Bions = Complexified Anions for the HP48S/SX/G/GX


Overview
 

-The zip file contains

 >>> A binary file BIONS48 ( #2003d / 20618.5 bytes )  which works with the HP48S/SX/G/GX        All are directories, not libraries.
>>>  An ascii file BIONS which should work with the HP48-HP49-HP-50
 >>> This html page.

 -----------------------------------------------------------------------------------------------------------------------------
 

-In "Anionic Functions for the HP-48", we have used the Cayley-Dickson formula

         ( a , b ) ( c , d ) = ( a c - d* b , d a + b c* )       where   * = conjugate

 to construct the complexes from the real numbers, regarding a complex as a pair of real numbers,
 and then the quaternions from the complexes, the octonions from the quaternions, the sedenions from the octonions,
 the 32-ons from the sedenions, the 64-ons from the 32-ons ... and so on ... for the 2^n-ons

>>> But if we start with the complexes, we gradually get the bi-complexes, bi-quaternions, bi-octonions, bi-sedenions ...

-The programs listed in this page calculate elementary functions and a few special functions of these "bi-ons" = "complexified anions".
 

Notes:

-When the functions are computed by ascending series, the results are accurate for "small" arguments only.

-The variables are bions ( hypercomplexes ), but the parameters are restricted to complex values.
-Bions must be entered as N-dimensional complex vectors ( N > 1 )

-For example, the biquaternion  b = ( 6 - 9 i ) + ( -4 + 2 i ) e1 + ( -3 + i ) e2 + ( -4 + 7 i ) e3     must be entered    [ ( 6 , -9 ) ( -4 , 2 ) ( -3 , 1 ) ( -4 , 7 ) ]

-Set your HP-48 in RECT mode.
 
 
 Functions  Description
 MU
 SOLVB
   FXB
   peval
   tol
 Im
 BxB0
 SPEC
    LNGZ
    GAMZ
    PSIZ
    GAMB
    PSIB
    PSINB
    ZETAB
    HGFB
    ALFB
      ALF12
      ALF13
      S
      ALF22
      ALF23
    BESSEL
      JNB
      YNB
      INB
      KNB
      S1
      S2
    CWFB
      RCWFB
      ICWFB
      AECWFB
    DNB
      DNB
      AEDNB
    ELLIPB
      JEFB
      WEFB
      WF2B
    ESINT
      EIB
      ENB
      AENB
      SIB
      SHIB
      CIB
      CHIB
      S1
      S2
    MISC
      AIBIB
      ANWEB
      CATB
      CHB1B
      CHB2B
      ERFB
      GERFB
      HMTB
      IBFB
      IGFB
      JCFB
      LANB
      LERCHB
      LOM1B
      LOM2B
      STRHB
      STRLB
      TORB
      USFB
      WHIMB
      WHIWB
      S1
      S2
    ORTHO
      LEGB
      LANB
      CHB1B
      CHB2B
      JCPB
      USPB
      PMN2B
      PMN3B
      S1
      S2
    SPHR
      SMNB
      L
      LMN
      M
      N
      C2
      ITER
    FRIND
      ELEM
        DEXPB
        DLNB
        DB­X
        DSHB
        DCHB
        DSINB
        DCOSB
        S1
        S2
      DAIRYB
      DSB
      DCB
      DERFB
      DHMTB
      DJNB
      DINB
      DYNB
      DKNB
      DBS1B
      DLANB
      DEIB
      DSIB
      DSHIB
      DCIB
      DCHIB
      S1
      S2
      S3
      S4
      S5
      S6
 BxB
 INVB
 EXPB
 LNB
 B­B
 B­X
 X­B
 SHB
 CHB
 THB
 ASHB
 ACHB
 ATHB
 SINB
 COSB
 TANB
 ASINB
 ACOSB
 ATANB
 GDB
 AGDB
 QxQ
 computes a complex number called µ 
 Directory = Polynomials & Solving a Bionic Equation
  Solves f(b) = b 
  Evaluates a bionic polynomial with complex coefficients
  tolerance = a small positive number
 Imaginary part of a bion
 Product of 2 bions whose imaginary parts are proportional
 Directory = Special Functions
   LogGamma function of a complex
   Gamma function of a complex
   Digamma function of a complex
   Gamma function of a bion
   Digamma function
   Polygamma function
   Riemann Zeta function
   Generalized Hypergeometric Functions
   Directory = Associated Legendre Functions
     Legendre Functions - 1st kind - Type2
     Legendre Functions - 1st kind - Type3
     Subroutine
     Legendre Functions - 2nd kind - Type2
     Legendre Functions - 2st kind - Type3
   Directory = Bessel Functions
     Bessel functions of the 1st kind
     Bessel functions of the 2nd kind
     Modified Bessel functions of the 1st kind
     Modified Bessel functions of the 2nd kind
     Subroutine1
     Subroutine2
   Directory = Coulomb Wave Functions
      Regular Coulomb Wave function
      Irregular Coulomb Wave function
      Asymptotic Expansion
   Directory = Parabolic Cylinder Functions
      Parabolic Cylinder function
      Asymptotic Expansion
   Directory = Elliptic Functions
     Jacobian Elliptic functions
     Weierstrass Elliptic functions
     Weierstrass Duplication formula
   Directory = Exponential, Sine & Cosine Integral
      Exponential Integral Ei(b)
      Exponential Integral En(b)
      Asymptotic Expansion for En(b)
      Sine Integral
      Hyperbolic Sine Integral
      Cosine Integral
      Hyperbolic Cosine Integral
      Subroutine1
      Subroutine2
     Directory = Miscellaneous Functions
       Airy functions Ai(b) & Bi(b)
       Anger & Weber functions
       Catalan Numbers
       Chebyshev functions - 1st kind
       Chebyshev functions - 2nd kind
       Error function
       Generalized Error function
       Hermite functions
       Incomplete Beta function
       Incomplete Gamma function
       Jacobi functions
       Laguerre's functions
       Lerch Transcendent functions
       Lommel functions - 1st kind
       Lommel functions - 2nd kind
       Struve function H
       Struve function L
       Toronto functions
       UltraSpherical functions
       Whittaker's M-functions
       Whittaker's W-functions
       Subroutine1
       Subroutine2
    Directory = Orthogonal Polynomials
       Legendre Polynomials
       Generalized Laguerre's Polynomials
       Chebyshev Polynomials - 1st kind
       Chebyshev Polynomials - 2nd kind
       Jacobi Polynomials
       UltraSpherical Polynomials
       Associated Legendre Functions - 1st kind - Type2
       Associated Legendre Functions - 1st kind - Type3
       Subroutine1
       Subroutine2
   Directory = Spheroidal Wave Functions
       Angular Spheroidal Wave Function of the 1st kind
       Eigenvalue
       Calculating the eigenvalues
       Parameter m
       Parameter n
       Parameter c2
       Number of iterations ( default = 12 )
   Directory = Fractional Integro-Differentiation
       Directory = Elementary Functions
          Exponential
          Logarithm
          Bion raised to a real or complex exponent
          Hyperbolic Sine
          Hyperbolic Cosine
          Sine
          Cosine
          Subroutine1
          Subroutine2
      Airy functions Ai(b) & Bi(b)
      Fresnel Sine Integral
      Fresnel Cosine Integral
      Error function
      Hermite functions
      Bessel function of the 1st kind
      Modified Bessel function of the 1st kind
      Bessel function of the 2nd kind
      Modified Bessel function of the 2nd kind
      Spherical Bessel function of the 1st kind
      Laguerre's function
      Exponential Integral
      Sine Integral
      Hyperbolic Sine Integral
      Cosine Integral
      Hyperbolic Cosine Integral
      Subroutine1
      Subroutine2
      Subroutine3
      Subroutine4
      Subroutine5
      Subroutine6
 Product of 2 bions - general case - Cayley-Dickson doubl.
 Inverse of a bion
 Exponential of a bion
 Logarithm of a bion
 Raising a bion to a bionic exponent
 Raising a bion to a real or complex exponent
 Raising a real or a complex to a bionic exponent
 Hyperbolic Sine
 Hyperbolic Cosine
 Hyperbolic Tangent
 Inverse Hyperbolic Sine
 Inverse Hyperbolic Cosine
 Inverse Hyperbolic Tangent
 Sine of a bion
 Cosine of a bion
 Tangent of a bion
 Arc Sine
 Arc Cosine
 Arc Tangent
 Gudermannian Function
 Inverse Gudermannian Function
 Product of 2 Quaternions

 

Computing the complex number µ
 

-If     B = b0 + b1 e1 + ............... + bn-1 en-1   is a "bi-on",

 MU  returns   µ = ( b12 + ............... + bN-12 )1/2
 
      STACK        INPUT      OUTPUT
       Level 1             B            µ

Example:   B = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 ) ( 0.5 , 0.6 )  ( 0.7 , 0.8) ]   MU  gives  ( 0.910380820346 , 1.07647259048 )

-This elementary program is called as a subroutine to compute several functions.
 

