L1540.TXT/M.A.L./13.03.2003
Introduction

This is the 2nd (and, if there is no serious bug, last) release of L1540.

L1540 is a 25KB SysRPL library for the HP39/40. It provides a number of functions and commands that can be used in the HOME view, in function definitions, in programs, and in the HP40G CAS. The functions essentially comprise much of what makes the difference between an HP40 and an HP49, plus some more:

Base conversions, bit operations, physical constants, unit conversions, time and date functions, calendar, time value of money, probability functions, vector plot and matrix slope plot, multidimensional optimization, discrete Fourier transform, numerical solution of differential equation systems, support to use programs as functions and support for local variables in programs, a few functions for electrical engineering, and a few system utilities.

The source is included and compiles with the HP DOS tools.

[image: image1.png]
Important

1. [image: image2.png]This is a library, not an aplet (and not a program). This would normally mean, once downloaded, that there was no user command to delete it except for the key combination that erases all RAM (ON+SK1+SK6) but one of the updates to this second release is that a self-delete command is included (thanks to Jordi Hidalgo for the idea and the code). There is still no user command to copy the library directly to another HP39/40G. You must load it via the cable from a PC. Also, you can only view it via the MEMORY button in the Library section.

2. The library does not affect normal calculator operations, but, of course, the letter sequences that make up the new command names are now interpreted as command names, not as variables that are to be (implicitly) multiplied. For example, DT would have been interpreted as D*T but will now be interpreted as the new function DT(___). If you type DT alone then you will get 'Syntax error' as it now expects brackets.

3. The library has been tested, but is sufficiently complex to make sure that any testing is incomplete (thanks to Axel Bodemann for some support here). Therefore any usage of this library is at the user's own risk.

4. The library is freely distributable as long as it is not sold for money, per se or bundled with anything else.

Download Instructions

1. [image: image3.png]Connect the HP39/40G with the serial port of the PC.

2. Run the program HPGComm on the PC.
[image: image4.emf]
3. [image: image5.png]On the HP39/40G, in the APLET view, do RECV and choose HP39/40 (Wire) from the list that pops up. When you do this a window will pop up on the PC which lets you choose a file to download. Choose L1540 and press OK.

4. After a minute or so, the download should be finished. Change now to the HOME screen and type XX and then ENTER. If you get a pop-up list of all the functions then your library is successfully loaded. Press CANCEL and read on…

Usage

The built-in help command is AA (some users had problems with the XX in the

1st release). Type AA and ENTER. A choose list with a mini syntax description for all commands appears. Select the desired command to see a more detailed description. On exit, a mini-syntax is returned to the HOME screen, which may be copied to the command line for editing. SYNTAX also works, but is less informative.

[image: image6.png]Remarks on some specific commands in no specific order:

1. [image: image7.png]All date and time functions expect and return the European date and time format, dd.mmyyyy and hh.mmss. For example, 3:15pm on 7th May, 2002 would be 07.052002 and 15:1500.
Eg. To obtain a calendar for March, 2002, type CA(0.032002)
2. The full screen paging calendar CA(0) or CA(date) uses the German day and month abbreviations (some of which coincide with the English ones), and the weeks start on Monday. It should still be easily comprehensible without any knowledge of German but for those having trouble, or just interested, the days are: Montag, Dienstag, Mittwoch, Donnerstag, Freitag, Samstag, Sonntag. The number after the year in the upper left is the day number of the first day of the month shown, within the current year. The numbers in the leftmost column are the week numbers within the year.

[image: image8.png]
3. [image: image9.png]Some functions are of the form FCT({x1,x2,...,xn},k). This means the underlying formula has n variables, and the user wants to solve for the kth one. For this, all xi must have the desired values, and xk may have any value and will be ignored. All such functions are solved analytically, not with a numeric solver. The single exception is solving for the interest rate in the TVM formula.
Eg. Suppose the function you wanted to use was the FLC function and you knew the values f=3 and C=20 and wanted the value of L. You would enter FLC({3,0,20},2) and it would not matter what value was in the position of the zero.

4. In TVM calculations, I is the interest rate per period. If the interest per year is 5%, and the period of payments is a month, the interest per period that must be used is 0.05/12.

