
An Enigma in the Palm of Your Hand
Kiyoshi Akima

http://kiyoshiakima.tripod.com/funprogs

2006.04.27

i

Contents
1 Rotor-Based Cipher Machines 1

2 The Enigma 2
2.1 Machine Components . 2

2.1.1 Rotors . 2
2.1.2 Stepping Motion . 3
2.1.3 Re�ector . 4
2.1.4 Plugboard . 4

2.2 Basic Operational Procedures . 4
2.2.1 Indicators . 5
2.2.2 Abbreviations and Guidelines 6

2.3 Variants . 7
2.4 Breaking the Enigma . 7

2.4.1 Security Properties . 8
2.4.2 Solution Before World War II 8
2.4.3 World War II . 9

3 Emulating the Enigma on the HP 48 10

4 Key Entry 12
4.1 Prompting for Input . 12
4.2 Rotor Order . 12
4.3 Ring Settings . 13
4.4 Plugboard Connections . 13
4.5 Starting Rotor Positions . 13

5 Con�guring the Virtual Machine 14
5.1 Preparing . 14

5.1.1 Converting an ASCII String to Binary 14
5.1.2 Converting a List to a String 14
5.1.3 Breaking out a String . 14
5.1.4 Rotor Con�guration . 15
5.1.5 Storing it Away . 16

5.2 Re�ector . 16
5.3 Plugboard . 16
5.4 Rotors . 17

5.4.1 Notches and Wiring . 17
5.4.2 Ring Settings . 17
5.4.3 Initial Positions . 18
5.4.4 Keeping in Range . 18
5.4.5 Translation . 18

5.5 Input and Output . 18
5.6 Loop Exit . 19
5.7 Finishing . 19

6 Enciphering Text 20
6.1 Controlling the Display . 20
6.2 Getting a Keystroke . 20
6.3 Checking Special Keys . 21

6.3.1 Clearing the Screen . 21
6.3.2 Entering New Rotor Positions 21
6.3.3 Terminating the Loop . 21
6.3.4 Ignoring Other Keys . 22

6.4 Enciphering One Letter . 22
6.4.1 Plaintext . 22
6.4.2 Rotor Step . 22
6.4.3 Plugboard . 23
6.4.4 Rotors . 23
6.4.5 Re�ector . 23
6.4.6 Rotors . 23
6.4.7 Plugboard . 24
6.4.8 Ciphertext . 24

6.5 Finishing Up . 24

7 Running the Program 25
7.1 Basic Operation . 25
7.2 An Example . 26

7.2.1 Entering the Key . 26
7.2.2 Deciphering the Message 27
7.2.3 Doing it With Four Rotors 27

A Literate Programming 28

B Building the Program 29
B.1 Tangling . 29
B.2 Compiling . 29
B.3 Assembling . 29
B.4 Linking . 29

A Index of Code Fragments 30

April 27, 2006 1

1 Rotor-Based Cipher Machines
World War I brought a new dimension to cryptography and cryptanalysis. The
traditional paper-and-pencil cryptographic systems, the classical cipher systems
and simple code systems, had become targets of opportunity for Allied crypt-
analysts. Even the ADFGVX Cipher, then believed by its users to o�er the
ultimate in security, by war's end o�ered only token resistance to the shillful
e�orts of French, British, and American cryptanalysts. By the time the war
ended in 1918, Allied code and cipher experts ahd become con�dent that they
could handle almost any type of system they might encounter.

After the war, however, there began a new era for cryptographic ideas. In-
ventors began thinking about new encryption methods. The U.S. Patent O�ce
began processing patent applications for anew cipher devices and machines.
The most important invention was a new electro-mechanical enciphering and
deciphering machine. With this invention emerged the concept of the electrical
rotor or �transfer wheel,� which until the late 1960s has held a prominent and
important, if not guarded, place in the cryptographic community. (Incidentally,
it is not certain where or when the word �rotor� �rst came into usage; and it is
curious, too, that the word is a palindrome.)

Rotor machines appear to have been independently, and almost simultane-
ously, invented in four di�erent countries, in the U.S. by E. H. Hebern, in Sweden
by A. Damm, in Holland by H. Koch, and in Germany by A. Scheribius. Koch
later worked with Scheribius in Berlin where together they produced the now
infamous Enigma ciper machine of World War II.

A rotor is simply a �attened drum made of an insulating material. On each
of the rotor's two faces, 26 electrical contacts protrude. Intermally, the contacts
from one face are connected randomly to those on the other face. In the typical
rotor machine, a number of rotors, usually three to �ve, are placed side-by-side,
so that electrically the rotors have contact with each other. When a key is
pressed on a keyboard, an electrical current leaves the key, passes through each
of the rotors, in turn, and �nally exits, causing a bulb (lamp) to light, or, by
means of some form of printing mechanism, to print a letter. Before the next
letter is enciphered, �stepping gears� usually cause one or more of the rotors
(which contain teeth on their peripheries) to rotate or step. Cryptographic
security in a rotor-type cipher machine is thus due to the maze of electrical
connections between the keyboard and the indicating device, which changes as
letters are enchiphered. While previous machines often used 26 di�erent enci-
phering alphabets in some pseudorandom manner, the new rotor-type machines
were capable of producing as many as 26n di�erent enciphering alphabets with n
rotors.

So important was the concept of the rotor that during World War II most of
the major powers used machines incorporating it. For example, Germany had
the Enigma, Britain the Typex, and U.S. the SIGABA (M-134).

April 27, 2006 2

2 The Enigma
Like other rotor machines, the Enigma machine is a combination of mechanical
and electrical systems. The mechanical mechanism consists of a keyboard; a
set of rotating disks called rotors arranged adjacently along a spindle; and a
stepping mechanism to turn one or more of the rotors with each key press. The
exact mechanism varies, but the most common form is for the right-hand rotor
to step once with every keystroke, and occasionally the motion of neighboring
rotors is triggered. The continual movement of the rotors results in a di�erent
cryptographic transformation after each key press.

2.1 Machine Components
The mechanical parts act in such a way as to form a varying electrical circuit�
the actual encipherment of a letter is performed electrically. When a key is
pressed, the circuit is completed; current �ows through the various components
and ultimately lights one of many lamps, indicating the output letter. For
example, when encrypting a message starting ANX..., the operator would �rst
press the A key, and the Z lamp might light; Z would be the �rst letter of the
ciphertext. The operator would then proceed to encipher N in the same fashion,
and so on.

2.1.1 Rotors
The rotors (alternatively, wheels or drums�Walzen in German) form the heart
of the Enigma machine. Approximately four inches in diameter, each rotor is a
disk made of hard rubber or bakelite with a series of brass spring-loaded pins
on one face arranged in a circle; on the other side are a corresponding number
of circular electrical contacts. The pins and contacts represent the alphabet�
typically the 26 letters A-Z (this will be assumed for the rest of the document).
When placed side by side, the pins of one rotor rest against the contacts of
the neighboring rotor, forming an electrical connection. Inside the body of the
rotor, a set of 26 wires connects each pin on one side to a contact on the other
in a complex pattern. The wiring di�ers for every rotor.

By itself, a rotor performs only a very simple type of encryption�a simple
substitution cipher. For example, the pin corresponding to the letter E might
be wired to the contact for letter T on the opposite face. The complexity comes
from the use of several rotors in series�usually three or four�and the regular
movement of the rotors; this provides a much stronger type of encryption.

When placed in the machine, a rotor can be set to one of 26 positions. It
can be turned by hand using a grooved �nger-wheel which protrudes from the
internal cover when closed. So that the operator knows the position, each rotor
has a alphabet ring attached around the outside of the disk, with 26 letters or
numbers; one of these can be seen through a window, indicating the position of
the rotor to the operator. The position of the ring is known as the Ringstellung
(�ring settings�). In the military versions, the ring contains a notch used to
control the stepping of the rotors.

April 27, 2006 3

The Army and Air Force Enigmas came equipped with several rotors; when
�rst issued there were a total of three. In 1938 this changed to �ve, from which
three were chosen for insertion in the machine. These were marked with Roman
numerals to distinguish them: I, II, III, IV, and V, all with single notches. The
Navy version had always been issued with more rotors than the other services:
at �rst, �ve, then seven and �nally eight. The additional rotors were named
VI, VII, and VIII, all with di�erent wiring, and had two notches cut into them,
resulting in a more frequent turnover.

