
Bifurcation Diagrams
Kiyoshi Akima

k_akima@hotmail.com

2006.04.08

Contents
1 Bifurcation Diagrams 1

2 User Programming for the HP 48 4

3 System Programming for the HP 48 5
3.1 Initial Translation . 5

3.1.1 Prologue . 5
3.1.2 Initialization . 5
3.1.3 Main Loop . 6
3.1.4 Calculate r . 6
3.1.5 Dampen Transients . 6
3.1.6 Plot Points . 6
3.1.7 Freeze Display . 7

3.2 Building the Program . 7
3.2.1 Tangling . 7
3.2.2 Building . 7

3.3 Running the Program . 7

4 Adding Scrolling 8
4.1 Initialization . 8
4.2 Drawing . 9
4.3 Scroll . 9
4.4 Interrupting the Program . 10
4.5 Termination . 10
4.6 Linker Command File . 10
4.7 Running the Program . 10

5 Indicating Progress 11
5.1 Initialization . 11
5.2 Drawing . 11
5.3 Linker Command File . 12
5.4 Running the Program . 12

6 Program Arguments 13
6.1 Initialization . 13
6.2 Argument Processing . 13
6.3 Drawing . 14
6.4 Termination . 14
6.5 Linker Command File . 15
6.6 Running the Program . 15

7 Input Form 16
7.1 Using an Input Form . 16

7.1.1 Field Labels . 16
7.1.2 Field Speci�ers . 17

7.2 Running the Program . 17
7.3 Linker Command File . 17

8 Some Final(?) Comments 17

A Literate Programming 18

B Index of Code Fragments 19

iii

1 Bifurcation Diagrams
Chaos has strange attractions for the mind that can see patterns therein. Some
physical systems that exhibit chaotic behavior do so because they are in a sense
attracted to such patterns. As a bonus, the patterns themselves are strangely
attractive. Some readers may already be aware that the geometric forms un-
derlying choas are called strange, or chaotic attractors. Strange attractors can
be generated with a home computer or even, as we will see in this document, a
pocket calculator.

Before setting o� on this journey, readers must be equipped with a protec-
tive coating of physical intuition. In particular, what is an attractor? Roughly
speaking, an attractor is a generalization of the notion of equilibrium; an at-
tractor is what the behavior of the system settles down to, or is attracted to.
The pendulum is a simple physical system that illustrates the concept of an
attractor. Supose an ordinary pendulum moves under frictional forces that slow
it eventually to a standstill. One can describe the pendulum's motion by means
of a so-called phase, or state, diagram in which the angle the pendulum makes
with the vertical is graphed against the rate at which the angle changes. The
swinging motion of the pendulum is represented by a point circling the origin
in the phase diagram; as the pendulum loses energy, the point spirals into the
origin, where it ultimately comes to rest. In this case the origin is called an
attractor because it seems to attract the moving point in the phase diagram.
Readers would be correct in thinking there is nothing strange about an attractor
consisting of a single point.

A slighly more complicated attractor underlies the motion of a grandfather
clock. Here an escapement mechanism feeds energy to a pendulum to keep it
from slowing down. If one starts the clock with an overly energetic push of
the pendulum, it slows down to the tempo prescribed by the escapement but
thereafter slows no further. If the clock is started with a push that is too gentle,
however, the pendulum behaves like an ordinary one; it slows to a standstill as
before. In the case of the overly energetic push, the pendulum's motion is a
phase diagram is a spiral that winds ever more tightly about a circular orbit.
Here the attractor is a circular loop. In this context a circle is no stranger than
a point.

An ordinary pendulum can be made to show chaotic behavior by introducing
a vertical, vibratory motion: If the point of support is moved up and down in
a sinusoidal manner by an electric motor, the pendulum may begin to swing
crazily, exhibiting no evidence of periodic behavior whatever.

For our journey into chaos, however, we will explore a di�erent physical
system. Imagine an arrangement of three ampli�ers in which the �rst ampli�er
outputs a signal x that is fed to the other two. The second ampli�er outputs
the signal 1 − x in response to x. The third ampli�er takes the two signals, x
and 1− x, as input. It generates the product, x(1− x), of the two signals and
feeds it back to the �rst ampli�er, which also receives a control voltage, r, as
input. One additional component, a device that samples its input and delivers
the same voltage as output for a short time, completes the circuit; it is inserted

1

in the output line from the �rst ampli�er. The three-ampli�er circuit does a
voltage dance that becomes more chaotic as the control voltage r is gradually
increased.

