99 Bottles of Beer

Kiyoshi Akima
http:/ /kiyoshiakima.tripod.com /funprogs

2006.04.27

Contents

1 The Song 1
2 A Program for the HP 48 2
3 A Program in System RPL 3
3.1 Inmitialization L 3
311 Stack ... 3

3.1.2 Display e 3

3.1.3 Output Strings oo 4

314 Scrolling 4

3.1.5 Number of Bottles 4

3.1.6 Memory Allocation L. 5

3.2 Doing One Verse i 5
3.21 First Lineo b}

322 Second Line 5

323 Third Line oL 6

324 Fourth Line o 6

33 Clean Up o o e 6
3.31 Display 6

332 Memoryl 6

4 Comparing the Programs 7
4.1 SiZe e 7
4.2 Speed 7
4.3 Development Time oo 7
44 Conclusion 7

5 Building the Program 8
5.1 Literate Programming 8
5.2 Tangling L 9
53 Compiling 9
54 Assembling 9
5.5 Linking 9

A Index of Code Fragments 10

1 The Song

Okay, you all know the song. You sang it to while away the hours while riding
the bus to summer camp. Or in the back of your parents’ car on the way to the
beach. Admit it, I know you sang it.

Ninety-nine bottles of beer on the wall,
Ninety-nine bottles of beer.

Take one down, pass it around,
Ninety-eight bottles of beer on the wall.

Ninety-eight bottles of beer on the wall,
Ninety-eight bottles of beer.

Take one down, pass it around,
Ninety-seven bottles of beer on the wall.

Two bottles of beer on the wall,
Two bottles of beer.

Take one down, pass it around,
One bottle of beer on the wall.

One bottle of beer on the wall,
One bottle of beer.
Take one down, pass it around,
No more bottles of beer on the wall.

It shouldn’t take much to write a computer program to generate all the verses;
after all, computers are supposed to be good at this sort of mindless, repetitive
drudgery.

No, it shouldn’t take much, and it doesn’t. It’s been done. Done a Iot.

There’s a web site called 99 Bottles of Beer that collects and showcases
versions written in various programming languages. As of this writing there are
over nine hundred versions available. It may be over a thousand by the time
you read this. (The URL is http://wuw.99-bottles-of-beer.net .)

So who has more time to waste? A person who sings the song or a person who
writes a program to generate the verses? (Or is it the people who maintain the
above-mentioned site?)

I don’t mean to poke fun at the site. After all, ’'m spending time writing this
document. And the site does showcase an incredible variety of languages and
programming styles, ranging from the programming language for the Babbage
Analytical Engine (yes, there’s an emulator available in case you want to run
this program) to the latest cutting-edge web-based languages. C++ versions
include obfuscated, object-oriented, and extreme template meta-programming
versions. There are even programs shaped like beer bottles.

2 A Program for the HP 48

It doesn’t even take a computer to generate the verses. Jeromy Carriere has
written a program for the HP 48 programmable calculator and contributed it
to the collection at 99 Bottles of Beer. With minor formatting changes, it is
reproduced here:

As written, this program generates the last ten verses and leaves the strings on
the stack. A simple change makes it generate all 99 verses, albeit at a cost in
time and stack space.

3a

3b

3c

3d

3 A Program in System RPL

This program is my contribution to the collection. While also intended for the
HP 48, this one is written in System RPL (SysRPL). SysRPL is an intermediate-
level language between UserRPL (programs entered from the keyboard) and the
machine language understood by the processor.
(beer.s 3a)= 3bo
(99 Bottles of Beer)
(HP 48 SysRPL Version)

(by Kiyoshi Akima)
(k_akima@hotmail.com)
(2006.04.24)
ASSEMBLE

NIBASC /HPHP48-B/
RPL

The program consists of initialization, a main loop doing one verse at a time
until it runs out of beer, and clean up.