Imaginary part of a bion
 

 Im  returns the "imaginary part" of  [ b0 , b1 , ..... , bn ] i-e  [ b1 , ..... , bn ]

-It's useful to visualize more easily a quaternion - at least with an HP-48,  but it's also called as a subroutine.
-The "imaginary part" of a bion could also be the anion defined as  [ Im b0 , Im b1 , ..... , Im bn ]
 

Product of 2 bions whose imaginary parts are proportional
 

-The Cayley-Dickinson formula is not very easy to use and it is also very slow ( see the next paragraph ).
-Fortunately, the formulas are much simpler if the 2 bi-ons have the same imaginary direction, I mean if, given  b & b'

     b = b0 + b1 e1 + ............... + bn-1 en-1
    b' = b'0 + b'1 e1 + ............... + b'n-1 en-1

  there exist a complex number c such that, for all  i > 0 ,  b'i = c bi  or  bi = c b'i
-It's often the case to compute elementary or special functions of a bion:
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             B             /
       Level 1             B'           B B'

Example:   Find the product of the biquaternions

  B = ( 6 - 9 i ) + ( -4 + 2 i ) e1 + ( -3 + i ) e2 + ( -4 + 7 i ) e3                            here,   Im(b') = ( 2 + 3i ) Im(b)
  B' = ( 4 + 7 i ) + ( -14 - 8 i ) e1 + ( -9 - 7 i ) e2 + ( -29 + 2 i ) e3

  [ ( 6 , -9 ) ( -4 , 2 ) ( -3 , 1 ) ( -4 , 7 ) ]       ENTER
  [ ( 4 , 7 ) ( -14 , -8 ) ( -9 , -7 ) ( -29 , 2 ) ]  BxB0      >>>>   [ ( -121 , 201 ) ( -186 , 58 ) ( -136 , 22 ) ( -221 , 273 ) ]

-So,     B B' = ( -121 + 201 i ) + ( -186 + 58 i ) e1 + ( -136 + 22 i ) e2 + ( -221 + 273 i ) e3

Notes:

-Of course, the next program BxB gives the same result but BxB0 is much faster.
-Unlike BxB below, BxB0 also works with N-vectors where N > 1 is not an integer power of 2.
-BxB0 does not check that the imaginary parts are proportional...
 

Product of 2 bions - general case - Cayley-Dickson doubling
 

-BxB uses the Cayley-Dickson formula          ( a , b ) ( c , d ) = ( a c - d* b , d a + b c* )       where   * = conjugate

-BxB is a recursive program: it calls itself as a subroutine until we reach the multiplication of 2 quaternions which is computed by QxQ
-But for the product of 2 bicomplexes, it simply calls BxB0
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             B             /
       Level 1             B'           B B'

Example:   Find the product of the bisedenions:

  B = ( 25 + 108 i ) + ( 105 + 113 i ) e1 + ( 48 + 3 i ) e2 + ( 123 + 65 i ) e3 + ( 45 + 11 i ) e4 + ( 58 + 20 i ) e5 + ( 34 + 84 i ) e6 + ( 38 + 117 i ) e7
    + ( 81 + 46 i ) e8 + ( 52 + 36 i ) e9 + ( 35 + 125 i ) e10 + ( 16 + i ) e11 + ( 41 + 109 i ) e12 + ( 15 + 91 i ) e13 + ( 63 + 94 i ) e14 + ( 55 + 28 i ) e15

  B' = ( 100 + 39 i ) + ( 27 + 59 i ) e1 + ( 61 + 12 i ) e2 + ( 99 + 129 i ) e3 + ( 49 + 44 i ) e4 + ( 101 + 80 i ) e5 + ( 5 + 74 i ) e6 + ( 21 + 75 i ) e7
     + ( 62 + 53 i ) e8  + ( 77 + 13 i ) e9 + ( 9 + 107 i ) e10 + ( 64 + 4 i ) e11 + ( 33 + 43 i ) e12 + ( 60 + 102 i ) e13 + ( 121 + 114 i ) e14 + ( 89 + 112 i ) e15
 

-You should find:
 

    B.B' = ( 22450 - 93103 i ) + ( -3665 + 12974 i ) e1 + ( 32291 - 31812 i ) e2 + ( 18482 + 29668 i ) e3 + ( -7840 + 8985 i ) e4 + ( 1001 + 48348 i ) e5
          + ( -10494 + 6090 i ) e6 + ( -1657 + 25709 i ) e7 + ( -14243 - 595 i ) e8  + ( 9295 + 1562 i ) e9 + ( -19125 + 35197 i ) e10 + ( 18449 - 20036 i ) e11
          + ( -3315 + 35478 i ) e12 + ( -22176 + 9676 i ) e13 + ( 11818 + 23190 i ) e14 + ( -14895 + 36483 i ) e15

Notes:

-Since the multiplication is not commutative, place the 1st bion in level2 and the 2nd bion in level1.
-If you enter N-dimensional vectors where N is not an integer power of 2, there will be an error message "somewhere".
 

Inverse of a bion
 

         B-1 = B* / | B |2    where B* is the conjugate of  B   and   | B |2 = b02 + b12 + ................. + bN-12

-Note that here  | B |  may equal 0 even if b # 0 since the components bj are complexes !
-So, b # 0 may not have an inverse !
 
 
      STACK        INPUT      OUTPUT
       Level 1             B           1/B

Example:     B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

   INVB  returns   ( 0.2710 - 0.2285 i ) + ( -0.2115 + 0.1835 i ) e1 + ( -0.1521 + 0.1385 i ) e2 + ( -0.0927 + 0.0936 i ) e3             rounded to 4 decimals
 

Exponential of a bion
 

Formula:               exp( b0 + b1 e1 + .... + bN-1 bN-1 ) = eb0 [ cos µ + ( sin µ ). I ]

       where  µ = ( b12 + ............... + bN-12 )1/2    and    I = ( b1 e1 + ............. + bN-1 eN-1 ) / µ
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Exp(B)

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

  EXPB  gives  exp(b) = ( 3.1095 - 0.0905 i ) + ( 0.7810 + 2.6836 i ) e1 + ( 0.6211 + 1.9573 i ) e2 + ( 0.4613 + 1.2310 i ) e3             rounded to 4 D
 

Logarithm of a bion
 

-"LNB" uses the formulae:

       Ln( b0 + b1 e1 + .... + bN-1 bN-1 )   = Ln ( b02 + b12 + ................. + bN-12 )1/2 + A(µ,b0). I

       where  µ = ( b12 + ............... + bN-12 )1/2    and    I = ( b1 e1 + ............. + bN-1 eN-1 ) / µ

>>> Here,  A(µ,b0) generalizes the ATAN2 function to complexes:

-We have to solve  Sin Z = µ / ( µ2 + b02 )1/2  ,  Cos Z = b0 / ( µ2 + b02 )1/2

  it yields  Z = A(µ,b0) = - i Ln ( b0 + i µ ) / ( µ2 + b02 )1/2

>>>  If µ = 0  and  Im(b) # 0 ,  Ln b = Ln b0 + ( b1 e1 + ............. + bN-1 eN-1 ) / b0    ( if  b0 = 0 , Ln b  does not exist )
>>>  If µ = 0  and  Im(b) = 0 ,  Ln b = Ln b0
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Ln (B)

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

  LNB  >>>>     Ln (b) = ( 0.6669 + 0.7167 i ) + ( 0.6100 - 0.0013 i ) e1 + ( 0.4480 - 0.0118 i ) e2 + ( 0.2860 - 0.0222 i ) e3              rounded to 4 D
 