When r is less than 3 and x initially has some nonzero setting, the circuit
oscillates brie�y before it settles down to a speci�c value of x that remains
the same thereafter. This value value constitutes a single point attractor. If
the control voltage, r, is now raised to a level just above 3, the circuit �utters
between two values of x. At this level of r the circuit is said to be bistable
and the attractor consists of two points. As r is increased further, the circuit
oscillates among four points; yet another increase yields an eight-point attractor.
The pattern of doubling and redoubling goes on as the knob controlling r is
turned to higher values, until at a setting roughly midway between 3 and 4
the circuit suddenly goes crazy. It hunts endlessly at electronic speed for the
simple recurring patterns that marked its earlier existence. Its behavior is now
governed by a strange attractor that has a potential in�nity of values. The
result is chaos.

Electronically ilterate readers may be tempted to build such a circuit. The
rest of us may simulate it on a computer of any size, viewing the dance with
great clarity on the display screen. To do so, we merely need to write a program
that computes the iterated equation x ← rx(1 − x). The program has a core
that consists of six steps:

x← .5
for i← 1 to 100

x← rx(1− x)
for i← 1 to 300

x← rx(1− x)
plot(r, x)

The variable x starts at the value .5 The program then enters a loop that iterates
the basic equation 100 times to allow transients to die away. The transients are
inherent in the equation itself, not in imprecise arithmetic. The program then
enters a new loop that iterates the equation 300 more times, plotting the value
of x on each occasion.

A complete picture of the behavior of the simple ampli�er circuit emerges
if the program computes a raft of plots, each plot below the previous one. The
plots results from a succession of r values that run from 2.9 to 4.0 in, say, 600
steps from the top of the screen to the bottom. A more elegant picture emerges
if more steps are used, but in this case the diagram will probably not �t on your
screen and will have to be scrolled to be seen.

For values of r less than 3.56 (a more precise value is 3.56994571869) the at-
tractors of the simple dynamical system embodied in the iterated equation x←
rx(1 − x) consists of a few points. These points, which represent nonchaotic
behavior, are arranged in three large bands and an in�nity of smaller ones.
The attractors become strange as r approaches 3.56. Here chaos sets in as the
hiterto smoothly bifurcating lines suddenly fall into a pepper-and-salt madness.
Strangely enough, the chaotic regime vanishes from time to time as r continues
its inexorable march to 4.

2

The entire plot is called a bifurcation diagram. The plot is embellished by
curves and attractively shaped folds. The reasons for ornamental details are
mysteries that can be explained only by the theory of chaos.

Much of the structure of the bifurcation diagram has been analyzed by chaos
theorists. The boundaries of the chaotic regions are set by the minimum and
maximum values of the iterates of x = .5. The curves followed by the minima
and maxima, as well as those followed by the �veils� that hang so strangely in
the chaotic regions, are all simple polynomials in r. At the places where the
shading is densest one �nds the highest concentration of points in the strange
attractors taht cross them. In the empty bands mentioned above chaos gives
way to order. Theory tells us that for every whole number there is a band
(however narrow) with orbits of precisely that size. Finally, it will come as
no surprise to readers familiar with chaos that strange attractors, even in the
humble system just explored, have a fractal nature; an in�nite number of points
show interesting detail at all levels of magni�cation, like the famous Mandelbrot
set.

3

2 User Programming for the HP 48
A bifurcation diagram can be generated on just about any computer with a
graphical output device. The device we'll use in this document is not a computer
but the HP 48 handheld graphics calculator.

The HP 48 has a 131× 64 display, small by modern computer standards but
adequate for our immediate needs. The calculator is user-programmable from
the keyboard, in a language called User RPL. This language is descended from
the RPN language used by earlier Hewlett-Packard calculators, with additional
elements of Forth and LISP.

There are additional programming schemes available, one of which we will
discuss later. But for now, let's start o� by writing a program in User RPL.
This program takes no input from the user and draws a bifurcation diagram
�lling the screen from left to right.

It's a relatively straighforward process to implement the pseudocode on
page 1. To make it a little faster, we will only iterate 70 times to dampen
the initial transients. And, due to the small size of the display, we will only
plot 30 points. These numbers can be easily changed (they're the numbers be-
fore the STARTs). Due to the shape of the screen, we will also turn the plot on
its side.

