COMPUTER
CORNER

Edited by
Eugene A. Herman

In this column, readers are encouraged to share their expertise and experiences with computers as
they relate to college level mathematics. Articles that illustrate how computers can be used to enhance
pedagogy, solve problems, and model real-life situations are especially welcome.

All manuscripts for this column should be prepared according to the guidelines on the inside front
cover and sent to:

Eugene A. Herman
Department of Mathematics
Grinnell College

Grinnell, 1A 50112

Graphing with the HP-28S

John Selden
Annie Selden

John Selden received his Ph.D. in mathematics from the
University of Georgia in 1963 and subsequently taught at
various universities in the U.S. and abroad. He was Dean of
Science at Bayero Universily in Kano, Nigeria before return-
ing to the U.S. in 1985 to teach at Tennessee Technological
University. His research interests are in topological semi-
groups, artificial intelligence, and tertiary mathematics edu-
cation. He edits (with his wife, Annie Selden) the Research
Sampler column of UME Trends. He is currently investigat-
ing inverse semigroups on the plane, analyzing misconcep-
tions in student proofs, and designing an experimental calculus sequence using notes
and the HP-288S.

423

Annie Selden received her B.A. from Oberlin in 1959, her
M.A. from Yale in 1962, and her Ph.D. from Clarkson in
1974. She has taught at universities in the U.S. and abroad.
While at Bayero University in Kano, Nigeria, she adminis-
tered the day-to-day affairs of the Mathematics Department.
She has been teaching at Tennessee Technological Univer-
sity since 1985. Her research is in locally compact topologi-
cal semigroups and tertiary mathematics education. She
edits (with her husband, John Selden) the Research Sam-
pler column of UME Trends. This paper arose from an
attempt to make the HP-28S more user-friendly for calculus students.

In teaching beginning calculus and other entry-level college courses, one would like
to emphasize conceptual understanding and mathematical thinking, instead of
routine manipulation. At one time this meant judiciously selecting examples in
which the computations were not too difficult for students to carry out with pencil
and paper. Now, using computers and calculators, it is technically possible for
students to explore more complex examples on their own. Unfortunately, the time
and tedium of calculation may simply be replaced by the time and tedium of
learning to use a particular computing device.

One such device, the HP-28S, is now owned by many mathematics faculty and, if
our university is typical, by quite a number of students. The HP-28S, with its 32K of
memory, is really a pocket computer, and many observations on classroom use of
microcomputers and computer algebra systems apply to it [1], {2], [3], [7]. This year
we are teaching an experimental calculus sequence to volunteers, who are required
to have this calculator. The aim is to find ways of teaching that enable students to
solve nonroutine problems. In a recent study we found that average students from
traditional calculus courses have great difficulty solving problems even slightly
different from those presented in the text or classroom [6]. Our hope is that the
HP-28S will enable the routine parts of calculus to be taught quickly [3], and, hence,
provide time for students to practice solving novel problems. Our interest in the
HP-28S is partly in its portability and availability to students at all times.

In exploring the capabilities of the HP-28S for this purpose, we discovered that
students could easily get bogged down in learning how to use it efficiently. The
flexibility needed in such a general-purpose scientific calculator prevents it from
being maximally convenient for specialized applications, such as a beginning calcu-
lus course. Students could be taught to program the HP-28S to make it more
convenient, but having students design appropriate systems of programs is time
consuming and would interfere with the primary objective of our course. Comment-
ing on the similar HP-28C, Tucker remarked, “It takes ten hours to become
proficient enough to begin to realize the potential of this calculator, and one could
spend weeks exploring the nooks and crannies of the machine” [8].

This paper presents a system of programs to make graphing easier on the
HP-28S. They enable students to reflect on and refine a variety of examples without
being distracted by the mechanics of operating the calculator. A typical function
needs to be viewed in variously scaled rectangles or windows for greater accuracy [1]
or to avoid coming to incorrect conclusions {2]. Sometimes one wants to zoom in on

424

a piece of the graph. Other times, one wants to look elsewhere for the interesting
behavior, but a2 new window may give a worse view. OLWIN, one of the programs
described here, recovers the previous window quickly. Some of the other programs
work in ways similar to commands already available; e.g., Draw is similar to
DRAW. The system that we are proposing can save time and frustration.

