HP 48
Machine Language

Journey to the Center of the HP 48

by Paul Courbis and Sébastien Lalande

translated to English from the French

by Douglas R. Cannon

Electronic edition © 2001 courbis.com

with publisher's and authors' authorization

Grapevine Publications, Inc.
P.O. Box 2449
Corvallis, Oregon 97339-2449 U.S.A.

Acknowledgments

Hewlett-Packard, HP-71, HP-28, HP 48, HP 48S, HP 48SX, Macintosh,
Atari, UNIX, Amiga and IBM are registered tradenames or trademarks.

© 1993-2001, Paul Courbis and Sébastien Lalande. All rights reserved.
No portion of this book or its contents, nor any portion of the programs
contained herein, may be reproduced in any form, printed, electronic or
mechanical, without written permission from Paul Courbis, Sébastien
Lalande, and Grapevine Publications, Inc.

© 2001 Paul Courbis and courbis.com (http://www.courbis.com) with
Grapevine Publications, Inc. and Sébastien Lalande's authorization.

Printed in the United States of America

First Printing — December, 1993
Second edition - Electronic version - July, 2001 by courbis.com

Notice of Disclaimer: The authors and Grapevine Publications, Inc. make no express or implied
warranty with regard to the keystroke procedures and program materials herein offered, nor to their
merchantability nor fitness for any particular purpose. These keystroke procedures and program
materials are made available solely on an “as is” basis, and the entire risk as to their quality and
performanceiswiththe user. Should the keystroke procedures and program materials prove defective,
the user (and not Grapevine Publications, Inc., nor any other party) shall bear the entire cost of all
necessary correction and all incidental or consequential damages. Grapevine Publications, Inc. shall
not be liable for any incidental or consequential damages in connection with, or arising out of, the
furnishing, use, or performance ofthese keystroke procedures or program materials.

We would like io give special thanks to.

Cwr respective families for the help and support they have
given to us; Douglas R. Cannon for the enthusiasm and care
with which he has translated this work; Marc Bernard de
Courville for his numerous critiques;, Ray Depew, without
whom this edition would have never seen the light of day;
Christophe Dupont de Dinechin for his program mSOLYER
and his excellent remarks; Dominigue Moisescu for his
program, SSAG; Christophe Nguyen for his programs
CIRCLE and BAMMER: Yann Rousse; Jean Tourrilhes; the
Maubert Electronic Company; all the members of the
comp. sys.hp48 group; and ail those who have contributed
with their remarks and ideas for the realization of this work.

Note to the Reader

This work has been designed for both the beginner and the advanced
programmer. It contains information on the "classical” uses of the HP 48
as well as methods of accessing resources that are not documented by
Hewlett-Packard.

The book is divided into four parts:

Part One is to help you become familiar with the basic applications
of the HP 48. Among these are: reverse polish notation, the stack,
and the standard programming language. Also included are exer-
cises that we supgpest you use fo help you understand these
principles.

Part Two will teach you the hidden resources of the HP 48 in a
manner that is clear and helpful for 2 programmer of any level. This
initiation course in machine language can later serve asan excellent
reference manual.

Part Three is a library of various programs that are ready to use.
There are games, mathematical programs, ufilities, music and
mare.

The Appendices in the last part contain programming references (an
exhaustive list of eror messages, a complete list of instructions,
etc.).

Important Nois: The different versions of the HP 48 (5 and 5X) are faken
into account in this wark: Al programs, diagrams and other information
(with the exception of the plug-in cards) are independent of the tvpe of
machine you have.

Mowv it's up to you! We hope you enjoy the reading.

Table of Contents

Part One: The HP 48

The basic principles of HP 48 usage, as described by the m=nul-~turer.

Introduction

1. First Approach to the HP 48 e
Getting started and finding your w-v through
the maze of inscriptions on the HP 48 k-yboard.

2, Reverse PolishNotation
Basic principles of RPN, with exaiii 'es and exercises.

3. Organizing Your Data Proper'v.....
How to use directory ti - es to store data
in an easily rctricvable manner.

4. Programming the HP 43.. ...
What a prograiii is and how to write one;
how the HP 4¢ .rogramming language works;
programming ~dvice and step-by-step examples.

5. Presenting Your Data Properly
How iv present your programs and data in a
user-fiiendly manner; the CST menu; key redefinitions.

6. Saving ~nd Transmitting Dataccoeivniieciiiincicceee
T=king advantage of the HP 48’s ability to exchange data
with (he outside world: memory cards, the RS-232C port,
the infrared receiver/transmitter.

7. Ouier Strong Points of the HP 48 ...
Severalincredible tools: symbolic calculation, graphics,

units management, and more.

Conclusion

.12

14

34

46

52

58

62

Part Two: Machine Language

The HP 48’s hidden resources:
How to do more than Hewlett-Packard intended.

Introduction

8. Machine Language 68
Aninitiation to machine language; basic tools anu =< ful
concepts for understanding the rest of this < ection.

9. TheSaturn Microprocessor 72
A general view of the HP 48's mlcruprocessor
a detailed view of all its registers and i <'r unique roles.

10. The Saturn Instruction Set............ 82
Allthe ilable instructions, cl ified by
function type and by registers used.

11. HP 48 Objects 122
Principles of memory sturage for all objects accessible
to the user (real numbers, binary integers,
graphic objects, and others).

12. General Memory Orgarnization ... 158
A global vie . of HP 48 memory to prepare for
the (-tailed explanations that follow.
13. IIORAM ... 162
How to uirectly access certain HP 48 peripherals
(the clock, infrared /O, etc.).
14. RAM 174
/-\ de ailed explanation of the HP 48’s RAM organization.
15. Programming in Machine Languagec.ccccocooerenenncs 206

How to access all resources of the HP 48.

PartThree: Library of Programs

A collection of useful, ready-to-use programs.

NOLICE e 212
How to type in @ machine language program.

Programs dealing with Machine Language

GASS Installing assembly language programs
ALLEYTES Calculate all checksums in a directory ..
BY3 Display code strings in a readable form
CLEAM Cleanup of code strings ...
FEEE Read from HP 48 memory ...
POKE Writeto HP 48 memory oo
HEFEEE. Read from the HP 48 hidden ROM
PACE Determine the address of a stack object
SSAG Inverseof GASSE. ...
FASS Afasterversion of GASS . .
CHE. An argument verifier
REYERSE Reversestrings
CEMAME Create non-stand. ird names
CLYAR RemovethelZL%AE function ...
SYSEVAL Removethes 1 SEMAL function
CONTREAST Adjust the contrast from a program
LISPOFF andl: ISFOM Turnoffandonthedisplay ...
FAST Speedir 1nthe HP 48
CISASM A CATURN disassembler
E+SE Binary integer to system binary ..
SB+B System binary to binary integer ..
E+SE Re:l number to system binary.
SE+R S/ stem binary to real number
C+S5F (Character to system binary ..
SEBE-" System binary to character ..

RDT"- .. Recall objects in hidden ROM..
H+5 1R and STE+H Convert a string from and to an address 260
BFEEE Find free space on RAM card in BACKUP mode261
SEARCH A subroutine for the other SEARCH programs ... 262

ROMSEARCH Find an object in ROM.............cocoocovoviiioin. 263
ERMSERRCH Find an object in RAM
MODUSEARCH Find an object in a plug-in card..
CRC Calculate the checksum
CRCLM An assembly version of CRC. ...

Mathematical Programs

CHALLC Aninfinite precision, integer calculator 266
FI Calculate b to any precision .

WAL Value of a polynomial stored as a vector
LER Solve a polynomial stored as a vector . .
A-+% and Y+H Convert algebraic polynomial to/from a vector 289
LIYF Division of two polynomials as vectors
FCAR Calculation of characteristic polynomials ...
LAGL Universal polynomial root finder
FMAT Multiplying a matrix by a polynomial .
mSOLVER Solving systems of equations ...

Games

MAZE Escape from the cursed maze!
MASTER Mastermind
AHAG Find all the anagrams of a word
SEUARE Magic Square

Miscellaneous Programs

FR4E Printin 40 columns . 311
[SF andIMITSCR A33-columntextdisplay
MUSICLM Alittle music .
MOCUL Sound effects
RAEIF Randommusic ...
JIMGLE Somefriendly music
REMHAME Rename a variable ..
AUTOST A Start-up program....
CAL A calendar (one month display)
CIRCLE Fastcircledrawing ..
EAMHER Display in giant letters .

Appendices

Answers to exercises; programmer’s reference; glossary;index.

. Answers to Exercises ceenen 332

. Background Information..........ccccocicininininciinii s 338
How to find out your machine’s ROM version;
what to do in case of a disaster;
explanations of concepts dear to computer scientists:
hexadecimal, binary, bits, nibbles, and bytes.

. RPL Commands in alphabetical ordercccoocciiiiienien 345
by instruction numbercccooeiiniines 350
How to combine the speed of machine language with the
power of the instructions already developed by Hewlett-Packard.

. Objects in ROM .354
Alist of objects already coded by Hewlett-Packard—
why go to all the trouble when the work is already done?
. Error M@SSsages ...t 374
All the error messages that the HP 48 will ever display.
. Machine Language Instruction Set...........cccocvniiiiiincincenens 378
In two pages, all the HP 48 assembly instructions with accompanying
codes—ideal for the machine language programmer.
Glossary 382
. Handy Machine Language Routines........c..ccccoceiininsninnicenenns 386

A few ML programs found in ROM that are already done for you.

Part One:

The HP 48

12

Introduction

Parr One: The HP 48

You have in your hands one of the best calculators on the market—if not
indeed the best. Compared to other calculators, it is much more complex
in functionality, yet much simpler to use, and capable of solving problems
of great complexity.

Considering its vast assortment of internal functions and their power, the
HP 48 system had to be powerful and yet usable by everyone, whether a
skilled mathematician, an excellent programmer, a physicist, a statistician,
or even someone who has nothing to do with these areas at all.

Since the capabilities of this machine are much different than those of a
regular calculator, it often appears at first to be very complicated, when
actually itis the simplest system there is. Itis just a question of habit, and
in a few days (with a little practice) you will master the HP 48.

The chapters of Part One cover a general vision of the standard use of the
machine: a few tricks to learn, how to make simple programs, how to stay
organized, etc. The goal of Part One is not to replace the Hewlett-Packard
instruction manuals, but rather to show you the capabilities of your
machine in a way that will make it easier to use those manuals.

The Hewlett-Packard manuals show many things that the HP 48 can do.
With machine language, however, it is possible to access new resources
and create programs that are much faster. Thatis whatPart Two teaches
you: With elegant examples accessible to programmers of all levels, it
shows you what programming in machine language is like, and it also
describes the internal structure of the HP 48. So even if you know nothing
at all about machine language or assembly language, here is a good
chance to learn!

Before we get to that, however, it is a good idea to know the normal uses
of your machine. To aid you in your learning, there are program examples,
ranging from elementary to very complex, found in Part Three (Library of
Programs). By using these programs or modifying them as you wish, you
will soon be able to write sophisticated programs.

Introduction 13

14

1. First Approach to the HP 48

Parr One: The HP 48

Your machine sits before your eyes, covered with buttons. The blue,
orange, and white inscriptions don’t seem to mean much at the first glance.
But this should not alarm you. Itis justlike a Christmas tree: atfirst glance
itlooks like chaos, butif you take a moment to look at it, you notice that each
decoration was placed carefully. Itthen becomes obvious that the creator
was working thoughtfully.

Like every electrical appliance, the HP 48 needs current. Verify that the
three batteries, in the back of the machine at the base, are in place and
facing in the correct directions. The batteries on top and bottom should
have the + side pointing left; the middle battery should point to the right.

The Keyboard

Next, turn it on. Simply press the [OMIbutton which is the lower left-
most button (written in white).

Above this you will find two buttons L1 (blue) and [1] (orange). If you
press any key by itself, the function written in white will be executed.
Pressing the L1 (blue) shift key first will cause the function in blue to
be executed. Likewise, pressing the [<1] (orange) shift key first will
cause the function in orange to the executed. For example, if you press
L[] first, the [STOJ key then becomes the [RLCLI key; you are
actually pressing [PILRECLI, thus executing the command RLCL,
which we will later see stands for recall (to recall the contents of a
variable).

Above the [€11 key is the [« 1 key. If you press [e once, this activates
alpha mode for one keystroke. Notice that some keys have a white letter
to the right. If one of these is pressed after the [t] key, then that letter
will appear on the screen. For example, pressing L] then [SIM]
gives the letter =, whereas pressing [SIM1 by itself simply executes
the sine function.

To remain in alpha mode for more than one keystroke, you must press
L[] twice. To exit this mode, simply press [« 1 once more. To type
"AE " youwouldpressthebuttons: [" JLxI[«I[AIJLEILENTER].

1. First Approach to the HP 48 15

The Screen

The screen is divided into 3 parts:

16

Above the horizontal bar you will find the current status of the
machine. This will always include the directory path between curly
brackets (£ ¥) (see Chapter 3 for more on this subject). It may also
include small numbers (1, 2, 2, 4, and 3) indicating the state of
certain flags of the machine, an angle mode indicator AL, for
“radians,” or GRAL, for “gradians,” or nothing for “degrees”), or the
date and time.

Below this, separated from the first section by a horizontal bar, are
4 lines:

Ll RO

This is the stack (see Chapter 2).

The third section, at the bottom of the screen, shows the current
“menu” or “directory.” This consists of six labels, each containing the
name of a function or variable. Pressing the key directly below a
label will execute that particular function. For example, the [AJ
key would execute the function shown in the first label of the menu,
found in the lower left corner of the screen.

Some labels have a small horizontal bar on top, which makes them
look like little folders. These represent sub-menus or sub-directo-
ries. (Chapter 3 covers menus and directories more thoroughly.)
For example, if you were to execute the MEMORY command
(press [1LMEMORY 1), you would be placed in the memory
menu:

[MEMI [EYTES] [MARS1 L[ORCERI [PATH CROIRI

You could then execute the WHRS command (for example) by
pressing the [CJ key.

Parr One: The HP 48

Exercises

1-1. What sequence of buttons would you need to press to getan =?
1-2. What sequence of buttons would you need to press to execute
the functionRZL?

1. First Approach to the HP 48 17

18

2. Reverse Polish Notation

Parr One: The HP 48

The HP 48 uses a calculating method called “Reverse Polish Notation”
(RPN). To understand this notation, we must first define the principle of
the stack.

The Stack

Imagine a stack of plates where the only accessible plate is the one on the
top of the stack. The HP 48 temporarily stores objects in the same manner.
The first four stack entries can be seen on the screen preceded by their
stacknumber (1% ,2% 2% and4?). Obviously this doesn’'tlook exactly like our
stack of plates, since the first “plate” is on the bottom, but the principle is
the same.

Although only the object at level 1 is available for use, there are commands
that permit us to change the order of the stack. Before learning this,
however, let's find out how to place objects on this stack.

The HP 48 handles many types of objects (real numbers, binary integers,
strings, names, programs, equations, graphic objects, etc.). Each ofthese
object types may be placed on the stack. To do this, simply type in the
object and press LEMTER 1. For example, to place the real number
1232 on the stack, simply press the keys: L11[21[231[ENTER].

You then see the following on the screen:

Lo LY

123

This signifies that the stack contains one object, 123, in level 1.
Note: The HP 48 will show only the first 4 stack entries, although the stack

may contain many more. The size of the stack is limited only by the avail-
able memory.

2. Reverse Polish Notation 19

Calculating in RPN

The different functions of the HP 48 (addition, subtraction, etc.) take their
arguments from the stack. After the calculation, the resultis placed on the
stack.

Reverse Polish Notation is often difficult for those who are used to a
standard notation. With continued use, however, you will find that RPN
performs much better. In particular, RPN does away with parenthesis
because the stack can store the intermediate arguments. For example, to
calculate (2+3)(4+5), we would perform the following commands:
« Begin with an empty stack (if the stack isn’t empty, use the CLE
command—L[~I[CLE1—to clear it). The screen should look

like this:
EH
=H
28
i:
« Pressing L21LEMTER] shows:
41
=H
28
iz 2
« [2ILEHTERI shows:
Y
=H
= 2
1z 3

Note that the 3 pushed the & to the second level of the stack. This
is correct, since the “top plate” is now the 3.

20 Parr One: The HP 48

« [+1] adds the two numbers:

4z

=H

=H

1z =]
« [41LEMTERI shows:

41

=H

2% 5

1: i
- [SILEMTERI shows:

4z

EH =1

=4 4

iz 5
« [+1 gives:

4z

H

28 =1

1z e
+ Andfinally, L#1 gives the result:

4z

3:

H

1z 45

We typed no parentheses, yet we were able to handle the intermediate
results (3 and?). Remember, a command takes its arguments (however
many it needs) from the stack and places the result(s) onto the stack.

2. Reverse Polish Notation 21

Managing the Stack

We have seen that various commands use only the first few stack entries,
so how can the others be accessed? We have at our disposal commands
to manage the stack. In particular, we can use the following commands:

« SWAF ([<ILSMAF 1) exchanges the stack entries in levels 1
and 2. For example:

LH
cH
= 2
1z 1
After L<ILSMAP]
41
3:
= 1
iz 2
« DROP (L<ILCROF 1) drops (erases) the object in level 1:
41
= 3
= =
12 1
After L«ILDREOPT:
41
H
2 3
1z 2

« CLE (Le1LCLRED) clears the stack. With the above stack, it
gives:

= P00

22 Parr One: The HP 48

These are the most common commands, but there are others. They can
be accessed from the STK menu, which is in the PRG menu (press
[PRE], then LAT, which is the first menu key). Don't forget that menus
are shown in pages of six functions each. Other pages can be accessed
by pressing LH®T 1 (next page) or L1 LFREY 1 (previous page). The
commands in this menu are as follows:

« OVER places a copy of the object found in level 2 on the stack:

Lot i LORE Y

After pressing [OYEER1:

Lot i LORR N
Xl

« ROT rotates the 3 first stack entries:

41

= =]
= 2
1z 1

After pressing [ROTI:

41

= 2
23 1
iz 3

« ROLL is a similar function, but it takes one argument (from level 1 of
the stack) which is the number of objects to “roll.”

Thus, 2 ROLL is the same asSWAF, and 2 ROLL isthe same asROT.

2. Reverse Polish Notation 23

24

« ROLLEL is similar to ROLL except that it rotates the objects in the

opposite direction.

After pres

LN Tay gl oY

sing [ROLLLC]:

il

P T

If the stack contained the following:

(Don't forget thatROLLL! takes one argument, the).

« PILCE also takes one argument from the stack. F'ICK copies the
object found at that level and places itin level 1. So,2 F ICK would
be the same asOWER. For example:

4z 123456789

=H 1

=4 1

13 3

After pressing [FICK]:

H 122456789

=H 1

=H] 1

| 1= 123456739

(remember thatP I CK takes one argument from the stack).

« DEFTH tells us the number of objects that are on the stack. If the
stack were empty, PEFTH would return&. For example:

LR

53333
44444

Parr One: The HP 48

After pressing [DEFTHI:

23333
ad4ad

OO0 fa

(there were 2 objects on the stack).

« [UP duplicates the object found in level 1:

41

H

=4 2

1z 1

After pressing [DUPI:

41

i=H 2

=4 1

1z 1
« [DUP2 duplicates the first 2 objects of the stack:

41

=H

=4 2

1: 1

After pressing [LUP2T:

e
[T 8

« [UFH is a generalization ofLIF* andC:LIF'2. Ittakes anargument (N)

and duplicates the first N objects of the stack.

Thus, 1 DLPH is the same asDLIP, and 2 DUPH is the same asDIFPZ.

2. Reverse Polish Notation

25

26

« DROFPZ “drops” the first 2 objects from the stack:

e
T

After pressing [DROPZI:

i LR

2

« DROPH is a generalization of 'EOF and DROFZ. It takes an
argument (N) and drops the first N objects from the stack.

Thus, 1 DROPHis the same asDROF, and2 DROFMisthe sameas
DROPZ.

Parr One: The HP 48

Exercises

2-1. Calculate
(3+1):[9-5)
2-2. If the stack contains:
41)
3: E]
=4 2
1z 1
how would you arrive at the following stack?
EH
H 1
=] 2
1z =
2-3. What would the foliowing sequence of keys calculate?

[SICEMTERIC=IC+I0110110-10430+I0110-10COS]

What is the result?

2. Reverse Polish Notation 27

28

3. Organizing Your Data Properly

Parr One: The HP 48

The HP 48 is a true computer, and as such it must be capable of storing
data—usually referred to as objects. These objects can be of different
types: real numbers, binary integers, programs, lists, etc. They can be
grouped into two families: internal objects (pre-programmed functions)
and user objects (those that you enter into the machine). All objects will
appear either on the stack or in the form of directory labels.

Menus and Directories

A menu or directory consists of a series of objects. Each object is
accessible by invoking its name or by pressing one of the six keys at the
top of the keyboard beneath the item in question.

For example, L<21[MEMORY 1 (MEMOREY') takes you to the MEMORY
menu, which is a list of internal functions that provide memory manage-
ment. Now, if you press [AJ (the white button below L[MEMI in the
lower left corner of the screen), the machine returns a value on the stack.
The screen should now look something like this:

Lol KLV Y

26173.5

When you pressed the LH 1 button, the HP 48 knew that you wanted to
execute the objectMEI1, and it responded to your command. This function
returns the amount of memory that is free for use, expressed in nibbles
(see Appendix B for more about binary and hexadecimal notations).

If there are more than 6 objects in a menu, the others will appear by
scrolling through the listusing LHET1 (HEXT page) andL I [LFREY 1
(PREMious page). Thus if you were to press LH®T 1, you would be able
to use the other functions of the menu MEMORY (and if you continually
press LHXT 1 in a menu, after you arrive at the last page of the menu,
you are returned to the first page).

3. Organizing Your Data Properly 29

To give another example: [ILCMOMES] puts you in the MODES

menu, which has 4 pages:

page 1: ST
page 2: STK
page 3: DEG
page 4. HE®

FI¥
ARG
RAC
LEC

SCI
CHD
GRAD
ocT

EHG
CHC
HYEZ
EIM

SYM BEEP
ML CLE
FEZ REE
FHMa

If you press [CLK] (found at the end of page 2), the time and date
appear (or disappear) at the top of the screen, and the label [CLK]
becomes [CLE®]. When a “*” appears in a menu label, it means that
the option in question has been activated. These menus allow us to
personalize the HP 48 to function according to our own needs.

As mentioned in Chapter 1, certain menu labels will look like little folders.
Such is the case for the PROGRAMS menu (accessed by pressing
[PRZ]). This means that if you press the corresponding button, you will
enter a sub-menu of the current menu.

30

Parr One: The HP 48

MenuTrees

The best way to explain a menu structure is by using the analogy of a tree.
The first menu is called the root. In the root menu we will see “normal”
labels and perhaps the special “folder” labels. These “folder” labels are
parent menus that give us access to sub-menus. For example, the menu
TIME (C<ILTIMEID), has this tree structure (partially represented
here):

CAT

*DATE >TIME NFM SET

Sub-menus can contain objects, or they can have their own sub-menus
(for example RPT is a sub-menu of the sub-menu ALRM), and so on. To
distinguish the menus from one another, we refer to them as parent-
menus and child-menus. These menus are connected by a branch; the
parent being the one closest to the root, and the child is the one farther
from the root.

3. Organizing Your Data Properly 31

The VAR Menu

There are two types of menus: menus of built-in objects and user
menus—where you can store objects of your own choosing. The “VAR”
menu is your user menu. Here is where you may store your own objects,
create your own directories, etc. The root directory of the VAR menu has
a special name: HOME.

To enter a subdirectory, simply press the key that corresponds to the
subdirectory label (a “folder” label)—or, alternatively, type the name in full.
To return to the parent directory, press LI LLIF1 (UPLIR); to return
directly to the root, press L1 LHOME 1 (HOME). The directory that you
are in at any instant is referred to as the current directory.

To store an object, simply place it on the stack, and enter a name by typing
the letters between single quotes, and press [STO1 (STOre). For
example, press [3IL1IL2ILEMTER 1, which places the real num-
ber 512 on the stack. Then press
['I0xICxICAICBICCICENTERI. The screen should show:

el
on
[
I

Now press [AR 1, to place you in your working directory, then [STIOT,
to store the number. [ABC] should appear to the left of the current
directory menu.

Torecall this object, simply typel " ILxJLaxJ[AIJLEBILCILENTER]
[PILRCLI. Youmay also type L IJLABLC or simply LABC T (that
is, press the white menu button below the LABLC 1 label). Thus, to recall
the real number S12 previously stored, press the menu button for
[ABCI.

If the name AEL already exists in the directory, you can store something

32 Parr One: The HP 48

different under that name (which will erase the previous contents). To do
s0, you simply place the new object on the stack and press LI LABLC .

To create a subdirectory, use the CEI*IE command, found in the
MEMORY menu. You type the name of the intended new directory (for
example 'D'IREC "), then press [CRDIR].

By creating subdirectories, you can group related objects together in one
area. For example, if you have stored mathematical programs, machine
language programs, and games, it would be wise to create 3 subdirectories
in the HOME directory: CMATHI, LML], and LGAME 1. This allows you
to find each of your programs easily and quickly

Three additional commands are important to know when working with
directories:

UPCIR (C<ICUFI) lets you go “up’ to the parent of the current
directory

HOME ([~JLCHOMED) lets you go directly to the HOME directory
(the root directory of VAR)

FATH (in the MEMORY menu: [L<ILYARILPATHI) permits you
to see where you currently are in the VAR tree structure. This command

returns a list containing the names of directories (the first of which is
always HOME).

Exercises

31. Create a subdirectory LEI07 in the HOME directory and place
in it three variables LAJ, [EJ and L[], containing the real
numbers 1, 2 and 3, respectively.

3-2. How many sub-menus are in the MTH menu?

3. Organizing Your Data Properly 33

34

4. Programming the HP 48

Parr One: The HP 48

Besides using the many internal functions of the HP 48, you can also
create your own functions from them. The HP 48 has a true programming
language, called RPL (Reverse Polish Lisp), derived from the language,
LISP (“LISt Processor'—a.k.a. “Lots of Insane and Stupid Parenthesis”).
LISP is very powerful (used for artificial intelligence), but its syntax is very
difficult, because every command is coded between parentheses. The
vast amount of parentheses in its programs make it very difficult to read.

However, Reverse Polish Notation, as you have seen, allows us to work
without parentheses—by using objects. That term is intentionally vague:
The HP 48 makes the least possible distinction between the types of the
objects that it manipulates. The functions adapt to their given inputs. For
example, if the stack contains the real numbers 2 and ...

4z
=H
=4 z2
1z]
...pressing [+1 gives the proper result of 2+3:
4z
=H
28
1z =1
Butifyou place”AELC" and"[EF" onthe stack...
41
=H
2t " "
i: "LEF"
...then [+ 7 will “add” (i.e. concatenate) the two strings, giving this result:
EH
=H
-H
1: "ABCLEF"

Thus the same + operation will add two real numbers, two binary
integers, two matrices, or a real and a binary, a character string and a list,
etc. This generic adaptation of functions makes complicated program-
ming easier.

4. Programming the HP 48 35

Programming Methods

As we have seen, a program is a group of commands. In the case of RPL,
this group of commands is given between two symbols: % and #. For
example, to calculate the cube of a number, we would enter the number,
then this sequence: [21 [u* 1. But to calculate many such cubes,
it would be nice to simplify this procedure—create the program CUEBE1 .

« To begin the program, we must enter a special character, %, by
pressing [« J[« #1. As you can see, the closing delimiter (&)
is also present. The screen should now look like this*:

e (]

There is also a blinking cursor to the right of the «. Itis here that the
next characters will be entered.

« The program’s first step is to place a 3 onto the stack, so press
[21, and a space ([SFPLC 1) which will serve as a separator.

« The second command is'J* | so press the ['4%] button. Youmay
expect 4% to appear, but instead you see the symbol . This
signifies “raise to the power.” The screen should now show this:

=

i
£
»

And the cursor should be to the right of the ™.

*Note: If you make a mistake while entering the program, the [4=1 button allows you to erase the
charactertothe left of the cursor. Inthe case of a more devastating mistake, pressingLRTTH] (that's
the LOM 1 key) will erase everything you have entered—without destroying the contents ofthe stack

36 Parr One: The HP 48

« Our program is finished, so enter it onto the stack by pressing
LEMTERJ. The screen should now show:

Lot (LR Y

“ 3 "™ %

The program is now on the stack, and it is in level one. We could now
execute the program by pressing LEWHAL 1, but this would cause an
error (since the stack doesn’t contain enough arguments), and we would
lose the program (once executed, it disappears from the stack).

So before trying to use it, we will store it in a variable by entering the
followingsequence: [' 1Ll JLCICUICEICEICLIILEMTER]
then [STOI. Now, if you press the button [WHARI, you wil see
LCUBEL] in alabel in the left of the menu. This is your program.

Now enter a number onto the stack, press the button directly below

[CUBEL 1. The number on the stack will be cubed—with the touch of
one button instead of three!

4. Programming the HP 48 37

There are other ways to program such a procedure. Here are a few
examples—presented as are the programs in the library (Part Three):
CUBE2 (# [&47h)
&
CUP CUFP = =

CUEE:S(# EFih)
+ A
AA =R =
k2

cuses @ 4526h)

+ H
"A=A*A"

This listing is interpreted in the following manner:
+ The name of the object (or program) is in bold letters;

« After the name, in parentheses, is the object’'s checksum value, to
help verify that the object was entered correctly. To calculate the
checksum, place the name of the objectonthe stack (e.g. ' CUEEZ)
and executeE'f TE'S . This function returns two values: the checksum
and the object’s size. (The checksums here are in hexadecimal, so
to make comparisons, put your HP 48 in this mode by typing HE.)

« Below the object name is the listing, as it would appear after entry.

To enter these objects, you must:
« Type the object (just as with CUEE1) and enter it onto the stack;
« Enter its name onto the stack;
« Press [STOT.

38 Parr One: The HP 48

A few notes on these four programs:

« CUEBE1 uses the pre-programmed internal function, the power nota-
tion ™, which takes two arguments from the stack: areal numberand
the power to which you would like to raise it. CUBE1 places the
power onto the stack (in this case 3); it’s up to you to supply the real
number.

« CUEBEZ uses the stack. The[*UF function duplicates level 1 of the
stack. (It is very rapid, as are all stack functions.) Executing DILIF
twice gives 3 copies of the object, which are then multiplied together.
For example, if CUBEZ were executed with this stack:

4z
EH
=H
iz =1
After the first ILIF we would have:
L
3:
2% b=}
1: =]
...after the second :LIF':
4z
=H =}
2% b=}
1: =]
...after the first multiplication:
S
25
...and after the second multiplication, the cube of 5:
4z
H
=Y
1: 125

4. Programming the HP 48 39

40

« CLBEZ uses the “local variable” concept. We have already seen
variables stored as objects in the VAR menu. A local variable is
visible only to the program in which it is declared. To create such a
variable, we use the symbol *, followed by one or more variable
names, then a # to signify the end of the list of names. This will
create local variables—using the values that were on the stack—
from that point on in the program until a matching * delimiter is
reached. In that part of the program, any use of a name of one of
these variables will recall the value given by *. Note that:

- * conserves the order that the numbers were placed on the
stack. If the stack has a T in level 2 and a 42 in level 1, then
+ A B will place 5 in the variable Al and 42 in B

- If a local variable has the same name as another variable, the
contents of the most local variable are used. For example, in the
following program:

« 1 » A €« 2 * A €« A » % %

1 is placed in the first local variable H, then 2 in a local variable
of the same name. When H is recalled, its value is 2.

- All local variables will disappear when the program terminates,
whether the program terminates normally or by interruption.

- While local variables are visible only locally, global variables
appear in the VAR menu and can be used from anywhere.

« CUBEH is similar to ZUBES, but instead of a program object, the
+ His followed by an algebraic that accomplishes the same task.

« CUEBE1 is the shortest of the four, but if the user forgets to give an
argumentonthe stack, hewill getthis errormessage:™ Ertror: Too
Few Aroument = AlsoaZwillbeleftonthe stack, andthisis notvery
“clean.” By contrast, the other programs begin with a function that
first tests for the presence of an object on the stack.

The following program is the shortest, gives the best performance,
and is the most correctly programmed. :
CUBE (# C273h)
«
+ H
‘Ao

Parr One: The HP 48

As a general programming rule, you will need to choose between
the methods in CUBEZ and CUBES, knowing that CUBES is
programmed well because of its use of local variables to store
arguments, and its use of the stack for calculations; but it is slower
than CUUBEZ because recalling a local variable is slower than
executing a DUF.

You must avoid, at all costs, this method of programming:
#« 'A" STO A A # A % 'A' PURGE =
This is very slow because it creates and purges a global variable,

and it may erase a preexisting global variable, H. Even so, such a
method is occasionally necessary.

Variables and Directory Trees

We have seen that a local variable is visible only in a certain section of a
program, appearing at the beginning of execution of this section and
disappearing at the end. We have seen that a global variable is an object
stored in the VAR menu or in one of its subdirectories.

Variables can have identical names. You can have global variables of the
same name (in different directories as well as local variables with that
name). Which value will be used when we recall a variable? To under-
stand this, we must understand how the HP 48 searches its contents:

.

First step: The HP 48 checks for any local variables of the specified
name, beginning with the local variables most recently created.

If a local variable is not found, it looks for the name in the current
directory. If it finds it, it's done. If not, then if the user is not in the
HOME directory, the HP 48 checks the parent directory. If it gets
to HOME without finding the variable, then instead of using the
contents of the variable, it uses the name (between single quotes
""). (For a more detailed discussion of directory trees, see
Chapter 3).

The HP 48's capacity to manage local variables permits a classic
programming technique: recursion.

4. Programming the HP 48 41

Recursion

Certain mathematical problems use recursion. Thatis, they refer to them-
selves. For example, the calculation of a function f on a point n could be:

« fin)=g(f(n-1)), where g is a known, calculable function.
+ fin)=f, aknown value.

We are perfectly capable of calculating f(n), for any n greater thann,. We
simply apply the first formula repeatedly. If f(n)=f,is known, then so is
f(f(n,), and f(f(f(n,))), etc. In other words, to calculate f(n), we use f(n-1)
to make the calculation; to calculate f{n-1), we use f(n-2), and so on.
Let's calculate, for example, the factorial function:

- factorial(n) = n ? factorial(n-1);

« factorial(0) = 1.
That is, to calculate factorial(n), we say:

« “If n=0, we know this, itis 1.”

« “If n> 0, we must calculate factorial(n-1) and multiply this by n.”

This can be programmed directly:

FRACTORIAL C# 2336h2

+ H
% IF
H ==
THEN
ELSE
N 1 - FACTORIAL M #
END
%
>

First we take a value from the stack and place it in the variable M. Next
we test if H is equal to E. I so, we know the solution and return the value
1 to the stack. If not, we calculate factorial(td-1) and multiply it by M.

42 Parr One: The HP 48

To better understand the operation of a recursive program, you must
understand that when a program “calls itself,” it executes a copy of itself—
a copy that has nothing to do with the original. Look, for example, at the

calculation of factorial(2).

To calculate this we

will need the values of

factorial(1) and factorial(O)—which we already know. Thus, 3 copies of
FRACTORIAL are chained together. Observe:

Copy 1

Copy 2

Copy 3

This is the copy we call
with the value & on the
stack. In this case, M
has the real value of Z.
M # &, so to find factor-
ial(H-1),itputs the value
(H-1=1)onthe stackand
calls factorial.

It now waits for a re-
sponse.... Misstill2.

Factorial begins with al
as the M value for the
function. Again, M # @,
so it finds factorial(t-1)
by putting that value (N-
1=0) onto the stack and
again calling factorial.

Still waiting; M is still 2.

Waiting here, too; M is
still 1.

Factorial begins with M
= B Butfactorial(0)=1,
so the value of 1 is re-
turned immediately to
the calling program.

Still waiting: M is still 2.

The value of factorial(0)
arrives and is multiplied
byH togetl.

Finally, the value of fac-
torial(1) arrives and is
multiplied by M to getZ.

4. Programming the HP 48

43

The principle is the same regardless of the value of the first M. Look at
this summarized example for 5. In all, there are six copies of the factorial
program in action:

Copy 1 Copy 2 Copy 3 Copy 4 Copy 5 Copy 6

N=5, f(4)=?

N=5...(wait) | N=4, f(3)=?

N=5...(wait) | N=4...(wait) | N=3,f(2)=?

N=5...(wait) | N=4...(wait) | N

3...(wait) | N=2, f(1)=?

N=5...(wait) | N=4...(wait) | N=3...(wait) | N=2...(wait) | N=1, f(0)=?

N=5...(wait) | N=4...(wait) | N=3...(wait) | N=2...(wait) | N=1...(wait) | N=0,f(0)=1

N=5...(wait) | N=4...(wait) [N=3...(wait) | N=2...(wait) | N=1, f(0)=1
—>f(1)=1

N=5...(wait) | N=4...(wait) | N=3...(wait) | N=2, f(1)=1
—>f(2)=2
N=5...(wait) | N=4...(wait) | N=3,#(2)=2
—>1(3)=6
N=5...(wait) | N=4,(3)=6
—>f(4)=24
N=5, f(4)=24
~>f(5)=120

Thus we find that factorial(5)=120.

44 Parr One: The HP 48

Exercises

4-1. Write a program that will add two real numbers taken from the
stack. Would it also work for two strings?

4-2. What does the following program do?
+ ABE €« AB+AEBE % 5 % %

4-3. Write a recursive program to calculate the n'" term of the Fi-
bonacci series U, defined by:

« Ifnis greaterthan orequalto 2, U = U_+U,_, ;
¢« U=U,=1

4. Programming the HP 48 45

46

5. Presenting Your Data Properly

Parr One: The HP 48

So far, we have discussed the calculation capabilities, data storage, and
programming of the HP 48. But simply knowing these is not sufficient.

The memory of the HP 48 can be quite large. It has 32 Kb of base RAM,
which can expand up to 288 Kb with two 128 Kb cards—the equivalent
of more than 200 pages of text. Therefore, it is important to be well
organized and to present your programs and data in a manner that will
make it easy to find them later. To do this, there are a few techniques that
we will now study.

Making Data Access Easier

In Chapter 3, we studied menu and directory tree structures. This is an
essential element of organizing programs and data, because the tree
structure allows you to group similar classes of variables and programs
together. For example, Mathematical programs togetherina 'FMATH '
directory, matrix programs in a subdirectory, etc.

In any subdirectory, it is possible to order the variables and programs with
the function OEDER. This command takes, as its argument, a list
containing the names of the variables in the desired order. The function
then puts them in that order. In this way, for example, you can place the
important programs first, followed by sub-programs that are less useful.

Itis also essential to choose program names carefully, so that simply see-
ing the title of a variable or program will suggest its contents. Occasion-
ally, however, it is useful to associate a name of a pre-existing function
or an icon to a program that we have just written. This is made possible
by using a CuSTom menu (via the [CST1I button—next to [VART).

5. Presenting Your DataProperly 47

Acustom menu permits us to connect objects of the HP 48 and a specific
menu label, without excessive memory consumption. The mechanism
behind this menu is simple: when you press the LCST 1 button, the HP
48 searches for a variable named CST.

If the variable is not found in the current directory, the HP 48 searches the
parent directory(s) until it reaches the root. If no variable C'ST is found, an
empty menu is shown. Therefore, it is possible to have many different CST
menus, depending on which directory you are currently in (which rein-
forces the notion of good data organization).

The variable CST must contain alist. For each element of this list, we have
many possibilities:
« Aname: The menulabelis associated with the variable of that name.

« Astring of characters: The string is placed in the command line when
that menu key is pressed.

« Alist of two objects: The first object is the title of the menu label; the
second is the associated object. If the first element is a 21x8
graphics object, the menu title is the corresponding graphic.

« All other objects will be executed. The object will appearin the menu
label for the corresponding button.

Here is an example of a CST menu:

CST (# 2D1Fh>
£

£ “AY "Un " ¥ { GROE 21 8
BBBBGBEMBEI"lﬁHBBEESFFFFBEFFFFlF?BBCIBCFF?EBEBBBB
"avion " x4 "in" "dans"} £ he" "le
£"sky" "cisl "X OMIT G

After storing this object, enter the CST menu (by pressing LCST 1, to the
left of L%FR 1). Interesting, no? Now press in succession the six menu
keys from left to right. Your HP 48 has just accomplished an English-
French translation!

48 Parr One: The HP 48

A custom menu permits us to associate icons with functions. It also
permits us to mix the HP 48 internal functions with user functions on one
menu. But we can even do better than this. There is also a way to assign
functions to any key on the keyboard.

This method of redefining keys is best described through an example.
Here is a small program that plays an tune of random music:

-5& CF 1 18
START

448 RAMD % .1 RAMD % BEEP
HEXT

Type that in. The screen should look like this:

=4

1#& =56 CF 1 18 START
44868 RAND * .1 RAND
% BEEP MEXT =

Now type: [SIL1ICEMTERICAILSICHICEMTERI. Then
press L<1LIUSR], then [EMTER], and you will hear a little music.

The explanation for this is simple. We have assigned this particular pro-
gram to the LEMTER 1 key. This assignment s not valid exceptin USER
mode. We entered this mode temporarily by pressing [£3La1 (this
sequence puts us in TUSR mode, that is, USER mode for one keypress).
To remain in USER mode, type L<1LUSREI [<ILUSED, and USER
will appear at the top of the screen. To return to normal mode, type
[«<ILUSRI once again.

Note: Any keys that are not defined for USER mode retain their original
functions in USER mode.

5. Presenting Your DataProperly 49

You may redefine the entire keyboard, including the LIOM 1 button. The
syntax for ASN is the following:

argl arg2 HASH

argl is the function that you would like the machine to execute when you
press the key. This can be the name of a program, the program itself, or
a completely different object.

arg? is a real number composed as follows:

« The firstdigit (tens position) is the key’s row (a value between 1 and
S, where 1 is the top row of keys);

« The second digit (ones position) is the key’s column (a value be-
tween 1 and&, where 1 is the left-most column of keys):

« The decimal place is the button mode:
- Borl normal mode
[« mode (orange shift)
[~ mode (blue shift)
L1 mode (alpha)
[<ILx1 mode (alpha, orange shift)
[»1L«1 mode (alpha, blue shift)

'
Lo) I A]

For example, to redefine the [D'*ROF 1 key, you would assign a new
function to the button 56.2.

Note that to restore a key to its standard function, you use the special pre-

defined name, ' SKEY ' . Or, executing @ DELKEYS will return all
buttons to their standard functions.

50 Parr One: The HP 48

Understanding Programs More Easily

Many methods exist to increase the understanding of programs or their
results. We will mention three important and easy-to-use methods:

The HP 48 allows you to enter comments that begin with the char-
acter B (LaeJLPILENTERD). Unfortunately, these comments
disappear as soon as you press LEMTER 1. Therefore, they are
not very useful unless you are storing the programs on another
computer. To leave com-ments in a program more permanently,
you can enter the following: " comment” DROF, where " comment™
is the desired text. This type of comment will remain in the program.
Thus you can note the pur-pose of the program, its syntax (e.g. the
number of arguments it needs), and what results it will return.

Messages: Itis good to tell the user what is going on once in a while.
For example, you can include error messages or indicate how (or
what) the program is doing in the case of lengthy calculations.

Explain the results: What is more frustrating than a program that
returns data of whose meaning we have no idea? To easily remedy
this, it is useful to “tag” the results—add a prefix to them (name,
comment, etc.) via a special HP 48 function: The function +THG
takes as its arguments the object to be tagged, and its tag. The pro-
gram mSOLNVER in the library of programs uses this technique.

Above all, emember that you should always write your programs as if
someone else must use them. In this way, if sometime later you decide to
look at them again, you should not encounter too many difficulties.

5. Presenting Your DataProperly 51

52

6. Saving and Transmitting Data

Parr One: The HP 48

The memory of the HP 48 is not infinite. The default amount is only 32
Kb (32 Kilobytes is about 32,000 characters). For this reason, it may be
necessary to increase the memory by using RAM cards. In the HP 48SX,
two ports are provided for this purpose (found on the back of the machine
underneath the cover at the top).

But even if you don't need more memory, the HP 48 also allows you to
easily load information from other machines. After all, why re-type data
or programs that already exist on another HP 48? This is no fun, and
errors are easily made in the process. Itis much more useful to exchange
data directly between machines or store the programs on a computer.

Plug-In Cards (HP 48SX)

There are two types of plug-in cards: ROM and RAM.
ROM is memory that you can only read (Read Only Memory). Its
information cannot be modified. There are actually four types of ROM:
» real ROMs, (like those contained in the HP 48);
+ PROMs or Programmable ROMs;
+ EPROMs which are PROMs that can be erased by ultra-violet light;
« EEPROMSs which are Electronically Erasable PROMs.
The EEPROM type of card is the most common, and it is sold pre-

programmed (e.g. the HP SOLVER card). You could actually make one of
these yourself (using an EPROM or EEPROM), but it would be costly.

6. Saving and Transmitting Data 53

RAM is memory that you can modify (Random Access Memory). Existing
plug-in RAM cards for the HP 48 are 32 Kb or 128 Kb. On each of these
cards is a small switch that allows you to write-protect it (like transforming
it into ROM). These cards can be useful in two different ways:

« They can be used as a memory extension using the internal function
MERGE. To put a card in MERGE mode, turn the machine off,
insert the card in one of the two ports of your choice and turn the
machine on. Thentype 1 MERGE or2 MERIE, depending on
whether you placed the card in port 1 (the one on the bottom with
the calculator upside down) or in port 2. At this point, typeMEM, and
if all is well, your memory will have been increased considerably.

* They can be used as a RAM disk in BACKUP mode. To put a card
in BACKUP mode, insert the card in a port, and store your data
directly onthe card. The names of the objects of a port are not of the
form " name ' butare “tagged” objects in this form: & x& name wherexis
the number of the port (&, 1 orZ). For example, if the card is in port
2, then "hiella" F2:BOMJOUR CSTOT will store the
string "hiello™ under the name BOMJOUR in port 2. When
storing, the card must not be write protected. It is wise to leave a
backup card write protected unless you are in the process of storing
data.

We must mention three important notes:

54

+ A card in MERGE mode must not be write protected.

+ A card in BACKUP mode that is write-protected is not affected by a
‘memory lost’

« If a card is installed in one of the ports, it is not “merged,” and no
data has yet been stored on it, you will get the message Ir—

valid Card [ata when you turn on the machine. This is
because the card has not yet been configured.

Parr One: The HP 48

HP 48 <-> Computer: RS-232C

HP sells a cable that connects your HP 48 to a Macintosh, an IBM-
compatible computer, or any computer with a standard (9 or 25 pin) RS-
232 serial port. Software is included with the cable to let you to save the
data of your HP 48 on a hard or floppy disk. This software is called KERMIT.

You may transfer data in either direction:
« Transferring data from the HP 48 to the computer:

- ontheHP48: 'name of the object to send ' 'SEMD
- on the computer: RECEIVE.

« Transferring data from the computer to the HP 48:
- ontheHP48: RECEIVE (/0 menu)
- onthecomputer: SEND name of file to send

For any transfer, you should always make sure that the I/O parameters are
set to what you really need. Here is a good configuration:

« On the HP 48, enter the I/O menu and press LSETLF 1, then, by
pressing the proper buttons, make your screen look like this:

I-0 setup menu

IR wire: wire
ASCII<binatut ascii
bands QEEE
parity: ricre &

checksum tupe:]

translate code: 1

+ On the computer, you must be certain that the corresponding set-
tings are the same as above. In particular, on IBM PC compatibles,
you may type the following commands (after running Kermit each
time, and before the first transmission):

SET BAUD 9600
SET PORT 1

6. Saving and Transmitting Data 55

Infrared Transfers
Two HP 48 machines may exchange data without any wire connections
if they are less than 2 inches apart. To do this, the two machines must
have the same SETUP.

For example:

I40 setup menu
IRAwire:
RSCII-binarg:
baud:
paritus
checksum tupe: 3
translate codef 1

In particular, note that the transfer mode must be IR (Infra Red) instead of
wire, as with the connection to a computer.

Place the two machines head-to-head with the two little arrows pointing to
each other (the arrows are found just above the second ‘T in “HEWLETT-
PACKARD"). Atthe sametime, enter* name_of the_object to_send " 'SEMD}
on the sending machine, andRECE I'YE onthe other.

The object sent will be stored in the current directory of the receiving
machine. If that name already exists in the current directory of the re-
ceiving machine, the object will be stored with a new name in the form
original name . 1 (thenoriginal name . & and so onwith eachtransferofan
objectwith the same name), unless flag-36 is set. Type—3& SF tosetthe
flag, and —=3& LCF to clear the flag. If the flag is set, then the old object
will be erased by the new one.

Caution: If the batteries are low, then transfers will not work properly.

56 Parr One: The HP 48

6. Saving and Transmitting Data

Notes

57

58

7. Other Strong Points of the HP 48

Parr One: The HP 48

The HP 48 is above all a scientific calculator and we will see some of its
capabilities as such in this chapter. This chapter is not to give an in-depth
explanation of these functions, but rather to make you aware of their
existence. In this way, if you desire further understanding, you may look
these functions up in the manuals that were furnished with the machine.

Symbolic Calculations

The HP 48 is capable of “symbolic” calculations. That is, the HP 48 is not
limited to numeric calculations only, but is capable of applying complex
mathematical operations directly to literal expressions. Some examples:

Derivatives: To take the derivative of an expression with respect to
a variable, type: ' expression’ 'variable' [rIL&l

Thus, "SIHCHI X" "H'L[eI10a] returns "COSCE) S
A=SIHCE K2

Caution: Ifavalueis stored in avariable ' # ' ofthe current directory
or one of its parent directories, the expression will be evaluated; you
will not obtain the desired symbolic result. In this case, you must
purge the variable ' # " or use a different variable in the expression.

Taylor's Approximation: ' expression’ ‘var' n TAYLR

where " expression " is the algebraic expression youwanttointegrate,

"var' is the dependent variable, and is the order of the polynomial

with which the approximation will be made.

Example: 'SIM{®»' 'H' 5 TAYLE retumns:
"E-1sB RS AT T

Note: TH'LF is found in the ALGEBRA menu ([<JLALGE-

ERAJ).

Solving equations; finding extrema; calculating the value of a function

on a point; all these may be done with the functions found in the
SOLVE menu C<ILSOLYETD).

7. Other Strong Points of the HP 48 59

Numerical Calculations

The HP 48 possesses many functions useful in numerical calculations
(and the list is too long to do justice here). Most of these functions are
found in the MTH menu and are grouped into six categories: fraction
calculations, probabilities, hyperbolic calculations, matrix calculations,
vector calculations, and binary integer calculations (in different bases).
There are also many statistical functions that are available in the STAT
menu (C€ILSTATI).

The HP 48 uses 12 significant digits to give you a numeric result as
accurate as possible. Internal calculations are done with as many as 15
significant digits.

Note also that if the returned result could be represented in a fractional
form, the function +E (LI L+E1) can convert the real number to the
closest fraction.

Graphs

The PLOT menu C*JILFLOTI) has all the necessary functions for
plotting curves of all kinds (classic, conical, polar, parametric, etc.).

Note that you can view and edit the current graph by pressing
[<ILGRAFHI. You can move the cursor using the four arrow keys,
copy the coordinates of the cursor to the stack by pressing LEMTER T,
and return to normal mode by pressing [OMJ. The many functions
(zoom, moving blocks, plotting or erasing points, lines, circles, marking
points, etc.) are all available in this menu.

60 Parr One: The HP 48

Units

The HP 48 can do calculations with units. To create a unit object, simply
enter a real number, then the underscore character (-, obtained by
[rIL_1), followed by the characters representing the desired unit.

For example, to create 1_m, you would press L1I[=I[_JLMI.

Alternatively, you can place just the value on the stack, then go to the
UNITS menu ([+JLUMITE1), and choose the desired unit from one
of the 16 possible categories (length, area, volume, time, speed, mass,
force, energy, power, pressure, temperature, electricity, angles, light,
radiation, and viscosity).

[PICUMITI gives you another UNIT menu with various functions
including the CONVERT function which allows conversion between
different units.

Time

The TIME menu ([1LTIMEI) gives you access to a series of
functions for the clock. In particular, you can set alarms and perform
certain calculations at specific times or on specific days. Note that
[~ILTIME] gives you direct access to the alarm catalog.

7. Other Strong Points of the HP 48 61

Conclusion

What we have learned here is only the beginning of the great possibilities
of the HP 48. These are just the basics as well as a few tricks to give you
a general idea of the capabilities of the machine.

Use your machine as often as possible and study the HP 48 manuals to
gain a better understanding of what has been covered in this “first ap-
proach.” The more you practice, the easier it will become, and you will soon
learn to rapidly resolve long and tedious problems.

When you become familiar with the uses of the HP 48 (as defined by
Hewlett-Packard) you will realize that it is indeed a marvelous tool. But
remember that this is not all there is to it! InPart Two you will discover that
you can do much better using machine language programming!

62 Parr One: The HP 48

Part Two:

Machine Language

63

Introduction

Part Two: M ackine Lancuace

In Part Two we will not only learn how to write machine language
programs, we will also learn how the HP 48 memory is organized. Every
programmer who really wishes to use his machine to its fullest potential
must have an excellent knowledge of its structure. This knowledge makes
it possible to gain access to information needed—information that the
designers did not necessarily intend to be accessed.

This guided exploration of the HP 48 will be done in several steps,
including the lowest level, which is machine language. Machine language
is the only language that the HP 48’s processor can really understand and
execute. We will also be studying the HP 48 on a higher level (the memory
organization), with mention made of many objects used by the HP 48.

Basically we will learn:

* Machine language:
- What is machine language?

- The actual machine language used by the HP 48’s Saturn
microprocessor;

- Machine language instructions (grouped by function type).
« The HP 48’s objects:

- Regular objects to which the user has access;

- Internal objects undocumented by Hewlett-Packard.
* The HP 48’s memory organization:

- Memory in general;

- The I/O RAM, or how to directly access the contrast, clock,
screen, etc;

reserved RAM that contains the HP 48’s internal information;

User memory that contains the objects created by the user
(programs, variables, etc.).

+ How to program in machine language.

Introduction 65

Some of these chapters will contain tables describing the calculator's
memory. In order to remain consistent, they will look like the following
table:

address | contents | length |
address contents length
address | contents length
address,

ast

What you should know:

* Anaddress is a hexadecimal number (base 16) which is the position
in memory of the contents contained in the table boxes. These
addresses will always be organized in this manner: (address,) <
(address) < (address). The table is read from top to bottom. Ifthe ob-
ject listed is not at a fixed address, the symbol @ will be used (often
indexed with the form @, if more than one address is used) to indi-
cate the starting address of the object. The last address (address,,)
indicates the address of the first nibble following the last content
entry of the table.

« The central column gives a brief description of what is contained in
the specified memory area. The contents of this field are explained
in more detail in the text accompanying each table.

« The length field (right column) indicates, in decimal, the number of
nibbles of the table entry (note that a nibble is the basic memory
element ofthe HP 48). Thus, length, —address, - address . This field
may correspond to a specific value in one of the object fields. For
example length can be contents,.

66 Part Two: M ackine Lancuace

The first chapter of Part Two (Chapter 8) covers a general approach to
machine language. If you are somewhat familiar with machine language,
you will probably want to skip to Chapter 9.