BI 254.5 Bytes Checksum 2180h
«

PICT PURGE { #0 #0 } PVIEW

(2.9,0) PMIN (4,1) PMAX

0 130 FOR i

i 130 / 1.1 * 2.9 + .5

1 70 START

1 OVER - * OVER *

NEXT

1 30 START

1 OVER - * OVER *

DUP2 R�C PIXON

NEXT

DROP2

NEXT

7 FREEZE

»

Even with the reduction in the number of iterations, this program takes
about eight minutes to run on an HP 48GX. Saying that the plot crawls across
the screen might be generous. Can we do better than this?

We can and we will, by switching to System RPL.

4

3 System Programming for the HP 48
The next step from User RPL is System RPL. This is an extension to User RPL,
but requires external tools. Usually these tools are run on a computer and the
resultant programs downloaded to the calculator.

There are many development environments available for the task. The one
we will use is the original set of tools published by Hewlett-Packard. This
set consists of an RPL compiler (RPLCOMP), a Saturn assembler (SASM), and a
Saturn linker (SLOAD). These tools run on an IBM-compatible PC running DOS
or Windows. Similar tools are available for the Mac and Unix. This document is
not intended as a tutorial on System RPL, but rather as a simple illustration.

3.1 Initial Translation
To get our feet wet with System RPL, let's just try a straightfoward translation
of the User RPL program.

5a 〈bi1.s 5a〉≡
〈prologue 5b〉
::

〈bi1: initialize 5c〉
〈bi1: for 131 columns 6a〉

〈bi1: calculate r 6b〉
〈bi1: loop 70 times to dampen transients 6d〉
〈bi1: plot 30 points 6f〉

LOOP
〈bi1: freeze display 7a〉

;

3.1.1 Prologue
All System RPL programs require a prologue. This assembles a header that tells
the calculator how to handle the program when it receives it from the computer.

5b 〈prologue 5b〉≡ (5a 8a 11a 13a 16a)
ASSEMBLE

NIBASC /HPHP48-D/
RPL

3.1.2 Initialization
The �rst step is to initialize the graphics display. We have to work with physical
coordinates, so there is no logical-to-physical mapping involved.

5c 〈bi1: initialize 5c〉≡ (5a)
TOGDISP ZEROZERO SIXTYFOUR XHI MAKEGROB XYGROBDISP TURNMENUOFF

5

3.1.3 Main Loop
Then comes the main loop. Note that the loop limits are reversed from User
RPL.

6a 〈bi1: for 131 columns 6a〉≡ (5a)
XHI ZERO_DO (DO)

3.1.4 Calculate r

Within the main loop, we're going to need the value of r.
6b 〈bi1: calculate r 6b〉≡ (5a) 6c .

INDEX@ UNCOERCE 130. %/ 1.1 %* 2.9 %+
We also need the starting value for x.

6c 〈bi1: calculate r 6b〉+≡ (5a) / 6b
%.5

3.1.5 Dampen Transients
We repeat the basic iteration 70 times to dampen the initial transients.

6d 〈bi1: loop 70 times to dampen transients 6d〉≡ (5a)
SEVENTY ZERO_DO (DO)

〈iterate 6e〉
LOOP

The basic iteration is the same as in the User RPL program, merely translated
to System RPL.

6e 〈iterate 6e〉≡ (6 9a 14c)
%1 OVER %- %* OVER %*

3.1.6 Plot Points
With the initial transients taken care of, we plot 30 points.

6f 〈bi1: plot 30 points 6f〉≡ (5a) 6h .

THIRTY ZERO_DO (DO)
〈iterate 6e〉
〈bi1: plot one point 6g〉

LOOP
Plotting a point requires a little more work since we have to convert from our
logical coordinates to physical coordinates.

6g 〈bi1: plot one point 6g〉≡ (6f)
JINDEX@ 63. 3PICKOVER %* %- COERCE PIXON3

When we're done plotting, we need to drop the x and r values from the stack.
6h 〈bi1: plot 30 points 6f〉+≡ (5a) / 6f

2DROP

6

3.1.7 Freeze Display
Once we've created the plot, we want to freeze the display so it remains there
until the user presses a key.