The graphing programs are called Draw, CLR, MOVE, ZOOM, WIN, and
OLWIN and allow one to change the center and scale of the viewing window easily,
as well as to recover the previous viewing window. Also included are two
“housekeeping” programs, PARNT and Order, which should be installed before the
graphing programs for efficient storage, as well as the program, DFix, which fixes a
bug in the HP-28S command DRAW. DRAW works well in isolation but should
not be called upon in a program; instead use DFix.

Perhaps the most useful of these programs is OLWIN because it saves time. In
order to execute it, one needs Draw and DFix. The other programs presented in this
paper can be omitted, if desired, although it is convenient to have them on the
USER menu. A student can install the programs without understanding the details
of how they work.

All existing commands on the PLOT menu, except DRAW, can be used in
conjunction with these programs. Additionally, one can write other graphing pro-
grams (e.g., for polar coordinates) that are compatible. Compatibility can be assured
by naming a new graphing program DFix and placing it in a subdirectory, say
POLAR, below that of the programs given in this paper. Naming two programs
DFix causes no problems as long as they are in two different directories. POLAR
should also contain the program < {CLR Draw MOVE OLWIN WIN ZOOM
PARNT} MENU >, which can be named Menu. When Menu is run, the listed
programs (CLR, Draw, etc.) appear on the USER menu, and those calling on DFix
will automatically substitute the new graphing program. This trick may seem odd,
but it works well.

Two Scenarios

1
Consider the following effort of a naive student to view the graph of y = xsin—

without aids or guidance as illustrated in Figure 1. *

—t %a;wal id PPAR

1
STEQ {RCEQ YPMINGPMKE TINDEPJORAI |
(a) (b) /(C)

= S i 0 N

(@ (e))

1
Figure 1. First Scenario: A naive student attempts to graph x sin — on the HP-28S.
x

425

Enter "X * SIN(INV(X))' on the stack, store it in EQ using STEQ, found on the
PLOT menu, and press DRAW. After some time, the result appears on the display,
(a). Unfortunately, the plot parameters PPAR from a previous use of DRAW were
not removed.

Enter 'PPAR’ and PURGE. Press DRAW again, and after a while, (b) appears.
Use the cursor keys and INS to choose the lower left and upper right corners of a
window about the origin. Press PMIN, PMAX, and DRAW to get the display
shown in (c)—not a graph, but an error message. PMIN and PMAX were executed
in the wrong order, causing the window to have negative height and width.

Start again. Enter 'PPAR’, PURGE, and DRAW and wait for (d). Next use the
cursor keys and INS to enter the lower left and upper right corners of a new
window. Then clear the display with ON and press PMAX, PMIN, and DRAW.
Soon (e) appears. Do this again to get (f). It’s clear such a student needs help.

Consider graphing the same function using the programs in this paper and the
following advice. To graph a new function, always start with CLR to return the
viewing rectangle to default position. If part of a graph looks like Figure 1(f), try
using a square in WIN, thereby stretching the horizontal axis. To follow the
behavior of a graph as it runs off the display, use MOVE. If a new display gives a

worse view, use OLWIN to recover the original.
1
Enter the function x sin— as before, press CLR followed by Draw to get Figure

X
2(a). This suggests y =1 is a horizontal asymptote. Next use 10 ZOOM to explore
the graph near the origin, (b). As further use of ZOOM probably won’t help, press
OLWIN, which is very fast, to return to (a), and try WIN as follows.

(d) @))

Figure 2. Second Scenario: A little advice and these programs give more information.

Use the cursor keys, followed by INS, to select a small square about the origin,
press ON and WIN to get (c). Next use the cursor keys to get a window excluding
the origin, and press WIN again to obtain a reasonably good local picture, (d). To
follow the behavior of the graph to the right and see how (d) fits with the larger
picture obtained in (a), press OLWIN to return to (c), move the cursor towards the
upper right and press INS, ON, and MOVE to obtain (e). Do this again to get (f).
This sequence gives a good overall idea of the graph.

