B(X), with deg(Q) ≤ n
or Q = 0.
That is, Q[X] is the series expansion, limited to order n, of A[X]

B[X] about X = 0.
Type:

DIVPC(1 + X2 + X3, 1 + X2, 5)

72 CHAPTER 4. SYMBOLIC CALCULATIONS

You obtain:
1 + X3 − X5

Warning: the calculator demands to enable the �increasing powers� mode;
answer yes to proceed.
4.12.2 TAYLOR0

TAYLOR0 has only one argument: a function of x to be expanded, and returns
its Taylor expansion, limited to relative order 4, about x = 0 (where x is the
current CAS variable).
Type:

TAYLOR0(
TAN(P · X)− SIN(P · X)
TAN(Q · X)− SIN(Q · X)

)

You obtain:
P5 − Q2 · P3

4 · Q3
· X2 +

P3

Q3

Warning: �relative order 4� means to expand up to relative order 4 both
numerator and denominator (here, absolute order 5 for both numerator and
denominator); this gives an expansion of order 2 (5-3), because X3 can be
factored out in both the expanded numerator and denominator.
4.12.3 TAYLR

Determine a limited Taylor expansion of order 2 near x = 0 of:
3× tan(x)− tan(3× x)

x× (1− cos(3× x))

Since the denominator has order 3, to obtain a limited expansion of order
2 about x = 0, it is necessary to expand the numerator near x = 0 up to
order 5. To do this, use the TAYLR command; you can �nd it in the CALC
(blue-shift 4) menu, sub-menu 2. LIMITS & SER... at position 5 (or
you can type it in α mode).
TAYLR is compatible with the HP48.
Type:

TAYLR(
3 · TAN(X)− TAN(3 · X)
X · (1− COS(3 · X))

, X, 5)

You obtain:
−16

9
· (1 +

19

4
· X2)

4.12. LIMITED AND ASYMPTOTIC EXPANSIONS 73
4.12.4 SERIES

• expansion about x=a
Example:
Determine a series expansion limited to order 4 about x = π

6 of cos(2×
x)2.
You use the SERIES command; you can �nd it in the CALC (blue-shift
4) menu, position 8 (or you can type it in α mode).
Type:

SERIES(COS(2 · X)2, X =
π

6
, 4)

You obtain:
{{Limit :

1

4
Equiv :

1

4

Expans : (−8
3
h4 +

8
√
3

3
h3 + 2h2 −

√
=3h +

1

4
)

Remain :
h5

4
} h = X− π

6
}

• expansion about x=+∞ or x=-∞
Example 1:
Determine an expansion of arctan(x), of order 5, about x=+∞, assuming
h = 1

x .Type:
SERIES(ATAN(X), X = +∞, 5)

You obtain:
{{Limit :

π

2
Equiv :

π

2

Expans : (
π

2
− h +

h3

3
− h5

5
) Remain :

πh6

2
} h =

1

X
}

Example 2 :
Determine an expansion of (2x − 1)e

1
x−1 , of order 2, about x=+∞, as-

suming h = 1
x .Type:
SERIES((2X− 1) · EXP(1

X− 1
), X = +∞, 3)

You obtain:
{{Limit : +∞ Equiv :

2

h

74 CHAPTER 4. SYMBOLIC CALCULATIONS

Expans : (
2 + h + 2h2 + 17h3

6

h
) Remain : 2h3} h =

1

X
}

Example 3 :
Determine en expansion of (2x − 1)e

1
x−1), of order 2, about x=-∞, as-

suming h = − 1
x .Type:
SERIES((2X− 1) · EXP(1

X− 1
), X = −∞, 3)

You obtain:
{{Limit : −∞ Equiv : −2

h

Expans : (
−2 + h− 2h2 + 17h3

6

h
) Remain : −2h3} h = −1

X
}

• unidirectional expansions
You must give a positive real number (for example 4.) as the order
to do an unidirectional expansion about the point x = a with x > a,
and a negative real number (for example -4.) to do an unidirectional
expansion about x = a with x < a .
Example 1 :
Determine an expansion of (1+X)

1
X

X3 , of order 2, about X = 0+.
Type:

SERIES(
(1 + X)

1
X

X3
, X, 2.)

You obtain:
{{Limit : +∞ Equiv :

e

h3
Expans : (−e · h− 2 · e

2 · h3
) Remain :

e

h
} h = X}

Example 2:
Determine an expansion of (1+X)

1
X

X3 , of order 2, about X = 0−.
Type:

SERIES(
(1 + X)

1
X

X3
, X,−2.)

You obtain:
{{Limit : −∞ Equiv :

e

h3
Expans : (−e · h− 2 · e

2 · h3
) Remain :

e

h
} h = X}

4.13. MATRICES 75
Example 3 :
Determine an expansion of (1+X)

1
X

X3 , of order 2, about X = 0.
Type:

SERIES(
(1 + X)

1
X

X3
, X, 2)

You obtain:
{{Limit :∞ Equiv :

e

h3
Expans : (−e · h− 2 · e

2 · h3
) Remain :

e

h
} h = X}

4.12.5 LIMIT

LIMIT has as arguments an expression depending on a variable, and an equal-
ity (the variable equated to the value at which you want to calculate the limit
of the expression).

Often, it is better to surrond the expression with quotes, to avoid a pre-
liminary transformation of the expression into normal form (thus, avoiding a
rational simpli�cation) before the limit computation actually takes place.
For example, type:

LIMIT(′(2X− 1) · EXP(1

X− 1
)′, X = +∞)

You obtain:
+∞

4.13 Matrices

4.13.1 TRAN

TRAN has a matrix A as argument.
TRAN returns the input matrix A transposed.
Type:

TRAN(
[

1 2
3 4

]
)

You obtain: [
1 3
2 4

]

76 CHAPTER 4. SYMBOLIC CALCULATIONS

4.13.2 TRN

TRN has a matrix A as argument.
TRN returns the adjoint of A (transpose of the conjugate) of A (this is the
HP48 command).
Type:

TRN(
[

i 1 + i
1 1− i

]
)

After simpli�cation, you obtain:[
−i 1

1− i 1 + i

]
4.13.3 MAD

MAD has a square matrix A, of order n, as argument.
MAD returns a list containing the determinant of A, the inverse of A, a list
containing the matrix coe�cients of a polynomial Q, and of the characteristic
poloynomial P of A.
We have:

P (x) = (−1)n · det(A− x · I)

The polynomial with matrix coe�cients P (A)−P (x) ·I is divisible by A−x ·I
(since its value is zero for x = A). Let Q(x) be their quotient.
Since P (A) = 0, we have P (A)−P (x) · I = −P (x) · I = (A− x · I) ·Q(x).
Therefore, Q(x) is also the co-matrix of A− x · I and the following holds:
Q(x) = I · xn−1 + ... + B0, where B0 is the co-matrix of A (with the sign
exchanged if n is even!).
Type:

MAD(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:
{8,

 1
8 − 1

4
3
8

1
4

1
2

1
4

− 3
8 − 1

4
7
8

 ,

{

 1 0 0
0 1 0
0 0 1

 ,

 −2 1 −2
1 −4 −1
2 1 −6

 ,

 1 −2 3
−2 4 2
−3 −2 7

},
X3 − 6 · X2 + 12 · X− 8}

4.13. MATRICES 77
4.13.4 HADAMARD

HADAMARD has two matrices A and B, with the same size, as arguments.
HADAMARD returns the element-by-element product between A and B.
Type:

HADAMARD(
[

1 2
3 4

]
,

[
5 6
7 8

]
)

You obtain: [
5 12
21 32

]
4.13.5 AXM

If given a symbolic matrix as argument, AXM returns an equivalent (but ap-
proximate) numeric matrix, and vice versa.
Type:

AXM([[1/2, 2], [3, 4]])

You obtain:
[[0.5, 2], [3, 4]]

4.13.6 AXL

When AXL is given a matrix as argument, it returns the same matrix rewritten
as a list of lists. Vice versa, AXL transforms a list of lists into a matrix.
Type:

AXL([[1, 2], [3, 4]])

You obtain:
{{1, 2}{3, 4}}

Type:
AXL({{1, 2}{3, 4}})

You obtain:
[[1, 2], [3, 4]]

4.13.7 EGVL

EGVL has a matrix A, of order n, as argument.
EGVL returns a vector containing the n eigenvalues of A.
Notice: If A is a symbolic matrix, you will obtain only the eigenvalues that
the CAS is able to determine (because it is necessary to symbolically factorize

78 CHAPTER 4. SYMBOLIC CALCULATIONS

the characteristic polynomial!)
Type:

EGV(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:
[2, 2, 2]

4.13.8 EGV

EGV has a matrix A, of order n, as argument.
EGV returns a list containing the matrix of the n column eigenvectors of A
and the vector of the n eigenvalues of A (the same notice given for EGVL is
valid here, too).
Type:

EGV(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:
{

 1 2 1
0 1 0
1 2 0

 , [2, 2, 2]}

4.13.9 PCAR

PCAR has a matrix A, of order n, as argument.
PCAR returns the characteristic polynomial P of A (P [x] = (−1)n·det(A−x·I))
Type:

PCAR(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:
X3 − 6 · X2 + 12 · X− 8

4.13.10 JORDAN

JORDAN has a matrix A, of order n, as argument.
JORDAN returns a list composed by the minimal polynomial M of A, the char-
acteristic polynomial P of A, the list of the eigenvectors and characteristic
vectors (each vector is preceded by its characteristic value), and the vector of

4.13. MATRICES 79
the n eigenvalues of A.
Type:

JORDAN(

 4 1 −2
1 2 −1
2 1 0

)

You obtain:
{X3 − 6X2 + 12X− 8, X3 − 6X2 + 12X− 8,

{Char : 2 : [1, 0, 0], Char : 2 : [2, 1, 2], Eigen : 2 : [1, 0, 1]}, [2, 2, 2]}

4.13.11 HILBERT

HILBERT has an integer n as argument.
HILBERT returns the square Hilbert matrix of order n whose elements are
given by:

ai,j =
1

i + j − 1

Type:
HILBERT(4)

You obtain:
1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

4.13.12 VANDERMONDE

VANDERMONDE has as argument a vector whose components are denoted by xi.VANDERMONDE returns the corresponding Vandermonde matrix (the k-th row
of the matrix is the vector whose components are xk−1

i).
Type:

VANDERMONDE([A, B, C])

You obtain: 1 1 1
A B C
A2 B2 C2

80 CHAPTER 4. SYMBOLIC CALCULATIONS

4.13.13 LCXM

LCXM has as arguments two integers, n and p, and a program accepting as
arguments i (a row number) and j (a column number) and yielding the value
of ai,j .LCXM returns a n · p matrix having coe�cients ai,j . Type:

LCXM(2, 3,�→ I J � I + J� �)

You obtain: [
2 3 4
3 4 5

]

4.14 Vectors
In the blue-shift SYMB (MTH) menu, you can �nd the functions to compute:
-the absolute value of a vector: ABS
-the dot product of two vectors: DOT
-the cross product of two vectors: CROSS

4.15 Quadratic forms

4.15.1 QXA

QXA has two arguments: a quadratic form q and a vector whose components
are the form's variables.
QXA returns a list of two elements: the matrix A associated with q and the
vector denoting the variables of the quadratic form.
Type:

QXA(2 · X · Y , [X, Y])

You obtain:
{
[

0 1
1 0

]
, [X, Y]}

4.15.2 AXQ

AXQ has two arguments: a symmetric matrix A representing a quadratic form
q and a vector whose components are the quadratic form's variables.

4.15. QUADRATIC FORMS 81
AXQ returns a list of two elements: the quadratic form q and the vector de-
noting the form's variables.
Type:

AXQ([[0, 1], [1, 0]] , [X, Y])

You obtain:
{2 · X · Y , [X, Y]}

4.15.3 GAUSS

GAUSS has two arguments: a quadratic form q and a vector whose components
are the quadratic form's variables.
GAUSS returns a list of 4 elements: the diagonal elements of a diagonal matrix
B (obtained expressing q as a sum of squares), the matrix of change of base Q,
q expressed as a sum of squares, and the vector denoting the form's variables.
We have (if we denote as A the matrix associated with q) :

tQ ·B ·Q = A

Type:
GAUSS(2 · X · Y , [X, Y])

You obtain:
{[1
2
,−2] ,

[
1 1
− 1

2
1
2

]
, −2.(Y− X

2
)2 +

1

2
.(Y + X)2 , [X, Y]}

4.15.4 SYLVESTER

SYLVESTER has one argument: a symmetric matrix representing a quadratic
form q.
SYLVESTER returns a list of two elements: the diagonal elements of the diag-
onal matrix B (obtained expressing q as a sum of squares) and the matrix of
change of base Q.
We have:

tQ ·B ·Q = A

Type:
SYLVESTER([[0, 1], [1, 0]])

You obtain:
{[1
2
,−2] ,

[
1 1
− 1

2
1
2

]
}

82 CHAPTER 4. SYMBOLIC CALCULATIONS

4.16 Functions of multiple variables

4.16.1 DERIV

DERIV has two arguments: an application F from Rn in R and a vector of Rn

denoting the variable names.
DERIV returns the gradient of F ([∂F

∂X , ∂F
∂Y , ∂F

∂Z] if n = 3).
Type:

DERIV(2 · X2 · Y− X · Z3, [X, Y, Z])

After simpli�cation, you obtain:
[4 · Y · X− Z3, 2 · X2,−(3 · Z2 · X)]

4.16.2 LAPL

LAPL has two arguments: an application F from Rn in R and a vector of Rn

denoting the variable names.
LAPL returns the laplacian of F (∂2F

∂X2 + ∂2F
∂Y 2 + ∂2F

∂Z2 if n = 3).
Type:

LAPL(2.X2.Y− X.Z3 , [X, Y, Z])

You obtain:
4.Y− 6.X.Z

4.16.3 HESS

HESS has two arguments: an applications F from Rn in R and a vector of Rn

denoting the variable names.
HESS returns a list containing the hessian of F , the gradient of F and the
vector of the variable names.
Type:

HESS(2.X2.Y− X.Z , [X, Y, Z])

You obtain:

{

 4.Y 4.X −1
4.X 0 0
−1 0 0

 , [4.X.Y− Z, 2.X2,−X] , [X, Y, Z]}

Now, to obtain the critical points of F , in RPN mode you can type:
SOLVE

4.17. EQUATIONS 83
directly, because on the stack you have: [4.X.Y− Z, 2.X2,−X] and [X, Y, Z]
In ALGEBRAIC mode, you must enter instead:

SOLVE([4.X.Y− Z, 2.X2,−X] , [X, Y, Z])

4.16.4 DIV

DIV has two arguments: a vectorial function F (application from Rn in Rn)
and a vector of Rn denoting the variable names.
DIV returns the divergence of F .

DIV([A, B, C], [X, Y, Z]) =
∂A

∂X
+

∂B

∂Y
+

∂C

∂Z
(here n = 3)

Type:
DIV([X · Z,−Y2, 2 · XY], [X, Y, Z])

You obtain:
Z− 2 · Y

4.16.5 CURL

Here n = 3.
CURL has two arguments: a vectorial function F (application from R3 in R3)
and a vector of R3 denoting the variable names.
CURL returns the rotor of F .

CURL([A, B, C], [X, Y, Z]) = [
∂C

∂Y
− ∂B

∂Z
,
∂A

∂Z
− ∂C

∂X
,
∂B

∂X
− ∂A

∂Y
]

Type:
CURL([X.Z,−Y2, 2.XY], [X, Y, Z])

You obtain:
[2.X2, X− 2.Y.2X, 0]

4.17 Equations

4.17.1 EXLR

EXLR has an equation as argument.
EXLR returns a list containing the left and right hand sides of the equation.