7a 〈bi1: freeze display 7a〉≡ (5a)
SetDAsTemp

3.2 Building the Program
As mentioned earlier, this program cannot be keyed directly into the HP 48 but
must �rst be built on a computer and then transferred to the calculator. A brief
overview of the process is given here.

3.2.1 Tangling
This program and subsequent ones are written in a style called Literate Pro-
gramming (see Appendix A for more information). The �rst step is to extract
the program source from the document, a process called tangling.

This command will extract the source for this program from the document:
notangle -Rbi1.s -t4 bifurc48.nw >bi1.s

3.2.2 Building
The RPL compiler, the Saturn assembler, and the Saturn linker must all be run
on the program source. The following command lines will do this:

rplcomp bi1.s bi1.a
sasm bi1.a
sload -H bi1.m

The linker needs a command �le telling it what to do. The following command
�le can be extracted with this command line:

notangle -Rbi1.m -t4 bifurc48.nw >bi1.m
7b 〈bi1.m 7b〉≡

LL BI1.LR
OU BI1
RE BI1.O
SE C:\HP48\LIB\ENTRIES.O
SU XR

For further details on the use of the tools, please consult the appropriate docu-
mentation.

3.3 Running the Program
Once the program has been built and downloaded to the calculator, it can be
stored in a variable and run like any other program. Press the

¤
£

¡
¢ON key to

terminate.
The program is 159.5 bytes in size and runs in about 135 seconds. A 35%

reduction in size and a whopping 70% reduction in runtime compared to the
User RPL version. Not bad for a straighforward translation.

7

4 Adding Scrolling
We could speed up the program even more by coding in assembler, but there's
only 28% of the original runtime remaining. Instead, let's try adding some
features, even at the expense of some speed.

As a �rst stab, let's try creating a larger picture. Since the picture already
�lls the entire screen, we'll have to implement a scheme for the user to scroll
the image.

We don't want to make the picture too big or it'll take too long to draw,
wiping out our speed gains. Let's turn the image upright, make it 221 pixels
high to cover the range of r from 2.9 to 4 and 201 pixels wide.

Due to the higher resolution, we'll need more iterations to dampen out the
initial transients so we'll repeat the loop 80 times. And due to the additional
real estate, we'll plot 140 points instead of a mere 30.

8a 〈bi2.s 8a〉≡
INCLUDE C:\HP48\LIB\KEYDEFS.H
〈prologue 5b〉
::

〈bi2: initialize 8b〉
221 ZERO_DO (DO)

〈bi2: draw picture 9a〉
LOOP
〈bi2: allow scrolling 9b〉
〈bi2: terminate 10b〉

;

4.1 Initialization
This time we're going to follow the programming guidelines and use the stack
display instead of the graphics display.

8b 〈bi2: initialize 8b〉≡ (8a 11b)
RECLAIMDISP ClrDA1IsStat
ZEROZERO 221 201 MAKEGROB XYGROBDISP TURNMENUOFF

8

4.2 Drawing
Since you've already seen how to do this, we'll present this part of the program
without much commentary. The main di�erence, aside from the loop controls,
is in the plotting, which has been turned on its side.

9a 〈bi2: draw picture 9a〉≡ (8a 12a)
〈bi2: break 10a〉
INDEX@ UNCOERCE 200. %/ 2.9 %+ %.5
EIGHTY ZERO_DO (DO)

〈iterate 6e〉
LOOP
140 ZERO_DO (DO)

〈iterate 6e〉
200. OVER %* COERCE JINDEX@ PIXON

LOOP
2DROP

4.3 Scroll
This scrolling code is taken directly from the SCROLL example included with the
HP tools. It uses a Parameterized Outer Loop to handle the keyboard input.
The arrow keys scroll the display one pixel in the indicated direction, while the
right-shifted arrow keys scroll to the edge of the picture in that direction. The¤
£

¡
¢ON key terminates the program and restores the display.