Do not be overwhelmed by the vast amount of information found in Part
Two, as it is mainly a reference guide. To best understand this material,
the reading should be done twice. The first reading should be done rapidly
to give you a basic understanding of the different ideas discussed. The
second time should be taken more slowly, and you should try some
machine language programming on your own as you go. You will then find
that Part Two will be an excellent reference for future machine language
programming.

Introduction 67

68

8. Machine Language

Part Two: M ackine Lancuace

If you are already familiar with what an assembler is and does, and you
basically know what machine language is, then you may skip to the fol-
lowing chapter. Otherwise, you will find this chapter useful.

To explain the concept of machine language, we will compare it to a higher
level language. Consider an analogy: a little story about Mr. Jones and Mr.
Smith—two people each wish to install electrical outlets in their homes.

Mr. Smith is not a handy man, so the most simple solution for him is to call
someone who is. He picks up the telephone and calls an electrician in his
neighborhood. Later that afternoon, the electrician finally shows up at Mr.
Smith’s house and does the work for him for a considerable sum of money
(materials + labor + travel + tips...). Mr. Smith pays grudgingly because
the work was not done exactly as he would have liked.

Mr. Jones, on the other hand, is quite good with his hands, and he decides
to do the work himself. He makes a trip to the hardware store where he
buys a plug and some wire. Then, at home, he installs the plug how and
where he wants it, all for a very modest sum of money.

You could say that in the first case, Mr. Smith used a high-level language
by giving an order that resulted in a number of elementary operations
being carried out (getting wire, getting a plug, installing, etc.). Mr. Jones,
on the other hand, carried out these elementary tasks himself. He used
a low-level language that was directly executable. It closely resembles
machine language.

The story illustrates these two types of languages in these other respects,
too:

« Calling the electrician is easier than doing the work yourself be-
cause you have only to give the orders!

« A high-level language is more costly in time (just as the electrician
costs more money).

« Often a high-level language seldom does not let you do exactly what
you want; you cannot ask for just anything (just as an electrician will
probably not come to change a light bulb for you).

8. Machine Language 69

Machine language gives you direct access to all the available resources
of the machine in an extremely fast but complicated way. It can do this
becauseitis composed of very basicinstructions. Itis therefore necessary
to use many instructions to carry out even the simplest functions.

Machine language is the only language that the machine really under-
stands (thus all high-level languages are broken down into calls to pro-
grams written in machine language). However, if a language is easily un-
derstood by the machine, it is absolutely unreadable for a human being
because it is composed of a series of numbers.

This is why we will introduce a third language: assembly. This language
consists of a symbolic representation of machine language codes using
mnemonics—abridged names that help you remember what function is
executed by the machine instruction (for example, F=E instead of 2&).

But since the machine cannot understand these symbols, it is necessary
to transform them into a series of numbers that are understandable. This
translation of assembly to machine language is called assembling. The
inverse operation is called disassembling. Thus we would begin by writing
a program in assembly, then we would assemble it to make it executable
by the machine.

For the HP 48, we can do the assembling by hand, or automatically using
a more powerful computer. (There are at least two Saturn assemblers:
Areuh for the IBM PC and UNIX machines, written by Pierre David and
Janick Taillandier; and Satas for the Atari St, Amiga, IBM PC and UNIX
machines, written by Christophe Dupont de Dinechin). A disassembler
that works on all HP 48 calculators is given in the library of programs.

70 Part Two: M ackine Lancuace

The last term to define is the “microprocessor.” This is basically the heart
of the machine, the electronic entity that executes the machine language
instructions.

The basic unit of information recognized by the microprocessor is the bit
(which can only be a value of 0 or 1). Because the machine uses a binary
base, itis best for us to use a base that is a power of 2, which is why base
16 (hexadecimal) is used. The digits of base 16 are: 0, 1,2, 3,4, 5,6, 7,
8,9,A,B,C,D, E, F, 10, 11, etc. Therefore, the value 23h (the ‘h’ signifies
that the number is in hexadecimal) is equal to 35 in decimal (16 * 2 + 3).

However, itmay sometimes be necessary to store numbersindecimal. We
can use a notation called “binary coded decimal.” This notation uses a
hexadecimal number as if it were decimal. For example, the number 15h
would be equal to 15 decimal.

This type of storage makes it necessary to have two different calculation
modes for the microprocessor: hexadecimal mode, where the registers
contain hexadecimal numbers, and decimal mode, where the registers
contain “binary coded decimal” numbers.

The current mode determines the manner in which the mathematical
operations are executed by the microprocessor. If you add the two num-
bers 9h and 3h in hexadecimal mode, the answer is Ch. If you add them
in decimal mode, the answer is 12h, which corresponds to the decimal
value 12 in “binary coded decimal” notation.

Exercises
8-1. Convert these decimal numbers into hexadecimal: 1, 10, 25,
65535, 48830.
8-2. Convert these hexadecimal numbers into decimal: 123h, 10h,

100h, B52h, 3h.

8. Machine Language 71

72

9. The Saturn Microprocessor

Part Two: M ackine Lancuace

The HP 48 contains a 4-bit Saturn microprocessor. It is the same micro-
processor as in the HP 71 and the HP 28.

The Registers

The Saturn microprocessor has 19 registers. A registeris a memory loca-
tion in the microprocessor and can contain only binary integers. These 19
registers can be grouped into six categories:

» /O registers (2);

« Flag registers (3);

« Data pointer registers (3);

» Scratch registers (6);

« Working registers (4);

« Field pointer register (1).

The I/O Registers (2)

« INPUT (16 bits). This register is used to read the state of the 16
inputs (particularly useful for reading the keyboard).

» OUTPUT (12 bits). This register is used to send current to one or
many of the 12 wires of the keyboard and the speaker. This register
can only be written to.

These two “registers” are used for the BEEP sound (writing to OUTPUT)),
as well as for sampling the keyboard. To sample the keyboard, current is
sent to a row of buttons. If current is detected in a column of buttons, this
lets us know that the button at the intersection of the row/column is being
pressed.

9. The Saturn Microprocessor 73

The table opposite shows each OUT/IN mask to test if a particular key is
pressed (all the values are given in hexadecimal). To test a button, write
the corresponding OUT, read the value coming IN, and AND this value with
the value given in the table. If the result is non zero, this signifies that the
button in question is pressed. It is possible to test many keys simulta-
neously by using an output mask constructed by ORing many masks to-
gether. (Caution: this method does not work for testing the ON button.
Interrupts are needed for this, and we will study those later.)

Here are a few examples:

74

« To testif the button “A” has been pressed, send an QT #EEZh,
and read the value coming IN and do a logical ML+ with the mask
#EBB1Eh. This is done with a small program:

LCHEX #8882 output mask

auT=0C

GOSEWYL #81168 thisis C=IN

LAHEX #B8818 input mask

A=A%C A

?A=0 A

GOYES Key—not_pressed...

* key H is pressed
Note: the routine at #01160h is used instead of the instruction
C=1IHM because the latter does not function properly when used
with RAM (it corrupts the memory area that was read). Another
useful address isk& 1 EECh, which successively executesIUT=C
and C=IHM.

« Totestifany key has been pressed: The program above can still be
used, but the output mask would become #1FFh (#@E1h 0OF
#B8E82h OR #B084n OF #802h OR #GlGh OR #B26h
OF #846h OR #828h OR #188h); and the input mask
#EEIFh #oEEln OR #EB82nh OF #E8884n OR
#BEESN OR #G@818nh O0OR #G@B28h).

- To emit a sound: alternate between output masks #2EEh and
#HEEh (to activate and deactivate the speaker).

Part Two: M ackine Lancuace

A E C K E F
002 /0010 || 100 /0010 100/0008 | 100/0004 || 100 /0002 || 100 /0001
MTH | PRG C5T | VAR T HET
004 /0010 || 080 /0010 080 /0008 | 080 /0004 || 080 /0002 || 080 /0001
' STO | EVAL + J *
001/0010 || 040 /0010 040/0008 | 040 /0004 || 040 / 0002 || 040 /0001
SIM | Cos THAH NS e 1%
008 /0010 || 020 /0010 020/0008 | 020 /0004 || 020 / 0002 || 020 / 0001

EHTER +-— | EEX DEL *
010/0010 010/0008 | 010/0004 || 010 /0002 || 010/ 0001
o T] 9 +
008/0020 | 008/0008 008 /0004 008 /0002 008/0001
a 4 5 = S
004 /0020 004 /0008 004 /0004 004 /0002 004 /0001
~ i 2 2 -
002 /0020 | 002 /0008 002 /0004 002 /0002 002 /0001
oM 5} . SPC +
400/8000 | 001/0008 001 /0004 001 /0002 001/0001

OUTPUT / INPUT masks for the keyboard

9. The Saturn Microprocessor

75

Flag Registers (3)

CARRY (1 bit). This is the carry bit; when an operation results in
a carry, this flag is set.

HST (hardware status) (4 bits). This is a register with 4 flags (MP
module pulled, SR service request, SB sticky bit, XM external
module missing).

STATUS (16 bits). These flags are like those accessible by RPL
instructions SF and CF (but they are not the same). Flags 12 to 15
are used by the HP 48, but flags 0 to 11 are available for use in
programs. This register is represented by ST

Data Pointer Registers (3)

These registers are used to point to a particular memory area. They each
have a length of 20 bits. The HP 48 is therefore capable of addressing
220 nibbles (512 Kbytes). The three registers are:

D0 and D1 (20 bits each). These are used for reading and writing
to memory;

PC (program counter - 20 bits). This register contains the address
of the instruction currently being executed.

Scratch Registers (6)

There are two types:

76

RSTK (return stack) (8 levels of 20 bits each): This is a stack with
8 levels used for saving addresses. This stack behaves exactly like
the HP 48 RPL stack with the difference that even if it's empty, it
contains zeros. It serves as an information backup, particularly for
saving the return address from a call to a subroutine.

RO, R1,R2, R3, and R4 (64 bits each): these are primarily used for
backing up the working registers.

Part Two: M ackine Lancuace

Working Registers (4)

The registers A, B, C and D (64 bits each) are used for miscellaneous cal-
culations. A and C are dedicated specifically for reading and writing to
memory (they are therefore used in conjunction with DO and D1).

Field Pointer Register (1)

The working registers A, B, C, and D are very long (64 bits) and few in
number. They are therefore divided into smaller pieces—"fields,” which
can be used independently, if they don’t overlap. This permits simulta-
neous calculations using only a few registers. Here is a table of the fields:

register’s nibble number
FIE[D[c[B[A[9o][8[7[6][5[4a[3][2]1]0
w

s | M [xs] B
A
[X

Thus, field M represents nibbles E to 3, A the nibbles 4 to 0, and W is the
entire register, etc. The names of these field pointer registers are the same
as those used by the HP 71. Each letter stands for the following name:

+ A- Address: Field Ais 5 nibbles long (which is the length of an
address) and was intended to contain addresses;

« B -Byte: Two nibbles equal one byte;

* M - Mantissa: Onthe HP 71, a real number was stored in a register
containing the sign, mantissa, exponent sign, and exponent. This is
the mantissa field.

« S - Sign: Corresponds to the sign field of the HP 71;

« X - eXponent: Corresponds to the exponent field of the HP 71;

« XS -eXponent Sign: Corresponds to the HP 71 exponent sign field;
+ W- Wide: In other words, the entire 64 bit register.

9. The Saturn Microprocessor 77

The length and position of those fields are fixed. However, there are two
other fields, P and WP (for Wide-P). The size of WP depends on the con-
tents of P. P is one nibble in length, and can therefore contain a number
from 0 to F. WP will contain the nibbles 0 to P (see the table below). Note
alsothat the register P also affects the way values are loaded into registers
A and C (see instructions LAHE* and LCHEX in Chapter 10).

In an assembly program, the name of the intended field is written after an
instruction. For example: ?C=E Hmeans: ‘“Is the field A of register
C equal to zero?” There are two possible methods of indicating a specific
field in an assembly instruction:

« The code for the operation actually exists and can be given directly.
This is always the case for the Afield, and sometimes for the B field.

« The code may be given as a small letter (a, f, or b) to be replaced by
the code for the desired field according to the table below.

Example: If you have this line in the list of instructions: AbE HA=E b,
forA=E W, youwould use the code FIF & (F for W since the letter given
is b).

Another way manipulate fields is to define the number of nibbles the
operation will affect—indicated in the instruction list by an x. For
example, 158x DATE=A x+1 means that the operation will take
place for x+7 nibbles. Thus, 1583 would be “perform the operation
LATE=A for the nib-bles 0...x of A). This type of operation is equivalent
to using a WP field without having to change the value of the register P.

Field a f b
P 0 0 8
wpP 1 1 9
XS 2 2 A
X 3 3 B
S 4 4 Cc
M 5 5 D
B 6 6 E
w 7 7 F
A F

78 Part Two: M ackine Lancuace

Miscellaneous Notes

The Saturn microprocessor has a peculiarity to be aware of: It reverses
everything it reads. For example, if in memory location #00000h there is
a2, and in #00001h there is a 2, reading 2 nibbles from #00000h would
return the value 32. For this reason, all values in memory must be written
in reverse—for all reading and writing operations to and from the registers.

Saturn microprocessor instructions are listed using two different methods:

« By function type: This is useful when you are looking for a certain
operation without knowing the exact syntax or the registers used.
(This list is found in the following chapter).

« By code: This listing is found in the appendix, and is excellent as a
reference card for programmers who are already familiar with how
the operations work, or for someone who is disassembling an exist-
ing program.

One last note about the registers used by the HP 48:

« DO points to the next instruction to be executed (so we always finish
a machine language program by writing to this address).

« D1 points to the first level of the stack. Reading 5 nibbles from this
address returns the address of the object in level 1.

« B points to the return stack. As we execute instructions, we may
need to store return addresses. B points to the next free location in
the return stack. (Caution: This stack is not the RSTK register).

These registers are used by the system. They may be used in a machine
language program, but their original value must be restored at the end of
program execution. The flags 12 to 15 are also used by the system (for
interrupts), but, unlike the three system registers, they must never be mod-
ified. Note that Flag 15 is the one that can be used to change the way key-
board interrupts are handled. Flag 10 may be used and modified, but it is
also used by the HP 48 for memory allocations. If we clear this flag before
trying to reserve memory, it will be set if garbage collection was neces-
sary.

9. The Saturn Microprocessor 79

9-1.

9-2.

9-3.

9-4.

9-5.

9-6.

9-7.

80

Exercises

How would you code the W field for these instructions?

BaZ O=0-C a
AbE C=D[b

How would you code the above using fields P and WP.

Knowing that: Ha2 D=D+C a
AbZ [=8 b

disassemble the instructions A15, HFE, ASE and AYE.

If #00321h contains 1, #00322h contains 1, #00323h contains
< #00324h contains I, and #00325h contains &, what will your
register contain after reading 3 nibbles from #00321h?

Given the same values as question 9-4, what would your register
contain after reading 2 nibbles from #00322h?

Given the same values as question 9-4, what would your register
contain after reading 4 nibbles from #00321h?

If field X of register A contains 2 18h (2 in nibble 0, 1 in nibble
1 and B in nibble 2) and you write this value to #70080h, what
do memory locations #70080h, #70081h and #70082h contain?

Part Two: M ackine Lancuace

9-8. If we then read 3 nibbles from #70080h into field X of register C,
what will be the value contained in this field? Field B? Field XS?

9-9. If P equals 2, how many nibbles are implied by the instruction
A=CATE F °

9. The Saturn Microprocessor 81

82

10. The Saturn Instruction Set

Part Two: M ackine Lancuace

This chapter covers the entire instruction set of the Saturn microproces-
sor. This list will allow you to easily find each instruction that you will need
to write machine language programs. The instructions are grouped by
functionality, as follows:

+ Moves:

Immediate
Exchanging Register Fields

Saving and Restoring (Rn and RSTK)
Reading and Writing to Memory

Input and Output

« Exchanging Register Contents

« Arithmetic Operations:

'

Increment

Addition

Decrement

Subtraction

Logical AND

Logical OR

Logical NOT

2’s Complement
Multiplying by 2

Dividing by 2

Multiplying by 16
Dividing by 16

Rotating Left (one nibble)
Rotating Right (one nibble)

* Jumps:

Direct Relative Unconditional
Direct Relative Conditional
Absolute

Register Direct

Register Indirect

Getting the Program Counter

10. The Saturn Instruction Set

83

Calling subroutines:
- Direct Relative Unconditional
- Absolute
- Returning from Sub-routines

Comparisons:
- Immediate
- Comparing Registers

Bus Commands
Control Instructions
NOPs (Instructions with no effect)

Pseudo Operations

Each operationis described as instruction field (cycles) code ,where:

instruction is the mnemonic for a particular instruction (e.g.: A=8);
field is the field in which the instruction has effect;
code is the hexadecimal code of the instruction.

cycles is the number of CPU cycles needed to execute the instruc-
tion—uvery useful for calculating the exact time necessary to execute
certain programs (tone generation, IR transmitting/receiving, etc.).
Each CPU cycle lasts about 570 nanoseconds (the microprocessor
speed is 1.7 MHz).

The Saturn microprocessor is a 4 bit microprocessor, however the
peripherals (ROM, RAM, screen controller, etc.) use 8 bits. For this
reason there is a cache buffer between the microprocessor and the
peripherals. This internal buffer is 2 nibbles long (one byte) at an
even address location (for example, #00000h and #01234h are even
address locations). The use of this cache buffer requires one clock
cycle. The cache bufferis used whentransferring machine language
instructions from memory to the microprocessor. If the in-struction
is an odd number of nibbles, the number of memory acces-ses
depends on whether the instruction is at an even or odd address
location. For this reason, certain instructions will require n or n+1
cycles for execution. For this type of instruction, a speed of n.5 in-

Part Two: M ackine Lancuace

struction cycles will be listed (4.5 for example). If the start of the
address is even, then this value should be rounded down; other-
wise it should be rounded up.

To make things even more complicated, instructions that read from
memory also use the cache buffer. The number of cycles for such
aninstruction is listed in the form (1, ,), wheren +n, is the number
of total cycles used for the instruction. The same rules apply for
rounding #, as above, but if the number of nibbles read is odd, n,, will
be shown i |n fractional form. If the address of the area being read is
even, then n, is rounded down; otherwise it should be rounded up.
Certain instructions will have a different cycle time depending on
how many nibbles they affect (field sizes are different, or reading and
writing different nibble sizes to memory). For this case, q equals the
number of nibbles the instruction affects. Finally, for comparison
operations, two numbers are givenin the form (n,/n,). The firstis the
number of cycles if the test is true, the second is if the test is false.
Example: Calculate the execution time of a loop. Here is a small
assembly program:

L1 9vA 7C=8 0]
21 GOYES End
1BBBEaE DE=(5) GOB666
142 A=CATE A
ATE C=C-1 W
&DEF GOTO L1
End

If the test is true, the instruction takes 32 or 33 cycles depending if
its address is even or odd. If the test is false, the instruction takes
24 or 25 cycles (the field in question is field W; q is 16 nibbles).

DE=({5» ©EEEEE 10 or 11 cycles.

A=DATE A : 23 or 24 cycles (reading from
even address).

C=C-1 0] : 20 or 21 cycles.

GOTO L1 : 14 cycles.

There are 32 or 33 if the loop is not executed (Z=H k) and 93
otherwise (if an instruction with an odd length begins on an even
address, the next instruction will begin on an odd address and vice
versa).

10. The Saturn Instruction Set 85

Moves

Immediate

You may move immediate values into certain registers. There are special
instructions for moving zero into aregister. Hereis alistof possible moves;

- For register A:
- Setfield A to zero:

A=& A (8) B35
- Set any other field to zero:
A=& b (4.5+q) Ab&E

Set bitx to zero. The bitnumber mustbe from 0toF. Thus, this
instruction can only have effect on the first 4 nibbles of A:
IT=8 x (7.5) 28849y
Set bit x to one. This is the inverse of the previous instruction.
ABIT=1 x (7.5) 2825
- Move avalue into A. This instruction moves x+/ nibbles into
the register (nibbles 7, 2), using the value of P: Nibble 7 is
moved into nibble P of A; /1, is moved into nibble P+/, etc.
Remember that the processor reverses the nibbles moved.
LAHEX Cx2 h..h, (5+q+(5+q)l2) SBEE2xh, h
- Forregister B:
- Set field A to zero:

B=0 A (® b1
- Set any other field to zero:
E=@ b (4.5+q) Ab1

« For register C:
- Set field A to zero:

C=g A (8) Lz
- Set any other field to zero:

C=0 b (4.5+q) Abz
- Clear bit x (Oh - x - Fh):

CBIT=8 x (7.5) 2E38y
- Setbitx (Oh-x - Fh):

CBIT=1 x (7.5) 2E39
- Move a value into C:

LCHEX #hx h, (2+q+(2+q)2) Fxh, h,

86 Parr Twor Macuive Lancuace

S

For register D:
- Set field A to zero:

L=H A (8) Lz
- Set any other field to zero:
Li=@& b (4.5+q) AbZ

For register P:
- Move the value » (Oh - n - Fh) into P:
= n 3) Zn
For register DO:
- Move a value into the 2 least significant nibbles:

=023 aF [G)] 19pag
- Move a value into the 4 least significant nibbles:

CiE=0d =rap (9) 1Apgrs
- Move a value into DO:

CiE=050 t=rgp (105) 1Bparst

For register D1:
- Move a value into the 2 least significant nibbles:

Ci=c2d aF ® ikpg
- Move a value into the 4 least significant nibbles:
Cil=cdl srap (9) 1Epars=
- Move a value into D1:
L1=(5) t=rgp (105) 1Fparst
For register HST:
- Clear flag XM:
Hi= 5} (4.5) gz1
- Clear flag SB:
SEB= 5} (4.5) gz
- Clear flag SR:
SR= 5} (4.5) g2z4
- Clear flag MP:
MP= 5} (4.5) gze
- Clear all four flags:
CLREHST (4.5) 22F

For register ST:
- Clearflag d (Oh - d - Fh):
ST=@ d (5.5) Sd g
- Clear all flags:
@) as

- Set flag d:
5T=1 d (5.5) 854

. The Saturn Instruction Set 87

Moving Values

- For Register A:
- Move field A of B into field A:

A=E A (8) Crdt
- Move field b of B into field b:
A=E b (4.5+q) Ao
- The same instructions exist for C:
A=C A (8) LA
A=C b (4.5+q) ABA

« For Register B:
- Move field A of Ainto field A:

BE=A A (®) DS
- Move field b of A into field b:

E=A b (4.5+q) AbS
- The same instructions exist for C:

E=C A ®) =

E=C b (4.5+q) AbS

« For Register C:
- Move field A of Ainto field A:

C=A A (8) [B]
- Move field b of A into field b:

C=A [u] (4.5+q) Ab&
- The same instructions exist for B:

C=B A (8) [B)=

C=B b (4.5+0) ABS
- The same instructions exist for D:

C=0C A (8) LE

C=0 b (4.5+q) ABE
- Move P into nibble n:

C=F n (8) 2BCH
- Move fiags 0 to 11 of ST into field X:

C=5T (7) B9

« For Register D:
- Move field A of C into field A:

L=C A (8) Lv
- Move field b of C into field b:
L=C b (4.5+q) AL

88 Parr Twor Macuive Lancuace

For Register P:

Move nibble » of C into P:
F=C n (8)

For Register DO:

Move field A of Ainto DO

CE=H (9.5)
Move nibbles 0 to 3 of Aiinto DO:
LE=A% (8.5)
The same instructions exist for C:
LiE=C (9.5)
LE=C% 8.5)

For Register D1:

Move field A of Ainto D1

C1=A (9.5)
- Move nibbles 0 to 3 of Ainto D1:
C1=RA% (8.5)
- The same instructions exist for C:
G1=C (9.5)
1=C5 (8.5)
For Register ST:

Move field X of C into flags O to 11 of ST:
ST=C (7)

10. The Saturn Instruction Set

3@y

128
138
124
13C
131
139

135
130

89

Saving and Restoring (Rn and RSTK)

- For Register A:
- Save the entire register:
=]

t@=A (20.5) 188
F1=A (20.5) i1
Rz2=A (20.5) igz
F2=A (20.5) i@z
F4=A (20.5) i@4
- Save field A only:
LE= A (14) S1AFEE
F1=A A (14) 21AFE1
RZ2=A A (14) 21AF&2
R=2=A A (14) 21AFE=
R4=A A (14) S1AFE4
- Save field a only:
RE=A a (9+q) 21RaB6
F1=A a (9+q) S1RaE1
R2=A a (9+q) 21RaB82
RZ=A a (9+q) 21Ra83
R4=A a (9+q) 21AaE4
Restore the entire register:
A=R& (20.5) iim
A=F1 (20.5) 111
A=RZ2 (20.5) 112
A=R3 (20.5) 113
A=F4 (20.5) 114
Restore field A only:
=R A (14) 21AF1G
A=R1 A (14) 21AF11
A=R2 A (14) 21AF1Z
A=FR2 A (14) 21AF1z
A=F4 A (14) S1AF14
Restore field a only:
=RA a (9+q) 21Rz1G
A=F1 a (9+q) 21Rall
A=F2Z2 a (9+q) 21Ra12
A=Rz2 a (9+0) 21Aals
A=F4 a (9+q) 21Ral4d

90 Parr Twor Macuive Lancuace

« For Reglster C:
Save the entire register:
E&=C
Ei=C
Rz2=C
R3=C
R4=C
- Save field A only:
RE=C

R1=C
R2=C
E2=C
Rd=C

- Save field a only:
Ra=C

RE1=C
RZ=C
R3=C
Fd=C
Restore the entire register:
C=R&
C=F1
C=Rz
C=R3
C=F4
Restore field A only:
=R&
=R1
C=Rz
C=Rz
C=R4
Restore field a only:

C= PE

[y
DIDDIDIDDI My DIDDDD

[T T TR T)

Rest

1K)

o ':"._.'l_.”._‘
Ao I-UNJU'U
Y DO

field A from RSTK:
STE

Save field A into RSTK:
RSTE=C

10. The Saturn Instruction Set

ettt s Lt W]]
D CmIDwnd

6B

ek b ke e ke

IDDDD DDIDIDDID WD DD

o

ok ko ok e
mMTmTTm

OO0 0000000000 el el QQOOO00000 QD00 QD00 00 b ek e
e e]

b o e ke
.
Moo Do

[]
[|

91

Reading and Writing to Memory

92

For Register A:

Move the data pointed to by DO into field A:

A=CATE A (20.5, 3.5) 142
Same for field B:

A=CATE B (19.5) 14A
Same for field a:

A=DATE a (20+q, (g+2)2) 152a
Same for x+ / nibbles:

A=CLATE 1 (19+q, (g+2)/2) 1 5Ax

- The same instructions exist for D1:

A=CAT1 A (20.5, 3.5) 143

A=DAT1 B (19.5) 14E

A=DAT1 a (20+q, (q+2)/2) 153 =

A=0AT1 x+1 (19+q, (gq+2)/2) 1 5B«
Move field A into the address pointed to by DO:

LATE=A A (19.5) 14m@
Same for field B:

CATE=A E (16.5) 148
Same for field a:

LATE=A a (19+q) 1Z8a
Same for x+1 nibbles:

LATE=A x+1 (18+q) 1992

- The same instructions exist for D1:

LAT1=R A (19.5) 141

LAT1=A B (16.5) 149

LAT1=R a (19+q) 151a

BAT1=AR 1 (18+q) 159

For Register C:

Move the data pointed to by DO into field A:

C=LATE A (20.5, 3.5) 145
Same for field B:

C=LATE B (19.5) 14E
Same for field a:

C=LATE a (20+q, (g+2)/2) 156=
Same for x+1 nibbles:

C=CATE x+1 (19+q, (g+2)/2) 1 5Ex

Parr Twor Macuive Lancuace

- The same instructions exist for D1:

C=CAT1 A (20.5, 3.5) 147
C=CAT1 B (19.5) 14F
C=CAT1 El (20+q, (q+2)/2) 157 =2
C=CAT1 x+1 (19+q, (q+2)/2) 1 5Fx
- Move field A into the address pointed to by DO:
CATE=C A (19.5) 144
- Same for field B:
CATE=C E (16.5) 14C
- Same for field a:
CATE=C E] (19+q) 1543
- Same for x+1 nibbles:
CATE=C x+1 (18+q) 15Cx
- The same instructions exist for D1
CAT1=C A (19.5) 145
CAT1=C B (16.5) 140
CAT1=C E] (19+q) 1553
CAT1=C x+1 (18+q) 150

Input and Output

The following instructions are for reading the keyboard as well as using the
HP 48's speaker (see Chapter 9). Caution: The instructions A=1IHM and
C=1IH corrupt the memory area read when used in RAM (see Chapter
9).
« For Register A:
- Read the Input (into nibbles 0,1,2 and 3 of A):
A=IH (8.5) 2EZ2
« For Register C:
- Read the Input (into nibbles 0,1,2 and 3 of C):
=IH (8.5) 283
- Write field X to the output:

auT=C (7.5) 2e1
Wirite nibble 0 into nibble O of the output register:
auT=Cs (5.5) zea

10. The Saturn Instruction Set 93

Exchanging Register Contents

» For Reglster A
Exchange field A with field A of B:

AREEX A 8)
Exchange field b with field b of B:
! (4.5+q)
- The same instructions exist for C:
ACEX (8)
ACEX b (4.5+q)
Exchange with RO:
ARBEX (20.5)
Exchange field A with field A of RO:
ARBEX A (14)
Exchange field a with field a of RO:
ARBEX a (9+q)
- The same instructions exist for R1:
R1EH (20.5)
AR1EX A (14)
AR1EX a (9+0)
- The same instructions exist for R2:
ARZEX (20.5)
ARZEX A (14)
ARZEX a (9+0)
- The same instructions exist for R3:
ARZEX (20.5)
ARZEX A (14)
ARZEX a (9+0)
- The same instructions exist for R4:
AR4EX (20.5)
AR4EX A (14)
ARAEH a (9+q)
Exchange field A with DO:
AGBEY (9.5)
Exchange nibbles 0 to 3 with those of DO:
ACEHS (8.5)
- The same instructions exist for D1:
C1EX (9.5)
AC1HS (8.5)

LC
AbC

DE
ABE

128
21AFzZE
21A=248
121
S1AFZ21
21Raz1
iz2
21AFzz
21Razz
123
21AF232
S1Raz3
124
S1AFZ24
21Raz4
132
iz2R

133
13B

94 Parr Twor Macuive Lancuace

« For register B:
Exchange field A with field A of A:

EBAEX A (8) L
Exchange field b with field b of A:
EAEX b (4.5+q) ABLC
- The same instructions exist for C:
ECEX A (8) oo
ECE® b (4.5+q) ABD

« For Register C:
Exchange field A with field A of A:

CAE® A 8 LE
Exchange field b with field b of A:
CHE¥ b (4.5+0) ABE
- The same instructions exist for B:
CEEH A 8) G
CEEX =} (4.5+q) ALC
- The same instructions exist for D:
CLOEX A (8) OF
CDEX b (4.5+q) ABF
Exchange with RO:
CRBEX (20.5) 128
Exchange field A with field A of RO:
CREEX A (14) 21AF22
Exchange field a with field a of RO:
CREEX a (9+q) 21A=a28
- The same instructions exist for R1:
CR1EX (20.5) 129
CR1EX A (14) E1AFZ2
CRIiEX a (9+q) E1Raz2?2
- The same instructions exist for R2:
CR2ZEH (20.5) 1ZA
CRZEH A (14) 21AF2A
CRZEH E] (9+q) 21Raz2A
- The same instructions exist for R3:
CRIEH (20.5) 1Z2E
CRIEX A (14) 21AFzE
CRIEH E] (9+0) 21RazB

10. The Saturn Instruction Set 95

- The same instructions exist for R4:

CR4EX (20.5) 12C

CR4EX A (14) 21AFZ2C

CR4EX a (9+q) 81Ra2C
Exchange field A with DO:

COBEY (9.5) 126
Exchange nibbles 0 to 3 with those of DO:

ChExs (8.5) 13E

- The same instructions exist for D1:

CL1EX (9.5) 127

Ch1xs (8.5) 13F
Exchange nibble n with P.

CFPEH n 8) 28F .
Exchange field X with flags 0 to 11 of ST.

CSTEX (7) BE

- Forregister D:
Exchange field A with field A of C.
LCEX A (8) LF
Exchange field b with field b of C.
(4.5+q) ABF

Parr Twor Macuive Lancuace

Arithmetic Operations

Increment

These instructions modify the value of the CARRY flag.

« For register A:
- Increment field A:

A=A+1 A (8)
- Increment field a:
A=A+1 E] (4.5+q)
- Increment field A by x+1 (Oh - x - Fh):
A=A+x+1 A (13)
- Increment field a by x+1:
A=A+x+1 a (8+q)

« For register B:
- Increment field A:

E=B+1 A 8
- Increment field a:
E=B+1 El (4.5+q)
- Increment field A by x+1 (Oh - x - Fh):
E=B+x+1 A (13)
- Increment field a by x+1:
E=B+x+1 E] (8+a)

- For register C:
- Increment field A:

C=C+1 A (®)
- Increment field a:

C=C+1 a (4.5+q)
- Increment field A by x+1 (Oh - x - Fh):

C=C+x+1 A (13)
- Increment field a by x+1:

C=C+x+1 El (8+q)

« Forregister D:
- Increment field A

Li=0+1 A 8)
- Increment field a:
L=0+1 a (4.5+q)

10. The Saturn Instruction Set

Ed

Bad
218F8x
21828y

E3

BaS
318F1x
318alx

E&
Bat
S18F2x
818a2x

97

- Increment field A by x+1 (Oh x - Fh):

=L+t 1 (13) S18F3x
- Increment field a by x+‘l
Ci=C+x+1 a (8+q) 215825y
« Forregister P:
- Increment:
F=F+1 4 B

< For register DO:
- Increment by x+1:
LEa=0E+ x+1 (8.5) lex
- Forregister D1:
- Increment by x+1:
Cl=C1+ x+1 (8.5) 17x

Addition
These instructions modify the value of the CARRY flag.

- For register A:
- Add field A of B to field A:

A=A+E A (8) Ce
- Add field a of B to field a:
A=A+E a (4.5+q) AaG
- The same instructions exist for C:
A=A+C A (8) CA
A=A+C a (4.5+q) AaA

« Forregister B:
- Add field A of A to field A:

E=E+A A (8) Ca
- Add field a of A to field a:
B=B+A a (4.5+q) SET:]
- The same instructions exist for C:
B=g+C A 8) C1
BE=E+C a (4.5+q) Azl

« For Register C:
- Add field A of Ato field A:

C=C+A A (8) cz
- Add field a of A to field a:
C=C+AR a (4.5+q) Ra2

98 Parr Twor Macuive Lancuace

- The same instructions exist for B:

C=C+BE A (8) C9

C=C+BE El (4.5+q) A=
- The same instructions exist for D:

C=C+[: A (8) CE

C=C+D a (4.5+q) AaB
- Add P+1 to field A:

C+F+1 (9.5) 2@9

< For register D:
- Add field A of C to field A:

L=0+C A 8) cz
- Add field a of C to field a:
D=0+C a (4.5+q) Aaz

Decrement
These instructions modify the value of the CARRY flag.

- For register A:
- Decrement field A:

A=A-1 A (8 CC
- Decrement field a

A=A-1 a (4.5+q) A=l
- Decrement field A by x+1 (Oh - x - Fh):

A=A-Cx+12 A (13) 218Fax
- Decrement field a by x+1:*

A=A-Cx+1 2 E] (8+q) 218abx

« For register B:
- Decrement field A:

E=E-1 A (8) Cch
- Decrement field a:

E=B-1 a (4.5+q) Azl
- Decrement field Aby x+1 (Oh - x - Fh):

E=B=-0x+12 A (13) S12F 9
- Decrement field a by x+1:*

B=B-0x+12 E] (8+a) 21229y

*Caution: This instruction does not work correctly except for fieldsX, M, B, andW.

10. The Saturn Instruction Set 99

« For register C:
- Decrement field A:

C=C-1 A (8) CE
- Decrement field a:

C=C-1 a (4.5+q) A=E
- Decrement field A by x+1 (Oh - x - Fh):

C=C—0x+12 A (13) S18FAx
- Decrement field a by x+1:*

C=C—-Cx+12 a (8+q) 218aAx

« For register D:
- Decrement field A:

L=C—-1 A (8) CF
- Decrement field a:
L=0—-1 a (4.5+q) AaF
- Decrement field Aby x+1 (Oh - x - Fh):
L=D—0x+12 A (13) 215FBx
- Decrement field a by x+1:*
L=C—C o+l a (8+q) 2158aEx
< Forregister P:
- Decrement:
F=FP-1 (4) O

« For register DO:
- Decrement by x+1:
LE=0k— 1 (8.5) 138x
« For register D1:
- Decrement by x+1:
Ci=Ci1- 1 (8.5) 1Cx

Subtraction

These instructions modify the value of the CARRY flag.

+ For register A:
- Subtract field A of C from field A:

A=A-C A (8) ERA
- Subtract field a of C from field a:
A=A-C a (4.5+q) BaA

*Caution: This instruction does not work correctly except for fieldsX, M, B, and W.

100 Parr Twor Macuive Lancuace

- Subtract field A from field A of B storing the result in field A:
A=B-A A (8) C
- Subtract field a from field a of B storing the resuilt in field a
A=B-A E] (4.5+q) BaC
« For register B:
- Subtract field A of A from field A:

E=B-A A (8) EZ

- Subtract field a of A from field a:
E=E-H a (4.5+q) Bag

- These same instructions exist for C:
E=B-C A 8) El
B=B-C E] (4.5+0) Bal

- Subtract field A from field A of C storing the result in field A:
E=C-B A (8) ED

- Subtract field a from field a of C storing the result in field a:
B=C-B a (4.5+q) Bal

- For Register C:
- Subtract field A of A from field A:

C=C-R A (8) EZ

- Subtract field a of A from field a:
C=C-H a (4.5+q) BaZ

- These same instructions exist for D:
C=C-[A (8) EE
C=C-D a (4.5+q) Bakb

- Subtract field A from field A of A storing the result in field A:
C=A-C A 8) EE

- Subtract field a from field a of A storing the result in field a:
C=R-C a (4.5+q) BaE

< For register D:
- Subtract field A of C from field A:

Li=0-C A 8 E=

- Subtract field a of C from field a:
L=0-C a (4.5+q) Bal

- Subtract field A from field A of C storing the result in field A:
L=C-[A (8) EF

- Subtract field a from field a of C storing the result in field a:
Li=C-[a (4.5+q) BaF

10. The Saturn Instruction Set 101

Logical AND

- For register A:
Between field A and field A of B:

A=A%E A (11)
Between field a and field a of B:
A=A%E a (6+q)
- The same instructions exist for C:
A=A&C A (11)
A=A&C a (6+q)

« For register B:
Between field A and field A of A:

E=B%A A (1)
Between field a and field a of A:
B=B&A a (6+0)
- The same instructions exist for C:
E=EiC A (11
E=B&C a (6+q)

« Forregister C:
Between field A and field A of A:

C=C&A A (11)
Between field a and field a of A:
C=C&A a (6+0)
- The same instructions exist for B:
C=C&E A (11)
C=C&B a (6+0)
- The same instructions exist for D:
C=C&0 A (11)
C=Ckl a 6+q)

- For register D:
Between field A and field A of C:

L=0iC A (11)
Between field a and field a of C:
=0 C a (6+q)

102

BEFA
HEz8
HEFE&
BEat
HEF4
BE=4
BEF1
BE=1
BEFZ
BEzz

BEF3
BEa3

BEF ¥
BEa¥

HEF3
BE=2

Parr Twor Macuive Lancuace

Logical OR

- Forregister A:
Between field A and field A of B:

A=A!E A 1)
Between field a and field a of B:
A=A!E 3 (6+q)
- The same instructions exist for C:
A=A!ILC A (1)
A=A!IC a (6+q)

« For register B:
Between field A and field A of A:

B=E!R A (1)
Between field a and field a of A:
B=EIA a (6+0)
- The same instructions exist for C:
E=EIC A (1)
E=EIC a (6+q)

« For register C:
Between field A and field A of A:

C=C!A A 1)
Between field a and field a of A:
C=C!A a (6+0)
The same instructions exist for B:
C=CIE A 1)
C=C!B a (6+0)
The same instructions exist for D:
C=C![A 1)
C=Cik E] (6+q)

- For register D:
Between field A and field A of C:

L=L1C A (11)
Between field a and field a of C:
L=01C E] (6+q)

10. The Saturn Instruction Set

BEFS
HEaZ
HEFE
BE=E
BEFLC
BE=aC
BEFS
BE=2
BEFA
BE=R

BEFD
BEal

BEFF
BEsF
HEFE
HE=E

103

Logical NOT
These instructions modify the value of the CARRY flag.

« For register A:
On field A:
A=-A-1 A ®) Fi
On field b:
A=-F-1 b (4.5+) EbC
« For register B:
On field A:
B=-E-1 A (8) FC
On field b:
B=-B-1 b (4.5+q) EbD
- Forregister C:
On field A:
C=-C-1 A 8) FE
On field b:
C=-C-1 b (4.5+q) EBE
- Forregister D:
On field A:
L=-D-1 A 8) FF
On field b:
D=-0-1 b (4.5+q) EbF

2’s Complement
These instructions modify the value of the CARRY flag.

« For register A
On field A:
A=-H A (8) F&
On field b:
A=-A b (4.5+q) EbE
« Forregister B:
On field A:
E=-BE A (8) F2
On field b:
B=-E b (4.5+q) [=]a)=]

104 Parr Twor Macuive Lancuace

« For register C:
- Onfield A:
C=-C
- On field b:
C=-C

« For register D:
- Onfield A
Li==-D
- Onfield b:
Li==DL

Multiplying by 2

« Forregister A:

- Multiply field A by 2:

A=A+A

- Multiply field a by 2:

A=A+A
« For register B:

- Multiply field A by 2:

E=E+E

- Multiply field a by 2:

- For register C:

- Multiply field A by 2:

C=C+C

- Multiply field a by 2:
=C+0C

- For register D:

- Multiply field A by 2:

L=0+D

- Multiply field a by 2:

D=0+ D

10. The Saturn Instruction Set

®

(45+q)

®

(4.5+q)

®

(4.5+q)

®

(4.5+q)

®

(4.5+q)

()
(4.5+q)

FA

FE
EbE

-}
A=d

C3
A=S

Ce
SET

C?

A=¥

105

Dividing by 2

This operation is performed by shifting the register right one bit. The bit
shifted out (least significant) is lost, butSB is setif itwas non-null (you must
do an SE=H first), and the bit shifted in (most significant) is always zero.

« For register A:

- Divide by 2:
ASRE (21.5) 21cC
- Divide field A by 2:
ASRE A (13.5) 219F8&
- Divide field a by 2:
SRE a (8.5+0q) 21928
< Forregister B:
- Divide by 2:
BSRE (21.5) 210
- Divide field A by 2:
BSRE A (13.5) 219F1
- Divide field a by 2:
BSRE a (8.5+q) 219a1
- Forregister C:
- Divide by 2:
CSRE (21.5) 21E
- Divide field A by 2:
SRE A (13.5) 219F2
- Divide field a by 2:
CSRE a (8.5+q) 219a2
« Forregister D:
- Divide by 2:
LERE (21.5) 21F
- Divide field A by 2:
LERE A (13.5) 219F3
- Divide field a by 2:
LSRE a (8.5+q) 219az2

106 Parr Twor Macuive Lancuace

Multiplying by 16

This operation shifts the register left one nibble. The nibble shifted out
(most significant) is lost, but SB is set if it was non-null (you must do an
SE=8 first), and the nibble shifted in (least significant) is always zero.

« For register A:
- Multiply field A by 16:
ASL A (9)
- Multiply field b by 16:
ASL b (5.5+q)
« For register B:
- Multiply field A by 16:
ESL A 9)
- Multiply field b by 16:
EBSL

=] (5.5+q)
- For register C:
- Multiply field A by 16:
C5L A 9
- Multiply field b by 16:
CSL b (5.5+q)
- For register D:
- Multiply field A by 16:
LSl A 9)
- Multiply field b by 16:
LSl =} (5.5+q)

Dividing by 16

Fa
BbE

Fl
Bbi

Fa
Bbz

Fz2
Bb3

This operation shifts the register right one nibble. The nibble shifted out
(least significant) is lost, but SB is set if it was non-null (you must do an
SE=8 first), and the nibble shifted in (most significant) is always zero.

« For register A:
- Divide field A by 16:

AZR A ©
- Divide field b by 16:
ASE = (5.5+q)

10. The Saturn Instruction Set

Fd
Ebd

107

For register B:
- Divide field A by 16
BSR
- Divide field b by 16:
ESR

For register C:

- Divide field A by 16:

CSR

- Divide field b by 16:
CSR
For register D:

- Divide field A by 16:

DsR
- Divide field b by 16:
D5R

Rotating Left (one nibble)

This operation performs a left circular rotation of the register by nibbles.
Nibble Oh is moved to 1h, 1h is moved to 2h, etc. The most significant
nibble is moved to the least significant nibble position. SLLC stands for
“Shift Left Circular.”

108

For register A:
LC

For register B:
BSLC

For register C:
CELC
For register D:
LG

©)

(5.5+q)

©)

(5.5+q)

©)

(5.5+q)

(22.5)
(22.5)
(22.5)

(22.5)

F3
EbS

Fe
Ebe

F7
Eb¥

21a
211
21z
213

Parr Twor Macuive Lancuace

Rotating Right (one nibble)

This operation performs a right circular rotation of the register by nibbles.
Nibble Fh is moved to Eh, Eh is moved to Dh, etc. The least significant
nibble is moved to the most significant nibble position. SRELC stands for
“Shift Right Circular.”

« Forregister A:

RLC (22.5) 214

« For register B:
EBSRC (22.5) 215

« For register C:
CERC (22.5) 21a

< For register D:
LSRC (22.5) 217

10. The Saturn Instruction Set 109

Jumps

To calculate the distance of relative jumps: Count the number of nibbles
from the end of the jump instruction (not including the distance nibbles) to
the beginning of the desired instruction. To jump backwards, use the 2's
complementofthe distance. Forarelative GOTO, the code isGaaa, where
aaa is the jump distance. Thus, to jump between addresses @, and @,

« Ifthe jump is forward, (@,-(@, + 1)) calculates the distance. You add
110 @), because that's the length of the jump instruction Eaaa (you
dontcount the nibblesaaa in the calculation). Thus, if @ ,=#00123h
and @,=#00456h, the distance to jump is 332h nibbles, and is
coded as G233 (don't forget that the microprocessor reverses
data).

» Ifthe jumpis backward, (@,)-@_) calculates the distance. Thus,
if @ ,=#00456h and (@ ,=#00123h, the distance to jump is 334h
nlbbles coded as ECLCE (the 2’s complement of 334h is CCCh).

The limits of these jumps are as follows:

= Using 2 nibbles for the length, you can jump -80h to +7Fh nibbles.

« Using 3 nibbles for the length, -800h to +7FFFh nibbles.

« Using 4 nibbles for the length, -8000h to +7FFFh nibbles.

Note: In assembly program listings, you can use labels to indicate jump
addresses without needing to calculate the distance yourself.

Direct relative unconditional

GATO abc (14) Gcha
GOLOHG abcd (17) 8Cdchba

Direct relative conditional
These jumps depend on the state of the CARRY flag

- Jump on CARRY clear:
ab (12.5/4.5) Sba
- Jump on CARRY set:
GOC ab (12.5/4.5) aba

110 Parr Twor Macuive Lancuace

Absolute
GOYLHG abcde (18.5) Shedchba

Register direct
= Using register A:
- Jump to the address contained in field A:
C=A (19) g1B2
- Jump to the address contained in field A, saving the address
of the next instruction into field A:
APCe:x (19) 21EBEE
- Using register C:
- Jump to the address contained in field A:
C=C (19) 21B3
- Jump to the address contained in field A, saving the address
of the next instruction into field A:

CPCex (19) 31E7

Register indirect
= Using register A:

- Jump to the address contained in the 5 nibbles pointed to by
field A (the 5 nibbles are read from the address contained in
field A, and execution continues at this address):

C=0RA2 (26, 3.5) 2EEC
» Using register C:

- Jump to the address contained in the 5 nibbles pointed to by
field C:

FC=cCh (26, 3.5) SB2E

Getting the Program Counter

Jump instructions cause changes to the program counter PC. The follow-
ing instructions allew you to find out exactly what address is contained in
the program counter—the address of the next instruction to be executed.

- Move PC into field A of register A:

A=FLC (11 21B4
« Move PC into field A of register C:
C=PC (11 21BS

10. The Saturn Instruction Set 111

Calling Subroutines

The distance of a relative subroutine call is calculated differently than for
a relative jump. You count from the first nibble of the instruction after the

subroutine call. Example: GOSUE @,
@, (next instruction)
@, (some useful subroutine)

In this program, the distance of the call would be @ . As with jumps,
you must use the 2’s complement of the distance if @ 1< @, (Note: In
assembly programs listings, you can use labels to mdlcate subroutine
addresses without needing to calculate the distance yourself.)

Direct Relative Unconditional

GOsSUE abc (15) rbca

GOSUEL abcd (18) SEdcba
Absolute

GOsBYL abcde (19.5) ZFedcba

Returning From Subroutines

+ Unconditional returns:
- Simple return:

RTH 11) Bl
- Return after clearing the CARRY

RTHCC (11) B3
- Return after setting the CARRY:

RTHSC (11) [5)=
- Return after setting XM:

ETHSHM 11 [=]E)
- Return from interrupt

RTI 11) BF

« Conditional returns:
- Return if the CARRY is set:
RT

THC (12.5/4.5) 488
- Return if the CARRY is clear:
RTHHLC (12.5/4.5) =151

112 Parr Twor Macuive Lancuace

Comparisons

All comparisons are of the form

T <register> <comparator> <register Or immediate> <field>

A comparison instruction will always be followed by a jump (Z2%YES) or
a conditional return from subroutine ETHYES). The instruction that
follows a comparison has the following rules:

« The instruction itself is always 2 nibbles long.
- 00is RTHYES;
« Anything else is the value of a relative jump GOYES. The jump
distance is counted from the address of the IZOYES instruction
(see Section IV for more information on calculating jump dis-
tances).

Notes:

- These instructions modify the value of the CARRY flag. The CARRY

is set if the comparison is true

« These are unsigned comparisons as the register values are positive
numbers.

Immediate

- For register A:

Is field A zero?

“H=8 A

Is field a zero?

7A=5 a

Is field A non zero?

TRES A

Is field a non zero?

TRED a
Is bit x (Oh - x - Fh) clear?
FAEI

= X

Is bit x (Oh - x - Fh) set?

THEIT=1 x

10. The Saturn Instruction Set

(215135 ERE
(16 5+q/8.5+q) Sa8
(2151135 BAC
(16.5+q/8.5+q) 9aC
(20.5/12.5) SESE

(20.5/12.5) EEETx
113

114

For register B:

Is field A zero?
FE=A

Is field a zero?
“E=

Is field A non zero?
TE#E

Is field a non zero?
TB#

For register C:

Is field A zero?
rC=8

Is field a zero?
L=

Is field A non zero?
FL#A

Is field a non zero?
PLHG

Is bit x (Oh - x - Fh) clear?

TCEIT=06

Is bit x (Oh - x - Fh) set?

TCEBIT=1

For register D:

Is field A zero?
?h=A

Is field a zero?
=

Is fié\d A non zero?
Ph#E

Is field a non zero?

*D#A

For register HST:

Is XM clear?
EAM=8

Is SB clear?
TEE=

Is SR clear?
el

Is M P clear?
MP=8

A (21.5/13.5)

a (16.5+0/8.5+q)
(21.5/13.5)

a (16.5+9/8.5+q)

A (21.5/13.5)

a (16.5+q/8.5+0)
(21.5/13.5)

a (16.5+4/8.5+q)

X (20.5/12.5)

© (20.5/12.5)

A (21.5/13.5)

a (16.5+9/8.5+q)

A21.5/13.5

a (16.5+q/8.5+q)
(15.5/7.5)
(15.5/7.5)
(15.5/7.5)
(15.5/7.5)

Parr Twor Macuive Lancuace

2A9
9a%9
AL
EETH]

2AA
2aA
2RE
2aE
SEEAy
2E8Ex

2AB
EET
2AF
2aF

2321
2z
234
238

« For register P:

Is P equal to n?
*P= n (15.5/7.5) 29

Is P not equal to n?
TF#

n (15.5/7.5) 28n
« Forregister ST:

- Isflag n clear?

TET=8 n (16.5/8.5) SEn
- Isflagn set?

?ET=1 n (16.5/8.5) 8¥n
- Isflag n not clear?

TETHE n (16.5/8.5) 27n
- Isflag # not set?

TETH#L n (16.5/8.5) SEn

Comparing registers
- For register A:

Is field A equal to field A of register B?
TA=E (21.5/13.5) 2ARE
Is field a equal to field a of register B?

fA=E E] (16.5+9/8.5+q) Fab
The same instructions exist for C:

*H=C A (21.5M3.5) 2RZ

*A=C E] (16.5+g/8.5+q) Faz

Is field A not equal to field A of register B?
TR (21.5/13.5) 2A4
Is field a not equal to field a of register B?

THEE E] (16.5+9/8.5+q) Fad
The same instructions exist for C:

THEC A (21.513.5) BRE

FREC E] (16.5+q/8.5+q) Fab
Is field A less than or equal to field A of register B?

YR=EB A (21.5/13.5) SEC
Is field a less than or equal to field a of register B?

PHL=B b (16.5+9/8.5+q) FbLC

Is field A less than field A of register B?
(21.5/13.5) oB4

Is feld a less than field a of register B?
PRLEB (16.5+9/8.5+q) Fb4

10. The Saturn Instruction Set

115

116

Is field A greater than or equal to field A of register B?
EGEE] (21.5/13.5) 2BE
Is field a greater than or equal to field a of register B?
?A:=B b (16.5+g/8.5+q) FbE
Is field A greater than field A of register B?
PA*B (21.5/13.5) 288
Is field a greater than field a of register B?
PA:EB =] (16.5+g/8.5+¢) FbE

For register B:

Is field A equal to field A of register A?

TE=R A (21.5/13.5) ZRE
Is field a equal to field a of register A?

TBE=A a (16.5+g/8.5+q) Fakl
The same instructions exist for C:

?B=C A (21.5/13.5) 2A1

?BE=C a (16.5+g/8.5+q) Fal
Is field A not equal to field A of register A?

TBE#A A (21.5/13.5) 2A4
Is field a not equal to field a of register A?

FE#A a (16.5+q/8.5+q) Fad
The same instructions exist for C:

TEHC A (21.5/13.5) 2AS

FE#C a (16.5+q/8.5+q) FaT
Is field A less than or equal to field A of register C?

7B<{=C A (21.5/13.5) ZBD
Is field a less than or equal to field a of register C?

?BL=C b (16.5+g/8.5+q) ‘bl

Is field A less than field A of register C?
B (21.5/13.5) 2BS
Is field a less than field a of register C?
PBAC b (16.5+g/8.5+q) b5
Is fle\d A greater than or equal to field A of register C?
YBr=C A (21.5/13.5) 289
Is field a greater than or equal to field a of register C?
?BEX=C b (16.5+g/8.5+q) b9
Is field A greater than field A of register C?
TEHC (21.5/13.5) 2Bl
Is field a greater than field a of register C?
PBHC b (16.5+g/8.5+q) Fb1

Parr Twor Macuive Lancuace

« For register C:

Is field A equal to field A of register A?