426

A Few Technical Remarks

Although the HP-28S has output via a printer, the only way to input a program is to
type it in. Thus, we have included not only descriptions of each of the programs, but
also the actual code.

The programs may appear longer than necessary because safeguards have been
included to prevent them from reacting badly when executed in unintended se-
quence or with unintended input. These safeguards are needed in the HP-28S, as
variables can exist independently of the programs using them.

To install a program, enter it on the stack; i.e., type it in and press ENTER. Then
enter the name of the program in single quotes, e.g., '‘Draw’, and press STO. DRAW
will appear on the USER menu, which shows only capital letters. Commands need
not be typed in; they may be entered from the menus. For example, PATH is on the
MEMORY menu; see the alphabetical listing [5, beginning p. 324]. However,
commands containing special symbols (e.g., —) must be entered from the menus.

Running programs are indicated by the “busy” annunciator symbol, {(-)), on the
display. Pressing ON during execution will normally stop a program but may leave
unwanted entries on the stack. Programs that cannot be stopped in this way have
entered an endless loop and can usually be stopped by performing a system halt,
leaving the memory intact {4, p. 217]. The PRINT menu is inaccessible while a
graph is displayed; however, the graph can be printed by pressing the ON and L
keys simultaneously [4, p. 91].

Finally, the comments in italics are not part of the programs to be entered.

The Housekeeping Programs

PARNT. This little program changes the current directory from a subdirectory to its parent directory
(4, p. 60]. It is often useful to group programs in directories. For example, these graphing programs might
be put in a directory called GRAPH. Since the calculator can only find variables in the current directory
or directories above the current one, it is necessary to be able to move around the directory tree. PARNT
can be put in the top directory, called HOME, or copied into several subdirectories.

< Start the program.
{HOME} Put this one word list on the stack.
PATH Enter the list of directories from HOME to the current one.
+ Combine the two lists into one.
DUP Enter another copy of the list on the stack.
SIZE Replace the list with its size, say n.
1 Pur 1 on the stack.
— Replace level two and level one with their difference, ie., n—1, which
cannot be 0.
GET Replace the path list and n — 1 with the (n— 1)-st entry in the list.
EVAL Go 1o that directory, i.e., the parent directory.
> End the program.

Order. This program arranges the presentation of program names on the USER menu to be: CLR,
Draw, MOVE, OLWIN, WIN, ZOOM, Order. Without it, the names will move to the right as new
variables are added on the left. Thus, the placement of the programs on the USER menu is constantly
changing, and this may encourage user errors. Perhaps in the next version of the calculator this

427

unfortunate design characteristic will be altered. To ensure that Order executes properly, all the above
programs must be in the current directory.

< Start the program.

{CLR Draw MOVE Enter the list on the stack.

OLWIN WIN

Z0OO0OM Order}

ORDER Ovrder the directory according to the list.
> End the program.

A Program to Fix DRAW

DFix. This program does what DRAW is supposed to do when it is called in a program; i.e., it draws
the graph of the function(s) stored in EQ using the information in PPAR, the plot parameter, without
leaving an unwanted number on the stack. Note that when DRAW or DFix is called in a program,
neither automatically clears the display nor activates the cursor keys, unlike when DRAW is executed

from the PLOT menu. The difficulty with calling DRAW in a program is that for certain functions, such
1
as x + —, numbers are added to the stack because of an incorrectly designed loop. DFix should be put in

x
the top directory, HOME,

<« Start the program.
RAD Convert to radian mode.
[i] Enter [1] to mark the end of the existing stack.
IFERR While executing DRAW, look for an error,
DRAW perhaps from the nonexistence of EQ or PPAR.
THEN If there is a DRAW error, drop [1] and call
DROP DRAW again to get the error message and
DRAW abort programs containing DFix.
ELSE If there is no DRAW error, place
1] an additional [1] on the stack.
WHILE While the last two entries are different, i.e.,
SAME there is a number between the two [l1]’s, add [1]
NOT to the stack and repeat the test. Note that
REPEAT executing SAME removes two entries from the
(1] stack, e.g., the [1] and the number before it.
END End WHILE.
END End IFERR.
> End the program.