9b 〈bi2: allow scrolling 9b〉≡ (8a 11a 13a 16a)
FALSE { LAM Exit } BIND ' NOP
' ::

kpNoShift #=casedrop ::
kcUpArrow ?CaseKeyDef :: TakeOver SCROLLUP ;
kcLeftArrow ?CaseKeyDef :: TakeOver SCROLLLEFT ;
kcDownArrow ?CaseKeyDef :: TakeOver SCROLLDOWN ;
kcRightArrow ?CaseKeyDef :: TakeOver SCROLLRIGHT ;
kcOn ?CaseKeyDef :: TakeOver TRUE ' LAM Exit STO ;
kcRightShift #=casedrpfls
DROP 'DoBadKeyT

;
kpRightShift #=casedrop ::

kcUpArrow ?CaseKeyDef :: TakeOver JUMPTOP ;
kcLeftArrow ?CaseKeyDef :: TakeOver JUMPLEFT ;
kcDownArrow ?CaseKeyDef :: TakeOver JUMPBOT ;
kcRightArrow ?CaseKeyDef :: TakeOver JUMPRIGHT ;
kcRightShift #=casedrpfls
DROP 'DoBadKeyT

;
2DROP 'DoBadKeyT

;
TrueTrue NULL{} ONEFALSE ' LAM Exit ' ERRJMP ParOuterLoop

9

4.4 Interrupting the Program
If you've run the previous program, you might have noticed that you couldn't
terminate the program until it had �nished creating the diagram. This isn't
very polite on the part of such a long-running program. So, let's allow the

¤
£

¡
¢ON

key to interrupt the drawing process and terminate the program.
This code is inserted at the top of the main loop. It will terminate the main

loop and drop through into the scrolling code, which will also see that the
¤
£

¡
¢ON

key has been pressed and terminate the program.
10a 〈bi2: break 10a〉≡ (9a 14c)

ATTN? IT :: ZERO ISTOPSTO ;

4.5 Termination
The termination di�ers because we're using the stack display.

10b 〈bi2: terminate 10b〉≡ (8a 11a 14e)
TURNMENUON RECLAIMDISP ClrDAsOK

4.6 Linker Command File
As before, this program needs a linker command �le.

10c 〈bi2.m 10c〉≡
LL BI2.LR
OU BI2
RE BI2.O
SE C:\HP48\LIB\ENTRIES.O
SU XR

4.7 Running the Program
This program, which is 424 bytes in length, now takes more than nine-and-a-
half minutes to produce the diagram. Even though it's actually slower than the
original User RPL program, it generates a much larger and more detailed image.
Once the hourglass goes away, you can use the arrow keys to scroll around the
image. The right-shifted arrow keys will jump you to the edge of the image. The
image is detailed enough to display some of the thinner bands of non-chaotic
behavior.

When you're done playing with it, the
¤
£

¡
¢ON key will terminate the program.

10

5 Indicating Progress
It's a little hard to tell how far the previous program has progressed. The
screen is blank for half a minute before the �rst point shows up at the right
edge. And once the single limb disappears o� the bottom edge, there's nothing
to indicate how close the diagram is to being completed. The only thing to
indicate completion is the disappearance of the hourglass.

There must be a better way.
We could put a progress meter on the screen but that would be kind of

boring. We would much rather show the user the diagram being generated on-
screen. And we can do just that. If you jump to the right edge of the picture
and scroll top-to-bottom, you can see that a portion of the diagram is always
visible. And the dots approach the right edge as we go from top to bottom. So,
if we show the right edge of the diagram instead of the left, and scroll as we
generate it. . .

Much of the program is the same as before, so we can just reuse the code
previously developed. We just have one additional step in the initialization, and
we want to scroll the diagram as we create it.

11a 〈bi3.s 11a〉≡
INCLUDE C:\HP48\LIB\KEYDEFS.H
〈prologue 5b〉
::

〈bi3: initialize 11b〉
〈bi3: draw picture 11d〉
〈bi2: allow scrolling 9b〉
〈bi2: terminate 10b〉

;

5.1 Initialization
Since the image is the same size as in the previous program, we can use the
same code to initialize it.

11b 〈bi3: initialize 11b〉≡ (11a) 11c .

〈bi2: initialize 8b〉
But before we draw anything, we want to move to the right edge of the image.

11c 〈bi3: initialize 11b〉+≡ (11a) / 11b
JUMPRIGHT

5.2 Drawing
The only di�erence in the drawing code is that we want to scroll the screen one
pixel after we've done the �rst 64 rows.

11d 〈bi3: draw picture 11d〉≡ (11a) 12a .