84 CHAPTER 4. SYMBOLIC CALCULATIONS

Type:
EXLR(A = B)

You obtain:
{A, B}

4.17.2 SOLVEVX

SOLVEVX has as argument either an equation between two expression of the
variable stored in VX, or an expression (=0 is assumed then).
SOLVEVX solves the equation.
Example 1:
Type:

SOLVEVX(X4 − 1 = 3)

In real mode, you obtain:
{X = −

√
2, X =

√
2}

In complex mode, you obtain:
{X = −

√
2, X =

√
2, X = −(i ·

√
2), X = i ·

√
2}

Example 2:
Type:

SOLVEVX((X− 2).SIN(X))

In real mode, you obtain:
{X = −(2 · π · n1), X = 2 · π · n1, X = 2}

4.17.3 SOLVE

SOLVE has as argument either an equation between two expressions or an ex-
pression (=0 is assumed then), and the name of a variable.
SOLVE can also solve a system of equations: to do this, put the equations into
a vector and the variable names into another vector.
SOLVE solves either the equation or the system of equations.
Example 1:

4.17. EQUATIONS 85
Type:

SOLVE(X4 − 1 = 3, X)

In real mode, you obtain:
{X = −

√
2, X =

√
2}

In complex mode, you obtain:
{X = −

√
2, X =

√
2, X = −(i ·

√
2), X = i ·

√
2}

Example 2:
Type:

SOLVE([X + Y = 1, X− Y], [X, Y])

You obtain:
{[X =

1

2
, Y =

1

2
]}

4.17.4 ISOL

ISOL isolates a variable in an expression or equation (the variable must appear
only once). This command is the same as the HP48 one.
ISOL has two arguments: either an expression or an equation, and the name
of the variable to isolate.
Type:

ISOL(X4 − 1 = 3, X)

In real mode, you obtain:
{X = −

√
2, X =

√
2}

In complex mode, you obtain:
{X = −

√
2, X =

√
2, X = −(i ·

√
2), X = i ·

√
2}

Warning: if �ag 01 (Principal value) is set, ISOL always returns only one
solution.

86 CHAPTER 4. SYMBOLIC CALCULATIONS

4.18 Linear systems
In this paragraph, we call �augmented matrix� of the system A ·X = B (or
matrix �representing� the system A ·X = B), the matrix obtained augmenting
the matrix A to the right with the column vector B.
4.18.1 REF

REF solves a linear system of equations written in matrix form:
A · X = B

The REF command is in the MATRICES (blue-shift 5) menu, 5 LINEAR
SYST... sub-menu.
The argument of REF is the augmented matrix of the system (the matrix ob-
tained augmenting matrix A to the right with the column vector B).
The result is a matrix [A1,B1] : A1 has zeros under its principal diagonal,
and the solutions of:

A1 · X = B1

are the same as:
A · X = B

For example, to solve the system:{
3 · x + y = −2
3 · x + 2 · y = 2

Type (using blue-shift EQW (MTRW) to enter the matrix):
REF([[3, 1,−2][3, 2, 2]])

You obtain: [
1 1

3
−2
3

0 1 4

]
4.18.2 rref

rref solves a linear system of equations written in matrix form:
A · X = B

The rref command is in the MATRICES (blue-shift 5) menu, 5 LINEAR
SYST... sub-menu.

4.18. LINEAR SYSTEMS 87
The argument of rref is the augmented matrix of the system (the matrix
obtained augmenting matrix A to the right with the column vector B).
The result is a list containing the list of pivot elements used by the command
and a matrix [A1,B1] : A1 has zeros both above and under its principal
diagonal, and the solutions of:

A1 · X = B1

are the same as:
A · X = B

It is interesting to use rref in step-by-step mode, setting the Step/Step
(MODE cas chk) �ag.
For example, to solve the system:{

3 · x + y = −2
3 · x + 2 · y = 2

Type (using blue-shift EQW (MTRW) to enter the matrix) :
rref([[3, 1,−2][3, 2, 2]])

You obtain: {
Pivots : {1 1.}

[
3 0 −6
0 1 4

]}

4.18.3 RREF

RREF is the same as rref, but it does not return the pivots.
RREF is the HP48 command; this is its result in step-by-step mode, on the
HP49, to solve the system:{

3 · x + y = −2
3 · x + 2 · y = 2

Type (using blue-shift EQW (MTRW) to enter the matrix):
RREF([[3, 1,−2][3, 2, 2]])

You obtain:
L2 = L2 − L1

88 CHAPTER 4. SYMBOLIC CALCULATIONS[
3 1 −2
3 2 2

]
after ok:
L1 = L1 − L2[

3 1 −2
0 1 4

]
after ok:
Reduction result:[

3 0 −6
0 1 4

]
after ok the result (with all 1 on the diagonal of A1) is stored in the history:[

1 0 −2
0 1 4

]
4.18.4 LINSOLVE

LINSOLVE solves a linear system of equations.
The LINSOLVE command is in the MATRICES (blue-shift 5), 5.LINEAR SYST...
sub-menu, position 1.
Type:

LINSOLVE()

Then, enter MATRIXWRITER by pressing blue-shift EQW (MTRW) (with the
cursor positioned between the two parentheses of LINSOLVE).

Set the vect menu option (if it isn't already set), and enter the equations
(possibly with the help of EQW).

2 · X + Y + Z = 1 ENTER

X + Y + 2 · Z = 1 ENTER

X + 2 · Y + Z = 4 ENTER

ENTER
Then, enter the unknown variables:

[X Y Z]

4.19. DIFFERENTIAL EQUATIONS 89
and ENTER

If step-by-step mode is enabled (MODE cas Step/Step), you obtain:
L2=2L2-L1 2 1 1 −1

1 1 2 −1
1 2 1 −4

after ok:
L3=2L3-L1 2 1 1 −1

0 1 3 −1
1 2 1 −4

an so on... Last, you obtain: Result 8 0 0 4

0 8 0 −20
0 0 8 −4

after ok,

{X = −1
2
Y =

5

2
Z = −1

2
}

is stored into the history.

4.19 Di�erential equations

4.19.1 LDEC

LDEC directly solves linear di�erential equations; in order to do this, LAP and
ILAP (see 4.19.3) are used internally.

For second order linear equations, the arguments are the second member
of the equation and the characteristic equation.

For �rst order systems of linear equations, the arguments are the second
member of the equation (a vector) and the matrix of the system.
Example 1:

Solve:
y′′ − 6 · y′+ 9 · y = x · e3·x

90 CHAPTER 4. SYMBOLIC CALCULATIONS

Type:
LDEC(X · EXP(3 · X), X2 − 6 · X + 9)

You obtain:
(
X3

6
− (3 · C0− C1) · X + C0) · EXP(3 · X)

C0 and C1 are arbitrary integration constants (y(0) = C0, y′(0) = C1).
Example 2:
Solve:

Z ′ =
[

0 1
−9 6

]
.Z +

[
0

X.EXP (3.X)

]
This is the same example as before, with Z = [y, y′].
Type:

LDEC([0, X · EXP(3 · X)], [[0, 1][−9, 6]])

You obtain:
[(
X3

6
− (3 · V1− V2) · X + V1) · EXP(3 · X),

(
X3

2
+

X2

2
− (9 · V1− 3 · V2) · X + V2) · EXP(3 · X)]

V1 and V2 are arbitrary integration constants (Z(0) = [V1, V2]).

4.19.2 DESOLVE and SUBST

The DESOLVE command is in the S.SLV (blue-shift 7) menu, at position 1,
or in the CALC (blue-shift 4) menu, DIFFERENTIAL EQNS... sub-menu.
DESOLVE solves other types of di�erential equations.
Its arguments are: the di�erential equation (here y′ is written as d1Y(X) and
y is written as Y(X)).
Example 1 :
Solve:

y′′ + y = cos(x) y(0) = c0 y′(0) = c1

Type:
DESOLVE(d1d1Y(X) + Y(X) = COS(X), Y(X))

You obtain:
Y(X) = C0 · COS(X) +

X + 2 · C1
2

· SIN(X)

4.19. DIFFERENTIAL EQUATIONS 91
Now, you can assign a value to the integration constants, using the SUBST
command; you can �nd it in the ALG (red-shift 4) menu, at position 6. If
you want the solutions that satisfy y(0) = 1, you type:

SUBST(Y(X) = C0 · COS(X) +
X + 2 · C1

2
· SIN(X), C0 = 1)

You obtain:
Y(X) =

2 · COS(X) + (X + 2 · C1) · SIN(X)
2

Example 2 :
Solve:

y′′ + y = cos(x) y(0) = 1 y′(0) = c1

To have the solutions satisfying y(0) = 1 you can also directly type:
DESOLVE([d1d1Y(X) + Y(X) = COS(X), Y(0) = 1], Y(X))

In this case, you obtain:
Y(X) = COS(X) +

X + 2 · C1
2

· SIN(X)

4.19.3 LAP ILAP

You can �nd these commands in the CALC (blue-shift 4)menu, 3.DIFFERENTIAL...
sub-menu, at positions 2 and 3. Laplace tranform (LAP) and inverse Laplace
transform (ILAP) are useful to solve linear di�erential equations with constant
coe�cients, for example:

y′′+ p.y′+ q.y = f(x) y(0) = a y′(0) = b

The following relations hold:

LAP(Y)(P) =
∫ +∞

0

e−P.XY(X)dX

ILAP(F)(T) =
1

2.i.π

∫
C

eZ.TdZ

where C is a closed contour enclosing the poles of F
The following property is used:

LAP(Y′)(P) = −Y(0) + P · LAP(Y)(P)

92 CHAPTER 4. SYMBOLIC CALCULATIONS

The solution is then:
ILAP(

LAP(F(X)) + (X + P) · A + B

X2 + P · X + Q
)

Example:
Solve:

y′′ − 6 · y′+ 9 · y = x · e3·x

y(0) = a

y′(0) = b

Type:
LAP(X · EXP(3 · X)) ENTER

You obtain:
1

X2 − 6 · X + 9

Type:
ILAP(

ANS(1) + (X− 6) · A + B

X2 − 6 · X + 9
)

You obtain the solution y :

(
X3

6
− (3 · A− B) · X + A) · EXP(3 · X)

4.20 Other functions

4.20.1 EPSX0

EPSX0 has as argument an expression; in the expression, it replaces all numeric
values whose magnitude is smaller than EPS with zero and returns the result.
Type:

EPSX0(0.001 + X)

You obtain (when EPS=0.01) :
0 + X

You obtain (when EPS=0.0001) :
.001 + X

4.20. OTHER FUNCTIONS 93
4.20.2 LVAR

LVAR has an expression as argument, and returns a list containing the ex-
pression and a vector whose components are the independent variables of the
expression.
Type:

LVAR(X.Y.SIN(X))

You obtain:
{X.Y.SIN(X), [SIN(X), X, Y]}

4.20.3 LNAME

LNAME has an expression as argument, and returns a vector whose components
are the symbolic variable names the expression contains.
Type:

LNAME(X.Y.SIN(X))

You obtain:
[X, Y]

4.20.4 XNUM

XNUM has either an expression or an array as argument.
XNUM enables approximate mode and returns the numeric approximation of
its argument.
Type:

XNUM(
√
2)

You obtain:
1.41421356237

4.20.5 XQ

XQ has a real numeric expression as argument.
XQ enables exact mode and returns either a rational or a real approximation
of the expression.
Type:

XQ(1.41422)

You obtain:
66441

46981

94 CHAPTER 4. SYMBOLIC CALCULATIONS

Type:
XQ(1.414213562)

You obtain: √
2

4.21 New commands

4.21.1 qr

qr has a square matrix as argument.
qr factors the matrix as Q*R, where Q is an orthogonal matrix and R is a
triangular matrix.
For example, enter:

qr(
[

3 5
4 5

]
)

You obtain:
{
[

3
5

4
5

4
5 − 3

5

]
,

[
5 7
0 1

]
}

4.21.2 GRAMSCHMIDT

GRAMSCHMIDT has two arguments: a vector representing a base of a vectorial
space and the de�nition of a scalar product in that space, expressed as a
function.
GRAMSCHMIDT returns an orthonormal base of the vectorial space with respect
to the given scalar product.
Example:
In the vectorial space of polynomials of degree less than 2, we consider the
scalar product de�ned by:

P ·Q =
∫ 1

−1

P (x) ·Q(x)dx

We �rst express the scalar product as a function named PS :
�→ P Q� PREVAL(INTVX(P ∗ Q),−1, 1)� � STO . PS
Next, we type:

GRAMSCHMIDT([1, 1 + X], RCL(′PS′))

We obtain:
[
1√
2
,

√
6 · X
2

]

4.21. NEW COMMANDS 95
4.21.3 SYST2MAT

SYST2MAT has two arguments: a vector containing a system of linear equa-
tions, and a vector whose elements are the system's variables.
SYST2MAT rewrites the system in matrix notation, and returns the matrix.
For example, type:

SYST2MAT([X + Y, X− Y = 2], [X, Y])

You obtain: [
1 1 0
1 −1 −2

]
Warning: you must purge the system's variables (X and Y in this example)
beforehand.

4.21.4 CHOLESKY

CHOLESKY has as argument a square matrix M, positive by de�nition.
CHOLESKY returns an upper triangular matrix P so that:
tP ∗ P = M
For example, type:

CHOLESKY(
[

1 1
1 5

]
)

You obtain: [
1 1
0 2

]

4.21.5 DIAGMAP

DIAGMAP has two arguments: a diagonalizable matrix and a function de�ning
an holomorphic operator.
DIAGMAP applies the operator to the matrix, and returns the result.
Warning! The matrix must be diagonalizable.
For example, we de�ne the function PH as follows :
�→ M� EXP(M)� � STO . PH
Next, we type:

DIAGMAP(
[

1 1
0 2

]
,�→ M� EXP(M)��)

96 CHAPTER 4. SYMBOLIC CALCULATIONS

or :

DIAGMAP(
[

1 1
0 2

]
, RCL(′PH′))

We obtain: [
EXP(1) −EXP(1) + EXP(2)

0 EXP(2)

]

4.21.6 ISOM

ISOM has as argument a matrix representing a two or three-dimensional linear
isometry.
ISOM returns the list of the isometry's characteristics elements and either +1
(for direct isometries) or -1 (for indirect isometries).
For example, type:

ISOM(

 0 0 1
0 1 0
1 0 0

)

You obtain:
{[1 0 − 1] − 1}

This result means that the isometry is a simmetry with respect to the plane
x − z = 0.
If you type:

ISOM(
√
2

2

[
1 −1
1 1

]
)

You obtain:
{π
4

, 1}

therefore, this isometry is a rotation of π

4
radians.

4.21.7 MKISOM

In a three-dimensional space, MKISOM has the list of the characteristics ele-
ments of an isometry, and either +1 (denoting a direct isometry) or -1 (de-
noting an indirect isometry) as arguments,
In a two-dimensional space, MKISOM has the characteristic element of an isom-
etry (either an angle or a vector) and either +1 (denoting a direct isometry)
or -1 (denoting an indirect isometry) as arguments.

4.21. NEW COMMANDS 97
MKISOM returns the matrix representing the given isometry.
For example, type:

MKISOM({[−1, 2,−1], π}, 1)

You obtain the matrix of a rotation with axis [−1, 2,−1] and angle π:
1

3

 −2 −2 1
−2 1 −2

1 −2 −2

For example, type:

MKISOM({π},−1)

You obtain the matrix of a symmetry with respect to the origin: −1 0 0
0 −1 0
0 0 −1

Type:

MKISOM({[1, 1, 1], π

3
},−1)

You obtain the matrix of a rotation with axis [1, 1, 1] and angle π
3 combined

with a symmetry with respect to the plane x + y + z = 0: 0 −1 0
0 0 −1
−1 0 0

Type:

MKISOM(
π

2
, 1)

You obtain the matrix of a rotation of π
2 radians in two dimensions:[

0 −1
1 0

]
Type:

MKISOM([1, 1],−1)

You obtain the matrix of a symmetry with respect to y = x in two dimensions:[
0 −1
−1 0

]

98 CHAPTER 4. SYMBOLIC CALCULATIONS

4.21.8 KER

KER has as argument a matrix representing a linear application f in terms of
the standard basis.
KER returns a list of vectors; they are a basis of the kernel of f .
For example, type:

KER(

 1 1 2
2 1 3
3 1 4

)

You obtain:
{[1, 1,−1]}

4.21.9 IMAGE

IMAGE has as argument a matrix representing a linear application f in terms
of the standard basis.
IMAGE returns a list of vectors; they are a basis of the image of f .
For example, type:

IMAGE(

 1 1 2
2 1 3
3 1 4

)

You obtain:
{[1, 0,−1], [1, 1, 2]}

4.21.10 IBASIS

IBASIS has as arguments two lists of vectors, de�ning two vectorial spaces.
IBASIS returns a list containing the vectors of a basis of the intersection
between these two vectorial spaces.
For example, type:

IBASIS({[1, 2]}, {[2, 4]})
You obtain:

{[1, 2]}

4.21.11 BASIS

BASIS has as argument a list of vectors, de�ning a vectorial subspace of Rn.
BASIS returns a list containing the vectors of a basis of the vectorial subspace.
For example, type:

BASIS({[1, 2, 3], [1, 1, 1], [2, 3, 4]})

4.21. NEW COMMANDS 99
You obtain:

{[1, 0,−1], [0, 1, 2]}

4.21.12 AUGMENT

AUGMENT has as arguments two vectors, or two lists, or a list and an element.
AUGMENT concatenates its arguments.
For example, type:

AUGMENT({1, 2}, 3)

You obtain:
{1 2 3}

4.21.13 CYCLOTOMIC

CYCLOTOMIC has an integer n as argument.
CYCLOTOMIC returns the cyclotomic polynomial of order n. This is a polyno-
mial having the n-th pritmitive roots of the unity as zeros.
For example, when n = 4 the fourth roots of the unity are: {1, i,−1,−i};
among them, the primitive roots are: {i,−i}.
Therefore, the cyclotomic polynomial of order 4 is (X − i).(X + i) = X2 + 1.
Another example; if you type:

CYCLOTOMIC(20)

You obtain:
X8 − X6 + X4 − X2 + 1

4.21.14 STURM

STURM has a polynomial P as argument.
STURM returns a list containing the Sturm's sequences of P and their multi-
plicities.
The Sturm sequence R1, R2, ... can be obtained from a square-free factor F
of P as follows:
R1 is the opposite of the remainder of the euclidean division of F by F ′;
then, R2 is the opposite of the remainder of the euclidean division of F ′ by
R1,and so on, until Rk = 0.
For example, type:

STURM(X3 + 1)

100 CHAPTER 4. SYMBOLIC CALCULATIONS

You obtain:
{[1], −1., [X3 + 1, −3X2 − 1], 1.}

The �rst element of the list denotes that the denominator of P (that is, the
element with −1 power), is 1.