FC=R A (21.5/13.5) 8R2
Is field a equal to field a of register A?

FC=R a (16.5+q/8.5+q) Faz
The same instructions exist for B:

FC=B A (21.5/13.5) 2A1

TC=B a (16.5+0/8.5+q) Fal
The same instructions exist for D:

FC=0 A (21.5/13.5) 2AZ

FC=0 E] (16.5+0/8.5+q) Fa3
Is field A not equal to field A of register A?

FCH#A A (21.5/13.5) BAE
Is field a not equal to field a of register A?

PCHA a (18.5+0/8.5+q) Fab
The same instructions exist for B:

PCHE A (21.5/13.5) 8RS

PCHE E] (16.5+9/8.5+q) Fa5
The same instructions exist for D:

FCHD A (21.5M3.5) 8RA7

FCHD a (16.5+g/8.5+q) Far
Is field A less than or equal to field A of register A?

PC4=H A (21.5/13.5) SEE
Is field a less than or equal to field a of register C?

TC<=A b (16.5+q/8.5+q) SbE

Is field A less than field A of register A?
(21.5/13.5) SB&

Is field a less than field a of register A?

FC<A b (16.5+9/8.5+q) Fb&
Is field A greater than or equal to field A of register A?

PCx=A A (21.5/13.5) 2EA
Is field a greater than or equal to field a of register A?

?Cx=R b (16.5+q/8.5+q) FbA
Is field A greater than field A of register A?

PCHA A (21.5/13.5) 2Bz
Is field a greater than field a of register A?

CrA b (16.5+q/8.5+q) FbZ

10. The Saturn Instruction Set

117

For register D:
- Is field A equal to field A of register C?

?h=C A (21.5/13.5) 2R3
- Is field a equal to field a of register A?
?h=C a (16.5+q/8.5+q) Fas

- Is field A not equal to field A of register C?
T0#C (21.5/13.5) ZAT
- Is field a not equal to field a of register C?

Th#HC a (16.5+q/8.5+q) Far
- Isfield A less than or equal to field A of register C?

?h<=C A (21.5/13.5) 2BF
- Is field a less than or equal to field a of register C?

?hd=C b (16.5+g/8.5+q) FbBF
- Is field A less than field A of register C?

haC A (21.5/13.5) 2B7
- Is field a less than field a of register C?

20 b (16.5+g/8.5+q) Fb 7
- Is field A greater than or equal to field A of register C?

0E=C A (21.5/13.5) ZBEB
- Is field a greater than or equal to field a of register C?

?hx=C b (16.5+g/8.5+q) LB
- Is field A greater than field A of register C?

PhxC A (21.5/13.5) 283
- Is field a greater than field a of register C?

h:C b (16.5+q/8.5+q) Fb3

Parr Twor Macuive Lancuace

Bus Commands

These commands are not well known because there is little documenta-
tion in the HP 71 HDS published by Hewlett-Packard

« Commands:

Command “B”:

BUSCE (10) SEE5
Command “C":
BUSCC (8.5) 26E

Command “D”:

(10) 2eah

UN configure all chips on the bus:
RESET

(7.5) Z2EA
Shutdown all chips on the bus:

SHUTLH (6.5) 287
Un-configure the module found at the address contained in
field A of register C:

UHCHFG (14.5) 2e4
Copy field A of register C into the configuration register of the
current module (the first module not configured on the bus).
This command is generally executed just after an IMCHFG.
These two commands allow access to the hidden ROM by dis-
placing the user RAM (see the chapters on memory). Memo-
ries of 32 Kb or more need a double configuration. The first
is the 2's complement of the module size (#100000 - the size
in nibbles), which permits use of only one part of the module.
The second is the starting address. Thus the displacement of
internal RAM from #70000h to #F0000 is done by anUHCHF G
on #70000h, then by a double COMF IG on #FO00OO.
Returning to normal mode would be done by an UHNCHF G on
#F0000h, followed by COMFIG on #FO0000h, then on
#70000h.

COMFIG (13.5) 285

« Get the identification of the current module. The identifier is stored
in field A of register C

C=I (13.5) =15 1)

- Find the service requested by a module on the bus. The result is
stored in nibble 0 of register C, 1 bit for each type of request.

SREG? (9.5) SBE

10. The Saturn Instruction Set 119

Control Instructions

« Interrupt control instructions:
- Enable maskable interrupts:

IMTOH (7) SEsa
- Disable maskable interrupts:

IMNTOFF (7) SEEF
- Clear all interrupts:

RSI (8.5) 26218

« These instructions change the calculation mode for mathematical
operations as described in Chapter 2.
- Setmode to decimal:

SETDEC (4) B3
- Set mode to hexadecimal:
SETHEX (4) 5k

NOPs (Instructions with No Effect)

In order to save room in a machine language program for future additions,
NOP instructions may be inserted. The three following jump instructions
are commonly used as such:

HOF32 4208
HOF 4 c2EE
MOF3S cd@aaa

Pseudo Operations
The pseudo instruction COM (constant) can be used to include data in a
program (for example, object prologues);
COMCr2 4,9, q,-9,

120 Parr Twor Macuive Lancuace

Exercises

10-1. Assemble the following program (it does not perform any particu-

lar function—its purpose is to be an exercise in assembly):

beain

subl
1z

13

14

end

COMCS)
COMCS

GOTO

A=A-1
LCHEX
c=C-1

GOMC
RETHCC
LCHE®

A=C
GU;UE
GOYES
LCHE:
A=C

GORUE
TH=8

-
[
=1
m

Lo e uil

Ly N TT
ni=mn

+ L@ AT
DS —|

R]

MDA

=1 1=

TIDmZT 0
= m
o

#B20CC
tendi—-{beginl

11

A
#12343
A

12

HEEEES

10-2. Using the table in the appendix, disassemble the following code:
14313 31791 377BEFY 61557 13114 21648 BEC

10. The Saturn Instruction Set

121

122

11.

HP 48 Objects

Parr Twor Macuive Lancuace

The HP 48 handles things called objects. There are 28 of them, 2 of which
are indirectly accessible to the user (indicated by one star), and 13 of which
are not accessible at all in the standard manner (indicated by two stars).
These objects always begin with a 5-nibble prolog number that indicates
their nature. Following is a list of all the objects with their prolog number
and their type (returned by the function TYPE):

Prolog Object Type
02911 System Binary (**) 20
02933 Real 0
02955 Long Real ** 21
02977 Complex 1
0299D Long Complex) 22
029BF Character) 24
029E8 Array 3/4
02A0A Linked Array) 23
02A2C String 2
02A4E Binary Integer 10
02A74 List 5
02A96 Directory 15
02AB8 Algebraic 9
02ADA Unit 13
02AFC Tagged 12
02B1E Graphic 11
02B40 Library (W] 16
02B62 Backup * 17
02B88 Library Data ** 26
02BAA System Binary (**) 27
02BCC System Binary **) 27
02BEE System Binary (**) 27
02C10 System Binary (**) 27
02D9D Program 8
02DCC Code **) 25
02E48 Global Name 6
02E6D Local Name *) 7
02E92 XLIB Name) 14

11. HP 48 Objects 123

Each of these 28 objects possesses a well-defined structure that we will
study in detail. Each object will be presented in table form with explana-
tions for each element of the table.

As you read this chapter, keep in mind that the microprocessor reverses
the values that it reads. This means that values are written backwards to
memory, including the prologs given here. Thus, the prolog 02911 would
be written 11920 in the HP 48’'s memory.

Note that all values in memory are stored in hexadecimal, regardless of the
current binary base mode (binary, octal, decimal, or hexadecimaly

System Binary Object

@ [Prolog (02911) | 5 nibbles
@+5h | Content | 5 nibbles
@+Ah

A system binary is a short binary integer (5 nibbles) that is used internally
by the HP 48. It appears on the screen in the form <YXXXXb> where
XXXXX s the contents and 4 is the current binary base. In particular, it can
be used to pass parameters between two different programs.

Examples
- 119268685 s the system binary <00000h>;
o 11926542721 isthe system binary <12345h>;

Exercises

11-1. Whatdoes 119281234 Srepresent?
11-2. Code the system binary <ABCDEh>;
11-3. Code the system binary <123d>.

124 Parr Twor Macuive Lancuace

Real Number Object

@ Prolog (02933) 5 nibbles
@+5h Exponent 3 nibbles
@+8h Mantissa 12 nibbles
@+14h Sign 1 nibble
@+15h

This is the usual real number accessible by the user. The code is
separated into 3 parts: The sign, the mantissa (a number from 1 to 9,
inclusive), and the exponent. Together these form the real number:

sign * mantissa * 10®onet

The three parts are coded internally in the following manner:

- If the exponent is negative, it is replaced by “1000 - exponent” in
order to obtain a positive number. This number from 0 to 999 is
stored in Binary Coded Decimal using 3 nibbles. This is why the HP
48 can have exponents from -499 to +499.

« The mantissa is multiplied by 10" to make it an integer, and it is
stored in Binary Coded Decimal using 12 nibbles

- The signis coded in 1 nibble, using 0 for positive and 9 for negative.

Examples
« 128456732 s coded asFRHERARERRRE PRS2 16,

- —3.14159265359€E-2 is coded as
3392@A89995356295141329

Exercises
11-4. Code the realnumberl 2.
11-5. What doesZ32392B4BRREEBHERS4IT T represent?

11. HP 48 Objects 125

Long Real Number Object

@ Prolog (02955) 5 nibbles
@+5h Exponent 5 nibbles
@+Ah Mantissa 15 nibbles
@+1%9h Sign 1 nibble
@+1Ah

This object is used internally by the HP 48 for calculations needing more
precision. The coding principle is the same as the real number, except that
the exponent can have a value in the range [-49999,49999], and the
mantissa can have 15 significant digits.

Examples

» SES2EEEEEEY T ISSIS629514 1 2P represents the long-real
approximation of p: 3.1415926535897

- The long real -123E45678 would be represented by
RO PSR

Exercises
11-6. How would the HP 48 code the long real 12345678901234567?
11-7. What doesSS92E29HEEREEEEEEEEEE1 S represent?

126 Parr Twor Macuive Lancuace

Complex Number Object

@ Prolog (02977) 5 nibbles
@+5h Exponent 1 real 3 nibbles
e [l gp | e
i

+15h E t 2 ; ; 3 nibbl
O oz — ey oo
@+24h Sign 2 |1 nibble
@+25h

The structure of a complex number is simple. After the 5-nibble prolog,
there are two real numbers without prologs, the first being the real part of
the complex number, and the second being the imaginary part.

Example
« The complexnumbert, 123456r=51 2, 2158054521 discoded

ok 1R EREREEAEE el 19120 5EAERE1 AR
Exercises
11-8. Codethecomplexnumbertly 2.

11-9. What does the following code represent?
Fracal GENGEEECCE))

11. HP 48 Objects 127

Long Complex Number Object

@ Prolog (0299D) 5 nibbles
@+5h Exponent 1 real 5 nibbles
Goion [Somt—— P e
| i
|
+1Ah Exponent 2 . | 5 nibbles
%-ﬂFh Ma‘:ﬁissa 2 lmait:[ary ‘ 15 nibbles
@+2Eh Sign 2 P 1 nibble
@+2Fh

The long complex is similar to the complex number, with the two real
numbers being long reals.

Example
= Thelongcomplex (123456789012345,543210987654321) is coded:

L9281 18EE54232 1 8287554 22161 186E1 2345672261 23456

Exercises
11-10. Code the long complex (0,0).
11-11. What does this represent?

[eo2BRnEaaESd 22162237 E S 32191 16881 22436 7E281 23439

128 Parr Twor Macuive Lancuace

Character Object

@ [Prolog (029BF) | 5 nibbles
@+5h | Character | 2 nibbles
@+7h

This is simply a number from 0 to 255 (00h to FFh), which represents a
character. The extended ASCII character codes can be found in the HP
48 manuals.

Example
- FB92B14 is the character A (A is ASCI| code 41h).

Exercises
11-12. Code the character C (ASCII code 43h).
11-13. What does FE92H44 represent?

11. HP 48 Objects 129

Real/Complex Array Object

@ Prolog (029E8) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah Type of objects (of length 1) 5 nibbles
@+Fh Number, d, of dimensions 5 nibbles
@+14h Dimension 1 (d,) 5 nibbles
@+d*5+14h | Dimension d (d_) [5 nibbles
@+d*5+19h | Contents of object 1 | I, nibbles

Contents of object d,+1 | I, nibbles

| 1 nibbles
o

@+1-1,+5h [Contents of object d.*... *d
@+1+5h

o

The array object is used for storing vectors and matrices. In fact, there is
no difference between a vector and a matrix.

Just after the length of the object is given the object type of the array
contents. This type number (5 nibbles long) is actually the prolog number
of the objects. For this reason an array can only contain objects of the
same type. Notice also that the dimension is not restricted to 1 (vector) or
2 (matrix). This number can be just about as large as you like.

Next come the dimension sizes. For a matrix, this would be the number
of rows and columns.

After this come the actual values stored in the array object. These values
are objects themselves without a prolog (which is not necessary since it
was given earlier in the declaration part of the array). These objects are
arranged in order of dimensions. For example, a two-dimensional matrix
would be stored as row 1, then as row 2 since the first dimension of amatrix
is its number of rows.

130 Parr Twor Macuive Lancuace

It must be noted that although it is possible to create matrices with many
dimensions (like a 25 dimensional matrix containing vectors), they are not
very useful because the HP 48 does not handle them correctly.

Example

» Thematrix[[1 212 41]iscodedas:
SES28 95666 23928 2BBE0 2ooBE 28860
HEEEEEE0EE0EEE] B BECEE0EBEEEEEES
HEEEEEE0EE0E0GES 8 BE0EE0EBREEEEES &

Exercises

11-14. Give the first 35 nibbles of a 3x5x8 matrix containing system
binary numbers.

11-15. What type of elements are contained in a matrix that begins with
the following code?

BES2R1 BFBEC2ZAZE1AEER2 1 BRBS2EEE ..

11. HP 48 Objects 131

@
@+5h
@+Ah
@+Fh
@+14h

@+d*5+14h
@+d*5+19h

@+l-1,+5h
@+ +5h

Linked Array Object

Prolog (02A0A)

5 nibbles

Total length excluding prolog |

5 nibbles

Type of objects (of length |)

5 nibbles

Number, d, of dimensions

5 nibbles

Dimension 1 (d,)

5 nibbles

Dimension d (d,)

| 5 nibbles

Pointer to object 1

| 5 nibbles

| 5 nibbles

Pointer to object d,+1

Pointer to object d.*... *d

| 5 nibbles

Element 1

| 1, nibbles

Element n

] 1, nibbles

Linked arrays are arrays where the elements have been replaced by
pointers to objects found at the end of the array. A NULL pointer indicates
the absence of an element.

This structure permits a more economical storage for matrices that have

many identical elements

order 2 can be stored in 82 nibbles instead of 94.

Example

In the following example the identity matrix of

< This is the code for the identity matrix of order 2:
AEAZE D4BEE 33926 20600 2088 20668 41068 FlEEE
ALEEE SEREE GEEECECEEEEEE010 BEEEE000BEEEEE0G

132

Parr Twor Macuive Lancuace

String Object

@ Prolog (02A2C) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah First character 2 nibbles
@+1-2h [Last character | 2 nibbles
@+1+5h

The coding of a string is simple. It consists of a prolog, followed by the total
length of the string, followed by a list of ASCII character codes.

Example

» "STRING" is coded as:
C2AZE 116888 35 45 25 94 E4 74

Exercises
11-16. Code the string "Hella world™.
11-17. Decode this object: CZAZBR1BHEZ427V1CETFEEZ212

11. HP 48 Objects 133

Binary Integer Object

@ Prolog (02A4E) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah Binary integer value |,-5 nibbles
@+1+5h

The maximum length of a binary integer is normally 15h (this is the length
of a 16 digit hexadecimal binary integer), but you can increase this length
considerably. In fact, the HP 48 uses large binary integers internally.

Example

- #12345678h is coded as
E4AZES18RB27TE5432 1 AHE0EEa8E

Exercises
11-18. Code the binary integerffEr54:221d
11-19. Decode E4AZBABEEE 12345

134 Parr Twor Macuive Lancuace

List Object

@ Prolog (02A74) \ 5 nibbles
@+5h First object

Last object
Epilog (0312B) \ 5 nibbles

A list is simply a list of objects. Its structure consists of a prolog, a list of
objects, then an epilogue. You can think of the prolog as the list delimiter
£ and the epilogue as the list delimiter *.

Example

« L"A" BZXis coded as
47AZBCZAZEYOEEE 1 434E26 1024E21 28

Exercises
11-20. Code an empty list.
11-21. Decode 47HZBE4EZHZBF4B4E2136

11. HP 48 Objects 135

Directory Object

@ Prolog (02A96) 5 nibbles
@+5h Number of attached libraries, n, 3 nibbles
@+8h N° Library 3 nibbles
@+Bh Address of Hash Table 1 5 nibbles
@+10h Address of Message Table 1 5 nibbles
Library n, 3 nibbles
Address of Hash Table n, 5 nibbles
Address of Message Table n, 5 nibbles
@, Offset to last object (@ -@.) 5 nibbles
@,+5h 00000 5 nibbles
, n,, characters in name, 2 nibbles
@2+2h Character 1, name name of | 2 nibbles
e object 1 i)
character n, 2 nibbles
n, characters in name, 2 nibbles
Object 1
5 Size of previous fields (@, @,) 5 nibbles
@,+2h n, characters in name, 2 nibbles
4 n, characters in name, | 2 nibbles
@,+t2h Character 1, name, name of ' 2 nibbles
. objectd |
Character n, | 2 nibbles
n, characters in name, | 2 nibbles
Object d |

There are two different types of directories. The first type is the HOME
directory, which is the root directory of the VAR menu. Any number of
libraries may be attached to this directory. The second type is a
subdirectory, found either in the HOME directory, or one of its
subdirectories. We will first look at the structure of the HOME directory,
shown in the table above.

136 Parr Twor Macuive Lancuace

Notice that in the code for a directory you will find information about any
libraries that might be attached. The first field after the prolog indicates
the number of libraries attached.

Next comes a series of descriptor fields for each attached library. This field
is divided into three parts:

The library number: This number is assigned according to the
following criterion defined by Hewlett-Packard:

- #000h to #100h HP lib. in ROM;

- #101h to #200h HP lib. in RAM;

- #201h to #300h non HP lib. (distributed by HP);

- #301h to #6FFh free use;

- #700h to #7FFh used interally by the HP 48.

The address of the hash table for the library (see page 143).

The address of the message table of the library (see page 143). This
pointer is NULL if there is no message table.

The HOME directory always has a minimum of 2 libraries attached
to it: library #002h and library #700h.

Ifthe address pointers are pointing to tables in the hidden ROM (see
Chapter 12), then an indirect address is given. The address points
to a system binary in normal ROM which contains the address of the
object in the hidden ROM.

11. HP 48 Objects 137

The beginning of a subdirectory is different than the HOME directory:

@ Prolog (02A96) 5 nibbles
@+5h Number of the attached library 3 nibbles
@+8h Offset to last object (@ -@.) 5 nibbles
@+Dh 00000 5 nibbles
@+12h n, characters in name, 2 nibbles

If there is no attached library, then #7FFh will appear in the library number
field. The rest of the code is the same for both kinds of directories. The
next field contains an offset to the last object in the directory. Immediately
following this field is 5 zero nibbles to mark the first object in the directory.
This is useful when searching the directory backwards.

Each variable contained in the directory is defined with the following fields:

« The number of characters in the name (in 2 nibbles);

= The characters of the name (in ASCIl code);

- The number of characters in the name (in 2 nibbles);

- The object;

« The total length of the 4 fields just mentioned—useful when search-
ing the directory backwards (the last object in the directory does not
have this field).

Examples
« This is the code for an empty directory: EZAZEFFFBEEEE

- A directory that contains a 3 in a variable named ‘D" :
E9AZEFFFABEEEEEEEE] B44 1 BC2AZEFABEESS
Exercises

11-22. Add the variable "A', containing ¢, to the directory in the
example above.

11-23. Attach library #123h with a hash table found at address #7FE30h
and without a message table to the directory above.

138 Parr Twor Macuive Lancuace

Algebraic Object

@ Prolog (02AB8) \ 5 nibbles
@+5h First object

Last object l

Epilog (0312B) \ 5 nibbles

The algebraic expression represented by this object is stored in RPL form.
For this reason, there is no need to store parenthesis.

The operations are coded by their address in ROM (in 5 nibbles). This
address points to the code that executes the desired algebraic function.

Example
+ 'C+D' iscodedintheformC D + by:

BEHdBE4EEB1@3484Edu1944(68ﬂ18213@
Exercises
11-24. Code the expression "A+B" .

11-25. The subtraction routine is found at address #1AD0Sh and the
multiplication routine is found at address #1ADEEh. Knowing
that, decode the following object:

SEAZOZ4EZR181404E2E182484E081682342960A1EEDALB21 28

11. HP 48 Objects 139

Unit Object

@ Prolog (02ADA) 5 nibbles
@+5h Object implied

Desc 1 unit .

Descn description l

Epilog (0312B)] 5 nibbles

After the prolog comes the object implied by the unit. This is actually part
of an RPL calculation that describes its relation to the unit. The elementary
units themselves are stored in the form of object strings.

Only 3 operations are possible between units—all related to multiplication
(because it is not possible to create a unit by adding joules to seconds or
by subtracting grams from kilometers):

« Multiplication « Division + Raise to a power
Each operation is represented by a reference number to an object found
in ROM. The following table is useful in coding or decoding unit objects:

Operation * / A
Reference #10B86h #10B68h #10B72h

Example

- 9.81_mss"2 is coded as
ADAZBZ392EEEEEEEEEE8EEE] 298C2A287EB0E0E
CEAZETEBENSFI302EBR0EEEa0EEEaRE2827EE1
SEBR1EEEBEIER13E (Actually, the HP 48 would replace the
real number 2 by a pointer to a real number found in ROM).

Exercises

11-26. Code the following: 1. 2_m.

11-27. Decode:
ADAZESIIZEEEEEEHEEEE88EE8E 1 SHC2AZE7EEEEES
F2RZZVEDLGEEE1E2136

140 Parr Twor Macuive Lancuace

Tagged Object

@ [Prolog (02AFC) | 5 nibbles
@+5h Length |, of the tag | 2 nibbles
@+7h Character 1 characters of l 2 nibbles
P s— the tag {)
@+1"2+5h Character | J 2 nibbles
@+12+7h | Object |

This object has a prolog, the number of characters in the tag, the char-
acters themselves (in ASCII), and then the tagged object.

Example

» REALF1.23456789812 is coded as:
CFAZB4B2554 1404 203926R082189876543218

Exercises
11-28. Code UN: TAG
11-29. Decode CFAZEZEF4B4S4EZBCEIAF425251404

11. HP 48 Objects 141

Graphics Object

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah Number n, of lines (in pixels) 5 nibbles
@+Fh Number n_ of columns (in pixels) 5 nibbles
@+14h Columns 1to0 8 Pixels in . 1+1 nibbles
Last pixels fine 1 ; 1+1 nibbles

Columns 1t0 8 Pixels in ' 1+1 nibbles

line n, [
Last pixels | 1+1 nibbles

@+ +5h

The dimensions of a graphics object are always given in pixels and stored
with @ number of columns that is divisible by 8. Zero columns are added
if the number of columns is not already divisible by 8.

The first nibble stores the first 4 columns: the next nibble stores the next

4 columns, etc. The least significant bit of these nibbles is the left-most
column, and the most significant bit is the right-most column.

Example
- GROB £ 1 FFiscodedas: E1BZE1 18@6]1000EIEG8EFF

Exercise
11-30. Decode: E1EZE11EEE]BEEESEEEEFE

142 Parr Twor Macuive Lancuace

@

@+5h
@+Ah
@+Ch

@+n, 2 +Ah
@+n_*2+Ch
@+n*2+Eh

@o(nml
@n(r\+m)
@

@+l +1h
@+ +5h

Library Object

Prolog (02B40)

Total length excluding prolog |

n_characters in name

Character 1 Characters

Character n of the name

n_characters in name

Library number

Offset to Hash Table (@,-@,)

Offset to Message Table (@_-@.,)

Offset to Link Table (@-@.)

Offset to Config. Object (@ -@.)

Hash Table

Message Table

Link Table

Type XLIB, (command/function)

Library number of XLIB,

Command number of XLIB,

Object XLIB,

Type XLIB_ (command/function)

Library number of XLIB_

Command number of XLIB

Object XLIB

| Otherobject1 oher objects

IS E— (not visible)
Other object m

Config. Object (not visible)

Checksum (CRC)

5 nibbles
5 nibbles
2 nibbles
(2 nibbles)

(2 nibbles)

(2 nibbles)
3 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles

1 or 3 nibbles
3 nibbles
3 nibbles

1 or 3 nibbles
3 nibbles
3 nibbles

4 nibbles

The library is the most complex of all HP 48 objects. The code begins with
the optional library name (in an unnamed library, the fields for the name
characters and the second field for the name length are absent). After the
name comes the library number, which must be unique (see Directory

11. HP 48 Objects

143

Object). Nextare 4 offsets —to the hash table, message table, link table
and configuration object (executed after each system halt). A NULL field
means that a table or the object does not exist. After the offsets come the
3tables, in any order, if they exist. After the tables come the library’s visible
objects, each preceded by its command number (3 nibbles before), its
library number (6 nibbles before), and a flag coded in either 1 or 3 nibbles;

144

If it is a library of commands (library number z #700h), the flag will
be only 1 nibble. Its significance is not clear, but the value 9h (1001b)
seems best. The command itselfis composed of 2 objects: first, the
object used when the command is executed; second, the object
used during the coding phase of the command line

If it is a library of functions (library number - #6FFh), then if bit 3 of
the nibble at @, -7his 0, the function can be includedin an algebraic
object, and the flag is 3 nibbles long. The bits mean the following:
Nibble at @,,-8h: bit 0 Unknown 12 (12) bit1 Unknown 11 (11)

bit2 INT (10) bit 3 RULES (9)
Nibble at @,,-9h: bit 0 Unknown 8 (8) bit 1 Unknown 7 (7)

bit 2 1SOL (8) bit 3 DER (5)
Nibble at @,,-7h: bit0 ALG (4) bit 1 Unknown 3 (3)

bit2 EQWR (2) bit 3 0 (alg. obj. OK)

Each bit signifies the presence or absence of a special program for
the function (ISOL to invert, DER for derivative, INT for integration,
RULES to add functions in a sub-menu, ALG for algebraics; EQWR
for the EquationWriter). The function itself is a series of objects, led
by the program for the function. The others are supplemental func-
tions in the order of the numbers in parentheses. Forexample, if the
flag value is #C81h, there will be a principal program, PRG, plus
ALG, DER, RULES and INT, in that order. The code: <C81> <Lib
number> <Xlib number> <PRG> <ALG> <DER> <RULES> <INT>
Ifbit 3 of the nibble at @, -7his 1, thenitis acommand (just like those
in libraries with numbers >#700h). The flag is coded in 3 bits. The
other bits are different than for the regular library commands (bit 1
seems to indicate that the command also exists in function form).
The library checksum is calculated for the zone from @+5h to
@+1+1h according to the formula described with the backup
object.

Parr Twor Macuive Lancuace

To minimize library access time, the HP 48 uses hashing: A function takes
the name of a command and returns a number from #1h to #10h (the HP
48 uses the number of characters in the name). For each class, a part of
the table then gives the addresses of the name and number of each
command in that class. Here is the hash table structure:

N Prolog (02A4E) 5 nibbles
@,+5h Total length excluding prolog | 5 nibbles
@, Offset forclass 1 (@_. @._.) 5 nibbles
@, Offset for class 16 (@, @..,) 5 nibbles
@+5Ah Length | of the name list 5 nibbles
@, Number of characters in name 2 nibbles
@,,+2h First character Characters \ 2 nibbles

——— in name 1 [!
Last character 2 nibbles
Command number 1 3 nibbles
@, Number of characters in name x | 2 nibbles
@,,+2h ‘ First character Characters \ 2 nibbles
_ in name x i X
Last character 2 nibbles
Command number x 3 nibbles
@+l +5Ah L Offsettocmd name 1 (@__@) \ 5 nibbles
@, [Offset to cmd name x (@, @) |
[offset to the last command name |
@,+1,+5h

The hash table is one large binary integer. The first 16 fields are offsets
to the starts of each name table. The next field contains the length of the
entire name table. The name table is alist of these elements (in this order):
The name length, the name characters (in ASCII), the command number.
The last field gives (by command number) the offsets used to find the
command names in the table—used to display the names in the menu
bar.

11. HP 48 Objects 145

The message table has the following structure:

This is a vector that contains strings (for more information on vectors, see
Real/Complex Array Object). This vector contains messages that are
used by the library. The message number corresponds to its place in the
vector. The internal library #002h uses such a table to store the HP 48’s

@,

@, +5h
@, +Ah
@, +Fh
@, +14h
@, +19h
@, +1Dh

@,+,+19h

@, +5h

Prolog (029E8)

Total length excluding prolog |

Object types: string (02A2C)

Number of dimensions (00001)

n number of messages

Length |,

First character

; message n
Last character

; Textfor

‘ Last character message 1
Length | |
First character Textfor [

errormessages.

146

Parr Twor Macuive Lancuace

5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
2 nibbles

2 nibbles

5 nibbles
2 nibbles

2 nibbles

The link table has the following structure:

@, Prolog (02A4E) 5 nibbles
@,+5h Total length excluding prolog | 5 nibbles
@, Offset to object 1 (@_,-@,.) 5 nibbles
@, \ Offset to objectd (@_-@,.) | 5 nibbles

@+l +5h

The link table is used for finding the address of the beginning of a library
object. The link table is really just a large binary integer containing a series
of 5 nibble offsets. These offsets are in the same order as the library ob-
jects.

Example
- An empty library is coded as

BAEZECEER4EEET34 44 3448 F coBE0EE0EE008EREEEEHE 98 1

Exercises
11-31. What is the library number of the above example?
11-32. What is the library name?

11-33. Does this library have a message table?

11. HP 48 Objects 147

Backup Object

@ Prolog (02B62) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah n_number of characters 2 nibbles
@+Ch ; Character 1 Object | 2 nibbles
@+n.*2 +8h | Character n, name 2 nibbles
@+n_*2+Ah| n_number of characters 2 nibbles
@+n_*2+Ch|_First Backup object

Last Backup object |

@+ +5h

This is the object used for storing backups in a port. After the prolog and
the length fields is a field with the backup object’s name, followed by each
object being backed up.

Normally, a backup object contains two objects: the object being backed
up and a system binary containing the CRC (Cyclic Redundancy Code, or
checksum) of the object. This type of backup object structure is shown
below:

Prolog (02B62) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah n_number of characters 2 nibbles
@+Ch Character 1 Textfor | 2 nibbles

i
@+n*2 +8h | Character n message 1 2 nibbles
@+n_ 2 +Anh |_n_number of characters 2 nibbles
@+n,2+Ch| Object
@i [T BT s emamy | 3100
¢ containing CRC

@+l+1h [CRCvale g | 4 nibbles

@+|+5h

148 Parr Twor Macuive Lancuace

A backup object contains only one object, followed by a system binary,
which contains the checksum of the object. This sum is calculated using
the same formula used to calculate the CRC in alibrary. The formula used
is also the same control code used by the Kermit protocol for data
transmission, that is, the remainder of a division by the polynomial:

X164 12454]

The HP 48 does not perform this calculation with software. Rather, itis a
hard-wired function performed by a specialized circuit (see Chapter 13).
The CRC program presented in the Library of Programs does the same
calculation using software. For a backup object, this checksum is cal-
culated over the area from @+5h to @+1, , inclusive.

Example

ZEBZEI2BEE4524 24E4BS4BCEAZEIE0EEF 4B4 1 1 92068026
is the code for the backup object containing the string: " OK" .

Exercises
11-34. What is the name of the backup object in the above example?
11-35. Whatis its checksum?

11. HP 48 Objects 149

Library Data Object

@ Prolog (02B88) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah Contents ;-5 nibbles
@+1+5h

This object does not exist as a basic object for the HP 48. It can be used
only in a library for storing data of any type. It could be used, for example,
in a mini-spreadsheet library needing to store spreadsheets in a form dif-
ferent than that used for matrices.

There is no standard structure for this object except that it begins with its
prolog (as does every object), followed by its length, then data.

150 Parr Twor Macuive Lancuace

Reserved 1, 2,3 and 4

@ Prolog 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah Contents -5 nibbles
@+1+5h

These four objects have the same structure as the library data object. They
are not used, and are probably reserved for a future use. In this way,
Hewlett-Packard can create a new object without needing to completely
re-structure the existing ROM.

The prologs are:
- #02BAAh for Reserved 1;
- #02BCCh for Reserved 2;
- #02BEEh for Reserved 3;
- #02C10h for Reserved 4.

Since these objects don’t actually exist, no examples or exercises will be
given here.

11. HP 48 Objects 151

Program Object

@ [Prolog (02D9D) | 5 nibbles
@+5h |_First object

[Last object

| _Epilog (0312B) | 5 nibbles

This objectis used to store all user programs. Its structure is similar to that
of a list. a prolog, a collection of objects (of any type), and an epilogue.
However, the prolog and epilogue do not correspond to the % and
program delimiters, as these are objects that must be included in the list.

Example
« The program# A B + # iscoded as:

LoODZEE1CS284E28181434E28182475BA193632B21 38

Exercises

Refer to the above example to answer these questions:
11-36. How are the program delimiters, % and #, coded?
11-37. How is the addition function (+) coded?

152 Parr Twor Macuive Lancuace

Code Object

@ Prolog (02DCC) 5 nibbles
@+5h Total length excluding prolog | 5 nibbles
@+Ah Machine code -5 nibbles
@+1+5h

This object is used to store machine language programs. The “machine
code” field contains a series of machine language instructions.

Example

- See the machine language programs in the Library of Programs
for examples.

Exercises
11-38. How would you code an empty code object?

11-39. Using what you have learned from other chapters, write some
machine language code that does nothing.

11. HP 48 Objects 153

Global Name Object

@ Prolog (02E48) 5 nibbles

@+5h n_number of characters 2 nibbles

@+7h ‘ Character 1 Characters of | 2 nibbles
; the name '

@+n,*2 +3h | Character n, | 2 nibbles

@+n_*2 +5h

This object is used for storing global names. The field following the prolog
indicates the number of characters in the name, followed by the characters
themselves (in ASCII).

Example

- The global name 'Jaurriey ' is coded as:
B4EZATEA4FESFEVYERSEST

Exercises
11-40. Code 'Hellao'.

11-41. What does S4EZEEHE represent?

154 Parr Twor Macuive Lancuace

Local Name Object

@ Prolog (02E6D) 5 nibbles

@+5h n_number of characters 2 nibbles

@+7h Character 1 Characters of | 2 nibbles
e the name i

@+n,*2 +3h|_Character n 2 nibbles

@+n "2 +5h

This object is used to store local variable names. lts structure is the same

as the global name (above) except for the prolog.

Example
- 'Local’ is coded as: DBREZRSEC4FE36160E

Exercises

11-42. How many characters are in this local name?

DEEZB4BE41E0E5E

11-43. What is that name?

11. HP 48 Objects

155

XLIB Name Object

@ Prolog (02E92) 5 nibbles
@+5h Library number 3 nibbles
@+8h Command number 3 nibbles
@+Bh

The XLIB name is a method used to reference library commands. In order
to optimize access to these commands, theirname s replaced by an “XLIB
name” which contains the library number and the command number of the
command in question. This notation can by used to access the two stan-
dard HP 48 libraries (library #002h and library #700h).

Example

« The FREE command, which is library #002h, command number
#163h, can be represented as: ~SEZEHZEEZIS1

Exercises
11-44. Code command number #123h from library #456h.

11-45. What are the library and command numbers of the XLIB name:

ZOEZB1GB2E80 7

156 Parr Twor Macuive Lancuace

Other Objects

Any of the objects found in ROM may be added to your own objects. For
example, if you wanted to add a few RPL commands to your machine
language program, it is easy, using the method below. In fact, if you have
need ofan RPL command, a common list, a machine language command,
or any other object found in ROM, here is how you could add one of these
to your object:

- RPL commands, lists, and other composite objects (listed in the
Appendix) can be added using their address only. For example,
the SWAP instruction can be represented by the ROM address
#1FBBDh.

« Machine language routines stored in the form <current address + 5h>
<machine code>, or, more commonly, <address of an ML program>.
This method can be used only with objects in ROM where their
address is fixed. These objects are shown on the screen as
<External>, or, in other words, an external call.

11. HP 48 Objects 157

158

12. General Memory Organization

Parr Twor Macuive Lancuace

We have previously seen that the Saturn microprocessor has 20-bit
addressregisters and can thus address as many as 2 2 memory elements.
Since these basic memory elements are nibbles, the HP 48 can address
1“Mega-nibble,” which is 512 Kb (Kilobytes). This memory space is divid-
ed into 5 parts:

< ROM: This contains all programs used by the machine (square
roots, curve tracing, beep, etc.). This memory can not be modified,
and has a size of 256 Kb.

- I/O RAM: This 64-nibble memory area is used to access the HP 48
peripherals (infrared receiver/transmitter, clock, screen, etc.). The
/O RAM is actually part of the ROM memory area.

« Built-in RAM: This is where all user data is stored (programs,
variables, alarms, etc.). The size of this memory area is 32 Kb.

+ Plug-in card ports (2): Each of the ports can contain 1 card of up to
128 Kb.

Notice, however, that if you total the maximum amount of possible memory
(with two 128 Kb cards installed), the result is 544 Kb, which is 32 Kb larger
than what the Saturn microprocessor is capable of addressing.

To overcome this problem, the HP 48 uses a technique called bank-
switching. Bank-switching assigns two distinctmemory areas to the same
address, with one having priority over the other. This higher-priority mem-
ory is visible; the other is “hidden.” If you want to access the hidden mem-
ory, you must reconfigure the visible memory, to give it another address.
The hidden memory area is then accessible.

In order to minimize access time, the only thing that should be storedin the

hidden memory area is data that is infrequently used. The HP 48 stores
the auto-test routines, error messages, etc.).

12. General Memory Organization 159

The HP 48 memory is therefore in one of two states:

- The standard state, where the built-in RAM occupies the memory
area from #70000h to #7FFFFh (see Figure 1 opposite).

« Aninformation access state where the built-in RAM is displaced to
address #F0000h. The HP 48 is in this state when using the mini-
editor (see Figure 2)

The mini-editor permits easy access to this second memory state, and
thus allows access to all the memory contents of the calculator. To use this
mini-editor, enter the manual auto-test (by pressing LOMI=LCL1]), then
press the [41 key. This editor uses one line of the screen to display 16
nibbles of memory at the current address. The following commands may
be used:

« [B1 C11, C2]1,...[21, AT, .[F1] changes the value at the
current address (to be used with caution!);

- Movement commands:
- By#1000h with [T1 and [4-]
- By#100h with [x1 and [+1]
- By#thwith [+]1 and [—1]

« Serial port output commands:
- By#10h with [.]
- By#10000h with [SFC]

- Commands for accessing pre-defined memory areas:
- #00100h (/0 RAM) by CEHTER]
- #80000h (Port 1) by LEE®]
- #C0000h (Port 2) by [LEL]
- #F000Ah (WSLOG data) by [+-—1
- #FOAB8Ch (screen area) by [1.:]

- To update the screen: [«1;

- To execute the machine language program beginning at the current
address: LEVMAL T (to be used with caution!).

160 Parr Twor Macuive Lancuace

For the HP 48SX, when viewing the plug-in card contents, these contents
appear at memory locations #80000h and #CO0O000h, although they are
reconfigured to form a continuous memory area when used normally by

the machine.

#00000h
#00100h
#00140h
#70000h
#80000h
#C0000h
#100000h

#00000h
#00100h
#00140h
#80000h
#C0000h
#F0000h
#100000h

Beginning of ROM

I/10_ RAM

Continuation of ROM

Built-in RAM

Port 1 Plug-in
Port 2 cards

Beginning of ROM

110 _RAM

Continuation of ROM

Plug-in
Port 2 (partial) cards

_Built-in RAM (displaced)

256 nibbles

64 nibbles
458432 nibbles
65536 nibbles
262144 nibbles
262144 nibbles

Figure 1: HP 48 memory, standard state

256 nibbles

64 nibbles
523968 nibbles
262144 nibbles
196608 nibbles
65536 nibbles

Figure 2: HP 48 memory, information access state

12. General Memory Organization

161

162

13.

/10 RAM

Parr Twor Macuive Lancuace

To communicate with its peripherals, the HP 48 uses, among other
methods, a special memory area called the I/O RAM. This 64 nibble area
is a way to exchange data with the outside world. By reading and writing
to this area, it is possible to send commands or receive data from the
peripherals.

In the following pages, the I/O RAM will be described bit by bit using tables

in the form shown below. In these tables, bit 3 is the nibble’s most sig-
nificant bit, and bit 0 is the least significant.

Bit3 Bit 2 Bit 1 Bit 0

#00100h [
#00101h [|

13. /O RAM 163

164

#00100h
#00101h
#00102h
#00103h
#00104h
#00105h
#00106h
#00107h
#00108h
#00109h
#0010Ah
#0010Bh
#0010Ch
#0010Dh
#0010Eh
#0010Fh
#00110h
#00111h

#00112h
#00113h
#00114h
#00115h
#00116h
#00117h
#00118h
#00119h
#0011Ah
#0011Bh
#0011Ch
#0011Dh
#0011Eh
#0011Fh

Bit 3 Bit 2 Bit 1 Bit 0
Display \ Left margin
Screen contrast

CRC calculator

Batt. test

Alert Alpha | right shiff left shift
annunciator] transmitting _Busy
RS232 speed

Port information (HP 48SX)
RS 232C interrupts

input OK boutput O

RS 232C Input

RS 232C Output

IR input R in mem

IR output

Base address of built-in RAM

Parr Twor Macuive Lancuace

Left Margin

The left margin is coded with 3 bits and therefore may have a value from
Oto 7. Itcan be used for scrolling the main screen portion (everything but
the menu bar). For example, setting the left margin to 1 shifts the screen
contents one pixel to the left. To use the left margin properly, you will need
to understand the right margin and the address of the screen bitmap, both
of which are described later.

Display

Setting display to 0 turns off the screen display; setting it to 1 reactivates
it. Interestingly, turning off the screen deactivates the keyboard, and ac-
celerates the machine by about 13%. This is because the screen bitmap
isin memory: if the screen is off, there is no memory access each time the
screen is updated. With this small burden lifted from the bus, exchanges
between the microprocessor and memory can be done more quickly, and
so program execution will be faster. The program FAST (see the Library
of Programs) uses this method to achieve rapid calculations.

Screen Contrast

The screen contrast is coded with 5 bits (the most significant bit being at
#00102h). Therefore, the contrast can be adjusted to 32 levels. However,
only the values from #3h to #13h are accessible by pressing LOHI-[+1]
and [OMI-[-1. The program CONTRAST (see the Library of Pro-
grams) uses this address to adjust the contrast from software.

13. /O RAM 165

CRC Calculator

The HP 48 uses checksums to verify the integrity of data (see Chapter 4).
In order to obtain this value rapidly, a hardware circuit is used for the
calculation. This circuit reads the information going between the micropro-
cessor and memory and calculates the corresponding CRC (Cyclic
Redundancy Code).

To calculate the CRC of an object (just as the function B TES does), set
the four nibbles to zero (nibbles #00104h to #00107h), then read the
nibbles of the object in question. The CRC of that object will then be found
in nibbles #00104h to #00107h.

This process must not be interrupted, so you must disable interrupts while
the calculation is taking place (using the assembly instruction IMTOFF).
Don't forget to re-enable interrupts when the calculation is finished (using
the assembly instruction IHTOM).

Because these four nibbles are constantly changing, they are very useful
for generating random numbers in a machine language program. As the
CRC value is a function of nibbles read from memory, you can read a
pseudo-random number (for example, the clock, the address of the stack
end, the amount of free memory, etc.), then read the pseudo-random
number contained at #00104h.

166 Parr Twor Macuive Lancuace

Battery Test

The nibbles #00108h and #00109h are used for testing the HP 48's
batteries (main batteries as well as batteries for the plug-in cards in the
case of the HP 48SX).

To begin the test, set bit 3 of nibble #00109h to 1 (by writing #Ch, the other
3 bits being 1, 0, and 0, respectively). Then, read the contents of nibble
#00108h. Each of the bits of this nibble indicates the state of one of the
batteries of the HP 48:

- If bit 3 of #00108h is 1, the plug-in card battery for port 2 is weak;
« If bit 2 of #00108h is 1, the plug-in card battery for port 1 is weak;
- If bit 1 of #00108h is 1, the HP 48’s main batteries are weak;

« If bit 0 of #00108h is 1, the main batteries are very weak.

Note that the HP 48's internal battery tester reads the nibble #00108h
many times (6). If one of these reads returns a 1, then the battery is de-
clared weak.

When you finish the testing, don't forget to change bit 3 of #0010%h back
to O (by writing a #4h to #00105h).

Annunciators

The annunciators (alpha, busy, etc.) each have 2 states controlled by one
bit (1=showing, O=not showing). Bit 3 of #0010Ch determines whether
any of the annunciators will be showing (0O=none showing, 1=showing,
according to their respective states)

13. /O RAM 167

RS-232C Speed

The transmission and reception of data from the RS-232C port is done at
a speed expressed as a “baud” rate. This number refers to the number of
bits transmitted per second.

The HP 48 is capable of transferring data at four different speeds: 1200
baud, 2400 baud, 4800 baud, and 9600 baud. Bits 1 and 2 of #0010Dh

are used to set this speed, as follows:

Bit 2 Bit1 RS-232C Speed

0 0 1200 Baud
0 1 24Q0 Baud
1 0 4800 Baud
1 1 9600 Baud

Port Information (HP 48SX)

Nibble #0010Fh gives the states of the two ports for the HP 48SX. The
possible states are:

Bit Number Significance
0 When set (1): Card present in port 1
1 When set (1): Card present in port 2
2 When set (1): Card in port 1 not write-protected
3 When set (1): Card in port 2 not write-protected

168 Parr Twor Macuive Lancuace

RS-232C Interrupts

When a character is sent to the HP via the RS-232C port, this can cause
an interrupt. This would cause the microprocessor to execute a special
interrupt handling routine. For example, if a character is received through
the RS-232C port, then the character needs to be read and then stored in
the RS-232C buffer (see Chapter 14).

The nibble #00110h can be used to disable these interrupts as well as
determine if one has occurred. Each bit of this nibble has a distinct
function:

Bit Number Significance

0 When set (1): a character was received; an interrupt has occurred.
1 When set (1): receive interrupts are enabled.

2 When set (1) a character was transmitted; an interrupt has occurred.

3 When set (1): transmission interrupts are enabled.

To access the RS-232C port directly, you should disable these interrupts.

Input OK and Output OK

If the Input OK bit is set, then a character has just been received via the
RS-232C port. You may read this value from nibble #00114h.

If the Output OK bit is set, then you may output a character to the RS-232C
port by writing to #00116h.

13. /O RAM 169

RS-232C Input and Output

Input and output through the RS-232C port are accomplished by a special
circuit. To receive a byte from this port, read the two nibbles at #00114h.

To transmit a byte through the RS-232C port, write the two nibbles at
#00116h.

IR Input and Output

Nibble #0011Ah is used for IR input. Bit 3 is set if there was a reception;
itis clear if there was not. Bit O is set at the first reception and serves as
a reminder that there was an IR input. This bit must be set back to 0
manually.

Bit 3 of nibble #0011Ch is used for IR output. Setting this bit to 1 begins
the transfer, O stops it.

Base Address of Built-in RAM

#0011Fh contains the base address of the built-in RAM (#7h or #Fh). #7h
is the normal value (built-in RAM is at #70000h); #Fh means that the built-
in RAM has been displaced to #70000h. This value is brought up to date
by the system when the reconfiguration takes place (in order to view the
hidden ROM)

Changing the value in #0011Fh has no effect on the base address of the
built-in RAM:; itis for reading only. This nibble is used by routines that must
function in normal mode, as well as when the RAM is displaced (like the
routine that updates the screen). In this way, the location of the built-in
RAM makes no difference, and the machine is still capable of functioning.

170 Parr Twor Macuive Lancuace

#00120h
#00121h
#00122h
#00123h
#00124h
#00125h
#00126h
#00127h
#00128h
#00129h
#0012Ah
#0012Bh
#0012Ch
#0012Dh
#0012Eh
#0012Fh
#00130h
#00131h
#00132h
#00133h
#00134h
#00135h
#00136h
#00137h
#00138h
#00139h
#0013Ah
#0013Bh
#0013Ch
#0013Dh
#0013Eh
#0013Fh

13. /O RAM

Bit3 Bit2 Bit 1 Bit0

Beginning address of screen bitmap

Right margin (in nibbles)

Menu bar height & VSYNC

Beginning address of menu bar bitmap

\ | \

Timer 1

Timer 2

171

Screen Bitmap Address

The HP 48 screen is divided into the screen itself (where the stack ap-
pears) and the menu bar (at the bottom). The information for these por-
tions may be stored at any address, but the screen driver must know that
address. The bitmap for the main screen is pointed to by #00120h. The
memory atthat location is simply a GROB containing the screen contents.

- This address must be even (because a specialized circuit is used
that manages 8-bit screen portions only).

« This address can only be written to, but a readable duplicate of this
address is located in the reserved RAM (see Chapter 14).

Right Margin

The right margin for the screen bitmap is stored at #00125h. This value
is defined in nibbles, not in pixels as is the left margin. This number must
be even, so bit 0 is ignored. To perform rapid screen scrolling, change the
left and right margins and the address pointing to the beginning of the
bitmap, and the screen will display the new area of the bitmap. The value
contained at #00125h follows the same rules as the bitmap address: It
cannot be read, but its value is backed up in the reserved RAM area.

Menu Bar Height

The separation height between the main screen area and the menu bar is
defined in #00128h. Setting this value to #3Fh causes the menu bar to
disappear. The value at this location cannot be read, so it is backed up in
the reserved RAM area. The standard values (with no library attached):

« #7097Ch for the screen bitmap address (stack GROB);
« #70858h for the menu bitmap address;

« #000h for the right margin; #0h for the left margin;

< #37h for the separation height.

172 Parr Twor Macuive Lancuace

VSYNC

We have seen that the menu bar height can only be written to. This is
because the nibbles #00128h and #00129h are also used for the VSYNC.
If you read the contents of these nibbles, you will get the line number that
the screen driver is currently working on during a screen refresh. This will
be a number that goes from #3Fh down to #0h every 1/64th of a second.

Timer1

The nibble at#00137his a 1/16th-second timer that counts down from #Fh
to #0h every second.

Clock

The last area in the I/0O RAM is for the clock. Its value is in units of 1/8192
seconds, and is stored in an 8 nibble area, decreasing from #FFFFFFFFh
to #00000000h. The HP 48 does not actually use this entire value.

+ Iftheclockis visible on the screen, the machine counts down in one-
second cycles. Every second, the value of these 8 nibbles goes from
#00001FFFh to #00000000h (or 8192 8192"* of a second).

« Ifthe clock is not visible on the screen, and if an alarm is due in the
next hour, then the number of 8192™s remaining until the alarm is
stored in the clock section.

< If neither of the above is true, then the values used are from 0 to 1
hour (or #01C20000h to #00000000h) returning to 1 hour when a
button is pressed in interactive mode.

Each time the clock value reaches #00000000h an interrupt is generated.

13. /O RAM 173

174

14. RAM

Parr Twor Macuive Lancuace

The HP 48 memory is divided into several zones, each with a distinct role.
Before getting into the details of each zone, here is a representation of the

entire memory

#70000h

Reserved RAM

(#70551h)

Screen GROBS

(#7056Ah)

Temporary objects

(#T056Fh)
B

Return stack

Free memory

D1
(#7057Eh)

The stack

Command line

(#70583h)

Undo stack, local variables

(#70588h)

5 zeros

(#7058Dh)

Temporary environment

(#70592h)

User variables (HOME dir)

(#70597h)
(#70669h)

Backup in port 0

D*5 nibbles
(#7069Fh) nib.
48 nibbles min.

5 nibbles
78 nibbles

All of these zones, except the reserved RAM, are at variable addresses.
These addresses are stored in the reserved RAM (and certain registers).
We will describe the reserved RAM, and its contents in detail.

14. RAM

175

#70000h CMOS word 5 nibbles
#70005h 0000 4 nibbles
#70009h Disable system-halt 1 nibble
#7000Ah Type 1 nibble
#7000Bh Date WSLOG 1 13 nibbles
#70018h CRC 4 nibbles
#7001Ch Type 1 nibble
#7001Dh Date WSLOG 2 13 nibbles
#7002Ah CRC 4 nibbles
#7002Eh Type |1 nibble
#7002Fh Date WSLOG 3 13 nibbles
#7003Ch CRC 4 nibbles
#70040h Type ~ 1 1 nibble
#70041h Date WSLOG 4 13 nibbles
#7004Eh CRC 4 nibbles
#70052h Value Clock offset 13 nibbles
#7005Fh CRC 4 nibbles
#70063h 0000000000000 13 nibbles
#70070h FF 2 nibbles
#70072h Auto-test start time 13 nibbles
#7007Fh | _Auto-test fail time 13 nibbles
#7008Ch [Mini editor screen Ipreparatioln 44 nibbles
CMOS Word

The 5 first nibbles in reserved RAM are always #A5C3Fh, used to verify
the reserved RAM contents. Changing these values causes a system
halt.

Disable System Halt

Setting bit 3 of nibble #70009h will disable the system hait CIOMI-LC],
manual auto-test [OMI—LL], and automatic [OMI-CEJ. It also
makes it impossible to turn the machine off; it is automatically turned back
on after a moment.

176 Parr Twor Macuive Lancuace

WSLOG

Data about the WSL0IZ command s stored in nibbles #7000Ah, #7001Ch,
#7002Eh, and #70040h. This command, (not documented in the HP man-
uals), returns the cause and time of the machine’s last warm boot. The
cause is coded (from #0h to #Fh) in the first nibble of the zone:

Code

0

W =

o] ~N O oA

Ow>»©

mmo

Cause of Warm Boot

The machine was turned on while in the COMA mode (COMA
mode is entered by pressing ON-SPC).

Batteries are very weak.

A hardware problem occurred during an infrared transmission.

The machine experienced a restart (execution of the program at
#00000h).

The clock offset (controlled by CRC) was corrupted.

An uncontrolled data change occurred in one of the plug-in cards.

Not used.

A verification word (5 nibbles) in RAM does not correspond to the
memory state (RAM is probably corrupted).

An error was detected while configuring one of the 5 peripherals.
One of them is not configured, or the configuration does not
correspond to a valid peripheral.

The alarm list is corrupted (its CRC is not valid).

Not used.

Plug-in card removed

System reset (using the reset button found underneath one of the
machine’s rubber feet).

RPL error manager not found.

Configuration table corrupted.

