Sudoku Solver v1.1

This program solves sudoku puzzles. It will solve even the hardest puzzles in less than 3 seconds on my HP 50g. The program is written in UserRPL, C, and C++.

Installation

Copy Sdoku.hp to your calculator and STO it in any convenient name. I use SDOKU.

Usage

Change to the SDOKU directory. To enter a new puzzle, press the CREAT soft key. This brings up the array editor for a 9x9 array. Enter the puzzle into the array. For squares whose value is unknown, enter 0.

To solve the puzzle, put its 9x9 array on stack level 1 and press the SLV soft key. The puzzle will be replaced with a new 9x9 array containing the solution.

The program includes three puzzles as demonstrations. Press EASY, HARD or KILLR to recall one of the puzzles. Then press SLV to solve it. The KILLR puzzle contains just 17 clues – the fewest clues known for a puzzle with one solution.

Saving Space

You can save about 29k of space by offloading the C++ program to flash memory or an SD card. The C++ program is in “Sudoku” program in the “Data” directory. Copy this program to port 2 or 3 and replace it with a program that recalls Sudoku from the port and evaluates it.

Implementation

The heart of the solver is the Sudoku program in the Data subdirectory which is written C and C++ using HPGCC 2.0. I adapted it from a Windows based solver that I wrote. Source code is included.

The Sudoku program reads a puzzle from Level 1 on the stack. The puzzle can be an 81 character string or a 9x9 matrix. The program attempts to solve the puzzle and returns a string on Level 2 and a number of Level 1 as follows:

	Level 2
	Level 1
	Description

	Solved puzzle
	1
	The puzzle was solved successfully

	Unsolved puzzle
	2
	The puzzle could not be solved. This usually means that the puzzle was invalid

	Error string
	0
	Some problem occurred. Level 2 explains the problem

WARNING: DATA/Sudoku does little error checking of its arguments. If you execute it by hand with anything except an 81 character string or a 9x9 matrix on stack Level 1, the results may be unpredictable, including hanging your calculator. Should this happen, stick a paper clip in the reset switch (small hole located on the back of the calculator).

In addition to the main Sudoku program, the DATA directory contains 2 helper programs. A2S converts a 9x9 matrix to a string and S2A converts a string to a 9x9 matrix.

The SLV program is a small wrapper than puts it all together. It calls DATA/Sudoku and prints an error message if there was a problem.
This version is much faster than my previous version because all of the error checking has moved into the C code. On my HP50g, the SLV command solves the “killer” puzzle in 0.1 seconds.

Source Code

C/C++ source code for DATA/Sudoku is included and may make interesting reading for someone who wants to see how to program in C++.

Files

Square.cpp, Square.h, Bitmap.cpp, Bitmap.h, Board.cpp, and Board.h contain the code and declarations for the Bitmap, Square and Board classes. See the next section for details.

Main.c is the main program, written in C so it can access the hpgcc stack routines.

Glue.cpp connects the main program to the C++ code via the solve_sudoku() function. The file also contains the necessary definitions for the C++ “new” and “delete” operators.

Makefile is the unix-like file that describes how to compile the C++ program into an ARM executable (sudoku.hp). At the top of the file is the HPGCC_PATH macro that points to the hpgcc directory. If you want to compile the code you’ll need to change this to point where you installed hpgcc.

Sdoku.hpe is the HPUserEdit file with the UserRPL source code. This file contains a stub program in DATA/Sudoku that must be replaced with the C/C++ program to work.

Classes

There are three main classes in the solver: Board, Square and Bitmap.

Class Board represents the 9x9 sudoku board. It includes a 9x9 array of Squares (described next). Class Board also implements the various algorithms used to solve the puzzle, and the solve() method that calls each of them. Class Board is implemented in Board.h and Board.cpp

The Square class represents a single square within the board. It contains an integer “knownValue” member that contains the value (if known) or zero. It also contains a set of possible values that can go in the square in the “possibilities” member.

The Bitmap class is a set of bits representing the numbers from 1 to 9 and is used to implement the “possibilities” member of class Square. Bitmap is really just a wrapper around the existing bit operators within C++. The count() method is particularly interesting and uses an algorithm I saw in school many years ago.

Libraries

In addition to the libraries that come with the compiler, this version uses my HPObjects library, to manipulate HP matrixes and strings. The library lets you manipulate all calculator objects with a consistent interface. It is entirely responsible for the speedup of this version.
Algorithms

Refer to http://www.palmsudoku.com/pages/techniques-overview.php for a good explanation of sudoku solving techniques. Of the techniques described on the website, the program uses the following:

Single Position. This is implemented by the Board::scan() method.

Single Candidate. This is implemented by the Board::reduce() method.

Candidate Lines. This is implemented by the Board::pointers() method. Note that you can also turn candidate lines inside out (“candidate boxes?”). For example, given a row, suppose that the only possible locations for the value 5 are in the first 3 squares of the row. Then the value 5 must appear in one of those squares. Now consider the 3x3 box that those 3 squares are in. If 5 must appear in one of the three squares mentioned, then it can’t appear anywhere else within the box. The program implements this algorithm too.

Naked Pairs and Triples. There is code in the source files that extends this to “naked tuples” but I’ve commented it out because it uses the qsort() function that comes with the standard C library but isn’t part of hpgcc. The naked tuples has been tested and works in the windows version of the code.

Hidden Pairs/Triples. Actually, the code is generic enough to find hidden tuples of any size.

Brute force. This isn’t listed in the website. If the program can’t find a solution using repeated applications of the algorithms above, then it does the following:

1. Count the number of candidates for each square. Select a square with the minimum number of candidates.

2. For each candidate in the square, assume that the square contains the candidate value and try to solve the puzzle again. This will result in either a solution, in which case we’re done, or an inconsistent board, in which case we try one of the other candidates.

