1 Buffon’s Needle

Probability theory is the mathematics of the 20" century. Its history goes back
to the 16" century, but not until the previous century did physicists and engi-
neers fully realize that nature and the real world can be described exhaustively
only by the laws governing their randomness. What physicists had considered
exact until relatively recently, turned out to be merely the mean value of a much
more impressive structure; and mean values can be very misleading. (“Put one
foot in an ice bucket, and the other in boiling water; then on the average you
will be comfortable.”) Strange to relate, even as brilliant a physicist as Albert
Finstein regarded the probalistic laws of quantum mechanics as testimony to
our ignorance rather than as a valid description of the laws of nature.

The beginnings of probability theory go back to the Liber de Iudo aleaz
(The book of games of chance), written about 1526 by Gerolamo Cardono
(1501-1576), though not published until 1663. Cardano, of cubic equation fame,
was not only a mathematician, engineer, and physician, but also a passionate
gambler. Until the advent of the kinetic theory of gases in the 19*" century,
probability theory was rarely applied to anything else but gambling. The main
contributors to its development were Jacques Bernoulli I (1654-1705, author
of Ars conjectandi, Blaise Pascal (1623-1662, discoverer of the Pascal Trian-
gle), Abraham De Moivre (1667-1754), Leonhard Euler (1707-1783), Pierre Si-
mon Laplace (1749-1827), Carl Friedrich Gauss (1777-1855), and Sim‘“’eon Denis
Poisson (1781-1840), followed by a large number of mathematicians in the 19"
and 20*" centuries.

The number 7 appears in probability theory very frequently, as it does in all
branches of higher mathematics; but nowhere is its appearance more fascinating
than in a problem posed and solved by George Louis Leclerc, Comte du Buffon
(1707-1788). Buffon (as everybody calls him) was an able mathematician and
general scintist, who shocked the world by estimating the age of the earth to be
about 75,000 years, although every educated person in the 18" century knew
that it was no older than about 6,000 years. Among his exploits is a test of one of
Archimedes’ supposed engines of war used in the defense of Syracuse. As told by
Plutarch, the story includes a plausible description of the action of Archimedes’
cranes and missile throwers, but by the Middle Ages, it had grown into a much
exaggerated legend, and the Book of Histories by the Byzantine author John
Tzetzes (ca. 1120-1183) repeats the story with many embellishments, such as the
statement that Archimedes had burned the Roman ships to ashes at a distance
of a bow shot by focusing the sun’s beams onto the Roman fleet. The story
(which is not contained n Plutarch’s description) has persisted in many books
down to our own day. Buffon, a man of considerable means and spare time,
decided to test the feasibility of such a machine. Using 168 flat mirrors six by
eight inches in an adjustable framework, he was able to ignite wooden planks at
a distance of 150 feet, and he satisfied himself that Archimedes’ alleged exploit
was feasible. He did not, however, satisfy posterity, since the Syracusans would
hardly have had the same leisure to focus 168 beams, nor would the Roman
ships floating on the sea have held as still as Buffon’s beams on the ground.



But back to Buffon’s problem involving w. The problem which he posed
(and solved) in 1777 was the following: Let a needle of length L be thrown at
random onto a horizontal plane ruled with parallel straight lines spaced by a
distance d (greater than L) from each other. What is the probability that the
needle will intersect one of these lines?

We assume that “at random” means that any
position (of the center) and any orientation of nearest line ]
the needle are equally probable and that these x
two random variables are independent. Let the
distance of the center of the needle from the needle
nearest line be x, and let its orientation be given
by ¢ (figure 1). Since x is measured from the
nearest line, we need only consider a single line, because the others involve only
repetition of the same solution.