The four-rotor Navy Enigma (M4) accommodated an extra rotor in the same
space as the three-rotor version. This was accomplished by replacing the original
re�ector with a thinner re�ector and adding a special fourth rotor. The fourth
rotor can be one of two types: Beta or Gamma. This fourth rotor never steps,
but can be manually placed in any of the 26 positions.

2.1.2 Stepping Motion
To avoid merely implementing a simple substitution cipher, some rotors turn
with consecutive presses of a key. This ensures that the cryptographic trans-
formation is di�erent at each position, producing a formidable polyalphabetic
substitution cipher.

The most common arrangement utilizes a ratchet and pawl mechanism. Each
rotor is a�xed with a ratched with 26 teeth; a group of pawls engage engage
the teeth of the ratchet. The pawls are pushed forward in unison with each
keypress on the machine. If a pawl engages the teeth of a ratchet, that rotor
advances by one step.

In the Wehrmacht Enigma, each rotor is a�xed with an adjustable notched
ring. At a certain point, a rotor's notch will align with the pawl, allowing it
to engage the ratchet of the next rotor with the subsequent keypress. When a
pawl is not aligned with the notch, it will simply slide over the surface of the
ring without engaging the ratchet. In a single-notch rotor system, the second
rotor is advanced one position every 26 advances of the �rst rotor. Similarly, the
third rotor is advanced one position for every 26 advances of the second rotor.
The second rotor also advances at the same time as the third rotor, meaning
the second rotor can step twice on subsequent key presses��double-stepping��
resulting in a reduced period.

A double step occurs as follows: the �rst rotor steps, and takes the second
rotor one step further. If the second rotor has moved by this step into its own
notch position, the third pawl can drop down. On the next step this pawl pushes
the ratchet of the third rotor and advances it, but will also push into the second
rotor's notch, advancing the second rotor a second time in row.

With three wheels and one notch on each wheel, the machine has a period
of 26 × 25 × 26 = 16 900. Historically, messages were limited to a couple of
hundred letters, and so there was no risk of repeating any position within a
single message.

When pressing a key, the rotors step before the electrical circuit is connected.

April 27, 2006 4

2.1.3 Re�ector
The last rotor is followed by a re�ector (Umkehrwalze in German), a patented
feature distinctive of the Enigma family among the various rotor machines de-
signed in the period. The re�ector connects outputs of the last rotor in pairs,
redirecting current back through the rotors by a di�erent route. The re�ector
ensures that Enigma is self-reciprocal: conveniently, encryption is the same as
decryption. However, the re�ector also gives Enigma the property that no let-
ter can encrypt to itself. This was a severe conceptual �aw and a cryptological
mistake subsequently exploited by codebreakers.

In most models of the Enigma, the re�ector is �xed and does not rotate.

2.1.4 Plugboard
The plugboard (Steckerbrett in German) is a variable wiring that could be
recon�gured by the operator. It was introduced on German Army versions
in 1930 and was soon adopted by the Navy as well. The plugboard contributes a
great deal to the strength of the machine's encryption, more than an extra rotor
would. Enigma without a plugboard��unsteckered� Enigma�can be solved
relatively straightforwardly using hand methods; these techniques are generally
defeated by the addition of a plugboard, and codebreakers resorted to special
machines to solve it.

A cable placed onto the plugboard connects letters in pairs, for example, E
and Q might be a steckered pair. The e�ect is to swap those letters before and
after the main rotor scrambling unit. For example, when an operator presses
E, the signal is diverted to Q before entering the rotors. Several such steckered
pairs, up to 13, might be used at one time.

Current �ows from the keyboard through the plugboard, and proceeds to
the entry stator or Eintrittswalze. Each letter on the plugboard has two jacks.
Inserting a plug will disconnect the upper jack (from the keyboard) adn the
lower jack (to the entry stator) of that letter. The plug at the other end of the
crosswired cable is inserted into another letter's jacks, switching the connections
of the two letters.

2.2 Basic Operational Procedures
In German military usage, communications were divided up into a number of
di�erent networks, all using di�erent settings for their Enigma machines. These
communications nets were termed keys at Bletchley Park and were assigned
codenames such as Red, Cha�nch, and Shark. Each unit operating on a network
was assigned a settings list specifying the Enigma for a period of time. For a
message to be correctly encrypted and decrypted, both sender and receiver
have to set up their Enigmas in the same way; the rotor selection and order,
the starting position plugboard connections need to be identical; these settings
have to be agreed on beforehand and were distributed in codebooks.

April 27, 2006 5

An Enigma machine's initial state, the cryptographic key, has several as-
pects:

• Wheel order (Walzenlage)�the choice of rotors and the order in which
they are used.

• Initial position of the rotors�chosen by the operator, di�erent for
each message.

• Ring settings (Ringstellung)�the position of the alphabet ring rela-
tive to the rotor wiring.

• Plug settings (Steckerverbindungen)�the connections of the plugs
in the plugboard.

Enigma was designed to be secure even if the rotor wiring was known to an
eavesdropper, although in practice the wiring was kept secret. With secret
wiring, the total number of possible con�gurations has been calculated to be
around 10114 (approximately 380 bits); with known wiring and other operational
constraints, this is reduced to around 1023 (76 bits). Users of Enigma were
assured of its security by the large number of possibilities; it was not feasible for
an adversary to even begin to try every possible combination in a brute force
attack.

2.2.1 Indicators
Most of the key were kept constant for a set time period, typically a day. How-
ever, a di�rent initial rotor position was chosen for each message, because if a
number of messages are sent encrypted with identical or near identical settings,
a cryptanalyst has several messages �in depth,� and might be able to attack the
messages using frequency analysis. To counter this, a di�erent starting position
for the rotors was chosen for each message; a concept similar to an initializa-
tion vector in modern cryptography. The starting position was transmitted
along with the ciphertext. The exact method used is termed the �indicator
procedure��weak indicator procedures allowed the initial breaks into Enigma.

One of the earliest indicator procedures was exploited to make the initial
break into the Enigma by Polish cryptanalysts. The procedure was for the op-
erator to set up his machine in accordance with his settings list, which included
a global initial position for the rotors (Grundstellung��ground setting�), AOH,
say. The operator would turn his rotors until AOH was visible through the rotor
windows. At this point, the operator would choose his own, arbitrary starting
position for that particular message. An operator might select EIN, and this
became the message settings for that encryption session. The operator would
type EIN into the machine, twice, to allow for detecting transmission errors.
The results would be an encrypted indicator�the EIN typed twice might turn
into XHTLOA, which would be transmitted along with the message. Finally, the
operator would then spin the rotors to his message settings, EIN in this example,
and the text of the actual message was typed in.

April 27, 2006 6

At the receiving end the operation was reversed. The operator set the ma-
chine to the initial settings and typed in the �rst six letters of the message
(XHTLOA). In this example EINEIN would be produced. By moving his rotors
to EIN, the receiving operator would then type in the rest of the ciphertext,
deciphering the message.

The weakness came from two factors: the use of a global ground setting�this
was later changed so that the operator selected his initial position to encrypt the
indicator, and sent the initial position in the clear. The second problem was the
repetition of the indicator, which was actually a security �aw. The message key
was encoded twice, resulting in a relation between �rst and fourth, second and
�fth, and third and sixth characters. This security problem enabled the Polish
Cipher Bureau to break the pre-war Enigma messages. However, from 1939 on,
the Germans changed the procedure to increase the security, transmitting the
encrypted indicator only once.

During the Second World War, German operators used the codebooks only
to set up the rotors and ring settings and to make the plugboard connections.
For each message, he selected a random start position, let's say WZA, and random
message key, let's say SXT. He moved the rotors in the WZA start position, and
encoded the message key SXT. Let us assume that the result was UHL. He sets
up the message key SXL as start position, and encode the message. Next, he
transmits the start position WZA, the encoded message key UHL together with the
message. The receiver sets up the start position according to the �rst trigram,
WZA, and decodes the second trigram, UHL, to obtain the SXT message key. Next,
he uses this SXT message key as start position to decode the message. This way,
each ground setting was di�erent and the new procedure avoided the security
�aw of double encoded message keys.