Raising a bion to a bionic exponent
 

-This may be defined in several ways.
-'B­B'  employs the formula:   B^B' = exp [ ( Ln B ) B' ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             B             /
       Level 1             B'          B^B'

Example:

    B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3
    B' = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

     B­B   returns  ( 1.0076 - 0.6123 i ) + ( 0.3685 + 0.432 i ) e1 + ( -0.0661 + 0.4207 i ) e2 + ( 0.5126 + 0.745 i ) e3       rounded to 4D

Note:

-Another definition is possible:   bb' = exp [ b'  ( Ln b ) ]
 

Raising a bion to a real or complex exponent
 

  B­X   calculates  B^X = exp ( X Ln B )   where  X is a real or complex number and B  is a bion
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             B             /
       Level 1             X          B^X

Example:             B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3       X = 2 + 3 i
 

        B­X  >>>>   ( -0.4735 + 2.3593 i ) + ( -1.8006 - 0.3988 i ) e1 + ( -1.3296 - 0.2611 i ) e2 + ( -0.8587 - 0.1233 i ) e3          rounded to 4 D
 

Raising a real or a complex to a bionic exponent
 

  X­B   calculates  X^B = exp ( B Ln X )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             X             /
       Level 1             B          X^B

Example:         X = 2 + 3 i  and  B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

      X­B   >>>>   ( -0.6233 + 6.9092 i ) + ( -5.1426 - 0.4513 i ) e1 + ( -3.7853 - 0.2404 i ) e2 + ( -2.428 - 0.0296 i ) e3          rounded to 4 D
 

Hyperbolic Sine
 

-We have:  Sinh ( x0 + x1 e1 + .... + xN-1 eN-1 )  =  Sinh x0 Cos µ  + I ( Cosh x0 ) ( Sin µ )

    where  µ = ( x12 + ............... + xN-12 )1/2    and    I = ( x1 e1 + ............. + xN-1 eN-1 ) / µ
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Sinh B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

     SHB  >>>>  ( 1.6085 + 0.1583 i ) + ( 0.5553 + 1.2491 i ) e1 + ( 0.4300 + 0.9076 i ) e2 + ( 0.3047 + 0.5662 i ) e3             rounded to 4 D
 

Hyperbolic Cosine
 

 Cosh ( x0 + x1 e1 + .... + xN-1 eN-1 )  =  Cosh x0 Cos µ  + I ( Sinh x0 ) ( Sin µ )

    where  µ = ( x12 + ............... + xN-12 )1/2    and    I = ( x1 e1 + ............. + xN-1 eN-1 ) / µ
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Cosh B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    CHB  >>>>  ( 1.5010 - 0.2488 i ) + ( 0.2256 + 1.4345 i ) e1 + ( 0.1911 + 1.0497 i ) e2 + ( 0.1566 + 0.6648 i ) e3             rounded to 4 D
 

Hyperbolic Tangent
 

 Tanh B  is defined by  Tanh B = ( Sinh B ) ( Cosh B ) -1
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Tanh B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    THB  >>>>  ( 0.7548 - 1.1142 i ) + ( -0.8316 + 0.1404 i ) e1 + ( -0.6083 + 0.1179 i ) e2 + ( -0.3851 + 0.0953 i ) e3          rounded to 4 D
 

Inverse Hyperbolic Sine
 

 Formula:          ArcSinh B = Ln [ B + ( B2 + 1 )1/2 ]
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Asinh B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    ASHB  >>>>  ( 1.3553 + 0.7183 i ) + ( 0.6025 + 0.0482 i ) e1 + ( 0.4434 + 0.0247 i ) e2 + ( 0.2843 + 0.0013 i ) e3          rounded to 4 D
 

Inverse Hyperbolic Cosine
 

 Formula:          ArcCosh B = Ln [ B + ( B + 1 )1/2 ( B - 1 )1/2 ]
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Acosh B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    ACHB  >>>>  ( 1.3521 + 0.7113 i ) + ( 0.6185 - 0.0512 i ) e1 + ( 0.4534 - 0.0485 i ) e2 + ( 0.2883 - 0.0459 i ) e3          rounded to 4 D
 

Inverse Hyperbolic Tangent
 

 Formula:         ArcTanh B = (1/2) [ Ln ( 1 + B ) - Ln ( 1 - B ) ]
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Atanh B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    ATHB  >>>>  ( 0.2955 - 0.2011 i ) + ( 0.9797 + 0.2256 i ) e1 + ( 0.7236 + 0.1484 i ) e2 + ( 0.4675 + 0.0711 i ) e3          rounded to 4 D
 

Sine of a bion
 

Formula:     Sin ( x0 + x1 e1 + .... + xN-1 eN-1 )  =  Sin x0 Cosh µ  + I ( Cos x0 ) ( Sinh µ )

    where  µ = ( x12 + ............... + xN-12 )1/2    and    I = ( x1 e1 + ............. + xN-1 eN-1 ) / µ
 
 
      STACK        INPUT      OUTPUT
       Level 1             B         Sin B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    SINB  >>>>  ( 0.6434 + 1.7921 i ) + ( 1.3025 + 0.2589 i ) e1 + ( 0.9613 + 0.1671 i ) e2 + ( 0.6201 + 0.0753 i ) e3             rounded to 4 D
 

Cosine of a bion
 

Formula:     Cos ( x0 + x1 e1 + .... + xN-1 eN-1 )  =  Cos x0 Cosh µ  + I ( Sin x0 ) ( Sinh µ )

    where  µ = ( x12 + ............... + xN-12 )1/2    and    I = ( x1 e1 + ............. + xN-1 eN-1 ) / µ
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Cos B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    COSB  >>>>  ( 1.6624 - 0.0748 i ) + ( -0.1571 - 1.5114 i ) e1 + ( -0.1421 - 1.1074 i ) e2 + ( -0.1272 - 0.7033 i ) e3          rounded to 4 D
 

Tangent of a bion
 

  Formula:    Tan B = ( Sin B ) ( Cos B ) -1
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Tan B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    TANB  >>>>  ( -1.0993 - 0.1510 i ) + ( 0.8538 - 0.8196 i ) e1 + ( 0.6127 - 0.6171 i ) e2 + ( 0.3715 - 0.4146 i ) e3             rounded to 4 D
 

Arc Sine
 

Formula:     If   B  =  x0 + x1 e1 + .... + xN-1 eN-1       ,       Arc Sin B     = - I  Arc Sinh ( B  I )

    where  µ = ( x12 + ............... + xN-12 )1/2    and    I = ( x1 e1 + ............. + xN-1 eN-1 ) / µ
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Asin B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    ASINB  >>>>  ( 0.7517 + 0.0817 i ) + ( 1.0103 + 0.5534 i ) e1 + ( 0.7519 + 0.3886 i ) e2 + ( 0.4935 + 0.2238 i ) e3          rounded to 4 D
 

Arc Cosine
 

      ArcCos B = PI/2 - ArcSin B
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Acos B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    ACOSB  >>>>  ( 0.8191 - 0.0817 i ) + ( -1.0103 - 0.5534 i ) e1 + ( -0.7519 - 0.3886 i ) e2 + ( -0.4935 - 0.2238 i ) e3          rounded to 4 D
 

Arc Tangent
 

Formula:     If   B  =  x0 + x1 e1 + .... + xN-1 eN-1        ,           Arc Tan B     = - I  Arc Tanh ( B  I )

    where  µ = ( x12 + ............... + xN-12 )1/2    and    I = ( x1 e1 + ............. + xN-1 eN-1 ) / µ
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Atan B

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    ATANB  >>>>  ( -0.2551 + 0.2588 i ) + ( 0.2065 + 1.0188 i ) e1 + ( 0.1697 + 0.7447 i ) e2 + ( 0.1329 + 0.4705 i ) e3          rounded to 4 D
 

Gudermannian Function
 

Definition:      Gd(B) = 2 ArcTan [ Tanh (B/2) ]
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Gd (B)

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    GDB  >>>>  ( -1.0420 + 0.7537 i ) + ( 0.5771 + 1.7617 i ) e1 + ( 0.4551 + 1.2838 i ) e2 + ( 0.3331 + 0.8058 i ) e3         rounded to 4D
 

Inverse Gudermannian Function
 

Definition:      Agd(B) = 2 ArcTanh [ Tan (B/2) ]
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Agd (B)

Example:        B = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

    AGDB  >>>>  ( 0.8355 - 0.6779 i ) + ( 1.4782 + 0.6366 i ) e1 + ( 1.0970 + 0.4414 i ) e2 + ( 0.7158 + 0.2463 i ) e3         rounded to 4D
 

Product of 2 Quaternions
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             Q             /
       Level 1             Q'           Q Q'

Example:    Calculate the product of the quaternions:       q = 2 - 3i + 4j - 7k  and  q' = 1 - 4i + 2j + 5k

    [ 2  -3   4  -7 ]   ENTER
    [ 1  -4   2   5 ]     QxQ      gives   [ 17  23  51  13 ]
 

Note:

 QxQ  also works with biquaternions.
 