It is obvious from the figure that the needle will intersect a line if and only
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Figure 1: Buffon’s needle
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The problem is therefore equivalent to finding the probability
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Figure 2: Buffon’s problem O<op<m

These are the intervals of possible values of x and ¢, and therefore any point
inside rectangle OA corresponds to one and only one possible combination of
position (z) and orientation (¢) of the needle. Since all such combinations
are equiprobable, and the area of the rectangle represents the sum total of all
possibilities that can arise (because, not quite beyond reproach, we regard this
area as made up of all points inside it). However, not all of these possibilities
will result in an intersection of the needle with a line; such an intersection, as
we have found, will take place only under condition (1), that is, for positions
and orientations corresponding to points lying below the curve z = %L sin ¢ in
Figure 2, so that the sum total of possibilities resulting in the intersection by
the needle is given by the area under this curve. If, then, probability is the
ratio of the number of favorable, to the number of possible, events under given
conditions, the probability of intersection is given by the ratio of the shaded



part to the entire rectangle OA in Figure 2, that is, the required probability (2)
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This is the result Buffon derived. He also attempted an experimental ver-
ification of his result by throwing a needle many times onto ruled paper and
observing the fraction of intersections out of all throws. Whether he modified
his result for an evaluation of ™ we do not know, but the problem and its solution
were largely forgotten for the next 35 years, until one of the great mathemati-
cians with whom France has been blessed, called attention to it and gave it a
new twist.

Pierre Simon Laplace was one of the “three great L’s” among French math-
ematicians of the time. The other two, Joseph Louis Lagrange (1736-1813)
and Adrien Marie Legendre (1752-1833), were his contemporaries, and all three
survived the French Revolution as members of the Committee of Weights and
Measures, which discarded the cubits, feet, pounds, and miles of the old regime
and worked out the metric system as we use it today. It was, incidentally, an-
other mathematician, Lazare Carnot (1753-1823) who saved the young French
republic in its hour of greatest need. Scared out of their wits by the cry for
liberty, equality, and fraternity, Europe’s kings, princes, princelings, dukes, and
whatnots turned on the Revolution. Threatened by internal confusion and the
invading armies deep inside France, the Revolution seemed about to be crushed;
but Carnot, member of the Committee for Public Safety in charge of military
affairs, took command and sent the invaders packing on all fronts, becoming or-
ganisateur de la victorire, the hero of the French Revolution. But like so many
other sincere revolutionaries after him, Carnot soon observed that a revolution
only replaces one tyranny by another, and refusing to go along with its excesses,
was driven into exile as a “royalist.” Significantly, his chair of geometry at the
Institult National was unanimously voted to a general; a general by the name of
Napoleon Bonaparte, another one in a long line of power-hungry careerists who
was to preach liberty and practice oppression.

Laplace is known, above all, for authoring two masterpieces, Méchanique
céleste (five volumes, 1799-1825) and Théorie analytique des probabilites (1812).
The former was the greatest work on celestial mechanics since Newton’s Prin-
cipia, including many new mathematical techniques, such as the theory of po-
tential. Asked by Napoleon why in the entire work on celestial mechanics he
had not once mentioned God, Laplace replied, Sire, je n’avais pas besoin de
cette hypothése—Sire, I had no need of that hypothesis. Napoleon, inciden-
tally, appointed Laplace Minister of Interior, but after six weeks dismissed him
again, commenting that he “carried the spirit of the infinitely small into the
management of affairs.” The Théorie analytique is the foundation of modern
probability theory. Among many new mathematical techniques it contains the
integral transform that is today the daily bread of every systems engineer and
analyst of electrical circuits.



It also contains a discussion of Buffon’s problem, which Laplace saw in a
new light. From the first and last expressions in (3) we have
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and this is an entirely new method of evaluating m: The length of the needle L
and the spacing between the lines d are known (usually one makes L = d),
and the probability of intersection P can be measured by throwing a needle
onto ruled paper a very large number of times, recording the fraction of throws
resulting in an intersection of the needle with a line.

This method, which Laplace generalized for paper with two sets of mutually
perpendicular lines, has been used by several people as a playful diversion to
calculate the first decimal places of 7™ by thousands of throws. One of them was
a certain Captain Fox, who indulged in this sport while recovering from wounds
incurred in the American Civil War.

2 The Buffon Aplet

Transfer the aplet to your HP 39g using whatever method you normally use for
transferring aplets to your calculator.

Upon starting, the aplet simply prompts [ozzez = 1o
you to press ENTER for each toss of the nee- |HITz = &
dle. Each toss places the center of the needle |[M © 3-33333333334
between the two lines, oriented at a random
angle. The number of tosses so far is displayed
and, if the number of “hits” or line crossings is
not zero, it and the current estimate of 7 are also displayed.

Don’t be surprised if two different runs produce two different results. The
aplet does not reset the random number generator, so each run starts with the
current machine state.