This procedure was used by Army and Air Force only. The Navy procedures
on sending messages with the Enigma were far more complex and elaborate.

2.2.2 Abbreviations and Guidelines
The Army Enigma machine only used the 26 alphabet characters. Signs were
replaced by rare character combinations. A space was omitted or replaced by
an X. The X was generally used as point or full stop. Some signs were di�erent
in other parts of the armed forces. The Army replaced a comma by ZZ and
the question mark by FRAGE or FRAQ. The Navy however, replaced the comma
by Y and the question mark by UD. The combination CH, as in Acht (eight) or
Richtung (direction) was replaced by Q (AQT, RIQTUNG). Two, three, or four zeros
were replaced by CENTA, MILLE, and MYRIA.

The Army and Air Force transmitted the messages in groups of �ve charac-
ters. The Navy, using the four rotor Enigma, applied four letter groups. Fre-
quently used names or words were to be varied as much as possible. Words like
Minensuchboot (minesweeper) could be written as MINENSUCHBOOT, MINBOOT,
MMMBOOT, or MMM354. To make cryptanalysis harder, more than 250 characters
in one message were forbidden. Longer messages were divided in several parts,
each using its own message key.

April 27, 2006 7

2.3 Variants
Far from being a single design, there are numerous models and variants of the
Enigma family. The earliest Enigma machines were commercial models dating
from the early 1920s. Starting in the mid-20s, the various branches of the
German military began to use Enigma, making a number of changes in order to
increase its security. In addition, a number of other nations either adopted or
adapted the Enigma design for their own cipher machines.

The Enigma model A was exhibited at the Congress of the International
Postal Union in 1924 and 1924. The machine was heavy and bulky, incorporating
a typewriter. A model B was introduced, and was of a similar construction.
While bearing the Enigma name, both models A and B were quite unlike later
versions; they di�ered in physical size and shape, but also cryptographically, in
that they lacked the re�ector.

The re�ector was �rst introduced in the Enigma C (1926) model. The re-
�ector is a key feature of all subsequent Enigma machines.

The German Army introduced their own version of the Enigma in 1928.
The major di�erence from the commercial Enigma models was the addition of a
plugboard to swap pairs of letters, greatly increasing the cryptographic strength
of the machine. Other di�erences included the use of a �xed re�ector, and the
relocation of the stepping notches from the rotor body to the movable alphabet
rings.

A four rotor Enigma was introduced by the Navy for U-boat tra�c in 1942.
The extra rotor was �tted in the same space by splitting the re�ector into a
combination of a thin re�ector and a thin fourth rotor. This thin rotor did
not rotate with the other rotors, but it could be set in any of 26 positions. In
one of these positions, the four-rotor Enigma enciphered exactly the same way
as the three-rotor Enigma (wow, déjà vu, emulating a three-rotor machine on
something else).

2.4 Breaking the Enigma
Enigma was designed to defeat basic cryptanalysis techniques by continually
changing the substitution alphabet. Like other rotor machines, it implemented
a polyalphabetic substitution cipher with a long period. With single-notched
rotors, the period of the machine was 16, 900 (26 × 25 × 26). This long period
helped protect against overlapping alphabets.

The Enigma machines added other possibilities. The sequence of alphabets
used was di�erent if the rotors were started in position ABC, as opposed to
ACB; each rotor had a rotatable ring which could be set in di�erent positions,
and the starting position of each rotor was also variable. Most of the military
Enigmas also featured a plugboard (German: Steckerbrett) which exchanged
letters. Even so, this complex combination key could be easily communicated
to another user, comprising as it did only a few simple items: rotors to be used
and their order, ring positions, starting positions, and plugboard connections.
Potentially this made the Enigma an excellent system.

April 27, 2006 8

2.4.1 Security Properties
The various Enigma models provided di�erent levels of security. The presence
of a plugboard substantially increased the complexity of the machine. In gen-
eral, unsteckered Enigma could be attacked using hand methods, while breaking
versions with a plugboard was more involved, and often required the use of ma-
chines.

The Enigma machine had a number of properties that proved helpful to
cryptanalysts. First, a letter could never be encrypted to itself (with the ex-
ception of the early models which lacked a re�ector). This was of great help in
�nding cribs�short sections of plaintext that are known (or suspected) to be
somewhere in a ciphertext. This property can be used to help deduce where the
crib occurs. For a possible location, if any letter in the crib matches a letter in
the ciphertext at the same position, the location can be ruled out; at Bletchley
Park, this was termed a �crash.�

Another property of the Enigma was that it was self-reciprocal: encryption
is performed identically to decryption. This imposed constraints on the type of
scrambling that Enigma could provide at each position, and this property was
used in a number of codebreaking methods.

A weakness of many Enigma models was that the rightmost rotor turned a
constant number of places before the next rotor turned.

Apart from the less-than-ideal inherent characteristics of the machine, the
way Enigma was used proved its greatest weakness in practice. Mistakes by
operators were common, and a number of the o�cially-speci�ed procedures for
using Enigma provided avenues for attack. It has been suggested by some of
those working on its cryptanalysis at Bletchley Park that the Enigma would
have been unbreakable in practice had its operators not been so error-prone,
and had its operating procedures been better thought out.

2.4.2 Solution Before World War II
In December 1932, a 27-year-old Polish mathematician, Marian Rejewski, who
had joined the Polish Cipher Bureau in September that year, made one of the
most important breakthroughs in cryptologic history by using algebraic math-
ematical techniques to solve the Enigma wiring.

At the time, the indicator procedure was to encrypt an operator-selected
message setting twice, with the machine at its �ground setting,� and to place the
twice-encrypted message setting at the opening of the message. For instance,
if an operator picked QRS as his `message setting,' he would set the machine
to the day's ground settings, and then type QRSQRS. This might be encrypted
as JXDRFT. The feature of Enigma that Rejewski exploited was that the disk
moved three positions between the two sets of QRS�knowing that J and R were
originally the same letter, as were XF and DT, was vital information. Although
the original letters were unknown, it was known that, while there were a huge
number of rotor settings, there were only a small number of rotor wirings that
would change a letter from J to R, X to F and D to T, and so on. Rejewski called
these patterns chains.

April 27, 2006 9

However, in 1939 the German Army increased the complexity of its Enigma
operating procedures. Initially only three rotors had been in use, and their
sequence in the slots was changed periodically. Now two additional rotors were
introduced; three of the �ve would be in use at any given time. The Germans
also stopped transmitting a twice-enciphered individual three-letter message
setting at the beginning of a message, thus putting an end to one of the Poles'
original methods of cryptological attack.

2.4.3 World War II
British codebreakers at Bletchley Park had adopted the Polish Enigma-breaking
techniques, but had to remain alert to German cryptographic advances. The
German Army had changed its practices (more rotors, a more secure indicator
system, etc.). The German Navy�some of whose Enigma ciphers the Poles had
broken�had always used more secure procedures.

German Army and Air Force Enigma-machine operators also gave the de-
crypters immense help on a number of occasions. In one instance an operator
was asked to send a test message, and simply hit the T key repeatedly and sent
the resulting letters. A British analyst received from the intercept stations a
long message without a single T in it, and immediately realized what had hap-
pened. In other cases, Enigma operators would constantly use the same settings
as message keys, often their own initials or those of girlfriends (called �cillies,�
after an operator with the apparent initials �C.I.L.�). Analysts were set to �nd-
ing these messages in the sea of intercepts every day, allowing Bletchley Park to
use the original Polish techniques to �nd the initial settings for the day. Other
German operators used �form letters� for daily reports, notably weather reports,
in which case the same crib might be used every day.

Later in the war, British codebreakers learned to fully exploit a crucial se-
curity �aw associated with German weather reports: they were broadcast from
weatherships to Germany in lower-level ciphers, easy to decrypt, then retrans-
mitted to U-boats at sea in Enigma, thus giving Bletchley Park regular cribs.
This was crucial in attacking the special four-rotor U-boat Enigma machine
introduced in 1942.