RAM card removed.

Next is the date of the warm boot (in 8192™ of a second since January
1, 0001), coded in 13 nibbles. The final 4 nibbles are a checksum for the
14 preceding nibbles, calculated as in Chapter 11 (and as in CELC in the
Library of Programs).

14. RAM

177

Clock Offset
At#70052h is found the clock offset (13 nibbles), followed by its checksum
(4 nibbles). As before, this offset is in units of 1/8192 seconds beginning
at January 1, 0001.

Autotest Start & Fail Time

The two 13 nibble zones at #70072h and #7007Fh are used during the
auto-test to store the test starting time, and the fail time respectively (if a
fail occurs). As these values have little importance, they are not validated
with a CRC.

Mini-Editor Screen Preparation

The 44 nibbles at #7008Ch are for preparing the display during the use of
the mini-editor (22 characters).

178 Parr Twor Macuive Lancuace

#700B8h ?72...7277 35 nibbles
#700DBh Plug-in cards (bits 0 and 1) 1 nibble
#700DCh 288 nibbles
#701FCh Data 512 nibbles
#703FCh | BufLen ’”"’fgi Z:’:e’ 2 nibbles
#703FEh Buffull 1 nibble
#703FFh BufStart RS 282Cport | 5 Nipples
#70401h 39 nibbles
#70428h CRC for the configuration table 4 nibbles
#7042Ch Flags Information for 1 nibble
#7042Dh Size the plug-in 5 nibbles
#70432h Start card in port 1 5 nibbles
#70437h Flags Information for 1 nibble
#70438h Size the plug-in 5 nibbles
#7043Dh Start card in port 2 5 nibbles
#70442h 11 nibbles
#7044Dh | _End of Built-in RAM packup zone | 5 nibbles
#70452h End of port 1 backup zone 5 nibbles
#70457h End of port 2 backup zone 5 nibbles
#7045Ch Temporary backup during interrupts 103 nibbles
#704C3h QOutput mask for keyboard test 3 nibbles

#704C6h 16 nibbles

Plug-in Cards (HP 48SX)

This nibble, #700DB, is the same as in the I/0O RAM at address #0010Fh:

Bit 3 Bit 2 Bit 1 Bit 0
1=Port2not 1=Port1not 1= Plug-in card 1= Plug-in card
write-protected write-protected present in Port 2 presentin Port 1

For example, if nibble #700DBh contains #Bh (#1011b), this means that:
a plug-in card is in port 1 (bit O set); a plug-in card is in port 2 (bit 1 set);
port 1 is write-protected (bit 2 clear); port 2 is not write-protected (bit 3 set).

14. RAM 179

RS-232C Input Buffer

The RS-232C input buffer temporarily stores data coming from the exterior
still needing to be processed. It consists of:

- Adatablock of 512 nibbles (256 characters) that begins at#701FCh;

« A starting pointer, BufStart (2 nibbles at#703FFh), the number of the
first character in the buffer. Its address is #701FCh+2*BufStart.

A character counter, BufLen (2 nibbles at #703FCh). The address
of the last character received is #701FCh+2*BufStart+2*BufLen-2.
The next character will be stored at#701FCh+2*BufStart+2*BufLen;

A full indicator, BufFull (1 nibble at #703FEh) which is used to indi-
cate if the buffer is full. This nibble is O if the buffer is not full, 8 if in-
formation was lost.

The buffer can be represented by this diagram:

Procassing drecon

BufStart + BufLan

The gray area represents
. the area containing data

— waiting to be processed.
HNext character / g p

180 Parr Twor Macuive Lancuace

Configuration Table

The 37 nibbles beginning at #70428h are a configuration table describing
the state of the plug-in cards. The first 4 nibbles of this table are a check-
sum for the other 33 nibbles. This checksum is not calculated by the usual
CRC formula, but by a machine-language routine at #09B73h, which re-
turns the checksum in field A of register C.

Plug-In Card Information (HP 48SX)

These two 11 nibble blocks are part of the configuration table. Nibble
#7042Ch contains information for the plug-in card in port 1 (#70437h for
port 2).

This first nibble in the block consists of the following information:

« Bit 1is set if the card is merged with RAM;
« Bit 2 is set if the card is not write-protected.;
« Bit 3 is set if the card is present

The next 5 nibbles (beginning at #70432h and #7043Dh) contain the start-
ing address of the plug-in card. And the size of the card (0’s complement)
is stored a #7042Dh and #70438h. A 32 Kb card will have a value of
#F0000h; a 128 Kb card will have a value of #C0000h. These values (the
starting address and size) are not valid if the card is merged with RAM.

The next 11 nibbles (at #70442h) are also part of the configuration table
and are probably reserved for future use.

14. RAM 181

Backup End

The three groups of 5 nibbles found at #7044Dh, #70452h and #70457h
contain, respectively: the ending addresses of the backup zones for the
built-in RAM, the card in port 1, and the card in port 2. Note that if a card
is merged with built-in RAM, its backup zone is also merged.

To calculate the free space of a plug-in card that is not merged, simply use
the configuration table and the three addresses mentioned above, The
program EFREE in the Library of Programs uses this technique, which
allows it to calculate the free space even if the card is write-protected (this
is not possible using the functionPYARS).

Caution: ROM cards (which look like write-protected RAM cards to the HP
48SX) may return false values if the data are not stored on the card using
the “normal” card BACKUP techniques. In particular, these data can be
found in memory after the theoretical end of the card.

Interrupt Backup

The 103 nibble block at #7045Ch is used by the system during interrupts
to temporarily backup the register contents. Interrupts are used by the HP
48 for processing keypresses, the RS-232C port, the clock, etc.

Output Mask forthe Keyboard Test

The output mask at #704C3h is used as an argument for QIT=L for a
keyboard test done by an interrupt handling routine. It is set to #1FFh by
the system. Periodically setting these 3 nibbles to #FFFh will cause the
speaker to sputter since interrupts occur every second.

182 Parr Twor Macuive Lancuace

Machine Speed

The 5 nibbles at #704D6h contain the machine speed in number of cycles
per sixteenths of a second. To obtain the microprocessor speed, multiply
this value by 16. The following program calculates the machine speed
using the programs FEEE. and STR+A found in the Library of Pro-
grams.
SFD o# 4BCSh»
“ # ve4DEh #5 PEEE STRH#H

16 % BIR 1_Hz =*UMIT
*

Invert the result to find the duration of one clock cycle—useful for calculat-
ing the execution time of a machine-language program (see Chapter 10).
If you change these 5 nibbles to a larger value, all sounds will have a higher
pitch (but this does not mean that the processor has been accelerated).

Disable Keyboard

Nibble #704DCh is used to disable the keyboard. Setting this nibble to a
non-zero value will accomplish this (#Fh for example). Note:

- Neither the [OMT button nor the system halts are disabled.
= Disabling the keyboard does not disable interrupts associated with
pressing certain buttons, but simply disables the execution of the

normal keyboard processing routine (the key codes will not be
stored in the keyboard buffer).

« This nibble is set to zero by the system when the calculator returns
to interactive mode (at the end of program execution, for example).

Key State

This 13 nibble block, beginning at#704DDh, stores the current state of the
HP 48’s 49 buttons. One bit per button is set if the button is being pressed.
This table is updated each time a keypress interrupt occurs.

14. RAM 183

Keyboard Buffer

The keyboard buffer is a 32-nibble block beginning at #704ECh. Each key
code is 2 nibbles long, so this buffer can hold 16 key codes. The buffer
contains only key presses that have not yetbeen processed. Two pointers
are used to keep track of the buffer contents:

- KeyStart indicates the position number of the first button pressed.
« KeyEnd indicates the first free position number (where the next key
code will be stored).

The yet-to-be-processed key codes are therefore contained in nibbles
#704E2h+2*KeyStart to #704EC+2*KeyEnd. This is a circular buffer
similar to the RS-232C buffer:

Processing drectian

et crwauan-’

(In this diagram, KeyStart equals 4 and KeyEnd equals 8)

184 Parr Twor Macuive Lancuace

A B C L E F
01 02 03 04 05 06
MTH FEG |C5T VAR T FET
07 08 09 0A 0B oc
' STO || EVAL - + *
D OE oF 10 1 12
SIH cos TAM I i 1w
13 14 15 16 17 18

EHTER += EE=® DEL -
19 1A 1B 1C 1D
o v = =] =
80 1F 20 21 22
“ 4 S & H
40 24 25 26 27
o 1 2 g -
co 29 2A 2B 2C
M z} . SPC +
2D 2E 2F 30 31

14. RAM

Key codes stored in the keyboard buffer

185

#704D6h
#704DBh
#704DCh
#704DDh
#704EAh
#704EBh
#704ECh
#7050Ch
#7050Eh
#70513h
#70516h
#7051Bh
#7051Dh
#70551h
#70556h
#7055Bh
#70560h
#70565h
#7056Ah
#7056Fh
#70574h
#70579h

186

Machine speed

Disable keyboard

Key state

KeyStart Keyboard
KeyEnd buffer
Key codes

Screen bitmap addr. (#00120h)

Right margin (#00125h)

Menu bitmap address (#00130h)

Menu_height (#00128h)

of menu GROB

of stack GROB

QIO

of current GROB

of PICT GROB

®

of PICT GROB ?

®

Beginning @ of temporary objects

Ending @ of temporary objects

Beginning @ of free mem. (B)

Ending @ of free memory (D1)

Parr Twor Macuive Lancuace

5 nibbles
1 nibble
1 nibble
13 nibbles
1 nibble
1 nibbles
32 nibbles
2 nibbles
5 nibbles
3 nibbles
5 nibbles
2 nibbles
52 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles

5 nibbles

Backups

In Chapter 13 we saw that several blocks of ROM were used to define the
HP 48’s display (left margin, right margin, menu height, etc.), but some of
these could not be read. For this reason, they have been stored in the
reserved RAM area.

The address of the screen bitmap is stored at #7050Eh (#00120h).
The right margin is stored at #70513h (#00125h).
The address of the menu bitmap is stored at #70516h (#00130h).

The separation height between the main screen section and the
menu bar is stored at #7051Bh (#00128h).

These parameters are always stored in two locations (reserved RAM, and
1/O RAM) by the HP 48 screen management routines.

Graphics Object Addresses

The following 5 addresses point to different graphics objects used by the
machine:

#70551h stores the address of the menu bar GROB.

#70556h stores the address of the stack GROB.

#7055Bh stores the address of the current GROB (stack or PICT).
#70560h stores the address of the PICT GROB.

#70565h also stores the address of the PICT GROB.

These objects are all stored in the temporary object memory area.

14. RAM 187

Temporary Objects

#7056Ah and #7056Fh are beginning and ending addresses that define
amemory area used for storing temporary objects. This areais for objects
that won't last long or that change frequently, such as stack objects, inter-
mediate results used by the machine, display preparation, etc. Each of
these objects is stored with the following format:

Flag (garbage collector) 1 nibble
Object I, - 8 nibbles
Object length | 5 nibbles

As you use the machine, these objects accumulate in the temporary object
memeory area. Itis necessary to do a clean-up from time to time to purge
the temporary objects that are no longer being used. This clean up
procedure (which is called each time the command MEM is executed) is
done by a program called the “garbage collector.” This program can be
called with a GOSENL to address #0613Eh.

During this operation, the machine marks (in the flag area of the structure
shown above) each of the temporary objects that are still being used. After
having checked each object, the HP 48 purges the objects that are not
marked. The temporary memory area has the following structure:

(#7056Ah) [00000 5 nibbles
Flag 1 nibble
Object
Length 5 nibbles
Flag 1 nibble
Object
Length 5 nibbles
(#7056Fh)

188 Parr Twor Macuive Lancuace

Return Stack

The ending address of the temporary object memory area is also the
beginning address of the return stack. If a program is called within a pro-
gram, this stack stores the return address to the original program. An
address is placed on the stack when the program prolog is encountered
(#02D9Dh), and an address is taken from the stack when an epilog is
encountered (#031B2h), which indicates the end of a program.

Register B points to the end of this memory area (which is generally
backed up at #70574h). Here is a representation of the return stack:

(#7056Fh) | Return address 1 | 5 nibbles
| Return address 2 | 5 nibbles
\ Return address n \ 5 nibbles
(B)

Inthis list, address 1 is the oldest. RegisterB points to the end of this stack,
which is the beginning of free memory. Since the routine SAYE_REG
(#0679Bh) saves B at #70574h, the value of B is often found there.

Free Memory

The free memory is the area between the address contained in B (end of
return stack) and the address contained inD1 (which points to the first level
of the stack). The size of the free memory is stored in register D (field A)
as the number of 5-nibble “blocks” that are free. For example, if field Aof
D was #00100h, this would indicate that the amount of free memory is
between #00500h and #00504h nibbles.

The “blocks” are 5 nibbles because the return stack and the user stack
also use blocks of 5 nibbles each. This makes it easy to know if there is
enough free memory to extend one of these stacks, (which is a frequent
operation): all the machine has to do is check to see that field Aof D is
non-zero.

14. RAM 189

The User Stack

Just asB is backed up in #70574h, register D1, the stack pointer, is backed
up in #70579h. The HP 48 stack may contain any object. Internally, the
stack contains only addresses that pointto objects, because addresses all
have the same size: 5 nibbles. Register D1 points to the first level of the
stack. The stack ends at the location pointed to by #7057Eh:

(D1) | Address of object in level 1

| 5 nibbles

| Address of object in level 2

| 5 nibbles

Address of the last object

| 5 nibbles

00000

5 nibbles

(#7057Eh)

To find the address of an object in level 7, simply take the value of D1, add
(n-1)*5, and read the 5 nibbles at that address. The following assembly

program duplicates the SHAF function:

A=CATL1 H * Address of object 1
Di=01+ 5 * Now pointing to level 2
C=CLATL1 A * Address of object 2
DAT1=A H * Write address of object 1
Ci=01i- 3 * Now pointing to level 1
DATI=C A -

Write address of object 2

Caution: This program does not check the size of the stack.

190

Parr Twor Macuive Lancuace

The Command Line

The command line begins at the address stored in #7057Eh and ends at
the address stored in #70583h. This memory area contains the command
line that is currently being edited

The command line consists of ASCII character codes terminated by the
null character, which serves as an end of line delimiter. This explains why
you can't edit strings containing the null character. The command line is
always at least 23 characters in length, plus the null character. Nonexist-
ent characters are replaced by “nulls.”

(#7057Eh) Character 1 \ 2 nibbles
Character 2 \ 2 nibbles

Charactern (nz23) | 2 nibbles
00 | 2 nibbles

(#70583h)

The Undo Stack

A copy of the stack contents (the Undo stack) and local variables are
stored in the same memory area. This area is divided into blocks:

(#70583h) | Block 1 |
| Block 2 |

Last block (undo) |
00000 | 5 nibbles

(#70588h)

14. RAM 191

The last block is the copy of the stack contents (UNDO); the others are
local variables and their contents—from most recent to oldest. Each of

these blocks is divided into several fields:

@ Total length L

5 nibbles

Block identifier

5 nibbles

Address of the first local name

5 nibbles

Address of the first contents

5 nibbles

Address of the last local name

| 5 nibbles

Address of the last contents

| 5 nibbles

@+L

For local variables, the block identifier is #00000h. A local name address
points to an object of the form ' local name ' . The address of the contents
points to the object stored in the local variable of the name preceding it.

Forthe undo stack, the structure is similar. The block identifier is #00001h
if there are no local variables; #00002h otherwise. To remain consistent
with the local variable block structures, we find pointers to local names in
the undo stack block structure—all pointing tothe same address, #61D3Ah,
which is an address (in ROM) of the empty local name (").

@ Total length L 5 nibbles
Block identifier 5 nibbles

° 5 nibbles

Number of elements on the stack 5 nibbles

Address of ” (#61D3Ah) 5 nibbles

Address of the object in level 1 | 5 nibbles

Address of " (#61D3Ah) | 5 nibbles

Address of the object in level n 5 nibbles

@+L

The other fields contain the addresses of the objects in the undo stack and

the depth of the stack.

192 Parr Twor Macuive Lancuace

Temporary Environment

The temporary environment is used for managing the menus. This mem-
ory area contains the necessary addresses for displaying the menu labels
and for executing the associated routines.

The display addresses help the HP 48 determine the text to be displayed
in the menu label, as well as the text to place in the command line in PRG
or ALG modes. The execution addresses are used to find the address of
the program associated with a menu item. If a menu label has no assoc-
iated function, its name is the empty name (address #055DFh) and the
execution address is #3FDD1h, which is a proegram that makes a "beep.”

It seems that a block has been reserved for a seventh menu item. This
could be for future use, or, perhaps when these structures were first made,
the menu size was not completely decided.

(#7058Dh)
(#7058Dh)+3h
(#7058Dh)+8h
(#7058Dh)+Dh
(#7058Dh)+12h
(#7058Dh)+17h
(#7058Dh)+1Ch
(#7058Dh)+21h
(#7058Dh)+26h
(#7058Dh)+2Bh
(#7058Dh)+30n
(#7058Dh)+35h
(#7058Dh)+3Ah
(#7058Dh)+3Fh
(#7058Dh)+44h
(#7058Dh)+49h

14. RAM

#07Ch

Address of menu label 1

Address of menu label 2

Address of menu label 3

Address of menu label 4

Address of menu label 5

Address of menu label 6

Address of menu label 7 (reserved)

Execution address 1

Execution address 2

Execution address 3

Execution address 4

Execution address 5

Execution address 6

Execution address 7 (reserved)

3 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles

193

Home Directory

At#70592h is a pointer to a directory object containing the home directory.
This directory is entered after a system halt, or the execution of the com-
mandHOME . This objectis described in detailinChapter 11. Thisaddress
is stored again at #705A1h.

Current Directory

The address of the current directory, which is also a directory object, is
stored at #7059Ch.

BackupArea

The HP 48 is capable of making backups, either for a plug-in card (for the
HP 488X) or for the built-in RAM (in port 0).

The backup area is organized in the same manner regardless of the port
used. In the case of the built-in RAM, (or that of the built-in RAM merged
with a plug-in card for the HP 48SX), we find the address of the beginning
of this area at #70597h. This memory area consists of a list of backup
objects (see Chapter 11).

Backup object 1 |
Backup object 2 |

Last backup object |
00000 | 5 nibbles

194 Parr Twor Macuive Lancuace

#705A6h
#705ABh
#705B0h
#705B5h
#705BAN
#705BFh
#705C4h
#705C9on
#705CEh
#705D3h
#705D8h
#705DDh
#705E2h
#705E7h
#705ECh
#705F1h
#705F6h
#705FBh
#70600h
#70605h
#7061Eh
#70623h
#70628h
#70637h
#7063Ch
#70641h
#70646h
#7064Bh
#7065Fh
#70664h
#7066%h
#7066Eh

14. RAM

@ of user key assignments
@ of alarm list
Pointer to next object to be evaluated
Backup area
LAST object 1
LAST object 2 LAST
LAST object 3
LAST object 4 Stack \
LAST object 5
Large binary (table for internal use?)
00000
Command 1
Command 2
Command 3
Command 4

Stack of the
four most recent
command lines

@ of last error message

Current menu
Last menu

Unshifted menu key routine
Left-shiited menu key routine
Righi-shifted menu key routine
Review key

_Last RPL token

@ of the End of RAM
Free memory (5 njbble bIocI‘(s) (D)

5 nibbles

5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
25 nibbles
5 nibbles
5 nibbles
15 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles
20 nibbles
5 nibbles
5 nibbles
5 nibbles
5 nibbles

195

User Keys and Alarms

At#705A6h and #705ABh are the addresses of the user key assignments
and the alarm list, respectively. The two tables found at these addresses
are actually variables like any other user-created variables, except they
are stored in a hidden directory.

It is actually possible to “hide” objects stored in the user directory. The
principle is simple: If, during a clean-up of the current directory (done peri-
odically to determine the names of the objects in this directory), the mach-
ine comes across an object with the empty name (* "), it stops its search.
Tohide an object, you could either give itthename ' ' (whichiswhatthe HP
48 does for the directory that contains the user key assignments and alarm
list), or you could store it after an object with the empty name. In this case,
the object is executable but its name doesn't appear in a menu label.

The HP 48's hidden directory contains the following objects:

« 'Alarms' contains the alarm list;

- 'Userkeus' contains the definition list for user-key assign-
ments;

« '"Uzerkeus.CRC' contains the checksum for lserkKeus=
(calculat-ed via Userkea=s BYTES DROF).

To access this hidden directory, simply go to the home directory and type
#13721h SYSEYAL. You then find yourself in the hidden directory
(the SY'SEWAL simply evaluates the empty name, ' *).

Access to different hidden objects is also possible, but be advised never

to purge or even modify them, lest you experience Memorg Lost .
To re-turn to the home directory, just type HOME

196 Parr Twor Macuive Lancuace

Next Object to be Executed

#705B0h serves as a backup for the register D0 and therefore points to the
next object to be executed.

LAST Stack

The LAST stack is alist of five addresses that point to objects being temp-
orarily saved (so the maximum number of objects saved byLAST ARGis
5 even though only three parameters will usually be saved). If fewer than
5 objects are being saved, the other addresses are set to #00000h.

Address of aLarge Binary Integer

At #705D3h is the address of a large binary integer (184 digits). It is
probably a table used internally by the HP 48. This object is stored in the
temporary environment. Since it is the first temporary object created by
the HP 48, it is always the first object found in this part of RAM.

Command Line Stack

The command line stackis based on the same principle as the LAST stack.
It consists of four addresses pointing to character strings that contain the
last four command lines. The address of the most recent command line
is contained in #705DDh; the oldest is in #705ECh.

Address of Last Error Message
At #70600h is the address of a character string which contains the last er-

rormessage, ifitwas an error defined by the user (via"” message™ DIOERR).
Otherwise, this address is set to #00000h

14. RAM 197

Menus

At #7061Eh and #70623h are the addresses of the current menu, and the
lastmenu, respectively. The menu offsets are stored at#707C9h (current
menu) and #707CEh (last menu). The menus, or the objects pointed to by
these addresses, are lists. The content of these lists is identical to that of
the custom menu (CST) defined by the user (see Chapter 5).

An element of these menu lists may be one of the following:

- Aname The name is placed in the menu label and is considered to
be the name of an executable object. Just like in the VAR menu, if
you press the menu button itself, then the object of that name is
executed. If you first press the left shift, then the object in level one
of the stack is stored under the menu name. Ifyou first press the right
shift, then the contents of the object are recalled to the stack.

- A character string. The contents of the string serve as a name to be
placed in the menu label, and if the button is pressed, then the
contents of the string are added to the command line.

« A 21x8 GROB: This GROB will be used for the menu label.

- Alist

- The first element of the list will be used as the menu label. If
this element is a program object (prolog D9D20) that first
contains the address #40788h, this object will be executed,
and its result will be used as a menulabel (string, GROB, etc.).
Any program object beginning with*SLZB28 7 B4 willbe exe-
cuted. Four addresses are particularly useful:
#3A328h takes a string from the stack and returns the corre-
sponding graphics object as it would appear in the menu label.
#3A3ECh takes a string from the stack and returns a subdirec-
tory label GROB.
#3A44Eh takes a string from the stack and returns an inverse
menu label GROB (like in the SOLVR menu).
#3A38Ah takes a string and returns a menu label GROB such
as in the MODES menu (with a white box beside the name)

198 Parr Twor Macuive Lancuace

Note that since these particular program objects are ex-
ecuted when the menu label is displayed, you can use this
concept in the CST menu to display special messages
immediately after entering the menu (just like the TIME
menu, for example).

The second element of the list determines the action taken
when the menu button is pressed. It can also be a list whose
first element corresponds to the action taken when the menu
button is pressed by itself, the second element is if the left shift
was pressed first (1), and the third element is if the right shift
was pressed first ().

Menu Address No. Menu Address
LastMenu 30 SOLVE.SOLVR #15200h
CcsT #3B23%h 31 PLOT #3BEB8h
VAR #3F6D8h | 32 PLOT.TYPE #3C03%h
MTH #3B284h 33 PLOTPLOTR #3COAFh
MTH.PARTS #3B36Ch 34 ALGEBRA #3C483h
MTHPROB #3B3E4h |35 TIME #3C4C9h
MTHHYP #3B420h 3% TIMEADJST #3C671h
MTH.MATR #3B452h 37 TIME.SET #3C79Ch
MTH.VECTR #3B48%h 38 TIME.ALRM #3C8D5h
MTH.BASE #3B4CAh | 39 TIME2 #3C9Bsh
PRG #3B542h 40 STAT #3CAATh
PRG.STK #3B622h 41 STAT.MODL #3CD96h
PRG.OBJ #3B67Fh 42 UNITS #3CE65h
PRG.DSPL #3B6F7h 43 UNITSLENG #3D08Ch
PRG.CTRL #3B7E2h 44 UNITS.AREA #3D1F3h
PRG.BRCH #3B8B4h 45 UNITS.VOL #3D2D6h
PRG.TEST #3B90Eh | 46 UNITS.TIME #3D451h
PRINT #3B972h 47 UNITS.SPEED #3D4BAh
110 #3B9A4h 48 UNITS.MASS #3D553h
I/O.SETUP #3BA03h 49 UNITS.FORCE #3D642h
MODES #3BB46h | 50 UNITS.ENRG #3D6B5h
MODES2 #3BC8Dh | 51 UNITS.POWR #3D764h
MEMORY #3BCET7h 52 UNITS.PRESS #3D797h
MEMORY2 #3BD46h 53 UNITS.TEMP #3D838h
LIBRARY #3F376h 54 UNITS.ELEC #3D887h
PORTO #3BD82h 55 UNITS.ANGL #3D93Ah
PORT1 #3BDAAh | 56 UNITS.LIGHT #3D9B3h
PORT2 #3BDD2h | 57 UNITS.RAD #3DA42h
EDIT #3BDFAh | 58 UNITS.VISC #3DABFh
SOLVE #3BE22h 59 UNITS2 #3DAF2h

199

Last RPL Token

At #7065Fh is the address of the object that caused the command line to
be executed. If the LEMTEREJ key caused the execution, then the
address corresponds to an empty program object. If a VAR menu button
was pressed to cause the execution, then the address of the name of the
object to be executed will be stored here.

The End of RAM

The address of the end of RAM is stored at #7066%h. The HP 48SX RAM
can be extended by adding one or more plug-in RAM cards. As each card
is added, the memory is reconfigured such that the user memory forms
one contiguous block. The programRAMEEARCH in the Library of Pro-
grams uses this address to determine the memory area to search.

Free Memory

The five nibbles at #7066Eh are used to backup register D, which contains
an approximation of the free memory. The value given is the number of 5-
nibble blocks that are available. The routine at #069F 7h recalculates this
value using the addresses stored in #70579h and #70574h (see the earlier
descriptions of these two addresses for more information).

200 Parr Twor Macuive Lancuace

#70673h
#70678h
#70679h
#7067Eh
#7069Fh
#706A4h
#706B4h
#706C3n
#706C5h
#706D5h
#706E5h
#706FFh
#70704h
#70713h
#70718h
#7071Dh
#70722h
#70727h
#7073Bh
#707C%h
#707CEh
#707D3h
#707D%h
#707DCh
#707DFh

Next error to display 5 nibbles
1 nibble
ATTN flag 5 nibbles
33 nibbles
Stack size 5 nibbles
Random number seed 16 nibbles
15 nibbles
Annunciators 2 nibbles
System Flags 16 nibbles
User g 16 nibbles
26 nibbles
Error number 5 nibbles
15 nibbles
Prolog 5 nibbles
Length . ‘iROB 5 nibbles
Height (6) ofe ac;a“er 5 nibbles
Width (10) unaer 5 nibbles
Pixels the cursor 20 nibbles
142 nibbles
Current menu offset 5 nibbles
Last menu offset 5 nibbles
6 nibbles
Number of attached libraries 3 nibbles
Numper First library info. 3 rﬂbbles
@ of info. i . 5 nibbles
: Last library info. 3 nibbles
@ ofinfo. | 5 nibbles

Next Error to Display

#70673h is used to store the number of the next error message to be
displayed. When the calculator returns to interactive mode, this address
is checked to see if a message is waiting. If so, then the error displayed.

14. RAM

201

Attn Flag

The five nibbles at #70675h are set to 0 if the [IJH I key has not been
pressed. Otherwise, they contain the number of times that the key was
pressed. These five nibbles are used by machine language programs
(such as BEEP) to know if they must stop execution.

Stack Size

At #7069Fh is the stack size, measured in nibbles. The stack always
contains atleast 5 zero nibbles, sothe stack size is equal to5*(DEPTH+1).

Random Number Seed

At #708A4h is a random number seed used by the RAME: function. This
seed is a “real” object minus the prolog. F'Z is a function that can change
the value of the seed.

Annunciators
The two nibbles at #706C3h contain the current state of the HP 48's an-

nunciators. If a bit is set, then the corresponding annunciator is showing:

Flags

These flags are stored in #706C5h and #706E4h, as shown opposite.

202 Parr Twor Macuive Lancuace

System Flags (-1 to -64):

Bit3 Bit 2 Bit 1 Bit O
#706C5h -4 -3 -2 -1
#706C6h -8 -7 -6 -5
#706C7h -12 -11 -10 -9
#706C8h -16 -15 -14 -13
#706C9h -20 -19 -18 -17
#706CAh -24 -23 -22 -21
#706CBh -28 -27 -26 -25
#706CCh -32 -31 -30 -29
#706CDh -36 -35 -34 -33
#706CEh -40 -39 -38 -37
#706CFh -44 -43 -42 -41
#706D0N -48 -47 -48 -45
#706D1h -52 -51 -50 -49
#706D2h -56 -55 -54 -53
#706D3h -60 -59 -58 -57
#706D4h -64 -63 -62 -61

User Flags (1 to 64):

Bit 3 Bit 2 Bit 1 Bit 0
#706D5h 4 3 2 1
#706D6h 8 7 6 5
#706D7h 12 11 10 9
#706D8h 16 15 14 13
#706D9h 20 19 18 17
#706DAh 24 23 22 21
#706DBh 28 27 26 25
#706DCh 32 31 30 29
#706DDh 36 35 34 33
#706DEh 40 39 38 37
#706DFh 44 43 42 41
#706ECh 48 47 46 45
#706E1h 52 51 50 49
#706E2h 56 55 54 53
#706E3h 60 59 58 57
#706E4h 64 63 62 61

14. RAM

203

Error Number

#T7T06FFh stores the number of the last error that occumred. This number
is set to #00000h if no error is saved; it is set to #70000h if the emor
message was one defined by the user. A listof all error messages and their
numbers is given in the appendix.

GROB of the Character Under the Cursor

Starting at #707 13 is a graphics object that is used to remember the char-
acter undermeath the cursor during edit mode.

Menu Offsets

These two sets of 5 nibbles each at #707C9h and #707CEh contain the
offsets for the menu display (that is, the number of the first menu label to
display). For more information, see the explanation of the addresses
HT061Eh and #70623 on page 198.

Number of Attached Libraries

The 3 nibbles at #70702h contain the number of attached libraries. Each
ofthese libraries is described by its number, followed by the address where
the library information is stored.

If the information is found in hidden ROM, then the address points to a
system binary {located in accessible memory) that contains the address
in hidden ROM. in every case, the address that points to the library's
declaration is found immediately after the name, at @-+n,*2+Eh (using the
zame notation as that in Chapter 11, page 143).

204 Panr Twa: Macsss Lasamar

This library beginning contains all the necessary information for retriev-
ing the contents of the library (messages, commands, etc.). In particular,
it makes it easy to find the error messages, knowing that the number of
such a message has two parts: the library number in which it is stored (3
nib-bles), and its order number in the message table (2 nibbles — a library
can therefore have a maximum of 256 messages). The message number
is

Library number*256+order number

Using only an error number, we can easily determine the corresponding
library number. The list of attached libraries can then be used to find the
message table starting address which contains the error text.

It is possible to modify this information table, and then completely rewrite
the HP 48'’s error messages. This could be very useful for translating all
the error messages to another language, for example.

Conclusion

The reserved memory area normally ends at #70844h, but it can be
extended, if necessary. For example, some ROM cards, like the HP solver
card, reserve some extra memory (for new libraries, among other things).

This description of RAM is not complete, but it contains the majority of

useful items necessary for the machine language programmer who
wishes to create programs that need access to the HP 48’s resources.

14. RAM 205

206

15. Programming in Machine
Language

Parr Twor Macuive Lancuace

In the preceding chapters, we have studied the internal functionality of
the HP 48. We will now use this knowledge to access all the machine’s
re-sources, particularly for programming in machine language. The HP
48 can handle only objects, so we will use the Code object (see Chapter
11) to contain a machine language program.

The problem is in creating this object. Using a more general approach, we
will see how to create any type of object. We have seen that any objectcan
be represented by a series of hexadecimal digits. We will write a func-tion
to transform a sequence of hexadecimal digits into the corresponding
object. The userwill simply enter a string of characters containing the dig-
its to be transformed into a corresponding series of nibbles.

In a string, characters are stored using their ASCII code. For example, the
hexadecimal digit A is 10 in decimal, and is stored as #41hin ASCII. There
is a simple object that consists of hexadecimal digits when edited but is
stored as nibbles in memory. This objectis the GROB, or graphics object.
The transformation from hex digits to nibbles will be done using this object.

The GROB has the following structure:

Prolog (02B1E) 5 nibbles
@ g
@+5h Total length excluding prolog | 5 nibbles
@+Ah Number n, of lines (in pixels) 5 nibbles
@+Fh Number n_of columns (in pixels 5 nibbles
@+14h Columns 1to 8 Pixels in 1+1 nibbles
Last pixels hn? ! | 1+1 nibbles
. \ !
Columns 1to 8 Pixelsin | 1#1nibbles
line n i
Last pixels ! | 141 nibbles

@+ +5h

We can see that the HP 48 uses blocks of 8 columns. We will therefore
create a graphics object with 8 columns and the number of lines will be
equal to the number of hexadecimal digits (of our code) divided by 2 (8

pixels take up 2 nibbles, therefore 2 hexadecimal digits). If the number
of hexadecimal digits is odd, we will round it up after the division. In this
manner, the memory occupied by the GROB (excluding the prolog,
length, and size information) will be, at the most, the number of hexadeci-
mal digits, plus one (in nibbles). This coding can be done with this
sequence:

"GROE & " OWER SIZE 2 » CEIL + " " + SWAP + OBJ+

This prepares the graphics object in a string in the following manner:
= The beginning of the GROB is placed in a string (‘GROB 8 *);

» We calculate the number of lines in the GROB with OVER SIZE 2/
CEIL and we add it to the first part of the GROB;

« Next, we add the list of hexadecimal digits (separating it from the rest
with the addition of “ “) by ““ + SWAP +;

« And, finally, we transform the string of characters into a graphics
object by the command OB+,

We can simplify this program slightly by removing the CEIL command
(which is done automatically when the string is transformed via OEJ).
We now have "GROE = " OVER SIZE 2 ~ + " " + SWAFP
+ OE.J* This places a graphics object on the stack for the object that we
want to create. Now, in memory is the following structure:

@ Prolog (02B1E) 5 nibbles
@+5h Total length excluding prolog |, 5 nibbles
@+Ah Number n, of lines (in pixels) 5 nibbles
@+Fh Number n_ of columns (in pixels) 5 nibbles
@+14h QObiject to be created |-15 nibbles
@+ +5h

We know that only addresses are stored on the stack. To access the object
we want to create, we need only take the address, @, of the GROB on the
stack and replace it with @+14h. This removes the prolog, length,
number of columns, and number of lines. There is a SYSEVAL call that
will perform this function. The call to #056B6h takes a system binary as
an argument which contains the number of 5 nibble blocks to remove and

208 Parr Twor Macuive Lancuace

returns the new object as well as an “external” which is not useful here.
We need to remove 4 blocks of 5 nibbles, so we need a system binary
equal to 4. Such an object is stored at #04017h. Therefore, the
transformation from GROB to object can be done by: #4E17h
SYWEEVAL #5E6Bsh SYSEWAL LROF The first SYSEVAL recalls
the system binary to the stack, and the second SYSEVAL performs the
transformation. The last thing to do is to recreate the object in such a way
that the pointer to it (on the stack) is really pointing to the object itself, and
not its contents. This is done easily with the NEWOB function which
recreates the object in level 1 of the stack, and modifies all necessary
pointers.

We now have the final version of the programGHE S (GraphicASSembiler):

GASS <# 10B3h2
"GROB 8 " OVER SIZE 2 ~ + " " + SHAP + OBJ+

#4817h SYSEVAL #ScBeh SYSEVAL DROFP NEMWOE
B

This program is quite fast; the transformation from hexadecimal digits to
nibbles is done by machine language routines found in ROM. However,
those routines also perform verifications and calculations that slow down
the process a little. A faster version of GASS, written entirely in machine
language, is given in the Library of Programs (called RASS).

Let's try this program to create a small object. (Note: To make this code
more readable, it is presented in blocks of 5 digits, but these spaces are
not part of the code. You must enter this code in a contiguous manner —
no spaces, no new lines). Here is the code listing for a small object:

CzZRZE BlAea FSS6C 6CEBZ 46FEE 65cBz2 12

To code this object, just enter the code as a character string (with no

spaces, no new lines):
"CE2AZBE1BBETSSECACEBE4EFEERSEREZ 12"

Then execute GASS. A couple of seconds later, the object is on the

stack. Now that you know how to create any object, you can see how to

create machine language programs. In writing such programs, you

should al-ways remember these important points:

15. Prog ingil i 209

« The contents of certain registers:

- DO is the pointer to the next object to be executed (after the
machine language program). To continue to the next object
after the machine language program has finished, do this:
F=DATE A DiE=DiEtS PC=(A2 (coded as1421 &4H3EET)

- D1is the stack pointer. If we executeA=CHAT1 A, field Aof
register A contains the address of the object in level 1. If we
increment D1 by 5([31 =01 +5) thenwe move to level 2 (atthis
point, the instructionA=CAT1 A will place the address of the
object in level 2 into A field A).

- B contains the address of the return stack end—not too useful.

- D contains the amount of free memory in number of 5 nibble

blocks (the same size as the stack levels).

Unless you intend to change them, these 4 registers must be
restored to their original values before ending the program via
142164 2E83C, Torestorethem, hereare 2 usefulroutines:
SAVE_REG, at address #0679Bh (called with a GOSBVL
#0679B) saves these registers in the reserved RAM.
LOAD_REG, at address #067D2h (called with a GOSBVL
#067D2) restores the register values previously saved.

- The structures of the objects: To take an object from the stack, you
must know its internal structure to handle it properly. Also, including
HP 48 objects in your program lets you profit from the RPL functions.

« The RAM structure: This is a mustif you ever need to access RAM.

You canalso call routines found in ROM (e.g SAYE _REG andL ORC_REG).
One of the best exercises in applying Part Two is to analyze the machine
lan-guage programs in the Library of Programs, or to disassemble
certain routines in ROM.

The next step is to write your own machine language programs. Start with
simple ideas. For example, to test the speed of machine language pro-
grams, you might compare the execution speeds of two programs, one in
machine language, one in RPL. This test could be two programs that sim-

plycountto1000(1 1EEE START HEXT).

210 Parr Twor Macuive Lancuace

Part Three:

Library of Programs

1

212

Notice

Part Turee: Lisrary o Procraus

This Library of Programs contains numerous utilities written in machine
language. In most cases they can be used without any specific knowledge,
except for the method used to enter them. To make the code more
readable, the machine language programs (which consist of hexadeci-
mal digits 0...9, A...F) are presented in groups of 5 digits separated by
spaces. For example, the program NOTHING (which does nothing)
would be presented in the form:

HOTHIMG (# B&FTH)
CCh2B FeEEE 14216 4368C

To type in this program you would do the following:

« Enter the code as a character string with no spaces and no new lines
(in this example, itwould be "CCOEZBFEEEE 142164863 C").

- After verifying that the checksum given in parenthesis is correct,
(this step is optional, but strongly recommended), execute the pro-
gram GASS (orEASS once you have entered it) on the string. GARSS
(or RASE) returns the desired object to the stack. In the case of a
machine language program, this is a “code” object, or a list of
instructions that the machine can understand. Note:

- To calculate the checksum, place the object on the stack and
execute BYTES. This returns the object’s checksum and
size.

- Use hexadecimal mode (execute HE ¥) to make the checksum
comparisons; all checksums are given in hexadecimal

- The checksum for a machine language program is given for
the character string before executing GRSS (or RRSE).

- The program ALLEYTES will rapidly calculate all the
checksums for a directory.

- The presence of libraries containing commands with the same
name as the programs used (or a similar name) may result in
a checksum that is incorrect, even if the program is correct.

« The stack may now contain an unfamiliar object (shown by the word
Code). This object must never be edited—doing so may destroy
it. Just store itinto a variable name (in this example: *HOTHIMG®
STO).

213

To assist you in checking for errors, we have included two programs:

- B%'S alters the character string to look like the form presented in this
book (groups of & digits, 8 groups per line).

« CLERHM cleans a character string by removing all characters other
than hexadecimal digits. CLERHM is written partially in machine
language for speed

One other note: Some programs contain the character” 1 *. This symbol
represents a carriage return, obtained by pressing the keys [»IL. 1.

To summarize: Before typing any machine language programs, you will
need to enter the two RPL programsGASE andE'Y'S. You should practice
entering an assembly program by entering HOTHIMG (which is quite
short, and thus less likely that you will make a mistake), then enter the
program CLERH.

At this point, you have the tools necessary to access all of your HP 48’s
resources that have been revealed in this book.

214 Part Turee: Lisrary o Procraus

GASS

GASE is a program used to create objects. It can create any object from
a listing of hexadecimal codes. GRSS is explained in detail in Chapter
15. It takes a character string containing a series of hexadecimal codes
from the stack, and returns the corresponding object.

GASS (# 1DBS3h)
&

"GROB 2 " OYER SIZE 2 « + " " + SHWAP +

OBJ+ #4B817h SYSEYAL #35cBeh SYSEVYAL DEOF NEWOE
k3

Note: Creating objects is an operation that you must perform with caution.
You must not transform just any list of codes, only lists which contain valid
objects. Therefore, you should carefully verify the character strings before
executing GASS.

215

ALLBYTES

The program ALLBYTES calculates the checksum for all objects con-
tained in the current directory. Itreturns a character string which contains
the names of each object followed by its checksum (in hexadecimal).

ALLEBYTES (# S2FFh)
%

YARS
+ N
L

HEX "1" 1 ¥ SIZE
Or =

V¥ ¥ GET SHAP OYER +STR 2 OWER SIZE 1 -

SUg i+ " " OYER SIZE

15 SUB + + SWAP BYTES DROP "7 + +
NEKXT

k2

(There are 13 spaces in the text string
in the eighth line of the above program.)

216 Part Turee: Lisrary o Procraus

BY5

E'Y'S is a small utility to change character strings into a more readable
form. This form is identical to that used in this book (groups of 5 digits,
8 groups per line).

E'Y'Z is very useful as you look through your code for errors detected by
the checksum. For example,

"CCLEGBFEEEE14216488B8C" BYS

returns "CCDzZB FoBBd 1421l 42820

EYS (# 74EAR)
&
"1" @ § SIZE 1 -

S w Y + DUF 4 + SUB + " " + 3

217

CLEAN

CLERH is the inverse function of B%"Z: It removes all characters from a
string that are not hexadecimal digits (0...9, A...F). It prepares a string for
the program GARS%, after using EY'S to check for errors.

This program is written partially in machine language, so it must be en-
tered according to the specifications given on pages 213-214.

Here is the commented assembly source listing for CLERRM:

L2bzE
B4ERZ
TEEAL
CChz2a
BooEa
SFB97ER
142
128
121
169
174
143

start

218

COMCS
COMCS
COMCS
COMCSD
COMES)
GOSEYL
A=DAT1
[E=A

Ci=R

LE=Ca+
Di=Ci+
A=DAT1
Ci=0Ci+
A=A-5
RASEE

E=A

ZE=8
GOYE!
A=CAT1
LCHEX
PRLC
GOYES
LCHEX
FRO=C
GOYES
LCHEX
PRLC
GOYES
LCHEX
FRAC

FROL_FRGH
STRIMG_SPC
ADD
PROL_COCE
(endr—Cstart)
SAYE_REG

A

=

DT DD

I

W = M — I
[l

Program object

+
Code object
Code length
Bckup regs.
A=size
DO=D1=address
object in level 1
D0=B/ackup Regs.
D1=contents addr.

B=# of characters
in the string

Done?

Yes --> end!

ASCII code for 0

Bad character
ASClI code for 9

Good character
ASCII code for A

Bad character
ASClII code for F

Part Turee: Lisrary o Procraus

=15 GOYES
2 148 LRTE=A
161 CE=0E+
3 171 Ci=0bi+
] E=E-1
EECF GOTO
/14 HEB A=E&
148 CATE=A
SF207FEE GOSBYL
142 A=CATE
164 LE=0E+
SEEC FC=CRA2
end
QC2A2 COMCS2
Q2CF1 COMCSY
C2Aze COMCE2
Taaaa COMCSD
[=15] COMC22
4BACT COMCSD
QC2A2 COMCSD
2EbA1 COMCS
CSact COMCS2
Bz2i38 COMCSD

CLERHM ¢ CESeh)

Lonza
11691
23251
DESCF
AZE7E

E4EB2
74143
939ER
FE&14
BEEEE

TEERL
17451
41311
2EFED
4EACL

1
E
2
2
A
1
E
E
LOARC_REG
A
5

REAL-1

OVER
FROL_STRING
HoBEE?

H#oG

FOS

REAL_1
MIHUS

SUE
EPILOG

CChEe asema
aF545 19Fab
43E21 13164
TEEL4 Zleds
SCZRZ 280AL

Bad character
Good char --> rewrite
Next

One less

Loop again

Mark the end
with char 00

Restore regs.

Return to RPL

CHRE @@

wan anan

SFBS7
SEA9S
SE&EE
BaCoc
Ccoect

cEB143
S14B2
14816
ZRZ92
EZizE

ize13
1839E
1171cC
CFiCZz

219

PEEK

FPEEE allows you to lock at the memory contents at a specific address.
Simply give it an address and the number of bytes to read, and it will retum
a character string with the hexadecimal code that was read. For example,
#8 #5 PEEK retumns the first 5 nibbles of the HP 48 ROM: “2369B".

FEEE does not offer access to the hidden ROM (ROM area at #70000h).
To access that area, use the program HEFEEE [Hidden EOM PEEK).

Here is the commented assembly source listing for PEEK:

Dsbze

ZFEF 1

SFEF1

CChze
start SREBG

SFE37EE

147

i34

13

S8FDYESA
132

147
134

169
146

D3
174
147

COMCS
COMCS
COMCS
COMCS
COMNCS»
GOSEVL
C=DATL
Dig=C

Da=Di+

A=DATE
LCHEX
<A
GOYES
=A
C=C+C

GOSEVL
ADBex
C=DATL

Da=Di+
C=DATS

B=C
D1=D1+
C=DATL

FREOL_FRGH Program object
DUFZ Verify the number
DREOFZ of arguments
FROL_CODE Code object
Cendr=C(=tart) Code fength
HSFI‘\LREG Backup regs.
18 DO=address of contents
of abject in stack level

1 (the PEEK length)
A Read # of mibbles to read
#TFFF@ Maximum size

18 Size correct
A Size too big—set fo max.
A MNumber of nibbles fo
reserve (2 per character)
#ESETD Resarve
A
D=address of object
in stack fevel 1
18
H Read the contenis [size
to peek)
A
5
A

Paar Twmes: Lueasr or Procras

11 8H%

DF

I3 8FZD7e8

174

E?

iis

145

142

164

s@sc
end Bz138

Dig=C

Dia=Dia+
C=DATE
Di=C
Dia=H
TB=@
GOYES
F=@
A=DAT1
LCHEX
A=A+C
LCHEX
FC>=A
GOYES
LCHEX
A=A+C
DARTE=AR
Da=Di+
D1=D1+
EB=E-1
GOTO
GOSEVL
D1=D1+
D=D+1
C=Ra@
DART1=C
R=DATB
Da=Dia+
PC=CR)
COMCSY

PEEK (# EDGZh)

D3DzZ8 ZRAEF1 IFEFL
21423 46FFF 7eBe4
46051 74147 13416
3AGAR3 1939E A9ES1
ed@lv4 EF118 14514

FHr—mM— 1
i L4
=

SRTE"

1
OAD_REG

MDD DAC~=IDeMmm

EFILOG

D0=address of object in
stack level 2

Read the contents

Done?
Yes —~> end

Read one nibble

“Transform

o ASCIl code
J0-5"1=48.,
15-F=70)

White into the sfring
Mext character
Mext nibbie

COne less

Loop

Resfore regs.
DROP

Result -> stack
Retum fo RPL

Program end

CCDzZ@ SAEBE SFE?T &8147 13416
BDeCe SFDTE S@132 14713 416391
9l461 35138 SASFZ REBLS BE3l1@
TBAEA 14816 1178C DelDF SFzZD7
21648 BBCEZ 138

2

FOKE is the inverse of FEEK.

POKE

It will write data to a specific address. As

arguments, it takes a binary integer (the address), in level 2, and a series
of hexadecimal digits (the data), in level 1.

CAUTION: Use this program carefully! You can corrupt memory and
disturb the normal functionality of the HP 48 with this program. However,
the programs in this book that use FOKE can be used with no danger.

Here is the commented assembly source listing for FOEE:

=Tl
Z2RAEF1
SFEF1
CChze
start 42880
SFE97FER
143
1z82

ie4
146

T
o
=
[

2l
=

e
Lt DR T
Al

oI

222

COMCS?
COMC S
COMCS)
COMGS
COMCS
GOSEVL
A=DAT1
ADEe:x

CE=Co+
C=CATE

GOYES
RA=DATE

PROL_FPRGHM
CLUFZ
LROPZ
PROL_COC E
Cend +

T

Tnoin

#OBEET

T

12

m

Program Object
Verify the number
of arguments
Code object
Code length
Backup regs.

DO=address of object in
stack level 1

C=length (5+2*number
of characters in string)

D1=address of object 2

(poke address)

D1=address of where to
poke

Done?
Yes -> end
Read a char

Part Turee: Lisrary o Procraus

2183 LCHEX
E&R A=A-C
2198 LCHEY
2ER FCr=R
= GOYES
3178 LCHEX
BER A=A-C

/2 1598 DATi=A
161 DE=0a-+

78 Ci=0i+
2420888 LCHEX
ELCF GOTO

13 SFZD7EE GOSBYL
179 C1=0i+
E? D=0+
E? C=0+1
142 A=GATE
164 CB=0a+
8BEC PC=C(A)

end B213@ COMLS)

POKE (# 14ASh)

DIb26 ZABF1 3FEFL
41461 64051 74142
214A3 18366 AS126
pEEEE DLFSF 20768

26 ;
E :ConvertASCII
53] :to Hexadecimal
B ;(48='0"->0
12 ;70="F'-> 15)
87 b
E ;
i Write to memory
2 Next char
1 Next nibble
#EBEE2
i Loop...
LOARC_REG Restore regs.
8 ;
A ;DROP2
A ;
A Return to RPL
=)
EFILOG Program end
CCDZa 48888 SFE9T 68143 15216
12117 21421 21245 BEEBE 18A91
SERSG 317EE 6R1S? @161l 7a3dz
1V2ET EVid4z2 16428 SCB21 28

223

HRPEEK

HRFEEE allows you to read the contents of the hidden ROM, which is
normally not accessible. In order to do this, HRFEEK must calculate its
own address (either in built-in RAM, or in a plug-in card), and then
displace the built-in RAM at #70000h to allow access to the hidden ROM
(#70000h to #7FFFFh). By calculating its own address, HEFEEE will be
able to tell whether or not it is affected by this memory displacement.

HEFEEE is generally the same as FEEE,, and the argument syntax is the
same. Forexample, the command#7EEEEeh #18h HRPEEE (peekat
16 nibbles starting at #70000h in the hidden ROM) will return the
character string” 21 892FFFELBZETS " .

CAUTION: You should not use HEFEEE. to peek at any memory location
except (#70000h - #7FFFFh) or you may get data that is invalid. This is
because of the built-in memory displacement that must take place.

One other note: As HRFEEE displaces the built-in RAM, the screen will
show a little “static” during the execution of the program. This is normal and

you need not worry about it.

Here is the commented assembly source for HEFEEE:

LShzE COM{SY PROL_PRGH Program object

ZAREF1 COMCSY DUPZ Verify the number

3FBF1 COMCSY DRORPZ of arguments

CCh2E COMCS) PROL_CODE Code object

start 4 186E COMESy (endr—istart? Code length

2FE%FVelE GOSEVL SRAVE_REG Backup regs.

147 C=CATI R

124 La=c DO=address of object in
stack level 1

189 CE=CE+ 18 DO=address of object
contents in stack level
1 (PEEK length)

142 A=CATE H Read number of nibbles
to be read

24BFFFY LCHEX #7FFFE Maximum size

224 Part Turee: Lisrary o Procraus

2BE 2C4R

48 GOYES
B C=A

1 Cé C=C+C
SFLVESE GOSBYL
i3z ACGe:x
147 C=0LAT1
124 bE=C
169 LE=C &+
146 C=CATE
iac R4=C
174 Di=Cl+
147 C=CAT1
124 biE=C

2

13

here

pads] P=
SFFEEZE GOSEYL

H

11 Size correct

A Size is too big—change
to maximum.

R No. of nibbles to reserve
(2 per character)

#ESETD Reserve

A

DO=address of object in
stack level 1

i8

A Read the contents (size
of peek)

=]

A

DO=address of object in

stack level 2

ig

A Read the contents

15 No keyb. int.

A Done?

12

1g Yes --> end

A One less

A=mem. address of 'here'
#BBBGB 150+ Chere)
A where is HRPEEK ?

15 In a plug-in card
é14h—<here>

15
4

C=memoryaddress of 14’

C=address of 14' after dis-
placement of built-in
RAM to #F0000h

5]
#E2EEF Displace built-in RAM and

call routine found at
address in field A of C

225

&l6@ GOTO
11z RA=RZ
131 Di=A
RE@ A=@
15E@ A=DATL
1e1 Rl=A
aL RTH
2dqeaaay LCHEX
S84 UHCHFIG
2q@aaaF LCHEX
285 COMF I
2q@aane LCHEX
=l CONFIG
iiz
131 Di=A
REG A=a
15E@ A=DATL
1e1 Fl=A
400008 LCHEX
284 i
2348006F LCHEX
=] CONF I
3480087 LCHEX
2837 CONF I
f=lsic el THTOM
iil A=F.1
3183 LCHEX
HER A=A+C
3193 LCHEX
SER =R
98 GOYES
317va LCHEX
RERA A=A+C
11B =R3
134
148 DATE=A
161 D=0+
136 CDaex
16 R3=C
11H C=R2
ES C=C+1
18R Re=C
eE2F GOTO
a3F 5T=1
SF2D7eE GOSBYL

&

—m

H7oaHE

15
LOARD_REG

H
iRead one nibble
ifrom REZ2 and
sgave it in
iregister R1

-

Ll

ce Lhe FAM
B

=y
ES
o
=]

e e

Read one nibble

H
H
iReturn EAM
ito #70888h0
H
H

Interrupts OK

iConvert the
inibble read to
FASCII

Write

MNext!
Loop
Restore regs.