4.21.15 STURMAB

STURMAB has three arguments: a polynomial P and two numbers: a and b.
STURMAB returns a list containing an element with the same sign as P (a) and
the number of zeros of P in [a, b[.
For example, type:

STURMAB(X2 · (X3 + 2),−2, 0)

You obtain:
{−6, 1}

4.21.16 P2C

Permutations are de�ned with the image list {P (1), P (2)...P (n)}.
For example, de�nining the permutation P as P = {3, 2, 1} means that:
P (1) = 3, P (2) = 2, P (3) = 1.
A cycle is denoted with a list containing the images of an element through
the cycle; for example, de�ning a cycle C as C = {3, 2, 1} means that:
C(3) = 2, C(2) = 1, C(1) = 3.
Accordingly, a decomposition into cycles is denoted with a list of lists.
P2C has a permutation as argument.
P2C returns its decomposition into cycles and its signature.
For example, type:

P2C({3, 4, 5, 2, 1})

You obtain:
{{{1, 3, 5}, {2, 4}},−1}

4.21.17 C2P

C2P has a list of cycles as argument.
C2P returns the permutation having the input list as decomposition into cycles
(see also P2C).
For example, type:

C2P({{1, 3, 5}, {2, 4}})

4.21. NEW COMMANDS 101
You obtain:

{3, 4, 5, 2, 1}

4.21.18 CIRC

CIRC has two permutations as arguments.
CIRC returns the permutation obtained by composition: (1stargument◦2ndargument).
For example, type:

CIRC({3, 4, 5, 2, 1}, {2, 1, 4, 3, 5})

You obtain:
{4, 3, 2, 5, 1}

4.21.19 FDISTRIB

FDISTRIB performs a full distribution of multiplication with respect to addi-
tion in a single step.
For example, type:

FDISTRIB((X + 1) · (X + 2) · (X + 3))

You obtain:
X3 + 6 · X2 + 11 · X + 6

4.21.20 DISTRIB

DISTRIB applies the distributive property of multiplication with respect to
addition once.
DISTRIB, when invoked multiple times, allows you to perform a full distribu-
tion of multiplication with respect to addition step-by-step.
For example, type:

DISTRIB((X + 1) · (X + 2) · (X + 3))

You obtain:
X · (X + 2) · (X + 3) + 1 · (X + 2) · (X + 3)

102 CHAPTER 4. SYMBOLIC CALCULATIONS

4.21.21 POWEXPAND

POWEXPAND rewrites a power as a product.
For example, type:

POWEXPAND((X + 1)3)
You obtain:

(X + 1) ∗ (X + 1) ∗ (X + 1)
You can also expand (x + 1)3 step-by-step, by invoking DISTRIB many times
on the result obtained above.
4.21.22 SIMPLIFY

SIMPLIFY attempts to simplify the expression given as argument automati-
cally.
Like all other automatic simpli�cation tools, you should not demand miracles
to this command. For example, type:

SIMPLIFY(
SIN(3 · X) + SIN(7 · X)

SIN(5 · X)
)

After simpli�cation, you obtain:
4 · COS(X)2 − 2

4.21.23 EXP2POW

EXP2POW rewrites an expression like
exp(n× ln(x))

as a power of x.
For example, type:

EXP2POW(EXP(N ∗ LN(X)))
You obtain:

XN

Notice the di�erence with respect to LNCOLLECT :
We have:
LNCOLLECT(EXP(N ∗ LN(X))) = EXP(N ∗ LN(X))
LNCOLLECT(EXP(LN(X)/3)) = EXP(LN(X)/3)
But:
EXP2POW(EXP(LN(X)/3)) = X

1
3

4.21. NEW COMMANDS 103
4.21.24 MSLV

MSLV solves numerically a system of non-polynomial equations.
MSLV has three vectors as arguments: a vector containing the equations, a
vector containing the system's variables, and a vector containing an initial
guess for the solution.
MSLV returns a vector containing an approximate solution of the given system
of equations.
While the command is running, the �rst display line shows the last estimate−→
V , and the second line shows the modulo of ∆−→V
For example, type:

MSLV([′SIN(X) + Y′,′ X + SIN(Y) = 1′], [X, Y], [0, 0])

You obtain:
[1.82384112611, −.968154636174]

4.21.25 PMINI

PMINI has a matrix A as argument.
PMINI returns another matrix, whose �rst �non-zero row� is the minimal poly-
nomial of A.
For example, type:

PMINI([[1, 0], [0, 1]])

In step-by-step mode, you obtain:
L2=L2-L1 1 0 0 1 1

1 0 0 1 X
1 0 0 1 X2

L3=L3-L1 1 0 0 1 1

0 0 0 0 X − 1
1 0 0 1 X2

Reduction result 1 0 0 1 1

0 0 0 0 X − 1
0 0 0 0 X2 − 1

So, the minimal polynomial of A:

[
1 0
0 1

]
is:

X− 1

104 CHAPTER 4. SYMBOLIC CALCULATIONS

4.21.26 IBERNOULLI

IBERNOULLI has an integer n as argument.
IBERNOULLI returns the nty Bernoulli's number B(n).
The following relation holds:

t

et − 1
=

+∞∑
n=0

B(n)
n!

tn

Remember that the Bernoulli's polynomials Bk are de�ned as:
B0 = 1

Bk
′(x) = kBk−1(x)∫ 1

0

Bk(x)dx = 0

Bernoulli's numbers are de�ned as:
B(n) = Bn(0)
For example, type:

IBERNOULLI(6)

You obtain:
1

42

4.21.27 GAMMA

Returns the value of the Γ function at the given point.
The Γ function is de�ned as:

Γ(x) =
∫ +∞

0

e−ttx−1dt

We have:
Γ(1) = 1

Γ(x + 1) = x · Γ(x)

For example, type:
GAMMA(5)

You obtain:
24

4.21. NEW COMMANDS 105
Type:

GAMMA(
1

2
)

You obtain:
√

π

4.21.28 PSI

PSI has two numbers a and n as arguments.
PSI returns the value of the n-th derivative of the Digamma function at a.
The Digamma function is de�ned as the derivative of ln(Γ(x)).
For example, type:

PSI(3, 1)

You obtain:
−5
4

+
1

6
.π2

4.21.29 Psi

Psi has as argument a number, a.
Psi returns the value of the Digamma function at a.
The Digamma function is de�ned as the derivative of ln(Γ(x)), so we have:
PSI(a,0)=Psi(a).
For example, type:

Psi(3)

You obtain:
.922784335098

4.21.30 RESULTANT

RESULTANT has two polynomials as arguments.
RESULTANT returns the resultant of the two polynomials. The resultant of two
polynomials is the last non-null remainder of the Euclide algorithm, and is
also the determinant of their Sylvester matrix S.
The Sylvester matrix S of two polynomials A[X] =

∑i=n
i=0 aiX

i and B[X] =∑i=m
i=0 aiX

i is a square matrix with m + n rows and columns; its �rst m rows

106 CHAPTER 4. SYMBOLIC CALCULATIONS

are made from the coe�cients of A[X]:
s11 = an s12 = an−1 · · · s1(n+1) = a0 0 · · · 0
s21 = 0 s22 = an · · · s2(n+1) = a1 s2(n+2) = a0 · · · 0...
sm1 = 0 sm2 = 0 · · · sm(n+1) = am−1 sm(n+2) = am−2 · · · a0

and the following n rows are made in the same way from the coe�cients of
B[X]:(

s(m+1)1 = bm s(m+1)2 = bm−1 · · · s(m+1)(m+1) = b0 0 · · · 0...
)

For example, type:
RESULTANT(X3 − p ∗ X + q, 3X2 − p)

You obtain:
−4p3 + 27q2

4.21.31 SEVAL

SEVAL has an expression as argument.
SEVAL simpli�es the expression, operating on all but the top-level operator of
the expression.
For example, type:

SEVAL(SIN(3 · X− X) + SIN(X + X))

You obtain:
SIN(2 · X) + SIN(2 · X)

4.21.32 SIGMA

SIGMA has two arguments: the �rst argument is a function f(x) of a variable
x given as the second argument. SIGMA returns the discrete antiderivative of
the input function, that is, the function G that satis�es the relation: G(x +
1)−G(x) = f(x).
For example, type:

SIGMA(X · X!, X)
You obtain:

X!

4.21. NEW COMMANDS 107
4.21.33 SIGMAVX

SIGMAVX has as argument a function f of the current variable VX.
SIGMAVX returns the discrete antiderivative of the input function, that is a
function G that satis�es the relation: G(x + 1)−G(x) = f(x).
For example, type:

SIGMAVX(X2)

You obtain:
2.X3 − 3.X2 + X

6

4.21.34 VER

VER returns the version number of your CAS.
Type:
VER
You obtain:

4.20000124

This result means that you have a version 4 CAS, dated 24 January 2000.
Instead, VERSION returns the version number of the calculator's ROM as a
whole.
Type:
VERSION
You obtain:
{“Version HP49− B←↩ Revision #1.17− 4′′ “Copyright HP 1999′′}

4.21.35 TABVAR

TABVAR has as argument an expression whose derivative is rational.
TABVAR returns the variation table of the expression with respect to the current
variable.
Type:

TABVAR(LN(X) + X)

In step-by-step mode you obtain:
F =: (LN(X) + X)

F′ =: (
1

X
+ 1)

→:
X + 1

X

108 CHAPTER 4. SYMBOLIC CALCULATIONS

Variation table : [
−∞ ? 0 + +∞ X
? ? −∞ ↑ +∞ F

]

4.21.36 SIGNTAB

SIGNTAB has a rational expression as argument.
SIGNTAB returns the sign table of the expression with respect to the current
variable.
Type:

SIGNTAB(X2 + X)

You obtain:
{−∞ + −1 − 0 + +∞}

4.21.37 TABVAL

TABVAL has an expression and a list of numbers as arguments.
TABVAL stores the input expression into the EQ variable and returns a list.
This list holds the expression itself and a list of values; the latter list contains
the value the expression assumes when the current CAS variable is replaced
by the list of numbers given as input.
For example, type:

TABVAL(X2 + X, {1, 2, 3})

You obtain:
{X2 + X, {{1, 2, 3}, {2, 6, 12}}}

4.21.38 PLOT

PLOT has an expression as argument.
PLOT stores the input expression into the EQ variable and opens the PLOT
SETUP window.
For example, type:

PLOT(X2 + X)

Now, by pressing ERASE DRAW, you obtain the plot of the expression stored in
EQ, and

X2 + X

is stored into the history.

4.21. NEW COMMANDS 109
4.21.39 PLOTADD

PLOTADD has an expression as argument.
PLOTADD appends this expression to the list of equations currently stored in
EQ and opens the PLOT SETUP window.
Type:

PLOTADD(X2 − X)

Now, by pressing ERASE DRAW, you draw the plots of all expressions stored in
EQ one over another, and

X2 − X

is stored into the history.
4.21.40 SCROLL

SCROLL has a graphics object as argument.
SCROLL displays the graphics object, without touching PICT.
For example, suppose you have just plotted the function F(X). The plot is
automatically stored into the reserved variable PICT.
Therefore, PICT contains the current graphics variable. You can save its con-
tents, typing:

RCL(PICT) STO . GRF

Next, if you type:
SCROLL(GRF)

you display the plot of F(X) again.

4.21.41 GROBADD

GROBADD has two graphics objects as arguments.
GROBADD concatenates its arguments and returns the result.
For example, if you previously saved the plot of F(X) into GRF, and the plot
of H(X) into GRH, you can type:

GROBADD(GRF, GRH) STO . GRFH

This command stores into GRFH a graphics object containing the plots of both
F(X) and H(X), one below the other.

110 CHAPTER 4. SYMBOLIC CALCULATIONS

Chapter 5

Bac 99 and HP49G

5.1 Introduction

First of all, enter CASCFG (Computer Algebra System ConFiG) to put the
calculator in algebraic mode and to initialize it.
The commands you will use can be found in the menu displayed by the SYMB
key, and in the following sub-menus:
ALGEBRA (FACTOR LIN SUBST)
ARITHMETIC (IEGCD ISPRIME? PROPFRAC)
CALCULUS (DERIVX DERIV INTVX INT LIMIT)
GRAPH (SIGNTAB TABVAR)
TRIGONOMETR (TEXPAND)
and in the red-shift 1 (CMPLX) menu:
RE IM
Remember that after entering each command, it is necessary to press ENTER
to execute it; this notice will often be omitted in the following.

Here, you �nd the mathematics test of the �Bac�1 1999 test (S series)
solved.
E�ort has been made to leverage the HP49G capabilities as much as possible,
but you will notice that it is still the student's duty to explain and justify
his/her calculations, and to make a bit of reasoning.

1Translator's note: In France, the �Bac� (short form of �Baccalauréat�) certi�cate isawarded to students that successfully complete the upper secondary school course, at aboutage 18.
111

112 CHAPTER 5. BAC 99 AND HP49G

5.2 Exercise 1
The goal of this exercise is to plot the curve Γ represented by M : 1

2 · z
2 − z

when m, represented by z, is a circle C of center O and radius 1. Let t be a
real in [−π, π] and m the point of C corresponding to z = ei·t.

1. Calculation of the coordinates of M :
With the help of EQW, we enter the expression 1

2 · z
2 − z.

We type:
EQW alpha Z yx 2 � ÷ 2 � − alpha Z ENTER

The expression is now in the command line, and we store it into the
variable M:

STO . M

Since z = ei·t we type:
SUBST(M, Z = EXP(i× t))

the answer is:
EXP(i · t)2 − 2 · EXP(i · t)

2

Now, we linearize the expression, using the history to copy the previous
expression down:

LIN(HIST ENTER) ENTER

the answer is:
1

2
· EXP(2 · i · t) +−1 · EXP(i · t)

Notice that by copying the expression down, the calculator simpli�es it,
too:

4 ENTER ENTER

gives:
EXP(2 · i · t)− 2 · EXP(i · t)

2

• Now we want to look at the real part of this expression:
RE(HIST ENTER) ENTER

the answer is:
COS(t · 2)− 2 · COS(t)

2

5.2. EXERCISE 1 113
At this point, we can de�ne the function x(t), by typing:

DEFINE (X(t) = HIST ENTER) ENTER

• Then, we calculate the imaginary part (we must climb up in the
history to retrieve the original expression EXP(2·i·t)−2·EXP(i·t)

2
), typ-

ing:
IM(HIST 4 4 4 4 ENTER) ENTER

the answer is:
SIN(t · 2)− 2 · SIN(t)

2

To de�ne the function y(t), we must now type:
DEFINE(Y(t) = HIST ENTER)ENTER

2. To determine an axis of symmetry of Γ, we want to calculate x(−t) and
y(−t); for this, we type:

X(−t) ENTER

the answer is:
COS(t · 2)− 2 · COS(t)

2

Therefore: x(−t) = x(t)
after this, we type:

Y(−t) ENTER

the answer is:
−SIN(t · 2) + 2 · SIN(t)

2

Therefore: y(−t) = −y(t)
If M1(x(t), y(t)) is on Γ, M2(x(−t), y(−t) is on Γ, too.
We have just showed that M1 and M2 are symmetric with respect to
Ox; from this we conclude that the Ox axis is an axis of symmetry of
Γ.