221 ZERO_DO (DO)
SIXTYTHREE INDEX@ #>?SKIP SCROLLDOWN

11

The remainder of the drawing code is identical to the previous program.
12a 〈bi3: draw picture 11d〉+≡ (11a) / 11d

〈bi2: draw picture 9a〉
LOOP

5.3 Linker Command File
As before, this program needs a linker command �le.

12b 〈bi3.m 12b〉≡
LL BI3.LR
OU BI3
RE BI3.O
SE C:\HP48\LIB\ENTRIES.O
SU XR

5.4 Running the Program
The program is now 436.5 bytes in size and runs in nearly the same time as the
previous one, taking perhaps a second longer because of the scrolling. But now
we can see the bifurcation diagram being generated. And once the diagram has
been fully drawn, we can scroll it around as before.

And as before, the
¤
£

¡
¢ON key will terminate the program.

12

6 Program Arguments
All of the programs presented thus far take no arguments. The size of the dia-
gram and the number of points to be plotted are coded directly in the programs.
Now it's time to let these values be speci�ed at runtime.

13a 〈bi4.s 13a〉≡
INCLUDE C:\HP48\LIB\KEYDEFS.H
ASSEMBLE

CLRLIST ALL
SETLIST ALL

RPL
〈prologue 5b〉
::

〈bi4: initialize 13b〉
〈bi4: process arguments 13c〉
〈bi4: draw picture 14c〉
〈bi2: allow scrolling 9b〉
〈bi4: terminate 14d〉

;

6.1 Initialization
The �rst thing we need to do is to clear the saved command name and then
ensure that there are three real arguments on the stack.

13b 〈bi4: initialize 13b〉≡ (13a)
0LASTOWDOB! CK3NOLASTWD CK&DISPATCH1 3REAL ::

6.2 Argument Processing
Now that we've got the proper number and type of arguments, let's store them
away for future use.

13c 〈bi4: process arguments 13c〉≡ (13a 16a) 13d .

{ NULLLAM NULLLAM NULLLAM } BIND
Then let's initialize the display. It's the same process as before, except that the
size is taken from the program arguments instead of being coded directly into
the program.

As before, we'll show the right edge of the diagram as it's being generated.
Note that if the image is too big, nothing may appear on the screen for a while.

13d 〈bi4: process arguments 13c〉+≡ (13a 16a) / 13c 13e .

RECLAIMDISP ClrDA1IsStat ZEROZERO
2GETLAM 3GETLAM COERCE2 MAKEGROB XYGROBDISP TURNMENUOFF JUMPRIGHT

Now we need the upper limit for the main loop. This value will be left on the
stack.

13e 〈bi4: process arguments 13c〉+≡ (13a 16a) / 13d 14a .

2GETLAM COERCE

13

Then we need to compute some plotting parameters.
14a 〈bi4: process arguments 13c〉+≡ (13a 16a) / 13e 14b .

3GETLAM %1- 3PUTLAM
2GETLAM %1- 1.1 %/ 2PUTLAM

And the upper limit for the plotting loop.
14b 〈bi4: process arguments 13c〉+≡ (13a 16a) / 14a

1GETLAM COERCE 1PUTLAM

6.3 Drawing
The drawing code follows the pattern set by the previous programs, the main
di�erence being that various parameters are taken from the temporary environ-
ment rather being wired directly into the program.

14c 〈bi4: draw picture 14c〉≡ (13a 16a)
ZERO_DO (DO)

〈bi2: break 10a〉
SIXTYTHREE INDEX@ #>?SKIP SCROLLDOWN
INDEX@ UNCOERCE 2GETLAM %/ 2.9 %+ %.5
EIGHTY ZERO_DO (DO)

〈iterate 6e〉
LOOP
1GETLAM ZERO_DO (DO)

〈iterate 6e〉
3GETLAM OVER %* COERCE JINDEX@ PIXON

LOOP
2DROP

LOOP

6.4 Termination
We need to dispose of the temporary environment before terminating the pro-
gram. This requires only a single instruction.

14d 〈bi4: terminate 14d〉≡ (13a 16a) 14e .

ABND
Most of the rest of the termination process is the same as before.