Paar Twmes: Lueasr or Procraws

174
E7

118
145
142

164
2RaC

end Bzliz@

COMCT2

HRFEEE (# 4285h)

bobza
21423
451@c
BCELG
42@aF
84248
[af s
eR219
&18REG
2128

ZAEF1
4BFFF
1741
Ccosgr
FEEZ2E
BEEFS
88434
I9ERD
8ZFES5

SFEF1
ToBe4

4 7ig41

21k432
-3 =10
BT248
aEaaF
G2ive
FaFzD

MDD Do

EFILOG

CCchza
BheCe
63146
4ECFF
12131
BEEeD
28554
AEAL
TEaly

i
s DROF

Resulting string on stack
Return to RPL

Program end

351aE
SFLVE

lBRiE 38

TSEEB
RE@1S
Boilz

aEaEEy o

Biz4l
4E7V11

51451

" EE147

14712
LCERE
BBBCE

248
BISBB
sE111
12elB
42164

13416
41691
SE620
ZFgac
BEars
16134
2183A
EilRE
SOECE

227

?ADR

This program finds the address of the object in level 1 of the stack. Here
is the commented assembly source listing of *RDF:

Dobza
E4A2E
RABBEE
BEEER
CEZA1
EEF 1
CChZ2a
start £28E8
147
iv4
E?
143
133
17e
145
131
142
164
SEEC
end EB2128

COMCS
COMCS
COMCS
COMCS
COMCS
COMCS2
COMCS
COMCSD
C=DAT1
Ci=0Ci+
L=0+1
A=CAT1
Ablex
Ci=Ci+
LAT1=C
Ci=A
A=DATE
LE=0a+
PC=CA
COMCS

TADE C# 26RERD
DO0ZE E4A2E ABEGH
14717 4EV14 31351

228

FROL_FRGH Program object
FROL_IMT Null binary integer where

#BEEGEA the address will be
HEEEEE

HEWOE Recreate binary integer
SWAF

FROL_COGE Code object
tendi—t=start) Code length

3] C=@ of object

] Remove object from
A stack

A

i@

A Write @

A Return to RPL

S

EFILOG Program end

gEeea CE2A1 DEBFL CCh2B czoea
72145 13114 21645 B3CEZ 158

Part Turee: Lisrary o Procraus

SSAG

This program returns the hexadecimal codes of the object in level 1 of the
stack. It performs the inverse of GRS% (thus, the name S5RG). SSAG
uses the programs FEEE and *ADE.

To determine the size of the object, SSRG uses the SYWSEWAL call
#1A1FC which is the same function as B TES, except it works with any
object given as an argument. WhenE*YTE is executed with alocal name
as an argument, for example, it returns the checksum and length of the
contents of this name. The object on the stack is first stored in a global
variable called ' OB.l. THF ' in order to assign it a fixed address.

Example: "123" SSAG wouldreturn" C2RZBEGEBEE 1222322 which
is the code for a string object containing 3 characters: " 1", "2" ,and" 2"
(ASCII codes #31h, #32h and #33h).

S5AG was written by Dominique Moisescu.

SSAG (% BTAFR)
&

OBJ.TMP STO 'OBJ.TMP' RCL DUP 7ACR SMAP
1ALIFCh SYSEVAL SWAFP DROP 2 % R+E FPEEK
'OBJ.THMP® PURGE

#

229

RASS

RASS is the same as GASS, only it is written completely in machine
language. Here is the commented assembly source listing for RRSS:

start

230

Lob2a
TEEF1
SLEF1

CCh2a
ERGEE
SFES7EE
147

137

189

174

142
2456886
2RZ

=T

COMCS)
COMCTD
COMCS2

COMCS
COMCS
GOSENVL
C=DAT1
Chlex
Ri=C
Li=0Ci+
A=0CAT1
LCHE®
ZC=R
GOYES
A=A-C
ASRE
R2=R
Di=0Ci+
CDlex

=6
GOSEYL
I

OMC
GU'“[:""'L

CATI=A

DE=A
A=R2
E=R
E=EB-1
C=R2
bi=C

FROL_FRGH

L:LUF

L:ROFP
FPROL_COGE
tendi-tstartl

SAYE_REG
A

EﬂBBBS

D=3 DN
o

A
2}

Program object
Verifythereis
;atleastone
;argument onstack
Code object
Code length
Backup regs.

D1=string address

A=string length

Empty string?
Yes --> end

Number of codes

Reserve memory
Ok!

Garba ge collector

Object reserved on
the stack

Part Turee: Lisrary o Procraus

13 14B A=CAT1
21682 LCHE?
B&R A=A-C
2198 LCHE?
2ER ?Cx=A
2B GOYES
2178 LCHEX
EBER A=A-C
14 158@ DATE=A
6@ DE=0E+
171 C1=C1+
CC E=E-1
590 GONC
65 2F20b7ed GOSEVL
142 A=CATE
164 DE=05+
s@ac FC=0{A
end BzlzE COMCSD
RASS (% BSD3h2
Loz 72BF1 2DEFL
21741 43245 BBEES

AZFED
11308
S2@le

AEESE 1SFD2
ChiiR 13514
B17icC Doobe

=]
#2818
B
#e2

#a7

T e s 0

12
LOAL_REG
A

EPILOG

CCLZE PREGO
AZ5YE C1
26111 BSEBEF
ES183 BER31
F207Fe @id4z21

read one code

ASCII Code
» hexadecimal

an wan can an cas an can

S
S

One less
Continue if necessary
Restore regs.

Return to RPL

Program end

SFBIV eBl47 12716
82174 13718 ADGS4
11912 513221 41136
SEB2EA 28317 BBEGAL
£4282 CBz212 8

231

CHK

This program checks the number of objects on the stack, and their type.
It is not interesting by itself, but it is extremely useful for & programmer
who needs to check that the correct arguments were passzed to his
program.

CHE takes two binary integers from the stack. The first argument (stack
level 2) is the number of arguments—from 0 (meaning no arguments) to
8. The other argument is the type descripion. Each type is represented
by a two digit hexadecimal number, as shown in the table below. If the
arguments passed fo CHK are bad (i.e. number of arguments larger than
8. or an invalid type), vou'll get an ermor: Too Few Arguments orBad
Argument Yalue. Ifthe arguments are valid, nothing will happen; the
arguments will disappear. Examples: To verify that the stack contains...

+ a character string and another object of any type:
#2 #8980h CHK

+ two binary integers: #2h #8RGFRKh CHEK
+ eight objects of any type: #2h #8h CHEK
+ aglobal name and two real numbers: #3h #1ABZ62h CHEK

Prolog Object Type Code
Any Object oo
02911 System Binary o1
02833 Real Number 0z
02955 Long Real 03
02977 Complex Number 04
02990 Long Complex 05
0289BF Character 06
029E8 Array o7
02408 Linked Array o8
0282C String 09
0284E Binary Integer A
02474 List s
02A86 Directory oc
024B8 Algebraic Object ao
02ADA Unit Object 0E
02AFC Tagged Object oF
02B1E Graphic Object 10

232 Panr Twmes! Lumeasr or Procraws

Prolog Object Type
02B40 Library
02B62 Backup Object
02B88 Library Data
02BAA Reserved 1
02BCC Reserved 2
02BEE Reserved 3
02C10 Reserved 4
02D9D Program
02DCC Code

02E48 Global Name
02E6D Local Name
02E92 XLIB Name

Here is the commented assembly source listing for CHE

CCh2a
start 22186

SFEYVEE

AFE

2E8262

22RERE

TETE

SF207ER

ive

EF

E7

SFESTEE

ice

S40BaEE

B

147

124

162

1 =
1567

-
b O =] LI Q0 =]
C'TI-F:-_I'\.}‘-D 0 B

8

COMCS> PROL_CODE

Code object

COMCSY Cendr-cstart) Code length

GOSEVL SAVE_REG
=B 7]

LAHEX &2

C=g

%]
LCHE® H#EAGBA

GOSUE chik
GOSBYL LORC_REG
Ci=Ci+ 1@

D=0D+1 A

L=0C+1

A
GOSEVL SAVE_REG
i=pi- i@
LCHEX HOBEES
B=C
C=0AT1
Le=C
Ce=0a+
C=pATE
Li=C1+
A=CAT1
LiE=R
DE=0E+
A=DRTE
Li=01+
G
GOYES

oo
=

DN E e

m DL E e
L)

S
-
-

Backup regs.
;Firstverify:

;the arguments for
;CHK: two

;binary integers

Reétore regs.
;DROPthetwo
;binaryintegers

Backup regs.

Maximum arguments

C(W)=types

More than 8 args?
Yes --> error

233

err1

chk

SEac
24382686
CHerr
SF2L7YER
SLa2E5E
Ti9e

BEGEG
11328
33928
55928
Troz2e
L9228
FE22E
SE228
REAZE
CERZE
E4A2E8
47AZE
EORZE
SERZE
ACAZE
CFRZ2E
E1EZ28
B4E28
2EEZ2E
SEEZ2E
RAAEZE
CCE2E
EEEZE
B1CZE
Dobze
CCh2a
S4EZ2E8
DGEEE
29E2

chk2 b2

1

234

RFY
a7
ZA9
BE

GOSUE
GOSENL
A=DATE
LE=0E+
PC=(RA}
LCHE
A=C
GOSEVL
GOYLHG
Gosue

COMCS
COMCS)
COMCSD
COMCS
COMCSD
COMCS)
COMCS)
COMCS)
COMCSD
COMCS
COMGS
COMGCS)
COMCSD
COMCS

RTHYES

chik
LOAC_REG
H

=
#EEZE2
R

LOAC _REG
#ETEZD
chkz

FEGEEE
#E2911
#02232
#E2955
#OZDTV
#E2290
#OZ2EF
#E2IES

#EZESZ

Verify
Restore regs.
Return to RPL

Error: Bad Arg. Value

Restore regs.

Error

Finds starting address of
after prologue listing
Any object.

System binary

Real number

Long real

Complex number
Long complex
Character

Array

Linked array

String

Binary integer

List

Directory
Algebraic object
Unit object
Tagged object
Graphics object
Library

Backup object
Library data
Reserved 1
Reserved 2
Reserved 3
Reserved 4
Program

Code

Global name
Local name
XLIB name
Object number.

Types
C=starting address of list

Done?
Yes

Part Turee: Lisrary o Procraus

134 D=
503 RSTK=
3101 LCHEX
SE7T FhiC
&8 GOYES
&633F GOTO
12 9&B D=
ca GOYES
REF D=D-1
1e4 Dia=Da+
ed4FF GOTO
3 147 C=DAT1
SHRE FCH@
[alc) GOYES
2418208 LCHEX
EELF GOTO
4 137 CO1EX
143 RA=DAT1
135 D1=C
146 C=DATB
SAA FC=0
zl GOYES
SRZ FR=C
Da GOYES
2428208 LCHEX
EDFE GOTOD
Is CD E=EB-1
BF7 DSR
BF7 DSR
174 D1=D1+

6E9F GOTO

end

CHE ?; FD?CI‘E
CCDze 29108 SFEST

Fa2D7e
21367
ld4zie
@aiis
ZaC2F
ZB84E
ZaccD
1D1SE
GEeEl
DEFFE

Bi79E TEFSF
17414 31381
45080 343602
28359 28059
2EE4R 2047A
ZEZEE 2088B
ZE684E Z0DEE
TEDED SFIEE
F1371 43135
F7174 e89F

EERFE
E37ca
£3102
BEDAS
28773
28697
ZBAAE
ZB29E
CHREF
1468R

Segze
iCo24
7i74s
FZD7e
280932
ZBSEA
ZBCCE
Z80sA
16464
AZ18A

Backup
Type OK?
No ==> ermor

Geta
sprolog

End of stack === error
{Too Few Arguments)

A=object profogue

Any object?

Yes > 0K

Frologue OK?

Yeg —> 15 .

Obj. projoguesrequired
—=>"Bad Argument Type"”
One less

Next fype

Next abject
Loop

ZAFZ3 SRBRE 72708
Sopan DS147 13416
BE717 S285F ZDTe@
@eh3z a5a71 Sea0o
ZEFE? ZBSES ZERG0A
26ADA ZBCFA ZEELE
ZEEEB ZBB1C 2@Dp9D
Fra7s A28l 24063
FF147 SREDE 24162
2De34 28288 eDFEC

REVERSE

The Saturn microprocessor writes all data to memory in reverse; you
mustreverse it to get the proper order. REYERSE reverses the characters
in a string—which helpful for interpreting the data read by FEEEK.

4

Example: "128"

REVERSE returns™ 221",

Here is the commented assembly source listing for EEYERSE:

DebzE
FLS56
TEERL
CCh2a
start 26888
SFE97EE
143
131
174
137
135
143
2
124
174

i81

S18Fa4
2R
52

1 14B
14E

-

[-
LOURENR TR it B S)
Fa s Qe e 00 03

236

COMCS
COMCS
COMCS
COMCS
COMCS
GOSENVL
A=CAT1
LCi=A
Di=0Ci+
Chilesx
Li=C
A=CAT1
C=C+R
LE=C
Di=0Ci+

LE=0E—

FROL_FRGH Program object
#ES50F Empty string

FROL_COGE Code object
tendi—C=tart > Code length
SAVE_REG Backup regs.

A
D1=string address

5

3] A=string length

A

b D1=address of first
character

Z DO=address of last
character

H

] Empty string?

12 Yes --> end

E ;

B Switch two

E ;characters

E ;

2

2

Part Turee: Lisrary o Procraus

SERA ?Cr=R A
FO GOYES 11
/2 8F207el@ GOSBYL LORD_REG
14z A=CATE A
164 Le=0E+ 3
28sC FC=(A2
end BZ13B COM{S> EPILOG

REVYERSE (% ARTDH
bob2E FLSSE 7eBARL
41371 35148 CZisg
bi481l 71181 13312
oEaCE 2138

CCLZ@ 25B8EE
iv4is 1218F
112361 348BR

Again?
Restore regs.
Return to RPL

Program end

12117
i4E14
42164

cE1432
SZi4B
Lre@El

8FBI7
242R%2
FDEFz

237

CRNAME

CRMAME is a program which can create any global name (including
“strange” names that cannot be entered from the keyboard, or the names
of existing functions). Here are two ideas for this program:

« Create variables under reserved names, which are then difficult to
purge, visit, or change (giving them a certain security).

« Create variables with the same name as an HP 48 internal function
in order to replace it. If the user types this name, then your program
is executed rather than the internal function.

CRMAME (# 11E%h)

&
1 127 SUE 116 CHR 42 CHR + 128 CHR +
228 CHR + + OVER SIZE CHR + SHWAP
+ 43 CHE £ 40 CHP + 0 CHR +
4aa<h SYSEYAL # SeBeh SYSEWAL DROP MEWOE
1
&

The principle of this program is the same as with GASS: a special object
is created (here it’s a string), which contains the desired object codes (the
name in a list). Then certain information is stripped from the object to
leave only the object contents.

We need to remove the prolog and the length of the string—2 blocks of
5 nibbles. The routine at #056B6h is used to take a system binary
containing the number of 5 nibble blocks to be removed. This system
binary exists in ROM (see the list of useful objects in ROM found in the
appendix) at the address #04003h. Itis recalled to the stack with #4EE=H
SYSEVRL. After the HEMGE, a list containing the desired name is on the
stack. The oper-ation1 GET removes the name from the list, and places
it on the stack by itself.

238 Part Turee: Lisrary o Procraus

CLVAR

The CLYAR instruction will purge all user variables in the cumrent
directory. This command can be executed with the press of three buttons
(CLICDEVILENMTERD).

In the hands of an amateur, this can be very dangerous. |t would,
therefore, be wise to remove the access to this command. This can be
done using the program CRHAME in the following manner:

+ Enter any program. For example:
"CLVYAR Mot Available!" DOERR »

+ Thentype: "CLYAR" CRNAME STO

Itis best to store this false CLYARE in the HOME directory so that it is exe-
cutable from any subdirectory.

To remowve this program, simply type: " CLVYAR® PURGE

SYSEVAL

The SYSEYHAL instruction is used to execute objects found in the HP 48
memory. Haphazard use of this function could cause a loss of memory.

This function could be considered dangerous, and you may want to
prohibit its use. All you need to do is create a program with the same
name: ' SYSEWAL ' . Asitis not normally possible to create suchaname,
we will use the program CEMAME.

To prohibit the use of S%ESEYHAL, do the following:

« Enter the following suggested program:
"SYSEWAL Mot Awsilable!" COERR ¥

» Thentype: "SYSEYAL"™ CRMAME STO

Itis best to store this false ' SYSEWHAL * program in the HOME directory
so that it is executable from any subdirectory.

To remove this program, type: ' EYSEWAL' FURGE

Once the false program is installed, it is possible to enter the global name
'SYSEVAL ' normally (without the use of CEMAME).

240 Part Turee: Lisrary o Procraus

CONTRAST

CONTRAST uses the programs PEEK and POKE fo change the HP 48's
screen confrast. It takes a binary integer between #0h and #1Fh from the
stack. #0h gives the lightest contrast, (the screen appears to be off), and
#1Fh gives the darkest contrast (the screen appears completely black).
This allows access to a greater range of contrast values than do the
conventional [ON1=C+1 and [OM1=[-=1 methods, which offer
values from #3h to #13h.

CONTRAST (& 7EF1h)
&«

HEX # 181h OYER # Fh RND +5TR 2 3 SUB "#"
182h # 1h FEEK + STR+ # Eh AND 4 ROLL 16
< #% 1h AND OR +STR 3 3 SUB + POKE

J

DISPON and DISPOFF

DISFON and DISPOFF are two programs that use PEEK and POKE to
turn the HP 48 screen on and off. Mote that DISPOFF disables the
keyboard, so the two programs must always be used together (always
call D ISPON after having called DISPOFF). If you execute DISFOFF
alone, there is no way to turn the screen back on other than with a system

hatt (LOMI-CC1).

DISFON (# 18E7H)
&
le@enh “#° OVER # 1h FEEK + STR+ # ©h OR

*STR § 3 SUEB FOKE
»

DISPOFF (# S8EF6h)
«
l@@h "#" OVER # Lh FEEK + STR+ # 7h AND

*5TR 3 3 SUE POKE
b

241

FAST

FAZT is a program that will enable you to speed up HP 48 calculations
more than 12%. This program turns off the screen, (using the programs
CISFOFF and G ISFGOM), which lightens the bus load slightly, enabling
the HP 48 to execute a little faster.

As an argument, FRET takes either a program, the name of a program,
or a list of commands. If any of these arguments require arguments
themselves, they must already be present on the stack

Example: To calculate the second derivative of ' COSCCOSCHI D "
“ CCOZCCOSCHEI " "W & 'H' & » FAST
FAST (# 14AZhH)
@

CISFOFF
IFERR
EWAL
THEH
DISFOM EREM DOERER
EMD
DISPON

242 Part Turee: Lisrary o Procraus

DISASM

This fascinating program is monstrous in size but extremely useful: it can
disassemble any machine language program. [xISRSHM is the main pro-
gram; all the others are its subroutines. It takes two arguments:

- In stack level 2, a character string which contains the hexadecimal
codes that you wish to disassemble.

« In stack level 1, the beginning address of the code—useful when
disassembling ROM programs (for movable programs, as are all
programs in this book, give the value #0h for this argument).

For example, to disassemble the routine at address #067B9h:
#EETYESh DUF #1868k FPEEE SWAF CISASH

The disassembled code is found in the variable "SOL " when DISHSH
has finished. The programs SFC1 and SFCZE in this listing are identical.
They calculate the number of spaces between columns of the output
listing given by I SRSM. To change the column spacing, change one or
the other.

L' ISASHM can disassemble only machine language; it does not recognize
object prologs, for example. Note that DISASM may terminate with an
error ifit lacks proper arguments or encounters an invalid code (e.g. 10E).
DISASM (# SMACH)
%

HEX &4 STWS 'ADR' STO "Z' 5TO

" - START -"

i@ CHR + '300L' STO 1 'P' S5TO 2 SIZE

+ 5

4

oo

P 'I' STO L RERD 1 + GET EVAL + STOS
UMTIL

" - EHD - " STOS

243

TARKE (# FAFDH)
« £Z F DUP SUB »

READ (# 3949h)
€ "§ Z P DUP SUE + STR+ B9R »

IMC(# C417h)
« 1 "F" STO+

STOS (# 3835h)
«

18 CHE + DUF 1 DISF SOL SWAF + "SOL° STO INC
»

L (# EBE37h)
¢ A@ Al AZ AS A4 AS AS AT
Al A2 AA AE AC AC AC AC 2

AB (# AZIER)
«
IHMC READ DUF

£ "RTHSEM™ "RTH™ “RTHSC™ “RTHCC™ "SETHEX™
“SETDEC™ "RSTK=C" "C=RSTK" “"CLRST" “C=5T"
"ST=CT "CETex” “"F=F+1" "FP=F-1" 14 "RTI"
SWAF 1 + CET CODE SWAF
ELSE
DROFP IHMC REARD IWC RERD
* xy

«
u 8 ¢ 38 CHR 33 CHR IFTE

+ z
%
u 8 MOD 2 # 1 + "REBCCADCEACERCCD™
+
€
DUF SUE u t 1 + DUFP SUBE
b

w™ c

t
u
&

244 Paar Twmes: Lumeasr or Procras

CODE a "=" a z b + + + + SFCZ +

EMD

Al (# 484Eh)
<

L HMZ " 18" READ #5TR FOS GET INC EEAD 1 + GET
EVAL
»

M (# 956Ch)
{ CB 0 C CB C4 C4 C& C6
C& C9 C9 C9 Ce Co C2 C9 &
Ca (# 6588h)
L

TRKE IMC CODE "F" 5 ROLL + STRE+ READ 1 + GET
B

Cé (# FEDAR)
<

£ "De=0o+" "D1=D1+" “DE=D@-" “D1=D1-" > READ 5
- DUP 4 » 3 # — GET IMC CODE SWAP SPCZ READ 1
+ STR +

»

Co # 95A%Hh)
&
RERC & - DUP
IF

3 >
THEM
4 - "Di=¢"
ELSE
"LE=("
EMD
£ 245 > ROT GET SWAP OYER + ") + SPC2
SWAP 1 -
F X
&«
INC 2 P DUP x + SUB REVERSE + P = + 'P' STO
CODE SHAP
S

C4 (# DTASH)
&
READ INC RERAD
+ ® y

4

£ "DATE=R" "DATi=A" "A=CATE" "A=DATL" "DATG@=C"
"DATL1=C" "C=DAT2" "C=DAT1" > o & MOD 1 + GET
SPC2
IF

ELZE
IMC RERL:

246 Part Turee: Lisrary o Procraus

z CH
LSE
READ 1 + +5TR
EMD
»
EMND
+
»
CODE SHAP
»

@ [a E419h]

"RB=R" "R1=R" "R2=R" "R3=R" "R4=RA" 5 & 7 "R@=C"

"Ri=C" "E2=C" "R3=C" "Rd4=C"

P1 (# 9F7h)

{ "A=R@" "A=R1" "A=RZ" "A=R3" "A=R4" 5 & 7 "C=R@"

“"C=R1" "C=R2" "C=R3" "C=R4" X

P2 [a D1C7hj
H

RBex” “"ARlex” "ARZex” "AR3ex" "ARdex” 5 6 7

CRBex™ "CRlex” "CR2ex” "CR3ewx” "CRdax" ¥

F3 [ﬂ TE1BR)

"DE=R" "D1=A" "ADOex" "ADlex" "D@=C" "D1=C"

"ChBex” "CDlex” "D@=AS" "DI=AS" "ADEBXS" "AD1XS”
"DB=CS" "DI1=C5" "CDBXS" "CDLXS" X
AZ (# 85&Ah)

« INC CODE "F=" SFCZ READ +STR + »

AS1 (# eDCAR)
«

INC EERD
K
«
SFCZ £ INC P DUF x + DUFP "F° STO SUB
REVERSE +
B
B

247

A7 (# 1C34h)
&
"GOSUB" "t 1 3
STRRET
IMC TREE +
EXT

l18eBh 4 SAUTREL CODE SWAP
#

A2 (¥ DB24h)
« “LCHEX " A31 CODE SMWAF

A4 # ATZDh)
&
INC TRKE IMC TAKE + DUP
IF

DROF "MHOP3Z"
ELSE

HéGDC" SWAP # 1@Bh 1 SAUTREL

EMD

COCE SWAF
k3

AS % 4851h)
&

INC TRKE IHC TAKE + CUP
IF
"BE" ==

THEH
LPEDP "RTHHC"

GOMC" SWAP # 1@8h 1 SAUTREL
EMLD
COCDE SWAF

248 Part Turee: Lisrary o Procraus

RS (# A19CH)
L3

%FIHC F CDUF 2 + SUE DUR
1 2 SUB "3BR" ==
HEM

CROF “HOP4"
ELSE
DUF
“4EEE" ==
THEM
DROF "HOPS" IHC
LZE
1 3 sSUB "GOTO" SWAP # 1@@ch 1 SAUTREL
EHD
EHDx

IMC IMWC CODE SHAP

M (# CCICh)
{ Ba Bl Bl B3 B4 B4 Bt ES
Be BS BA BR BC BC BC BC X

Bi (% 3732h)
L4

"U" TAKE + 5TRE+ IMC RERD 1 + GET EWAL CODE SWAP
B

EZ (# FRETH)
4 Bl GOYES =

B4 (# S589h)
&
{ "gT=@" "ST=1"
+5TRE + CODE SMHWRF
H

* READ 2 - GET IMC SPCZ RERD

249

BE (# ESCDR)
«

@ Ua IWC READ
+ X
«
»x 1 + GET
IF

x 8
THEM

DROFZ _IWNC £ 6 7 18 11 » READ FOS V@ RERAD
1 + GET EYA

ELSIE
{13 13 12 » x POS
THEN

SFCZ INC TAKE +
EMD
END

CODE SWAF
IF
ROT

HEM
GOYES
END

BE (# S99Eh)
&«

£ "P5T=8" “vST=e" “?Pe" "YP=" » READ 5 - GET

INC SPCz READ +5TRE + CODE SWAF GOYES
»

Ua (# SeaFh

€ "OUT=Cs “A=IN" "C=IN" "UNCHFG" "CONFIG®

“C= SHUTDN 8 "C+F+1" "RESET" "BUSCC" "C=F"
“SRE@F" “"CPex"

250 Panr Twmes: Lueasr or Procraws

ER (# 2955h)
L4

RERL INC RERL
+ ooy
#

gy 1 + GET SPCz + "R" GOYES

#F

BC (# 2CCCH
&
£ "GOLOMG" 4 "GOYLMG" 5 "GOSUBL" 4 "GOSBYL" S
READ 2 % 23 - DUP 1 + SUB LIST+ CROP

+ &
#
2 ZFP 1 +DUP b+ 1 - SUE
IF
B S ==
THEH
SWAF SPCZ2 SWAP REVERSE +
ELSE
1868Ch 2 READ 14 == 4 % + SAUTREL
EML:
F b + 'F' STO CODE SHAP

Ve (# ES24h)

r" val vEz "BUSCE" Va4 Va4 vad vod vod
VB4 VB4 “PC=(A»" "BUSCH" "PC=(C)"
“IHTDFF" 3

251

U1is @ 8735h)
@

REAL & == IWMC RERC IWC RERD 1 +
=t fr
ks

RA + GET

IF

4
THEH
DUP "=" SHAF + +
IF

=S
THEH

EL5E

EHL:
+ INC RERD 1 + +
LSE

"SRE" +
EHDx
¥ CHA
%

WEE @ FSASH)
£ "ABIT=@" "ABIT=1" "7ABIT=@" "’f‘HBIT—‘" "CEIT=@"
"CEIT=1" "TCEBIT=&" "7CBIT=1"

YB1 (@ 2206h)
& INC "RSI"

VB2 @ 2594h)
& "LAHEX " A31 =

YE4 (# CTA3H)
% WBB READ % - GET SPCZ INC TAKE + »

Ui (% CFEah)
£ "ASLC” "BSLC" "CSLC™ "DSLC” "ASRC" “BSRC"
“CSRC" "DSRC" ULZ ULE UiA UIE "ASRE" “BSRE"
“CERE" "DSRE" 3

252 Part Turee: Lisrary o Procraus

U1RA (# BF13h)
<«

INC READ INC READ INC READ 1 +
Ff xr
«
RN r GET
IF
r 8 <
THEN_

A

ELSE
e

END

IF
x 2 ==

=" SWAF + +

V1B (# BRd4Sh)
{ 8 1 "FC=R" "PC=C" "A=PC" "C=FC" "APCex"
"CPCex™ ¥

U1E(# CCo4h)
« 1B INC READ 1 + GET SFCz "R™ + »

RM (# FC36R)

{ "F@" "RL" "R2" "R3" "R4” 5 & ¥ "R "R1"

"Rz" “"R4" 13 14 15 F

‘g2

RA (# SACER)
< "R "B"
12 14 15 >

"ot 4 3 & ¥ "R" BT O"CY DT 1z

U2 (% SEDER)
£ 8 "MM=@" "SB=8" 3 "SR=8" 5 & 7 "MP=@" 9 1@
11 12 13 14 "CLRHST" 2

ua(# ERZCH)
@ "PHM=E" "7SB=B" 2 "7SR=8" 5 & 7 "7MP=@" 2

A9 (% 48ADH)
£ A B MORMAL GOYES »

AF (4 2CBER)
£ C D HORMAL *

AE (# B467h)
£ E F HORMAL *

AC (% BF1Sh)
&

{CDEF ¥ ERERD 11 - GET EVWAL INC CODE
SWAP REAC 1 + GET SPC2 "RA™ +
#

A (# DD3ISh)
€ "SASRT CPESC CICSRT CIDSCT CTRRR U ESCT CTCeR
DRl s “AC=E" "ID=B" "CRRG" "IEeE"
NECEEt UThEEY 3

B(" 32E3H)

“PAFET "PERC “FCHAT "7DHCT UFACET "7ELCT "7LA”
PDCY "TARE" “7B=CY “PCRA" “70ACT Y7ALE “7BLC
JCERT RDEC” 3

254 Part Turee: Lisrary o Procraus

C (# SOAFN)
{ "R=RvB" "B=BeC" "C=C+A" "DD+L" “R=hvA” "B=BeE"
“C=CHC" "D=D+D" “B=B+R" "C=C+B" "A=A+C" “C=CeD"
v BBl SCobe SDepoit S

‘A=

‘C=@" "D=B" - “D=C"
"A=C" "C=D" "ABex”

"CRex”

E(ﬁ C343h)
“A=A-B" “"B=E-C" "C=C-A" "D=D-C" "A=A+l1" "B=B+1"

"C=C#1" "D=D+1" "B=B-R" "C=C-B" "A=A-C" "C=C-D"
"A=B-A" "B=C-B" "C=A-C" "D=C-D" ¥

F (# 7BE6h)
€ "ASL" "BSL" "CSL" "DSL" "ASR" "BSR" "CSR" "DSR”
“A=-R" "B=-B" "C=—-C" “D=-D" “A=-A-1" "B=-B-1"
“C=-C-1" "D=-D-1" ¥

SPC(# EA1SH)

(7 spaces)
SP‘C].(# DF8sh)
« SPC 1 7 4 PICK SIZE - SUB + " © + »
SFC2 (# DF8eh)
« SPC 1 7 4 PICK SIZE - SUB + " © + »

ADRSTR (# 1EFGH)
« # 180008hL + *5TR 4 8 SUB =

CODE (# A7DGN)
AR I 1 - + ADRSTR * “ + Z I P SUB SPC1 +

SAUTREL @ D&3ER)
3

+ab c

&

SPCZ ALDR
OB+ DUF

IF

I +1-c+ "#' a EREVERSE +

bz s«
THEH

ELSE

b SWAF

EHL:
ACRSTR +

=

GOYES (#
L3

El@zh)

+ IMC P "I

* &
%

18 CHR

I

F
3 "@g"

THEHM
"RETHYES"

LSE
"GOYES"

EML:

k3

HORMAL G
&

+ a

INC
+ w

256

ESS1ih)
[w]

STO TRAKE IHC TAKE +

COCDE

a # 1BBh & SAUTREL

READ IMC RERD

Part Turee: Lisrary o Procraus

3
ELZE

=
EHMD:

J9 1 + GET SPCZ2 = CH +
B

*
k3

REYERSE (¥ B227h)
s

c = DUF SUB + -1
STEF
#*
3

CH (# 229ER)

&
+ 3
«
L "P"
MOD: 1
+ GET

#F
k3

CHA (# FDECH)
L4

&

257

Manipulating System Binaries

These programs convert between system binaries (SB) and other types
of objects commonly used by the machine: binary integers (B), real num-
bers (R), and characters (C).

« The required arguments are not verified for these programs. You
must be certain that you give the proper arguments if you would like
to obtain the proper results (giving a bad argument will not damage
the machine, just give unpredictable results).

- The character object is not normally accessible to the user. With
the programs below, it can be easily generated. For example, to
create the character#40h (A), youwould type#diah E +5B SBE+C.
The corresponding character will appear as " Charact er " onthe
screen.

E+SE (# A2PZhH)
4« # SRGE2h SYSEWAL #

SE+E (# C4F4h)
4« # S9CCh SYSEWAL =

R+SE (# 41Ch)
« # 18CERh SYSEVAL »

SE+R (# FIELhR)
180EFh SYSEWAL »

C+SE (4 21@ah)
“« # SASih SYSEYAL =

SB+C (4 2756h)
« # SATSh SYSEVAL *

258 Part Turee: Lisrary o Procraus

ROMRCL

This very short program can recall objects from ROM to the stack. Simply
place the address of the object on the stack (as a binary integer), and
execute ROMRCL.

First the programE+5E is used to convert the binary integer into a system
binary, then the #C&2 1k SYSEWHAL is called to recall the object at the
given address to the stack.

Notes:

= This program can recall objects in hidden ROM by duplicating them
into RAM.

« Don't try random addresses.
- Don't use ROMRIL except for address in ROM.

ROMRCL (¢ B436h)
% B+SE # Colzh SYSEVAL »

259

A? STRand STR? A

A+STR transforms a binary integer address to a character string (written
inreverse). STR+H does the opposite function. They are particularly use-
ful when using PEEEK. and FIOEE to read and write addresses in memory.
Each program uses the program REYERSE .

Examples:

#7EEEBh A +STR returns™@BEET ™.
"BEaEF" STR+A returns# FBEEEH (in hexadecimal mode).

A+STR # E4F3h)
@
HEX # 1BBE@sh + # 1FFFFFhL AMD +STR REYERSE
2 & SUB
k3

STR+R (# 9287h)
£
“EEEEE” + 1 5 SUBE "h SWAP + “#" + REVERSE

STR+
®

260 Part Turee: Lisrary o Procraus

BFREE

This program will determine the amount of free space left on a plug-in
RAM card in BACKUP mode. It takes the port number as an argument,
and retums the free space in bytes. BFREE uses PEEK and STR+A

BFREE (# 6BEEh)
«
* FORT
«

IF
FORT 1 = FORT & = AHD
HEH
D‘: AR DOERR
Tod4zlh FPORT 11 # + + ADR
«
ADR # 1lh FEEK STR+A + FLAGS
&«
F
FLAGE # gh AND # @h ==
THEH
AR DOERE

EHND
IF

FLAGS # Zh AMD # B8h =
HEHN

"CRED MERGED !™ DOERR
END

L
ADE 1 + # 5h FEEK STRE+A & 188686h ADRE
& + # Sh PEEK STR+A - + & 7@44Dh PORT
5 # + # 5Sh PEEK STR*A - B+R 2 -
>
»
b

281

SEARCH

Here are 3 programs for searchingmemory: ROMSERRCH,RAMSERRCH,
and MODUSERRCH. These programs will search memory for a string of
hex-adecimal codes, and return the address(es) of any occurrences
found.

« UseROMESERRLCH to search in ROM (including the hidden ROM).
Addresses greater than#70000h (which are addresses of objects in
the hidden ROM) should be used with ROMRECL to view the
contents.

- Use RRMSERRCH to search in RAM (including merged plug-in
cards).

« UseMODIUSERRCH to search plug-in cards (HP 48SX only). This
program takes one extra argument than the others: a real number
that is the port number of the card you would like to search. After
checking the port for the presence of a card, the search will be
done. MOCDUSERECH will search plug-in ROM cards as well as non-
merged plug-in RAM cards

Note: these three programs use the programSERRLCH, as well asPEEE,
HRFPEEK (forROMSERRCH) and=TR+A (forRAMSERRCH andMOCLUSERRCH).
Examples:

= Tofindallcharacter stringobjectsinROM: "C2AZE" ROMSERRCH

- To do the same search in the plug-in card in port 2 (if the card is
present): "C2ZAZEB" Z MOMUSERRCH

262 Part Turee: Lisrary o Procraus

SEARCH (# ECY2h)
3
+ MOTIF RD FIM PRGH
Ed
1@@k DUP MOTIF SIZE + + LEM LEMP

03
Co
AL DUP 1 DISF LEMP FRGM EVAL
F
MOTIF POS AL OYER
+ DUP ‘AR STO 1 - DUF
F

ELSE
DUF 2 DISF 18e@ .87 BEEF +
[

I+

ROMSERRCH (% SE4EhR)
%

+ MOTIF
4
MOTIF % Bh # 7VBBEBL 'PEEK' SERRCH MOTIF

Ll

TEGBEh % 28688h "HREPEEK®™ SERRCH +

T+
kg

RAMSERRCH (# 33AEH)
4

VEBBBh # YEe&9h # Sh FPEEK STR+R "FEEK”

SERRCH
B

263

MODUSERRCH (¥ CBELH)
@
+ PORT
kS

FORT 1 = FPORT Z =+ AND
AR DOERE

EHD:

vB421h PORT 11 = +

+ RADR

%

ADR #1h PEEK STR+A
+ FLAGE

&

F
FLAGS # &8h AMD # 6h

HEH

Ah DOERR
EHD
IF

ELHGS # 2h AMD # Bh =

"FORT MERGED-WUSE RAME" DOERR
EHL:

E 1 + # 5k FEEK STR+R DUP # 1B8@888hH
ACR & + # Sh PEEK STE+R - + 'PEEK' SERRCH
#

Part Turee: Lisrary o Procraus

CRC

This program calculates the cyclic redundancy control (CRC) used by the
HP 48 to verify data in certain objects. The program takes a string of hexa-
decimal codes (like those accepted by GASS) and returns the corre-
sponding checksum.

For example,

stack.

CRC (4 9088H)
L4

&
w

Bh

+ S CRC.Y
4

Here is a faster version written in machine language:

1
F

R
a8

SIZE

u
[
2

CRCLM (3 298h)

Lonze
sE147
SA2ET
24Fea
ECTRF
sEl4z
CEF1IE

E4RzZE
13416
CEi4E
BEBEF
CBi42
16486
2128

FEEEE
21741
S1E2E
2C0E2E
Favrd4z
SCOVF

1224567 29ABCOEFE ™

BEEEE
43151
EAZ12
2z21cl
BLEL4
EBEFz

"CRC.WVY

CEBz2A1
17414
BIERY
CYREC
4iviz
DFFCE

SUB HUM 43 - DUP 2
-V 16~ SWAF CRC.Y_WOR # Fh AND
ik + HOR

STO

CChzE
=
Ba1ve
SAFCE
42606
EFZB8E

CRC returns #A2ELCH on the

7 % - % Bh

cCeas
42450
EBER14
2e821
BEESF
FEB1D

SFEST

SF20T
EEF1&

265

CALC

CALC is a collection of programs that will perform arithmetic calculations
with large integers. The HP 48 can already do arithmetic with integers, but
only those in the range from 0 to 18446744073709551615. These pro-
grams can use integers that are as large as your memory will permit. As
examples, they were used o calculate the factorial of 2000 (mone than
5000 digits!), and the square root of 2, accurate to 500 decimal places.

These functions work with positive integers represented in string form.
(For example, " 123456759@" is the integer 1234567880). The func-
tions:

+ ADD to add two integers:

+ SUES to subtract two integers and return the absolute value;

+ MULT to multiply two integers;

+ BFACT tocalculate the factonal of the inleger given asan amgument. Rdoes
this by making successive mulliplications, and displays on the soreen the
cument result as well as the number of multipications left, so that the user
can get an idea as to when it wil be finished.

+ POW will raise the inteoer in level 2 to the power in level 1 (just like
the * function). As with EFACT, step numbers are displayed to
show what work is left to do (0 will be displayed when it's done).

+ E muitipiies the integer in level 2 by 10 raised to e power in level 1.

+ DIY divides the integer in level 2 by the integer in level 1, and
returns the integer part.

+ MODU is the modulo function. It returns the remainder of the integer
in level 2 divided by the integer in level 1.

+ SR calculates the integer part of the square root of the argument
given.

These programs all use subroutines, most of which ane written in assem-bly. The
commenizd source listngs are first, then the hexadecimal codes.

268 Paar Twmes: Lueasr or Procras

DECODE.LM

This program converts an integer in a special format used by AL LM,
SUE. LM, and MULT. LM into an integer in string form.

CCh2e COMCSY PROL_COGE Code object
beginB&EEE COMESY fendr=tbegin? Code Length
SFB97EE GOSBVL SRAVE_REG Backup regs.
142 A=CAT1 A
132 RADBex DO=address of object
in stack level 1
164 Le=bE+ 3
245@888 LCHEX #EBEES
142 A=DATE A Object length
EA A=A-C]
=] E=A A
164 Le=0E+ 3
ivd Ci=bi+ 5
1432 A=CATL AR
133 Ablex D1=address of object
in stack level 2
ivd Li=bi+ S
147 C=CATLI R
133 Ablex
cz C=C+A A
127 Chiex
216832 LCHE® wa
1 SA% 7E=8 A Done?
i GOYES 1z Yes --> end
ici Ci=bi- 2
15ER C=LATE 1 Read a digit
1501 LDRTi=C 2
1@ Ca=ba+ 1
Ch EB=B-1 A One digit less
EHEF TO 11
/2 SF207e@ GOSEBVL LORD_REG Restore regs.
142 A=ATE A Return to RPL
164 LE=0E+ 5

=lsl= PC=CA2
end

267

ENCODE.LM

This is the inverse function of CECOLE. LM. It will convert an integer in
string form into an integer in a special format.

CCh2a COMCS)

beginTEBEE COMCTD
SFB97eR GOSEYL
142

A=DAT1
132 AL Be:x
164 Da=CE+
2456868 LCHEX
142 A=DATE
ER A=A-C
b E=A
le4 DE=0E+
174 Ci=Ci+
142 A=DLAT1

end

268

FROL_COGE
(endi=cbegind
SAVE_REG

Bid
[l
[
()
L)
(L)

) A e e o o]

I T

M

ORD_REG

D e s T P

Code object
Code length
Backup regs.

DO=Address of object
in stack level 1

Object length

D1=Address of object
in stack level 2

Done?
Yes --> end

Read 1 digit

One digit less
Loop

Restore regs.
Return to RPL

Part Turee: Lisrary o Procraus

FORMAT.LM

This program will remove any leading zeros from an integer (convert
"EBe123" to 123", forexample).

CChza

beginSEBEE

1

2

end

SFB27ER
142

SFZD7EE
142

164
2E8C

COMCSD
COMCTD
GOSBYL
A=DAT1
DE=A

DE=Ca+
Di=Cl+

GOSEBYL
A=DATE
DE=DE+
FC=(A)

FROL _COGE
tendr=theginy
SAVE_REG

A

DN e
1)

o

HTOM—DDDN DD I

-

OAC_REG

L) s g

Code object
Code length
Backup regs.

D0=Address of object
in stack level 1

D1=Address of object
in stack level 2

Object length

Number of zeroes
to remove

Done?
Yes --> end

A zero?
Yes --> loop

write the number of
zeros to remove
Restore regs.
Return to RPL

269

ZERO.LM

This program sets the integer given as an argument to zero, in the special

integer format.

CCh2a COMCS)

beginZ4BEE COMCTD
SFB97eR GOSEYL
14z

A=CAT1
121 i=A
174 Di=Ci+
142 A=DAT1
174 Di=Ci+
C4 A=A+A
F4 RSR
AFZ C=8
11 2RE2 A=
Fa GOYES
1507 CAT1=C
177 Li=Ci+
cC A=A-1
&1FF GOTO
12 2FZDb7el GOSEVL
142 R=DATE
14 La=0a+

SEEC PC=CA
end

270

FROL_COGE
(endi=cbegind
SAVE_REG

[gh)

i
OAC-REG

ITC—=IDWmo—DE DIDODAN

n

Code object
Code length
Backup regs.

D1=Address of object
in stack level 1

A=number of 8-digit
blocks for this object

Done?
Yes --> end
Set to zero

Loop
Restore regs.
Return to RPL.

Part Turee: Lisrary o Procraus

ADD.LM

This program will add two integers. It works with blocks of 8 digits.

CCDza

beginS7e08

end

SFBY7oE
143
138
169

174
143
131

174
147

seasc

COMCS Y
COMCS2
GOSEVL
R=DAT1
Dia=H

Dig=Dia+

Di=Di+
R=DAT1
Di=A

Di=Di+
C=DAT1
C=C+C
CER
D=C
D1=D1+
R=@

=
D=0
GOYES
C=a
CPex
SETDEC
A=DATE

SETHEX
DAT1=C
LiE=0a+
Di=D1+
D=D-1
F=C
GOTOD
GOSEVL
RA=DATE
Da=Da+
FC=CA>

PROL_CODE
tendir-tbeain
SAVE_REG
A

18

]

A

5

A

A

A

A

5

I

a

A

12

I

a

8

I

2

W

]

]

]

A

2

11
LORD_REG
A

5

Code object
Code length
Bachup regs.

Di=Address of object
in stack level 1

D1=Address of object
in stack level 2

D= # of blacks for abj.

Carry o zero
Dome?
Yes === end

Carry

Decimal mode
Read first block
Add to carry

Read second block
Add

Hexadecimal mode
Read resuif

Next blocks

One block less
Carry —> P
Loop

Restore regs.
Retum fo RPL

2

SUB.LM

This program will subtract two integers. It works with blocks of 8 digits.

1307 DAT1=C

Write result

One block less

Carry?

No --> loop

Save the carry

Loop
AC_REG Restore regs.

Return to RPL

—

(=

CCh2E COMCS) PROL_COGE Code object
begine 7 BEE COMCSY Cendi-cbegind Code length
SFB97EE GOSEVL SAVYE_REG Backup regs.
142 AR=CAT1I AR
126 [E=A DO=Address of object
169 CE=0E+ 18 in stack level 1
174 Li=Ci+ 5
14z A=CATI R
131 i=A D1=Address of object
174 s1=Ci+ S in stack level 2
147 C=LATI A
=) C=C+C H
F& C5SR A
ir L=C H D= # of blocks in obj.
174 Ci=Ci+ 5
HF & H=&] No carry
11 BRE 0= A Done?
23 GOYES 12 Yes --> end
AFZ C=g 1]
1ZEV C=[LATE = Read 1 block
5] SETDEC Decimal mode
AYA A=A+C] Add to carry
15F7 C=DATLI = Block to subtract
Bvz2 C=C-A 0] Subtraction
a4 SETHEX Hexadecimal mode
=
=
=
A
1]
b=
1
E
1
L
A
5

272 Part Turee: Lisrary o Procraus

This program will multiply two integers.

MULT.LM

It does this calculation much like

you would do it by hand on paper by working with one digit at a time.

CCha2e

beginC1 1 GE
SFB9YEE
143

S18FEY
181

174
143
133

iv4
AFZ2
147
218FR4
EF2
EF2

COHCTD

L=C

Li=C1+
AClex
R3=A

D1=D1+
A=DAT1
»1=A

Ci=0bi+
C=&
C=DAT1
C=C-5
CEL
CSL
CSL
Ci=0Ci+
AClex

FROL _COGE
tendr=theginy
SAVE_REG

A

A

EZEEZETDDEL T

o

Ton

NMEEZEDDEWN

Code object
Code length
Backup regs.

R1=address of con-
tents of level-1
object (the result)

D1=Address of object
in stack level 2

Number of blocks of
integer in level 2

R3=address of con-
tents of level-2 obj.

D1=address of object
in stack level 3

273

274

FhdE
GOYES

D1=A
c=@
C=DATL
D=C
D1=D1+
AD1ex
R3=A

D=D-1
A=R2
D1=A
CBex
C=l
A=A+1
R1=A

GOYES
C=@

GOYES
DATE=C

RSTK=C
A=DAT1

SETDEC
E=@
SB8=0
ASFB
FEE=8
GOYES
B=B+C
C=C+C

GOYES
C=RSTK
C=C+BE
RA=a

H
12

—mem

==

-

CeoEmem D

W W W
-

—~T0mm

R2Z=address of ohject-
3 contents

More work?

Yes === continue

No === stop

Read a digit

One less digit

Mult by zero?
Yes --> done

Again?

Yes

No == write final carry
And loop

Backup C

Read a digit

Decimal mode

| Multiplication

Add the canry

Panr Twnes: Lueasr or Procraws

end

RA=DATE
C=C+A
DATE=C
SETHEX
Dia=Dia+
Di=D1+
EB=E-1
CSR
GOTOD
GOSEVL
R=DATE
Da=Da+
FC=CA>

1
B
1

1
1
M
E
12
LORD_REG
A
3

Add to existing
Wiite resuif
Hexadecimal mode

Update carry
Loop
Restare regs.
Return fo RPL

275

DIV.LM

This program divides two integers and returns the integer part of the
result.

CCh2a

beginvTE 1 GG

SFB97ER
142
128

164
142
218F24
219FGE
183
14
132
1@z

iv4
143

S1gFev

S18FB4
121
147

CA
218Fel
1oE
SicFA4

COMCS)
COMCTD
GOSEYL
A=CAT1
DE=A

DE=0E+
A=CATE
A=A-5
ASRE
R3=R
LE=0E+
ALBe:x
Rz2=R

bi=Ci+
A=DCAT1

A=A+2
EB=R
Di=Ci+
A=DCAT1

LE=R

Da=Ca+
Li=Ci+
A=DAT1

FROL_COGE
(endi=cbegind
SAVE_REG

L = e e o |

InDD Ddn

I TID I DN

)

Code object
Code length
Backup regs.

DO=Address of object
in stack level 1

R3= # of digits

R2=address of con-
tents of level-1 obj.
Next object
A=Address of object
in stack level 2

Next object
A=Address of object
in stack level 3

Next object
A=Address of object
in stack level 4

object 4 length

of digits in object 4

Part Turee: Lisrary o Procraus

o

w DIDIDIDID DIDD W DD

D rm
S

> DM e=m

MOMMD o

16
a1
14

Again?

No == end
One less digit

‘Initializations

No carry
Again?

No —=> next
Decimal mode

Read 1 digit
Add to carry

Subtract
Re-wrife

One less digit

Carry?

Yes --= camy

77

16 HEZ
EEEF

ESEF

110 142

end

278

LE=0e+
PC=¢<RA2

Wh D M= mem
woom

R

11
LOAC _REG

=

e
=

4) B e e O B T [

No carry

Carry at end

Yes --> stop
Increment quotient
Loop

Wirite quotient

Loop
Restore regs.

Need to change order
of stack objects?
No --> end

;Exchange objects
;in level 2 and
level 3

Return to RPL

Part Turee: Lisrary o Procraus

DECODE. LM (# Da2ih)
CChZE BeBBE SFEIT
16417 41431 33174

EBL13Dh

11eBC

LEREF

EMCOCE. LM (# BBAZH)
CChzZE FeBBE SFEIT

16417

41431

33174

BEi168 CDERE FEF2D

FORMAT. LM (# 227 1h)
CChZE ESeBE SFEV
2818F 24172 L2171
448F2 DveBl 42164

ZERD. LM (# 52AAN)
CCDZG 54666 SFEIT

AZFEL

ShPLY

TCCel

ACL.LM@# EF4Ch
CCDZE S7@@E 2FBST
FCeFS D7174 AFBzZE
25234 15071 &7LIVT

SUE. LM (# Cldh)

CCDZ2E &7BER SFBSY
TCEFE D71i74 AFGBEA
SO7P17 71evC FRFEZ

@ac

MULT.LHM (“ ACCER)
CCL2E Clice

4AFZ1

SFE27F
FR4EF
4rais
1AEZ1
BE41@
13228
15Cea

EEB142
14713
SF207T

EEB142
14713
TEE14

cE143
Evaig
S@ac

£B143
FFEFz

E@143
SABFZ
CFaeDl

cE143
EZZAF
4R4DE

EE142
ZEFZE
FR4EF
SFERE
12661
12883
41e@1

13216
acz213
E@142

13216
acz2132
21648

12816
FaizA

15117
byl

13816
AFZ2EE
SelDF

13816
215E7
E46EC

43458
¥3183
16428

432458
TER%E
BaC

21741
SEG1

41431
42164

91741
Faas1
SFEhY

21v4l
BSATH
FeFzl

2i@il
17412
Fzi74
3318z
ShAE1
&1REE
EEEBEE

BEE14
SA%61
=

BEE14
11C11

43131

5 TE%ER

74C4F
28SC

43131
SAPAY
eE14z

43131
LSF7E
TeB14

74142
218zl
13318
ASF11
SCEG2
SECHE
AFEFZz

ZERDE
1C115

ZERDE
SBEB1S

17414
9EDEL

4AFZE

17414
21587
1e480

17414
7andl
21648

12217
v4142
295F&
2121R
EFE&1
BYAED
DFeEl

279

DINV.LM@E ADG1R)
CChze PelBl SFEZF e@ld4s 126016 41428 1SF24 219FE
18316 41321 82174 143381 BFB?D 21741 43138 16717
41428 12FB4 12114 FCRAS1 BFS11 BBE21S FR421 9FZie
2AC21 138AC &BS1E BCC1E °F|E221 110ED FDE12 &C2C2
CEC2h DI2eBE 47118 121RE 2E8AFE Bev4l CFBESA EBLISE
BRG21 SABEE B4DC1 3215C 81811 220C1 81101 RB2%6
AREZL 1BeDE FAEZE EBF2e ESGEB4 ££38F 1eii2 eDhiz
6161E 47112 13115 54171 13316 2694F SF2DY 68322
Séa‘?gS S22A1 17414 21741 47141 10414 TiC41 4Z1ie4

DIV.C# BSC2R)
&
FIIII;RI'IHT "g" SHAP + SWAFP FORMAT "8" SWAF +
OYER "BE" ==
EH
DRDPE # 285h DOERE

DUP bUFP 1 OVER SIZE SIZE -
SUE DI\-‘ LF‘ SWAP ROT CROP DUF‘ SIZE DUP S F‘ULL
SIZE - 1 + SHAP SUE

EHMD:

MULT. C (% PETCH)
« DUPZ + ZERODLLM MULT.LM 2 ROLLD DROPZ »

FREPARE (¥ 150ah)
%«
FORMAT SWRF FORMAT =+ M1 N2
L4

IF
Mi SIZE Mz SIZE DURZ >
THEM
DROFZ Mz Hi
ELSE
IF
<
THEH
M1 Mz

280 Part Turee: Lisrary o Procraus

EHL:
EHCSDEHENHP EMCODE DUP2 SIZE SWAF SIZE SHAF

WHILE

DUFZ SIZE »
REFERT

DUF +

EHD
1 ROT SUE +

k3

DECDDE(nHG4DH
CUF DUF + SWAF DECODE.LM DROP FORMAT =

EMCODE (# 19A0H)
&
"BEGEEEE" SWAP + DUP SIZE & MOD 1 + OVER SIZE
SUE DUF 1 OVER SIZE 2 ~ SUB ENCODE.LM SWAP
DROP
k3
FORMAT @ ELB2H)
L4
@' SHAP + # FFFFFh HEWOE FORMAT.LM B4R OYER

SIZE SUB
%

281

MOCL (% FEZER)
1

IF
FORMAT DUF "@" ==
HEH

CIV.C SWAF DROFP FORMAT
EHD:

DIV 6BEAN)
GIY.C DROP FORMAT »

E (¥ SAZER)
#
+5TR STR+ DUP
+ M

E
H CUF 2 ~ IF 'H' STO
T

EHL:
1 ROT SUB +
#
#

POM®# D4DER)
L4

+5TR STR+
+ M
%
EMCODE 1 EMCODE
WHILE
M DUF 1 DISP & =
REFERT
IF
M 2 « DUP IF 'H' STO FP
THEH
OVER MULT.C

282 Part Turee: Lisrary o Procraus

EML:
SLWAF DUF MULT.C SMWAF
EML:
SWAF DROF DECODE
*

SOR (# C2E5H)
L4

"@@" + FORMAT DUF 1 OVER SIZE 2 -~

+ A X
&

Lo
“ A OVER DIV ADD 2 DIV
TIL
A OVER 'X' STO ==

EMHL:

1 OVER SIZE 1 - SUB

EFACT (# 22ESH)
&

SUE

*STR STRE+ DUP 2 ISP 1 EMCODE 1 ROT
FOR

% DUP 1 DISP EMCODE MULT.C
MULT (% ECSFR)
% EMCODE SWRF ENCODE MULT.C DECODE »

SUBS (% 284Fh)
% PREPARE SUB.LM DROP DECOCDE »

ADD @ 7E1CH)
&

FREPRRE & CHRE DUF + DUF + ROT OWER + 2 ROLLD

+ ACC.LM DROP DECOCE
@

283

Factorial 2000

This result was obtained using the programs in CALL, listed previously.