Cipher material was captured at sea. The �rst capture of Enigma material
occurred in February 1940, when rotors VI and VII, the wiring of which was at
that time unknown, were captured from the crew of U-33. On May 7, 1941, the
Royal Navy captured a German weather ship, together with cipher equipment
and codes. They did it again shortly afterwards. And two days later U-boat U-
110 was captured, complete with Enigma machine, codebook, operating manual
and other information.

And then there was the bombe, a precursor of the modern computer. Space
precludes a discussion of this electro-mechanical marvel: Books have been writ-
ten on the subject so I won't go into it here.

April 27, 2006 10

3 Emulating the Enigma on the HP 48
Real Enigma machines are rare and thus command premium prices. But we can
emulate one on a computer. For many cryptographic systems, emulating one
can be better than having the real thing:

• Availability. Many devices are not available, due either to low production
numbers or government restrictions.

• Cost. Except for the initial cost of the computer, which in most likelihood
was purchased for other purposes, no additional expenses are necessary,
whereas purchase of individual cryptographic devices (assuming that one
could even �nd them for sale) would continually add up. Prices for com-
puters are going down, while the cost for cryptographic devices, if they
can be found, are already high, and climbing.

• Ease of Operation. Entering or changing keys in a program is relatively
simple when compared to some cryptographic devices. Though some de-
vices can be simulated by using sliding strips, their use often requires
careful attention to the relative motion of the alphabets (sliding strips),
thus introducing a large margin of error.

• Ease of Modi�cation. When using a computer, simple program changes
often may be done in minutes, whereas changes in complex wiring or
gearing systems might take days and even weeks to accomplish. Thus,
using a computer allows the �inventor� to see immediately the results
arising from modi�cations. In addition, new or radically revised systems
can often be designed in a very short time, and the resulting cryptographic
security can be tested quickly. Without a computer, how long would it
take to rewire a rotor? Or to implement an Enigma with �ve rotors instead
of three or four?

In this document I'm going to go one step further and, instead of emulating the
Enigma on a computer, I'm going to emulate it on the HP 48 pocket calculator.
In addition, I'm going to do it in System RPL (SysRPL).

10 〈enigma.s 10〉≡ 11a .

(Enigma Emulator)
(Kiyoshi Akima)
(2006.04.24)

ASSEMBLE
NIBASC /HPHP48-E/

RPL

April 27, 2006 11

Programming in SysRPL has advantages over programming in UserRPL, as well
as disadvantages. On the plus side, a SysRPL program can often be faster and
smaller than an equivalent UserRPL program. In addition, SysRPL lets the
programmer do some things that simply cannot be done in UserRPL.

On the minus side, much of the time and memory savings come at the
expense of safety: a program bug can result in crashes and even completely
memory loss instead of merely incorrect results. In addition, SysRPL requires
building the program on a computer and subsequently transferring it to the
calculator, instead of merely keying it in.

11a 〈enigma.s 10〉+≡ / 10
::

〈main program 11b〉
;

The program is interactive, taking no arguments on the stack.
11b 〈main program 11b〉≡ (11a) 11c .

AtUserStack
The program quite naturally decomposes into three main modules. These mod-
ules are:

• Get the key settings from the user.

• Con�gure the virtual machine.

• Encipher/decipher text.

11c 〈main program 11b〉+≡ (11a) / 11b
〈get key settings 12a〉
〈con�gure virtual machine 14a〉
〈encipher text 20a〉

Each of these modules is discussed in detail in a subsequent section of this
document. Readers not interested in the inner workings of the program may
skip ahead to Section 7, �Running the Program� on page 25.

April 27, 2006 12

4 Key Entry
Before the Enigma can be used, it must be set up with the desired encoding
key. The key consists of:

• Rotor order (Walzenlage)

• Ring settings (Ringstellung)

• Plugboard connections (Steckerverbindungen)

• Starting rotor positions

12a 〈get key settings 12a〉≡ (11c)
〈de�ne prompting routine 12b〉
〈get rotor order 12c〉
〈get ring settings 13d〉
〈get plugboard connections 13e〉
〈get rotor starting positions 13f〉

4.1 Prompting for Input
This program prompts for all components of the key setting. However, it does no
error checking. The closest thing to a check is seeing whether the user speci�ed
four rotors in the order; the program takes this to mean it is emulating the
four-rotor Navy Enigma.

Just to make life a little easier (and the program a little smaller) the program
de�nes a routine to do the actual prompting. The parameters specify cursor at
the beginning, replace mode, program/algebraic entry, alpha locked, no menu,
menu row one,

¤
£

¡
¢ON clears, and no post action.

12b 〈de�ne prompting routine 12b〉≡ (12a)
' ::

ONE TWO ONEONE NULL{} ONE FALSE ZERO InputLine
;

4.2 Rotor Order
Historically the rotors were identi�ed by Roman numerals (and Greek letters for
the fourth �thin� rotors). This program uses the Arabic digits 1-8 for the Roman
numerals I-VIII and the Roman letters B and G for the Greek letters B and Γ.
They were usually speci�ed from left to right, and this program maintains that
tradition.

12c 〈get rotor order 12c〉≡ (12a) 13a .

"Rotor Order:" NULL$
3PICK EVAL
NOT_IT :: DROP 2RDROP ;

April 27, 2006 13

User �ag 64 is set if the four-rotor Enigma is being emulated, cleared otherwise.
13a 〈get rotor order 12c〉+≡ (12a) / 12c 13b .

DUPLEN$ FOUR #=ITE
:: SIXTYFOUR SetUserFlag ;
:: SIXTYFOUR ClrUserFlag ;

If the four-rotor Enigma is being emulated, I move the �thin� rotor speci�er from
the beginning to the end. This is so that the positions of the three �normal�
rotors are at the same place regardless of the presence or absence of the fourth
rotor.

13b 〈get rotor order 12c〉+≡ (12a) / 13a
〈move thin to end 13c〉

Moving a letter from the head of a string to the tail is a simple exercise in string
manipulation.

13c 〈move thin to end 13c〉≡ (13)
SIXTYFOUR TestUserFlag IT :: DUP CDR$ SWAP CAR$ >T$;

4.3 Ring Settings
The ring settings were usually speci�ed by three or four letters, from left to
right.

13d 〈get ring settings 13d〉≡ (12a)
"Ring Settings:" NULL$
4PICK EVAL
NOT_IT :: 2DROP 2RDROP ;
〈move thin to end 13c〉

4.4 Plugboard Connections
The plugboard connections were usually speci�ed by pairs of letters; this pro-
gram uses a single string without breaks or other punctuation.

13e 〈get plugboard connections 13e〉≡ (12a)
"Plugboard Connections:" NULL$
5PICK EVAL
NOT_IT :: 3DROP 2RDROP ;

4.5 Starting Rotor Positions
Like the ring settings, the rotor starting positions were speci�ed by three or four
letters, again from left to right.

13f 〈get rotor starting positions 13f〉≡ (12a)
"Rotor Positions:" NULL$
6PICK EVAL
NOT_IT :: 4DROP 2RDROP ;
〈move thin to end 13c〉

April 27, 2006 14

5 Con�guring the Virtual Machine
Once the program has acquired the key settings from the user, it can proceed
to con�gure the virtual machine.

14a 〈con�gure virtual machine 14a〉≡ (11c)
〈prepare to con�gure 14b〉
〈con�gure components 16c〉
〈end con�gure 19c〉

5.1 Preparing
There're a few more things the program needs in order to con�gure the virtual
machine. These things will be placed in a temporary null-named environment
for use during the con�guration.

5.1.1 Converting an ASCII String to Binary
There are times when the program needs to convert a string of 26 letters to a
binary string. This can be done by simply ANDing the string with an appropriate
length string of question marks (hex 3F).

14b 〈prepare to con�gure 14b〉≡ (14a) 14c .

"??????????????????????????"

5.1.2 Converting a List to a String
There are also times when the program needs to convert a list to a string. This
conversion simply proceeds one item at a time.