5. Base Conversions: DH(dec) returns a list with the hexadecimal, octal, and binary representration of dec to the stack (the display). These list elements cannot be used in further calculations. HD prompts for a hex number with a special input form (no need to press ALPHA before entering a letter). BC converts between decimal and arbitrary bases and vice versa, where numbers in these bases are represented as lists of decimals.

E.g., BC(6,2) returns {1,1,0}, the binary representation of 6.

Conversely, BC({1,1,0},2) returns 6.

[image: image10.png]
6. CV(0) displays a list of conversions for you to choose from but CV(n) just returns a factor for unit conversions.
E.g., to convert 5 inches to meters do 5*CV(0) (and choose from the menu) or 5*CV(4) if you know the factor you need is number 4. To convert 5 meters to inches, do 5/CV(0) or 5/CV(4).

7. The physical constants list can be obtained by typing CO(0) or by typing CO(n) if you know you need the nth one. They are not those (partially outdated ones) from the HP48/49, but those of 2000 (when I wrote a corresponding lib for the HP49). For [image: image11.png]practical purposes, this make no significant difference, though.

8. Bit operations: The wordsize is internally fixed to 32bit. Externally all numbers are decimal. These operations are internally string-based and therefore quite slow. The operations are quite flexible, thus the syntax is somewhat complicated:

BIT(x,n,p) performs operations on the single bit n within x, depending on p:

 p=-1: bit n is toggled

 p= 0: bit n is cleared (set to 0)

 p= 1: bit n is set (to 1)

 p= 2: bit n is not changed (only tested).

 In any case, the function returns the (new) value of bit n.

 Index n=0 refers to the LSB, n=31 refers to the MSB.

BCNT(x,p) does some special operations depending on p:

 p=0: returns the value of the LSB, which is 1 for an odd number x,

 0 for an even number.

 p=1: returns the number of bits set

 p=2: returns the index of the MSB, or -1 if no bit is set.

BSL(x,n,p) shifts x by n bits (left for n>0, right for n<0).

 The bit that in pulled into the 'empty' bit depends on p:

 p=-1: the LSB (for left shift) or MSB (for right shift)

 p= 0: a 0 bit

 p= 1: a 1 bit

 p= 2: the bit that has been shifted out on the other side

 (this means, a rotate operation is performed)

 n=0 is a special case:

 p=0: all bits are toggled (a NOT or complement operation)

 p=1: the bits are mirrored, i.e, the LSB becomes the MSB and vice

 versa, etc.

BOP(x,y,p) performs a bitwise operation on x and y depending on p:

 p=-1: returns x XOR y

 p= 0: returns x AND y

 p= 1: returns x OR y

9. Probability functions: The three functions BINO, BINOR, SAMC answer most questions of the "what is the probability of ..." type. Incidentally, SAMC also answers the famous question of how many people are needed to have two with the same birthday with probability 1/2: SAMC(23,365,2) = 0.5, so it is only 23.

10. Graphics: MBP quickly plots a vector of up to 131 values (rsp. the first 131 values of longer vectors) with autoscaling. MSP plots a two-dimensional matrix, where each value determines the slope of a straight line on the screen. With some imagination, this is also a replacement for a wireframe or similar 3D-plot (and actually more appropriate for a small calc screen).

11. Programs as functions: Normally programs cannot be included in algebraic (function) expressions and cannot be invoked with parameters. Thefunctions PR and PS allow to do such things for the (small) price of a naming convention: The program name must start with a capital P and continue with a number, like P1, P4321, etc. The number part is the 1st argument to PR and PS. The 2nd argument is an arbitrary object which will be passed, in the Ans variable, to the program. The program output is also expected in Ans.

This means, that Ans\>... and ...\>Ans must be the first and last actions in such a program, otherwise Ans might be invalid.

Example: a function, say P99, that returns the sum of two numbers:

P99: Ans\>L1:L1(1)+L1(2)\>Ans
Now entering PR(99,{3,4}) in HOME or a program will return 7.

PR and PS should only be used in HOME and in programs, but not in, e.g., plot function definitions. The environment the calc runs programs in is not compatible with these. To 'plot a program', use something like MBP(PSRA(...)), to find the 'zeros of a program', use PSROOT.

12. Local variables: PS saves and restores the variables A..Z, so these are local in the program and keep their original values upon program termination (but not if the program has a bug, causing early termination!). The functions PUSHL and POPL can be used to make other variables local, too: on program entry, push them, on program exit, pop them. L0 is internally used to hold the variables temporarily. Of course, the pop action will again overwrite Ans. Therefore PUSHR and POPR are provided to save Ans (or any other object) temporarily, from the other side of L0.