331,627,509,245,063,324,117,539,338, 057, 632,403, 828,111,720, 810,578,039,
457,193,543,706, 038,077, 905, 600,822, 400,273,230,859,732,592, 755,402, 352,
941,225,834,109,258,084,817, 415,293,796, 131,386, 633,526,343, 688, 905, 634,
058,556,163,940,605,117,252,571,870, 647, 856,393, 544,045,405, 243,957,467,
037,674,108,722,970,434, 684,158,343,752,431,580,877,533,645,127,487,995,
416,859,247,&08,032,408,946,561,507,233,250,652,797,655,’37,‘79,671,536,
718,689,359,056,112,815,871, 601,717,232, 657,156,110, 012,420,433,
842,573,712,700,175,883,547,796,899, 921, 283,528, 996, , 405,579,854,
903, 657,366,350,133,386,550, 401,172,012, 152,635, 488, ua,Léa 152,152,246,
929, 995,206,031, 564,418,565, 480,675,946, 497,051,552,288,205, 234,899,995,
726,450, 814,065, 536, 678, 969,532,101, 467, 622,671,337, 026,831, 552,205, 194,
494,461,618,239,275,204,026,529,722, 631,502,574, 752,048,296, 064,750,927,
394,165,856,283,531,779,574, 482,876,314, 596,450,373,0991,327, 334,177, 263,
608,852,490,093,506,621, 610, 144,459,709,412,707,621,313,732,563,831,572,
302,019, 949,914,958,316,470, 942,774,473, 870,327, 985,549, 674, 298, 608, 839,
376,326,824,152,478, 834,387, 469,595,829, 257,740,574, 837,501,585,815,
468,136,294,217,949, 972,399, 813,599, 481, 016,556, 563, 876, 034, 227,312, 912,
250,384,709,872,909,626,622,461,971,076,605,931,550,201,895,135,583, 165,
357,871,492,290,916,779,049,702,247,094, 611,937, 607,785,165,110, 684,432,
255,905, 648,736,266,530,377,384, 650,390, 788,049, 524,600,712, 549,402,614,
566,072, 254,136,302,754, 913,671,583, 406,097,831, 074,945,282, 217,490,781,
347,709,693,241,556,111,339,828,051, 358, 600,690,594, 619, 965, 257,310,741,
177,081,519,922, 564, 516,778, 571, 458, 056, 502, 185, 654,760, 952, 377, 463, 016,
679,422,488,444,485,798,349,801,548,032, 620,829,890, 965,857,281,751, 8588,
619,376,692,828,279,888,453, 584,639,896, 594,213,952, 984,465,291,092,008,
103,710,046,149,449,915,828, 588,050,761, 867,924, 946,385,180,879,874,512,
891,408,019,340,074,625,920,057,098, 729,578,599, 643,650, 655, 895,612,410,
231,018, 690,556,060,308,783,629,110,505, 601,245, 908,998,383, 410,799,367,
902,052,076,858,669,183,477, 906,558,544, 700,148,692, 656,924, 631,933,337,
612,428,097,420,067,172,846,361,939,249, 698,628, 468,719,993,450,393, 883,
367,270,487,127,172,734, 561,700,354, 867,477,509,102, 955,523, 953,547,941,
107,421,913,301,356,819,541, 091,941,462, 766,417,542,161,587, 625,262,858,
089,801,222,443,890,248, 677,182,054, 959,415,751, 991,701,271, 767,571,787,
495,861, 619,665,931,878,855, 141,835,782, 092,601,482,071,777, 331,735,396,
034,304, 969,082,070, 589, 958, 701,381, 980, 813,035, 590,160,762, 908,388,574,
561,288,217,698,126,162,483,576,739,218,303,118, 414,719,133, 986,892,842,
344,000,779,246, 691,209,766 ,651,433,494,437,473,235,636,572,048,844,
478,331,854,941,693,030,124, §76,232,745,367,879,322,847, 473,824, 485,
092,283,139,952,509,732, 505, 979,127,031, 047,683, 601,481,191, 102,229,253,
372,697, 693,823,670,057, 565,612, 400,290, 576,043, 852,852,902, 937,606,479,
533,458,179,666,123,839,605,262,549,107,186,563,869,354,766,108,455,046,
198,102,084,050, 635,827, 676,526,589, 492,393,249,519,685,954,171,672,419,
329,530,683,672,495,544,004,586,359,838,161,043,059,449,826, 627,530,605,
423,580,755,894,108,278,880,427,825,951, 089,880, 635,410,567,917,950,974,
017,780, 688,762, 869,810,219, 010, 900, 148, 352,061, 688, 883,720, 250,310, 665,
922,068, 601,483, 649, 830,532,782, 088, 263, 536,558, 043, 605, 686, 781,284,169,
217,133,047,141,176,312,175, 895,777,122, 637,584,753,123,517, 230,990, 549,
829,210,134,687,304,205,898, 014,418,063, 875,382, 664,169,897,704,237,759,
406,280,277,253,702,265,426,530,580,862,379,301,422,675,821,187,143,502,
918,637, 636,340,300,173,251,818,262,076,039,747,369,595,202, 642,632,364,
145,446,851,113,427,202,150, 458,383,851, 010,136,941,313,034,856,221, 916,

o

o

284 Part Turee: Lisrary o Procraus

631,623,692,632,765,615,355,011,276,307,625,059, 969,158,824, 533,457,435,
437,863,683,173,730,673,296,589,355,199, 694,458, 236,873,508, 830,278,657,
700,879,749,889,992,343,555,566,240, 682,834,763, 784, 685,183, 644,973,648,
873,952,475,103,224, 222,110, 561,201,295, 829,657, 191, 368,108, 693,825,475,
764,118,886,879,346,725,191,246,192,151,144,738,836,269,591, 643,672,490,
071,653,428,228,152,661,247,800,463,922,544,945,170,363,723, 627,940,757,
784,542,091,048,305,461,656,190,622,174, 286,981, 602,973,324, 046,520,201,
992,813,854,882, 681,951,007, 282,869,701, 070,737,500, 927,666, 487,502,174,
775,372,742,351,508,748,246,720,274,170, 031,581,122, 805,896, 178,122,160,
747,437, 947,510, 950, 620,938, 556, 674,581, 252,518,376, 682,157, 712,807,861,
499,255,876,132,352,950,422,346,387,878, 954,850, 885, 764,464, 136,290,394,
127,665,978,044,202,092,281,337,987,115, 900,896, 264,878,942,413,210,454,
925,003, 566,670, 632,909,441,579,372, 986, 743,421,470, 507, 213, 588, 932,019,
580,723,064,781,498,429,522,595,589,012,754,823, 971,773,325, 722,910,325,
760,929,790,733,299,545,056,388,362,640,474,650,245, 080,809, 469,116,072,
632,087,494, 143, 973,000,704, 111,418, 595,530,278, 027, 357, 654, 819,182,002,
449,697,761,111,346,318,195,282,761,590, 964,189,790, 958,117, 338,627,206,
088,910,432, 945,244, 978,535,147,014,112,442,143, 055, 486,089, 639,578,378,
347,325,323,595,763,291,438, 925,288,393, 986,256,273, 242,862, 775,563,140,
463,830,389,168,421, 633,113,445, 636,309,571, 965, 978, 466,338, 551,492,316,
196,335, 675,355,138, 403,425,804,162, 919,837,822, 266, 909,521, 770,153,175,
338,730,264, 610,841,886,554,138,329,171, 951,332,117, 895,728, 541,662,084,
823,682,617,932,512, 931,237, 521,541, 926,970,269, 103,299,477, 643,823,386,
483,008,871, 530,373, 405,666, 383,868,294, 088, 487,730,721,762, 268,849,023,
084, 934,661,194,260,180,272,613,802,108,005,078,215,741,006, 054,848,201,
347,859,578,102,770,707,780, 655,512,772, 540,501, 674, 332,396, 066, 253,216,
415,004,808,772,403,047,611,929,032,210,154,385, 353, 138,685, 538, 486,425,
570,790,795,341,176,519,571, 188,683,739, 880,683, 895,792,743, 749, 683,498,
142,923,292,196,309,777,090,143,936,843, 655,333, 359, 307,820, 181,312,993,
455,024,206,044,563,340,578, 606,962,471, 961,505, 603,394,899, 523,321,800,
434,359, 967,256,623,927,196,435,402,872, 055,475,012, 079,854, 331,970,674,
797,313,126,813,523,653,744, 085, 662,263,206,768, 837, 585,132, 182,896,252,
333,284,341,812,977,624,697,079,543,436,003,492,343, 159,239, 674,763,638,
912,115,285,406,657,783,646,213,911,247, 447,051,255, 226,342, 701,239, 527,
018,127,045,491,648,045,932,248,108,858, 674,600, 952, 306,793,175, 967,755,
561,011,679, 940,005,249,806,303,763,141,344,412,269, 037,034, 987,355,799,
916,009,259,248,075,052,485, 541,568,266, 281,760,815, 446,308, 305,406,677,
412,630,124,441,864,204,108,373,119,093,130,001, 154, 470, 560, 277,773,724,
378,067,188,899,770,851,056,727,276,781, 247,198,832, 857,695, 844,217,588,
895,160,467,868,204,810,010,047,816,462,358,220, 838,532,488, 134,270,834,
079,868, 486,632,162,720,208,823,308,727, 819,085, 378, 845,469, 131,556,021,
728,873,121, 907,393, 965,209, 260,229,101,477,527, 080, 930,865, 364,979,858,
554,010,577,450,27¢,289,814, 603, 688, 431,821,508, 637, 246,216, 967,872,282,
169,347,370,599,286,277,112,447, 690, 920,902,988, 320, 166,830, 170,213, 420,
259,765,671,709,863,311,216,349,502,171, 264,426, 827,119,650, 264,054,228,
231,759, 630,874,475,301,847,194,095, 524,263,411, 498, 469,508, 073,390,080,
000, 000,000,009,000,000,000,000,000,000,000,000, 000,000,000, 000,000,000,
000, 000,000,000,000,000,000,000,000,000,000,000, 000,000,000, 000,000,000,
000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,
000, 000,000,000,000,000,000,000,000,000,000,000, 000,000,000, 000,000,000,
000,000,000, 009,000,000,000,000,000,000,000,000, 000, 000,000, 000,000,000,
000,000,000, 000,000,000,000,000,000,000,000,000, 000, 000,000, 000,000,000,
000, 000,000,000,000,000,000,000,000,000,000,000, 000,000,000, 000,000,000,
000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,
000, 000,000,000,000,000,000,000,000,000,000,000, 000, 000,000, 000,000,000,
000,000,000, 000.

285

Pl

Calculating p has always been a fascinating problem for mathematicians.
Today, with computers, it is possible to calculate p accurately to millions of
decimal places. Using the CALC programs, we will also make this
calculation. However, because of the limited RAM, we can only calculate
a few thousand decimal places.

There is a well known formula:
(1
—= At'm[—} + Ann[]+ Alln[—]
2) 8
And we know that Atan can be calculated by:

- \:IVH'I
Amn(X]Jrz(—]]" e

which converges faster as x gets smaller.

We have, therefore:

z=4. 2(-1)3%

2n+1

As CALC can only manage positive integers, we must multiply everything
by a power of 10, and keep track of the sign manually. The program PI
makes this calculation. It takes a real number from the stack which is the
number of significant digits you would like to calculate Pl to.

Pl will constantly display the current step number (2n+1) as well as the
number of digits left to calculate. It takes about 10 seconds per decimal
during the calculation (depending on the amount of free memory, the
number of decimals desired, and other things).

286 Part Turee: Lisrary o Procraus

Here are a few decimals of PI:

bUFP 2 LIV OYER S DIV
1 5]

‘T 5701 5 - '5' STO A

DUF 'R STO B 25 DIV DUF‘ B STD

C &4 LIV DUF 'C* STO

AL ACL M 2 ACE: CUP "M STO

CUF 1 CISF DIV DUR SIZE 2 DISF
LUMTIL

DU
EHM:
CROF T 4 MULT 2 F SUEB "3." SHWARF +

287

VAL

This program evaluates a polynomial at any point. The first argument is
the polynomial in vector form; the second is the point (real, complex, alge-
braic or name). To evaluate x*+2x+1atx=2,typel 1 2 1 1 2 VAL

WAL (# 2681h)
L4

+ ¥ K
kS
vV SIZE LIST+ DROP + A
#
6 1R
FOR %
VMY GET ¥ AR Y - & % +
MEXT
*

DER

This program takes the derivative of a polynomial in vector form. For ex-
ample, to take the derivative of 3x2+2x+1,type L = 2 1 1 DER

DER (# 2B&2h)
&
ARRY+ LIST+ - + A
« DROF

FOR ¥
“ # A ROLLD

ME
A 1 +LIST +ARRY
END

288 Part Turee: Lisrary o Procraus

A->V and V->A

A+Y will convert a polynomial in algebraic form fo vector form, and V+A
will convert a polynomial in vector form to algebraic form.

Example: '3#X~2+2%£+1" HA+*YreturnsL 3 2 1 1.

Mote that the program V+H uses the program VAL listed previoushy.

AV (# 68DH)
<«
¢ y@ 'I' STO
]

@ "¥* STO OVER EVWAL I FACT ~ 1 +LIST SHAF +

SWAF X' DUF PURGE & 1 "1 STO+ SWAP
UNTIL

VER

@ SAME

EHD
SWAF DROF "I° PURGE LIST+ 1 +LIST 2AREY
»

VA (# 4E46h)
« 'R WAL =

DIVP

This program will calculate the Euclidean division of two polynomials in
vector form. For example, to divide the polynomial x*+2x+1 by the
polynomial x+1,type:L 1 2 1 1 L 1 1 31 BIWF. Theprogram
will return the quotient in level 2, and the remainder in level 1.

DIVP (% 28E3h)
&
LUPZ + A B
&

B 1 GET A SIZE 1 GET B SI
+Ccnp g
#

rJ

E 1 GET DUPZ2 -

OVER 1 GET c » DUP 4 ROLLD # n o= -
1 »LIST RCHM

- AERY+ 1 GET 1 - +ARRY SWAP DROFP B

HEXT

LROP g 2 + ROLLL g 1 + +ARRY SWAP

EML
k2
»

290 Part Turee: Lisrary o Procraus

PCAR

FCAR will calculate the characteristic polynomial of any square matrix.
The resultis a polynomialin vector form. This vector canthen be used with
the program LAGU in order to find the roots of the polynomial, which
makes it easy to calculate all the correct values of the matrix

Example: & IDM PCARretunsC 1 -2 & -1 1 (e x’-3x%+3x-1)

FCAR (# DE94h)
&«
CUF IGH DUF SIZE LIST+ DROPZ = M I N
£
8 H
FOR =
M I ¥ % - DET
MEXT
M 1 + 1 +LIST *ARRY M 1 + IDN B8 H

)
w1l +HNY -1+ 2 +LI5T ¥ ¥ ~ PUT

291

LAGU

This program will find all the real and complex roots of any polynomial
(which has real or complex coefficients). To use it, place the polynomial
on the stack (in vector form) in order of decreasing coefficients of x: [a,
.. 8,], the coefficient g being the coefficient in front of the term x, and
execute LAGLU. The program will display the different steps of the cal-
culation, and return a list of roots of the polynomial

LAGL uses Laguerre’s algorithm to make the calculation: Z is fixed (an
approximation of the root. We can use 0 or the value of the previous root,
which saves a lot of time when calculating multiple roots), and calculate
Z., =2 + S, ,where S_is the Laguerre step equal to:

_||P(l)
PZ)+E4{(n-)PZ)) - ntn-1P(Z,)P*(2,)

=

In this formula, n is the degree of the polynomial, and P is the polynomial,
P’ is its first derivative, and P” is its second derivative. E can be either +1
or -1 to make the denominator as large as possible, in order that the
Laguerre step be as small as possible.

Caution: If the polynomial has roots with large multiplicity, the process will
oscillate without ever converging. The approximations are best for a
polynomial of degree less than 7, and with a maximum multiplicity of 4
LAGL uses the programs WAL, GER, and IVF previously listed.
Example: To find the roots of x-14.x+49.x>-36 , just type:

[1 8 -14 8 42 8 -3¢ 1 LAGU

A few moments later, we get the list of the six roots of the polynomial:
£1 28 -1 -2 -3 %

292 Part Turee: Lisrary o Procraus

LAGL (# BABFH)
3

DUF SIZE £ 1 2 ==

CROFP L 2

ELSE
CLLCE € 2 'SOL° £TO & "2 STO
b0

CUP DUP2 P STO 1 DISP "Z' AL SWAP DER
CUP 'Z2' WAL SWRP DER 'Z2' WAL P SIZE LIST+
- LUP 1 - CUP S0 2 PICK 2 FICK % HEG
+ P8 F1 PZHMAE

#

"Root Ho " M +5TR + Z

2 LIsSP Z2
HHILE
CUP 2" 5TO 2 DISP P& EVAL DUP RBS
BopBEEEEEL >
REFERT
Fi EYAL P2 EYAL
+R 5T
&
S RSS2 *=EBERT=® % +] DUPZ
CUP2 + ABS 2 ROLLD - ABS = 2 =
i - # + DUP
IF
FES ==
THEH

5@ .1 BEEF LROF RAMC 48 * 28 -
RAME 48 % 28 - R=*C "~B Hew Z8"
2 DISF

M HEG R # SWAP ~ Z +
EME
#

EML:
CROF
w
S0L 2 + 'SO0L° STO P 1 2 MEG £ 2 %
+RERY DIYP DROF
UMTIL
DUF SIZE LIST+ £
EML:

CROF { Z F PURGE SOL
HIx

293

PMAT

This program will calculate the image of any square matrix by a polyno-
mial. Ittakes the matrix and the polynomial (in vector form) as arguments.

Example: To calculate the image of the identity matrix of order 3 by the
polynomial 3x2+2x+1,type® ICW [2 2 1 1 PMAT

FMAT @ S44Ch)
&

SWAP OVER SIZE 1 GET + % ¥ L

e
¥ B COM ¥ IDM L 1
FOR ¥
CUF % % 1 =LIST GET % ROT +
SHAF ¥ % -1
STEF [ROF

ES

294 Part Turee: Lisrary o Procraus

rSOLVER

WSOLYER will sobe a system of non-inear equations containing many un-
kncans, by using the Newton-Raphson aigodthm. To usemSOLYER, you place
the various equations to be solved inko a list, and store itin * ME® " . For example,
the following system of equations will find the intersection of two circles. You store
tasalstin MER :

€ "SRQO+SRCYI=1" "SRCX-1)+SACYI=1" ¥ "MER" STO

Mest, you place e names of the unknowns in a ist and store itin " MYAR". (n
thisewample: ¢ X Y ¥ "HMVAR' STO) At this point, you may also store
approsdmations in the unknown vanables. This step i opfional, but it will speed
up the solufion. For example, you canput 1 into "K' and "Y "

Then placs the desired precision on the stack (for example, 0.00001), and execule
WSOLVYER. During the search, it will display the mangin of emor of the cument
calculafion. Mote thatmSOLYER will automatically handle any emors (division by
zemo, etc.). Ab the end of the seardh, it wil place diferent approximations on the:
stack, "agged” by the name of the comesponding variable. In our example, we
would ablain:

WSOLVER has two particulaniies:
+ |t allows you o find complex maots. To make such a search, simply use
complex numbers as an inifial approximaton.
+ |t contans many IFERR... END loops, so it is dificult o intenupt the
program by pressing COM]. To stop & press LOM] twice: rapidry.

WSOLYER was written by Christophe Dupont de Dinechin.

JACOE (% EBESH)
@
+ E ¥
ks
‘tmp. jacoch' CRLDIR
tmp. jacoh CLVAR
£ ¥ 1 E SIZE
FOR =
1 W SIZE
FOR w
E = GET ¥ w GET & +
MERT
HEXT

UFLIR “tmp.dacob’ PURGE
%

pSOLVER @ CC30H)
&
CLLCD MER MYAR + F E Y
L4

E % JACOB E SIZE Y SIZE
+ J SE SV

THEH
CROP "Marisbkle Error” 1 DISP 8
EHD:
CUF W o GET STO
HEXT
SV 1 +LIST +ARRY
i SE
FOR e
E = GET
IFERE
+HUM
THEN
"Function Erroril” EREEM + 1 DISF B
EHMD:

296 Part Turee: Lisrary o Procraus

NEXT
SE 1| +LIST +AREY
SE

Je 1 = 5¥Y % v + GET

"Jacobian Error:il” EREM + 1

&€

“Singular system:1” ERREM + 1 DISF

DEOF RAMD =
MD

B
0BJ* DROP
sV 1
FOR w
¥ v GET STO -1
STEF
UNTIL

AES “"Current erroril” OVER +
1L DISP P £
EMD

1 MVAR SIZE
FOR x
MYAR » GET DUP RCL SHWAF +THG
HEXT

287

MAZE

In the game MAZE you are lost in the middle of a maze, and you must try
to find the exit as quickly as possible.

To play this game, you must begin by entering all the programs that follow.
Then, enter the CST menu (by pressing LCST J—found to the left of the
[“AR 1 button). This will activate the 6 menu keys. They each have the
following functions:

+ [IMIT] starts the game. First a maze will be chosen, then the
player is placed inside, and the view is displayed on the screen, The
 represents your current position

« [WIEWI wil redraw the current view.

« The four arrows are for moving around in the maze.
Inthe following listing, only one maze is given. Itis possible to add as many
others as you wish. The different mazes are containedinalist' MFRZES " .
This is a list of lists (one list per maze) which consist of the following:

- A complex number which is the coordinates of the exit.

« A list of 4 binary integers representing the map of the maze.
Coding the map is done in the following way. Eachmaze is a 16 by 16 grid.
Each of the grid boxes can be either a hallway (0) or a wall (1). The map

is converted to 4 binary integers. (4 times 64 bits), each one representing
a fourth of the maze

An example is given on the following page.

298 Part Turee: Lisrary o Procraus

=%
@
€
o
ES]
L]
£
©
°
>
«
©
9
=
=

of the maze. Each white

box represents a section

of hallway, each black box

a section of wall.

The gray boxes represent

“virtualwalls”—areas out-

side the maze. Only one

of these boxes is white—
the exit—located at co-

ordinates (11,16).

2 3 4567 8 910112131415

1
16]0 0 0 0 0 0 0O O

140

9
8

011 0 0}[15

1

0 0

0
0
0
0

0 013

1
0
0
0

0 00CO0l0OO0O0O0 1

1

1
1
1

0|12
0|11
010
0

1
1
1

1
1

110

0

0000

001

1

0 0 0|5

1

0
0 00O0OOOTOOf2
1

0
0
0
0
0

00 0O0J0

10000001

0

0

130

12(0

110
10

5
4
3
2
1

2 34567 8910112131415

1

This table shows the codes for the map. Each section of wall is coded by

a 1, each section of hallway by a 0.

299

The enfire maze table can be coded in quadrants, by 4 binary integers,

in the following order: e
2|4

1(3

Those binary integers would be (ignore the line breaks):

1. # leleedleleclleoalaleleleaalislels
1l18l0leeeaaaalelalal 116088188880

2. # oooooBoollllleleeeodlelelalolela
al1819100aae1001111 196168168681 816b

3. #91119198008661 100111160081668181
@11181 106666536031 1 161 11666018880
4. #099119188108661 11081 1600681618111
1618681610191 1661616166 156068180
Converting these to hexadecimal, in order, gives the following list:

{ # AZ9SARZAERDZAEL1Gh # FROAARSABSFZSAh
74867E457000TTEEN # 34873085751565482h ¥

200 Panr Twmes: Lumeasr or Procraws

Here is the listing of programs to enter:

AL (# SB?Hh]
RDZ 16 RAND # IF »

BL1(# 4338h)
(This is not a NEWLINE character but rather ASCH 127,
obéained via 127 CHR)

BLZ(# 3D27h)
(& single spacs)

TS (# 3ES4h)
R+C S0 =

TV (# SAEDH)
« TP SWAF TVF + »

TV (8% 115Fh)
« DUF @ < SWAP 15 > + »
ETAT (# a5Ah)
<

DUPZ
IF

™
THEH
ELSE

DUFz & ~ IF SMAF & ~ IF 2 *= + 1 + LAE SWAP
GET 3 ROLLD & MOD SWAFP & MOD SWAF 16 SKAF
~ DUF # 1h # = SWAF 2 SWAF ~ # AND # Bh >

EHND

I4 (# ACLlh)
R 1 -Y2®»

ao1

I3 (# SE47h)
€« X1 +Y>»

12 {# Ddsh)
€AY 1=

I1(# ESEZh)
€ XY 1 +>»

TEST (# B24Ah)
«

1 'COUF" STO+ DUFZ
IF

THEM

"BRAVO" 1 DISP DROPZ 1488 .1 BEEP
END
3 FREEZE

CH (# C32Dh
« ETAT 95 # 32 + CHR »

MAZES (# 35FER)
C

(11,182
{ # AZYSAAZAEREZRELBh # FABARRSHESF 28Rh
7486784570087 7B5h # 3487385751565482h

ot

202 Panr Twmes: Lumeasr or Procraws

CST (# 1FE1R)

<
3

IMIT WIEM
£ " GR XL RV YOO AR XL " DR O

AR (# D130h)

L4

Iz TEET =»

RY (% R2SSH)

L4

Ii TEST =»

DR (% 7EAR)

LS

I2 TEST »

GR (% S7EDR)

&

I4 TEST =»

YIEW (% 9A77h)
L4

" "+ 5 (that's 9 spaces)

k'
CLLCC BLiI I1 CH BLL + + I4 CH BLZ I3 CH
+ + BL1 I2 CH BLI + + 5 SWAP + 5 DISP %
SWAF + 4 DISP S SWAP + 2 DISP "MOVE Mo "
COUP + 1 DISF 2 FREEZE

INIT (# SETSh)
&

MAZES CDUP SIZE RAND # 1 + IP GET LIST+ DROP
'LAB' ETO 'S0° STO 1 'COUR STO @ @
Lo

CROFZ AL AL DUPZ ETAT MOT
UMTIL
EHL:
YUOETO 'R OSTO VIEM

303

MASTER

MASTER is the well known game of Mastermind. The object of the game
is to try to guess a combination of digits from 0 to 9.

The length of the solution combination can be any size. To set this size,
(required to play the first time), simply enter the desired number and exe-
cute STOL. Then initialize the game by executing IMIT

To play, you enter a combination of numbers (your guess) in string form,
and then execute MASTER. The program will display the number of digits
in the right position (Correct) and the number of digits that are in the code,
but not in the right position (Found). For example, if the solution is 8548,
entering “2834" would return the following:

Guess Mo x
2224

Correct=
Found=

1
z

The first 8 is in the right position; the second & and the 4 are part of the
solution, but are not in the right positions.

To play, enter the programs that follow.

STOL (# CF2gh)
@

EH

‘LY STO IMIT
ELSE

514 [OERR
EHD

304 Part Turee: Lisrary o Procraus

IMIT (# 49F5Sh)
<«
@ 'Co' STO 1 L
START
RAND 18 * IF

HEXT
L +LIST "SOL" STO

MASTER (# 2807h)
&«

DUF
IF
TYFE £ == DUF

THEM
CROF DUF SIZE ==

ENDr

IF

THEH
CLLCD DUF = DISF STL FROG ¥ FREEZE
SE

514 DOERE
EHD

STL (% 4DBChH)
«
+ 5
«

{ » 1 5 SIZE
FOR X

S X X SUB STR+ +
HEXT

Jos

FROG (# 743Fh)
&
a6
+ FR CFP CT
&

1 "Cco’ ST0+ "Guess Mo " CO + 1 DISP

S50L PR 1L
FOR *
LUP ¥ GET 3 PICK x GET
IF
THE
W —2 PUT SWAFP ¥ -1 PUT SWAP 1 CP +
"CRTOSTO
END
NEXT
'PR' STO "Correct= " CP + 5 DISP 1L
FOR

¥
LUP ® GET DUP
IF
-1
THEHM
1
[
FE %Y DUFZ GET 4 PICK
IF

-2 PUT 'PR' STO 1 CT + 'CT' STO
W'OSTO

DREOF "Found= " CT + & DISF
»

306 Part Turee: Lisrary o Procraus

ANAG

This program takes a string of characters and displays all possible ana-
grams. For example, "HBC™ ANAG will display these character strings:
"ABC" “ACE" "BAC" "BCA" "CAE" “CER". Here are the
programs:

FRAMAG (# AGE0H)
&«

IF
E @
THEH
=1 "B STO+ FRDEFTH DUF E -
FOR X
A ROLL FRAWAG ¥ ROLLD -1
STEF
1 'B° STO+
LSE
FEDEFTH DUFM FREDEFTH Z -~ 1 - 1
START
+ =1
STEF
4 DISF

EHD
b

FROEFTH (# EAFFh)
« DEFTH C - »
ANAG (# 1FB2h)
<
+ A
«
CLLCD A SIZE "B STO DEPTH ‘C* STO 1 B
FOR X
A X DUP SUB

HEXT
PRAMAG FRDEPTH DROPH { B C I FURGE

ke

aor

SQUARE

The goal of this game is to arive at a display of the "magic square,” which

is the following figure:
HEN
H N
HEN
To accomplish this, the player may press different boxes (by using the keys

1 to 9). Pressing one of these will inverse the box as well as some of its
neighbors.

To play, enter the following programs, and execute "SQUARE'.

KEYS (# 2CE6h)
{ B2 8 894 F2 73 74 62 63 64 I

MESS '(:(EIDIQh]
“WORKING. .. "

Ti# 543%h)
€

€1245:¢1232({2356 13
€147 3{245683{{3697
{45782 (7892{56897:
3

M(# EEZh)

- 789+ - 456+

123+ 3

208 Panr Twnes: Lueasr or Procras

CALC (# ESBRN)
%
"Press a keg...” 1 DISF T 1

DROFP KEYS
L0
UMTIL
KE"Y
EHL:
UMTIL
FOS CUF
EHD:
igEs .85 BEEF MESS 1 DISP GET DUP 1 DUP
ROT SIZE
TAR

T
GETI 1 - DUP 2 MOD 1 +

EML:

SWAF 3~ IP 1 + SWAF 2 +LIST CAR SHAP
CUPZ GET MOT FUT "CAR' STO

T

DROPZ2

£

309

YISU (# ES3Eh)
1

o
CARR <€ 1 1 2+ 1 2
FOR =
R

1
STRRT
2 ROLLE GETI 235 % 22 + CHE 4 EOLL
SWAF +
MEXT
M ® GET SWAP + 142 CHR + 2 ROLLLD
MEXT
DROFZ 2 4
FOR X
® 1 + DISP
HEXT
CALLC

UMTIL
CAR SOL ==
ME

Bravo..." 1 DISF 1 3
STRRT
igea .2 BEEP
HT

SGURRE (# 2DC2h)
&

CLLCE MESE 1 DISP & RRZ CRE

oo
11 192
START

EARHD .5 » PUTI
MEXT
DROF DUF
HTIL

SoL o=

EHD:
'CRR" 270 YISO

310 Part Turee: Lisrary o Procraus

PR40

This program will print character strings with 40 characters per line instead
of 24 on the HP 82240A or HP 822408 infrared printer. The string may
contain carriage returns (1), and any line which contains more that 40
characters is split (just like the function FE1).

The program is simple. Ittakes the string and splits it, first at each carriage
return, then it cuts the portions that are longer than 40 characters. Each
of the sections thus obtained are transformed into graphics objects in the
smallest font (using 1 +GROE) and then printed using the function FE 1.
Because of this, any small letters are changed to capitals.

This program is particularly useful for printing listings obtained from the
disassembler.

FR4@ (% FESSH)
"1" + + 5

MHILE
5 SIZE
REFEAT
S DUP "1" POS DUPZ 1 + OVER SIZE
SUB 'S’ STO 1 SWAP 1 - SUB
=T
&
MHILE
T SIZE
REFEAT
T 1 48 SUB 1 +GROE PR1 DROP T 41
OYER SIZE SUE ‘T STO
END
s
END

311

DSP and INITSCR

These two programs, BEF and IMITSCR, let you use the HP 48 screen
in 33-column mode. The display is shown line-by-line to allow you to see
each line while it is being displayed.

The two programs perform the following functions:

- IMITSCE erases the screen and initializes the screen memory
used for the line-by-line display.

« [5F displays the message line-by-line scrolling up any text already
displayed.

The function *GEOE is used to obtain the small font characters. A
graphics object is created for each line of the display, and then each line
is saved, in list form, in a variable called SCEEEM. The lines are added
using the OF function on a blank GROB, and then the result is displayed
using the +LICC function.

This pregram can be used with the program I TSRS (the disassembler)
to view the listing as it is disassembled. ['SF can replace the RPL function
DISF. Todothis, replace 1 ['ISF inthe program STOS with SF and
add IHNITSLCR to the beginning of the program L ISASH.

IMITSCR (# 424h)
« { ¥ 'SCREEM' STO CLLCD =

312 Part Turee: Lisrary o Procraus

DSP (# 7BA4h)
3

IF

"1" OVER DUF SIZE DUF SUEB OVER =
THEM

ELSE
LROF
END:
+ THT
=
WHILE
TAT 1 OWER "1" POS DUP
REFEAT
3 DUPH SWAP + OVER SIZE SUB 'TRT' STO
1 - SUe 1 +GROB SCREEM + 1 9 SUB
'"SCREEN' STO # 83h # 48h BLANK 1 SCREEH
SIZE DURP # eh *
+ 0
&
FOR X
Bh 0 # 6h ¥ * - 2 +LIST SCREEM
® GET GOR
HEXT

#
+LCD

EMD
2 DROPH
#

313

MUSICML

MUSTCHL will play tunes without interruptions between notes. MUSTCHML
is a machine language program that has not yet been assembled. The
RPL program listed below will take a list of notes (frequency, duration)
and create a machine language program that will play them. It uses the
two programs GRES and A+STR, previously listed.

Example: £ 1488 .1 2288 .1 i468 .1 > MUSICML EVAL

Note: The 'Czde ' object (which is on the stack before executingE%AL)
can be stored in a variable to be used later.

The following is the RPL listing of MIIS ILCHL ; the disassembled source
listing of the machine language portion is given on the next page.

MUSTCHML (B EC2h)
%

+ L
#
“CCDE2B" # 4Fh L SIZE 2 + 5§ % + A+STR +
"SFESFEEBE" + L SIZE 2 + 5 % A+5TR 1 4
SUB + 1 L SIZE
FOR ®
L ¥ GET A+STR + L ¥ 1 + GET 1l@@@ =
A+STR + 2
STEP
" BEEEEREEEEET 147071741431 74137BE0EBARDESF SR "

"1BeoDFOTIF2RVeR1421642820" + + GASE
#

314 Part Turee: Lisrary o Procraus

CChze COMESY PROL_COGE Code object

start #¥%%% COMCSY Cendi-dstarts Code length
SFB97EE GOSBYL SRAVE_REG Backup regs.
SE=xx+ GOSUBL 11

LIST OF NOTES—Frequency / Duration (in milliseconds)

COMCS) #E8E50G End of notes
COMCSY #EBEEE
1 &7 C=RETK
135 Li=C
147 C=LATI A Read frequency
L7 L=C A
ivd Ci=bi+ =
145 A=CATLI A Read duration
174 Ci=Ci+ =
127 Chiex
=) RETK=C
£ C=A
2AA =0 A Done?
5] GOYES z
SFEAY1E GOSEVL BEEP_LM Beep
E90F GOTO 11 Loop
2 &7 C=RETK
SFZ0YeE GOSBVYL LORC_REG Restore regs.
142 A=CATE A Return to RPL
164 Le=bE+ 5

2BEC PC=CA2
end

MODUL

This machine language program will quickly alternate between two
sound frequencies. The arguments are a starting frequency (STRRT), an
ending frequency (EML), a frequency increment (INCEEMEHRT), and the
duration of each note (CLIE). These settings are used by the RPL program
MOLUL, which automatically creates a machine language program that
will make the sound. This program uses GASS and A+=TR, listed
previously.

Example: 1408 2988 S8 .81 MODUL EYAL

Note: The 'Czde ' object (which is on the stack before executingE%AL)
can be stored in a variable to be used later.

Here is the commented assembly source listing for the assembly routine
created by MOL:UL . The asterisks (%) represent code that depends on one
of the 4 arguments.

CChz2e COMCSY PROL_CODE Code object
start 15666 COMCSY dendi—dstartd Code length
2FE9YeE GOSEYVL E_REG Backup regs.

SdEEEEx ART Start frequency
[or A

11 DB A
Be
SdEEEEx C:UR (In milliseconds)
SFERA7iE EEEFP_LM Beep
ar
[erd A
SdEEEEE ITHCREMENT Increment
] A
SdExrEx EHL: Ending frequency
EEE R Or:?b»=0C A
7O 1i Loop
SF2hved LORC_REG Restore regs.
142 A Return to RPL
164 be=pe+ 5

SEAC PC=CR2
end

316 Part Turee: Lisrary o Procraus

MOCUL (# 1ELFH)
@

+ D FIFP
“
F
F 18@8 = DUF 'F' STO # Bh + # ©h ==
THEM
“ZERD DURATIOM..." DOERR
EHD
IF
I # Bh + # Bh ==
THEN
"ZERO IMCREMEMT..." DOERR

EHL:
"CCO2B15EBESFEO7YEE34" D A+STR + "DYDBRES4"
F'IFFHSTR + "OFEAVIBETDYI4" + 1 A*STR +

oF <

THEH
g

ELSE
o

EHL:
+ "34" + F RAETR +

EHI
+ "TLEFZDVeBid421e48820C" + GASE

+

317

RABIP

This little program will generate random sounds in the frequency range of
0 to 4400 Hz, for a duration of 0 to 0.1 seconds each. It stops when any
key is pressed. This could be used as an original way of letting the user
know that some long program has finished its calculations.

RABIF (# A73EN)
&

Do
4488 REAND * .1 RAND #= BEEF

JINGLE

This program plays a litle music. The notes for the tune are contained in
the list SOUNDS (an example is given here). Note that the SOUNDS list
is given in reverse. The last frequency-duration pair is the first note
played.

JINGLE (# 83E1h)
L 4

SOUMDS LIST+ 1 SWAP 2 ~ MEM DROF
START

SOUNDS (% SA73h)
€ 328 .75 448 .15 275 .15 308 _.873 358 .15 398
.875 638 .15 565 .15 398 .15 485 .15 565 .15
J92 .875 398 .675 398 .15 J65 .3 9B .3 5@
3193 3:936 15 515 .8F5 398 .877 390 .15 465 .3

218 Panr Twmes: Lumeasr or Procras

RENAME

This program allows you to rename an object. |t takes the old name and
the new name as arguments. The object is renamed without changing its
position in the directory order.

REMAME (# 1RZ24h)
&«

OYER RCL SWAF STO YARS DUPZ SWAF FOS 2 SWAP
SUB ORDER PURGE
»

AUTOST

AUTOST is an example autostart program. You may add o this program
to improve it as you wish. As is, his program will be assigned to the
[OFF] key automatically (i.e. it will make the assignment and put the
calculator into USER mode).

RAUTOST (# BCESHh)
&

«
CLLCD OFF 14@@ .87 BEEF "HF48 @ RERDY"
1 DISFP

1888 .@1 BEEFP .5 MWRIT
*
91.3 RSN -&2 SF

19

CAL

CAL will display 2 one month calendar. As arguments, it takes a list of two
real numbers that specify the month to display: The number of the month
(between 1 and 12) and the year {between 15383 and 9999).

Or, a quicker method:

If the list contains only one element, this is considered o be the
mionth number, and the year will be the current yvear according to the
calculator clock.

If the list is empty. then the curment month is displayed.

Mote that the calendar is "European” style; Monday is the first day of the
week.

CAL (# ZES1h)
L 4

CLLCD # 4E2CFh SYSEVAL RCLF

+* F

«
=42 SF { » + DATE FP 188 + SWAF OVER IP +
SWAF FP 18868 % + DUFP DUP SIZE 2 MOD 2 +
GET SWAP 1 GET
* Y M
«

l-al"lll:ll[? 1 W 188 » + Y 1090808 - + DDAYS

* 5

L

{ "JANUARY" “FEBRURRY" “MARCH" "AFRIL"
UMAY" UJUME" “JULY" "RUGUST"
"SEFTEMBER" "OCTOEER" “HNOVEMBER"
"DECEMBER "

M GET * " + ¥ + " "
1 22 4 PICK SIZE = 2 » SUB SWAF +

1 DISF " MO TU WE TH FE SA SU" Z DISF
L 33!.1 2}? 21 3@ 31 38 31 31 30 31 =0

Paar Twmes: Lueasr or Procras

M GET M 2 == % 4
MOD @ == % 188 MOD & == - % 1@B88 MOD

B == + AM +
-
=
B 3
FOR L
"ol v
FOR C
%F? # 0+ 5 - " " SHAP
CUF & > OVER M £ AMDG
THEH

CUP SIZE DUF 2 - SHWAFP SUB +

HERT
L ie = # 124vBh + SYSEVAL

HEXT
¥ FREEZE
#

321

CIRCLE is a rapid circle drawing routine written by Christophe Nguyen.
It uses the Bresenham algorithm and takes two arguments:
number, the diameter of the circle (if the diameter is negative, a white
circle with a diameter of that absolute value is drawn); and a complex
number, the co-ordinates of the center of the circle. These two argu-
ments are left on the stack. If they are no longer useful, you should drop

CIRCLE

them (with CROFZ)

This program is self-modifying; it should not be used as a backup (saved
inaport). Three demonstration programs (TEST1, TESTZ,andTESTS)
show how fast it is. Its long disassembled source listing is omitted here.

TEST1 (# Degzh)
&

k3

ERASE ¢ # ©h # ©h PYIEM 1 1800
STRRT

EAMD 26 % EAMD 121 * 5 - RAMD A4 * 32 -

R+C CIRCLE DROPZ
MEXT

TESTZ (% SEEER)
4

&

ERRSE € # Bh # ©h PYIEW 18 <B,@> 1 zZ@
STARRT
CIRCLE DUP2 RAMD 18 * S - RAMD 18 * S -
R+ + CIRCLE

CUPZ RAMD 16 % 5 - RAND 18 * 5 — R=C +
CIRCLE DEFTH ROLL -1 # DEPTH ROLL CIRCLE
DROFPZ

MEXT

TESTS (# 25EFh)
&

322

IMIT DEG
oo

Part Turee: Lisrary o Procraus

A real

-1g268 1

FOR T
ST % COS 6B %= 7 T % SIM 3@ # ReC 3
OVER CIRCLE DROFZ DEFTH ROLL -2 SWAF
CIRCLE CROPZ 2

STEF

UMTIL
=

EHD:
B

IHIT (4 SBF1h)
L4

ERRSE 1 2@
START
Cle@, 1ea

MERT
£ # Bh

b

i)

Bh

CIRCLE (# 9965h)

Lon2a
86147
CBEVE:
41471
AEE2E
14215
14181
CFi41
17F17
Si1241
AREBEC L
TiFal
3180E
DEibE
FoE26

ZHEBF1
13317
13517
25174
22198
Z16ER
CiCk1
124AF
41321

EEDZ1

rbizz2

Caais :“

E2152
131;1

3FEF1
41371
41471
17EZ@
TeBEE
Faldz
41AFE
31428

FYIEKW

CChza
35867

35174 1:

i5vi=
rbT24
SRSET

142CC
REVZ1
B288F
BEZIE
cEher
iFCo@
BFRzE
43430
18243
1ADS1
Ecl@g
A1&390
318F2
1CERS
2EEFF
FELRAR
cC498

oC 1511@

SFB97V
BEF1S
SYoFE
iBF21
co1av7
Th5a4
CE4E4
2iCic
14216
4BEIE
£2ae0
vizel
SBREE
1511

149
111

ECECH

1441
1111

1z38F2
SraEa
BEBER
13414

ic 2icis

FF153

cB281
S1FF7
18267
BE2E2
1421B
REZEE
g1cic
Lid411
428ac
ZREZE
22ea1
F&Eaa
CERBE
111RE
CECaC
ZB24A
SReRE
baiEA
S58eA
BC434
BEACH
TC21

1BELE

37135
Sili|
13517
2171
SESET
co137
FicB1l
691?F
3713
BBSHB
23010

6SFF@E
AZ438
RA2E34
BEEEC
v 2@ag
TeZE1
EFzE1
11G86
11BCAH
SRE4A
1511

323

BANNER

The program ERMHER will allow you to display a scrolling message in
giant letters. ERMMER was written by Christophe Nguyen.

Notes:

- The accepted characters are the ASCII characters from 31 to 90
(numbers, punctuation, and capital letters).

- BRMMER uses a table to draw the characters. Because this table
needs to be generated by the program FET, entering the programs
is a little different than usual. To enter EFMHER, do the following:

- Enter the code for ERHHER 1, as a string on one line with no
spaces, and place it on the stack.

- Enter and execute the program MKET (which will produce a
string of 2100 characters).

- Enter the code for BERHHERZ, as a string on one line with no
spaces, and place it on the stack.

- Concatenate the three strings (by pressing + twice).

- Execute GASS (orEASE) and store the resultas' BAHMER * .
The resulting program should look like & CHE + CLLCE
Code DROF.

To use BAMMER, simply give it a string of characters, and watch the
results. Example: " JOURMEY TO THE CEMTER OF THE HP48,.."
EANMER

Here is the commented assembly source listing for ERHHER, then the
codes for BAHHER 1, and BRHHERZ, and the program MKT:

324 Part Turee: Lisrary o Procraus

start

Loop

LoC2E
4B2AZ
65BC1
TEEAL
S58A1
Cohze
23REE
SFE97ER
1BEBSE?Y

i4z2
S41za68
C2

134

18R

137

125

COMCS2
COMCSD
COM{S2
COMCSD
COM{S>
COMCS2
COM{S2
GOSEYL
DE=152
A=CATE
LCHEX
C=C+A
DE=C
R2=C

R
GOYES
GOLOMG

FROL _FRGH
#ZAZE4

#1CBEE

#1RBET

#1A258
FROL_COLDE
tendd-tsharty
SAVE_REG
TESEE

A
#BBE21
A

-
L)

YESEE

o

[Enpay—
i

Corit
Crone

Program object
ull

CHR

Addition

CLLCD

Code object

Code length

Backup regs.

A=@ screen bitmap

Current position

Big pixel height

Big pixel width

(2 nibbles, 8 bits)
A=@ string
D1=@ of first char.

DO=@ screen bitmap

ds screen position
D1=@ char.

Read 1 char.
CHR(0)?

Continue
Done

325

Cont 2d4F 1868 LCHEX #90@1F

C=RA=-C A ‘Calculate the

DA A=C A ;offset to

5 C=C+C A Jfind the

Cé C=C+C A srepresentation of

Cé C=C+C A ‘the char.

Cia C=C+C R ;1 char= 35 data

i C=C+C AR Char beiween 31

Cz C=C+A A ;and 90, then:

Cz C=C+A A joffset= no-31} 35

[C=C+H H

DA A=C A

SE4388 GOSUBL Get_code Gc@u.’; after the data
(to defermine sddress)

: End of BANNER1 and beginning of the character codes

* These codes are 1 nibble per pixe! (3 or F) to speed up
* execution. They are coded column by column.

* Take, for example, the leffer A:

SFEEEEN

|

)

|
EEEEEE
"!I'l:l'l]'::l'l]"l:ll:l
cooohooH
oocoomoomn
cocomoomH
o EEE O

The code for A fooks like:
OFFFFFFFO0FO00F00F000FO0F0000FFFFFF ...

* End of character codes, and beginning of BANNERZ2

L T T T I S

228 Paar Twmes: Lueasr or Procras

St_col
Elank

#ar
E

E
End_col

WF
End_repH
WP

1e
16

Repeat _H

1
Wr_col

B
7BS8E
A

mm momm

C=i@ of data
Add offset
{@mext char
Save

5 columns

f not done
Otherwise --> blank
7 lines

Done
Read pixel
Big pixel height

Done
Wirite
; Go to the
; next line

Next big pixel

We have wntten on
right of screen:

Now we must

scroll to the [eft
Recalculate the num-

ber of fines fo
scrofl.

azr

Repeaf L

Part

Left

E=B-1
GOC
D=5
A=DAT@

Dia=R
GOsSUE
GOTO

D@=C
GOTO
C=Rz

Dig=C
C=rB
A=
A=A+A
A=A+A
A=A+A
C=A-C
B=C
A=a
C=C-1

DATE=A
D@a=Dir+
Da=Dir+

=B
D@=(5>
A=DATA
Da=A

GOsUE
GOLONG

RSTK=C
A=B
B=C
C=A
RSTK=C

B

Mext _col
TA5SEE

A

Left
Repeat L

gimﬁmmmm mm

Extension of
width

Scroll

Adding space be-

two characters

Write a blank column

Scroll

Scroll the visible part
of the display.

C=# of lines
DO={ screen bitmap

Panr Twmes: Lumeasr or Procraws

68EBF
Done 8F2D7e8
142

164

[=]st=1m
end 8DBFL

Bz138

E=E-1
GONC
C=RS5TK
EB=C
LCHEX
C=C-1

GONC
C=RSTK
ETH

p=
A=DATE
HSE
DATE=A
DiE=DnE+
A=DATE
RSR
DATE=R
D=0+
A=DATE
RSE
DATE=A
p=
DE=Dia+
GOTO
GOSEVL
A=DATE
DE=0ia+
FC=CA»
COMCSY
CONCSY

B
Mextlft

B
#BEBEE
A

DROP
EFILOGUE

Delay fo slow scrofl-

Dore.

Scrofl one single ling

Next fine
Cantinue
Restore regs.
Retum fo RPL

a2

Here are the programs that you will need to enter. The method of entering
these is not the same as usual. Please read the notes on page 324.

EANHER1 (# 4CB&h)
L2028 4B2R2 ecBCl PeBR1 2S2R1 CCD2B 22RB0 2FESY
GE1EE BSEF1 42341 20080 21341 BAR137 13566 AEGZE
221268 1BEARE B2622 128168 16712 51421 21172 13712
SEE1E EBSAY 14213 B16F1 &F1é60 87135 Dal4E 26028
2C092 B824F1 B@EEEE DRCeC eCele CelC2C 2C20A 2E428
5]

MKT @ DF2Eh)
&

"t L # Bh # Bh 3} PVIEW 21 28
FOR A
EIDIC?T H{ # Bh # B > A CHR 2 *GROE REPL @ 4

g &
FOR Y

F
W ORsB Y R#BE & SLIST PIR?

EAHMHERZ (3 B??Sh)

BYCAL r1157 BE131 3ESA TRIFS 8BEFT B317E AETAG
b4vzl ‘5111 SALE4 2115@ 116F1 6F16l E6CEF1 VB&ED
F119R ES1BE 83871 46134 118FIE AARE4A E4A64 BEERG
D471l BEGSE 7id4z21 38705 Be2EF 11A132 4607F 11A12
4115A EARG4 Ae4AE 4BEEA ESASE AGE4S 11381 16F16
Fi5ié CEFRE 21BEG SE714 21367 £0@3C S96F0 &AE4A
ESAEE BERED S7 187 AES34 EBBEGE CESDF BYB1E FISz21
B94i5 B116E 1521E 24158 116E1 42F41 SB320 16368
BFEFZ DvVeE1 42164 SB2CE DEF1EB Z15@

330 Part Turee: Lisrary o Procraus

Appendices

331

232

A. Answers to Exercises

Arrenorces

141, [€10=1 (the lefi-shified (8] key)
12, [~1CRCLI (the right-shiffed [STO1 key)

2-1. One possitle sequence is [SICENTERIC3ICENTERICL]
[+1C91CENTERILSIC=1Cx10=1. (With some functions,
like L+1,[=1, and[x].you don't need to press CEMTER 1 after
pressing them).

2-2, For example SHAP ROT
2-3. COSCC3#50-11274-12 whichgivesl (COSCB2).

3-1 Type LILHOMEIC' JCEICXICOICENTERIC J[MEMORY]
[CRDIRICVYERICEXOICDIDCD ICAILSTOICZIC' 1CB]
[STOIC31C" I0CICSTON

3-2. 6 (PARTS, PROB, HYP, MATR. VECTR, and BASE).
4-1. « *A B %« A B + » » Thecanakobeusedioadd twoshings.

4-2, It calculates the fraction (A+2){A'B) where A and B are two real
numbers taken from the stack.

4-3., An example:
FIED C# SBTEh>

+ M
«
IF

H1=
THEH
1

ELSE
M1 = FIEBQD N 2 - FIBD +
END

-

5-1. ih, Ah, 18h, FFFFh, BEBEh.
5-2. 281, 16, 256, 2888, 3.

A. Answers Io Exeveises REL)

6-1.

6-2,
6-3.

6-4.
6-5.
6-6.

6-7.

6-9.

7-1.

334

B73, AFB.

ForP: B03 and A8B; for WP: B13 and A9B.

WP
411.
41
ca11.

A1S D=D+C WP, ATZ D=D+C W, AZS D=8 P, A3 D=8

#70080n:0, #70081h:1, #70082h:2.

C field X contains 210, C field B contains 10, and C field XS

contains 2.

3 (the nibbles 0, 1, and 2).