14e 〈bi4: terminate 14d〉+≡ (13a 16a) / 14d 14f .
〈bi2: terminate 10b〉

Then we need an additional SEMI to close the argument dispatch.
14f 〈bi4: terminate 14d〉+≡ (13a 16a) / 14e

;

14

6.5 Linker Command File
As before, this program needs a linker command �le.

15 〈bi4.m 15〉≡
LL BI4.LR
OU BI4
RE BI4.O
SE C:\HP48\LIB\ENTRIES.O
SU XR

6.6 Running the Program
The program is now 483.5 bytes in size, nearly double that of the original User
RPL program. The runtime varies on the size of the diagram and the depth
of the plotting loop. With the arguments to duplicate the previous program:

201
¤
£

¡
¢ENTER 221

¤
£

¡
¢ENTER 140 BI4

it's a little slower, but still generates the diagram in under ten minutes. But now
we're not limited to �xed sizes nor to �xed iteration depths: You can explore
the bifurcation diagram to your heart's content.

Of course, we're still limited by the calculator's memory and its relative
slowness. However, running this program on an emulator on a faster computer
will get around one of the drawbacks. The other drawback will require a system
with a more capable display.

15

7 Input Form
Let's take the evolution of this program one step further. The previous version
required the user to provide arguments on the stack, in a speci�c order. Put
them in the wrong order and, while the program won't necessarily crash, the
image will not be as desired.

One way to avoid this is to make the program ask the user for the image
parameters. And the easiest way to do this, at least from the user's viewpoint,
is through an input form. Unfortunately, the input form was introduced with
the G and GX versions of the calculator; if you have the S or SX, you can skip
the rest of this section. For those of you with the G or GX, most of the program
remains unchanged from the previous version.

16a 〈bi5.s 16a〉≡
INCLUDE C:\HP48\LIB\KEYDEFS.H
ASSEMBLE

CLRLIST ALL
SETLIST ALL

RPL
〈prologue 5b〉
::

〈bi5: get user input 16b〉
〈bi4: process arguments 13c〉
〈bi4: draw picture 14c〉
〈bi2: allow scrolling 9b〉
〈bi4: terminate 14d〉

;

7.1 Using an Input Form
Creating an input form requires a lot of parameters and we won't try to describe
them all. Please consult the appropriate documentation for further details.

16b 〈bi5: get user input 16b〉≡ (16a)
〈bi5: form label speci�ers 16c〉
〈bi5: form �eld speci�ers 17a〉
THREE THREE 'DROPFALSE "BIFURCATION DIAGRAM"
DoInputForm case ::

7.1.1 Field Labels
We'll label the �elds so the user knows what's expected.

16c 〈bi5: form label speci�ers 16c〉≡ (16b)
"WIDTH:" ONE NINETEEN
"HEIGHT:" ONE TWENTYEIGHT
"POINTS:" ONE THIRTYSEVEN

16

7.1.2 Field Speci�ers
The �elds are where the data go. For default values we'll use the same values
we used two programs ago.

17a 〈bi5: form �eld speci�ers 17a〉≡ (16b) 17c .

'DROPFALSE FORTYFIVE SEVENTEEN
〈bi5: form �eld size and type 17b〉
"IMAGE WIDTH" MINUSONE MINUSONE 201. 201.

17b 〈bi5: form �eld size and type 17b〉≡ (17)
THIRTYFIVE NINE ONE { ZERO } FOUR

The other two �elds are speci�ed similarly.
17c 〈bi5: form �eld speci�ers 17a〉+≡ (16b) / 17a

'DROPFALSE FORTYFIVE TWENTYSIX
〈bi5: form �eld size and type 17b〉
"IMAGE HEIGHT" MINUSONE MINUSONE 221. 221.

'DROPFALSE FORTYFIVE THIRTYFIVE
〈bi5: form �eld size and type 17b〉
"# OF POINTS TO PLOT" MINUSONE MINUSONE 140. 140.

7.2 Running the Program
The program is now 770 bytes in size, half again the size of the previous program
and triple the size of the original User RPL program. Many people would con-
sider this one more user friendly, though power users might prefer the previous
stack-based one.

7.3 Linker Command File
As before, this program needs a linker command �le.

17d 〈bi5.m 17d〉≡
LL BI5.LR
OU BI5
RE BI5.O
SE C:\HP48\LIB\ENTRIES.O
SU XR

8 Some Final(?) Comments
We've taken quite a journey through the chaotic world of bifurcation diagrams
and the somewhat more ordered world of System RPL programming. But we've
only scratched the surface of both worlds. Interested readers are urged to surf
the Web for more details. Your local library also probably has books on chaos
(alas, you probably won't �nd many books on HP 48 System RPL programming
at your library).