3. Calculation of x′(t) :
We type:

DERIV(X(t), t)

the answer is:
2 · (−2 · SIN(t · 2))− 2 · (−SIN(t))

4

114 CHAPTER 5. BAC 99 AND HP49G

that is, after simpli�cation (4 ENTER ENTER):
−(SIN(t · 2)− SIN(t))

We now expand the expression (transformation of SIN(2 · t)); we type:
TEXPAND(HIST ENTER) ENTER

the answer is:
−(SIN(t) · 2 · COS(t)− SIN(t))

Now we factorize:
FACTOR(HIST ENTER) ENTER

the answer is:
−SIN(t) · (2 · COS(t)− 1)

At last, we can de�ne x′(t) by typing:
DEFINE(X1(t) = HIST ENTER) ENTER

4. Calculation of y′(t) :
We type:

DERIV(Y(t), t)

the answer is:
2 · (2 · COS(t · 2))− 2 · COS(t)

4
that is, after simpli�cation (4 ENTER ENTER):

COS(t · 2)− COS(t)

We now expand the expression (transformation of COS(2 · t)); we type:
TEXPAND(HIST ENTER) ENTER

the answer is:
2 · COS(t)2 − 1− COS(t))

Now we factorize:
FACTOR(HIST ENTER) ENTER

the answer is:
(COS(t)− 1) · (2 · COS(t) + 1)

At last, we can de�ne y′(t) by typing:
DEFINE(Y1(t) = HIST ENTER) ENTER

5.2. EXERCISE 1 115
5. Variations of x(t) and y(t)

To do this we draw on the same plot both x(t) and y(t); we type:
blue-shift F4 (2D/3D): the PLOT SETUP window opens.
We choose function as plot type, with the help of the choos menu key.
Then, we enter

{X(t), Y(t)}

into the equation (EQ) �eld, and t as independent variable, followed by
ENTER.
Afterwards, we type blue-shift F2 (WIN), to set the plot window pa-
rameters.

6. Trace of Γ:
• Values of x(t) and y(t)
We calculate the values of x(t) and y(t) for t = 0, π

3 , 2·π
3 , π, by

typing:
X(0) ENTER

answer: −1
2

X(π ÷ 3) ENTER

answer: −3
4

X(2× π ÷ 3) ENTER

answer: 1
4

X(π) ENTER

answer: 3
2

Y(0) ENTER

answer: 0
Y(π ÷ 3) ENTER

answer: −
√

3
4

Y(2× π ÷ 3) ENTER

answer: −3·
√

3
4

Y(π) ENTER

answer: 0

116 CHAPTER 5. BAC 99 AND HP49G

• Slope of tangents (m = y′(t)
x′(t))

We calculate the values of y′(t)
x′(t) for t = 0, π

3 , 2·π
3 , π, by typing:

LIMIT(Y1(t)/X1(t), t = 0) ENTER

answer: 0

LIMIT(Y1(t)/X1(t), t = π ÷ 3) ENTER

answer: ∞
LIMIT(Y1(t)/X1(t), t = 2× π ÷ 3) ENTER

answer: 0

LIMIT(Y1(t)/X1(t), t = π) ENTER

answer: ∞
These are the variations of x(t) and y(t)

t 0 π
3

2π
3 π

x′(t) 0 − 0 + ? + 0
x(t) −1

2 ↓ −3
4 ↑ 1

4 ↑ 3
2

y(t) 0 ↓
√

3
4 ↓ −3

√
3

4 ↑ 0
y′(t) 0 − ? − 0 + ?
m 0 ∞ 0 ∞

• Plotting Γ:
We now plot the parametric curve.
We type:
blue-shift F4 (2D/3D) and the PLOT SETUP opens up.
We choose the parametric plot type, with the help of the choos
menu key. Then, we enter

X(t) + i× Y(t)

into the equation (EQ) �eld and t as independent variable, followed
by ENTER.
We then press blue-shift F2 (WIN) to set the plot window pa-
rameters.

5.3. EXERCISE 2 (SPECIALIZED) 117

5.3 Exercise 2 (specialized)
Let be, for a natural n:

an = 4× 10n − 1, bn = 2× 10n − 1 and cn = 2× 10n + 1

We type:
DEFINE(A(N) = 4 · 10N − 1)

DEFINE(B(N) = 2 · 10N − 1)

DEFINE(C(N) = 2 · 10N + 1)

1. • a) Calculate a1, b1, c1, a2, b2, c2, a3, b3, c3 :
It su�ces to type:

A(1)

answer 39
B(1)

answer 19
C(1)

answer 21
A(2)

answer 399
B(2)

answer 199
C(2)

answer 201
A(3)

answer 3999
B(3)

answer 1999
C(3)

answer 2001

118 CHAPTER 5. BAC 99 AND HP49G

• b) number of digits and divisibility
Here, the calculator is useful only to do some evaluation trials for
di�erent values of n...
We know that integers n satisfying:

10n ≤ n < 10n+1

have (n + 1) digits when they are written using the decimal repre-
sentation.
We have:

3 · 10n < an < 4 · 10n

10n < bn < 2 · 10n

2 · 10n < cn < 3 · 10n

so the decimal representation of an, bn, cn has (n + 1) digits.
Moreover, dn = 10n − 1 is divisible by 9, since all digits of its
decimal representation are 9.
We have

an = 3 · 10n + dn

and
cn = 3 · 10n − dn

so an and cn are divisible by 3.
• c) b3 is prime
We type:

ISPRIME?(B(3))

the answer is:
1.

that means true
To show that b3 = 1999 actually is prime, we only have to test if
1999 is divisible by all prime numbers less than or equal to √1999.
Since 1999 < 2025 = 452, we check the divisibility of 1999 with
n = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41.
Since 1999 is not divisible by any of these numbers, we conclude
that 1999 actually is prime.

5.3. EXERCISE 2 (SPECIALIZED) 119
• d) an = bn × cnWe type:

B(N) · C(N)

The answer is:
4 · (10N)2 − 1

that is the same value as anFactorization of a6 into prime factors
We type:

FACTOR(A(6))

The answer is:
3 · 23 · 29 · 1999

• e) bn et cn are mutually prime.
Here, the calculator is useful only to do some evaluation trials for
di�erent values of n...
To show that cn and bn are mutually prime, we observe that:

cn = bn + 2

So, the common divisors of cn and bn are the common divisors of
bn and 2, and are the common divisors of cn and 2, too. bn and 2
are mutually prime, because bn is a prime number not equal to 2.
Therefore,

GCD(cn, bn) = GCD(cn, 2) = GCD(bn, 2) = 1

2. Consider the equation:
b3 · x + c3 · y = 1

• a) There is at least a solution, because we can apply the Bézout
identity. In fact, the Bézout theorem states that:
If a and b are mutually prime, two values x and y do exist so that:

a · x + b · y = 1

Therefore, the equation:
b3 · x + c3 · y = 1

has at least a solution.

120 CHAPTER 5. BAC 99 AND HP49G

• b)We type:
IEGCD(B(3), C(3))

the answer is:
{1, 1000,−999}

this means that:
1 = b3 × 1000 + c3 × (−999)

so, we have just found a (particular) solution:
x = 1000, y = −999.
By hand, we write:
c3 = b3 + 2 and b3 = 999 × 2 + 1
so, b3 = 999 × (c3 − b3) + 1 and:

b3 × 1000 + c3 × (−999) = 1

• c) Here, the calculator cannot �nd the general solution.
We have:

b3 · x + c3 · y = 1

and
b3 × 1000 + c3 × (−999) = 1

subtracting the second equation from the �rst, we have:
b3 · (x− 1000) + c3 · (y + 999) = 0

and then:
b3 · (x− 1000) = −c3 · (y + 999)

Applying the Gauss theorem: c3 is prime with b3, so c3 divides
(x− 1000).
Therefore, it exists k ∈ Z so that:

(x− 1000) = k × c3

and
−(y + 999) = k × b3

Reciprocally, let be:
x = 1000 + k × c3

5.4. EXERCISE 2 (NOT SPECIALIZED) 121
and

y = −999 − k × b3 for k ∈ Z

We have:
b3 · x + c3 · y = b3 × 1000 + c3 × (−999) = 1

The general solution therefore is: for any k ∈ Z :
x = 1000 + k × c3

y = −999 − k × b3

5.4 Exercise 2 (not specialized)
Let us consider the succession

un =
∫ 2

0

2x + 3
x + 2

e
x
n dx

1. • a) Variations of g(x) = 2x+3
x+2 for x ∈ [0, 2]

We type:
DEFINE(G(X) =

2X + 3

X + 2
)

then, we type:
TABVAR(G(X))

We obtain:
−∞ + −2 + +∞ X
2 ↑ ∞ ↑ 2 F

The �rst line gives the sign of f'(x) depending on x, and the
second one gives the variations of f(x).
From this result, we conclude that g(x) increases in the interval
[0, 2].
Notice that if the calculator is in step-by-step mode (to enable this
mode, you must press on MODE, then on the cas menu key, and set
Step/Step using the chk menu key followed by ok ok), we obtain
(the input function is denoted by F):

F :=
2 · X + 3

X + 2

122 CHAPTER 5. BAC 99 AND HP49G

After pressing the ok menu key, we obtain:
F′ :=

2 · (X + 2)− (2 · X + 3)
SQ(X + 2)

and, using the 5 arrow key to scroll the screen:
→ 1

(X + 2)2

At last, pressing the okmenu key again displays the variation table.
If the step-by-step mode is disabled, it is possible to calculate the
derivative with:

DERVX(G(X))

We want to calculate g(0) and g(2); to do this we type:
G(0)

answer 3
2

G(2)

answer 7
4

3
2
≤ g(x) ≤ 7

4
for x ∈ [0, 2]

• b) Here the calculator is not useful at all... it is enough to notice
that:

e
x
n ≥ 0 for x ∈ [0, 2]

to show that, for x ∈ [0, 2], we have:
3
2
e

x
n ≤ g(x)e

x
n ≤ 7

4
e

x
n

• c) We integrate the inequality written above, typing:∫ 2

0

e
X
N dX

We obtain:
N · e 2

N − N

5.4. EXERCISE 2 (NOT SPECIALIZED) 123
From this, we conclude that:

3
2
(ne

2
n − n) ≤ un ≤

7
4
(ne

2
n − n)

To justify the previous calculation, we must also say that a primi-
tive of e

x
n is n · e x

n .
If we don't know this, we can always type:

INTVX(EXP(X÷ N))

and the answer is: N · e X
N

• d) We look for the limit of (ne
2
n − n) when n→ +∞:

LIMIT(N · EXP(2÷ N)− N , N = +∞)

We obtain:
2

To explain this result, we must say that:
lim
x→0

ex − 1
x

= 1

and, as a consequence:

lim
n→+∞

e
2
n − 1

2
n

= 1

or, also:
lim

n→+∞
(e

2
n − 1) · n = 2

If L does exist, letting n go towards +∞ in the inequalities of point
1b), we obtain:

3
2
· 2 ≤ L ≤ 7

4
· 2

2. • a) g(x) = 2− 1
x+2 and calculation of I =

∫ 2

0
g(x)dx

We type:
PROPFRAC(G(X))

We obtain:
2− 1

X + 2

124 CHAPTER 5. BAC 99 AND HP49G

To calculate I, we type in the equation editor (EQW key):∫ 2

0

G(X)dX

We obtain:
−(LN(2)− 4)

Doing it by hand, we have 2x + 3 = 2(x + 2)− 1, so
g(x) = 2− 1

x + 2
We now integrate term by term between 0 et 2, obtaining:∫ 2

0

g(x)dx = [2x− ln(x + 2)]x=2
x=0

that is, since ln 4 = 2 ln 2:∫ 2

0

g(x)dx = 4− ln 2

• b) Here, the calculator is not useful... it is enough to notice that
e

x
n increases for x ∈ [0, 2], to obtain the inequality:

1 ≤ e
x
n ≤ e

2
n

then, since g(x) is positive on [0, 2], we have:
g(x) ≤ g(x)e

x
n ≤ g(x)e

2
n

integrating we have:
I ≤ un ≤ e

2
n I

• c) Convergence of un

We look for the limit of e
2
n when n→ +∞ :

LIMIT(EXP(2÷ N) , N = +∞)

We obtain:
1

Actually, 2
n goes towards 0 when n goes towards +∞, so e

2
n goes

towards e0 = 1 when n goes towards +∞.
When n goes towards +∞, un stays between I and a quantity that
goes towards I (see the inequalities in point 2b)).
Therefore, un converges and its limit is I.
We have shown that:

L = I = 4− ln 2

5.5. PROBLEM 125
5.5 Problem
Part A
Let a function f be de�ned on]0, +∞[as

f(x) =
(

1− 1
x

)
(lnx− 2)

We type (using the Equation Writer):
DEFINE(F(X) = (1− 1÷ X)× (LN(X)− 2))

This is, in detail, the sequence of keys we must press (/ represents the cursor):
DEFINE(F(X) = /)

To enter the expression that follows, using the equation editor, we press the
EQW key.
We now are in the equation editor; we type:

1 − 1 ÷ X � � � × LN(X) � − 2 ENTER

In the command line, we have:
DEFINE(F(X) = (1− 1

X
) · (LN(X)− 2))

At this point, we press ENTER to execute it.
F is added to the variable's menu and NOVAL is displayed in the screen.
To check our work, we type F(X); we should obtain:

(X− 1) · LN(X)− (2 · X− 2)
X

1. Limit of f in +∞ and 0.
We type:

LIMIT(F(X),+∞)

answer +∞
then,

LIMIT(F(X), 0)

answer ∞

126 CHAPTER 5. BAC 99 AND HP49G

2. Calculation of f ′(x).
We type:

DERVX(F(X))

We obtain:
LN(X) + X− 3

X2

3. u(x) = lnx + x− 3
Now, we type:

DEFINE(U(X) = LN(X) + X− 3)

• a) Variations of u.
We type:

TABVAR(U(X))

The calculator asks to enable complex mode: answer YES.
We obtain:

−∞ + −1 − 0 + +∞ X
−∞ ↑ iπ − 4 ↓ −∞ ↑ +∞ F

Warning!!!!
Only the portion of table in which x > 0 must be taken into account
(when x < 0 the calculator assumes ln(x) exists, and has a complex
value).
• b) u(x) = 0 has an unique solution α in [2, 3].
From a) u increases in]0, +∞[.
We type:

U(2) red− shift ENTER

answer −0.306...
then,

U(3) red− shift ENTER

answer 1.098...
Thereafter, we calculate:

U(2.20) red− shift ENTER

answer −0.306...
and

U(2.21) red− shift ENTER

5.5. PROBLEM 127
answer −0.306...
From the theorem of intermediate values (u is both increasing and
continuous in [2, 3], therefore u zeroes itself exactly once between
2 et 3 (since u(2) < 0 and u(3) > 0)).
So, if we call α the unique zero of u in [2, 3], we have:

2.20 < α < 2.21

since u(2.20) < 0 and u(2.21) > 0.
• c) Sign of u(x) in]0, +∞[
The sign of u(x) can be deducted from the variation table of u; we
have: u(x) < 0 for x < α

u(x) = 0 for x = α
u(x) > 0 for x > α

4. • a) Variations of f .
We must do the variation table by hand, because the derivative of
f is not a rational function... and the calculator is not yet able to
handle this case!
Since the sign of f ′(x) is the same as of u(x), we have:

f ′(x) 0 − α + +∞
f(x) +∞ ↓ α−1

α (ln(α)− 2) ↑ +∞

• b)f(α) = − (α−1)2

αWe have:
u(α) = 0, so ln(α) = 3− α
We type in the equation writer:

(1− 1

A
)(LN(A)− 2)

then we highlight LN(A),
open the ALG (red-shift 4) menu,
press the (SUBST) key
to complete the command SUBST(LN(A), LN(A) = 3− A),
and press ENTER ENTER.
We obtain:

−A
2 − 2 · A + 1

A

128 CHAPTER 5. BAC 99 AND HP49G

Now,
FACTOR(−A

2 − 2 · A + 1

A
)

returns
− (A− 1)2

A

We type:
DERIV(− (A− 1)2

A
, A)

We obtain:
− (A2 − 1)

A2

So, the function v(x) = − (x−1)2

x decreases for x >= 1.
We obtain a bounded approximation of f(α) calculating:
v(2.21) and v(2.20).
We type:

− (1.21)2

2.21
red− shift ENTER

answer −0.662488

− (1.2)2

2.2
red− shift ENTER

answer −0.65454...
so, we have:

−0.663 < f(α) < −0.654

This is an approximation with tolerance 9 · 10−3(since 0.663 −
0.654 = 9 · 10−3)
or, again:

−0.67 < f(α) < −0.65

that is an approximation with tolerance 2·10−2(since 0.67−0.65 =
2 · 10−2)

5. • a) Sign of f
We notice that f(1) = 0 and that f(e2) = 0
We type:

F(1)

answer : 0
F(EXP(2))

5.5. PROBLEM 129
answer : 0
These are the variations of f and the sign of f(x) :

f ′(x) 0 − 1 − α + e2 + +∞
f(x) +∞ ↓ 0 ↓ α−1

α (ln(α)− 2) ↑ 0 ↑ +∞
f(x) +∞ + 0 − ' −0.66 − 0 + +∞

• b) Plot C of f
We open the PLOT SETUP (blue_shift F4) menu, we choose
function and F(X) for EQ, then we set the window parameters in
WIN (blue_shift F2)

Part B
Let H be the antiderivative of f in]0, +∞[and Γ its plot.
Be careful with the notations; they are not the same as those of the textbook!

