
MultiStopwatch

Current Version: 1.0.0
Released: August 4, 2013

MultiStopwatch is a free library for the HP 49g+/50g that provides the basic functionality of a
standard stopwatch, but with three independent timers instead of one. The timers are
manipulated through the use of a console application (pictured above), or alternatively through
the use of programmable functions that can be executed from UserRPL code as needed. This
library is only compatible with the HP 49g+ and 50g calculators. If you have any feedback, please
send email to msw@apmats.com.

If English isn't your preferred language, I'd be happy to compile a language-specific version for
you. All I ask is that you agree to freely share your translation. All of the language-specific strings
are in a single file that I can send if you're interested. Inquire at the above email address.

Features

A console application which shows all timer and split information, with real-
time running status and easy browsing capability for splits

All timer data is saved between invocations of library commands, so the
timers continue to "run" while other operations are performed

Multiple stopwatch data files can be stored, allowing many active sets to be
simultaneously maintained

Data export is available for moving timer and split data to other applications

Split information is limited only by available memory in the calculator

Library can be installed in any of ports 0-2

Individual keys are used to start/stop and split each of the three timers

Most stopwatch features are available as UserRPL programmable functions

Lists of timer and split info can be printed for those with access to a printer

Installation/Removal

Installing the MultiStopwatch library follows the same process as most other libraries for the hp
49-series systems. After downloading the library, unzip and obtain the library specific to your
preferred language (eg. EN=English, DE=German, etc.). Copy the resulting file to your calculator
using the HP Calculator PC Connectivity Kit (Conn4x) or a standard SD card in the normal manner.
Then use the following steps to install.

To install (steps assume RPN mode):

1. Load the library onto stack level one (use the Filer if needed)
2. Enter the port number you wish to store the library in (0|1|2)

3. Press the key

4. Press and hold the key, then press and release both keys at the same time

The library will attach itself, and you will then be able to see the library commands in the LIB list (

). The library commands are listed in the library directory.

To remove:

1. Enter 1417 onto the stack
2. Execute DETACH
3. Enter :x:1417 PURGE where x is the port number in which you originally installed the library.

Note that any stopwatch data files you created will still exist in the same places you left them;
you will need to delete those manually.

MSW Console

Pressing the menu button activates the console, which is the primary way in which the
stopwatch timers and splits are manipulated and viewed. There are three rows for the timers, each
showing the current run time as well as the number of splits that have already been stored for
each timer. An arrow points to the timer which is considered to be active. The split information
shown below the timers pertains to the active timer only. You can change the active timer by
using the up and down arrow keys at any time. Likewise, you can navigate through the list of splits
for the currently active timer by pressing the left and right arrow keys. The active timer is also the

one which will be altered if you press the default menu button (or).

In addition to the menu buttons and arrow keys, the , , , and keys have a special
meaning while the console is running. They will directly add a split to timer 1, 2, 3, or all running
timers (respectively) regardless of the currently active timer. Using these keys gives you the
ability to easily add splits without having to change the active timer.

Each split is represented with two distinct values: the absolute time (marked with the ∑ symbol)
and the relative time (marked with the Δ symbol). Absolute represents the elapsed time since the
timer started, and relative is the elapsed time since the last split. Splits are added automatically
when the timer is stopped (or reaches its maximum value of 999:59:59.99).

When the MSW console is started, it looks for a MSW library data object ("MSWdata") in the current
directory to load current timer data. If one isn't found in the current directory, a new one is
created automatically. Note that the console application does not follow the usual HP 49-series
practice of looking up through the parent directories of the current one to seek the library data
object. This is done so that there is no confusion about which data object is current (and to make
sure that you don't accidentally alter a different file than was intended). You must set the current
directory before starting the console application (or using the programmable functions, see
below).

The MSW Console can be exited at any time by pressing either the menu button or the
key.

NOTE: The calculator is constantly running a Saturn code object at full speed while the console is
active, even if none of the timers are running. The built-in auto-powerdown feature of the
calculator is not enabled while the console is active, so it's possible to deplete the batteries if you
leave it running indefinitely. If you don't need to keep the console active, it's best to exit it if
battery consumption is a concern. As always, the timers will be maintained after you exit the
console.