The program codes are as follows:

CChaa
45860
6218

cc
34343521
CE

SOF

COMCSY #820CC

beginCOHLS» Lend)—Chegind
GOTO 11

sub1 A=A-1 A
LCHEX #12345

12 C=C-1 A
GOMC 1z
RTHCC

11 LCHE! HEBEES
A=C H

13 GOSUE 1z
7RG A
GOYES 13
LCHE! HEEEE 1
A=C
GOSUE 14
7h= A
GOYES 13
A=A-1 A

15 RA=DATE A
Da=0a+ 5
PC=CA»

Appenpices

7-2.

8-1,
8-2.
8-3.
8-4,
8-5.

8-6.

8-7.

8-8.

SAA 14 7C=8@ A

B& RTHYES
L2 C=a A
E4 A=R+1 R
B1 RTH

end

The code listing would look like this:
CCh2E 45666 65180 03454 321CE SDFES

5
CEF2A C2F34 16@88 DAY11 B8R4 BCC14 2
ABEDLZE E481

i

Ll
165

The listing decodes to:

143 R=DAT1 R
133 AC1EX

iv2 Ci=Di+ i@
1577 C=DAT1 K
EVE C=C+1 o]
1557 CRTI=C H
121 Ci=R

142 A=DATE A
164 Cia=DiE+ 5
230 PC=CR

The system binary <54321h>.
11926 ELCER

11926 BYE0G

22926 108 BUECCEEBEEZL &

-77345.

8
=

Ba0AT
B3CEA

Some precision would be lost by coding it as 5228 S18EE

4221898754321 B,
-1E-2 (-8, 81>,

FPoZE GEE DEED0DEEECE]l @ 18808 BOOOBBE0GEZ 0

A. Answers to Exercises

335

8-9.

8-10.

8-11.
8-12.
8-13,
8-14.
8-15.
8-16.
8-17.
8-18.
8-19.
8-20.
8-21.
8-22.

8-24.

8-25,
8-26.

336

(=33,33).

L2920 BEE0D DEoDDEEDoEEE00E O CoEoE.
... BEEEEEDEEE0EEEE O

Thelong complext 1. 23456 FE261 2545, 5452 18957854321)
FESZE =4

The character 'D' (ASCII code 44h)

SES2E oFIZEE 119268 36806 O8G0 SooE6 SOB0G. .
It contains character strings.

CZ2AZ2E BiBEE 34 56 Ce C& FS B2 75 F& 27 CE 46
"Brauc 1"

E4AZE Sieee 1BFFoISEE000EEE0

#54321h

4rAzZBEEZ1ZE

L0 ¥

69A2E FFY 1ZE66 Gaoon 18 44 18 CZAZETOEEEIZ
zieae 18 14 18 CZAZEFE0Da43

E9AZE 166G 521 GIEFY BOCEE 12060 DEGEE 18 44
EgHEBF@BGBSE 21868 16 14 18 CZRZB7ooE043
SBRZE 54E2@1614 S4EZG1024 FEBA1 BZ138
"AECE-CO T

ALAZE 239200EEEEEEEEEEARZ 10 C2AZEVEERE0E
£3EE1 B213@

Appenpices

8-27.
8-28.

8-29,
8-30.

8-31.

8-34.
8-35.
8-36.
8-37.
8-38.

8-40.
8-41.
8-42.
8-43.
8-44.

8-45,

Sel_m™3
CFRzE 28 35E4 B4EzZG384351474

Ok CORRAL

GROE 4 1 F@

#6FFh

"MIDE'

No.

"BCKP’

#62D6h

With #2361Eh and #2363%h
With #1AB67h.

CCOLz2E Seaaa

CCO2e Feeoe 142 1ed 2BSC, Thisis the program, which
does nothing but pass control to the next object:

142 R=CRTE &l
164 DE=0E+ =]
SBEC FC=CA)

S4E2E TE 24 D& CE C& FE.
An empty name.

4

"Mame .

29EZE 654 321

Library #001h, command #002h.

A. Answers to Exercises 337

238

B. Background Information

Arrenorces

Manufacturing Information

To determine the version number of your machine, tum the HP48 on, press
and hold down the CON] key. While holding that down, press [0, Now
release [D], then release [OM] . Three lines should show on the screen.

Mow press backspace ([4 1). The text” 78303t 1B8DA1TEESHLL 1BS™
should appear at the top of the screen. Now press ~ . You should see
something similar to this:

Version HP4&-7
Copuright HP 19259

The ? isyour ROM version (&, B, C, D, E, etc.). Toreturn to the normal state,
press the buitons COM1=LC1 (just as you pressed CON1=CD1J).
When and where was your HF48 manufactured? The serial number (on
the back of the calculator, above the battery compartment) tells you:

* The first two digits show the number of years since 1960.

+ The next two digits are the week number of that year.

+ Thencomes the inifial of the country where the machine was manuf-
actured (A for America, B ior Brazil, S for Singapore).

* The last 5 digits tell its manufacturing order for that week.

Thus, for example, the HP 48 with serial number 3007 A01051 was the
1051 machine made in America during the 7" week of 1980,

B. Background fiformation a9

Troubleshooting

When your HP48 is locked up (i.e. it doesn't seem to respond to any key
presses) try, in this order, these possible solutions:

COMT will interrupt the majority of programs in execution without
danger of losing memory.

[ONI=LC] is a system reset, or "warm boot”, and will not affect
memaory (except the stack is lost).

[OMI=L[A1=CLF1 will eraze the memory. You will be asked the
question, Ty To Recowver Memory’?. Atthis point you can either
answer YES, or NO. This restoration can fail if there are serious
problems with RAM. This restoration can sometimes cause the
maching to lock up, so you will need to uze the next solution given
here.

On the bottom of the HP48 are 4 rubber feet that are not glued in, so
they can be removed and replaced easily. Underneath one of the
feet near the top (either the left or the right, depending on the model),
you will find a little hole with the letter 'R next to it (as in RESET). By
inserting a thin object, (like a paper clip), you can press a reset
button inside. If you only press it for a short while, the User data will
be preserved. By pressing it for longer (one or two seconds), the
HP48 memony will be completely erased. CAUTION: this button is
fragile. Do not use this method unless absolutely necessary.

As a last resort, you can remove the batteries. There are some
capacitors inside the calculator that still give it power even when the
batteries are cut, so you will need to discharge them. Two solutions
are possible; wait a few hours, or insert the batteries backwards for
a few seconds (there is no danger, the HP48 is protected with
diodes). Then insert the batteries properly and tum it on.

If none of the methods listed above work, then the best thing to do
is to refurn the calculator to an authonized Hewlett-Packard dealer
for repairs.

Arrenorces

Binary, Hexadecimal, and Other Barbarities

Here are a few principles that you will need o know well in order to
understand the majority of the subjects discussed in this book.

The "Base” of a Number

In mathematics, a base is the number of symbols that are used fo count
with. Usually, we use base 10. The symbols used are the digits from 0 to
9. Ifwe want to count in base 4, then we would use only 4 symbols (0, 1,
2, and 3, for example).

As we count in base 10 we proceed as follows:
+ We begin with zero (0);

* Togotothe next numberwe replace the dght-most digit with the next
symbol in the series (0 becomes 1, 1 becomes 2, etc.);

* When the right-most digit is the iast in the series (9), we replace it
with the first (0) and we replace the digit to the left with the next sym-
bol in the series (if there is no digit to the left, we say that it was 0).

This general principle is the same in all bases, the only difference being
the symbaol list used.

For example, to countin base 4, we would have: 0_1,1_1,2_1,3_1,10_1,11‘,12{
13,.20,,21,, 22,23 30, 31, 32, 33, 100, 101,,... (which, in base 10,
corresponds to the sequence: 0,1.2,3,4,5 6.7, 8,8,10, 11,12, 13, 14,
15, 16, 17,._.).

MNote, however. that the number 102, would read "one-zero-two"—noi
"one hundred two," which is our common lingual notation that can only
be used with base-10 numbers.

Two bases are frequently used with computers: base 2, which is called
binary. and base 16, which is called hexadecimal.

B. Background biformation 241

Binary

To examine the contents of a memory location, the computer checks for
electric current: either there is current present, or there is not. Thus, an
electronic computer can only have two basic memory states, 1 or 0. And
since only two states are possible, all of computer science is based on cal-
culations in base 2. Such calculations are called boolean algebra, named
after George Boole who developed this type of two-state arithmetic in
1846. In base 2, we count as follows: 0, 1, 10, 11, 100, 101, 110, 111,
1000,... This idea leads to another: the bit.

The Bit

A bitis a binary unit which can be 0 or 1, and thus corresponds to the basic
unit found in computers. These bits are usually grouped together, some-
times by four (to form a nibble), but more often by eight (to form a byte).
Note that, in groups, the order of the bits is important.

The Nibble

The HP48 groups the bits in blocks of four. These blocks are called nibbles.
There are 16 possible nibble values: 0000, 0001, 0010, 0011, 0100, 0101,
0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

The Byte

Other computers usually use blocks of 8 bits, or bytes. There are 256
possible byte combinations: 00000000, 00000001, 00000010, ...
11111110, 11111111. As you can see, binary is not real great to work with,
since you must frequently manipulate very long numbers. A base with
more symbols would be much more convenient. If the basic unitis binary,
then it would be best to use a base that is a multiple of 2. Hexadecimal,
or base 16, is what has been chosen.

342 Appenpices

Hexadecimal

Hexadecimal, or base 16, needs 16 symbols to count with. There are not
enough of the traditional digits, so we add 6 more: A, B,C, D, E, and F. (Of
course, the symbols used are not important in and of themselves; you can
choose any symbols that you wish to do your mathematics. For example,
the symbols {6, e, and $ } could be used for a base 3 system. Youwould
be able to count, and do mathematics using the sequence of numbers: 6,
e, S, e6, ee, e$, 96, Se, $9, €66, ebe, e6$, eeb, eee, ee€$,... This mightbe
very clear to you, but others may not completely understand. This is why
itwould probably be best to use the same symbols as the rest of the world.)
With the digits chosen for base 16, we count as follows: 0,1, 2, 3,4, 5,6,
7,89, A B CDEF 10, 11,..19 1A, 1B, 1C....

A nibble can therefore have a value of 0,1,2,3,4,5,6,7,8,9,A,B,C, D,
E, or F. And a byte can have a value of 00, 01, 02, 03, 04, ... 0A, 0B, 0C,
0D, OE, OF, 10, ... FE, or FF. As you can see, these numbers are much
easier to use than those composed of only zeros and ones.

Converting Between Bases

The following program will produce a table of conversions between binary,
decimal, and hexadecimal, for the numbers from 0 to 255, which are the
most useful to programmers. Each line will have, in this order, binary,
decimal, then hexadecimal, all equal to the same number.

CONY (% R7EH)
Lo

"1 @ £S5

FOR ¥
A 1 DISF X R+E SWRP BIW OYER +5TR 2 OVER
SIZE 1 - SUB ¢ " SWAP + CUP SIZE
7 - 222 SUB + DEC OYER +STR 2 OVER SIZE
L - zue " " SWAP + DUP SIZE 2 - 99

"IIB + HEX SWAP +5TE 2 OVER SIZE 1 - SUE
" SWAFP + DUP SIZE 2 - 999 SUE + "1 o+
HEXT

B. Background information 343

344

C. RPL Commands

Appenpices

Here is the complete list of HP 48 RPL commands, listed in alphabetical
order (which is the same order in the HP reference manual). This list is
divided into the two library parts (#002h and #700h). Note that some
commands have no name, perform no function, and are probably reserved
by HP for future use.

Each line consists of the name of the function, its command number in
hexadecimal, its command number in decimal, then the command ad-
dress (which can be called with a SE%HL). For example, ABS is com-
mand #03Dh (61) and can be called by #iRR1FH S%SEYAL.

These addresses can be used in program objects. For example, to
duplicate the object in level 1 three times, using the instructions :UF and
LUFZ, note from the table that a program object has prologue #02D9Dh
and epilog #0312Bh. The desired object is therefore:

"bebzersEF izAEF 1EZ213B™

This program saves 10 nibbles over the regular method of using the two
delimiters (% and *), and still performs exactly the same function.

These tables are also useful to the user that would like to disassemble a
particular RPL command (these addresses are addresses of machine
language routines in ROM)

The second list of HP48 RPL commands is ordered by command number.
Each command is defined by its library number and its command number.

Note that, just as there are commands with the same name in the firstlist,
(commands with the same name, but defined by their context—such as
4 which can be the beginning of a program or the beginning of local
variable assignments with +), there are commands in the second list with
the same number. This can be explained by the fact that some
“‘commands,” such as DIR, C$, etc., are not real commands. They all
have the same function—to serve as delimiters for objects.

C. RPL Commands 345

The first alphabetized table is for library #002h:

FES #@20H
RCK #@15h
RCKALL #a14h
RCOS #B52h
ACOSH #A5EH
ALOG #BE80
AHD #BESH
APPLY #1E2h
RPPLY #1020
RRC #a0sh
ARCHIVE #1680
FRG #84Dh
FREY+ #BAER
+ARRY #BAAK
RSIN #E57H
RSINH #85A0
RSH #17ER
ASR #aE8H
RTAM #2590
ATANH #A5CH
RATTARCH #1E65h
RUTO #BCEH
RHES H#EBRN
EAR #BESh
ERRFLOT #13ChH
ERUD #172h
E+R #BBR0
EEEF #8240

IH
BINS
ELRANE
B0
EUFLEN
EYTES #E26h
[#AC7H
C4R #A9Fh
CEIL #B62H
CEMNTR H#BEER
F #@24H
HCH #B7ER
CHR #OASH
CKSH #1710
CLERR #1100
CLKRDJ #3180
CLLCD #@22hH
CLOSEIOD #16AR
Z #11CH
CLUSR #15Ah
CLYRR #15Ah
CHRM #areh

&1
21
2
==
91
%6
229
258
259
216
352
7
171
178

#1AR1FH
#1987ER
#12863h
#1EVZFh
#1B838h
#1EARZDH
#1E722h
#1FSSDh
#1FSSCh
#1ESDZh
#2125AN
#1B2DBR
#10892h
#1086%0
#1B6A40
#1EVEEh
#Z24F4h
#1957Bh
#1E79CH
#1B2RZh
#21442h
#1E1RER
#1EGEER
#1E741h
#28132h
#22068CH
#19€EEh
#1ASC4h
#2B25ER

#lHlD9h
#1E29RN
#1C22ER
#1BCOFh
#1EGESh
#1C2DSh
#1C149h
#1CEBEEh
#21FECh
#1FCEBh
#198DER
#1A252h
#21EDSh
#1FD2Bh
#216FCh
#218FCh
#1EFEER

COLCT
COLE
COME
COM
CONIC
COMJ

COMT
CONVERT
CORR
cos

COSH
cov

CR
CRDIR
CROSS
DRTE
+DATE
DATE+
D
DDRYS
DEC
DECR
DEFIME
DEG
DELALARM
DELRY
DELKEYS
DEPHD
DEPTH
DET
DETACH
DISP
DOERR
DoT

#14Dh
#122h
#asih
#BRDK
#8D0h
H#EZER
#B2Ah
H#EEER
#121h
#a52h
#8550
#122h
HEFZh
#8200
HE7Ah
#ailh
#@81eh
#81Fh
#8700
#B1ER
#891h
#14Ch
#156h
#a37h
#B1Ch
#BFSh
#1700
HOC4h
#114h
#a7eh
#166h
#B3Zh
#B2Ah
#879h
HEEFh
#AC1h
#11ah
#111h
#115h
#120h
#180h
#1BEh
#116h
#@3Ch
#BASh
#BCSh
#E2Eh
H#E2Dh
#E2Ch
H#BZEh
#850h

o9

298

232

155

245

277

197

BREHS

#2BR15H
#26E2A0
#1C1FEh
#1D12eh
#1E631h
#1RREER
#1ASEER
#126DBR
#1FDC1R
#1B565h
#1B685H0
#1FDDCH
#1EER4h
#1A165H
#1CE1ER
#19212h
#1923ER
#192D2H
#1BECESh
#199E2H
#1C574R
#2B9AAK
#28D6Sh
#1C33%h
#19972h
#1EF43h
#22348h
#1E22E8h
#1FC44h
#1BEFDER
#2147Ch
#1AS24h
#1A23%
#1BFFER
#1E1%6H
#1E1CER
#1FEDEH
#1FEFZh
#1FCEdR
#22622h
#1FEEVH
#1FBAZH
#1FCFFR
#1C452h
#1CEESh
#1EZ5Fh
#1A2EDR
#1ASASH
#1A222h
#1ASBER
#1B265h

Appenpices

EXPRN
EXPFIT
EXPM

e

FRCT

FC?

FC?C
FINDALARM
FINISH
FIX

FLOOR

=3

FREE
FREEZE
FS?
FS2C
FUNCTION
GET
CETI
GOR
GRAD
GRAFH
+CROE
GHOR
#H

HEX
HISTOGRAM
HISTPLOT
HMS+

HMS—

#14ER
#141h
#862h
#84zh
#@edh
#B26h
#BEFh
#@1leh
#16Fh
#BERN
#B67h
#BEER
#162h
#8220
#B85h
#B2Eh
#8DCH
#BEZh
#BB3h
#8020
#82%h
#BCEH
#8D7h
#BDdh
#BEDh
#892h
H#EBEZH
#120h
#874h
#B75Sh
#873h
#872h
#B822h
#BAER
#0360
#BZFh
#B9BH
#14BEh
#BETH
#17AR
#84CH
#BE5h
#1560
i
i

B20h
#16CH
#8280
#BC9H
#836h
#8360
#B8D5Sh
#BDER

C. RPL Commands

214

#2490
#261FEh
#1BACZH
#1ABZ3h
#1EE41h
#1C2e8h
#1C5280
#19242h
#21FE&h
#1C2ERh
#1EED2h
#1EEAZh
#21201k
#1ASA4h
#1C21sh
#1C4R1h
#1EEE1R
#107Ceh
#1D2C7H
#1E45eh
#1C2CFh
#1E2ERh
#1ESADh
#1E4E4h
#1E1568h
#1C58Fh
#1EFZ1h
#28167h
#1BFSER
#1EF7ER
#1EF3Eh
#1EF1ER
#1A1460
#102DCh
#1A4C0h
#1A2FER
#1C81%h
#2BEF4h
#1E@4Rh
#224CAN
#1E278h
#1EEEDh
#26R92h
#1AE4SH
#220ECH
#1AE72h
#21F24h
#1A263h
#1E2D5h
#1AgBdh
#1REB4N
#1ES72h
#1ESEDh

PARITY
PRTH
POIM
PERM
PCDIR
PICK

#EDFR
#172h
#a21h
HACZh
RESZR
#15Fh
#117h
#ab2h
HECDH
HBCCh
#ACEh
#17%h
HOESh
HEBEH

256

223
vt

#21420h
#1E23Eh
#2B6FSh
#281B1h
#1C95AR
#1C7E2h
#1B94Fh
#1BASCH
#1B2CER
#2810eh
#1FFz8h
#1BESCh
#1FASSH
#1FREDH
#1BCF1R
#1FEFER
#1RADFh
#1FES2h
#2BFRRR
#2119h
#2127Fh
#1BCESh
#1FEB4h
#1RBB1N
#1BE4Dh
#1R295k
#1RZECH
#1E28Fh
#1FDRER
#1CB4Eh
#1RSE4R
#1CFFER
#1CSARR
#1R21ER
#1EE2Sh
#21EBSh
#1E8683%h
#2BFD2h
#1FCZ2%h
#1EEC1R
#2282CH
#1R125hH
#1E261h
#1C236R
#2123AK
#1FCoAR
#1E426h
#1E26ER
#1E2d4h
#1E21Rh
#22600Dh
#1E@9ER
#1EB7ER

FOLRR #BDER 222 #1ESALh RED #1CBIER
POS #3A1h 161 #1CAB4h RULES #2BATDH
PR1 #3FBh 248 #1EESSh SAME #1EF&1h
FREDY #12Fh 383 #IFF7AR SERK #226C2h
FREDX #1210 285 #1FFERh SCALE #1E1E1R
FRED' #1268 264 #1IFF2AR SCATRPLOT #2B18CH
PELCD #BFER 246 RIEFESh SCATTER #1E7E1R
PRET #8F2h 242 #1EES2%h SCI #1C41ER
PRETC #3F1h 241 #1EEEEh SCLE #2@86C4h
FRYRR #BF4h 244 #1EEEFh SCOMJ #2B2CCh
FURGE #157h 343 HZOEFER SDEV #1FECFh
FUT #BEBH 176 #1D467h SEMD #21EFEH
PUTI #BB1H 177 #1DSDFh SERVER #21FD1k
PYARS #15ER 258 #211FCh = #1C274h
PYIEW #BCAM 262 #1E2FGh SHOW #26ADSH
PWRFIT #142h 222 #28228h SIGH #1B32AN
FA=C #BCEH 198 #1EZ7Rh SIM #1B4ACH
0 #1870 263 #1F9C4h SINH #1BSETH
G #182h 264 #1F9ESHh SIMY #2B2CER
GURD #151h 227 #26AEZh SIZE #1C9BSH
GUOTE #1681k 257 #1FSe6h <€ #1261Bh
RAD #B28h 136 #1C3B4h SLE #1263Bh
RAND #arFh 127 #1C1ESh SMEG #2634Dh
RRTIO #1BCH 268 #IFESDh =n) #1B42eh
R=E #@E9H 2 #19€9ER R #1963
R #@99h 153 #1CF9ER SRE #1967ER
R0 #A71h #1EEF4h SRECY #21E95h
RCER #AF%h #1F1323h ST #1042k
RCL #154h #26E48h STER #1F14Eh
RCLELARM #@1Ah0 #19928h STIME #22BAZH
RCLF #@%E0 #1CE19h £T0 #2BCCOR
FCLKEYS #17ER #22586h STO% #28732h
RCLMENU #150h #211E1R STO+ #2044

Z #110h #1FD4Eh STO- #208522h
RCHS #8395h #1CSFER ST0- #2BEECH
RDM #BACH #10EDFh STORLARM #192FER
RDZ #@260 #1C104h STOF #1CEFFR
FE #@9AN #1C7CRR STOKEYS #22514h
RECH #16Dh #Z1FE2h STOE #1FDEER
RECY #16ER #21F9eh STR# #1CB26h
REFL #2500 #1CEERR +ETR #1CEEER
RES #BECH #1E126h STWS #1CSC5H
RESTORE #1610 #2122Ch SUe #1C25CH
FL #aE1H #1959Bh SWAF #1FEEDR
FLE #AB2H #195EBh SYSEVAL #1ASZER
FHD #BECH #1BDSSh =T #1C8D7H
RHRHM #ATER #1EF9ER +THG #225BER
ROLL #118h #1FCEShH TAH #1BSSER
ROLLD #1190 #1FCDBH TARMH #1BE55H
ROOT #aFEh #1F16ER TAYLR #208B26hH
ROT #1120 #1FCBER TEXT #1EEBER
FR #AE3H #195DER TICKS #19220h
RRE #2845 4 #195FBhH TIME #197F7h

348 Appenpices

+TIME #817h
TLIME #BCFH
THEMU #15Bh

TRANSIO #174h
TR

#BECH
#BEER
#82Bh

WIS A 3 S kL

C. RPL Commands

235

#BEDh 237

236
2322
52

#192BER
#1E3C2h
#21150h
#1FEEAR
H#22E4CH
#10292h
#1EDD1h
#1EEELh
#19992h
#1R1RFh
#1CBS6h
#1977 1h
#197ASh
#1974Fh
#1A15EhH
#2681Rh
#2085RN
#20602RN
#2007RN
#1971Bh
#1FFESh
#1A1940
#10DDBEN
#1DEEEh
#1DECZh
#1CE28h
#1E178h
#1A71Fh
#1%842h
#1FDF7Th
#1FE2Dh
#1FFDAN
#21E75h
#1E8F6h

#1B155h
#1FEESh
#1FE12h
#1FE4Eh
#1FFFAh
#1EE41h
#1REETH
#1ACDDH
#1ADE9h
#1ADEER
#1AFESH
#1BE2Dh
#1EEEEh
#1ECFCh
#1ECSDh
#1ED9ER
#1RE0E2h

U R e |

Alphabetlzed for

CF‘QE
DIR
Lo

H#EESh 222 #1E9FZh
HOERK 234 #1ERSDH
#862h 92 #1BBEBZh
#OFCh 252 #1F1D4h
#EFDh 253 #1F222h
#OF7h 247 #1EFFER
#OFSh 242 #1EFDZh
H#OVCh 124 #1CEE6h
HBZFh & #1RAEDH
H#BFEh #1F2C5h
#11Eh #1FDE1R
#11Fh #1FDEER
H#B4F #1B274h
HEFFh #1F254h
#160h #1F3FSh
#16Bh #1FREER
#1@dh 268 #1F6dBh
#185h 261 #1F2%6h
#1Beh 262 #1F9RER

library #700h:
#O1Bh 27 #2381%h
#31%h 25 #237E80h
#81Bh 27 #23513h
H#OETH T #22EC2H
#OOZH 2 #22FBSh
#882h 2 #22FDSh
HO1Eh 22 #23694h
#O17h 23 #23EESh
#O0OAh 16 #231AGh
#@1Bh 27 #23813h
HOGER 14 #23472h
#208H @ #22EC3h
#OGDh 12 #2220DFh
#aoeh 11 #2224Ch
#O1Ch 23 #235824h
HOBER & #2265Dh
#2@9h 2 #231683h
#EOCH 12 #22386h
#801h 1 #22EFPR
#O18h 24 #2271Fh
#21Ah 26 #227ASh
#@@2h 2 #226EDH
#@@5h S5 #22632h
#E1ER 27 #23813h
#812h 12 #2261Eh
#3811k 17 #225FEh
#312h 19 #2262%h
H#oadh 4 #22FEEh
#818h 16 #224Clh
#814h 28 #23654h
#815h 21 #22EF%h
#BOFh 17 #2249Ch

349

The numerical table for library #002h:

=) #B006H #1957EBR ASR 51 #822h #1ASR4h FREEZE
1 #BE1h #1959%Bh RL S2 #6834k #1ASC4h BEEP
2 #B862h #135EEh RLE 53 #835h #1ASE4h +HUM
3 #0020 #195DER RR 54 #036h #1REB4h LRAST
4 #084h #195FEh RRE 54 #@36h #1AEB4h LASTARG
S #085h #1961BER SL 55 #837h #1ATIFh WRIT
3 #0BEh #1962EH SLE S& #G32h #1A258h CLLCD
v #0E7H #1965ER SR 57 #0829, #1A2VIH KEY
2 #002h #1267Eh SRE 52 #62Ah #1ASEEh CONT
El #B885h #196%Eh R+B 5% #63Bh #1R30DShH =

18 #80Ah #196BBh B+R 68 #B3Ch #1A995h HEG
11 #BEEH #126DEBR COMVERT &1 #82Dh #1 Fh RES
12 #@8Ch #1971Bh UVAL B2 HBZEL #1 Eh COMJ
12 #B60hH #1974Fh +UMIT €2 #G3Fh #1AREDh

14 #G6ER #19771h UBASE &4 #@40h #1AADFh MAXR
15 #86Fh #197ASh UFACT =] #1AEE1H MINR
16 #Bi6h #197FFh TIME &6 #1AB22h e

17 #0811k #19212h DATE &7 H #1AB4Sh 1

128 #@12Zh #1922Dh TICKS E2 #G44h #1ABETh +

19 #813h #19842h WSLOG E2 #845Sh #1ACDDh +

28 #B14h #19263h ACKALL 7B #B4ch #1ADE9R -

21 #B815h #1927ER ACK 71 #647h #1ADEEh #

22 #B16h #1989ER +DATE 72 #848h #1RFEShH ~

23 #817h #193BEh +TIME 73 #845h #1BB2DH

24 #B12h #198DER CLEKRDJ 74 #84Rh #1B18Sh XROOT
25 #B19h #192FER STOALARM FE #B4Ch #1B272h INV
26 #B1An #19928h RCLALARM 77 #84Dh #1BZDEh ARG
27 #81Bh #19248h FIMDALARM 72 #G4ER #1B32A0 SIGH
28 #B1Ch #19972h DELALARM 72 #84Fh #1B274h 1

29 #810h #193%2h TSTR 26 #6560 #1B426h S0
26 #81Eh #193B2h DDAYS 21 #6851k #1B4ACh SIN
21 #81Fh #19902h DATE+ 22 $#65Zh #1BSESh COS
22 #B26h #1A1685h CRDIR 23 #G652h #1BSSER TRAM
22 #B21h #1R125h PATH 24 #0854k #1BESEVH SIMH
24 #B22h #1R146h HOME 25 #655h #1Be@ch COSH
35 #823h #1R15Bh 26 #@56h #1B655h TANH
26 #@24h #1R194h &7 #857h #1BSR4h ASIN
37 #B02Sh #1R1AFK 88 #038h #1EVZFh ACOS
28 #B2eh 29 #65%h #1BVOCh RTAM
29 #827h 98 #G5AL #1BFEER ASINH
48 #B822h a1 #B5SER #1B228H ACOSH
41 #B82%h 22 #85Ch #1B2AZh ATANH
42 #B2Ah 22 #65Dh #1B985h ExP
43 #82Bh 24 #@5Eh #1B24Fh LN
44 #B2Ch 95 #@5Fh #1B9C6h LOG
43 #B20h 26 #0e6h #1BRSDh ALOG
4& #O2ER #1R2 97 #B&lh #1BRECH LHP1
47 #82Fh #1A2FER 92 #0852k #1BACZh EXPM
42 #0260 #1R4CDh 99 #863h #1BBEZhH !

49 #B31h #1AS2EhR & 166 #664h #1BB41h FRCT
S8 #832h #1ASS84h 181 #865Sh #1BBEDh IP

350 Appenpices

162 HB6ch #1EBRZH

158 H8szh
131 H883n
L32 HE84n
I35 H883Nh
124 Hegen
155 HBs7h
I36 H88Sh
L5 H88%h
I35 HB8RN
132 HOSEN
148 HB8Ch
141 H88CH
142 HBSEh
143 HBBFh
144 H@sen
145 HEI1h #
145 HE%En
147 H@sEh
143 HEF4n
143 HEYIh
13 HeFen
I51 #RsTh
152 H89%8h
153 HEssn
174 HEFRN #LCTCAN

€. RPL Cennnands

FP
FLOOR
CEIL
HPON
FFAE
MIH
FHD
TRHEC

E1CELSh
S1CETCh
&1CEEAN
81C73AN
#1C5EEN
&1C563h
21CRE4N
S1CERER
81CEZ6h
#1CE4€h
s1CESEh
S1CE=el

#1CEZ8h
SL1CEE3h
&1CF7Bh
s10eesh
S1DEEER
S10ECFh
flblzeh
S10EDCh
21DEFEN
#1087 h
E10E0Fh
810VCeh
S10ECTh
sl00esh
#1DEEEh
S10ECZh
S1ER4AR
S1ERTER
S1ELTER
S1EREER
S1ERESh
S1EL1Z6h
S1E178h
S1E178Nh
S1E198h
S1ELREN
S1EL1CEh
S1EIELh
S1EZ0Lh
S1EZZEh
S1EZTFh
#1EZ7AN
S1EZ7Ah
S1EZEAN
S1EZDSh
S1EZFEN
#1EZ1AN
S1EZ44h
S1EZEER
S1EZ38h
S1EZCER

CENTR
FES

LRAK
AUTO
DEAK
SCALE
FOLIM
LCEFHD
ERAZE
Fr+C

GRAPH
LABEL
FVIEW
FLAOH
PLHOFF
PIN?
LIKE
TLLNE

a5

zeg
289
218
211
212
213
2149
21%
218
217
21e
219
228

Ze8

H#apen
#A0 LR
H#ADER
#AD3N
Hap4an
A0S
Hapen
H#ADTH
H#A0sn
#ADFn
H#ADAN
HADER
#ADCh
H#AD0R
H#ADER
H#ADFR
HAEBRR
HAE LR
HAEZN
HAESh
HAEQR
HAETN
HAEEH
HAETT
HAEER
HAES
HAERN
HAEER
HAECH
HAEDR
HAEER
HAEFH
HAF BN
HaF L
HAF Zh
HAF 3N
HAF 4h
HAF I
HAFEn
HAF Th
HAFEn
HAF 5h
HAFFR
HAFEN
H#AFCh
HAF DR
HAFER
HAFFH
#188n
#L1ELR
HLBER
#1830
H#184n

H#LE3ECHh
#LE4Leh
HLE436h
#LE456h
#LE4E4N
HLESTZh
HLESEDN
HLESADh
#LESDZN
#LE&BEN
#LEGZLh
#LEE41N
#LE&E1N
#LEGELN
#LEGRALh
#LEEGCLh
HLEEELR
#LEPB1h
HLEVZLh

HLEP41h Ei

#LEFELR
#LEFE3N
H#LEBBTh
H#LEGEFN
HLEBFEh
HLEFFZN
#LEASDN
#LEBBENR
HLECIDN
#LECFCh
#LEDFEN
H#LEE3Sh
HLEESZh
#LEEEEN
HLEESTh
#LEER<
#LEEBFh
HLEF43h
#LEFE3N
HLEFFER
HLEFDZN
#IF13Th
#LFL4EN
#LF16ENR
#LFLD4h
#LIF22%h
BLFZC9N
#LF334N
#LF3F3N
#LFSEEN
HLFSI0h
#LFSICH
#LFE4EN

-

QUOTE
AFFLY
AFFLY

#1E

#1F5%6h
#1FSREN
#1FSC4h
#1FSEZh
#1FASEh
#1FRECH
#1FREEN
#1FBS0h
#1FBE7h
#1FBRZh
#1FBEDH
HIFBLCT
#1FEF3h
#1FCREN
#IFCESh
#1FC44h
#1FCedh
#1FC7Fh
#IFC?AN
#1FCETh
#1FCDaNh
#1FCEEh
#1FDRER
#1FDZEN
#1FD4Eh
#1FDELR
#1FDEEN
#1FDRSh
#1FDCLh
#1FDCCh
#1FDF7h
#1FE1Zh
#1FEZDh
#1FE4Eh
#1FE&Sh
#1FETENh
#1FEF%h
#1FEE4h
#1FECFh
#1FEERh
#1FFESHh
#1FFZah
#1FF7AN
#1FF3ANh
#1FFEAN
#1FFDAR
#1FFFAN
#2208 LAh
#ZBBAEAN
#20R%AN
#Z087Ah
#208%Ah
#Z0ECHh

HET
A HRTCH
BMATCH

FATIO
AP
LUFZE
ZHAF
DEOF
DROFZ

OVER:
CEPTH
DROFH
CUFH
FICK
FOLL
FOLLD
CLERRE
STOE
(=4
FCLE
I+

-

CORE

Arrenorces

214 #12Ah
215 #13Bh
216 #13Ch
317 #13Dh
218 #13Eh
219 #13Fh
2268 #148h
221 #141h
322 #14zZh
223 #142h
324 #144h
225 #145h
226 #14Eh
2287 #147h
228 #148h
2329 #145h
238 #14Rh
221 #14Bh
232 #14Ch
222 #14Dh
224 #14Eh
225 #14Fh
336 #158h
237 #151h
238 #15z2h
229 #153h
248 #154h
241 #15Sh
242 #156h
343 #157h
244 #158h
245 #15%h
246 #15Ah
24& #1SAh
247 #15EBh
242 #15Ch
249 #150h
258 #15Eh
251 #1S5Fh
252 #1edh
252 #1&lh
254 #1lézh
255 #162h
256 #164h
257 #16Sh
258 #1eeh
259 #1evh
266 #1ech
261 #1659h
362 #1ierh
262 #1EBh
264 #16Ch
265 #16Dh

#26EF2h
#2818ER
#28133h
#28167h
#2812Ch
#261B1R
#261DEh
#281FEh
#zez26h
#2625ER
#2BZCER
#26240h
#282CCH
#2644BhH
#26528h
#2@608ChH
#26753h
#268Fdh
#269ARK
#26A15h
#28A490
#26ATDH
HZBAISH
#ZORESH
#26ADSH
#26E268H
#28B460H
#28CC0H
#2e0&5h
#ZBEFER
#26FARK
#26FDSh
#21BFCh
#218FCh
#21150h
#21196h
#211E1h
#211FCh
#2122RN
#2125RR
#2122Ch
#2127Fh
#21201h
#21420h
#21443h
#2147Ch
#21E7Sh
#21E95h
#21EBSh
#21EDSh
#21EFBh
#21F24h
#21Fe2h

C. RPL Commands

ZLIME
EIMNS
EBARPLOT
HISTPLOT
SCATRFLOT
LINFIT
LOGFIT
EXPFIT
FHRFIT
BESTFIT
SINY
SHEC
SCOMJ
STO+
STO-
STO-
STO*
IMCR
DECR
COLCT
EXPAN
RULES

DEFIME
FURGE
MEM
ORDER
CLUSR
CLYAR
THEML
MENU
RCLMENU
FYARS
PCDIR
RRCHIVE
RESTORE
MERGE
FREE
LIES
RATTACH
DETACH
HMIT
SRECY
OPEMHIO
CLOSEIO
SEMD
KGET
RECH

266
267
368
369
ava
arl
arz
arz
274
a7

376
avF
are
ar9
286
281
38z
383
284

#15ER
#16Fh
#178h
#171h
#1720
#172h
#174h
#175h
#176h
#177h
#1780
#1790
#17AK
#17Eh
#17Ch
#170h
#17ER
#17Fh
#1260

#21F26h
#21FE6h
#21FD1h
#Z1FECh
#2200CH
#2202CH
#22684ChH
#228ECh
#22BE7h
#ezerch
#22BCZH
#22600H
#224CRK
#224F4h

22514h
#22542h
#223586h
#225BER
#22623h

RECY
FINISH
SERYER
CKSM
EAUD
PARITY
TRAMSIO
KERRM
BUFLEM
STIME
SBRK
FKT
INPUT
ASH
STOKEYS
DELKEYS
RCLKEYS
+TRG
DTRG

Numerical table for library #700h:

= ENT N R)

HEBEh
H#o@1h
#B@2h
H#EG2H
#BE40
H#BB5h
HEEEH
H#EETH
#OB8h
#2820
#EGAN
H#BBER
#BGCH
H#EG0h
H#EBBER
H#BBFH
#aieh
#811h
#812h
#812h
#a14h
#815h
#@1eh
#817h
#@12h
#3190
#81Ah
#81Bh
#B1Eh
#81Eh
#B1ER
#B1Ch

#22ECZh
#22EFAR
#ZZFBESh
#22FDSh
#ZZFEEh
#220232h
#22E50h

IF
THEN
ELSE
EMD

5
WHILE
REPERT

#2268C%h 0O

#23BEDh
#23183h
#221R6H
#2224ChH
#22226h
#2220Fh
#23472h
#2249ChH
#234C1h
#225FER
#2261ER
#2262%h
#22654h
#2267%h
#22694h
#23EE%h
#2271Fh
#23720h
#227REh
#23813h
#22212h
#23813h
#23213h
#23824h

UMTIL
START
FOR
MNEXT
STEP
IFERR
HALT

S¥ oW 4

END
EHD
THEM
CRSE
THEN
C#

DIR
GROB
#LIE
FROMPT

353

254

D. Objects in ROM

FRENGICES

This is anaddress list of objects in ROM. This listis notcomplete, butgives
many useful objects. Rather than coding some object that you need, you
can simply refer to it with a ROM address. Notice: Addresses greaterthan
#70000h are objects in the hidden ROM and cannot be used directly. You
will need to use the ROMRCL routine found in the Library of Programs.

System Binaries

#B3FEFh <Bh
#E3FFah {1h
#adaash <ah
#48800 <3h>
#34817H <Ak
#348210 <Sh>
#E3482E0 e
#B34835h PR
#E3482FH {2
#348490 L9
#34852h AR
#E348500 <{Bh>
#E4BE67H {Ch
#3487 1h <Dk
#a4G7ER <Eh>
#a4825h <Fh>

#B840F 3h <1Ak>
#B848F Db <1Bh>
#84187H <1CH>
#34111R <1Dh>
#3411Bh <1ER>
#34125h CIFR>
#3412Fh {26k
#34129h {21h>
#34142h {22k
#341400 {23h>
#34157h {24k
#34161h {25h>
#ad16Eh eci= 0
#34175h Lavhy
#3417Fh <2ehe
#o4129h {29k
#a841920 <2Rh
#a4130h0 <ZBh
#edB12h {2Ch>

D. Objectsin ROM

000 R) R @D

EHGLEUHYRNERNE SRR NRNRRN

#&4B1ChH
#564B26h
#54B26h
#E4E3AR
#E4B44h
#&4B4ER
#E4B5EH
#E4BEZH
#&64B6CH
#EAETER
#EAE2EH
H#EABSFH
#E4E24h
#E4E9ER
#EAERSH
#E4EEZh
H#EABECHh
H#EAECER
#E4EDBR
#E4EDAR
#EABE4hH
#E4EEER
#54BFEH
#edCEzh
#E4CECH
#E4C16h
#&4C26h
#2036Rh

#EBE9Eh
#&4CAZh
#E4CACH
#&64CBER

<20h>
<2Eh>
<2Fhi
<3ahi
<21h>

>

<E1h>
<E2h

<65hy

SEEYYRRLEGRARERRBI YA LLTRARALOR2ERLINALINLLEE 454

355

H#EDIECH
HIAZGEL
HE4CCBR
#E4CCRR
HE4CD4h
#E4CDER
HE4CEEh
HEACF2h
HE4CFCH
HE4DBER
#399860
HECI4TH
#e4D 180
#e4D1RR
#84D2db
#4EBEShH
HEF4RZh
#E4DZER
HE4D22H
#edDbdzh
HECEEER
#E4D4Ch
#e4DSER
#e4Dbedh
#e4DERb
#e4D74h
#E4DTER
#E4DEEH
#e4D22h
H#E4DSCH
#e4DAEH
#E4DEBR
#E54DBAR
#1CDE2N
#E4DCAh

#15DEFR

356

<167h>
<116h>
<111k
<11zhx
<117k

#1SDRER
#E4EEER
#E4E72h
#21C5Eh
#32CA1N
#E4EEZh
#E4EECh
#E4E9Eh
#54ERBH
#54ERAR
#E4EE4h
#54EEER
#E4EC2h
#E4ED2h
#E4EDCH
#E4EEER
#E4EFBh
#E4EFAR
#EAFB4h

#4?202h
#4720Ch
#47ZEER
#472FBh
#E4FSER
#E4FESh
#1C93Fh

#4A35ER

<112h>
<122h>
<124h>
<127h>
<12Fh>
<131h>
<132h>
<133hx

<&B0h>
<6BER>
<6EFh>
<&18h>

Appenpices

“611hk
“E12h>
+613nx
“elahx
“eluhy
“elehx
“elvhr
“elahx
+e19hr
“ELAN>

2143

LREZN 2T
CREFAR> ZERE
LRelh: 2857
<ReZn» 258
LRET 286l
<REENr 2678
“ARLR 272l
CAREn> IZFZE
LARAMG 270
<E@lh Z517
cCegre V4
{CRER- SOV8
LA i]

<Clene 5088
<CliFe =259
<Clahe S0
CCl3 28393
<Clerr 2034
CCLvre 2855
Gz S1ee
CCEChr 3116
R) T
<COChr S1e4
“CFFre 2327
<DFFr» 2553
<l =21
CEL1LR: S465

RO T24288
<FFFFFh 1848373

a5

Real Numbers

#2R487H -9, 99992999000 400
H#2R1D7TH —-4.77451211461E441
#2B129h =

H#zR42ER -2

#2ZR4159h -2

HZP4B4h =

HZAZEFH -

#2A2DAN =

H#ZA2CSH -4

HZAZEEH -2

HZAZ9EN =2

HZAZEEN -1

H#ESBD2H 8.5

#ZR4E1R -1E-493
HEAZEAR

H#ZR49CH 1E-499
HI2CT2h 1E-12

el dh 2. 49865 E-2
#494Bdh 8.1

#rD27Th 4.34234451904E-1
HESBEDR 8.5

#4961380 8.15

HZAZCOH i

#31F4Fh 1.8

#zAZDER 2

#1A2ESH 2.5

HETBASH 2.71328182846
HEZAZF3h 2

#2R442h 2.1415926535%
HZA2BEH 4

#2A310H 5

H#2A232h &

H#S14EER £.28218526712
H#ZAZ47H T

HZAZSCH 2

#2A271hH 2

HESEETH 18

#1CCESH 11

#1CC10H 1z

#1CC27TH 12

HICCS1R 14

#ICCESH 15

#1CD2AR 1

#1CD54h 17

#1CDF2h 12

#ICEETH 12

#1CCEER jo.s)

#1CCR4R 21

#1CCC2h =23

#1CCEZh 22

#1CDA1H 24

#1CD2EH 25

#1CD7Eh 2%

#1CDEDR =g

#491610 48

358

#226E1H
#415F1h
#ETEFCH
#5111k
#2EBECER
#E5126h
#E512Eh
#4CE35h
#4CBESH
#22352h
#22267h
#2257Ch
#EEFEER
#1A7CER
#22291h
H#EFBE2h
H#EFE12H
#EBFB20h
#EFE4ZH
#2R47EH

4915’9

29491208
TETTEEE68
42545216688

3. 99999999399E499

Long Real Numbers

#28416h
#2R4E8h
#2R4FRh
#5226Fh
#2AS14h

#2R452h

#BFSSSh
#2E1FFh
#2B396H
#2AS9ER
#2E2DCH
#2E242h
#BFS47h
#2E2068H
#2C1C5h
#1BESCH
#1BEEER
#2BEFZh

-1E-1686@

—4335. 928119817593
—76. 5394815148283
—1.21142857 142857

8

1E-18688

1. 745229251 99433E-2
7. 9577471545 MTTE-2
8.1

&

=]
« SOTTTEE555E556E-1
7
189285322846 73E-1

. 2B258589299465
. 14159265252972

NE WM 02D NE S

£, 28218526717959
7
3. 22524 METEEEITY
1@

2@, SATIEOEATIELS
=

=)

188

272.15

45967
1E180868

Appenpices

Complex Numbers

#4AEZAN
#524AFh
#319€RN
#324F7h
#52E7Fh
H#52ERER

=P
(8,8

Long Complex

Numbers

#3192eh

Characters

#823918h
#85127h

#E549Ch
#e54R2h
#E54RAN
#54E1R
HESAEEH
H#ESAEFH
#ES4CER
HES4CDH
#E54D40

D. Objectsin R

2=z

Too

Eweie s

DD I s 02 800] O 03P

oM

#ES4DER
#E54E2h
#ES4ESh
#ES4FEh
#ESAFTh
#ES4FER
#ESSESH
HETSECH
#E5512h
#E551Ah
#E5521h
#E5528h
#ES52Fh
#ES526h
#E5520h
#ESSddh
#E554Eh
#E5552h
#ES55%h
#ESSEBN
#ESSETH

#E5663h
#ESEERN

FASER VA INEK €0 AU Ty 6 T R e S NG N 4 dd AT ZE A G g

#ESETLR
#e5erEh
HESETFR
#ET6260
H#ETEEDH
#ESESAR
HESEOER
H#eSEAZh
HESEASN
#ESERER
HESEETH
HESEEER
#E947CH
k69‘18 2k

#7AALTH
#7AALER
#7AAZ5H
#7AR2CH
#7RRZSH
#7AASAR
#7AR41N
#7ARAEH
#7RRAFH
#7PRASER

L)

e

'y
i
t
B
3
b
0
A
e
.P.
T
bt
e
e
s
e
=
e
e
¥
it
u
o
eqe
g
c}
$

359

Arrays

#rz2@ea6h

#72281h

#7232Ch

#7268RK

#726ASH

#7T2FB4N

#72DCFh

#72F1ER

#7P2FE6R

360

Insufficient Memory" "Directory Recursion” “"Undefined Local Mame"
ndefined HLIE MName® “Memory Clear” “Power Lost™ “"Marning
"Invalid Card Data® “Object In Use' 'Pori Not Available"

* DbJe:t. Hot in Port” “Recovering Memory"
Memor " "Replace RAM, Press ON"

3

["Bad Guess(es)" "Constant?" “Interrupted" "Zero" S Reversal®
"Extremum®]

["Bad Packet Block Check” "Timeout" "Receive Evrror”

Receive Buffer Ouerrun' "Parity Error" “Transfer Failed"
"Protocel Error” “Inuvalid Server Cmd." "Port Closed" “Connmecting”

"Retry #" “Auaiting Server Cmd.” “Sending " “Receiving

"Object Discarded” “Packet #° rocessing Command” “Inualid IOPAR"
"Invalid PRTPRR" “"Low Battery” "Empiy Stack” “"Row
"Irwalid Mame” 3

[“Irwalid Date” “Inualid Time" “Irvaiid Repeat”
Nonexistent Alarm” 1

[“Inwzlid Unit" “Inconsistent Units" 1

["Mo Room to Save Stack” "Can't Edit HNull Char.”
“Invalid User Function” "Moo Current Equation” *
"Real Humber” “Complex Number® “String” “"Real
“List" “Giobal Name" “Local MName" “Program”
"Binary Integer” "Graphic" “Tagged" "Unit" "Directory”
“Library" “Backup" “Function" “Command” "Sustem Binarg” “Long Real”
“Long Complex” “Linked FArras” “Character” “Code" “Library Data”
"External® " “LAST STACK Disabled” “LAST CHD Disabled”

"HALT Mot RAllowed” “Array” “Wrong Argument Count”

ircular Reference” 'Directory Mot Allowed” “Non—Empty Directory”
iissing Library Invalid FPAR"

on-Real Result” Unable to Isclate” "Moo Room to Show Stack™
arning:¢" "Error:” “Purge?” “Out of Memory” “Stack” “Last Stack”
a5t Commands" "Key Assigrments” “Alarms” “Last Arguments"
“Name Conflict” “Command Line" "

nualid Suntax”
Complax Array”

["Too Few Arguments" "Bad FArgument Type" "Bad Argument WYalue"

ndefined Mame” “LASTARG Dissbled" “IncompletesSubexpression”
“Implicit <» off" “Implicit <> on* I

["Positive Underflow” “Negative Underflow" "Ouverflow"
Undefined Resuit" "Infinite Result"

["Irwslid I Data" “"Monexistent ZEDAT" "Insufficient I Data"
“Inwalid ZPAR" "Inualid I Data LH(Hegd" “Invalid I Data LH¢E"

“Invslid E@” “Current egustiont”™ "No current egustion.”