1. • a) Variations of H
Since H ′(x) = f(x) we have the following variation table:

f(x) 0 + 1 − e2 + +∞
H(x) ? ↑ 0 ↓ ? ↑ ?

• b) Tangent lines for x = 1 and x = e2

It is f(1) = 0 and f(e2) = 0. The tangents of Γ for the abscissas 1
and e2 have a zero slope, and are therefore horizontal.

2. Calculation of H(x)

• a) Calculation of ∫ x

1
ln tdt

In the equation editor, we type:∫ X

1

LN(T)dT

We obtain:
X · LN(X)− (X− 1)

We can also ask for the antiderivative of lnx, we type:
INTVX(LN(X))

130 CHAPTER 5. BAC 99 AND HP49G

We obtain:
X · LN(X)− X

By hand, we set u = ln(t) and dv = dt, so du = dt
t and v = t we

have:∫ x

1

ln t dt = [t·ln t]t=x
t=1−

∫ x

1

t· dt

t
= x·lnx−

∫ x

1

dt = x·lnx−(x−1)

• b) Expanding the expression of f(x) we obtain:
f(x) = lnx− lnx

x
+

2
x
− 2

• c) Expression of H(x)
We type (using the equation writer):

DEFINE(H(X) =
∫ X

1

F(T)dT)

then,
H(X) ENTER

We obtain:
−LN(X)

2 − (2 · X + 4) · LN(X) + 6 · X− 6

2

We do the calculation by hand, integrating term by term the ex-
pression of f(x) found in 2b); we have:∫ x

1

ln t dt = x lnx− x + 1

−
∫ x

1

ln t

t
dt = − (lnx)2

2∫ x

1

2
t

dt = 2 lnx

that's why:
H(x) = x lnx− x + 1− (lnx)2

2
+ 2 ln x− 2x + 2

H(x) = − (lnx)2

2
+ (x + 2) lnx− 3x + 3

5.5. PROBLEM 131
3. • a) We type

LIMIT(LN(X)/X, X = 0)

answer 0
From the course, we know that �x dominates lnx�; this explains
the result!
We type:

LIMIT(H(X), X = 0)

answer −∞
We have:

H(x) = x lnx + lnx
(4− lnx)

2
− 3x + 3

When x goes towards 0, the �rst term of H(x) goes towards 0,
its second term goes towards −∞ (because lnx goes towards −∞
when x goes towards 0), and the following terms go towards 3.
Threrefore,

lim
x→0

H(x) = −∞

• b) We type:
LIMIT(H(X), X = +∞)

answer +∞
We put in evidence x lnx at the beginning of H(x), obtaining:

H(x) = x lnx(1− lnx

2x
+

2
x
− 3

lnx
) + 3

lim
x→+∞

x lnx = +∞

and the term within paretheses goes towards 1 when x goes towards
+∞, so

lim
x→+∞

H(x) = +∞

• c) Variations of H(x)
We calculate H(e2)
We type:

H(EXP(2))

The result is the expression obtained replacing, in H(X), X with
EXP(2).

132 CHAPTER 5. BAC 99 AND HP49G

We copy this expression to simplify it: (4 ENTER ENTER), obtain-
ing:

−(EXP(2)− 5)

then,
4 ENTER red− shift ENTER

answer -2.38905...
We have also an approximate value of H(e2).
We recall the table already worked out in 1a)

f(x) 0 + 1 − e2 + +∞
H(x) −∞ ↑ 0 ↓ ' −2.39 ↑ +∞

• d) Plot C of f and plot Γ of H
We open the PLOT SETUP (blue_shift F4) window, choose function
and put {F(X),H(X)} in the EQ �eld, then we set the window pa-
rameters using WIN (blue_shift F2) .

4. Area calculation
We have calculated: ∫ e2

1

f(x)dx

obtaining:
−(EXP(2)− 5)

this integral is negative because the function is below the x axis between
1 and e2. Since the measurement unit is 2cm, the area expressed in cm2

is therefore equal to −4H(e2)cm2, that is :
4 · (EXP(2)− 5) cm2

that is,
A = (4e2 − 20) cm2

or
9.55 cm2 < A < 9.56 cm2

5.6 Conclusion
We have showed that a good leverage of the HP49G calculator's capabilities
enabled us to solve a large portion of the problems...
However, we must also notice that for arithmetic problems, more reasoning is
needed: then, the calculator is useful to do checks and veri�cations...

Chapter 6

Programming

6.1 Programming in algebraic mode

6.1.1 Entering a program
You write a program in the command line, between delimiters � and �

6.1.2 Saving a program
It is enough to append

STO . NOMDUPROGRAMME

after the last � delimiter.

6.1.3 Editing a program
When entering a program, if the program syntax is bad, the calculator au-
tomatically places the command line cursor where the compiler has detected
the error, so you can immediately �x it!!!

Instead, if the error is detected during program execution, you must enter:
VISIT('NOMDUPROGRAMME') to edit the program stored in the NOMDUPROGRAMME
variable.
You can then edit it; ENTER saves the edited program.

133

134 CHAPTER 6. PROGRAMMING

6.1.4 Executing a program
If the program has no parameters, you type its name in the command line;
if it has one or more parameters, the program name must be followed by its
arguments, enclosed in brackets and delimited by commas.

Example: PGCD(45,75)

6.1.5 Modifying a program and saving it with another
name

You type:
RCL('NOMDUPROGRAMME') and press the edit menu key.

Then, you modify the program as you wish, and append
STO . NOUVEAUNOM

after the last � delimiter.

6.2 Program comments

It is a good habit to put comments in programs.
In algorithmic language a comment starts with // and ends at the end

of the line.
On the HP49G, a comment starts with @ and ends at the end of the line or

when another @ is encountered.
You obtain the @ character by pressing red-shift ENTER.
Warning!!! The compiler deletes all comments so, to preserve your com-

ments, you should store the program as a text string and then compile it with
STR→; this makes things a little more di�cult, though...

6.3 Variables

6.3.1 Variable names
Variables are places where you can store values, numbers, expressions and any
other object.

6.3. VARIABLES 135
6.3.2 Local variables
The HP49G has local variables. Local variables are both declared and initial-
ized (the initialization is mandatory!) with → (red− shift 0)

In RPN mode, you can de�ne and initialize more than one variable at once,
for example:

� 1 2 → A B� subprogrambody��

In Algebraic mode, each de�nition must be followed by a subprogram (with
delimiters ��).

The arrow must be surrounded by spaces (these spaces are automatically
inserted when the calculator is not in α mode).
Example :

� 3.14 → PI� 2 ∗ PI ∗ R�� STO . PER

In this example, we have written a program named PER.
PI is a local variable de�ned and initialized by the code fragment 3.14 → PI.
The scope of this variable is limited to the subprogram that follows its de�-
nition (here, � 2 ∗ PI ∗ R�).
On the other hand, R is a global variable (it must exist before the program
PER is executed). If, during the execution of a program, you want to store a
value into a variable (either local or global), you must use the STO. operator.

6.3.3 Parameters
When you de�ne a function, it is possible to use parameters.
For example, if you want R to be a parameter of function PER, you should
write:

� → R� 3.14 → PI� 2 ∗ PI ∗ R��� STO . PER

Parameter R behaves the same as local variables; the only di�erence is that it
is initialized when the function is invoked.
The invocation is done when, for example, you evaluate: PER(5).
To de�ne a function with two argument, the correct syntax, in both RPN and
Algebraic modes is:

� → A B� ...

136 CHAPTER 6. PROGRAMMING

6.4 Data input

6.4.1 Translation in algorithmic language
To denote that the user enters a value into variable A during the execution of
a program, in algorithmic language you write: input A
To input values into A and B you write: input A,B

6.4.2 Translation for the HP49G in RPN mode
'A' PROMPTSTO
or
"A" "" INPUT STR-> EVAL 'A' STO

6.4.3 Translation for the HP49G in Algebraic mode
To input a value into a local variable A, you type:
....0 → A� PROMPTSTO(′A′)...� or
....0 → A� PROMPTSTO(′A′); 0 → B� PROMPTSTO(′B′).....� �

If you enter only:
...PROMPTSTO('A'), A is then a global variable, or
...PROMPTSTO('A'); PROMPTSTO('B'), A and B are then global variables.
You can use INPUT, too. For example, if a local variable A must contain a
character string, you can enter:

INPUT(′′A =′′,′′ ′′) → A

or, if A must contain a number:
.....INPUT(′′A =′′,′′ ′′)→ A
� OBJ→ (A) → A
��
�

6.5 Data output

6.5.1 Translation in algorithmic language
In algorithmic language, you write:
print "A=",A

6.6. SEQUENCE OF INSTRUCTIONS, OR �BLOCK� 137
6.5.2 Translation for the HP49G in RPN mode
Usually it is enough to push results into the stack, so that you can reuse them;
if this is the case, you simply write:
A B
You can also tag the result, as follows:
A "A=" ->TAG
HALT halts the program.
6.5.3 Translation for the HP49G in Algebraic mode
Only the last result is written into the history.
To display intermediate results, you can use either:

DISP(”A = ” + A, 3)

here, 3 is the line number on which the result is displayed, or:
MSGBOX(”A = ”+→ STR(A))

CLEAR clears the screen.
FREEZE(7) stops the program and freezes the screen so that you can see the
results you have previously written on it.

6.6 Sequence of instructions, or �block�
A �block� is a sequence of one or more instructions.
6.6.1 Translation in algorithmic language
In algorithmic language, you can use either the space or a newline to terminate
an instruction.
6.6.2 Translation for the HP49G in RPN mode
Like the algorithmic language, spaces and newlines act as instruction separa-
tors.
6.6.3 Translation for the HP49G int algebraic mode
When the HP49G works in algebraic mode, ; acts as instruction separator.
You can type ; pressing red-shift SPC simultaneously.

138 CHAPTER 6. PROGRAMMING

6.7 Store instruction
The store instruction is used to store a value or an expression into a variable.

6.7.1 Translation in Algorithmic language
In algorithmic language, the store operation is denoted, for example, by:
2*A->B to store 2*A into B.

6.7.2 Translation for the HP49G in RPN mode
When the HP49G works in RPN mode, you must use the post�x notation and
the STO command:
2 A * 'B' STO

6.7.3 Translation for the HP49G in Algebraic mode
when the HP49G works in algebraic mode, you use the STO key, that is displayed
on the calculator screen as: . (and will be denoted here by STO.).

6.8 Conditional branch instructions

6.8.1 Translation in algorithmic language
if condition then action end if
if condition then action1 else action2 end if
Example :
if A = 10 or A < B then B-A->B else A-B->A end if

6.8.2 Translation for the HP49G in RPN mode
IF condition THEN action END

IF condition THEN action1 action2 END
Warning : you must use the post�x notation and == to denote the equality

test operator.
The above mentioned example can be written as:
IF A 10 == A B < OR THEN B A - 'B' STO ELSE A B - 'A' STO END
you can also write:
IF 'A==10' 'A < B' OR THEN ...

6.9. �FOR� LOOPS 139
6.8.3 Translation for the HP49G in Algebraic mode
IF condition THEN action END
IF condition THEN action1 ELSE action2 END
Example : Pay attention to always use == to denote the equality test!
IF A == 10 OR A < B THEN B-A STO. B ELSE A-B STO. A END

6.9 �For� loops

6.9.1 Translation in algorithmic language
for I from A to B do action end for
for I from A to B (step P) do action end for

6.9.2 Translation for the HP49G in RPN mode
A B FOR I action NEXT

A B FOR I action P STEP

6.9.3 Translation for the HP49G in Algebraic mode
FOR (I , A , B) action NEXT

FOR (I , A , B) action STEP P
It is not necessary to declare the loop variable I in advance.

I is automatically declared and initialized by: FOR (I,.,.)...

6.10 �While� loops

6.10.1 Translation in algorithmic language
while condition do action end while

6.10.2 Translation for the HP49G in RPN mode
WHILE condition REPEAT action END

6.10.3 Translation for the HP49G in Algebraic mode
WHILE condition REPEAT action END

140 CHAPTER 6. PROGRAMMING

6.11 Boolean (or conditional) expressions
A boolean (or conditional) expression is a function having a boolean value,
that is, either true or false.

6.11.1 Translation in algorithmic language
To express a simple condition you use the following operators: = < > ≤ ≥
6=

6.11.2 Translation for the HP49G in RPN mode
Warning, you must use the post�x notation and == to denote the equality test
operator.

6.11.3 Translation for the HP49G in Algebraic mode
Warning, for the HP49G, the equality test operator is denoted by: ==

6.12 Logical operators

6.12.1 Translation in algorithmic language
To express complex conditions, you can use the following logical operators:
or, and, and not.

6.12.2 Translation for the HP49G in RPN mode
Warning, you must use the post�x notation.
or, and, and not are denoted, respectively, by OR, AND, and NOT.

6.12.3 Translation for the HP49G in Algebraic mode
or, and, and not are denoted on the HP49G by OR, AND, and NOT.

6.13 Functions
In a function, you do not perform data entry explicitly:
instead, you use function parameters, that are automatically initialized when
the function is called.

6.13. FUNCTIONS 141
In a function, you must be able to reuse the result at will:
in algorithmic language, you use the return command instead of print.

6.13.1 Translation in algorithmic language
You can write, for example:
function addition(A,B)
return A+B
end function

This means that:
• The result of the function will be displayed when the function is exe-
cuted.

• The function can be used in an expression.

6.13.2 Translation for the HP49G in RPN mode
When the HP49G works in RPN mode, it is assumed that function arguments
are on the stack when the function is invoked.

Inside the function, the arguments become local variables initialized with
the topmost elements of the stack. The result of the function is pushed on
the stack.
The example above can be written as:
�→ A B
� A B + �
�
'ADDITION' STO

To invoke the function you must push the intended values of A and B on
stack levels 2 and 1; after the execution of ADDITION their sum will be on
stack level 1.

6.13.3 Translation for the HP49G in Algebraic mode
The example above can be written as:
�→ A B
� A + B�
�

142 CHAPTER 6. PROGRAMMING

STO . ADDITION

To invoke the function, you enter:
ADDITION(4, 5)

6.14 Lists

6.14.1 Translation in algorithmic language
In the algorithmic language, { and } are used as list delimiters.
For example, {} denotes the empty list, and {1, 2, 3} is a list of 3 elements.
The + operator can be used to concatenate two lists together or a list with an
element:
{1, 2, 3}->TAB
TAB + 4 ->TAB (now TAB contains {1, 2, 3, 4})
TAB[2] denotes the second element of TAB, 2 in this example.