Console Menu Items

Menu Item Description

Toggles the run/stop status of each stopwatch timer

Starts all timers simultaneously. If a timer is already
running, it isn't altered by this command.

Adds a split to the currently active timer

Exits the application and saves all changes made
during the console session to the library data object

in the current directory. The key performs this
same function.

Adds a split to the timer indicated on the menu
button. Changes the active timer to the one
specified.

Stops all timers simultaneously. If a timer is already
stopped, it isn't altered by this command.

Adds a split to all timers simultaneously. Only
applies to running timers.

All changes (starts, stops, splits, resets) since the
console was activated are cancelled with this option

The indicated timer is stopped, the time cleared, and
all splits deleted. Also clears the initial start
date/time (only available when exporting or printing
stopwatch data).

All stopwatch timers are reset as described above

Shows the current version/date/copyright
information

Programmable Functions

Most of the functionality available in the console is also available in stand-alone functions that
can be called from a UserRPL program. In every case, the current directory should be set
appropriately before calling the function to make sure that the proper timer set is being
manipulated. Here's a list of the functions, the needed parameter(s), and how they affect the
timers.

Function Stack Parameters Description

L1: Stopwatch ID
(1 | 2 | 3) [numeric]

The indicated timer is stopped, the time
cleared, and all splits deleted. Also clears the
initial start date/time (only available when
exporting or printing stopwatch data).

(none)
All stopwatch timers are reset as described for

, and the current timer is set to
Stopwatch 1.

L1: Stopwatch ID
(1 | 2 | 3) [numeric]

Starts the indicated timer if it is currently not
running. If the timer is already running, no
changes occur. If the timer has never been run
before, the initial start date and time is set
appropriately. A timer that has already reached
the maximum timer value (999:59:59.99)
cannot be started.

(none)
Starts all timers simultaneously. See for
a complete description.

L1: Stopwatch ID
(1 | 2 | 3) [numeric]

Adds a split to the stopwatch indicated in stack
level one.

(none)
Adds a split to all running stopwatches.
Stopped stopwatches are not altered.

L1: Stopwatch ID
(1 | 2 | 3) [numeric]

Stops the stopwatch indicated in stack level
one, and adds a split at the same point in time
the stop occurred.

(none)

Stops any running timers, adding splits for
each one that was stopped. Timers that aren't
running aren't altered in any way by this
command.

L2: Stopwatch ID
(1 | 2 | 3) [numeric]

L1: Split Number
[numeric]

Recalls the split indicated by the given
parameters to the stack. The split is an array
with two values: the absolute time and relative
time, expressed as real numbers in the form
HHH.MMSSss. The absolute value is the
elapsed time since the timer started, and the
relative value is the elapsed time since the last

split.

L1: Stopwatch ID
(1 | 2 | 3) [numeric]

Recalls the split count for the given stopwatch
to the stack as a real number.

L1: Stopwatch ID
(1 | 2 | 3) [numeric]

Recalls the current timer value of the given
stopwatch to the stack as a real number in
HHH.MMSSss format.

L1: Export
Parameters [list]

Recalls a list containing the specified timer
data to the stack. See the Exporting Data
documentation for details of the list object
required as input as well as the output
obtained.

L1: Print
Parameters [list]

Prints timer and split information in a special
format (see Printing). See the Exporting Data
documentation for details of the list object
required as input.

Exporting Data

All of the data that MultiStopwatch uses to keep track of the various timer and split information is
contained in a "library data" object. If you recall one of these objects to the stack, the calculator
simply treats the entire contents as a single object since it doesn't know what the internal format
of the data is:

This is beneficial from a couple of standpoints. It simplifies (and speeds up) the process of storing
and moving the data object around to other locations (eg. subdirectories and the SD card). It also
strengthens the integrity of the data contained within the object by making it's contents
unalterable by any standard means.