(beer.s 3a)+= <3a

(initialize 3c)
BEGIN
(do one verse 5b)

1GETLAM #0= UNTIL

(clean up 6d)
Unlike Jeromy’s program, this program will display seven lines at a time on
the screen. Each additional line will scroll the others up the screen, like a tele-
prompter (or the opening scene in Star Wars but without the 3-D perspective
effects and without the soundtrack).

3.1 Initialization

Before going into the main loop, the program needs to initialize.

3.1.1 Stack

The program expects no arguments on the stack.
(initialize 3c)= (3b) 3dv
AtUserStack

3.1.2 Display

Before the program starts the main loop, it turns off the ticking clock (whether

or not it’s actually displayed) and turns off the menu.

(initialize 3c)+= (3b) <3c 4ap
RECLAIMDISP ClrDA1IsStat TURNMENUOFF

4a

4b

4c

4d

4e

4f

4g

3.1.3 Output Strings

The calculator’s screen has seven usable rows of text, and the program will use

all of them. The program will scroll the text up the screen as it goes. While

the system is capable of doing a smooth pixel-by-pixel scroll, this program does

it line-by-line. (The interested reader is welcome to make this enhancement.)

(initialize 3c)+= (3b) <3d 4b>
NULL$ SEVEN NDUPN DROP

3.1.4 Scrolling

A secondary will scroll the display and add a new line at the bottom.
(initialize 3c)+= (3b) <4a 4gp>

b

(scroll display 4c)
First, the six lines at the bottom are moved up one line.
(scroll display 4c)= (4b) 4dp
3GETLAM 4GETLAM 5GETLAM 6GETLAM 7GETLAM 8GETLAM
9PUTLAM 8PUTLAM 7PUTLAM 6PUTLAM 5PUTLAM 4PUTLAM

Then the new line is added at the bottom.

(scroll display 4c)+= (4b) <dc 4dep>
3PUTLAM

And finally the display is redrawn.

(scroll display 4c)+= (4b) <4d
3GETLAM 4GETLAM b5GETLAM 6GETLAM 7GETLAM 8GETLAM O9GETLAM
DISPROW1 DISPROW2 DISPROW3 DISPROW4 DISPROW5 DISPROW6 DISPROW7

If you want to slow down the program, this is one possible place to insert a
delay loop. One such delay loop is presented here. This loop takes a square
root once for each bottle of beer on the wall. Note that this causes the delay to
get shorter and shorter as the program progresses.
(possible delay loop 4f)=

1GETLAM UNCOERCE

1GETLAM ZERO_DO (DO)

%SQRT
LOOP
DROP

3.1.5 Number of Bottles

And, of course, the program needs to keep track of the number of bottle(s) of

beer on the wall.

(initialize 3c)+= (3b) <4b 5a>
99

5a

5b

5¢

5d

3.1.6 Memory Allocation

The seven display strings, the scroll secondary, and the number of bottles are
placed in a null-named temporary environment for easy access. A null-named
temporary requires the program to access the elements by position instead of
by name, but no memory is required for names and given the small number of
elements, the burden on the programmer is minimal.

The program possibly could be made smaller and/or faster if the seven
strings were put into a single list instead of seven separate variables. But this
is the way I thought of it when I started writing the program and so this is the
way it is.

By the way, it’s no coincidence that the secondary is the second item on the
stack. There just happens to be the word 2GETEVAL which does the equivalent
of | :: 2GETLAM EVAL ; |
(initialize 3c)+= (3b) <4g

NULLLAM NINE NDUPN {}N BIND

3.2 Doing One Verse

This is the heart of the program. Each iteration of the loop cranks out one
verse, taking down one bottle of beer and handing it around.

3.2.1 First Line

First, the first line. Due to size constraints, this line is broken into two portions:

z) o 7 2”7 A copy of the first portion is
left on the stack for the second line.
(do one verse 5b)= (3b) 5dp

1GETLAM #>$
(build “‘bottle(s) of beer” 5c)
DUP 2GETEVAL
" on the wall," 2GETEVAL

The rules of correct grammar require proper handling of the singular case.