Solving a Bionic Equation f(b) = b
 

-The equation must be rewritten in the form:    f ( b ) = b
  and  f   must satisfy a Lipschitz condition   | f(b) - f(b') | < h | b - b' |   with  h < 1  ,   provided b and b' are close to a solution,
  then the sequence  bn+1 = f ( bn )  converges to a root.

-Place a small positive number in 'tol'
-In level 1, place a program that takes b in level 1 and returns f(b) in level 1
-Place an approximation in level 1 and press the key FXB

-The HP48 will display the successive approximations and eventually the ( or a ) solution in level 1
 
 
      STACK        INPUTS      OUTPUTS
       Level 2       <<  p  >>       <<  p  >>
       Level 1             b        Solution

   where  <<  p  >>  calculates f(b)     and  b  =  1st approximation

Example:         Find a solution of the biquaternionic equation

   b2  - Ln b  + ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3 = 0      near   b = 1

1°), we re-write this equation:    b  =  [ Ln b  - {  ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3 } ] 1/2  =  f ( b )

2°) Store a small number - say  2E-11 - in 'tol'

3°) Then,      <<  LNB  [ ( 0.1  0.2 )  ( 0.3  0.4  )  ( 0.5  0.6 )  ( 0.7  0.8 ) ]  -  2  INV  B­X  >>   ENTER
                                                                                                                                [ 1  0  0  0 ]     FXB     displays the successive approximations
   and returns eventually the solution:

   b = ( 1.01498310538 + 0.292115635013 i )  +  ( -0.307551610372 - 0.118387776545 i )  e1
                                                                          + ( -0.489251534305 - 0.160080802581 i )  e2 + ( -0.670951458238 - 0.201773828616 i )  e3
 

Evaluating a Bionic Polynomial
 

  'peval'   evaluates  p(b) = cm bm + cm-1 bm-1 + ................ + c1 b + c0    for  a given bion b  and  (m+1) complex numbers  cm , .............. , c1 , c0
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             p            p
       Level 1             b           p(b)

   where   p   is a polynomial with complex ( or real ) coefficients and b is a bion.

Example:        b = ( 1 + 2 i ) + ( 3 + 4 i ) e1 + ( 5 + 6 i ) e2 + ( 7 + 8 i ) e3

  and     p(x) = ( 2 + 3 i ) x4 + ( 4 - 7 i ) x3 + ( 3 - 5 i ) x2 + ( 1 + 4 i ) x + ( 6 + 2 i )
 

      [ ( 2 , 3 ) ( 4 , -7 ) ( 3 , -5 ) ( 1 , 4  ) ( 6 , 2 ) ]   ENTER
              [ ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 )  ( 7 , 8 ) ]           peval        >>>>      [ ( -39087 , -128086 ) ( -863 , 23966 ) ( 571 , 37456 ) ( 2005 , 50946 ) ]
 

  whence  p(b) = ( -39087 - 128086 i ) + ( -863 + 23966 i ) e1 + ( 571 + 37456 i ) e2 + ( 2005 + 50946 i ) e3
 

LogGamma Function
 

'LNGZ' computes  LnGamma(z) = (z-1/2) Ln(z) - z + (1/2) Ln (2.PI)  + ( 1/12 )/( z + ( 1/30 )/( z + ( 53/210)/( z + (195/371)/( z + ...  ))))

             together with the relation     LnGamma ( z+1 ) = Ln z + LnGamma (z)
 
 
      STACK        INPUT      OUTPUT
       Level 1             z     LnGamma(z)

   where z = complex number

Example:     z = 3 + 4 i

    ( 3 , 4 )  LNGZ  gives  ( -1.75662678467  ,  4.742664438 )  = -1.75662678467 + 4.742664438 i

Notes:

-Remark that  Ln ( Gamma ( 3+4.i ) )  = -1.7566... - 1.5405... i  is different.
-So, LnGamma is not always the same as Ln ( Gamma ), though the real parts are always equal.
-Unlike Ln ( Gamma ) , LnGamma has a single branch cut:  the negative real semi-axis.
 

Complex Gamma Function
 

 'GAMZ' calculates the Gamma function for complex arguments
 A continued fraction is used.
 However, if z is real number, the built-in factorial function is employed since  Gam x = ( x-1 ) !
 
 
      STACK        INPUT      OUTPUT
       Level 1             z      Gamma(z)

   where z = complex number

Example:     z = 3 + 4 i

    ( 3 , 4 )  GAMZ  >>>   ( 0.00522553847158 , - 0.172547079294 )

Notes:

-If you have an HP-50G, store the program  <<  GAMMA >>  in the 'GAMZ'  variable
-You'll get a better precision !
 

Complex Digamma Function
 

-The asymptotic expansion  Psi(z) = ln z - 1/(2z) -1/(12z2) + 1/(120z4) - 1/(252z6) + 1/(240z8)  is used for  Ré(z)  > 12
  together with the property:  Psi(z+1) = Psi(z) + 1/z
 
 
      STACK        INPUT      OUTPUT
       Level 1             z        Psi (z)

   where z = complex number

Example:     z = 3 + 4 i

    ( 3 , 4 )  PSIZ  >>>  ( 1.55035981733 , 1.01050220919 )

Notes:

-If you have an HP-50G, store the program  <<  Psi >>  in the 'PSIZ'  variable
-You'll probably get a better precision... though in this example, the results are identical !
 

Bionic Gamma Function
 

-Here, the Gamma function is computed by a continued fraction:

    Gam(b) ~   exp [ (b-1/2) Ln b + Ln (2.PI)1/2  - b + ( 1/12 )/( b + ( 1/30 )/( b + ( 53/210)/( b + (195/371)/( b + ...  )))) ]
 

-The relation   Gam(b+1) = b Gam(b)  is used recursively if Re(Re((b)) < 8  until   Re(Re(b+1+.......+1))  > 8
 
 
      STACK        INPUT      OUTPUT
       Level 1             B     Gamma (B)

Example:         b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

    [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   GAMB  returns

             Gam(b) = ( 0.258452256 + 0.166123160 i ) + ( 0.014416807 + 0.150189863 i )  e1
                                                                                   + ( 0.034505408 + 0.233142841 i ) e2 + ( 0.054594009 + 0.316095819 ) e3   rounded to 9D
 

Bionic Digamma Function
 

Formula:                Psi(b) ~ Ln b - 1/(2b) -1/(12b2) + 1/(120b4) - 1/(252b6) + 1/(240b8)    is used if  Re(b) > 8

                              Psi(b+1) = Psi(b) + 1/b    is used recursively until  Re(b+1+....+1) > 8
 
 
      STACK        INPUT      OUTPUT
       Level 1             B        Psi (B)

Example:        b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

    [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   PSIB   gives

             Psi(b) = ( 0.300919281 + 0.872730291 i ) + ( 0.587618165 - 0.077794679 i )  e1
                                                                       + ( 0.910460763 - 0.168369152 i ) e2 + ( 1.233303362 - 0.258943626 ) e3      rounded to 9D
 

Bionic Polygamma Function
 

Formulae:

  •   If m > 0  ,  y(m) (b)  ~  (-1)m-1 [ (m-1)! / bm + m! / (2.bm+1) + SUMk=1,2,.... B2k (2k+m-1)! / (2k)! / b2k+m       where  B2k are Bernoulli numbers

  •   If m = 0  ,  y (b)  ~  Ln b - 1/(2b) - SUMk=1,2,.... B2k / (2k) / b2k              ( digamma function )

-So, the digamma function may be computed with "PSINB" too.
 

 and the recurrence relation:   y(m) (a+p) = y(m) (a) + (-1)m m! [ 1/am+1 + ....... + 1/(a+p-1)m+1 ]           where  p  is a positive integer
 
 
      STACK        INPUT      OUTPUT
       Level 2             m            /
       Level 1             B        y(m) (B)

Example:        b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3    ,   m = 3

                                                                                 3   ENTER
    [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   PSINB   gives

      Psi(3) (b) = ( 0.349772973 + 0.790426127 i ) + ( -0.281836208 - 0.432414490 i )  e1
                                                                             + ( -0.474257644 - 0.652019707 i ) e2 + ( -0.666679080 - 0.871624925 ) e3          ( 9D )

Note:

-With m = 0 ,  PSINB  is another way to calculate the digamma function.
 