It's possible that you'll want to write your own programs to take advantage of the stopwatch data,
and there are several programmable functions that can retrieve specific fields within a given
MSWdata file. RCLSP (Recall Split), RSPCT (Recall Split Count), and RCLTM (Recall Time) can all be
used in this way. These functions provide a convenient way to obtain these specific items from
the MSWdata objects, and they're simple to use within a program when you need just a few items.

When you want to obtain all of the data (or any fields other than splits, split counts, and timer
values), the best and fastest approach is to use the export features of MultiStopwatch. Two
options are available to export data: and . EXPRT is an interactive command that first
establishes which data you wish to obtain, then creates a list object containing the specified data
and leaves it in stack level one upon completion. PXPRT works in a similar fashion, but instead of
prompting the user to provide the details, it looks in stack level one for a list that identifies the
set of data you want.

EXPRT Command

Pressing the button loads a form that allows you to select which timers you wish to include
in the exported data and the range of splits to include with them:

This is a standard HP 49-series form which uses the the usual "INFORM" controls and options. The
fields default to the complete set of data from the current MSWdata object. Checking or un-
checking the mark in the "Include" column will determine if that timer's data is included in the
export. The range of splits can also be edited, and the values you provide will be checked for
consistency with the actual data in the MSWdata object. If you only wish to export the timer
information with no split data, set both fields in the Split Range to zero (they will be shown with a
dash). The export will always contain at least one split for every timer, even if none exist. In the

case where none exist (or you exclude them in the range), an array with one entry of zeros ([[0. 0.
]]) is still included to ensure consistency of the format of the exported data.

PXPRT Function

The PXPRT function doesn't prompt the user for the timer parameters, but instead takes a list of
nine numbers from stack level one (ex. { 1 1 93 1 1 56 1 1 174 }). The nine numbers can be
thought of as three groups of three, with each group representing the three options for each
timer in the "Select Stopwatch Data" form shown above.

Fields (in
order)

Type Description

IncludeSW1 numeric

0=Do not include; any non-zero number specifies
that SW1 data will be included in the export. If
IncludeSW1=0, SplitStartSW1 and SplitEndSW1 are
ignored (but still required).

SplitStartSW1 numeric The first SW1 split to include in the export list.

SplitEndSW1 numeric The last SW1 split to include in the export list.

IncludeSW2 numeric

0=Do not include; any non-zero number specifies
that SW2 data will be included in the export. If
IncludeSW2=0, SplitStartSW2 and SplitEndSW2 are
ignored (but still required).

SplitStartSW2 numeric The first SW2 split to include in the export list.

SplitEndSW2 numeric The last SW2 split to include in the export list.

IncludeSW3 numeric

0=Do not include; any non-zero number specifies
that SW3 data will be included in the export. If
IncludeSW3=0, SplitStartSW3 and SplitEndSW3 are
ignored (but still required).

SplitStartSW3 numeric The first SW3 split to include in the export list.

SplitEndSW3 numeric The last SW3 split to include in the export list.

Export List

The exported data shows up in the stack as a list of lists in the following format:

{ { SW data n } { SW data n+1 } { SW data n+2 } }

The actual number of sublists in the export depends on which timers were selected for exporting.
If no timers were selected, the export list will simply be empty ({ }). Otherwise, the total number
of sublists will be equal to the number of timers that were selected for export.

The sublists each contain two arrays, representing timer and split data for the selected stopwatch.
So a slightly more detailed view of the export list would be as follows:

{

{ [array of timer info n] [array of splits n] }

{ [array of timer info n+1] [array of splits n+1] }

{ [array of timer info n+2] [array of splits n+2] }

}

The timer info array has the following elements:

Element Type Description

StopwatchID real number
(1 | 2 | 3) The stopwatch ID Number of the
stopwatch for which this data applies

RunStatus real number 0=currently stopped, 1=currently running

InitialStartDate real number
The initial start date of the timer, using
the current calculator settings

InitialStartTime real number
The initial start time of the timer, in
HH.MMSSssss format

CurrentTime real number
The current elapsed time of the timer, in
HHH.MMSSss format

SplitCount real number
The total number of splits defined for the
timer

FirstSplit real number
The index of the first split included in the
split list

LastSplit real number
The index of the last split included in the
split list

Each element in the split array is an array containing two elements: the absolute and relative
times of each split (see the documentation for a description of these values).