(build “‘bottle(s) of beer” be)= (5b 6¢)
" bottle" &$
1GETLAM #1<> IT :: CHR_s >T$;
" of beer" &$

3.2.2 Second Line

Then the second line. Much of it was already built for the first line and left on
the stack.

(do one verse 5b)+= (3b) <5b 6ap
CHR_. >T$ 2GETEVAL

6a

6b

6¢

6d

6e

3.2.3 Third Line

Then the third line. Again due to size constraints, this line is broken into two
portions: -+ and ¢ & L
(do one verse 5b)+= (3b) <5d 6bp
"Take one down," 2GETEVAL
" pass it around." 2GETEVAL

And the program fits its actions to its words, reducing the number of bottles on
the wall by one.

(do one verse 5by+= (3b) <6a 6cb>
1GETLAM #1- 1PUTLAM

3.2.4 Fourth Line

And finally the fourth line. And again due to size constraints, this line is broken
into two portions just like the first line.

The line built here could almost be used as the first line of the next verse,
the only difference being the punctuation mark at the end. However, that would
be too much like cheating. And it’s not as if we’re after maximum speed and /or
minimum memory.

(do one verse 5b)+= (3b) <6b
1GETLAM #0=ITE
"No more"
: 1GETLAM #>$;
(build “‘bottle(s) of beer” 5c)
2GETEVAL
" on the wall." 2GETEVAL

3.3 Clean Up

Before terminating, the program needs to restore the display and free allocated
memory.

3.3.1 Display

When the program is finished, it turns the menu back on and relinquishes the
display, telling the system to update it.

(clean up 6d)= (3b) 6er
TURNMENUON RECLAIMDISP ClrDAsOK

3.3.2 Memory

The program also needs to dispose of the temporary environment.

(clean up 6d)+= (3b) <6d
ABND

4 Comparing the Programs

Given that the two programs don’t do the same thing (their modes of output
are completely different), it’s not easy (nor necessarily meaningful) to compare
them. However, here goes.

4.1 Size

The source code for my program is about twice the size of Jeromy’s. But that’s
not what really matters. Jeromy’s program is a little over 400 bytes in size,
while mine is a little under 400, a ten-percent difference. Given that an HP
48GX has 128K of RAM, this hardly seems significant.

My program requires memory for the seven displayed strings and the next
one as it’s being built. Jeromy’s program takes much more memory to run
because it leaves all the strings on the stack. Still, even for all 99 verses, it’s
only about a tenth of the total memory of an HP 48GX.

4.2 Speed

This is where the two programs really differ. For all 99 verses, Jeromy’s takes
about three seconds while mine takes more than sixty. This is not because Sys-
RPL is slower than UserRPL (quite the contrary), but because of the difference
in output modes. In order to actually see the verses generated by Jeromy’s
program, you have to scroll through the stack. My program displays every line
of every verse on the screen, though probably faster than you can read it—it’s
certainly faster than I can read.

Just for fun, I hacked Jeromy’s program to display its results in a fashion
similar to mine. I didn’t bother to break up the long lines, so it only produced
four lines for each verse instead of seven. Even so it took nearly twice as long
as mine.

4.3 Development Time

I was able to get my program running in a couple of hours on a lazy Saturday af-
ternoon (writing the rest of this document took somewhat longer). I don’t know
how long it took Jeromy to write his program, but I’'m sure it was significantly
less.

4.4 Conclusion

This comparison is not intended to show that one program is better than the
other. They both do the job with a reasonable amount of resources and in
adequate time (given the platform). Rather, I hope it points out some of the
differences between two of the available programming languages for the HP 48,
as well as illustrating two different approaches to solving the same problem.

Anyone care to try it in the Saturn assembly language? If you do, please
submit it to the 99 Bottles of Beer site.