14c 〈prepare to con�gure 14b〉+≡ (14a) / 14b 14d .

' ::
NULL$
TWENTYSIX ZERO_DO (DO)

OVER CARCOMP #>CHR >T$ SWAP CDRCOMP SWAP
LOOP
SWAPDROP

;

5.1.3 Breaking out a String
There are also times when the program needs to break out the three or four
individual settings from a string. This is complicated by the fact that there
may be either three or four.

14d 〈prepare to con�gure 14b〉+≡ (14a) / 14c 15a .

' ::
THREE #1+_ONE_DO (DO)

DUP CDR$ SWAPONE SUB$1# SIXTYFOUR #- SWAP
LOOP
SIXTYFOUR TestUserFlag ITE

:: ONE SUB$1# SIXTYFOUR #- ;
DROPZERO

;

April 27, 2006 15

5.1.4 Rotor Con�guration
Obviously, the program needs the wiring and notch positions for the individual
rotors.

15a 〈prepare to con�gure 14b〉+≡ (14a) / 14d 16b .

' ::
SUB$1#
::

〈select rotor con�guration 15b〉
;
〈compile rotor 15f〉

;
Rotor Wiring and Notches
Here are the notch position(s) and wiring for all the rotors this program uses.
Note that any invalid rotor speci�er gets mapped to rotor I.

Here are the Army/Air Force/Navy rotors II-V.
15b 〈select rotor con�guration 15b〉≡ (15a) 15c .

FIFTY #=casedrop :: "AJDKSIRUXBLHWTMCQGZNPYFVOE" "E" ;
FIFTYONE #=casedrop :: "BDFHJLCPRTXVZNYEIWGAKMUSQO" "V" ;
FIFTYTWO #=casedrop :: "ESOVPZJAYQUIRHXLNFTGKDCMWB" "J" ;
FIFTYTHREE #=casedrop :: "VZBRGITYUPSDNHLXAWMJQOFECK" "Z" ;

And the three additional Navy rotors VI-VIII.
15c 〈select rotor con�guration 15b〉+≡ (15a) / 15b 15d .

FIFTYFOUR #=casedrop :: "JPGVOUMFYQBENHZRDKASXLICTW" "MZ" ;
FIFTYFIVE #=casedrop :: "NZJHGRCXMYSWBOUFAIVLPEKQDT" "MZ" ;
FIFTYSIX #=casedrop :: "FKQHTLXOCBJSPDZRAMEWNIUYGV" "MZ" ;

And the fourth, �thin� rotors B and Γ.
15d 〈select rotor con�guration 15b〉+≡ (15a) / 15c 15e .

66 #=casedrop :: "LEYJVCNIXWPBQMDRTAKZGFUHOS" NULL$;
71 #=casedrop :: "FSOKANUERHMBTIYCWLQPZXVGJD" NULL$;

And �nally rotor I, which will also be used if an invalid speci�er is given.
15e 〈select rotor con�guration 15b〉+≡ (15a) / 15d

DROP "EKMFLGDQVZNTOWYHXUSPAIBRCJ" "Q"
Compiling the Rotor
For ease of use, this program deals with binary instead of ASCII strings. They're
still strings, but instead of containing ASCII letters they contain bytes in the
range 1-26.

First the program converts the notch positions.
15f 〈compile rotor 15f〉≡ (15a) 16a .

DUPLEN$ DUP #0=ITE
DROP
:: 4GETLAM ONE ROT SUB$ AND$;

SWAP

April 27, 2006 16

The program also determines the reverse mapping for the return journey through
the rotors. These could have been speci�ed at compile time instead of being
computed at run time, but then it gets harder to add new rotors or to modify
the existing ones. And it's not as if either time or memory are in that short a
supply.

16a 〈compile rotor 15f〉+≡ (15a) / 15f
4GETLAM AND$
ZERO TWENTYSIX NDUPN {}N
TWENTYSIX #1+_ONE_DO (DO)

OVER INDEX@ SUB$1# INDEX@ SWAPROT PUTLIST
LOOP
3GETLAM EVAL &$

5.1.5 Storing it Away
Okay, the program now has everything it need to con�gure the virtual ma-
chine. It takes everything o� the stack and put it into a temporary null-named
environment so I don't have to keep juggling the stack.

For reference, here's what's in the temporary:
Pos Item Type Pos Item Type

1 rotor con�guration secondary 5 rotor positions string
2 break out a string secondary 6 plugboard string
3 list → string secondary 7 ring settings string
4 string → binary string 8 rotor order string

16b 〈prepare to con�gure 14b〉+≡ (14a) / 15a
NULLLAM EIGHT NDUPN DOBIND

5.2 Re�ector
Now for the con�guration itself. The re�ector is the simplest component, at
least in terms of the emulation, so the program starts with that. The only trick
is determining which re�ector; the three- and four-rotor Enigmas had di�erent
re�ectors. In addition, di�erent re�ectors were issued at di�erent times: this
program uses the `B' re�ector for both the three-letter and four-letter modes.

16c 〈con�gure components 16c〉≡ (14a) 16d .

SIXTYFOUR TestUserFlag ITE
"ENKQAUYWJICOPBLMDXZVFTHRGS"
"YRUHQSLDPXNGOKMIEBFZCWVJAT"

4GETLAM AND$

5.3 Plugboard
The plugboard is a little more complicated. First the program builds a list con-
taining the numbers 1, . . . 26 representing the plugboard with no plugs inserted.

16d 〈con�gure components 16c〉+≡ (14a) / 16c 17a .

TWENTYSIX #1+_ONE_DO (DO) INDEX@ LOOP TWENTYSIX {}N

April 27, 2006 17

Then if the user speci�ed at least one pair of plugboard connections, the program
writes the pairs into the list. If the user speci�ed an odd number of letters, then
the last (unpaired) letter is discarded. However, the program does not check to
see whether any letter is speci�ed more than once.

17a 〈con�gure components 16c〉+≡ (14a) / 16d 17b .

6GETLAM DUPLEN$ ONE#> IT ::
DUPLEN$ ONE_DO (DO)

SWAPOVER ONE SUB$1# SIXTYFOUR #-
3PICK TWO SUB$1# SIXTYFOUR #-
2DUP5ROLL PUTLIST UNROT SWAPROT PUTLIST
SWAP CDR$ CDR$

TWO +LOOP
;
DROP

Then the list is converted to a binary string.
17b 〈con�gure components 16c〉+≡ (14a) / 17a 17c .

3GETLAM EVAL

5.4 Rotors
Now for the rotors.

5.4.1 Notches and Wiring
The program starts with the three basic rotors, working from left to right.

17c 〈con�gure components 16c〉+≡ (14a) / 17b 17d .

THREE #1+_ONE_DO (DO)
8GETLAM INDEX@ 1GETLAM EVAL

LOOP
The program starts with the leftmost, the fourth, �thin� rotor. Obviously, this
rotor isn't present if the program is only emulating the three-rotor machine. If
this fourth rotor is present, the program doesn't care about its notch position.

17d 〈con�gure components 16c〉+≡ (14a) / 17c 17e .

SIXTYFOUR TestUserFlag ITE
:: 8GETLAM FOUR 1GETLAM EVAL SWAPDROP ;
NULL$

5.4.2 Ring Settings
Now the program breaks out the ring settings, converting each one to a binary
integer. Again the program has to deal with the presence or absence of the
fourth rotor.

17e 〈con�gure components 16c〉+≡ (14a) / 17d 18a .

7GETLAM 2GETLAM EVAL

April 27, 2006 18

5.4.3 Initial Positions
The program breaks out the initial positions in the same way.

18a 〈con�gure components 16c〉+≡ (14a) / 17e 18b .

5GETLAM 2GETLAM EVAL
The program also needs to be able to build a string out of the current rotor
positions, both for display and for prompting.

18b 〈con�gure components 16c〉+≡ (14a) / 18a 18c .

' ::
SIXTYFOUR TestUserFlag IT :: 7GETLAM SIXTYFOUR #+ #>CHR >T$;
10GETLAM SIXTYFOUR #+ #>CHR >T$
9GETLAM SIXTYFOUR #+ #>CHR >T$
8GETLAM SIXTYFOUR #+ #>CHR >T$

;

5.4.4 Keeping in Range
At various times the program needs to make sure it don't fall o� the end of the
alphabet. This code is also used to keep the program from falling o� the end of
a circular rotor.