Riemann Zeta Function
 

 ZETAB  employs the method given by P. Borwein in  "An Efficient Algorithm for the Riemann Zeta Function"  if  Re(Re(b)) >= 1/2
-If  Re(Re(b)) < 1/2, it uses:     Zeta(b) = Zeta(1-b)  Pi  b-1/2  Gamma((1-b)/2) / Gamma(b/2)
 
 
      STACK        INPUT      OUTPUT
       Level 1             B       Zeta (B)

Example:          b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

      [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   ZETAB   returns
 

     Zeta(b) = ( 0.478160114 + 0.577429237 i )  + ( -0.256274161 + 0.142614011 i ) e1
                                                                           + ( -0.388378571 + 0.242979790 i ) e2 + ( -0.520482981 + 0.343345568 i ) e3          ( 9D )

Notes:

-The results are faster and more accurate if  Re(Re(b)) > 1/2
-Large execution times are to be expected for large imaginary parts.
 

Generalized Hypergeometric Functions
 

 HGFB  computes   pFq( a1,a2,....,ap ; b1,b2,....,bq ; b ) =  SUMk=0,1,2,.....    [(a1)k(a2)k.....(ap)k] / [(b1)k(b2)k.....(bq)k] . bk/k!         if   Level 1 > 0

           where (ai)k = ai(ai+1)(ai+2) ...... (ai+k-1)   &  (ai)0 = 1    ,    likewise for  (bj)k    ( Pochhammer's symbol )

           ai & bj  are complexes    and    b is a "bi-on"

>>>   or the regularized function F tilde:

           pF~q( a1,a2,....,ap ; b1,b2,....,bq ; b ) =  SUMk=0,1,2,.....    [ (a1)k(a2)k.....(ap)k ] / [Gam(k+b1) Gam(k+b2).....Gam(k+bq)] . bk/k!      if  Level 2 < 0

    where Gam = Euler's Gamma function.
 
 
 
 
      STACK        INPUTS      OUTPUTS
  Level(3+p+q)            a1             /
      ............           ......             /
    Level (4+q)             ap             /
    Level (3+q)             b1             /
       ..........          .......             /
       Level 4             bq             /
       Level 3             B             /
       Level 2             p             /
       Level 1          +/- q           f(b)

  Level 1 =  +q  for the non-regularized HGF ,  Level 1 = -q  for the regularized  HGF

Example1:        a1 = 0.2 + 0.3 i  ,  b1 = 0.6 + 0.7 i  ,  b3 = 1.4 + 1.6 i              -> Calculate  2F3( a1,a2 ; b1,b2,b3 ; b )     with
                          a2 = 0.4 + 0.5 i  ,  b2 = 1.2 + 1.3 i

         b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                            ( 0.2 , 0.3 )    ENTER
                                                            ( 0.4 , 0.5 )    ENTER
                                                            ( 0.6 , 0.7 )    ENTER
                                                            ( 1.2 , 1.3 )    ENTER
                                                            ( 1.4 , 1.6 )    ENTER
[ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   ENTER
                                                                            2    ENTER
                                                                            3    HGFB                returns

      2F3(b) = ( 1.003991856 + 0.005192296 i ) + ( 0.032853131 + 0.009144529 i ) e1
                                                                          + ( 0.051982446 + 0.011637214 i ) e2 + ( 0.071111761 + 0.014129900 i ) e3          ( 9D )

Example2:      With the same arguments, calculate the regularized function F tilde:   2F~3( a1,a2 ; b1,b2,b3 ; b )

         b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                            ( 0.2 , 0.3 )    ENTER
                                                            ( 0.4 , 0.5 )    ENTER
                                                            ( 0.6 , 0.7 )    ENTER
                                                            ( 1.2 , 1.3 )    ENTER
                                                            ( 1.4 , 1.6 )    ENTER
[ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   ENTER
                                                                            2    ENTER
                                                                           -3    HGFB                returns

    2F~3(b) = ( 9.112735956 + 3.989347207 i ) + ( 0.262953244 + 0.212181889 i ) e1
                                                                         + ( 0.427181612 + 0.309967487 i ) e2 + ( 0.591409979 + 0.407753085 i ) e3          ( 9D )

-The result of the 1st example has been simply divided by  [ Gam(b1) Gam(b2) Gam(b3) ]

Example3:      Calculate again the regularized function F tilde:    2F~3( a1,a2 ; b1,b2,b3 ; b )    but with

                          a1 = 0.2 + 0.3 i  ,  b1 = 0.6 + 0.7 i  ,  b3 = -4
                          a2 = 0.4 + 0.5 i  ,  b2 = -3.14

         b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                            ( 0.2 , 0.3 )    ENTER
                                                            ( 0.4 , 0.5 )    ENTER
                                                            ( 0.6 , 0.7 )    ENTER
                                                                     -3.14    ENTER
                                                                          -4    ENTER
[ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   ENTER
                                                                            2    ENTER
                                                                           -3    HGFB                returns

      2F~3(b) = ( 0.185476240 - 0.060667557 i ) + ( 0.133911078 + 0.071283992 i ) e1
                                                                          + ( 0.214604001 + 0.100490141 i ) e2 + ( 0.295296925 + 0.129696290 i ) e3          ( 9D )

Note:

-Since most of the special functions may be expressed in terms of hypergeometric functions, the routine  HGFB  is extensively used hereunder !
 

Legendre Functions - 1st kind - Type2
 

Formula:       Pnm(B) = [ (B+1)/(1-B) ]m/2  2F~1(-n , n+1 ; 1-m ; (1-B)/2 )            (  B # 1 )                | B - 1 | < 2
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m             /
       Level 2             n             /
       Level 1             B        Pnm(B)

Example:            m = 1 + 2 i  ,  n = 3 + 4 i   ,    B = ( 1.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( -0.1 - 0.2 i ) e2 + ( -0.3 - 0.4 i ) e3

                 ( 1 , 2 )     ENTER
                 ( 3 , 4 )     ENTER
  [ ( 1.1 , 0.2 ) ( 0.3 , 0.4 ) ( -0.1 , -0.2 ) ( -0.3 , -0.4 ) ]  ALF12  gives

     Pnm(B) = ( 93.103757941 - 105.0475346 i )  + ( 75.56897107 + 91.98871965 i ) e1
                                                                            + ( -25.89124970 - 46.52055433 i ) e2 + ( -75.56897107 - 91.98871965 i ) e3          ( 10D )

Note:

-See also  PMN2B
 

Legendre Functions - 1st kind - Type3
 

Formula:       Pnm(B) = [ (B+1)/(B-1) ]m/2  2F~1(-n , n+1 ; 1-m ; (1-B)/2 )            (  B # 1 )                | B - 1 | < 2
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m             /
       Level 2             n             /
       Level 1             B        Pnm(B)

Example:              m = 1 + 2 i  ,  n = 3 + 4 i   ,    b = ( 1.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( -0.1 - 0.2 i ) e2 + ( -0.3 - 0.4 i ) e3

                 ( 1 , 2 )     ENTER
                 ( 3 , 4 )     ENTER
  [ ( 1.1 , 0.2 ) ( 0.3 , 0.4 ) ( -0.1 , -0.2 ) ( -0.3 , -0.4 ) ]  ALF13  gives

     Pnm(b) = ( 57.145293120 + 522.83368998 i )  + ( 346.12038247 - 37.93305295 i ) e1
                                                                              + ( -155.3276125 - 10.99908730 i ) e2 + ( -346.12038247 + 37.93305295 i ) e3          ( 10D )

Note:

-See also  PMN3B
 

Legendre Functions - 2nd kind - Type2
 

Formula:      Qrm(b) = 2m pi1/2  (1-b2)-m/2 [ -Gam((1+m+r)/2)/(2.Gam((2-m+r)/2)) . sin pi(m+r)/2 .  2F1(-r/2-m/2 ; 1/2+r/2-m/2 ; 1/2 ; b2 )
                                                                + b  Gam((2+r+m)/2) / Gam((1+r-m)/2) . cos pi(m+r)/2 . 2F1((1-m-r)/2 ; (2+r-m)/2 ; 3/2 ; b2 )  ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m             /
       Level 2             n             /
       Level 1             B        Qnm(B)

Example:         m = 0.2 + 0.3 i  ,  n = 1.4 + 1.6 i   ,    b = ( 0.05 + 0.1 i ) + ( 0.15 + 0.2 i ) e1 + ( 0.25 + 0.3 i ) e2 + ( 0.35 + 0.4 i ) e3

                                     ( 0.2 , 0.3 )                                     ENTER
                                     ( 1.4 , 1.6 )                                     ENTER
  [ ( 0.05 , 0.1 ) ( 0.15 , 0.2 ) ( 0.25 , 0.3 )  ( 0.35 , 0.4 ) ]   ALF22

      Qnm(b) = ( -0.5373501978 - 1.483228607 i )  + ( 1.318605387 - 1.639974388 i ) e1
                                                                               + ( 1.925826453 - 2.663848476 i ) e2 + ( 2.533047518 - 3.687722564 i ) e3          ( 10D )
 

Legendre Functions - 2nd kind - Type3
 

       Qrm(b) =  exp( i (m.PI) ) 2 -r-1 sqrt(PI) Gam(m+r+1) b -m-r-1 (b2-1)m/2  2F~1( (2+m+r)/2 , (1+m+r)/2 ; r+3/2 ; 1/b2 )
 
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m             /
       Level 2             n             /
       Level 1             B        Qnm(B)

Example:         m = 1.2 + 1.3 i  ,  n = 1.4 + 1.5  ,     b = ( 1.1 + 1.2 i ) + ( 1.3 + 1.4 i ) e1 + ( 1.5 + 1.6 i ) e2 + ( 1.7 + 1.8 i ) e3

                                     ( 1.2 , 1.3 )                             ENTER
                                     ( 1.4 , 1.5 )                             ENTER
  [ ( 1.1 , 1.2 ) ( 1.3 , 1.4 ) ( 1.5 , 1.6 )  ( 1.7 , 1.8 ) ]   ALF23
 

    Qnm(b) = ( 0.094724134 + 0.042366477 i )  + ( 0.021457752 - 0.047321593 i ) e1
                                                                          + ( 0.024373027 - 0.054440173 i ) e2 + ( 0.027288302 - 0.061558752 i ) e3          ( 9D )
 

Bessel Functions of the 1st kind
 

Formula:

        Jm(b) = (b/2)m [ 1/Gam(m+1)  +  (-b2/4)1/ (1! Gam(m+2) )  + .... + (-b2/4)k/ (k! Gam(m+k+1) ) + ....  ]        n # -1 ; -2 ; -3 ; ....
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n             /
       Level 1             B        Jn(B)

Example:        n = 2 + 3 i         b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( 2 , 3 )                                    ENTER
  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   JNB   returns

          J2+3.i (b) = ( 1.761078793 + 2.178620399 i ) + ( -0.807601645 + 0.577907524 i )  e1
                                                                                 + ( -1.213625964 + 0.966143878 i ) e2 + ( -1.619650283 + 1.354380215 ) e3          ( 9D )

Note:

 JNB  does not work if n is a negative integer, but we can employ the relation:      Jn  =  (-1)n  J-n   in this case.
 

Bessel Functions of the 2nd kind
 

Formulae:

        Ym(b) = ( Jm(b) cos(m(pi)) - J-m(b) ) / sin(m(pi))      ;      Km(b) = (pi/2) ( I-m(b) - Im(b) ) / sin(m(pi))           m # .... -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ....

  or, if m is a positive integer:

         Ym(b) = -(1/pi) (b/2)-m SUMk=0,1,....,m-1  (m-k-1)!/(k!) (b2/4)k + (2/pi) Ln(b/2) Jm(b)
                       - (1/pi) (b/2)m SUMk=0,1,.....  ( psi(k+1) + psi(m+k+1) ) (-b2/4)k / (k!(m+k)!)                         where   psi = the digamma function
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n             /
       Level 1             B        Yn(B)

Example1:         n = 2 + 3 i        b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( 2 , 3 )                                    ENTER
  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   YNB   returns

    Yn (b) = ( -2.42905364514 + 27.3193594245 i ) + ( 10.7732044826 + 3.04317564521 i )  e1
                                                                                 + ( 17.04965304444 + 3.8854976479 i ) e2 + ( 23.3261016062 + 4.7278196506 ) e3
 

Example2:         n = 3        b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                         3                                        ENTER
  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   YNB   returns

    Y3 (b) = ( -0.712755224 - 0.475908558 i ) + ( 0.575617773 + 0.146363743 i )  e1
                                                                        + ( 0.909672826 + 0.182278018 i ) e2 + ( 1.243727879 + 0.218192292 ) e3          ( 9D )

Note:

 YNB  does not work if n is a negative integer, but we can employ the relation:      Yn  =  (-1)n  Y-n   in this case.
 

Modified Bessel Functions of the 1st kind
 

Formula:

       Im(b) = (b/2)m [ 1/Gam(m+1)  +  (b2/4)1/ (1! Gam(m+2) )  + .... + (b2/4)k/ (k! Gam(m+k+1) ) + ....  ]          m # -1 ; -2 ; -3 ; ....
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n             /
       Level 1             B        In(B)

Example:          n = 2 + 3 i         b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( 2 , 3 )                                    ENTER
  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   INB   returns

          I2+3.i (b) = ( 2.04184519843 + 1.6457734642 i ) + ( -0.624872872269 + 0.688412145165 i )  e1
                                                                                       + ( -0.919728709124 + 1.12391277624 i ) e2 + ( -1.21458454598 + 1.55941340732 ) e3

Note:

 INB  does not work if n is a negative integer, but we can employ the relation:      In  =  I-n   in this case.
 

Modified Bessel Functions of the 2nd kind
 

Formulae:       Km(b) = (pi/2) ( I-m(b) - Im(b) ) / sin(m(pi))                                                                          m # .... -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ....

  or, if m is a positive integer:

             Km(b) = (1/2) (b/2)-m SUMk=0,1,..,m-1  (m-k-1)!/(k!) (-b2/4)k - (-1)m Ln(b/2) Im(b)
                    + (1/2) (-1)m (b/2)m SUMk=0,1,...( psi(k+1) + psi(m+k+1) ) (b2/4)k / (k!(m+k)!)                       where   psi = the digamma function
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n             /
       Level 1             B        Kn(B)

Example1:          n = 2 + 3 i         b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( 2 , 3 )                                    ENTER
  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   KNB   returns

       K2+3.i (b) = ( 14.38068951 - 63.26852067 i ) + ( -22.09224561 - 6.403916047 i )  e1
                                                                            + ( -34.97621644 - 8.222729385 i ) e2 + ( -47.86018726 - 10.04154272 ) e3         ( 9D )
 

Example2:         n = 3        b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                         3                                        ENTER
  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   KNB   returns

    K3 (b) = ( 0.795781386845 + 1.02245357222 i ) + ( -0.54871862033 - 0.555496991545 i )  e1
                                                                                  + ( -0.900440807045 - 0.82267781719 i ) e2 + ( -1.25216299375 - 1.08985864283 ) e3

Note:

 KNB  does not work if n is a negative integer, but we can employ the relation:      Kn  =  K-n   in this case.
 