6.14.2 Translation for the HP49G in RPN mode
It is not necessary to declare the maximum length of a list in advance.
The list delimiters are { and }. For example {1 2 3} is a list of 3 elements,
and {} is an empty list.
You can retrieve the P-th element of list L and put it on the stack using:
L P GET or 'L' P GET
To update the P-th element of L (for example, set it to 0) you must enter:
'L' P 0 PUT or L P 0 PUT 'L' STO
Actually, L P 0 PUT leaves the updated list on the stack, and:
'L' P 0 PUT updates list L in-place instead.
The + operator can be used to concatenate two lists together or a list with an
element.

6.14.3 Translation for the HP49G in algebraic mode
It is not necessary to declare the maximum length of a list in advance.
The list delimiters are { and }. For example {1 2 3} is a list of 3 elements,
and {} is an empty list.
You can retrieve the P-th element of list L using:
L[P] or GET (L, P)
To update the P-th element of L (for example, set it to 0) you must enter:

6.15. EXAMPLE: THE SIEVE OF ERASTOTHENES 143
PUT(L, P, 0) STO. L
or
PUT('L', P, 0)
Actually, PUT(L, P, 0) returns the updated list, and:
PUT ('L', P, 0) updates list L in-place instead.
The + operator can be used to concatenate two lists together or a list with an
element. The SEQ command allows you to create a list; for example, if you
type:

SEQ(′X ∗ X′,′ X′, 4, 10, 1)

you obtain:
{16, 25, 36, 49, 64, 81, 100}

6.15 Example: The sieve of Erastothenes

6.15.1 Description
To �nd the prime numbers less than or equal to N :

1. Put the numbers from 1 to N into a list.
2. Mark 1 and store 2 into the variable P .

If P · P ≤ N we must process all elements from P to N .
3. Mark all multiples of P starting from P · P .
4. Increment P by 1

If P · P is less than or equal to N , we must process the non-marked
elements from P to N .

5. Store into P the smallest non-marked elements of the list.
6. Repeat steps 3, 4 and 5 while P · P is less than or equal to N .

6.15.2 Algorithmic language
function crible(N)
local TAB PREM I P
// TAB and PREM are lists
{} ->TAB
{} ->PREM
for I from 2 to N do

144 CHAPTER 6. PROGRAMMING

TAB+I -> TAB
end for
0 +TAB -> TAB
2 -> P
// Done steps 1 and 2
// marking has been implemented replacing the element to be marked with 0
// TAB is the list 0 2 3 4 ...N
while P*P ≤ N do
for I from P to int(N/P) do
0 -> TAB[I*P]

end for
// We marked all multiples of P starting from P*P

P+1 -> P
// We search the smallest number <= N, not marked, between P and N

while (P*P ≤ N) and (TAB[P]=0) do
P+1 -> P

end while
end while
// We copy the result into PREM
for I from 2 to N do
if TAB[I] 6= 0 then

PREM +I -> PREM
end if

end for
return PREM

6.15.3 HP49G, RPN mode
This is the program CRIBLE:

N is the parameter whose actual value must be on the stack.
The local variables are:
P and I (integers),
TA and PREM (lists).

� {} {} 2 1 → N TA PREM P I
� 0 ′X′ ′X′ 2 N 1 SEQ + ′TA′ STO

WHILE P P * N ≤ REPEAT

6.15. EXAMPLE: THE SIEVE OF ERASTOTHENES 145
P N P / FLOOR FOR I

TA I P * 0 PUT 'TA' STO
NEXT
1 'P' STO+
WHILE P P * N ≤ TA P GET 0 == AND REPEAT

1 'P' STO+
END

END
2 N FOR I

IF TA I GET 0 6= THEN
I 'PREM' STO+

END
NEXT
PREM

�
�

6.15.4 HP49G, Algebraic mode
This is the program CRIBLE; the user must type, for example:
CRIBLE(100), to execute it.
� → N
� 0+SEQ('I','I',1,N,1) → TA
� 2 → P
� WHILE P ∗ P ≤ N REPEAT

FOR (I , P , FLOOR(N/P))
PUT('TA',I*P,0)

NEXT;
P + 1 STO . P;
WHILE P*P ≤ N AND GET(TA,P) == 0 REPEAT

P + 1 STO . P
END

END;
{2} → PREM
� FOR (I, 3, N)

IF TA(I) 6= 0 THEN
PREM + I STO . PREM;

END
NEXT;

146 CHAPTER 6. PROGRAMMING

PREM
�

�
�

�
� STO . CRIBLE

Chapter 7

Arithmetic programs

7.1 Calculating the GCD using the Euclide's al-
gorithm

This algorithm is rooted on the recursive de�nition of GCD:
GCD(A, 0) = A

GCD(A,B) = GCD(B,A mod B) if B 6= 0

The algorithm can be described as follows:
we carry out this sequence of euclidean divisions:

A = B ×Q1 + R1 0 ≤ R1 < B

B = R1 ×Q2 + R2 0 ≤ R2 < R1

R1 = R2 ×Q3 + R3 0 ≤ R3 < R2

.......

After a �nite number of steps, it exists an integer n so that: Rn = 0.
We obtain then:
GCD(A,B) = GCD(B,R1) = ...
GCD(Rn−1, Rn) = GCD(Rn−1, 0) = Rn−1

7.1.1 Algorithmic language
• Iterative implementation
If B 6= 0 we calculate R=A mod B then, using B instead of A (storing

147

148 CHAPTER 7. ARITHMETIC PROGRAMS

B into A) and R instead of B (storing R into B) we repeat the process
until B=0; when this happens, the GCD is A.
function GCD(A,B)
local R
while B 6= 0 do

A mod B->R
B->A
R->B

end while
return A
end function
• Recursive implementation
We simply write out the recursive de�nition given above.
function GCD(A,B)
if B 6= 0 then

return GCD(B,A mod B)
else
return A

end if
end function

7.1.2 HP49G, RPN mode
• Iterative implementation
� 0→ A B R
� WHILE B 0 6= REPEAT

A B MOD 'R' STO
B 'A' STO
R 'B' STO

END
A

�
�

7.1. CALCULATING THEGCDUSING THE EUCLIDE'S ALGORITHM149
• Recursive implementation
� 0→ A B
� IF B 0 6= THEN

B A B MOD PGCDR
ELSE

A
END

�
�
The program must be stored into variable PGCDR.

7.1.3 HP49G, Algebraic mode
• Iterative implementation
� → A, B
� 0 → R
� WHILE B 6= 0 REPEAT

A MOD B STO . R;
B STO . A;
R STO . B

END;
A

�
�

� STO . PGCD
To execute the program you enter, for example, PGCD(45,75).

• Recursive implementation
� → A, B
� IF B 6= 0 THEN

PGCDR(B, A MOD B)
ELSE

A
END

�
� STO . PGCDR
To execute the program you enter, for example, PGCDR(45,75).
Notice:
If you use the symbolic function IREMAINDER instead of MOD in the pro-

150 CHAPTER 7. ARITHMETIC PROGRAMS

grams above, PGCD (or PGCDR) can then have Gauss integers as argu-
ments, too.

7.2 Bézout identity using the Euclide's algorithm
In this section, the function Bezout(A,B) returns the list {U, V, GCD(A,B)},
where U and V satisfy: A× U + B × V = GCD(A,B).

7.2.1 Iterative implementation without lists
The Euclide's algorithm allows us to �nd a pair U and V satisfying:
A× U + B × V = GCD(A,B)
Actually, if we denote A0 and B0 the starting values of A and B, we have:

A = A0 × U + B0 × V with U = 1 and V = 0
B = A0 ×W + B0 ×X with W = 0 and X = 1

Next, we make A, B, U , V , W , X evolve so that the above relations continue
to be satis�ed.
If:
A = B ×Q + R 0 ≤ R < B (R = A mod B and Q = E(A/B))
We can write:

R = A−B ×Q = A0 × (U −W ×Q) + B0 × (V −X ×Q) =
A0 × S + B0 × T with S = U −W ×Q and T = V −X ×Q

We must now repeat the process with B in place of A (B->A W->U X->V)
and R in place of B (R->B S->W T->X).

We can write the whole algorithm as follows:
function Bezout (A,B)
local U,V,W,X,S,T,Q,R
1->U 0->V 0->W 1->X
while B 6= 0 do
A mod B->R
E(A/B)->Q
//R=A-B*Q
U-W*Q->S
V-X*Q->T

7.2. BÉZOUT IDENTITY USING THE EUCLIDE'S ALGORITHM 151
B->A W->U X->V
R->B S->W T->X
end while
return {U, V, A}
end function
7.2.2 Iterative implementation with lists
The algorithm above can be simpli�ed using less variables: in order to do this,
we introduce the lists LA, LB, and LR to store the terns {U, V, A}, {W, X,
B} and {S, T, R}.
function Bezout (A,B)
local LA LB LR
{1, 0, A}->LA
{0, 1, B}->LB
while LB[3] 6= 0 do
LA-LB*E(LA[3]/LB[3])->LR
LB->LA
LR->LB
end while
return LA
end function
7.2.3 Recursive version with lists
The Bezout function can be de�ned recursively by: Bezout(A, 0) = {1, 0, A}
If B 6= 0 we must de�ne Bezout(A,B) in function of Bezout(B,R), where
R = A−B ×Q and Q = E(A/B).

We have:
Bezout(B,R) = LT = {W,X, gcd(B,R)}

with W ×B + X ×R = gcd(B,R)

Therefore:
W ×B + X × (A−B ×Q) = gcd(B,R) or, again,
X ×A + (W −X ×Q)×B = gcd(A,B).

So, if B 6= 0 and Bezout(B,R) = LT we have:

152 CHAPTER 7. ARITHMETIC PROGRAMS

Bezout(A,B) = {LT [2], LT [1]− LT [2]×Q, LT [3]}.

function Bezout (A,B)
local LT Q R
if B 6= 0 do
E(A/B)->Q
A-B*Q->R
Bezout(B,R)->LT
return {LT[2], LT[1]-LT[2]*Q, LT[3]}
else return {1, 0, A}
end if
end function
7.2.4 HP49G, RPN mode
• Iterative implementation with lists.
At the very beginning, A et B contain the two numbers for which we
are seeking the Bézout identity, later they denote the lists LA and LB
mentioned in the algorithm.
� {} → A B R
� {1 0} ′A′ STO+
{0 1} ′B′ STO+
WHILE B 3 GET 0 6= REPEAT

A B A 3 GET B 3 GET / FLOOR * - 'R' STO
B 'A' STO
R 'B' STO

END
A
�

�

• Recursive implementation with lists
� {} → A B T
� IF B 0 6= THEN

B A B MOD BEZOUR 'T' STO
T 2 GET DUP A B / FLOOR *
T 1 GET SWAP -
T 3 GET + + +

7.2. BÉZOUT IDENTITY USING THE EUCLIDE'S ALGORITHM 153
ELSE

{1 0} A +
END

�
�
This program must be stored into the variable BEZOUR.

7.2.5 HP49G, Algebraic mode
• Iterative implementation with lists.
At the very beginning, A et B contain the two numbers for which we
are seeking the Bézout identity, later they denote the lists LA and LB
mentioned in the algorithm.
� → A, B
� {} → R
� {1, 0, A} STO . A;
{0, 1, B} STO . B;
WHILE B[3] 6= 0 REPEAT

A− B ∗ FLOOR(A[3]/B[3]) STO . R;
B STO . A;
R STO . B

END
A

�
�

� STO . BEZOUT
To execute the program you type, for example, BEZOUT(45,75).

• Recursive implementation with lists
� → A, B
� {} → T
� IF B 6= 0 THEN

BEZOUR(B, A MOD B) STO . T;
{T[2], T[1]− T[2] ∗ FLOOR(A/B), T[3]}

ELSE
{1, 0, A}

END
�

�
� STO . BEZOUR

154 CHAPTER 7. ARITHMETIC PROGRAMS

To execute the program you type, for example, BEZOUR(45,75).
Notice :
If you use the symbolic function IREMAINDER instead of MOD in the pro-
grams above, PGCD (or PGCDR) can then have Gauss integers as argu-
ments, too.

7.3 Factorization

7.3.1 Algorithms and their translations
• First algorithm
We check, for all integers D from 2 to N, whether N is divided by D.
If D divides N, we search the factors of N/D ... and so on.
All factors are stored into the list FACT.
function facprem(N)
local D FACT
2 -> D
{} -> FACT
while N 6= 1 do

if N mod D = 0 then
FACT + D -> FACT
N/D -> N

else
D+1 -> D

end if
end while
return FACT
end function
• First improvement
We only check potential factors between 2 and E(

√
N).

function facprem(N)
local D FACT
2 -> D
{} -> FACT
while D*D ≤ N do

7.3. FACTORIZATION 155
if N mod D = 0 then

FACT + D -> FACT
N/D-> N

else
D+1 -> D

end if
end while
FACT + N -> FACT
return FACT
end function
• Second improvement
We check if 2 divides N, then we check only odd potential factors D
between 3 and E(

√
N).

In the FACT list, each factor is now followed by its exponent:
facprem(12)={2,2,3,1}.
function facprem(N)
local K D FACT
{}->FACT
0 -> K
while N mod 2 = 0 do

K+1 -> K
N/2 -> N

end while
if K 6=0 then

FACT + {2 K} -> FACT
end if
3 ->D
while D*D ≤ N do

0 -> K
while N mod D = 0 do
K+1 -> K
N/D -> N

end while
if K 6=0 then

156 CHAPTER 7. ARITHMETIC PROGRAMS

FACT + {D K} -> FACT
end if
D+2 -> D

end while

if N 6= 1 then

FACT + {N 1} -> FACT
end if
return FACT
end function

7.3.2 HP49G, RPN mode
This is the translation of the second improvement:
� 0 3 {} → N K D FACT
� WHILE N 2 MOD 0 == REPEAT

1 'K' STO+
'N' 2 STO/

END
IF K 0 6= THEN

{2 K} 'FACT' STO
END
WHILE N D D * ≥ REPEAT

0 'K' STO
WHILE N D MOD 0 == REPEAT

1 'K' STO+
'N' D STO/

END
IF K 0 6= THEN

{D K} 'FACT' STO+
END
2 'D' STO+

END
IF N 1 6= THEN

{N 1} 'FACT' STO+
END

�
�

7.3. FACTORIZATION 157
7.3.3 HP49G, algebraic mode

� → N
� 0 → K
� WHILE N MOD 2 == 0 REPEAT

K + 1 STO . K;
N/2 STO . N

END;
{} → FACTO
� IF K 6= 0 THEN

FACTO + {2, K} STO . FACTO
END;
3 → D
� WHILE D ∗ D ≤ N REPEAT

0 STO . K;
WHILE N MOD D == 0 REPEAT

K + 1 STO . K;
N/D STO . N;

END;
IF K 6= 0 THEN

FACTO + {D, K} STO . FACTO
END;
D + 2 STO . D

END;
IF N 6= 1 THEN

FACTO + {N, 1} STO . FACTO
END;
FACTO;

�
�

�
�

� STO . FACTEUR
To execute the program you type, for example, FACTEUR(45).

158 CHAPTER 7. ARITHMETIC PROGRAMS

7.4 Calculation of AP mod N

7.4.1 Algorithmic language
• First algorithm
We use local variables PUIS et I.
We make an iterative program so that at each step, PUIS represents
AI (mod N).
function puismod (A, P, N)
local PUIS, I
1->PUIS
for I from 1 to P do

A*PUIS mod N ->PUIS
end for
return PUIS
end function
• Second algorithm
We use only one local variable, PUI, but we update P so that at each
iteration step we always have:
result = PUI ∗AP (mod N)

function puismod (A, P, N)
local PUI
1->PUI
while P>0 do

A*PUI mod N ->PUI
P-1->P

end while
return PUI
end function
• Third algorithm
We can improve the previous program by noticing that:
A2∗P = (A ∗A)P .
So, when P is even, the following is true:
PUI ∗AP = PUI ∗ (A ∗A)P/2 (mod N)
and when P is odd, the following is true:
PUI ∗AP = PUI ∗A ∗AP−1 (mod N).
The result is a fast algorithm to compute AP (mod N).