18c 〈con�gure components 16c〉+≡ (14a) / 18b 18d .

' ::
TWENTYSIX OVER#< IT :: TWENTYSIX #- ;

;

5.4.5 Translation
The process of translating a letter through a rotor requires compensating for
the rotor position and the ring setting, taking care to keep the value within the
range 1-26. With the revese mapping generated earlier, the same code can be
used for both the forward and reverse translations.

18d 〈con�gure components 16c〉+≡ (14a) / 18c 18e .

' ::
#- TWENTYSIX #+ 5GETLAM EVAL
ROT TWENTYSIX #+ OVER#- 5GETLAM EVAL
ROTSWAP SUB$1# #+ 5GETLAM EVAL

;

5.5 Input and Output
The program keeps track of the recent results, both the entered plaintext and
the resultant ciphertext.

18e 〈con�gure components 16c〉+≡ (14a) / 18d 19a .

TWENTYTWO Blank$ DUP

April 27, 2006 19

5.6 Loop Exit
Finally, the program needs a �ag to tell it when to exit the encipherment loop.

19a 〈con�gure components 16c〉+≡ (14a) / 18e 19b .

FALSE

5.7 Finishing
Okay, that's everything the program needs to encipher/decipher text. It can
now get rid of the temporary environment.

19b 〈con�gure components 16c〉+≡ (14a) / 19a
ABND

And now the program puts all this into a new temporary environment so it
again doesn't have to juggle the stack.

For reference, here's what's in the temporary:
Pos Item Type Pos Item Type

1 loop exit �ag 13 ring 2 bint
2 ciphertext string 14 ring 1 bint
3 plaintext string 15 wiring 4 string
4 rotor translation secondary 16 wiring 3 string
5 ensure letter secondary 17 notches 3 string
6 rotor string secondary 18 wiring 2 string
7 position 4 bint 19 notches 2 string
8 position 3 bint 20 wiring 1 string
9 position 2 bint 21 notches 1 string

10 position 1 bint 22 plugboard string
11 ring 4 bint 23 re�ector string
12 ring 3 bint 24 prompt secondary

19c 〈end con�gure 19c〉≡ (14a)
NULLLAM TWENTYFOUR NDUPN DOBIND

April 27, 2006 20

6 Enciphering Text
The encipherment occurs inside a lop, terminated when the user presses the

¤
£

¡
¢ON

key. If the user presses the
¤
£

¡
¢ENTER key, the program prompts for the new rotor

positions.
20a 〈encipher text 20a〉≡ (11c)

〈initialize display 20b〉
BEGIN

〈show rotor positions 20d〉
〈get keystroke 20e〉
::

〈check special keys 21a〉
〈encipher one letter 22b〉

;
1GETLAM UNTIL
〈terminate display 20c〉
〈terminate program 24c〉

6.1 Controlling the Display
Before the program starts the enciphering loop, it turns o� the ticking clock
(whether or not it's actually displayed) and turns o� the menu.

20b 〈initialize display 20b〉≡ (20a 21b)
RECLAIMDISP ClrDA1IsStat TURNMENUOFF

When the program is �nished, it turns the menu back on and relinquishes the
display, telling the system to update it.

20c 〈terminate display 20c〉≡ (20a 21b)
TURNMENUOFF RECLAIMDISP ClrDAsOK

At the top of the loop the program displays the current rotor positions, similar
to the way they appeared through windows on a real Enigma machine.

20d 〈show rotor positions 20d〉≡ (20a)
" ["
6GETLAM EVAL
CHR_] >T$ BIGDISPROW4

6.2 Getting a Keystroke
There's no sense in having the program run down the batteries simply waiting
for the user to press a key. The program uses WaitForKey, which places the
calculator into a low-power state to conserve batteries. When a key is pressed,
it returns a fuly formed keystroke specifying the keycode and shift plane. The
program doesn't care about the plane so it drops it from the stack.

20e 〈get keystroke 20e〉≡ (20a)
WaitForKey DROP

April 27, 2006 21

6.3 Checking Special Keys
In addition to the letter keys, several keys have special meaning to the program.

Key Action¤
£

¡
¢J Clear the screen¤

£
¡
¢ENTER Enter new rotor positions¤

£
¡
¢ON Break out of the loop and terminate the program

6.3.1 Clearing the Screen
The

¤
£

¡
¢J key clears the plain- and ciphertext strings and erases them from the

display. The rotor positions, however, remain.
21a 〈check special keys 21a〉≡ (20a) 21b .

TWENTYNINE #=casedrop ::
TWENTYTWO Blank$ DUP 2DUP
2PUTLAM BIGDISPROW2
3PUTLAM BIGDISPROW3

;

6.3.2 Entering New Rotor Positions
The

¤
£

¡
¢ENTER key prompts for the new rotor positions. If the user presses

¤
£

¡
¢ENTER

at the prompt to provide new rotor positions then the program stores them,
otherwise nothing happens.

21b 〈check special keys 21a〉+≡ (20a) / 21a 21c .

TWENTYFIVE #=casedrop ::
〈terminate display 20c〉
"Rotor Positions:" NULL$ 6GETLAM EVAL
TWENTYFOUR GETLAM EVAL
IT ::

SIXTYFOUR TestUserFlag IT
:: DUPONE SUB$1# SIXTYFOUR #- 7PUTLAM CDR$;

DUPONE SUB$1# SIXTYFOUR #- 10PUTLAM CDR$
DUPONE SUB$1# SIXTYFOUR #- 9PUTLAM CDR$

ONE SUB$1# SIXTYFOUR #- 8PUTLAM
;
〈initialize display 20b〉

;

6.3.3 Terminating the Loop
The

¤
£

¡
¢ON key sets the �ag to break out of the loop and terminate the program.

21c 〈check special keys 21a〉+≡ (20a) / 21b 22a .

FORTYFIVE #=casedrop :: TRUE 1PUTLAM ;

April 27, 2006 22

6.3.4 Ignoring Other Keys
The program ignores other non-letter keys, dropping them from the stack.

22a 〈check special keys 21a〉+≡ (20a) / 21c
DUP TWENTYSEVEN #> case DROP

6.4 Enciphering One Letter
The user pressed a letter key. Unfortunately the sequence of letter keys is broken
by the

¤
£

¡
¢ENTER key which separates the Y and Z from the rest of the alphabet.

Fortunately the rest of the letter keys falls nicely into the A = 1, B = 2 pattern
so not much adjustment is necessary.

22b 〈encipher one letter 22b〉≡ (20a) 22c .

DUP TWENTYFIVE #> IT #1-

6.4.1 Plaintext
Before enciphering the letter, the program drops the �rst letter from the head
of the plaintext string and appends the new letter to the tail. This string is
displayed in lowercase.

22c 〈encipher one letter 22b〉+≡ (20a) / 22b 22d .

3GETLAM CDR$ OVER 96 #+ #>CHR >T$ DUP 3PUTLAM BIGDISPROW3

6.4.2 Rotor Step
Before the letter is enciphered, the rotors step. This alters the substitution so
that a letter is not enciphered the same way twice in succession.

The fourth rotor on the four-rotor machine never steps so it can be ignored
for the duration of this discussion.

22d 〈encipher one letter 22b〉+≡ (20a) / 22c 23b .

〈step right rotor 22e〉
19GETLAM 9GETLAM #>CHR CHR>$ ONE POS$ #0=ITE

:: 〈step middle rotor? 23a〉 ;
:: 〈step left rotor? 22f〉 ;

The right rotor steps on every keystroke.
22e 〈step right rotor 22e〉≡ (22d)

8GETLAM DUP#1+ 5GETLAM EVAL 8PUTLAM
If the middle rotor was already at its notch position, both the left and middle
rotors step (the �double-step�).