Regular Coulomb Wave Functions
 

Formulae:          FL(h,b) = CL(h) b L+1 exp(-i.b)  M ( L+1-i.h ; 2L+2 ; 2i.b )       where   M = Kummer's function

    with   CL(h) = 2L exp [ (1/2) { -PI.h + Lngamma(L+1+i.h) + Lngamma(L+1-i.h) } - Lngamma(2L+2) ]
 
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             L            /
       Level 2            h            /
       Level 1             b       FL(h,b)

Example:            L = 2 + 3 i  ,  h = -0.6 - 0.7 i    ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 2 , 3 )                                     ENTER
                                    ( -0.6 , -0.7 )                                ENTER
       [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   RCWFB   returns

        FL(h,b) = ( 1.432663946 + 2.724686888 i ) + ( -0.994443184 + 0.451696564 i ) e1
                                                                              + ( -1.515195642 + 0.784202095 i ) e2 + ( -2.035948100 + 1.116707625 i ) e3

Notes:

 "RCWFB"  does not work if  2.L = -1 , -2 , -3 , ...............
 

Irregular Coulomb Wave Functions
 

Formulae:     GL(h,b) = [ FL(h,b) Cos c - F-L-1(h,b) ] / sin c

    with   c = sL(h) - s-L-1(h) - ( 2.L + 1 ) PI / 2
    and   sL(h) = [ Lngamma ( 1 + L + i.h )  -  Lngamma ( 1 + L - i.h ) ] / ( 2.i )
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             L            /
       Level 2            h            /
       Level 1             b       FL(h,b)

Example:            L = 2 + 3 i  ,  h = -0.6 - 0.7 i    ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 2 , 3 )                                     ENTER
                                    ( -0.6 , -0.7 )                                ENTER
       [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   ICWFB   returns

        GL(h,b) = ( -4.805817221 - 31.486587007 i ) + ( -13.144403234 - 0.948059274 i ) e1
                                                                               + ( -19.021113786 - 0.507420209 i ) e2 + ( -25.897824339 - 0.066781144 i ) e3

Note:

 "ICWFB"  does not work if  2.L is an integer
 

Coulomb Wave Functions - Asymptotic Expansion
 

    with   q = b - h Ln 2.b - L PI / 2 + [ Lngamma ( 1 + L + i.h )  -  Lngamma ( 1 + L - i.h ) ] / ( 2.i )

      HL+(h,b)  ~  exp ( i.q2F0 ( - L + i.h , 1 + L + i.h , 1 / 2.i.b )
      HL-(h,b)  ~  exp ( -i.q2F0 ( - L - i.h , 1 + L - i.h , -1 / 2.i.b )

   then,   FL(h,b) = [ HL+(h,b) -  HL-(h,b) ] / (2.i)               GL(h,b) = [ HL+(h,b) +  HL-(h,b) ] / 2
 
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             L            /
       Level 2            h       FL(h,b)
       Level 1             b       GL(h,b)

Example:            L = 2 + 3 i  ,  h = -0.6 - 0.7 i    ,        b = ( 9.1 + 9.2 i ) + ( 9.3 + 9.4 i ) e1 + ( 9.5 + 9.6 i ) e2 + ( 9.7 + 9.8 i ) e3

                                        ( 2 , 3 )                                     ENTER
                                    ( -0.6 , -0.7 )                                ENTER
       [ ( 9.1 , 9.2 ) ( 9.3 , 9.4 )  ( 9.5 , 9.6 ) ( 9.7 , 9.8 ) ]   AECWFB   returns

        FL(h,b) = ( 273770923.157 - 3362001483.11 i ) + ( -1900097678.67 - 154948082.613 i ) e1
                                                                                     + ( -1940758040.57 - 158045045.004i ) e2 + ( -1981418402.49 - 161142007.411 i ) e3

in level 2 and in level 1:

        GL(h,b) = ( -3361983306.77 - 273776916.434 i ) + ( -154944696.517 + 1900107951.9 i ) e1
                                                                                       + ( -158041585.306 + 1940768533.15 i ) e2 + ( -161138474.11 + 1981429114.43 i ) e3

Notes:

-As usual with asymptotic expansions, the series will diverge too soon if b is too "small"
-Press ON to stop the infinite loop in this case.
 

Parabolic Cylinder Functions
 

Formula:               Dm(b) = 2m/2 Pi1/2 exp(-b2/4) [ 1/Gam((1-m)/2) M( -m/2 , 1/2 , b2/2 ) - 21/2 ( b / Gam(-m/2) ) M [ (1-m)/2 , 3/2 , b2/2 ]

   where   M = Kummer's function.
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n            /
       Level 1             b         Dn(b)

Example:        n = 0.4 + 0.7 i            b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                      ( 0.4 , 0.7 )                                 ENTER
       [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   DNB   returns

     Dn (b) = ( 0.409729789 + 0.317378268 i ) + ( -0.162419933 + 0.271785446 i ) e1
                                                                         + ( -0.231632220 + 0.436979671 i ) e2 + ( -0.300844507 + 0.602173396 i ) e3

Note:

-For large arguments, an asymptotic expansion is preferable.
 

Parabolic Cylinder Functions - Asymptotic Expansion
 

-For large arguments, ascending series give poor accuracy or even meaningless results !
-Asymptotic expansions are preferable:
 

Formula:     Dm(b)  ~  bm exp(-b2/4) [ 1 - m(m-1) / ( 2 b2 ) + m(m-1)(m-2)(m-3) / ( 2 ( 4 b4 ) ) - ....... ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n            /
       Level 1             b         Dn(b)

Example:          n  = 3.14 + 2.718 i       b = ( 5 + 6 i ) + ( 7 + 8 i ) e1 + ( 9 + 10 i ) e2 + ( 11 + 12 i ) e3

                             ( 3.14 , 2.718 )                           ENTER
          [ ( 5 , 6 ) ( 7 , 8 ) ( 9 , 10 ) ( 11 , 12 ) ]          AEDNB     gives

     Dn (b) = ( -4.325945 E34 + 2.1466037 E36 i ) + ( 9.6478575 E35 + 3.4397021 E34 i ) e1
                                                                                 + ( 1.2215324 E36 + 2.645312 E34 i ) e2 + ( 1.4782790 E36 + 1.8509221 E34 i ) e3

Notes:

-An infinte loop will occur if a is too small.
-However, this program may also be used if b is relatively small when n is a positive integer.
 

Jacobian Elliptic Functions
 

"JEFB" employs Gauss' transformation to calculate  sn ( b | m )  ,  cn ( b | m )  &  dn ( b | m )

-If  m # 1 ,  let  m' = 1-m ,  µ = [ ( 1-sqrt(m') / ( 1+sqrt(m') ]2   and   v = b / ( 1+sqrt(µ) ]  , then:

   sn ( b | m ) = [ ( 1 + sqrt(µ) ) sn ( v | µ ) ] / [ 1 + sqrt(µ) sn2 ( v | µ ) ]
   cn ( b | m ) = [ cn ( v | µ ) dn ( v | µ ) ] / [ 1 + sqrt(µ) sn2 ( v | µ ) ]
   dn ( b | m ) = [ 1 - sqrt(µ) sn2 ( v | µ ) ] / [ 1 + sqrt(µ) sn2 ( v | µ ) ]

-These formulas are applied recursively until µ is small enough to use

   sn ( v | 0 ) = Sin v
   cn ( v | 0 ) = Cos v
   dn ( v | 0 ) = 1

-If m = 1:      sn ( b | m ) = tanh b ; cn ( b | m ) = dn ( b | m ) = sech b
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             /       sn ( b | m ) 
       Level 2             m       cn ( b | m )
       Level 1             b       dn ( b | m )

Example:        m = 2 + 3.i  ,   b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3
 

                                    ( 2 , 3 )                                    ENTER
  [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]   JEFB      gives    in level 3:                                  ( all rounded to 9D )

       sn ( b | 2+3i ) = ( -0.119297320 - 0.145921679 i ) + ( 0.001430949 + 0.135563787 i ) e1
                                                                                  + ( 0.013077383 + 0.211365032 i ) e2 + ( 0.024723818 + 0.287166277 i ) e3

and in level 2:

   cn ( b | 2+3i ) = ( 0.928961221 - 0.011137455 i ) + ( -0.021319014 + 0.017378296 i ) e1
                                                                                  + ( -0.031867398 + 0.028815663 i ) e2 + ( -0.042415782 + 0.040253030 i ) e3

and in level 1

   dn ( b | 2+3i ) = ( -0.926505039 + 0.207185357 i ) + ( 0.084840287 + 0.047110613 i ) e1
                                                                                  + ( 0.136119697 + 0.066705333 i ) e2 + ( 0.187399107 + 0.086300054 i ) e3
 