17

A Literate Programming
This document not only describes the implementation of these programs, it is
the implementation. The noweb system for �literate programming� generates
both the document and the program code from a single source. This source
consists of interleaved prose and labelled Code Fragments. The fragments are
written in the order that best suits describing the program, namely the order you
see in this document, not the order dictated by the programming language. The
program noweave accepts the source and produces the document's typescript,
which includes all of the code and all of the text. The program notangle extracts
all of the code, in the proper order for compilation.

Fragments contain source code and references to other fragments. Fragment
de�nitions are preceded by their labels in angle brackets. Several fragments may
have the same name; notangle concatenates their de�nitions to produce a single
fragment. noweave identi�es this concatenation by using + ≡ instead of ≡ in
continued de�nitions:

Fragment de�nitions are like macro de�nitions; notangle extracts a program
by expanding one fragment. If its de�nition refers to other fragments, they
themselves are expanded, and so on.

Fragment de�nitions include aids to help readers navigate among them. Each
fragment name ends with the number of the page on which the fragment's
de�nition begins and a letter giving its sequence within that page. If there is
only one fragment on a page then there is no letter. This is also shown in the
left margin. Each continued de�nition also shows the previous de�nition, and
the next continued de�nition, if there is one. / 7b is an example of a previous
de�nition that appears on page 7, and 11 . says the de�nition is continued on
page 11. These annotations form a double linked list of de�nitions; the left
arrow points to the previous de�nition in the list and the right arrow points to
the next one. The previous link on the �rst de�nition is omitted, and the next
link on the last de�nition is omitted. These lists are complete: If some of a
fragment's de�nition appears on the same page with each other, the links refer
to the page on which they appear.

Most fragments also show a list of pages on which the fragment is used. These
unadorned use lists are omitted for root fragments, which de�ne modules.

Of course, the simple fact that the documentation can be placed right next
to the code doesn't necessary mean that the documentation and the code match,
nor that either is any good. Still, it's a good start. . .

For more information about the noweb system of literate programming,
please refer to http://www.eecs.harvard.edu/~nr/noweb.

18

B Index of Code Fragments
Underlined entries are to the de�nition of the Code Fragment. In many cases,
the de�nition of a fragment can be continued from one piece to another.
〈bi1.m 7b〉 7b
〈bi1.s 5a〉 5a
〈bi1: calculate r 6b〉 5a, 6b, 6c
〈bi1: for 131 columns 6a〉 5a, 6a
〈bi1: freeze display 7a〉 5a, 7a
〈bi1: initialize 5c〉 5a, 5c
〈bi1: loop 70 times to dampen transients 6d〉 5a, 6d
〈bi1: plot 30 points 6f〉 5a, 6f, 6h
〈bi1: plot one point 6g〉 6f, 6g
〈bi2.m 10c〉 10c
〈bi2.s 8a〉 8a
〈bi2: allow scrolling 9b〉 8a, 9b, 11a, 13a, 16a
〈bi2: break 10a〉 9a, 10a, 14c
〈bi2: draw picture 9a〉 8a, 9a, 12a
〈bi2: initialize 8b〉 8a, 8b, 11b
〈bi2: terminate 10b〉 8a, 10b, 11a, 14e
〈bi3.m 12b〉 12b
〈bi3.s 11a〉 11a
〈bi3: draw picture 11d〉 11a, 11d, 12a
〈bi3: initialize 11b〉 11a, 11b, 11c
〈bi4.m 15〉 15
〈bi4.s 13a〉 13a
〈bi4: draw picture 14c〉 13a, 14c, 16a
〈bi4: initialize 13b〉 13a, 13b
〈bi4: process arguments 13c〉 13a, 13c, 13d, 13e, 14a, 14b, 16a
〈bi4: terminate 14d〉 13a, 14d, 14e, 14f, 16a
〈bi5.m 17d〉 17d
〈bi5.s 16a〉 16a
〈bi5: form �eld size and type 17b〉 17a, 17b, 17c
〈bi5: form �eld speci�ers 17a〉 16b, 17a, 17c
〈bi5: form label speci�ers 16c〉 16b, 16c
〈bi5: get user input 16b〉 16a, 16b
〈iterate 6e〉 6d, 6e, 6f, 9a, 14c
〈prologue 5b〉 5a, 5b, 8a, 11a, 13a, 16a

19

