SymbToolz v1.1 by Steen S. Schmidt

March 15, 2000

Contents:

1. Disclaimer & Copyright

2. Credits

3. Requirements & Installation

4. SymbToolz

 4.1 Solvers

 4.1.1 SOLVE2

 4.1.2 CSOLVE

 4.1.3 NSOLVE

 4.1.4 IDNSOLVE

 4.1.5 EXPRSOLVE

 4.2 Utilities

 4.2.1 RAT?

 4.2.2 A(P

 4.2.3 P(A

 4.2.4 SPLIT

 4.2.5 DREM

 4.2.6 ONEDL

 4.2.7 SPOS

 4.2.8 (VX

5. Solving Equations

6. Revision History

1. Disclaimer & Copyright
This library is freeware, so no registration or licensing fee is necessary. You are free to distribute this library to anyone, as long as this document is included.

I can not take responsibility for any damage or data loss caused by any programs in this library – it is written in 100% SysRPL and there could be bugs in it. This also means that it will not run on the HP48 series.

If you have any suggestions/questions or find any bugs in the code, you’re welcome to contact me per email at SSchmidt@vip.cybercity.dk.

2. Credits

The library is coded and compiled directly on the HP49G with ROMs 1.17.7 & 1.17.9. A thanks goes to the ACO for making this great machine – the software and support is outstanding.

I’ve found great inspiration on the newsgroup comp.sys.hp48 – so a big thanks to the posters there.

Last but not least Eduardo M. Kalinowski should be applauded for his great effort in making the SysRPL documentation for the HP48, which has been a great help in developing SysRPL code for the HP49G too.

A special thanks goes to Mr. Bernard Parisse, now working on the development of the HP49G’s CAS in his spare time.

3. Requirements & Installation
You need to copy the library (library #1123) to the calculator and store it in a port (any port should do). To store it in port 2 for example, you will need to recall the library to the stack, type 2 and STO. Running BYTES on the library on the stack should yield # 1E80h and 8560.5 bytes.

The program is developed on beta ROM v1.17.7 and v1.17.9, so I can’t guarantee correct execution on earlier ROMs. I don’t think it’s a major concern though.

This document is describing the use of SymbToolz in RPN mode, but Algebraic mode shouldn’t hinder the solvers from working. I use the terms “equation” and “expression” loosely, since the HP49G understand expressions per default equal to zero.

4. SymbToolz
SymbToolz is a small software package for the HP49G that’s intended to enhance the calculator’s solving capabilities a bit. Some of these functions might be included in the future on the machine itself, but as of the release date they wasn’t.

I don’t make any promises as to the integrity of the solvers herein – I have tested them thoroughly and have fixed several bugs and added many features along the way. There is no guarantee whatsoever that the solutions provided by this library are correct, unique or fulfilling, but I go a long way (and use up a lot of CPU time) to check that the results are at least correct with very little uncertainty.

A goal was to make these commands flag independent – meaning that for solving absolute values, the program automatically assures rigorous mode, CSOLVE assures complex mode, NSOLVE numeric mode and so on. Initial flags are of course restored.

An exception is SOLVE2, which solves accordingly to numeric/exact flags. This means that if exact mode is selected, SOLVE2 will try to find symbolic solutions (but will return numerical solutions nonetheless, if a symbolic form can’t be found!), and if numeric mode is selected, numerical solutions will be returned for sure.

Use numerical mode to find numerical solutions only for sets of equations. This is often a bit faster. SOLVE2 will generally solve for real solutions, but occasionally it’s forced to change into complex mode (transparent to the user), and will then deliver complex solutions.

I’ve decided to make a couple of the internally used tools/utilities available to the user, since they might be of use.

4.1 Solvers
These are the main commands of the library. A more thorough explanation of the different techniques in solving equations is given in section 5. I will give a short description of each command along with stack syntax:

4.1.1 SOLVE2
Solve Command:

This command has two main functionalities; It can solve inequalities and sets of non-linear equations.

Level 2
Level 1
(
Level 1

symbolic
global name
(
{ solutions }

{ symbolics1…n }
global name
(
{ { solutions }1…n }

{ symbolics1…n }
{ global names1…n }
(
{ { solutions }1…n }

[symbolics1…n]
[global names1…m]
(
{ [solutions]1…? }

The [] delimiters denotes a dependent set of equations while { } delimiters means that parallel list processing is used. In the first case ‘symbolic’ will be solved for ‘global name’, in case two all n ‘symbolics’ will be solved for ‘global name’ one at a time, and in the third case, each ‘symbolic’ will be solved for the corresponding ‘global name’.