7.4. CALCULATION OF AP MOD N 159
function puismod (A, P, N)
local PUI
1->PUI
while P>0 do
if P mod 2 =0 then

P/2->P
A*A mod N->A

else
A*PUI mod N ->PUI
P-1->P

end if
end while
return PUI
end function
We can also notice that if P is odd, then P-1 is even.
We can write:
function puismod (A, P, N)
local PUI
1->PUI
while P>0 do
if P mod 2 =1 then

A*PUI mod N ->PUI
P-1->P

end if
P/2->P
A*A mod N->A
end while
return PUI
end functions
• Recursive program
We can leverage the following recurrence relation:
A0 = 1 AP+1 (mod N) = (AP (mod N)) ∗A (mod N)

function puimod(A, P, N)
if P>0 then
return puimod(A, P-1, N)*A mod N
else
return 1

160 CHAPTER 7. ARITHMETIC PROGRAMS

end if
end function
• Fast, recursive program

function puimod(A, P, N)
if P>0 then

if P mod 2 =0 then
return puimod(A*A, P/2, N)

else
return puimod(A, P-1, N)*A mod N

end if
else
return 1
end if
end function

7.4.2 HP49G, RPN mode
The user must push on the stack :
A, P, N to obtain AP mod N .
This is the translation of the fast, iterative algorithm:
� 1 → A P N PUI
� WHILE P 0 > REPEAT

IF P 2 MOD 1 == THEN
A PUI * N MOD 'PUI' STO
'P' STO-

END
P 2 / 'P' STO
A A * N MOD 'A' STO

END
PUI

�
�

We can store the program into PUIMOD (using 'PUIMOD' STO).
7.4.3 HP49G, Algebraic mode
This is the translation of the fast, iterative algorithm:
� → A P N

7.5. THE FUNCTION �ISPRIME� 161
� 1 → PUI
� WHILE P > 0 REPEAT

IF P MOD 2 == 1 THEN
A ∗ PUI MOD N STO . PUI
P− 1 STO . P;

END;
P/2 STO . P;
A ∗ A MOD N STO . A;

END;
PUI

�
�

� STO . PUIMOD
We can type, for example, PUIMOD(45,32,13) to execute it.

7.5 The function �isprime�

7.5.1 Algorithmic language
• First algorithm
We are about to write a boolean function of N, returning TRUE if N is
prime, and FALSE if it is not.
In order to do this, we check whether N has a factor 6= 1 and ≤ E(

√
N)

(integer part of the square root of N).
The special case N = 1 is handled separately!
We use a boolean variable PREM, initially set to TRUE and changed
to be FALSE when we �nd a factor of N.
function isprime(N)
local PREM, I, J
E(√N) ->J
if N = 1 then
FALSE->PREM
else
TRUE->PREM

162 CHAPTER 7. ARITHMETIC PROGRAMS

end if
2->I
while PREM and I ≤J do

if N mod I = 0 then
FALSE->PREM
else
I+1->I

end if
end while
return PREM
end function
• First improvement
We notice that �rst of all, we can check if N is even and, if it is not,
only check whether it has odd factors.
function iswprime(N)
local PREM, I, J
E(√N) ->J
if (N = 1) or (N mod 2 = 0) and N 6=2 then

FALSE->PREM
else
TRUE->PREM

end if
3->I
while PREM and I ≤J do

if N mod I = 0 then
FALSE->PREM
else
I+2->I

end if
end while
return PREM
end function

7.5. THE FUNCTION �ISPRIME� 163
• Second improvement
We check if N cen be divided by 2 or by 3, else we check whether N has
a factor that can be expressed as either 6× k − 1 or 6× k + 1.
function isprime(N)
local PREM, I, J
E(√N) ->J
if (N = 1) or (N mod 2 = 0) or (N mod 3 = 0) then
FALSE->PREM
else
TRUE->PREM

end if
if N=2 or N=3 then
TRUE->PREM
end if
5->I
while PREM and I ≤J do
if (N mod I = 0) or (N mod I+2 =0) then

FALSE->PREM
else
I+6->I

end if
end while
return PREM
end function

7.5.2 HP49G, RPN mode
We translate the last algorithm listed above: the result is either 0 (false) or 1
(true).
� DUP √ FLOOR 0 5 → N J PREM I
� IF N 1 == N 2 MOD 0 = 3D = 3D OR N 3 MOD 0 == OR THEN

0 'PREM' STO
ELSE

1 'PREM' STO
END

164 CHAPTER 7. ARITHMETIC PROGRAMS

IF N 2 == N 3 == OR THEN
1 'PREM' STO

END
WHILE PREM I J ≤ AND REPEAT

IF N I MOD 0 == N I 2 + MOD 0 == OR THEN
0 'PREM' STO

ELSE
I 6 + 'I' STO

END
END
PREM
�
�

7.5.3 HP49G. Algebraic mode
� → N
� 0 → P
� IF N MOD 2 == 0 OR N MOD 3 == 0 OR N == 1THEN

0 STO . P
ELSE;

1 STO . P;
END;
IF N == 2 OR N == 3 THEN

1 STO . P;
END;
FLOOR(

√
N) → J

� 5 → I
� WHILE I ≤ J AND P REPEAT

IF N MOD I == 0 OR N MOD (I + 2) == 0 THEN
0 STO . P;

ELSE;
I + 6 STO . I;

END;
END;
P

�
�

�
�

7.6. RABIN'S PROBABILISTIC METHOD 165
� STO . PREM?
to execute this program you type, for example, PREM?(45789).

7.6 Rabin's probabilistic method
If N is prime, all integers K less that N are prime with N; therefore, applying
the Fermat theorem we can state that:

KN−1 = 1 (mod N)
for all integers K less than N. Instead, if N is not prime, integer values K

satisfying:
KN−1 = 1 (mod N)
are rare.
To be more precise, it can be shown that if N > 4, the probabilty to

randomly �nd such an integer K is less than 0.25.
An integer N satisfying KN−1 = 1 (mod N) for 20 random trials of K is

a preudo-prime integer.
The Rabin's probabilistic method consists of randomly generate an integer

K (1 < K < N) and calculate :
KN−1 (mod N)
If KN−1 = 1 (mod N) we repeat the process with a di�erent value of K;

if, instead, KN−1 6= 1 (mod N) we are sure that N is not prime.
If KN−1 = 1 (mod N) for 20 random trials of K we can state that N is

prime with a small probability of error, less than 0.2520, that is about 10−12.
Of course, this method is very fast, and is widely used to check whether

very big integers are pseudo-prime.

7.6.1 Algorithmic language
We assume that: Hasard(N) returns a random integer between 0 and N-1.

We calculate:
KN−1 mod N
using the fast power algorithm described above (see page 158).
We denote as:
puismod(K, P, N) the function calculating and returning KP mod N .

function isprime(N)
local K, I, P

166 CHAPTER 7. ARITHMETIC PROGRAMS

1->I
1->P
while P = 1 and I < 20 do
hasard(N-2)+2->K
puismod(K, N-1, N)->P
I+1->I
end while
if P =1 then
return TRUE
else
return FALSE
end if
end function

7.6.2 HP49G, RPN mode
We assume that the function PUIMOD, taking from the stack three arguments
A, K, N, and returning AKmod N is already available.
� 1 0 1 → N I K P
� 0 RDZ
WHILE P 1 == 20 I > AND REPEAT

1 'I' STO+
RAND N 2 - * FLOOR 2 + 'K' STO
K N 1 - N PUIMOD 'P' STO

END
IF P 1 == THEN

1
ELSE

0
END
�
�

7.6.3 HP49G, Algebraic mode
� → N
� 1 → I
� 0 → K
� 1 → P
� RDZ(0);

7.6. RABIN'S PROBABILISTIC METHOD 167
WHILE P == 0 AND I < 20 REPEAT

1 + I STO . I;
FLOOR((N− 2) ∗ RAND) + 2 STO . K;
PUIMOD(K, N− 1, N) STO . P;

END;
IF P == 1 THEN

1
ELSE

0
END;
P

�
�

�
�

� STO . RABIN
To execute this program you can type, for example, RABIN(45313).

Notice:
We can also use the built-in command POWMOD and write:

• In RPN mode:
N MODSTO
K N 1 - POWMOD 'P' STO
instead of:
K N 1 - N PUIMOD 'P' STO

• In Algebraic mode :
MODSTO(N);
POWMOD(K,N-1) STO. P
instead of:
PUIMOD(K,N-1,N) STO. P

Index

4 � � 5, 8
⇐, 8
←↩, 8
→, 8
. STO. , 8
= ∼, 7
ABCUV, 61
ABS, 42, 80
ACOS2S, 50
ADDTMOD, 68
ARG, 42
ASIN2C, 50
ASIN2T, 51
ATAN2S, 51
AUGMENT, 99
AXL, 77
AXM, 77
AXQ, 80
BASIS, 98
C2P, 100
CASCFG, 7
CF, 9
CHINREM, 63
CHOLESKY, 95
CIRC, 101
CLEAR, 137
CONJ, 42
COPY, 24
CROSS, 80

CURL, 83
CUT, 24
CYCLOTOMIC, 99
DEFINE, 33
DERIV, 45, 82
DERVX, 44
DESOLVE, 90
DIAGMAP, 95
DISP, 137
DISTRIB, 101
DIV, 83
DIV2, 60
DIV2MOD , 69
DIVIS, 37, 59
DIVMOD, 69
DIVPC, 71
DOT, 80
EGCD, 60
EGV, 78
EGVL, 77
EPSX0, 92
EULER, 40
EVAL, 43
EXLR, 83
EXP2POW, 102
EXPAND, 43
EXPANDMOD, 70
EXPLN, 55
FACTOR, 36, 43, 58

168

INDEX 169
FACTORMOD, 71
FACTORS, 36, 59
FC?, 9
FCOEF, 63
FDISTRIB, 101
FOURIER, 54
FREEZE, 137
FROOTS, 62
FS?, 9
FXND, 41, 66
GAMMA, 104
GAUSS, 81
GCD, 35, 57
GCDMOD, 70
GET, 142
GRAMSCHMIDT, 94
GROBADD, 109
HADAMARD, 77
HALFTAN, 52
HERMITE, 65
HESS, 82
HILBERT, 79
HORNER, 61
IABCUV, 39
IBASIS, 98
IBERNOULLI, 104
IBP, 48
ICHINREM, 39
IDIV2, 37
IEGCD, 39
ILAP, 91
IM, 42
IMAGE, 98
INPUT, 136
INTVX, 45
INVMOD, 70
IQUOT, 37
IREMAINDER, 37

ISOL, 85
ISOM, 96
ISPRIME?, 34, 38
JORDAN, 78
KER, 98
LAGRANGE, 64
LAP, 91
LAPL, 82
LCM, 36, 58
LCXM, 80
LDEC, 89
LEGENDRE, 64
LGCD, 35, 57
LIMIT, 46, 47, 75
LIN, 55
LINSOLVE, 88
LNAME, 93
LNCOLLECT, 56
LVAR, 93
MAD, 76
MKISOM, 96
MOD, 37
MODSTO, 68
MSGBOX, 137
MSLV, 103
MULTMOD, 69
NEG, 42
NEXTPRIME, 38
P2C, 100
PA2B2, 40
PARTFRAC, 67
PASTE, 24
PCAR, 78
PCOEF, 63
PLOT, 31, 108

170 INDEX

PLOTADD, 31, 109
PMINI, 103
POWEXPAND, 102
POWMOD, 70
PREVAL, 44
PREVPRIME, 38
PROMPTSTO, 136
PROOT, 62
PROPFRAC, 41, 67
PSI, 105
Psi, 105
PTAYL, 61
PURGE, 25
PUT, 143
qr, 94
QUOT, 60
QXA, 80
RCL, 25
RE, 42
REF, 86
REMAINDER, 60
REORDER, 66
RESULTANT, 105
RISCH, 48
RREF, 87
rref, 86
RREFMOD, 71
SCROLL, 109
SEQ, 143
SERIES, 73
SEVAL, 106
SF, 9
SIGMA, 106
SIGMAVX, 107
SIGN, 42
SIGNTAB, 108
SIMP2, 35, 41, 66
SIMPLIFY, 102

SINCOS, 51
SOLVE, 84
SOLVEVX, 84
STO, 24
STURM, 99
STURMAB, 100
SUBST, 43, 90
SUBTMOD, 68
SYLVESTER, 81
SYST2MAT, 95
TABVAL, 108
TABVAR, 107
TAN2SC, 52
TAN2SC2, 52
TAYLOR0, 72
TAYLR , 72
TCHEBYCHEFF, 65
TCOLLECT, 50
TEXPAND, 48
TLIN, 49
TRAN, 75
TRIG, 53
TRIGCOS, 54
TRIGSIN, 53
TRIGTAN, 54
TRN, 76
TRUNC, 64
TSIMP, 57
VANDERMONDE, 79
VER, 107
VISIT, 133
XNUM, 93
XQ, 93
ZEROS, 62

Contents

0.1 Introduction . 5
0.1.1 Turning on the calculator 5
0.1.2 What am I looking at? 5

0.2 Calculator modes . 7
0.3 Notation . 8
0.4 Flags . 9

1 Important keys 11
1.1 The APPS key . 11

1.1.1 Plot functions . 11
1.1.2 I/O functions . 11
1.1.3 Constants library . 12
1.1.4 Numeric solver . 12
1.1.5 Time & date . 12
1.1.6 Equation writer . 13
1.1.7 File manager . 13
1.1.8 Matrix writer . 13
1.1.9 Text editor . 13
1.1.10 Math menu . 13
1.1.11 CAS menu . 13

1.2 The MODE key . 14
1.3 The TOOL key . 14
1.4 The UNDO key (red-shift HIST) 14
1.5 The VAR key . 14
1.6 The EQW key . 15
1.7 The MTRW key (blue-shift EQW) 15
1.8 The SYMB key . 15
1.9 The MTH (blue-shift SYMB) key 15
1.10 The UNITS (red-shift 6) key 16

171

172 CONTENTS

1.11 The HIST key . 16
2 Data entry 17

2.1 The equation editor . 17
2.1.1 Entering the equation writer 17
2.1.2 How to select? . 17
2.1.3 How to modify an expression 21
2.1.4 How to enter AND, ∫ and ∑ 22
2.1.5 Cursor mode . 22
2.1.6 To view all . 22

2.2 The matrix writer . 23
2.3 The text editor . 23

2.3.1 BEGIN END . 23
2.3.2 COPY . 24
2.3.3 CUT . 24
2.3.4 PASTE . 24

2.4 Variables . 24
2.4.1 STO . 24
2.4.2 RCL . 25
2.4.3 PURGE . 25
2.4.4 Prede�ned variables . 26

2.5 Directories . 26
2.5.1 Creating a directory . 26
2.5.2 Working in a directory 27
2.5.3 Deleting, renaming, moving a directory 27

3 Plotting graphs 29
3.1 Plot windows . 29

3.1.1 Equation entry . 29
3.1.2 Plot window . 29
3.1.3 Graph display . 29
3.1.4 Plot setup . 30
3.1.5 Table setup . 30
3.1.6 Table display . 30

3.2 Plot setup . 30
3.2.1 Plot type . 30
3.2.2 The equation . 31
3.2.3 Independent variable and equation types 31

3.3 Drawing the plot . 32

CONTENTS 173
4 Symbolic calculations 33

4.1 Integers (and Gauss integers) 33
4.1.1 In�nite-precision integers 33
4.1.2 DEFINE . 33
4.1.3 GCD . 35
4.1.4 LGCD . 35
4.1.5 SIMP2 . 35
4.1.6 LCM . 36
4.1.7 FACTOR . 36
4.1.8 FACTORS . 36
4.1.9 DIVIS . 37
4.1.10 IQUOT . 37
4.1.11 IREMAINDER MOD . 37
4.1.12 IDIV2 . 37
4.1.13 ISPRIME? . 38
4.1.14 NEXTPRIME . 38
4.1.15 PREVPRIME . 38
4.1.16 IEGCD . 39
4.1.17 IABCUV . 39
4.1.18 ICHINREM . 39
4.1.19 PA2B2 . 40
4.1.20 EULER . 40

4.2 Rationals . 40
4.2.1 PROPFRAC . 41
4.2.2 FXND . 41
4.2.3 SIMP2 . 41

4.3 Reals . 42
4.4 Complex numbers . 42
4.5 Algebraic expressions . 43

4.5.1 FACTOR . 43
4.5.2 EXPAND EVAL . 43
4.5.3 SUBST . 43
4.5.4 PREVAL . 44

4.6 Functions . 44
4.6.1 DERVX . 44
4.6.2 DERIV . 45
4.6.3 INTVX . 45
4.6.4 LIMIT . 46
4.6.5 LIMIT and ∫ . 47
4.6.6 IBP . 48