The Graphing Programs

Draw. This program appears to produce the same result as the command DRAW; i.e, it clears the
display, draws the graph, and activates the cursor keys. In addition, Draw alters a variable, DVar,
containing information necessary to retrieve the previous display.

When Draw is executed, it stores the current display in DVar as a string. DVar is a list of four
objects: old and new versions of both PPAR and the display. Draw first replaces the old versions of
PPAR and the display with the new versions. It then stores the current PPAR and display in DVar as the

428

new versions. If DVar does not exist, Draw creates it using the current PPAR and display for both old
and new versions. Draw requires a function in EQ. This is provided using STEQ on the PLOT menu.

<
CLLCD
DFix
PPAR
LCD —
DVar

IFERR
LIST —

THEN
DROP
2
DUPN
4
— LIST
‘DVar’
STO
Order

ELSE
ROLLD
4
ROLLD
DROP
DROP
4
ROLLD
4
ROLLD
4
— LIST
DVar’
STO

END

DGTIZ

>

Begin the program.

Clear the liquid crystal display.

Draw the graph (and create PPAR if needed).
Enter PPAR on the stack.

Enter the display as a string on the stack.
Enter DVar on the stack. If it does not exist,
the name 'DVar’ will be entered.

Look for LIST — error in case DVar

did not exist.

If DVar did not exist, remove

'DVar’ from the stack.

Duplicate two levels on the stack,

i.e., PPAR and the display string.

Convert 4 levels of the stack

to a list.

Enter 'DVar’ on the stack and

store the list in it.

Reorder the user menu (optional and slow).
If DVar existed, it is now on four

levels of the stack with a 4 on level 1.
Interchange the first two with the

second two of these levels.

Drop two levels from the stack.

Interchange the remaining two
levels with the two above.

Convert 4 levels of the stack

to a list.

Enter the name "DVar’ on the stack.
Store the list in DVar.

End IFERR.

Activate the cursor keys.

End the program.

CLR. This program clears the current PPAR, DVar, and X from memory and should be executed
before graphing a new function. In case an independent variable other than X is used, that variable
should also be purged. Use of CLR assures that the viewing rectangle will be restored to default position
in the next execution of Draw. Note that DVar uses about 1K of memory.

The use of errors for type checking is an integral part of these programs. When an error is detected,
the stack is returned to its original state before the error. To be sure this happens, flag 31 must be set, i.e.,
contain a 1. This is the default setting; however, in case it is altered, CLR will restore it.

<«
31
SF
{PPAR DVar X}
PURGE
>

Start the program.

Enter 31 on the stack.

Remove 31 from the stack and set flag 31.
Enter the list of variables to be removed.
Remove them.

End the program.

429

MOVE. This program appears to produce the same result as CENTR followed by DRAW; ie., it
moves the center of the viewing rectangle to a point previously entered on the stack, often by means of
the cursor keys. In addition, it alters DVar. For example, to follow a graph move the cursor to a point
where the graph leaves the display and press INS, ON, and MOVE. The graph will be drawn again with
that point in the center of the new display.

<« Start the program.
CENTR Take a point from the stack and record it as the
center component of the list PPAR.
Draw Graph the function using the new PPAR.
> End the program.

ZOOM. This program divides the scale of the display by a number previously entered on the stack,
alters DVar, and redraws the graph. For example, entering 10 ZOOM causes marks on the axes to
represent 75 their previous length, thereby enlarging what previously appeared in the middle of the
display by a factor of 10.

< Start the program.
INV Replace level one of the stack
DUP by its reciprocal and duplicate it.
IFERR Look for an error.
* W Change the scale of the width.
THEN If there was an error, drop the extra entry.
DROP Return the stack to its
INV original form and call * W again
* W for the error message.
ELSE If there was no * W error, change
*H the scale of the height.
Draw Graph the function using the new PPAR.
END End IFERR.
> End the program.

WIN. This program assumes that two points were previously entered on the stack, the first one
representing the lower left corner and the second the upper right corner of a viewing rectangle. Often these
points will be obtained from the display by manipulating the cursor keys and pressing INS. WIN will
then redraw the graph and alter DVar accordingly.