5 Building the Program

Before this program can be run on the calculator, it must first be built.

5.1 Literate Programming

This document not only describes the implementation of Ninety-nine Bottles of
Beer, it is the implementation. The noweb system for “literate programming”
generates both the document and the program code from a single source. This
source consists of interleaved prose and labelled Code Fragments. The fragments
are written in the order that best suits describing the program, namely the
order you see in this document, not the order dictated by the programming
language. The program noweave accepts the source and produces the document’s
typescript, which includes all of the code and all of the text. The program
notangle extracts all of the code, in the proper order for compilation.

Fragments contain source code and references to other fragments. Fragment
definitions are preceded by their labels in angle brackets. Several fragments may
have the same name; notangle concatenates their definitions to produce a single
fragment. noweave identifies this concatenation by using + = instead of = in
continued definitions:

Fragment definitions are like macro definitions; notangle extracts a program
by expanding one fragment. If its definition refers to other fragments, they
themselves are expanded, and so on.

Fragment definitions include aids to help readers navigate among them. Each
fragment name ends with the number of the page on which the fragment’s
definition begins and a letter giving its sequence within that page. If there is
only one fragment on a page then there is no letter. This is also shown in the
left margin. Each continued definition also shows the previous definition, and
the next continued definition, if there is one. < 7b is an example of a previous
definition that appears on page 7, and 11 > says the definition is continued on
page 11. These annotations form a double linked list of definitions; the left
arrow points to the previous definition in the list and the right arrow points to
the next one. The previous link on the first definition is omitted, and the next
link on the last definition is omitted. These lists are complete: If some of a
fragment’s definition appears on the same page with each other, the links refer
to the page on which they appear.

Most fragments also show a list of pages on which the fragment is used. These
unadorned use lists are omitted for root fragments, which define modules.

Of course, the simple fact that the documentation can be placed right next
to the code doesn’t necessary mean that the documentation and the code match,
nor that either is any good. Still, it’s a good start. ..

For more information about the noweb system of literate programming,
please refer to http://www.eecs.harvard.edu/ nr/noweb.

5.2 Tangling

The following command line will extract the program source from the noweb
document:

notangle -Rbeer.s -t4 beer48.nw >beer.s
This will create the file beer.s.

5.3 Compiling

Once the program source has been extracted, it can be compiled with the fol-
lowing command line.

rplcomp beer.s beer.a
This will produce an assembly file beer.a.

5.4 Assembling

The assembly file can then be assembled with the following command line:
sasm beer.a
This will produce an object file beer.o and a listing file beer.1.

5.5 Linking

The linker requires a command file:
(beer.m 9)=
LL beer.lr
0U beer
RE beer.o
SE c:\hp48\lib\entries.o
SU XR
This linker command file can be extracted from the noweb document with the
following command line:
notangle -Rbeer.m beer48.nw >beer.m
This will create the file beer.m. (You will probably have to edit the location of
entries.o to match your directory structure.) Then the linker can be run with
this command line:
sload -H beer.m
If all goes well, this will produce an HP 48 binary beer and a listing file beer. 1r.
The binary can then be transferred to the HP 48, stored in a variable, and
executed like any other program.

For further details on the building process, please consult the appropriate HP
documentation.

A Index of Code Fragments

Underlined entries are to the definition of the Code Fragment. In many cases,
the definition of a fragment can be continued from one piece to another.

(beer.m 9) 9
(beer.s 3a) 3a, 3b
(build “ bottle(s) of beer” 5c) 5b, 5¢, 6c¢
(clean up 6d) 3b, 6d, 6e

(do one verse 5b) 3b, 5b, 5d, 6a, 6b, 6¢
(

(

(

initialize 3c) 3b, 3c, 3d, 4a, 4b, 4g, 5a
possible delay loop 4f) 4f
scroll display 4c) 4b, 4c, 4d, 4e

10