“Emter egn, press NEW® “MName the eguation, L press ENTER”

"SEAéci plot tupe" "Empty cataleog" "undefined" "No stat data to plot”
utoscaling” “Solvwinmg for " Mo current data. Enter”

"data point, press I+" “"Select 3 model” "Mo alarms pending.”
"Press ALRM to create” “Mewt alarmt” "Past dus alarmt
"ficknowledged” “Enter alarm, press SET" “Select repeat interval”

Appenpices

140 setup menu” “Plot tupe: veommot (OFF SCREEND ™
“Invalid PTYPE" “Mame the stat data, Press ENTER"

"Enter walue (zoom oubt if >1», press ENTER" “Copied to stack”
"% axis zeom wRAUTO. " "x axis zoom. 1 My axis zoom. 17
“x and 9 axis zoom. " “IRswire: " "RSCII/binarys " "bauds

"translate cod

"parity? "checksum tupet
"Enter matrixs then HNEW" 3

#736FSh ["Inwalid Dimension” "Inuvalid Array Element” "Deleting Row"
"Deleting Column” Inserting Rouw"

“Inserting Column” 1

#7ARSDR [<SFFDBR> <{3FFF4h> <{4GBBDR> <{&S4CDh> <65583h> <{7RSZSH>

#7RA%4h [<4BB3Fh> <4BE26h> (4BB5Sh> <ES4D4h> <ESS8AR> (TR%ESR> 1
#7AACBR [<4BG71h> <4B8G9AR> (4@0A3R> <ES4DBR> <E5S91h> <(TA%EFh> 1
#7ABBZR [<4BBBCh> <4BBDSh> <{4BBEER> <ES4E2h> <E5598R> <(7AI7ER>]
#7AB3Sh [<4B167h> <4B12Bh> (4@13%9h> <ES4ESh> <ESS9Fh> (FRI7DR> 1
#7ABTER [<4B152h> <4B@LEBh> (4@184h> <ES4FEh> <ESSAER> (TRIS4Rh> 1
#7ABATH [<3ADS7Th> <3AE33h> <(1EES3hy <6S4F7h» <6SSADh> <(7AS8Bh>]
#7ABDER [<3RE1Rh> <3AGESh> <21FDih» <6S4FER> <655B4h> <(7A9Zh>]
#7ACLISh [<3ABrvZh> <3ADAZh> <(3ADBBh» <655ESh» <65SBBh> <(7ASABhH>]
#7AC4Ch [<3AF37h> <3ADFBh> <3ADB%h> <&558Ch> <655C2h> <7ARATh> 1
#7ACS3h [<BA%3Dh> <SRESFh> <3BEGER> <ES513h> <ESSCSh> <TASAER> 1
#7ACBAh [<8ATICh> <BAP3Sh» <3B21ihy <ESS1Ah> <6SSGBh <7AIBShY 1
#7ACFIh [<3AE%Ah> <IALSBR> <ifRl4Bh> <e3521h> <6SSDTh: <7ARSE7h> 1
#7ADZBH [<BA%9Zh> <28DESh> <{2@B4oh> <€T528h> <ESSDEh> <TASBCH>]
#7ADSFh [<IA3BER> <IFSC4h> <1ASE4h> <€S52Fh> <ESSESh> <7ASCAR> 1
#7AD96R [<3AS34h> <IE2BAR> (3AFE6h> <€S536h> <ESSECh> <(PRSDIR> 3
#7ADCDR [<3AE4Sh> <SAE4Ch> {3AFESh> <ESS3Dh> <E5SFShd <PRIDERH> 1
#7AREB4h [<{SASDER> <JIFBBDh> <{3RABBCh> <{&5SS44h> <ESSFRR> <{7RSDFR>]

#7RE3BR [<1B4ACh> <IBER4h> (IEF7PER> <€S54Bh> <6S6BLh> <(PRIEEH>

#7RE7ZR [<1BSOSh> <IB72FR> (IF1D4h> <€S552h> <ES6@8R> <(7RYEDR> 1

#7REASh [<IBSSER> <1BFPICh> <1F2C9h> <6SSSSh> <ES6BFh> <(7A93Gh>]
#7REEBhH [<1B374h> <1iB42éh> <1B185h> <&55éBh> <e5Seleh> <7ASEL1h>]
#7AFL7h [<1B@2Dh> <1BA3Dh> <(1BSCEh» <&5Sévh> <6561Dh> <(7ASFEh>]
#7AF4ER [<1B278h> <1B9@Sh> <1B%4Fh> <E5SSEEh> <E5ez4h> <(T7RRBZh>]

D. Objectsin ROM 361

WPRFEIN

WTRFECH

WPRFF3N

HTERZAR

WTERGLN

#TER IR

WTEACFR

WTE1DSH

HTEL1ZDh

HTEITAR

HTEIRSHh

WTEIEZh

HTEZI5h

WTEZTEN

HTEZETh

362

[3RREZHs
43BLZENY <63OTING {SD62EMD
STRRRERE 1

[<3RC3RMF <3B1T0h:
£3BLSFPD LESETCRD (SSE3ITRD
<TRALEN: 1

[<3FERSt> {3BIDFh
<3RFEEN> <3RBASHE <TRAAND
STREFED 1

[<3RTFBr < IFBDEh:
<IFCEEND <3ROFEND <TRAMLND
ATREFAE 1

[{3FFARM> {3E00EN
+3EDELNy <3EMIEMF <IETEEND
<IETFFTE 1

[<5343 <3RESEh:
£3EEWARD LESAFTD LIFISTHD
LaFLmEe 1

[<E343Ch> <3R0EDH>
S4EFDER> <{SI4ACH> {3F 18Fh>
<3FLAEE 1

[4S3dAsh> {3RETSH
<ATETAND <STMASND C3F 1ETTD
LaFlcens 1

[{1FF@St> {3RSCCH
43RCAEN> {ETIDNE {3RSCChR
“E3sIE 1

[<3fEssh> {3REACHD
<BREIEND CIRAITTD CIRADEND
LapREme 1

[<63488C> < 3RTASh:
SATREFTD (eTgens (TRASER:
ATRAITH: 1

[<S3487h> {3REETh
<IREEEMD <ET4ATTD <TRALERD
aPRREEe]

[{S349EM> <3FFETh
C3RFIERD (ET4EER> (TRA2CH
<TRRBIG 1

[<IRCEEh> <{3RBRshe
<BREESND CETMIRND CIREAMND
<EZEEDRT 1

WTEZEER

HTE2FTh

WTE3ZCh

HTEIEENh

WTE32Fh

HTEIADLN

ATE4DEN

HTEAZFh

HTEATER

HTE4RADh

HTE4E4dh

[<3RABCING CEASCING
CEAPACH: CIFASTRG LIAAESHD
L3AFSan: 1

[46B4SEM: CZRICERD
<EBIBTh (ETHSENF {TRIISh:
CPRGACH: 1

[<6MTEhE CERCFENR
CLRE@MR: CESATIRG CES4ESHD
{6340eh 1

[46B47SHC CSACECHD
CEFEFENG CETTHNG {7RESEN:
CPRRATE]

[<1ACEShE CSABDEN:
CERCELRG CETHMFRe LEREECHD
{a3420n 1

[<3ASCON: CIRSEERD
<BAACENF <3AOCORG < 1RSEEN:
CERGCER: 1

[ssmsdn: CIRSDEN:
CEEFEBNG CET4S4R: CES4EFRD
R |

[<BATISh: CEATTEND
LEF004hr <EATISh: (SATTERD
<IFC0ANE 1

[<4e5s3ehr {1AAEDH:
CETEMEN: (ETEEEN: CEDSTIRG
{eSedEn: 1

[{1RBSTR: CSFBEEMD
LEFEEFhr <ET4dIh: {SRBEEH>
<GTaAANE 1

[ATRAAIDR: CTRASNS

CTRACEN: TREEZN: TREET:
LTRETEN CTRBATHG (TREDER:
LTRC1TN <TRCACh: {TRCESH:
CTRCEANG CTRCF NG {TROEER:
LTACEFRe CTAD9ER: (TRDCDH:
LTFER4hr <TRE3Bh: {TRETZH>
CTREA®: {TREERN: {TRFLTR:
LTRF4Ehr <TRAFETHh: {TAFECH>
CTRFFEh> TEAZFNG CTEDELR:
L7Edeny {TEACFh (TRIDER:
<FEI3DNF <7EITYN: <7BIREN:
CTEIEZh: <TEZIW TEEION
L7B28Thr <{TEBEN (TEIFIC
<PE3ZChr <7E3S3h: <7BISANG
CTEEDING TEM@EN: {TE4EFR:
LTE4TERF (TE4ACHE

Arrenorces

Strings

#BSSDFR
H#EES24b
#BPESCER
#EFAETH
#EFASER
#EFARER
#EFACER
#BFREER
#BFEBER
#BFE28H
HEFES4h
#11231h
#15331h
#15442h
#1585Fh
#158B9h
#152E4h
#15911h
#15DFEh
#15E47h
#15F22h

a4
T
=)
ra
£
T

Y week (=2
#19F2AR " dag(s2"
#19FAZh " hour(s)"

#19FBCh " minutecds)"

#2216Bh
#22181h
#221F2h
#2z2280h
#2221Fh
#22.
H2226A PC
#222%98h "invalid"
#22EDTh " IF-prompt”

D. Objectsin ROM

#25290h

#25416h
#25422h
#254324h
#2544€h
#2367
#23CFSh
#22ARSH
#22A1AK
#2BA2EH
#297EAN
#2DF32h
#ZE4FER
H#EZESTER
#ZESS7H
#ZESE1h
#2F162h
#21026h
#22241h
#241685h

#2B222h
#IE34ER
#2ES5Eh
#2B57AR
#2E599%h
#3ESEAR
#2BSDEHR
#2ESFCh
#2BESER
#2BFECH
#2E2E0H
#3B32Ch
#3B340h
#2EA12H
#3BA33Hh
#3BBSER
#3EBBESh

lid Expression”

363

H#IECBDH “"CHCT"
H#IBEZEH "SOLYR"
#IEEDLR "PLOTR"
#IEF28H "FTYPE"
H#IEF7ER "MEW"
#2EFR4h "
#ac\alh "
#HICBEER
HIC2EER
HIC4E2H
#ICS290H
#2CS74h "ALRM
HICETER
#ICEASH "
HICEDTR "
HICTETH "
HICT7ETh
HICTETH
H#ICTRER
HICTCER
#3CPFLR "
#3calzh "
#3ICES51h
#2C2EER
#3CEDFR
#3C98E0
H#3C91FR
#2C2480
#2C95Fh
H#ICATER “MONE"
#2C9C2H " *DATE"
HICPESH " STIME"
H#2CRESH “"R-PM"
H#ICAZDH "1z2-24"
HICAT4H "MD"
HICE:

#3DB9EN

364

#2DEATH
#2DEESh
#3DEC3H
#30E0 1k
#2DEDFH
#2DBEDR
#2DBFDhH
#3D16ER "
#2D11Bh "2
#0129
#2D127h
#20145hH
#30155h
#2D1ETH
#2D17ER “rd
#2018%h
#2D19Eh
#2D1RDH
#2D1EDH
#2D1C%H A"
#3010DSH
#3 (I

d2h "fiE
#30254h
#2D2EER

#30292h "
#2D2h4h

#3D4vAh "h"

Appenpices

"SKIF+"

JE5

HIEZEER
HIE4CFH
HIESISh
HIESD2h

K”FABEh
#414BD0
#415A7H
#43DZER
#42DCTh
#43DESH
#43EBSH
H#44228h
#442430
#4€817H
#4664ChH
H#4EBE00
H4GHEEH

#47FEFH
#47FAFH
#47FDdb
#420@20
#42842h
#485C10
RABE5TH
#ABEE2H
#437100
#437EEN
#4E7CAR

366

“DEL"
"DEL"
"INS"

STE"
"SETUR"

"EDIT"
"D
"UID"
"HROK"
"—ROW"
"4CoL”

#40018h “EG+"
#4221Fh
#42995hH "
#42A7ER
#42ACER
#45E44h
#42CE9hH
#42CECH
#42025h
#42092h
#42DECH ™
#497100 "
#492250
#49278H
#49910hK
#499FChH
#49R4ER
#49AEFH "
#AREESH
#APETTH

#AAEOAN

#AFECAR

#4EES1hH

#AEE9¢h i

#55158hH

Appenpices

H#ESTESh “ERIT"
HESTTEN "Undef ired”
h "RAD"

HESTATh “GRAR

#7265 "d”

#69692h " RATIO "

#EFSTAN "RULES™
“EDIT"

h “EMFR"
#EFRSELR "SUB”

#eRe0ah “REFL"
#E6E4130 “HOT *

Binary Integers

#LEES4h STEED0AEEECEH00aEEN
#1EE4EN S0COME0E 1000088000
#IFZ1Sh HE8R0hH

#HLAA71R HETZEZE84 18R
#1FFFIN #8180

#1ACTSh #PB1ETH

#LAEDEnR #8818ch

#1ED13N #E5A4 1850

#1B184h

#LEL13N HE5E4 1850

#1ESEPh #CB18h

#LEEZAN HBLEAR

#1EES4h #E8lesh

#1EVCER #3818%h

#LEES4h #48184h

#1ESCEN #5818

#LEAZE1h # BEh
HLFEREnR HESE4S180
#1F241h

#1F3159h HESEER6ATI41EN
#LF4E0H HESERTI41Z2N
#1F523h S85E418h

#1FS0Eh #SSRE3418h
#LFELDh #TZ185h
H2EDLEN

D Objects in ROM

JET

Lists

WATIEIN
HAETFHSH
HAE4TIR
WAFADEN

#18103h0
#1BEZER
#1BEESH
#i1LETZH
WIBBTCH
HIBEESH
EICEEE
H#UTIEFH
HISARLN
WISEFAR

WISFEER

WIFIEEN
WIFF2Fh
WEZIFAR

#223400
H2ZICSh
HE24DEN
#224410
H2ET N
#23ATIN
H#2E3B3h
WEEIEIN
#24AZEN
H2TEFSh
WETREER
HZTABSH
WEFZCEN

WEEATAR
H2E103N0
HZEBEAR
H2CTHSh
HID4DER
WELTFIN
H2LAESh
#EDREEN

WEDLTER
WEDFOLN

268

L
3
£HH
€ Clke’ 1wt LA
Lt LK Clod’ lmol
R
3
£
[
3
3
3
£ ‘halt
€ Crohalt 3
£e e
© 4904521609 TTTS3S0R
23491200 431520 W92 1 3
£ 0T weskis)” T dagisiT <
howrisi® 7 miruteisi”
- secondisiT T ticksT 3
€ rum 3
£ “Imercept” “Slope 3
Twark T 3
1200 2400 4508 9509 3
1233
B1E34 3
@128 3
noname Cstop ¥

1103

43hi <8hk <Ah: <18h 3

b

RN B

Bt TS oz Ctok rbw
“idfflg Cteeop Cteepdat
‘Ploc by Cunbourd 3

€
i
€
€
i
€
i st ofs tok 2
€
€
i
€
i
€

e e e e

o CERFMEG 3
i CLMAME CEMDDE CKREH ¥

HZESCIh
HZEIETh
HEZESBDh
HZEISEh
HEZESFEh
HZEEDEh

HZFLFDh
HEFSFEh
H3ILCEZh
H#31CASh
HILF4Rh
HIZFFh
H#3ZER
H3ZAECH
HI4DZER
HIETIEN
#3eacCh
LEEE
RIECERN
HIEDSEN
HIEDEEh
RIEASSh
HIEZSER

HIE20Ch

HIBZFENR

HIEIECHh

HIEAZEN

HIEASEh

HIETSER

HIEITSh

TKPOCFKHD 3

'EF CPKHD 3

LHAME CEMODE CKRM 3
FEH3 @ 0 @ 3 1 3

LNAHE
KRN 3
TELIET
"RETRY
“IMrap
1>

L2 7" el
‘rohalt ¥
<Eh>

‘OBJ CPACKET

LIV

fia # 3
LN
3
b3
‘SavedUl 3

PRRTE" { FABE SICH COHJ
ARG RE 1M MIM WFC{ HOD %
HCH XT MANT MPOH 1P FP
FLOOR CEIL RHD TRHC HFOR
HINRE >
£ HYPT C EIMH REIMM COSH
ACOEH TAMH ATARH EXFH
(5 o5 N
© CMATRHT { COM IDH TRH
R CET RSD ABS RMRH CHRM
b1
 FBS SIGH COWJ ARG FE IM
MIM MR HOD % %0H KT HANT
#POH 1P FF FLODR CEIL FRD
TRHC HAHRE HIKR 3
¢ SINH FASIMH COSH FCDSH
TRHE RTAMH EXFM LNPL 3
£ COH IDH TRM FDM DET RSD
AES FMRM CHRM 2
£ "ETET { ONER ROT ROLL
ROLLD: FICK DEFTH DLF DUFZ
DUFH DROPZ { “DRPH™ DROPH
33
{ "8 { 0BJ+ EHI+ FRRY
SLIST <+ETR <TAC RC 3R
DTAG #UHIT TYFE WITFE SIZE

<
i
<
i
£
<
€
i
3
ke
i
<
L
<
i
€

Arrenorces

#3BIF7H

#3BEZ22h

#3BESSHh
#3B6TFh

#3B9BER

#3B972h

#3BCEDR

#3BCETHh

#5BD46h

#3CE3ER

#3CB61H
#5C483h

#8C9BDR
#3C9EGR
#3CD9BR

#3CDABH
#2CDBFR
#3CDDER
#3CDFDR
#3CELCH
#30BF6N

"milg"

¢ "TEST" € AND OR XOR NOT
SAME TYPE == # < » £ > SF
CF FS? FC? FS?C FC?C 3 %
¢ OVER ROT ROLL ROLLD FICK
DEPTH DUP DUPZ DUPN
DROPZ ¢ "DRPN" DRGFN 2 2
{ "DRFN" DROFN X
{ OBJ+ E@+ +ARRY =LIST
+STR +TAG ReC C*R DTAG
SUNIT TYPE WTYPE SIZE POS
REFL SUE MUM CHR PUT GET
PUTI GETI 32
£ AND OR XOR NOT SAME TYPE
== = < > £ = SF CF F8?
FC? FS?C FC?C ¥
¢ PR1 PRST PRSTC PRLCD
PRYAR CR DELAY OLDPRT 3
¢ RSN STOKEVS RCLKEYS
DELKEYS MENU CST TMENU
RCLMENU STOF RCLF SF CF
F5? FC? FS?C FC?C 3
¢ MEM BYTES YARS ORDER
PATH CRDIR TWVARS PVARS
MEWOE LIBS ATTACH DETACH
MERGE FREE RARCHIVE
RESTORE PGDIR >
4 §TO+ §TO- §T0% STO- INCR
DECR SIMY SHEG SCONJ 3
{ FUNCTION COMIC FOLAR
PRRAMETRIC TRUTH BRR ¢
"HIST" HISTOCRAM 2
SCATTER 3
{ "HIST" HISTOGRAM >
¢ COLCT EXPAN IS0L GUARD
SHOW TAYLR MATCH LMATCH
| APPLY GUOTE =0 3
- SDATE >
STINE 3
£ ¢ "LIN" LINFIT 3 € "LOG"
¢ UERP" EWPFIT
FURFIT > <
BESTFIT I ¥

“LIN" LINFIT
“LOG" LOGFIT
EXPFIT
"PLE" PHRFIT

m
%
T

fath" "fiUs"
“termi® ¥

D. Objectsin ROM

#3D1FDh

#3D2EGh

#3D45Eh

#3D4C4h

#3D550h

#3DE4Ch

#3DEBFh

#3D76Eh

#30842h
#30891h

#3D%44h

#3D9BDh

#3DA4CH

#3DACSK
#3DAF2hH

#4132Dh
#433DBh

#45716h
#47B73h
#47BBEh
#4319%h
#4ATCFh

#4C93Fh
#4CFSGh

temt2t tb”
ing! km™;
mi~z" "milstzt

tstt temt3" Mudhet
int3" "1

“galC" "
RET "mlt o Meu”

€ "kg" "g" "ib" “eoz"
- “ton” “tonUk”
“grain® “u"

H" "dan” "t kip"
“ibft pdl" ¥

k “erg” “"Kcal" “cal”
‘ftelbf" “therm”
ey

“he" ¥
£ "Pa" "stm" "bar"
“psit "torr" “mmHg"
“imHg" “inH20" ¥
£ ovege mepe vege 3
*oTC CETOTWT

“mho™ “S" T"

L — "

" “flam™ “"lx" "ph”

“lmt ted® tlamt 3
rad” “rem su

TSt 3
£ CONVERT UBRSE UVAL UFACT
SUNIT 3

4 "y

< > <1h> <1h> <Zh¥
<Bh>

£ <thy <1h> 3

£ % 15 2

{8 15 3

<03

¢ LINFIT LOGFIT E®PFIT
PHRFIT

£ Cxmax N

€ 'EnuwOK 'EXITFCHN 2

369

#4FF98h

#58035h
#52026h
#5456AR
#547RER
#543CCh
#54DCER
#55666h
#5577Eh
#557FER
456571k
#SEBCDHh
#SEE43h
#56E61h
#56ERZh
#SEECBh
#SEEFCh
#571F2h
#SPEFEh
#5772Fh
#57BCEh
#S7ERSH
#5868FSh
4SSDE1R
#59118h
#592BBh
#59512h
#59641h
#59315h
#SAEEFR
4SAEECH
4SAPSCh
#SARESH
#5D678h
#5DD4zh
#SDE1Eh
#SFDBCh
#EBBF 3R
#68886h

#EBBESH

#EBE72h

#6415RN
#68484h

370

{ "xe ‘dYe "X 'y "xc 'yc #69A%2h ¢ 'Radix 'KeusOK? 'Exprlit
‘rz ‘left ‘up Cexit) ‘Buffl "BuffH "SaveBlank
{ ‘'FlotEnv ‘ManOp ‘nohalt ‘AppMode
[‘MameGrob "EXITFCH
{ ‘tcls “fels ¥ ‘FomtGauge 'LE ‘LB 'TE
<0 ‘FormEnulk ‘prow ‘pcol
< 'duar 3 ‘cursy ‘cursx 'ttt 'source
< 'xSYMfcn ‘xfcn ¥ ‘ofs ‘tok ‘rbv Cidfflg
{ ‘oth ¥ ‘tmpop ‘tmppdat ‘ploc by
€ ‘'scl "xSYMfcon Cxfon 3 ‘unbound ¥
¢ 'uSYMfcn Cxfcn ¥
¢ 'sumexpr 'sumuar 3
tan-n Units
{ 188 ~» = 3
¢ e % #BFASSh '1kg'
¢1se sox #EFAS4h ' lom'
cess /%3 #EFARdh 1A
C oA s #EFACAR 1=’
€ tdv tep oo 3 #EFRESh 1K'
¢ 12 $BFEGIR " 1_cd”
: ST ! #OFE26H 1 mel’

#GFB4AR 17"
{ "= 3
{ "+ >
< OF1 3
£ 'mmis 2
{ 'c b "a ¥
{ 'm 'prog ¥
< 'n 3
1+ 1 -3
£ ‘'piflag 2
¢ 'd 'r 2
¢ 'd 'R est 'W 'T 3
{ ‘'bnds ‘dvar ¥
¢ ‘'which ‘opl ‘opZ 3
2~ -J0i3
< soE 3
{ ‘et ‘pp ep ¥
€0
{ 'res ‘sur ‘cis 'sun 'mig
‘ckd ‘prd ‘prp ‘rhs 3
€ ‘patternls compos
‘varls 1
024 2034 a1 a2
&3 24 3
{ <13ER> <{123h> <DFFh>
£ 0

Appenpices

Graphics Objects

#120B4h

#3%B20h

#3A337H

#3A3FFN

#3A3FBh

#3A45DN

#5853Ch

#5855AN

#565B2h

#EEEASH

#66ECDH

#E6EF1h

#EEFL1R

#66F35h

#66FSDh

#66F7Dh

GROB &

GROB

GROB

GROB

GROB

GROB

GROB

GROB

GROB

GROB

GROB

GROB

GROB

GROB

GROB

16

131

D. Objectsin ROM

o

2

FiFIFIFIFIFIFIFiF166

FFFFFFFFF FFFFFFFFFFFFFFFFF

FFFFFF
00000EEBDEEEEE

FFFFFF aaea8e

EGGOEH

1CFFFF
0O000GEBEEEEEE

FFFFFF1GAGAL16ARA1166EA1160661 1008

G11666EIFFFFFF

48468F 14046

11RB4BARBIL

Fiiit1i111ti1111FiGe

FI1111111111F168

FBSG9B9G96FE

GEGEABGERGEEEEE0

GEEEEEEEBEBE0EB0606E

F777BEDSF7F7

FiBISIF1L

371

Global Names

HBDFBA1h
HBDF22h
#157ECH
#157810
#19A72h
#19B1Fh
#19DEER
#211B4h
#225R4h
#2C1FDR
H2C728H
H#ZEIDSH
HZERS9H
#31FSTh
#31FBSh
#24DEER
#2FACFH
H4G22EH
H4BDFH
#41R42h
#41RESH
#41BED7Th
#4352ER
#4358
#435CER

#48D4Bh
H#4A145H
#4A19ER
#4A1DER
H#AR22DH
H#AR25ER
H#4RE1CH
#4ABSSh
HIBFCER
#IBFESh

#593084h

‘Alatms’
‘Rlarms’
B
'ALRMDAT'
'ALRMDAT®
‘ALRMDAT'

 GENTER"
'Userkeus"

‘UserkKeys.CRC'

5
‘ALG
E

e
'ALRMDAT

DR R

‘PPHP‘

e
ne;

=g

Local Names

HBE4TRR
HEBE423h
HOE4REH
HEE4RER
HEE4C1h
#1429BH
#14.

#1F9EFh
#1F97ER
H2372ER
#2272Fh

372

stop’
‘roname

#22E7ER
#22982h
#23913h
#23928h
#2394Bh
#22956h
#223%63h
#24R20h

#25A3BH
#25A51h

#2748k

#2D48ER
#2D41Dhk
#2D4ZER
#2DESAN
#2D4EDR
#20426h

#2F4EEh
#21C27h
#24026h
#3EEFER
#2ECH1H
#36C2Fh
#2EC3Fh
#36CEFh

#3FRESH

' 'PARCKET®
'RETRY
'ERRMSG*
et

' LHAME "
troBdt
trorPos’

' ERCHR

CUKLIST'
' KMODE "

KR

' avedUl!
'SKEY"

‘ioinprogress’
at

Appenpices

#41BERK
#42555h
#42530h
#435E1R
#4C944h
#4C955h
#4CFS5h
#4CFEEh

#3AET AR
#3ATELR
#3A7ECh
H#SA7TTH

g
"ALGT
I

e
" EnwiK!
"ERITFCH®
T EnwOK!
! EnwidK!

txEYMECn”

Y'wfon'

" sunexpr
SUni

i

g
R

D. Objectsin ROM

#5AF2ER 'R
#5A7FIIR T
#3RRESH

#5DEFDR

#30E3EH

#50ESFH

#SFDC1R
#SFDCER
#SFODER
#EB20EH
#E621RK
#EB229R
H#EB222H
#EB247H
#68356H

gk
T
@&
0
0o

iy
T

#eBCEdh
#EEC19h ' Tuwarls’
#E66C4FR * patternls’
#EBCERR ° 'compos
#GBCCRR " '
#EG07TFR
#EEEECH
#EBESTH
#EEEAZH
H#EOERDh
#&102Ah
HEIAITH
#E9FRRR
#EIAC1H
#EIADER
#EIAEER
#E9AFER ' 'SaveBlank '
#EIE19h ' 'ManOp’
#&69B2CH ' 'nohalt’
#59841h ' 'Apptode’
#E9ES8h ' 'HameCrob '
#EOETIR " EXITFCH'
#E59B2S8h ' 'FontCauge'
CLE

#E63CFER " idfflg’
#63C33h ' tmpop’

#53CAEh " 'tmppdat
#E9CEDH ' 'ploc’
#EOCCER " 'bu'
#E9CDEBR " "unbound”

373

374

E. Error Messages

Appenpices

Excluding any emors in supplementary libraries, this is the complete list
of emor messages that the HP 48 will display. They are listed by order of
their code, given in both decimal and hexadecimal.

237
Z3E
5%

ZEE
263
264
ZET
266
267
268
269
7|
271
=FE
-rg-]
=7a
e
276

aelh
Bech
aech
aedh
BETh
3eh
BBTh
aesh
2%
BeFih
BEEN
BECh
2eCh
BEER
BEFT
alen

18lh
18zh
183h

186h
187h
128
1850
1e6h
1BEN
18Ch
180
18ER
IBFH
11Eh
ilth
[FE=
11zn
114k

CIrgufficient Merary”
TArectory Recursion”
“Urdefired Local Haee™
“Urdofined MLIE Nawe™
THemy Clear
o Lost”
“Warnings "
“Irwalid Card Data”
“Object In Use”
"Port Hot Avadlable”
Mo Foom o dn Foet”
“Object Mot in Fort”
Recousring Momory
“Try To Recouer Mooy
“Replace RAM, Fress ON
“Ho Mem To Condig AILT

“Ho Room to Save Stack”
“Can’t Edit Mull Char,
“Irealid User
Furction®
Mo Current

Equat tan”

SInualid Euntae”
“Real Husber™
“Copplon HunborT
“Etring”

Feal Revad”
“Corelen AT
List-

“Global Hase”
“Local Hame™
“Fragran”
“Rlgsbraic”
“Binay Irieasr”
“Graphic”
“Tagged”

“Undt "

E. Errar Massages

27T
z7e
279
ze@
zElL
2z
z83
2B4
zem
=
zET
z88
ze9
zom

zaz
2592
LT
zen
298
297
238
ELL)
ELL:
=108
ELES
LB
ELTY
Lk
EBE
b
=L
ELE]
L]
211
Tk
Blz
a4
BT
EI)
BIT

1
1160
11™h
1120
11
11An
11BN
11ch
1100
11En
11F
120
121h
1z

12n
1z2mn
==
127
lzgh
1290
LzFh
1280
1z0h
12t
1ZEn
1zFh
1280
13Lh
132nh
fE=
lz4n
12
1380
127
1320
1290
1370
1zgn
12ch
1300

HLIE Hake”
“piFECtory”
Library”
~Backup”
“Funct 1on”
“Compand”
“System Binay”
Loy Real”
Long Complas™
Lirked Array”
“Character”
“Cade”
Libray Data”
“Ewteenal”

LRST STACK Disabiled”
LAST oMb Dissblsd”
HALT Hot Allousd”
TR

“Circular Rederence
‘Directory Hot Allowed™
THon-Ewpty Dirsctary”
“Irwalid Definition
"Hissing Library”
“Irwalid FRRRT
“Hor-Real Result”
Unaole to Isolate”
Mo Roon oo Shou Stack”
“Harning:

“ErFor:”

“Purae?”

out of Memory”
“Etack”

TLazt Stack”

TLast Commands”

Eed REEloresnts
“Alarws"

TLast Argurents”
“Hame Conflict”
“Comeand Lire"

ars

513
Sis4
515
Sige
517
518

519
S5ze

TES
77e
771
Trve
7rE

iz2s1
izs2
1283
1284
1285
1286

376

2a1h
28zh
283h
284h
285h
266h

287h
288h

ECHY
3@zh
3@3h
384h
3@5h

S@ih
Sézh
5@3h
S@4h
s@sh
56éh

“Too Few

“Bad FArgument Tupe”

Arguments"

“Bad FArgument VYalue"

“Undef ined
“LASTARG
“Incomplet

Subexpression”

“Implicit
“Implicit

"Positive

Mame"
Dizabled”
e

€ off"
< on®

Under# lou"

"Negative Underflow"
“Overflow”

“Undefined Result”
“Infinite Result”
“Inualid Dimer on”
“Invalid FArray Element
"Deleting Rouw"
“Deleting Column®
“Insertina Rou”
“Inserting Column”

1537 #
1538 #
1539 %
1546 #
1541 #
154z &
1543 &
1544 %
1545 #
1546 #
1547 #

1546 #
1545 %
1556 #
1551 %
1552 %
1552 %
1554 #

1555 %
1556 #
1557 %
isse#
1559 &
1566 #
1561 #
isez#

1563 %

1564 &
1565 &
1566 #
1567 #
1568 #
1569 %

1571 #
1572 %
1573 4%
1574 %
1575 #
1576 &
1577 %
1576 #
1579 %
1586 &
1581 #
1582 #

&aih
662h
683h
&@dh
BESh
EBER
E67h
668h
5630
6aAh
EEEh

&&Ch
&E0h
BEER
6EFh
616h
Eilh
612h

&ish
614h
615h
&16h
E17h
618h
&i3h
&1fh

61Bh

E1Ch "

E10h
&1ER
61Fh
626h
&2ih

&2zh

623h

E2ER

“Invalid ZData"
“Morexistent ZDAT"
“Insufficient IData”
“Invalid IPAR”
“Inuslid EDsts LNC(Neg)"
"Invalid Ebata LMCE"
"frvalid EG"
“Current equations”
"o current equation.”
“Enter edn, press NEW®
“Mame the equation,
press ENTER"
"Select plot tupe"
“Empty catalog"
“undef ined”
"No stat data to plot”
“Autoscaling”
"Solvina for
"o current data.

Enter"
"data points press I+"
“Select a model”
"Mo alarms pending.”
"Press ALRM to create”
"Mext alarms”
"Past due alarmi®
“Acknowledsed”
"Enter alarm, press
SET"
"Select repeat
interusl”
140 setup menu”
"Plot tupe:r *

COFF SCREEN)"

“Invalid PTYPE"

“Mame the stat data,
press ENTER"

"Enter value (zoom outif
313 press ENTER"

“Copied to stack”

‘x axis zoom wsAUTO.™

‘x axis zoom,"

"y axiz zoom

"x and 9 axis zoom."

IR wiret "

RSCIL binaryt "

“baud:

“paritus

“checksum tupe:

“translste coder”

“Enter matrixs

then HEW"

Appenpices

2561
2562
2563
2564
2565
2566
2567
2568

2873
3674
L]
3876

3677
2678
2879
3080
3081
3882
3883
2684
3885
2686
3087
3888
3889
3696
3691
3892
3893
3694
3835

Ceih
cézh
cash
Cadh

cesh
Ceeh
Ce7h
cash
cash
CERh
C8Eh
Cech
CEDh
CEBER
CaFh
cieh
Cith
cizh
Ci3h
Ci4h
£15h
Cigh
Ci7h

"Bad Guess(es)" D@ih “Invalid Date”
“Constant?" Dazh Time"
“Interrupted” Dpash Repeat ™
“Zero" D@4h “"Monexictent Alarm”
"Sign Reversal”

“Extremum"

"Invalid Unit"

“Inconsistent Units"

458752 % 7@es6h

"Bad Packet Block Check"
"Timeout”
“Receive
“Receive

Error”
Buffer
Overrun®
Error”
Failed"
Error”

“Parity
“Transfer
“Protocol
“Invalid Server
“Part Closed"
“Connecting”
“Retru #"
“"Auaiting Seruver
“Sending "
"Receiving
“Object Discarded"
“Packet #"
“Processing Command”
“Invalid IOFRR"
“Inwalid PRTPAR"
“Low Battery”

“Empbu Stack”

“Row "
“Invalid

Cmd. "

Cmd. "

Name "

E. Error Messages

Last user message
(message DOERRY
377

378

F. Machine Language Instructions

Appenpices

The instructions on the following pages are given in order of their codes.
The HP HDS manual gives them in alphabetical order, but they are given
here by code value, to make it easier to disassemble machine language
programs (especially those in ROM). To make it even easier, the entire
instruction set is given on two pages next to each other so that you won't
even need to turn the page. More detailed explanations for these instruc-
tions are found in Chapters 9 and 10.

For the registers and fields, here is a summary of what we have already
seen:

FIE[pJc[B]AJe[8]7]6][5]4]3][2]1]0

w
s | M [xs] B
A
[X
Field a f b
P 0 0 8
WP 1 1 9
X8 2 2 A
X 3 3 B
s 4 4 o
M 5 5 D
B 6 6 E
w 7 7 F
A F

F. Machine Language Instructions 379

380

RTHSXM
RTN
RTNSC
RTNCC

ADLEX

IRNO B

400
120
ayz

500
5yz

6300
64000
6yzt

Tyzt

80810
8082:n0.hx

UNCNFG,
coNFIG

=10
SHUTDN
INTON

RST
LAHEX

#hx.n0

acmeacoca

Appenpices

B E B BN I BRI BB NI BB BB ENEININIBIBBOI0LALA

eCpars coLoNG srap
BDparst GOVLNG targp
BEpqrs COSUBL srap
BEpgrst GOSBVL tarap
920 2n=p a

28=C a

F. Machine Language Instructions

BbO

BoE
BoC

BOE
BoF

GromComN o oW
badsashadddd

pmen soooooo

B e e e

P

PR

B e

P

381

282

G. Glossary

Arrenorces

Address A number between 0 and FFFFF (in hexadecimal) which indi-
cates the location in memory of some data.

Annunciator One of the symbols that appear in the status area (the very
top of the HP48 calculator) to indicate the machine's current status (EG,
RAL:, GRAL:, =, busy, etc.).

Assemble The act of translating an assembly program into machine
language.

Assembler A program that will translate an assembly program into ma-
chine language.

Bank-switching A technique used to have two distinct memory areas
exist at the same address. One of the two is visible, while the other is
hidden. Toaccess the hidden memory, the visible memory mustbe moved
to another address

BCD (Binary Coded Decimal) This is a method of storing a decimal
number in binary. For example, the number 20 (in decimal) would be
stored as 20h (in hexadecimal) which actually equals 32 (in decimal).

Bit A memory location that can equal 0 or 1. This is the basic unit that
makes up a nibble.

Bit clear To say that a bit is clear means that it equals zero.

Bit set To say that a bit is set means that it equals one.

Buffer A memory areathatis used as a temporary storage forinformation
that is waiting to be used. For example, each keypress is stored in a
buffer, and the data going out or coming in the RS232¢ port goes through
a buffer.

Byte 8 bits of data. The basic unit of measurement for memory size. A

byte can represent any value from O to 255 (decimal) or from O to FF
(hexadecimal).

G. Glossary 383

Disassemble Translate a machine language program inte assembly.

Disassembler A program that will translate a machine anguage program
into assembly.

Field A part of a register.

Flag One bit in memory that serves as an indicator.

Garbage Collector This operation is performed when the machine does
not have enough free memory to perform an operation. This operation
consists of purging any temporary objects that are no longer being used.

The MEM command will cause garbage collection fo occur.

Hexadecimal Base 16. The digitsare 0,1, 2. 3,4, 5, 6,7, 8 9 A B, C,
D, E and F.

Kilobyte (Kb) 1024 (2% bytes. A unit of measurement for memory size.
LCD (Liquid Crystal Display) The HP43 screen is an LCD screen.

Machine Language A list of codes which represent elementary instruc-
tions that the microprocessor is capable of understanding.

Memeory A place used for storing data. See RAM and ROM.
Nibble 4 bits of data. This is the basic unit if memory for the HP 48
calculator. A nibble can represent any value from 0 to 15 (decimal) or from

0 to F (hexadecimal).

Object Everything that RPL can handle is called an object. A real
number, for example, is an object.

Peek A program (or instruction) that will read the contents of a specific
memory location.

264 Arrenorces

Poke A program (or instruction) that will write data to a specific memory
location.

Processor See microprocessor.

Prolog A group of 5 nibbles which serve as an object's identification. The
prolog is always the first 5 nibbles of an object.

RAM (Random Access Memory) RAM consists of electronic circuits that
are capable of storing data. RAM can be modified.

Register A memory location for the microprocessor. Typically faster
access than RAM, so most operations are performed in registers. Regis-
ters can contain only positive integers.

ROM (Read Only Memory) ROM consists of electronic circuits that are
capable of storing data. ROM cannot be modified. ROM contains the
machine language instructions for RPL, among other things.

RS-232C A data communications method used by the HP 48 to transfer
information between itself and another computer. The data is sent
serially—one bit at a time.

Stack The stack is a method of temporary storage. The user stack is

displayed in the central part of the HP 48 screen. RPL is based on the
principle of the stack.

G. Glossary 385

H. Handy Machine Language
Routines

Here are a few machine language routines found in ROM that will perform
useful functions to add to your machine language programs. They should
generally be called with a GOSEYL.

SAYE_REG (# 0679Bh) will backup the registers DO, D1, B, field A,
and D, field A into a specific memory area (see Part 2, Chapter 7).
Note that they are not saved on a stack, so if you call this routine a
second time, the first values are lost.

LORL:_EEG (# 067D2h) restores the values saved by SAYE_REG.

TRDH (# 0670Ch) copies C, field A nibbles pointed to by DO to the
address in D1 (beginning addresses of two memory areas). D1
should be less than DO for this routine (transfer down).

TRLUF (# 066B9h) copies C, field A nibbles pointed to by DO to the
address in D1 (ending addresses of two memory areas). D1 should
be less than DO for this routine (transfer up).

ZEROM (# 0675Ch) sets C, field A nibbles pointed to by D1 to zero.

RES_ROOM (# 039BEh) reserves C, field A nibbles of RAM. The
address of the reserved area is stored in DO. If the free memory is
not sufficient, then a garbage collection will occur. If this does not
free enough memory, then the program will halt, and an error
message will be displayed.

GARE_CAOLL # 0613Eh) cleans the HP48 memory by purging all
unused objects (unreferenced objects found in temporary RAM).

EES_STE (# 05B7Dh) reserves a string of characters of length (in
nibbles) C, field A. This routine returns the address of the string in
RO, field A and the address of its contents in DO. If the free memory
is not sufficient, then a garbage collection will occur. If this does not
free enough memory, then the program will halt, and an error
message will be displayed.

FUEH_RE& (# 08537h) places the value of RO, field A onto the stack
as a system binary. CAUTION: The registers D1 and D must have
been previously saved with a call to SAYE_EEG.

388

FUSH_EE_E1 (# 06529h) places the values of RO, field A and R1,
field A onto the stack as system binaries. RO will be in level 2, and
R1 will be in level 1. CAUTION: The registers D1 and D must be
saved previously with a call to SAYE_REL.

FOF_LC (# 06641h) takes the value of a system binary from the stack
and putsitin C, field A. CAUTION: The registers D1 and D mustbe
the system values (stack pointer and free memory). Their values will
be modified by POF_C (since the object in level 1 was removed).

FOF_C_H (# 03F5Dh) takes the values of two system binaries from
the stack. As with the routine above, D1 and D are modified. C, field
A will contain the number from level 1, and A, field A will contain the
number from level 2.

LIS (# 06A8Eh) divides the contents of C, field A by 5. This routine
uses the first 10 nibbles of registers A, C, and D. This actually
performs a multiplication by 3355444, then a division by 16777216,
which is just about a division by 5

MULTA (# 03991h) multiplies A, field A and C, field A, and puts the
result in B, field A.

EEEF (# 017A6h) emits a sound with a frequency of D, field A and
a duration in milliseconds of C, field A. This routine takes into
account flag -56.

ERRGOR (# 05023h) displays the error message for the number
contained in A, field A. CAUTION: This routine must be called with
a GOTO, and not a GOSUE. It will halt the program currently
executing. This call must be preceded by a call toLORL_REG, if you
have called SAVE_REG.

STOF (#10FDBh) called with aGOT, will halt the program currently
executing. It generates error #123h which IFERE cannot handle,
so the calculator is returned to interactive mode. This call must be
preceded by a call to LORD_REL, if you have called SAYE_RELG.

ExHE (# 026BFh) will execute the routine in hidden ROM at the
address contained in C, field A.

Appenpices

« DIV (#65807h) divides A, field W by C, field W. The resultis placed
in field W of both registers A and C, and the remainder is placed in
B, field W.

+ MULT (# S3EE4h) multiplies A, field W and C, field W. The resultis
placed in field W of both registers A, and C.

+ FREEEMEM (¥ D8SF7h) recalculates the value in #70E5Eh (free
memaory in 5 nibble blocks) using the addresses in #70579h and
#70574h. This call should only be used if you have previously
called SAYE_REG (which you would typically do at the beginning of
YOuUr program).

+ FEEEMEME (# 06806h) calculates the amount of free memory in
nibbles. The result is placed in C, field A. This call should only be
used if you have previously called SRVE_REG.

+ ASLMWS (# 0D5F6h) executes the function ASL on field W 5 times,
which helps you use one register as three fields of 5 nibbles (when
used in conjunction with ASLWS).

+ ASEWS (# 0D5ESh) executes the function ASKE on field W 5 times.
+ CSLMWS (# 0DB18h) executes the function CSL on field W 5 times.
= CSEWS (# 0D607h) executes the function CSR on field W S times.

+ DEFFMAP (# 0C1B0h) stores in nibble #4 of DO, the base address
of built-in RAM (7 or F).

+ D17PFMAF (# 0C1A1h) stores in nibble #4 of D1, the base address
of built-in RAM (7 or F).

+ DIPFMAF2 (# 0C154h) stores in nibble #4 of D1, the base address
of built-in RAM (7 or F). This routine is slower that D1 7FMAF, but it
modifies only nibble #4, and the others are left unchanged.

+ COWFTRBCRC (# 09B73h) calculates the checksum for the configu-
rafion table at #7042Ch. The result is placed in C, field A

H. Handy " 389

250

CHECK_ERAT (# 00GEDH) checks the batteres, depending on the
value in nibble #0 of C: 1 to testif the main batteries are very weak,
2 to test if the main batteries are weak, 4 to test the battery for the
plug-in card in port 1, and 8 to test the batter for the plug-in card in
port 2. On retum, the CARRY is set if the battery is weak.

CHECK_BATI (# 325AAh) checks the main batteries. If the batter-
ies are weak, the CARRY is set, and the coresponding eror
number is placed in C, field A.

DETOS (# 6384Eh) places the address stored in #70579h (the
address of the objectin stack level 1) into DO. SAYE_REGmusthave
been called previously.

D1TOS (# 6385Dh) places the address stored in #7057%h (the
address of the objectin stack level 1) into D1. SAYE_REGmusthave
been called previcusly.

DISINTR (# 01115h) disables interrupts.

ALLINTE (# 010ESh) enables interrupts.

DISPOFF (# 01BBDh) turns off the display.

ADISPOFF (# 01BD3h) turns off the display and the annunciators.
DISFON (# 01B8Fh) tums on the display.

RADISPOM (# 01BASh) tums on the display and the annunciators.
EMPTKBUF (# 00DSTh) clears the keyboard buffer.

EMFTATTH (# OODBER) sets the five nibbles at #70679h fo zero.
(This is the area that stores how many times the [ON1 key has
been pressed).

EEY INBUFF (#04995h) tests the keybuffer for keys that have been
pressed. On return the CARRY is clear if the buffer is empty.

Arrenorces

+ DISFIMGEOE (# 11D8Fh) writes text into a graphics object using
the 5x7 font. It takes the address of the text beginning in D1, the
address of where to write into the GROB in DO, the number of
characters to write in C, field A, the left margin (in characters) in B,
field A, and the size (in nibbles) of the GROB in D, field A.
CAUTION: This size is the total size of the GROB, and can be
calculated by finding the integer part of [((size in pixels) + 7) F 4].

+ IRFCONF (# 026E8h) configures the built-in RAM to the address
F#Fr0000h. This routine updates the graphics pointers.

+ IRFCOMF (# 0228Eh) configures the builtin RAM to #F0000h. Do
displace the built-in RAM to this address, first unconfigure it, then
call IRFCOMF, thenCOMFGRAFH.

= COHWFGREAFPH (# 01CTFh) recalculates the graphics pointers after
displacing the built-in RAM.

« BUSYOM (# 42333h) turns on the EUSY annunciator.
« BUSYMO (# 42358h) turns off the BUSY annunciator.

H. Handy " as1

392

l. Index

Appenpices

02911 123, 124
02933 123,125
02955 123, 126
02977 123,127
0299D 123,128
029BF 123,129
029E8 123, 130, 146
02A0A 123,132
02A2C 123,133, 146
02A4E 123, 134 145,147
02A74 123,1

02A96 123, 136 138
02AB8 123,139
02ADA 123,140
02AFC 123,141
02B1E 123, 142
02B40 123,143
02B62 123, 148
02B88 123, 150
02BAA 123,151
02BCC 123, 151

02D9D 123, 152
02DCC 123, 153
02E48 123, 154
02E6D 123, 155
02E92 123,156
0312B 135, 139, 140, 152

2's complement 83, 110
?ADR 228

mSOLVER 295

™ 286

ofalarms 196

of backup area 187, 194

of command line 191

of current GROB 186

of last error message 195

of menu GROB 1

of next object to execute 197

@ of PICT GROB 186

@ of stack GROB 186

of temporary environment 186, 193
ofthe current directory 194

of the End of RAM 195

of the home directory 194

of the undo stack and local vars 191
ofuser-keys

i 66

A 77,78
A->STR 260

A->V/ 289

Absolute 84,111,112
ADD 283

Addition 83, 98

Address 66, 77,243,383

1. Index

Address of Last Error Message 195
Address of an objectinlevel n 200
Address of Hash Table 136
Address of Message Table 136
ADISPOFF 390

ADISPON 390

Alarms 196

Alert 164

Algebraic object 123,139
ALLBYTES 216

ALLINTR 390

Alpha 164

ANAG 307

Annunciators 164, 201, 202, 383
Avrithmetic operations &3, 97
Arrays 360

ASCll code 129

ASLW5 389

ASN 50

ASRWS 389

Assemble 383

Assembler 69, 383

Assembling 70

Assembly /0

Attn Flag 201

Auto-tesi fail time 176, 178
Auto-test starttime 176,178
AUTOST 319

B 77,78,175,186, 210

B->SB 258

BACKUP 54, 145, 175, 194
Backup Area 194

Backup End 194

Backup object 123, 148

Backups 194

Bank- swwchlng 159,383
BANNER 324

Base 341

Base address of built-in RAM 164, 170
Batteries 164, 177

Battery Test 164

BCD 71, 125, 383

BEEP 73,388

Beginning @ of free mem. 186
Beginning @ of temporary objects 186
BFACT 283

BFREE 261

Binary 342

Binary coded decimal 71, 125, 383
Binary integer 123, 134

Binary Integers 367

Bit 71, 342, 383

Bit clear 383

Bit set 383

Boolean algebra 342

Buffer 179, 183, 184, 185, 383
BufFull 179

BufLen 179

393

BufStart 179 D 77,175, 189, 210

Built-in RAM 158, 160 DO 76, 77, 210
Bus commands 84,119 DO7FMAP 389
Busy 164 DOTOS 390
BUSYNO 391 D1 76 77 175 186,189, 210
BUSYON 391 D171
BY5 217 D17FMAP2 389
Byte 77,342,383 D1TOS 390
Data 179

c 77 Data pointer registers 73, 76
C->SB 258 Decrement 83,99
Cache buffer 85, 92 DEPTH 24
CAL 320 DER 288
CALC 266 Derivatives 59
Calling subroutines 84, 112 Direct relative conditional 84, 111
Card present in port 168 Direct relative uncondlhonal 84,111,112
CARRY 76 Directories 16,
Character 123, 129, 133 Disable keyboard 186
Characters 359 Disable system-halt 176
Checksum 143, 144 DISASM 243
CHECK_BAT 390 Disassembl 384
CHECK_BATI 390 Disassembler 384
CHK 232 Disassembling 70
CIRCLE 322 DISINTR 390
CLEAN 218 DISPINGROB 380
Clock 159, 176, 177 Display 164, 165
Clock Offset 176, 178 DISPOFF 241, 390

R 22 DISPON 241, 390
CLVAR 239 DIV_276, 389
CMOS word 176,177 DIV5 388
Code 123, 153 Dividing by 16 83, 107
COMA 177 Dividing by 2 83,106
Command line 175, 191 DIVP 290
Command Line Stack 197 DROP 22, 26
Comments 51 DROP2 26
Comparing registers 84,113 DROPN 26
Comparisons 84, 113 DSP 312
Complex Numbers 123, 127, 359 DUP 25
CONFGRAPH 391 DUP2 25
Config. Object 143 DUPN 25
Configuration Table 181
CONFTABCRC 389 E 266
Contrast 164, 165, 241 EEPROM 53
Control code 148, 149 EMPTATTN 390
Controlinstructions 84, 120 EMPTKBUF 390
Converting Between Bases 343 Empty name 196
CPU cycles 84 End of RAM 201
CRC 143, 148, 149, 164, 166, 265 Ending @ of free memory 186
CRC calculator 166 Ending @ oftemporary ob]ects 186
CRC value 149 Epilog 135, 139, 140, 1
CRCLM 265 EPROM
CRDIR 33 Error 177, 388
CRNAME 238 Error messages 146, 374
CSLW5 389 Error number 201, 204
CSRW5 389 Exchanging register contents 83, 94
CST 48 Exchanging register fields 83
Current Directory 194 EXHR 388
Current menu offset 201 EXponent 77, 125, 126, 127, 128
Cycles 84 External 157
Cyclic Redundancy Control 148, 166 External module missing 76

394 Appenpices

f78

Factorial 2000 284

FAST 165, 242

Field pointer register 73,77
Fields 77

Finding extrema 59

Flag 384

Flag registers 73, 76

Flags 191, 201, 202

Free memory 175, 189, 201
FREEMEM 389
FREEMEMQ 389

Garbage col\ector 188, 384
GARB_COLL 387

GASS 209, 215

Getting the program counter 84, 111
Global name 123, 154, 372

Global variables 41

Graphics object 123, 142, 188, 371
Graphs 59

p
GROB ofthe character under the Cursor 204

Hash Table 136, 143, 145
Hexadecimal 71, 343, 384
Hidden directory 196
Hidden memory 159
Hidden ROM 170, 224
High-level language 69
HOME 32, 33,137, 194
HP28 73

HP71 73

HRPEEK 224

HST 76

1/0 RAM 159, 160, 163

1/0 registers 73

lcons 50

Immediate 83, 84, 86, 113
Increment 83, 97

Infra red 56, 177

Infrared receiver/transmitter 159
INPUT 73,1

Input and cutput 83,93
Input OK 169

Instruction Set 83
Instructions with no effect 84
Interrupt Backup 182
Interrupts 80, 164, 169, 182
IR 56

IR in mem. 164

IR input 164, 169
IR output 164, 170
IR7CONF 381
IRFCONF 391

JINGLE 318
Jumps 83, 110

1. Index

KERMIT 85, 149

Key codes 184, 185, 186

Key state 183, 184, 186
Keyboard 15, 73, 179, 184, 185
Keyboard Buﬂer 184,185,186
KeyEnd 184,186

KEYINBUFF 390

KeyStart 184,186

LAGU 292

Large binary integer 134, 145, 147
LAST 197

Last menu offset 201

Last RPL Token 201

LAST Stack 197

LCD 384

Left Shift 164

Library 123,136, 143

Library Data 123,136

Library number 137, 143

Link Table 143, 147

Linked array 123,132

LISP 35

List 123, 135

Lists 368

LOAD_REG 210, 387

Local name 123, 155, 372

Local variable 41, 191,192
Logical AND 83, 102

Logical NOT 83, 104

Logical OR 83,103

Long Complex Numbers 123, 128, 359
Long Real Numbers 123, 126, 358
Low-level language 69

M 77,78
Machine language 69, 384
Machine speed 186
Making data access easier 48
Managing the Stack 22
Mantissa 77, 126,127,128, 132
Margin 164, 165
MASTER 304

IAZE

MEM 29

Memory 66, 384

Menu 16

Menu bar 172, 198

Menu bar bitmap 171
Menu bar height 171,172
Menu bitmap 198

Menu bitmap address 186
Menu height 186

Menu Offsets 204

Menu trees 31

Menus 29, 198

MERGE 54

Message 146

Message Table 136, 143, 146

395

Microprocessor 71

Mini editor screen prep. 176
Mini-editor 160

Mini-Editor Screen Preparation 178
M\scellaneous notes 79

MODUL 316
Module pulled 76
MODUSEARCH 264
Moves 83, 86
Moving values 88
MP 76
mSOLVER 235
MULT 266, 283, 389
LTA 388

Mu[tlp\ymg by 16 83, 107
Multiplying by 2 83, 105
MUSICML 314

NEXT 29

Next error to display 201

Next Object to be Executed 197

Nibble 342, 385

NOPs (instructions with no effect) 84, 120
Number of attached libraries 136, 201, 204
Numerical calculation 59

Object 385
Obijects 35,123, 354
ON-D 160

Other Objects 157

QuUTPUT

Output Mask for the Keyboard Test 182
Output OK 169

P 78

PATH 33

PC 76

PCAR 291
PEEK 220, 385
Peripherals 159
Pl 286, 287

P 4

Pixel 142

Plug-incard 179

Plug-in card ports 159
Plug-in card removed 177
Plug-Incards 53, 179, 181
PMAT 294

POKE 222, 385

POP C 388

POP_C_A 388

Port 179, 181

Port 0 184

Port 1 161, 179

Port2 161,179

Port information (HP48sx) 179, 181
POW 266, 282

396

PR40 311

PREVIOUS 29
Processor 385

Program 36, 123, 152
Programming Methods 36
Prolog 385

PROM 53

Pseudo operations 84, 120
PUSH_RO 388
PUSH_RO_R1 388

R->SB 258

RAM 53,54, 175, 385
RAMSEARCH 263

Random number seed 201, 202
RASS 230

Reading and writing to memory 83,92
Real number 123, 125

Real Numbers 358
Real/Complex array 123, 130
Recursion 42

Redefining keys 50

Register 385

Register direct 84, 111
Register indirect 84, 111
Registers 73

Registers used by the HP48 79
RENAME 319

Reserved 1 123

Reserved 1,2, 3and 4 151
Reserved 2 123

Reserved 3 123

Reserved 4 123

Reserved RAM 175

Restart 177

RES_ROOM 387

RES_STR 387

Return stack 76, 175, 189
Returning from subroutines 84, 112
REVERSE 236

Reverse Polish Lisp 35
Reverse Polish Notation 18
Right Margin 171,172

Right Shift 164

ROLL 23

ROLLD 23

ROM 53, 159, 385

ROMRCL 259

ROMSEARCH 263

ROT 22

Rotating left (one nibble) 83, 108
Rotating right (one nibble) 83, 109
RPL 35

Appenpices

RPL Commands 345, 350
RS232¢ 54,164, 179, 385
RS232¢ Input 164, 169, 170
RS232¢ Inpu(Buﬁev 180
RS232c¢ Interrupts 164, 169
RS232¢ Output 164, 169, 170
RS232¢ Speed 164, 168
RSTK 76

S 77,78

Saturn 73

SAVE_REG 210, 387

Saving and Restoring (Rn and RSTK) 83, 90
SB 76

SB->B 258

SB->C 258

SB->R 258

Scratch registers 73,76

Screen 16, 160

Screen bitmap 78, 171,172, 186
Screen bitmap addr. 171,172,186
Screen GROBS 175
Servicerequest 76

Sign 77,126,127, 128

Solving equations 59

Sound 74

Speaker 74

SQR 266, 283

SQUARE 308

SR 76

SSAG 229

Slack 16,175, 385
Stack size 190, 201, 202
Statistical functions 59
STATUS 76

Sticky bit 76

STOP 388

Store 32

STR->A 260

String 123, 133

Strings 363

SUBS 266, 283
Subtraction 83, 100
SWAP 22

Symbol @ €66

Symbolic Calculations 59
SYSEVAL 240

System Binaries 123, 124, 355
System Flags 202

TAG 51, 141

Tagged object 123, 141

Taylor's Approximation 59

Temporary backup during interrupts 179
Temporary environment 175, 193
Temporary objects 175, 188

Time 61

1. Index

Timer1 171,173
Timer2 171
Transmitting 164
TRDN 387
TRUP 387

Understanding programs easier 51
Undo Stack 191, 192

Undo stack, local variables 175
Unit 140

Unit object 123, 140

Units 61, 370

UPDIR 33

Useful Routines 387

User Flags 203

User Stack 189

User variables 175

User-keys 196

V->A 289

VAL 288

“VAR" Menu 32

Variables and dlrectcry(rees 41
VSYNC 171,17

W 77.78

Wide 78

Wide-P 78

‘Working registers 73, 77
WP 78

WSLOG 160, 176,177

X 77,78,79
XLIB name 123, 156
XM 76

XS 77,78
ZEROM 387

397