174 CONTENTS

4.6.7 RISCH . 48
4.7 Trigonometric expressions . 48

4.7.1 TEXPAND . 48
4.7.2 TLIN . 49
4.7.3 TCOLLECT . 50
4.7.4 ACOS2S . 50
4.7.5 ASIN2C . 50
4.7.6 ASIN2T . 51
4.7.7 ATAN2S . 51
4.7.8 SINCOS . 51
4.7.9 TAN2SC . 52
4.7.10 TAN2SC2 . 52
4.7.11 HALFTAN . 52
4.7.12 TRIG . 53
4.7.13 TRIGSIN . 53
4.7.14 TRIGCOS . 54
4.7.15 TRIGTAN . 54
4.7.16 FOURIER . 54

4.8 Exponentials and Logarithms 55
4.8.1 EXPLN . 55
4.8.2 LIN . 55
4.8.3 LNCOLLECT . 56
4.8.4 TSIMP . 57

4.9 Polynomials . 57
4.9.1 GCD . 57
4.9.2 LGCD . 57
4.9.3 SIMP2 . 58
4.9.4 LCM . 58
4.9.5 FACTOR . 58
4.9.6 FACTORS . 59
4.9.7 DIVIS . 59
4.9.8 QUOT . 60
4.9.9 REMAINDER . 60
4.9.10 DIV2 . 60
4.9.11 EGCD . 60
4.9.12 ABCUV . 61
4.9.13 HORNER . 61
4.9.14 PTAYL . 61
4.9.15 ZEROS . 62
4.9.16 PROOT . 62

CONTENTS 175
4.9.17 FROOTS . 62
4.9.18 PCOEF . 63
4.9.19 FCOEF . 63
4.9.20 CHINREM . 63
4.9.21 TRUNC . 64
4.9.22 LAGRANGE . 64
4.9.23 LEGENDRE . 64
4.9.24 HERMITE . 65
4.9.25 TCHEBYCHEFF . 65
4.9.26 REORDER . 66

4.10 Rational fractions . 66
4.10.1 FXND . 66
4.10.2 SIMP2 . 66
4.10.3 PROPFRAC . 67
4.10.4 PARTFRAC . 67

4.11 Modular calculations . 68
4.11.1 MODSTO . 68
4.11.2 ADDTMOD . 68
4.11.3 SUBTMOD . 68
4.11.4 MULTMOD . 69
4.11.5 DIV2MOD . 69
4.11.6 DIVMOD . 69
4.11.7 POWMOD . 70
4.11.8 INVMOD . 70
4.11.9 GCDMOD . 70
4.11.10EXPANDMOD . 70
4.11.11FACTORMOD . 71
4.11.12RREFMOD . 71

4.12 Limited and asymptotic expansions 71
4.12.1 DIVPC . 71
4.12.2 TAYLOR0 . 72
4.12.3 TAYLR . 72
4.12.4 SERIES . 73
4.12.5 LIMIT . 75

4.13 Matrices . 75
4.13.1 TRAN . 75
4.13.2 TRN . 76
4.13.3 MAD . 76
4.13.4 HADAMARD . 77
4.13.5 AXM . 77

176 CONTENTS

4.13.6 AXL . 77
4.13.7 EGVL . 77
4.13.8 EGV . 78
4.13.9 PCAR . 78
4.13.10JORDAN . 78
4.13.11HILBERT . 79
4.13.12VANDERMONDE . 79
4.13.13LCXM . 80

4.14 Vectors . 80
4.15 Quadratic forms . 80

4.15.1 QXA . 80
4.15.2 AXQ . 80
4.15.3 GAUSS . 81
4.15.4 SYLVESTER . 81

4.16 Functions of multiple variables 82
4.16.1 DERIV . 82
4.16.2 LAPL . 82
4.16.3 HESS . 82
4.16.4 DIV . 83
4.16.5 CURL . 83

4.17 Equations . 83
4.17.1 EXLR . 83
4.17.2 SOLVEVX . 84
4.17.3 SOLVE . 84
4.17.4 ISOL . 85

4.18 Linear systems . 86
4.18.1 REF . 86
4.18.2 rref . 86
4.18.3 RREF . 87
4.18.4 LINSOLVE . 88

4.19 Di�erential equations . 89
4.19.1 LDEC . 89
4.19.2 DESOLVE and SUBST . 90
4.19.3 LAP ILAP . 91

4.20 Other functions . 92
4.20.1 EPSX0 . 92
4.20.2 LVAR . 93
4.20.3 LNAME . 93
4.20.4 XNUM . 93
4.20.5 XQ . 93

CONTENTS 177
4.21 New commands . 94

4.21.1 qr . 94
4.21.2 GRAMSCHMIDT . 94
4.21.3 SYST2MAT . 95
4.21.4 CHOLESKY . 95
4.21.5 DIAGMAP . 95
4.21.6 ISOM . 96
4.21.7 MKISOM . 96
4.21.8 KER . 98
4.21.9 IMAGE . 98
4.21.10IBASIS . 98
4.21.11BASIS . 98
4.21.12AUGMENT . 99
4.21.13CYCLOTOMIC . 99
4.21.14STURM . 99
4.21.15STURMAB . 100
4.21.16P2C . 100
4.21.17C2P . 100
4.21.18CIRC . 101
4.21.19FDISTRIB . 101
4.21.20DISTRIB . 101
4.21.21POWEXPAND . 102
4.21.22SIMPLIFY . 102
4.21.23EXP2POW . 102
4.21.24MSLV . 103
4.21.25PMINI . 103
4.21.26IBERNOULLI . 104
4.21.27GAMMA . 104
4.21.28PSI . 105
4.21.29Psi . 105
4.21.30RESULTANT . 105
4.21.31SEVAL . 106
4.21.32SIGMA . 106
4.21.33SIGMAVX . 107
4.21.34VER . 107
4.21.35TABVAR . 107
4.21.36SIGNTAB . 108
4.21.37TABVAL . 108
4.21.38PLOT . 108
4.21.39PLOTADD . 109

178 CONTENTS

4.21.40SCROLL . 109
4.21.41GROBADD . 109

5 Bac 99 and HP49G 111
5.1 Introduction . 111
5.2 Exercise 1 . 112
5.3 Exercise 2 (specialized) . 117
5.4 Exercise 2 (not specialized) . 121
5.5 Problem . 125
5.6 Conclusion . 132

6 Programming 133
6.1 Programming in algebraic mode 133

6.1.1 Entering a program . 133
6.1.2 Saving a program . 133
6.1.3 Editing a program . 133
6.1.4 Executing a program . 134
6.1.5 Modifying a program and saving it with another name . 134

6.2 Program comments . 134
6.3 Variables . 134

6.3.1 Variable names . 134
6.3.2 Local variables . 135
6.3.3 Parameters . 135

6.4 Data input . 136
6.4.1 Translation in algorithmic language 136
6.4.2 Translation for the HP49G in RPN mode 136
6.4.3 Translation for the HP49G in Algebraic mode 136

6.5 Data output . 136
6.5.1 Translation in algorithmic language 136
6.5.2 Translation for the HP49G in RPN mode 137
6.5.3 Translation for the HP49G in Algebraic mode 137

6.6 Sequence of instructions, or �block� 137
6.6.1 Translation in algorithmic language 137
6.6.2 Translation for the HP49G in RPN mode 137
6.6.3 Translation for the HP49G int algebraic mode 137

6.7 Store instruction . 138
6.7.1 Translation in Algorithmic language 138
6.7.2 Translation for the HP49G in RPN mode 138
6.7.3 Translation for the HP49G in Algebraic mode 138

6.8 Conditional branch instructions 138

CONTENTS 179
6.8.1 Translation in algorithmic language 138
6.8.2 Translation for the HP49G in RPN mode 138
6.8.3 Translation for the HP49G in Algebraic mode 139

6.9 �For� loops . 139
6.9.1 Translation in algorithmic language 139
6.9.2 Translation for the HP49G in RPN mode 139
6.9.3 Translation for the HP49G in Algebraic mode 139

6.10 �While� loops . 139
6.10.1 Translation in algorithmic language 139
6.10.2 Translation for the HP49G in RPN mode 139
6.10.3 Translation for the HP49G in Algebraic mode 139

6.11 Boolean (or conditional) expressions 140
6.11.1 Translation in algorithmic language 140
6.11.2 Translation for the HP49G in RPN mode 140
6.11.3 Translation for the HP49G in Algebraic mode 140

6.12 Logical operators . 140
6.12.1 Translation in algorithmic language 140
6.12.2 Translation for the HP49G in RPN mode 140
6.12.3 Translation for the HP49G in Algebraic mode 140

6.13 Functions . 140
6.13.1 Translation in algorithmic language 141
6.13.2 Translation for the HP49G in RPN mode 141
6.13.3 Translation for the HP49G in Algebraic mode 141

6.14 Lists . 142
6.14.1 Translation in algorithmic language 142
6.14.2 Translation for the HP49G in RPN mode 142
6.14.3 Translation for the HP49G in algebraic mode 142

6.15 Example: The sieve of Erastothenes 143
6.15.1 Description . 143
6.15.2 Algorithmic language 143
6.15.3 HP49G, RPN mode . 144
6.15.4 HP49G, Algebraic mode 145

7 Arithmetic programs 147
7.1 Calculating the GCD using the Euclide's algorithm 147

7.1.1 Algorithmic language 147
7.1.2 HP49G, RPN mode . 148
7.1.3 HP49G, Algebraic mode 149

7.2 Bézout identity using the Euclide's algorithm 150
7.2.1 Iterative implementation without lists 150

180 CONTENTS

7.2.2 Iterative implementation with lists 151
7.2.3 Recursive version with lists 151
7.2.4 HP49G, RPN mode . 152
7.2.5 HP49G, Algebraic mode 153

7.3 Factorization . 154
7.3.1 Algorithms and their translations 154
7.3.2 HP49G, RPN mode . 156
7.3.3 HP49G, algebraic mode 157

7.4 Calculation of AP mod N . 158
7.4.1 Algorithmic language 158
7.4.2 HP49G, RPN mode . 160
7.4.3 HP49G, Algebraic mode 160

7.5 The function �isprime� . 161
7.5.1 Algorithmic language 161
7.5.2 HP49G, RPN mode . 163
7.5.3 HP49G. Algebraic mode 164

7.6 Rabin's probabilistic method 165
7.6.1 Algorithmic language 165
7.6.2 HP49G, RPN mode . 166
7.6.3 HP49G, Algebraic mode 166

	Introduction
	Turning on the calculator
	What am I looking at?

	Calculator modes
	Notation
	Flags
	Important keys
	The APPS key
	Plot functions
	I/O functions
	Constants library
	Numeric solver
	Time & date
	Equation writer
	File manager
	Matrix writer
	Text editor
	Math menu
	CAS menu

	The MODE key
	The TOOL key
	The UNDO key (red-shift HIST)
	The VAR key
	The EQW key
	The MTRW key (blue-shift EQW)
	The SYMB key
	The MTH (blue-shift SYMB) key
	The UNITS (red-shift 6) key
	The HIST key

	Data entry
	The equation editor
	Entering the equation writer
	How to select?
	How to modify an expression
	How to enter AND, and
	Cursor mode
	To view all

	The matrix writer
	The text editor
	BEGIN END
	COPY
	CUT
	PASTE

	Variables
	STO
	RCL
	PURGE
	Predefined variables

	Directories
	Creating a directory
	Working in a directory
	Deleting, renaming, moving a directory

	Plotting graphs
	Plot windows
	Equation entry
	Plot window
	Graph display
	Plot setup
	Table setup
	Table display

	Plot setup
	Plot type
	The equation
	Independent variable and equation types

	Drawing the plot

	Symbolic calculations
	Integers (and Gauss integers)
	Infinite-precision integers
	DEFINE
	GCD
	LGCD
	SIMP2
	LCM
	FACTOR
	FACTORS
	DIVIS
	IQUOT
	IREMAINDER MOD
	IDIV2
	ISPRIME?
	NEXTPRIME
	PREVPRIME
	IEGCD
	IABCUV
	ICHINREM
	PA2B2
	EULER

	Rationals
	PROPFRAC
	FXND
	SIMP2

	Reals
	Complex numbers
	Algebraic expressions
	FACTOR
	EXPAND EVAL
	SUBST
	PREVAL

	Functions
	DERVX
	DERIV
	INTVX
	LIMIT
	LIMIT and
	IBP
	RISCH

	Trigonometric expressions
	TEXPAND
	TLIN
	TCOLLECT
	ACOS2S
	ASIN2C
	ASIN2T
	ATAN2S
	SINCOS
	TAN2SC
	TAN2SC2
	HALFTAN
	TRIG
	TRIGSIN
	TRIGCOS
	TRIGTAN
	FOURIER

	Exponentials and Logarithms
	EXPLN
	LIN
	LNCOLLECT
	TSIMP

	Polynomials
	GCD
	LGCD
	SIMP2
	LCM
	FACTOR
	FACTORS
	DIVIS
	QUOT
	REMAINDER
	DIV2
	EGCD
	ABCUV
	HORNER
	PTAYL
	ZEROS
	PROOT
	FROOTS
	PCOEF
	FCOEF
	CHINREM
	TRUNC
	LAGRANGE
	LEGENDRE
	HERMITE
	TCHEBYCHEFF
	REORDER

	Rational fractions
	FXND
	SIMP2
	PROPFRAC
	PARTFRAC

	Modular calculations
	MODSTO
	ADDTMOD
	SUBTMOD
	MULTMOD
	DIV2MOD
	DIVMOD
	POWMOD
	INVMOD
	GCDMOD
	EXPANDMOD
	FACTORMOD
	RREFMOD

	Limited and asymptotic expansions
	DIVPC
	TAYLOR0
	TAYLR
	SERIES
	LIMIT

	Matrices
	TRAN
	TRN
	MAD
	HADAMARD
	AXM
	AXL
	EGVL
	EGV
	PCAR
	JORDAN
	HILBERT
	VANDERMONDE
	LCXM

	Vectors
	Quadratic forms
	QXA
	AXQ
	GAUSS
	SYLVESTER

	Functions of multiple variables
	DERIV
	LAPL
	HESS
	DIV
	CURL

	Equations
	EXLR
	SOLVEVX
	SOLVE
	ISOL

	Linear systems
	REF
	rref
	RREF
	LINSOLVE

	Differential equations
	LDEC
	DESOLVE and SUBST
	LAP ILAP

	Other functions
	EPSX0
	LVAR
	LNAME
	XNUM
	XQ

	New commands
	qr
	GRAMSCHMIDT
	SYST2MAT
	CHOLESKY
	DIAGMAP
	ISOM
	MKISOM
	KER
	IMAGE
	IBASIS
	BASIS
	AUGMENT
	CYCLOTOMIC
	STURM
	STURMAB
	P2C
	C2P
	CIRC
	FDISTRIB
	DISTRIB
	POWEXPAND
	SIMPLIFY
	EXP2POW
	MSLV
	PMINI
	IBERNOULLI
	GAMMA
	PSI
	Psi
	RESULTANT
	SEVAL
	SIGMA
	SIGMAVX
	VER
	TABVAR
	SIGNTAB
	TABVAL
	PLOT
	PLOTADD
	SCROLL
	GROBADD

	Bac 99 and HP49G
	Introduction
	Exercise 1
	Exercise 2 (specialized)
	Exercise 2 (not specialized)
	Problem
	Conclusion

	Programming
	Programming in algebraic mode
	Entering a program
	Saving a program
	Editing a program
	Executing a program
	Modifying a program and saving it with another name

	Program comments
	Variables
	Variable names
	Local variables
	Parameters

	Data input
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Data output
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Sequence of instructions, or ``block''
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G int algebraic mode

	Store instruction
	Translation in Algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Conditional branch instructions
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	``For'' loops
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	``While'' loops
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Boolean (or conditional) expressions
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Logical operators
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Functions
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in Algebraic mode

	Lists
	Translation in algorithmic language
	Translation for the HP49G in RPN mode
	Translation for the HP49G in algebraic mode

	Example: The sieve of Erastothenes
	Description
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

	Arithmetic programs
	Calculating the GCD using the Euclide's algorithm
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

	Bézout identity using the Euclide's algorithm
	Iterative implementation without lists
	Iterative implementation with lists
	Recursive version with lists
	HP49G, RPN mode
	HP49G, Algebraic mode

	Factorization
	Algorithms and their translations
	HP49G, RPN mode
	HP49G, algebraic mode

	Calculation of AP mod N
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

	The function ``isprime''
	Algorithmic language
	HP49G, RPN mode
	HP49G. Algebraic mode

	Rabin's probabilistic method
	Algorithmic language
	HP49G, RPN mode
	HP49G, Algebraic mode