‘symbolic’ in the first three cases can be inequalities, and absolute functions can be used. When dealing with absolute functions, only “complete” absolute functions are legal, i.e. abs(x+2)=abs(x+5) is legal, but 2*abs(x-2)=3 isn’t (the factor of 2 is outside the abs-function, hence the “incompleteness”). The latter should be written as abs(2*(x-2))=3.

When solving dependent sets of equations, inequalities aren’t legal (they won’t solve correctly). In independent sets of equations, there are no restrictions on n and m.

If a solution doesn’t exist, an empty list will be returned. SOLVE2 will call NSOLVE if necessary, but not any of the other solvers.

Some examples:

[image: image1.png] ([image: image2.png]
[image: image3.png] (
[image: image4.png] ([image: image5.png] (Last picture is after 4 FIX LIST()
[image: image6.png] ([image: image7.png] ([image: image8.png] (Last picture is after 4 FIX LIST()
[image: image9.png] ([image: image10.png] (This demonstrates n(m)
[image: image11.png] ([image: image12.png] ([image: image13.png] (Last picture is after LIST()
4.1.2 CSOLVE
Solve Complex Command:

This command will solve complex equations. The HP49G can do this extensively (when in complex mode), but it comes to grief when the equations contain things like CONJ, RE or IM.

CSOLVE takes care of this.

Level 2
Level 1
(
Level 1

symbolic
global name
(
{ [solutions]1…? }

[symbolics1…n]
[global names1…m]
(
{ [solutions]1…? }

As with SOLVE2, there’s no limitation on n and m. CSOLVE uses a special method to solve these equations – a method that can make complex systems very cumbersome to solve. It should be pretty good at single equations though.

Some examples:

[image: image14.png] ([image: image15.png]
[image: image16.png] ([image: image17.png] (A little stretching ;-)
4.1.3 NSOLVE
Solve Numerical Command:

This is used to solve equations numerically independent of mode, and it will find a maximum of 10 real solutions. If the solver finds traces of more roots, but is unable to find them (or finds 10 solutions without exhausting the equation), a warning is displayed. It will also try to judge if a set of solutions is evidence of a periodic function.

Level 2
Level 1
(
Level 1

symbolic
global name
(
{ solutions1…? }

Some examples:

[image: image18.png] ([image: image19.png] ([image: image20.png] ([image: image21.png]
[image: image78.png][image: image22.png] ([image: image23.png] ([image: image24.png]
4.1.4 IDNSOLVE
Solve Identity Command:

This is used for solving identities. Solving an identity is like when you for example solve the coefficients of a polynomial by knowing an equation; i.e. you know ‘2*X^2-3=0’ and want to solve ‘A*X^2+B*X+C=0’ for A, B and C. It is easily seen that the solution is A=2, B=0 and C=-3. Normally computers won’t solve these, because there is only one equation but three unknowns – IDNSOLVE will.

Level 2
Level 1
(
Level 1

[symbolicknown symbolicmatch]
[global names1…n+1]
(
{ solutions1…? }

The vector of global names must contain as the first element a dependent variable of the equations. If there is more than one dependent variable (like in the circle example below), then just choose one of them. Furthermore it has to include all the variables to solve for.

Some examples:

[image: image25.png] ([image: image26.png]
[image: image27.png] (
[image: image28.png] (The solution can be symbolic)

[image: image29.png] ([image: image30.png] (C is omitted because it doesn’t exist in the equations)
[image: image79.png][image: image31.png] ([image: image32.png] ([image: image33.png]
4.1.5 EXPRSOLVE
Solve for Expression Command:

This solver solves an equation for an entire expression, instead of just for a single variable. The expression you solve for needs to be in that exact form in the equation. ‘2=4*X’ ‘2*X’ won’t give any solution, whereas ‘2=2*2*X’ ‘2*X’ will give ‘2*X=1’ as solution.

 Level 2
Level 1
(
Level 1

symbolicequation
symbolicexpression
(
{ solutions1…? }

Some examples:

[image: image34.png] ([image: image35.png]
[image: image36.png] ([image: image37.png]
4.2 Utilities
These small programs started out as subroutines used by the solvers, but I thought them useful enough for other people to let them be accessible through their own commands.

4.2.1 RAT?
Rational Expression Command:
This tests if an expression is rational in a variable or not. Possible output is numeric 1 or 0 (True or False).

Level 2
Level 1
(
Level 1

symbolic
global name
(
0. or 1.

number
global name
(
1.