22f 〈step left rotor? 22f〉≡ (22d)
10GETLAM #1+ 5GETLAM EVAL 10PUTLAM
9GETLAM #1+ 5GETLAM EVAL 9PUTLAM

DROP

April 27, 2006 23

Otherwise, if the right rotor was at its notch position, the middle rotor steps.
23a 〈step middle rotor? 23a〉≡ (22d)

#>CHR CHR>$ 17GETLAM SWAPONE POS$ #0<> IT
:: 9GETLAM #1+ 5GETLAM EVAL 9PUTLAM ;

6.4.3 Plugboard
Now for the encipherment itself. First the current passes through the plug-
board. . .

23b 〈encipher one letter 22b〉+≡ (20a) / 22d 23c .

22GETLAM SWAP SUB$1#

6.4.4 Rotors
. . . then through the right rotor. . .

23c 〈encipher one letter 22b〉+≡ (20a) / 23b 23d .

16GETLAM 12GETLAM 8GETLAM 4GETLAM EVAL
. . . and similarly through the next two rotors. . .

23d 〈encipher one letter 22b〉+≡ (20a) / 23c 23e .

18GETLAM 13GETLAM 9GETLAM 4GETLAM EVAL
20GETLAM 14GETLAM 10GETLAM 4GETLAM EVAL

. . . and through the fourth rotor if present. . .
23e 〈encipher one letter 22b〉+≡ (20a) / 23d 23f .

SIXTYFOUR TestUserFlag IT
:: 15GETLAM 11GETLAM 7GETLAM 4GETLAM EVAL ;

6.4.5 Re�ector
. . . then bounces through the re�ector. . .

23f 〈encipher one letter 22b〉+≡ (20a) / 23e 23g .

TWENTYTHREE GETLAM SWAP SUB$1#

6.4.6 Rotors
. . . which sends it back through the fourth rotor if present. . .

23g 〈encipher one letter 22b〉+≡ (20a) / 23f 23h .

SIXTYFOUR TestUserFlag IT
:: 15GETLAM TWENTYSEVEN FIFTYTWO SUB$

11GETLAM 7GETLAM 4GETLAM EVAL ;
. . . and back through the other three rotors. . .

23h 〈encipher one letter 22b〉+≡ (20a) / 23g 24a .

20GETLAM TWENTYSEVEN FIFTYTWO SUB$ 14GETLAM 10GETLAM 4GETLAM EVAL
18GETLAM TWENTYSEVEN FIFTYTWO SUB$ 13GETLAM 9GETLAM 4GETLAM EVAL
16GETLAM TWENTYSEVEN FIFTYTWO SUB$ 12GETLAM 8GETLAM 4GETLAM EVAL

April 27, 2006 24

6.4.7 Plugboard
. . . and �nally back through the plugboard again.

24a 〈encipher one letter 22b〉+≡ (20a) / 23h 24b .

22GETLAM SWAP SUB$1#

6.4.8 Ciphertext
On a real Enigma machine the output was signaled by a glowing lamp. This
program does it by adding the letter to the end of the ciphertext string at the
top of the display. The procedure is virtually identical to that for the plaintext
display, the primary di�erence being that this time it is done in uppercase.

24b 〈encipher one letter 22b〉+≡ (20a) / 24a
2GETLAM CDR$ SWAP SIXTYFOUR #+ #>CHR >T$ DUP 2PUTLAM BIGDISPROW2

6.5 Finishing Up
Before the program terminates, it frees the temporary environment.

24c 〈terminate program 24c〉≡ (20a)
ABND

As it currently stands the program is 1988 bytes checksum 6781h.

April 27, 2006 25

7 Running the Program

7.1 Basic Operation
As mentioned earlier the program requires no arguments on the stack: all input
is done interactively. You may run it by any of the usual methods: the easiest
probably is by pressing the key assigned to the variable containing the program.

All of the prompts have the alpha lock engaged so you don't have to press
the

¤
£

¡
¢α key (unless you need to use the cursor keys).

For all prompts, the
¤
£

¡
¢ENTER key accepts the current input string.

The
¤
£

¡
¢ON key will erase the current input string if it is not empty.

If the input string is empty, the
¤
£

¡
¢ON key will abort the program.

The program �rst prompts for the rotor order (Walzenlage). Historically
the standard rotors were identi�ed by Roman numerals and the �thin� rotors
by Greek letters; this program expects three Arabic digits in the range 1-8 and
the Roman letters B and G. No range checks are performed: an invalid speci�er
will result in rotor I being used. The program also does not ensure that the
thin rotors are used only in the leftmost position, nor that only the thin rotors
are used in the leftmost position. Nor does the program check to see whether a
rotor was requested more than once; real Enigmas were issued with one of each
rotor but this program will allow the same rotor to be used more than once.
The rotors were traditionally specifed left to right, and this program does not
break with that tradition.

The program emulates the four-rotor Enigma if four rotors are speci�ed
and emulates the three-rotor Enigma if only three rotors are speci�ed. (Kinda
obvious, isn't it?)

The second prompt is for the ring settings (Ringstellung). Depending on the
markings on the rings, this was speci�ed either by numbers in the range 1-26 or
by letters. This program expects three or four uppercase letters.

The third prompt is for the plugboard connections (Steckerverbindungen).
This was speci�ed as zero or more (commonly ten) pairs of letters. This program
expects a string of letters without any spacing or punctuation. In the real world
one letter cannot be plugged to two others; this program does not check.

The fourth prompt is for the initial position of the rotors. Like the ring
settings, this is a string of three or four letters.

After the �nal prompt there is a four-second pause while the program con�g-
ures the virtual machine. Then the screen is cleared, the current rotor positions
are displayed as they are on a real Enigma, and the virtual machine is ready to
begin enciphering/deciphering text.

Pressing any of the letter keys results in that letter being enciphered. As
each letter is enciphered, the display is updated to show the new rotor positions,
the entered plaintext, and the resulting ciphertext.

Pressing the
¤
£

¡
¢J key will erase the plain- and ciphertext strings from the

screen.
Pressing the

¤
£

¡
¢ENTER key will prompt for new rotor positions.

Pressing the
¤
£

¡
¢ON key will terminate the program.

April 27, 2006 26

7.2 An Example
Now it's time to work through an example. This is taken from the book Enigma
by Robert Harris and the subsequent movie starring Dougray Scott and Kate
Winslet. (Need I say that the book is better than the movie?)
The keys for March 1943 are given in part as:
27 III II. V.. LZC DV LF NQ GE OS FK EW MR IT HK
28 IV. V.. III XRV SY EK NZ OR CG JM QU PV BI LW
29 V.. II. IV. TPK JT NW DU EO KV BY FS HQ IM LX
An intercepted message is given as:
STNX
B28/03/43 1930 5886 SF282 A236
OKH DE ADU (1830) 174= QAP CWU=
UFJZS NKIRA CGTPF UONXD GQMPU QXUGF OWEZS TCBJD
JLFME AZQRM NZZYI CGSSR YOFQX ADSPU QIMXM MELYR
XKXYI MDEEW ISKDP RSTFR TCOKB GGQTQ KPKMP NCCGH
YUVJO TIVMA IVIGK WQKWJ FOYMR VFBVY RKEZF SYCBY
QQSOQ CIZUU SUTB
Obviously, we're dealing here with the three-rotor variant.

7.2.1 Entering the Key
Upon starting up, the �rst thing the program
asks for is the rotor order. Looking in the
row corresponding to the message date and
translating from Roman numerals, this is de-
termined to be 453. Press

¤
£

¡
¢4

¤
£

¡
¢5

¤
£

¡
¢3

followed by
¤
£

¡
¢ENTER to accept the setting.

The next thing the program asks for are the ring settings. In the key, this
is given immediately following the rotor order. In this case these are XRV. Press¤
£

¡
¢X

¤
£

¡
¢R

¤
£

¡
¢V followed by

¤
£

¡
¢ENTER .

The next thing the program asks for are the plugboard connections. These
are the letter pairs in the key. Press

¤
£

¡
¢S

¤
£

¡
¢Y

¤
£

¡
¢E

¤
£

¡
¢K

¤
£

¡
¢N

¤
£

¡
¢Z¤

£
¡
¢O

¤
£

¡
¢R

¤
£

¡
¢C

¤
£

¡
¢G

¤
£

¡
¢J

¤
£

¡
¢M

¤
£

¡
¢Q

¤
£

¡
¢U

¤
£

¡
¢P

¤
£

¡
¢V

¤
£

¡
¢B

¤
£

¡
¢I¤

£
¡
¢L

¤
£

¡
¢W followed by

¤
£

¡
¢ENTER .