Note: If no splits were selected for exporting, there will still be an entry for the array of splits in
the export list, and it simply contains [[0. 0.]].

An example

The following is an example of the exported data from a set of three timers, with all timer and
split data included. The carriage returns and indentation were added to aid in readability:

{
 {
 [1. 1. 7.132013 21.414172644 2.22002929687E-2 2. 1. 2.]
 [
 [.005545 .005545]
 [.020009 .010463]
]
 }
 {
 [2. 1. 7.132013 21.414172644 2.22002929687E-2 2. 1. 2.]
 [
 [.010041 .010041]
 [.020009 .005967]
]
 }
 {
 [3. 0. 7.132013 21.414172644 2.09282348633E-2 3. 1. 3.]
 [
 [.010637 .010637]
 [.020009 .005372]
 [.020928 .000919]
]
 }
}

If your ultimate goal with the export is to move the data to a computer or tablet device, you'll
probably want to execute the ->STR function on the list before moving it.

Printing

An interactive printing command () is provided with MultiStopwatch, and it can be used to
print a pre-formatted listing of timer and split values. The utility uses the built-in commands for
printing, so the current IO settings will apply (no flags are changed by the utility). Printing to a
simulated printer using Christoph Giesselink's excellent HP 82240b Simulator also works, and this
is another option for exporting data should you need to go that route.

When executing the PRMSW command, you'll first be prompted to specify the timers and splits to
be included in the same fashion as for exporting (described above). Once selected, the timer and
split information is sent to the printer formatted as in this example (the start date and start time
fields will vary depending on your mode settings):

Additionally, a programmable equivalent function is provided (PPRSW). The output sent to the
printer is the same as shown above, and the input required is the same kind of list described
above as input for the PXPRT function.

General Usage Notes

Simultaneous Functions

The main stopwatch functions (start/stop/split) all have commands to operate simultaneously on
all three stopwatches. This can be useful, for example, when timing up to three different
participants in a single event. Another use of this feature could be the timing of different intervals
of a single participant -- for example marking splits for quarter laps in one timer, full laps in
another. In each case, the functions will only perform their specific operation for a stopwatch
under the appropriate conditions (eg. only running stopwatches will be split when executing

).

System Clock is the Basis for Timer Operations

The built-in system clock on the 49g+/50g is the basis for all time measurements. The accuracy of
the stopwatches is therefore tied to the accuracy of the system clock in your calculator, which is
likely to drift 1-2 seconds/day. Please note that HP did not design these systems with precise
timing accuracy in mind; it would be inappropriate to assume that the results of timer operations
would be adequate for official timekeeping purposes.

Any adjustments made to your system clock between invocations of the MSW console or RPL
commands will have a corresponding impact to all running timers. For example, if you were to
adjust the date on your calculator by adding one day, all running timers would correspondingly
advance by 24 hours. Stopped timers aren't affected by clock changes. It is important to keep this
relationship in mind when making changes to your calculator's system clock.

About Battery Consumption

The MSW Console (MSW in the main library menu) is a code object that is constantly running while
it is active, and as such it uses more power when activated than an idle system does. As a result,
leaving the console application open could potentially deplete your batteries if left unattended.
It's best to close the console if you don't anticipate making changes in the near term. All of the
RPL functions are only active for a very brief time (<1 sec), so their usage causes no more power
drain than any other functions or commands you may execute. Leaving a timer in a running state
when exiting the console has no impact on battery consumption. The timers aren't updated until
the value is actually needed by an RPL command or the console.

	MultiStopwatch
	Features
	Installation/Removal
	MSW Console
	Console Menu Items

	Programmable Functions
	Exporting Data
	EXPRT Command
	PXPRT Function
	Export List
	Timer Info Array
	Export Example

	Printing
	General Usage Notes