An example:

[image: image38.png] ([image: image39.png]
4.2.2 A(P
Algebraic to Polynomial Coefficient Vector Command:
Converts an algebraic polynomial into its vector of coefficients representation.

Level 2
Level 1
(
Level 1

symbolic
global name
(
[coefficients]

numberx
global name
(
[numberx]

Some examples:

[image: image40.png] ([image: image41.png]
[image: image42.png] ([image: image43.png]
4.2.3 P(A
Polynomial Coefficient Vector to Algebraic Command:
Converts a vector of coefficients into an algebraic polynomial.

Level 2
Level 1
(
Level 1

[coefficients]
global name
(
symbolicpolynomial

Some examples:

[image: image44.png] ([image: image45.png]
[image: image46.png] ([image: image47.png]
4.2.4 SPLIT
Split Expression Command:
This will split an expression into its terms or its factors, depending of input.

Level 2
Level 1
(
Level 1

symbolic
0
(
{ terms }

symbolic
1
(
{ factors }

If a 0 is given in level 1, the expression will be split into its terms ((LIST will return the original expression). The number 1 in level 1 will split the expression into its factors ((LIST will return the original expression) – the numerator will be pulled down from fractions, leaving ‘1/denominator’. See below. The number in level 1 can be either floating point or integer.

Some examples:

[image: image48.png] ([image: image49.png]
[image: image50.png] ([image: image51.png]
4.2.5 DREM
Remove Doublets from List Command:
Will remove all but the first occurrence of identical objects in a list.

Level 1
(
Level 1

{ }
(
{ }

The list can contain all types of objects, and can have any length (including zero length).

An example:

[image: image52.png] ([image: image53.png]
4.2.6 ONEDL
Alternative DOLIST Command:

This is a command that in many ways behaves like the built-in DOLIST. It’s different in a couple of aspects though, and 10-70% faster, depending on application. It’s limited to one list of arguments (DOLIST will take n lists and the number n as arguments), and will return an empty list if the argument program removes all arguments during execution (DOLIST is a bit inconsistent here, leaving no output in this case). It won’t accept command names as arguments like DOLIST will – only programs.

Level 2
Level 1
(
Level 1

{ argumentsn }
<< program >>
(
{ 1…? }

ONEDL will execute << program >> on every element of the list in level 2 – n can be 0. The size of the output list depends on the number of arguments that << program >> returns.

Some examples:

[image: image54.png] ([image: image55.png]
[image: image56.png] ([image: image57.png]
4.2.7 SPOS
Sequence Position Command:
Works like the built-in POS command, except that it takes a list of arguments (a sequence) to match.

Level 2
Level 1
(
Level 1

{ elements }
{ sequence }
(
{ occurrences }

A new “occurrence” of a sequence is not allowed to start within another sequence – see the first example below. The elements of the lists can be any type. The output will be a list of reals (or an empty list for no matches).

To have the functionality of an “NPOS” command, use a sequence of one element, like in example two.

Some examples:

[image: image58.png] ([image: image59.png]
[image: image60.png] (
[image: image61.png]
4.2.8 (VX
Set VX Command:

Sets VX to the given global name. In essence, this will just move to HOME, store a new variable in ‘VX’, and move back to the directory from where it was called.

Level 1
(
Level 1

global name
(

5. Solving Equations
Solving equations is seldom easy and straightforward. Many types of equations exist – the easiest types to solve are probably low degree polynomials and most ordinary rational expressions. Many equations haven’t got a symbolic solution and therefore needs to be solved numerically. This has been a problem in all times (at least when programming solvers);

Numerical solvers are iterative tools, which start at a certain point (where should that be?) and searches along the real axis after changes in sign or other extreme behavior. What if your starting point yields a complex solution? In which direction do you search? What signs do you look for to determine where to narrow your search? (Can that be between two complex function values?). How do you determine if an equation has more solutions? (When do you give up searching?).

The biggest part of making this library was definently the numerical solver – I use a special complex analysis to determine how to proceed, and it actually works pretty well. In comparison with for example the TI92+, which has a pretty good numerical solver, NSOLVE often finds more solutions, and in the cases where they both find all solutions, NSOLVE is generally faster (not always though).

The HP49G offers many ways to solve equations and sets of equations. The key point is to realize what tool you need to utilize – maybe you need to rewrite an equation or you may need to solve it graphically.