Now the program asks for the rotor posi-
tions. The �rst trio of letters enclosed between
the equals signs (=), sent in the clear, gives
the rotor positions used to encode the message
key. For this message, this is QAP. Press

¤
£

¡
¢Q¤

£
¡
¢A

¤
£

¡
¢P followed by

¤
£

¡
¢ENTER .

April 27, 2006 27

There is a brief delay while the program
con�gures the virtual machine. When the
screen clears and then displays the current ro-
tor positions ([QAP]), we can decipher the mes-
sage key, the second trio of letters enclosed
between the equals signs. Press

¤
£

¡
¢C

¤
£

¡
¢W¤

£
¡
¢U . Do not press

¤
£

¡
¢ENTER here. Instead, take note of the three letters at the

top of the display, the MPY. This is the message key�the starting rotor positions
used to encrypt this particular message.

I'm going to assume you can remember these three letters, at least long
enough to enter them in the next step. Press

¤
£

¡
¢ENTER now and the program

prompts for the rotor positions. Enter the message key, followed by
¤
£

¡
¢ENTER .

Even though the text will scroll across the screen, it might be helpful to clear
the screen before deciphering the message itself. Do this by pressing

¤
£

¡
¢J .

7.2.2 Deciphering the Message
Now we can start deciphering the message proper. Begin entering the ciphertext,
beginning with the �rst �ve-letter group UFJZS.

After the �rst three �ve-letter groups, you
should see this screen. The message starts out:
An OKH. Dringend. [To Army High Com-
mand. Urgent.] (Recall from the Operational
Procedures that X was generally used as a full
stop.)

Type in the remainder of the ciphertext, reading the plaintext o� the top
row of the display. Remember that you can clear the screen at any time by
pressing the

¤
£

¡
¢J key.

If you can read German, you should be able to understand the entire message.
Even if you can't read German, you should be able to puzzle out that the
message is referring to something west of Smolensk.

When you're �nished, press
¤
£

¡
¢ON to terminate the program.

7.2.3 Doing it With Four Rotors
The four-rotor Enigma was capable of emulating the three-rotor Enigma. This
was necessary to allow U-boats to communicate with other units which did not
have the four-rotor machine. This was done by using the B �thin� rotor with
ring setting A and position A.

To decipher the above message in four-rotor mode, specify rotor order B453,
ring settings AXRV, the same plugboard connections, and starting rotor positions
AQAP. After obtaining the message key MPY, set the rotor positions to AMPY and
proceed to decipher the message.

April 27, 2006 28

A Literate Programming
This document not only describes the implementation of the Enigma Emulator
for the HP 48, it is the implementation. The noweb system for �literate pro-
gramming� generates both the document and the program code from a single
source. This source consists of interleaved prose and labelled Code Fragments.
The fragments are written in the order that best suits describing the program,
namely the order you see in this document, not the order dictated by the pro-
gramming language. The program noweave accepts the source and produces the
document's typescript, which includes all of the code and all of the text. The
program notangle extracts all of the code, in the proper order for compilation.

Fragments contain source code and references to other fragments. Fragment
de�nitions are preceded by their labels in angle brackets. Several fragments may
have the same name; notangle concatenates their de�nitions to produce a single
fragment. noweave identi�es this concatenation by using + ≡ instead of ≡ in
continued de�nitions:

Fragment de�nitions are like macro de�nitions; notangle extracts a program
by expanding one fragment. If its de�nition refers to other fragments, they
themselves are expanded, and so on.

Fragment de�nitions include aids to help readers navigate among them. Each
fragment name ends with the number of the page on which the fragment's
de�nition begins and a letter giving its sequence within that page. If there is
only one fragment on a page then there is no letter. This is also shown in the
left margin. Each continued de�nition also shows the previous de�nition, and
the next continued de�nition, if there is one. / 7b is an example of a previous
de�nition that appears on page 7, and 11 . says the de�nition is continued on
page 11. These annotations form a double linked list of de�nitions; the left
arrow points to the previous de�nition in the list and the right arrow points to
the next one. The previous link on the �rst de�nition is omitted, and the next
link on the last de�nition is omitted. These lists are complete: If some of a
fragment's de�nition appears on the same page with each other, the links refer
to the page on which they appear.

Most fragments also show a list of pages on which the fragment is used. These
unadorned use lists are omitted for root fragments, which de�ne modules.

Of course, the simple fact that the documentation can be placed right next
to the code doesn't necessary mean that the documentation and the code match,
nor that either is any good. Still, it's a good start. . .

For more information about the noweb system of literate programming,
please refer to http://www.eecs.harvard.edu/~nr/noweb.

April 27, 2006 29

B Building the Program

B.1 Tangling
The following command line will extract the program source from the noweb
document:

notangle -Renigma.s -t4 enigma48.nw >enigma.s
This will create the �le enigma.s.

B.2 Compiling
Once the program source has been extracted, it can be compiled with the fol-
lowing command line.

rplcomp enigma.s enigma.a
This will produce an assembly �le enigma.a.

B.3 Assembling
The assembly �le can then be assembled with the following command line:

sasm enigma.a
This will produce an object �le enigma.o and a listing �le enigma.l.

B.4 Linking
The linker requires a command �le:

29 〈enigma.m 29〉≡
LL enigma.lr
OU enigma
RE enigma.o
SE c:\hp48\lib\entries.o
SU XR

This linker command �le can be extracted from the noweb document with the
following command line:

notangle -Renigma.m enigma48.nw >enigma.m
This will create the �le enigma.m. (You will probably have to edit the location
of entries.o to match your directory structure.) Then the linker can be run
with this command line:

sload -H enigma.m
If all goes well, this will produce an HP 48 binary enigma and a listing �le
enigma.lr.

The binary can then be transferred to the HP 48, stored in a variable, and
executed like any other program.

For further details on the building process, please consult the appropriate HP
documentation.

April 27, 2006 30

A Index of Code Fragments
Underlined entries are to the de�nition of the Code Fragment. In many cases,
the de�nition of a fragment can be continued from one piece to another.
〈check special keys 21a〉 20a, 21a, 21b, 21c, 22a
〈compile rotor 15f〉 15a, 15f, 16a
〈con�gure components 16c〉 14a, 16c, 16d, 17a, 17b, 17c, 17d, 17e, 18a, 18b,

18c, 18d, 18e, 19a, 19b
〈con�gure virtual machine 14a〉 11c, 14a
〈de�ne prompting routine 12b〉 12a, 12b
〈encipher one letter 22b〉 20a, 22b, 22c, 22d, 23b, 23c, 23d, 23e, 23f, 23g, 23h,

24a, 24b
〈encipher text 20a〉 11c, 20a
〈end con�gure 19c〉 14a, 19c
〈enigma.m 29〉 29
〈enigma.s 10〉 10, 11a
〈get key settings 12a〉 11c, 12a
〈get keystroke 20e〉 20a, 20e
〈get plugboard connections 13e〉 12a, 13e
〈get ring settings 13d〉 12a, 13d
〈get rotor order 12c〉 12a, 12c, 13a, 13b
〈get rotor starting positions 13f〉 12a, 13f
〈initialize display 20b〉 20a, 20b, 21b
〈main program 11b〉 11a, 11b, 11c
〈move thin to end 13c〉 13b, 13c, 13d, 13f
〈prepare to con�gure 14b〉 14a, 14b, 14c, 14d, 15a, 16b
〈select rotor con�guration 15b〉 15a, 15b, 15c, 15d, 15e
〈show rotor positions 20d〉 20a, 20d
〈step left rotor? 22f〉 22d, 22f
〈step middle rotor? 23a〉 22d, 23a
〈step right rotor 22e〉 22d, 22e
〈terminate display 20c〉 20a, 20c, 21b
〈terminate program 24c〉 20a, 24c