<« Start the program.
DUP Duplicate stack entry 1.
IFERR Look for an error.
PMAX Record the second point in PPAR.
THEN If there was ¢ PMAX error, then
DROP drop the extra entry and
PMAX call PMAX again for the error message.
ELSE If there was no PMAX error
SWAP interchange the two points.
IFERR Look for an error.
PMIN Record the first point in PPAR.
THEN If there was a PMIN error, then
SWAP return the stack to its
1300 original order and give a warning
07 beep of 1300 ¢ / sec. for .07 sec.
BEEP

430

ERRM

DISP
ELSE
DROP
Draw
END
END
=

Display the PMIN error message
on line 1 and end the program.

If there was no PMIN error, then

drop the remaining point.

Graph the function using the new PPAR.
End inner {second) IFERR.

End outer (first) IFERR.

End the program.

OLWIN. This program displays the previous graph. It also interchanges the new and old sections of
DVar and adjusts PPAR appropriately. Pressing OLWIN twice returns one to the current graph. If DVar
does not exist, OLWIN calls Draw.

<

DVar

IFERR
LIST —

THEN
DROP
Draw

ELSE
ROLLD
4
ROLLD
2
DUPN
SWAP
'PPAR’
STO
5
ROLLD
4
— LIST
'DVar’
STO
CLLCD
- LCD

DGTIZ
END
>

Start the program.

Enter DVar or ‘DVar’ if DVar does not exist.
Check the existence of DVar.

Put DVar on 4 stack levels and put 4 on level 1.
If there was a LIST — error, DVar does

not exist so drop the name 'DVar’ and

run Draw.

If there was no LIST — error, reverse

the new and old DVar information

now on the stack by rolling down

4 places twice.

Duplicate two stack positions.

Interchange stack level I and 2.
Place the name '"PPAR’ on the stack.
Store the contents of level 2 in PPAR.
Roll down 5 levels on the stack.

Convert 4 levels of the stack to a list.

Store the list (the old DVar with new
and old sections reversed) as DVar.
Clear the (liquid crystal) display.

Place the string representation of the old
display on the display.

Activate the cursor keys.

End IFERR.

End the program.

Finally several views of a graph can be stored in memory and retrieved quickly. To store a view enter
DVar, a variable name, say 'Gl’, and STO. To retrieve a view enter G1, '‘DVar’, STO, and OLWIN. Since
DVar uses 1K of memory, these variables should be purged when no longer needed.

Acknowledgment.

The authors thank Fred Linton of Wesleyan University for suggesting the improved

version of PARNT included in this paper.

REFERENCES

1. Franklin Demana and Bert K. Waits, Problem solving using microcomputers, The College Mathemat-
ics Journal 18 (May 1987) 236-241.

431

2. , Pitfalls in graphical computation, or why a single graph isn’t enough, The College Mathemat-
ics Journal 19 (March 1988) 177-183.

3. M. Kathleen Heid, Resequencing skills and concepts in applied calculus using the computer as a tool,
Journal for Research in Mathematics Education 19 (1988) 3-25.

4. HP-285 Owner’s Manual, Edition 1, November 1987.

5. HP-28S Reference Manual, Edition 1, Qctober 1987.

6. John Selden, Alice Mason, and Annie Selden, Can average calculus students solve nonroutine
problems?, The Journal of Mathematical Behavior 8 (April 1989) 45-50.

7. Don Small, John Hosack, Kenneth Lane, Computer algebra systems in undergraduate instruction,
The College Mathematics Journal 17 (November 1986) 423-433.

8. Thomas Tucker, Calculators with a college education?, Calculus for a New Century: A Pump, Not a
Filter, MAA Notes 8 (1987) 229-231.

Surface Area of a Cone

5

A

f— ~$Q27r) ——

Area ~ wrs

o= W —
> A
Vo—— ~ 271 + 27ry) ——el

Area ~ 7(rn+n1)s

\ \

\
\
o~ 3Q27r) —
Area ~ 712

Contributed by Herb Holden, Gonzaga University, Spokane, WA

432