Example: as above, but L1 shall be local:

@ L0 action

@ {...}

P99: PUSHL(L1):
@ {L1...} save L1

Ans\>L1:

@ {L1...} get the function argument

L1(1)+L1(2)\>Ans
@ {L1...} calculate the function result

PUSHR(Ans):
@ {L1...Ans} save the result

POPL\>L1:

@ {...Ans} restore L1, overwriting Ans

POPR

@ {...} restore the result in Ans

13. Flags: Like the HP49, the HP40 has 128 user flags and 128 system flags. SF makes these accessible. The system flags should not be messed with. Each user flag can store a boolean value, 0 or 1, so A..Z need not be wasted for that.

14. DEQ solves single and systems of 1st order differential equations numerically.
Examples:

i)
Solve y'=x+y in x=0..1, y(0) = 0

Sol: P99: Ans\>L1:L1(2)\>M1:[L1(1)+M1(1)]\>Ans

DEQ(99,0,1,.1,[0])\>M2 yields an end value of y(1)=0.718279... correct is

0.718281.., from y(x) = exp(x)-x-1 => with 0.1 steps here accurate

to 0.00001

ii)
Solve y''=2y'^2y^3 in x=0..1,y(0)=1,y'(0)=-1

Sol: P88: Ans\>L1:L1(2)\>M1:[M1(2),2*(M1(2)^2/M1(1)-M1(1)^2)]\>Ans

Subst y1' = y2, y2'=2y2^2/y1-2y1^2

DEQ(88,0,1,.1,[1,-1])\>M2 yields end values [0.333,-0.333]

correct is y(x)=1/(x^2+x+1) => precise soln.

See the math literature (or the HP48 user's guide) on how to convert higher order diff. eqs. to a system of single order ones (as has been done in the last example).

The algorithm is a 4th order Runge-Kutta with fixed step size. If it takes to long, press . (the decimal dot key). To be sure about the accuracy, different stepwidth may be tried to see if they lead to the approximately same end value.

15. Nonlinear Optimization with NLOP: Finds the minimum of a one- or multidimensional function, more precisely the minimum which is closest to the starting point. There is no guarantee to find the global minimum (and no algorithm exists that is guaranteed to find it in a finite time).

Try the famous Rosenbrock test function, which converges particularly slow (takes a few minutes):

P77: Ans\>M1:100*(M1(2)-M1(1)^2)^2+(1-M1(1))^2\>Ans

NLOP(77,.1,.001,100,[0,0])->{1,0.00001,[0.99..,0.99..]}.

The exact solution is f([1,1])=0.

Here the initial step width is 0.1, the terminating step width 0.001, and the maximum number of iterations is 100. The algorithm stops when the minimum step width or the maximum number of iterations is reached, whichever occurs earlier. The latter case is indicated by a result {0,...} It it takes too long, press . (the decimal dot key). To be sure about the 'globalness' of a minimum, different starting vectors may be tried.

Restrictions on the variables can be introduced with penalty functions that transform the variables. Example: For the condition x >= a, use the transformation x = a+y^2.

The Hooke-Jeeves algorithm used here is simple and fast (yet still slow on a pocket calculator). It fails if more than one variable must be changed per step to minimize the function further.

16. The keyboard debounce of the HP39/40 is too conservative, i.e. keys go lost if pressed in a fast sequence. The factory value is KEYTIME(1365). With KEYTIME(400) debouncing becomes faster than very fast typing, but is still effective (on _my_ HP40).

17. UHR (German for clock) is a kind of wrist watch replacement: Executing UHR turns off the calc. From now on the ON key toggles between calc off and a display of the current date and time. To exit from this loop, press a key different from ON (like ENTER) when the calc is on. Sounds more complicated than it is.

To get to know all commands, browse through the AA help function. If the help text seems obscure (no room for verbose explanations), try the command.

Unresolved Issues

- String operations. Will be in a different lib later, this one is big enough now.

- Interrupt-based alarm. Not sure if the OS allows this. Seems it does not even know about the user interrupts the other HP4x calcs have.

Bug reports, suggestions, answers to

martin.lang@biotronik-erlangen.de