There are a couple of well-known ways to solve equations on the HP49G. Here I’ll mention a few of them, and the equivalent way of solving the problem with the commands provided by SymbToolz;

Graphical solving in the picture environment:
The graphical environment is a good place to solve equations numerically. You have a good visual overview of the functions, and have access to root and intersection finding commands. These are some examples of what you could use the picture environment for.

[image: image80.png]It won’t do you any good to use the built-in SOLVE here, since it will only solve rational expressions. That means that normally you’d solve this graphically.

[image: image81.png][image: image82.png]In the graphic environment you can zoom and find roots and intersections between equations. It’s a good tool, since you often learn a lot about the nature of the equations you’re working with. Actually I’d say that in all cases where you can’t clearly imagine the function inside your head, it’s a good idea to graph it – regardless of any solver’s ability to solve the equation.

With SymbToolz:

[image: image62.png] ([image: image63.png] ([image: image64.png] (Last picture is after LIST()
Another example is inequalities. The HP49G doesn’t support these yet, they need to be solved graphically (remember Rigorous mode ON):

[image: image65.png] ([image: image66.png] ([image: image67.png] ([image: image68.png] (
[image: image69.png]
A pretty straightforward example. Plot the two expressions separately and find the intersections. Then it’s just to judge the solution interval. Here it’s fairly easy seen (remembering (), as in between the found intersections.

With SymbToolz:

[image: image70.png] ([image: image71.png] ([image: image72.png] (Last picture is the result scrolled)
[image: image83.png][image: image84.png]Here you’d actually run the risk of thinking that the functions didn’t intersect at all, and then the solution would be all x.

Zoom and you’ll see that this is clearly not the case.

SymbToolz again makes life easier:

[image: image73.png] ([image: image74.png] ([image: image75.png] (Last picture is after 6 FIX LIST()
Numerical solving w/ ROOT:
The built-in ROOT command (the stack based one) can be of some use occasionally. The drawbacks are many;

· You need to provide an initial guess – if you can’t visualize the functions/equation inside your head, you’ll provide the initial guess in the dark.

· You probably have little or no idea of when the equation have no more solutions – using ROOT on an equation with no solutions can result in a very long response time. It can be minutes before the algorithm gives up.

· ROOT will store the found value in a variable in the current directory – you may need to purge this later on.

· You have no certainty in the achieved solution – you’ll have to check manually by substitution.

On the other hand ROOT can be very handy if you know the approximate position of a root. It’ll save you a lot of work with starting up the grapher/picture environment, and probably the purging of system variables like ZPAR, PPAR and EQ.

Manual solving sets of equations:

The two ways to solve equations above only works if the solution doesn’t yield a symbolic result. If a symbolic result is needed, and SOLVE won’t do the job, there’s currently no way of doing it. Not even SymbToolz will be of much help. The symbolic solution(s) to a single non-rational equation, where the variable can’t be isolated algebraically, is only found by very specific algorithms. These algorithms will probably never be implemented in a calculator, but is the domain of much more advanced math tools on a desktop computer.

The built-in SOLVE won’t solve systems of non-rational equations. This means that when given such problems, you’d have to solve them manually.

[image: image85.png]
This problem needs to be solved manually with SOLVE and SUBST;

[image: image86.png]
With SymbToolz:

[image: image76.png] ([image: image77.png]
A bit easier I’d say…

6. Revision History
v1.0:
Initial public release.

v1.1:
Fixed parallel processing bug (not restoring modes to default between iterations).

Fixed a bug where rigorous mode could be wrongly disabled in certain conditions.

Added system flag -20 & -21 handling.

Added an extra error handler on multi-eqs/no solution return stack.

 (There are actually no more solutions,

 just a suspicious looking extremum)

 (Last picture is after LIST(.

 A 2 variable circle equation.

The second solution is

actually correct :-)

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ��� (� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� (� (� EMBED Word.Picture.8 ���

� (� (� (�

�

� EMBED Word.Picture.8 ��� (� (� (� (

� (� (� (� (

�

5
2

[image: image87.png][image: image88.png][image: image89.png][image: image90.png][image: image91.png][image: image92.png][image: image93.png][image: image94.png][image: image95.png][image: image96.png][image: image97.png][image: image98.png]_1012939513.doc
[image: image1.png]

_1013963474.doc
[image: image1.png]

_1014398819.doc
[image: image1.png]

_1014406384.doc
[image: image1.png]

_1013540474.doc
[image: image1.png]

_1012940357.doc
[image: image1.png]

_1012939500.doc
[image: image1.png]

_1012939506.doc
[image: image1.png]

_1012939492.doc
[image: image1.png]

