What is HP Object?

HP Object is an HPGCC 2.0 library for creating, decoding and manipulating HP calculator objects from within C code. To varying degrees, HPObject supports all 31 HP object types. You can create objects, put objects into compound objects, iterate through compound objects, push and pop objects on the stack, etc.
Features
· Support for all 31 object types in a single consistent library.
· Full source code included.

· Proper handling for direct and indirect pointers in lists, secondaries, etc.

· Consistent function names and parameters across all object types.
· SatAddr typedef used for all parameters and return values that are Saturn addresses

· Clear distinction between nibbles and bytes.
HPObjects also supports HPGCC version 1.1 and the HP48gii calculator. I actually did most of the testing using that version. It takes a little work to get HPGCC to work with the 48gii. Contact me directly for details or see my posts on comp.sys.hp48 usenet group.

Installation and Use

Unpack hpobjects.zip to a directory. Copy libhpo.a to your HPGCC lib directory and hpobjects.h to your include directory. I put them right with the other libraries:

copy libhpo.a %HPGCC%\lib

copy hpobjects.h %HPGCC%\include

To use the library, just add:

#include “hpobjects.h”

to your source files. Then add “-lhpo” to the LD_FLAGS of your makefile.

See the examples directory for exact details.

The rest of this file contains an overview of the functions available. See the comments in hpobjects.h for details on each function.
Object Types
HPObjects supports the following object types:
· ACPTR
Extended pointer

· ARRAY
HP48-style array

· BACKUP
Backup object

· BINT
System binary integer

· CHAR
ASCII character
· CMP
Complex

· CODE
Assembly code object
· COL
RPL program (aka secondary)

· DIR
Directory object

· ECMP
Extended complex number (15 digits)

· EREAL
Extended real (15 digits)

· FLASHP
Flash pointer

· FONT
Font

· GROB
Graphic object

· HXS
Hex string

· IDNT
Global Identifier

· LAM
Local identifier

· LIB
Library

· LIBDATA
Library data
· LIST
List

· LNGCOMP
infinite-precision complex number

· LNGREAL
Infinite-precision real number

· LNKARRY
Linked array

· MATRIX
Matrix

· MINIFONT
Minifont

· REAL
Real number (12 digits)

· STRING
String

· SYMB
Symbolic expression

· TAG
Tagged Object

· UNIT
Object with Units

· XLIB
Reference to a library command

· ZINT
Infinite precision integer

Conventions

SatAddr

All parameters and return values that represent a Saturn address are passed using the SatAddr typedef contained in hpobjects.h:

typedef unsigned int SatAddr;

/* saturn address */

Naming Conventions

Functions that work with each type always contain the name of the type. For example, isLIST() determines whether an object is a list. XLIBdecode() decodes an XLIB object into it’s components.
Common Functions

Some types of functions are common among all object type. In these cases the functions have similar names and meanings. In the descriptions below, you can replace “TYPE” with the type of an object to get an actual function name.

bool isTYPE(SatAddr src)

Returns true if the object at src is of the given type.
bool TYPEdecode(SatAddr src, …);
Decodes the HP object into useable components. For example: decodeREAL(SatAddr src, double *d) decodes the REAL at “src” into the C double d. Returns false if the object at “src” is the wrong type or if it can’t be decoded for some other reason.
Note that with TYPEdecode() and TYPEencode, described below, the data always moves from left to right. Remembering this will help you remember the parameters.
SatAddr TYPEencode(arg1, arg2, … SatAddr dst);
The opposite of TYPEdecode, this encodes the components into an HP object at dst. If “dst” is zero then space is allocated in tempOb for the object. In either case, the address of the object is returned.
SatAddr makeTYPE(args);

Create a TYPE object in tempOb.
int TYPEnibbles(SatAddr src)

Return the size in nibbles of the TYPE object at src, or -1 if the object is the wrong type.

Functions that work with any object

A few functions work with any object. These all contain “ob” in their name.

bool isOb(SatAddr src)

Returns true if src appears to point to a valid HP object.
int obNibbles(SatAddr src);

Return the size in nibbles of the object at src. If src is a pointer to an object, then returns the size of the pointer (5 nibbles).
SatAddr skipOb(SatAddr src);

C version of the RPL skipOb function. This returns the address immediately after the object at src, or, if src is a pointer to an object, the address immediately after the pointer.
bool obCopy(SatAddr src, SatAddr dst)

Copies the object at src to dst, but only if dst already contains an object of the same size.
Using the Stack

Manipulating objects is nice, but how to you push and pop things on the stack? Since the stack just contains the addresses of objects, stack operations are almost trivial:
int STACKdepth()

Return the depth of the stack. This is a faster replacement for sat_stack_depth().
SatAddr STACKpop()

Pop an object off the stack and return the address of the object. Returns 0 of the stack is empty.
void STACKpush(SatAddr src)

Push the object at src onto the stack. This is just a #define for HPGCC’s sat_pushptr() function.
Reporting Bugs

Please report bugs and suggestions for enhancements to me at dave@larou.com or dave.hayden@pgi.com. The more polite and cheerful you are, the more likely that I’ll help you.
Compiling the code

Full source code is included. Just cd to the directory where you unpacked the code and type “make”. If everything goes well you will end up with libhpo.a in the same directory. To install it, edit the Makefile and change the INSTALL_LIBDIR and INSTALL_INCLUDEDIR macros to point where you wish to install it. They type “make install”
Further Documentation

The html directory contains full doxygen documentation. Open html\index.html and click on the “modules” link to get started.
For details on the format of each object, see Introduction to Saturn Assembly Language by Gilbert Fernandes and Eric Rechlin. The document is available at hpcalc.org.
License

You may sell and distribute compiled programs that use the hpobjects library free of charge.

You may distribute the hpobjects library and source code, provided that you do NOT charge for it and that you include the copyright notice. In other words, give me credit.
Copyright

HPObjects Copyright 2010 by David Hayden.
Warranty
You get what you pay for. Since hpobjects is free of charge, I make no warranty, express or implied for any part of this code. It may function or it may not. It may destroy your calculator, burn down your house and summon the demons of hell. You take your own chances.

Acknowledgements

Thanks to the HPGCC team for making HPGCC in the first place, and to Egan Ford whose tutorial was invaluable.

Thanks to Gilbert Fernandes and Eric Rechlin for Introduction to Saturn Assembly Language which explains the format of the HP objects.

Thanks to Steve Wainright who provided valuable feedback on the library.