Weierstrass Elliptic Functions
 

-WEFB calculates the Weierstrass Elliptic Function  P(b;g2,g3)  by a Laurent series:

      P(b;g2;g3) = b -2 + c2.b2 + c3.b4 + ...... + ck.b2k-2 + ....

  where   c2 = g2/20  ;   c3 = g3/28  and   ck =  3 ( c2. ck-2 + c3. ck-3 + ....... + ck-2. c2 ) / (( 2k+1 )( k-3 ))      ( k > 3 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             g2             /
       Level 2             g3             /
       Level 1             b      P(b;g2;g3)

Example:        g2 = 1.2 + 1.3 i  ,  g3 = 1.6 + 1.7 i    ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                     ( 1.2 , 1.3 )                             ENTER
                                     ( 1.6 , 1.7 )                             ENTER
   [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  WEFB     returns

        P(b;g2;g3) = ( 0.089457020 + 0.121607346 i ) + ( -0.005461551 + 0.122834455 i ) e1
                                                                                 + (  0.001306738 + 0.192058673 i ) e2 + ( 0.008075026 + 0.261282892 i ) e3        ( 9D )
 

Weierstrass Duplication Formula
 

-If the argument b is too "large", the Laurent series don't converge.
-The duplication formula may be used one or several times in this case:

    P(2b) = -2 P(b) + ( 6 P2(b) - g2/2 )2 / ( 4 ( 4 P3(b) - g2 P(b) - g3 ) )
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             g2            g2
       Level 2             g3            g3
       Level 1      P(b;g2;g3)    P(2b ; g2;g3)

Example:     if you keep the previous result in level 1 and place  ( 1.2 , 1.3 )  in level 3  and  ( 1.6 , 1.7 ) in level 2,   WF2B  returns:
 

      P(2b ; g2;g3) = ( -0.17420917947 - 0.31429376681 i ) + ( -0.01995584363 - 0.25246457542 i ) e1
                                                                                            + (  -0.05132828218 - 0.39224827015 i ) e2 + ( -0.08270072056 - 0.532031964877 i ) e3
 

Exponential Integral Ei(b)
 

Formula:        Ei(b)  = C + Ln(b) + Sumn=1,2,.....  bn/(n.n!)                where  C = 0.577215664901... = Euler's constant.
 
 
      STACK        INPUTS      OUTPUTS
       Level 1             b          Ei(b)

Example:               b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  EIB     returns

     Ei(b) = ( 1.140687091 + 0.557945079 i ) + ( 0.829134746 + 0.443634358 i )  e1
                                                                      + ( 1.328940953 + 0.625738818 i ) e2 + ( 1.828747159 + 0.808843279 ) e3       ( 9D )
 

Exponential Integral En(b)
 

Formulae:

     En(b) = bn-1 Gam(1-n) - [1/(1-n)]  1F1 ( 1-n , 2-n ; -b )                    if   n # 1 , 2 , 3 , ................     and otherwise:

     En(b) = (-b)n-1 ( -Ln b - gamma + Sumk=1,...,n-1 1/k ) / (n-1)!  - Sumk#n-1 (-b)k / (k-n+1) / k!      where  gamma = Euler's Constant = 0.577215664901...

     and   E0(b) = (1/b).exp(-b)
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n           /
       Level 1             b         En(b)

Example1:       n = 2 + 3 i          b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                            ( 2 , 3 )                                     ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  ENB     gives
 

    E2+3.i (b) = ( -0.214869069 - 0.150734076 i ) + ( -0.062956984 + 0.108669920 i )  e1
                                                                            + ( -0.089519302 + 0.174561633 i ) e2 + ( -0.116081620 + 0.240453347 ) e3

Example2:      n = 3          b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                  3                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  ENB     returns
 

  E3 (b) = ( -0.2411685505 - 0.522115506 i ) + ( -0.214772639 + 0.090964781 i )  e1
                                                                        + ( -0.327768135 + 0.159086869 i ) e2 + ( -0.440763630 + 0.227208957 ) e3
 

Note:

-For large arguments, the program below is better:
 

Exponential Integral En(b) - Asymptotic Expansion
 

Formula:     En(b) ~  (1/b) exp(-b)  2F0(1,n;;-1/b)
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n            /
       Level 1             b         En(b)

Example:          n = 3.14 + 2.718 i        b = ( 30 + 31 i ) + ( 32 + 33 i ) e1 + ( 34 + 35 i ) e2 + ( 36 + 37 i ) e3

                                ( 3.14 , 2.718 )                  ENTER
  [ ( 30 , 31 ) ( 32 , 33 ) ( 34 , 35 ) ( 36 , 37 ) ]  AENB        produces

    En (b) = ( -8.3244597 E10 + 7.1723931 E10 i ) + ( 3.8924375 E10 + 4.5261117 E10 i )  e1
                                                                                + ( 4.1361995 E10 + 4.8008915 E10 i ) e2 + ( 4.3799615 E10 + 5.0756713 E10 ) e3

Notes:

-If the argument a is too "small" , the series will diverge too soon.
-However, it may also be used with small arguments if  n is a negative integer.
-For instance, it returns correctly:

         E -2[ ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3 ] =  ( -0.050340126 + 0.442798110 i )

          + ( -0.089358126 - 0.047200638 i )  e1  + ( -0.143174727 - 0.066484345 i ) e2 + ( -0.196991329 - 0.085768052 ) e3
 

Sine Integral
 

Formula:           Si(b)  = Summ=0,1,2,..... (-1)m b2m+1/((2m+1).(2m+1)!)
 
 
      STACK        INPUTS      OUTPUTS
       Level 1             b          Si(b)

Example:               b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  SIB     returns

     Si(b) = ( 0.029007647 + 0.214825822 i ) + ( 0.254033031 + 0.422973668 i )  e1
                                                                      + ( 0.430129422 + 0.639516280 i ) e2 + ( 0.606225812 + 0.856058892 ) e3
 
 

Hyperbolic Sine Integral
 

Formula:           Shi(b) = Summ=0,1,2,.....  b2m+1/((2m+1).(2m+1)!)
 
 
      STACK        INPUTS      OUTPUTS
       Level 1             b          Shi(b)

Example:                b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  SHIB     returns

     Shi(b) = ( 0.168831684 + 0.171286637 i ) + ( 0.343698222 + 0.372373658 i )  e1
                                                                         + ( 0.565959119 + 0.553407049 i ) e2 + ( 0.788220016 + 0.734440439 ) e3
 

Cosine Integral
 

Formula:           Ci(b)  = C + ln(b) + Summ=1,2,..... (-1)m b2m/(2m.(2m)!)                where  C = 0.577215664901... = Euler's constant.
 
 
      STACK        INPUTS      OUTPUTS
       Level 1             b          Ci(b)

Example:                 b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  CIB     returns

     Ci(b) = ( 0.822497127 + 1.344232914 i ) + ( 0.534656969 - 0.027912750 i )  e1
                                                                       + ( 0.831831852 - 0.086316448 i ) e2 + ( 1.129006735 - 0.144720146 ) e3
 

Hyperbolic Cosine Integral
 

Formula:           Chi(b)= C + ln(b) + Summ=1,2,.....  b2m/(2m.(2m)!)                        where  C = 0.577215664901... = Euler's constant.
 
 
      STACK        INPUTS      OUTPUTS
       Level 1             b          Chi(b)

Example:                    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  CHIB     returns

     Chi(b) = ( 0.971855407 + 0.386658442 i ) + ( 0.485436524 + 0.071260700 i )  e1
                                                                         + ( 0.762981834 + 0.072331769 i ) e2 + ( 1.040527143 + 0.073402839 ) e3
 

Angular Spheroidal Wave Function of the 1st kind
 

-"SMNB" computes the angular spheroidal wave function of the first kind.
-Given  m , n  and c2 , the corresponding eigenvalue  l  may be calculated by LMN ( see the next program below )

-We assume that  | b | <= 1  and  Smn(b) is computed by      Smn(b) = ( 1 - b2 ) m/2   Sumk=0,1,.... dk bk

     with     (k+1)(k+2) dk+2 - [ k ( k + 2m + 1 ) - l + m ( m + 1 ) ] dk  - c2  dk-2 = 0
 

 Flammer's Scheme:           the coefficients are normalized as follows:

      d0 = Pnm(0)  =  2m sqrt(PI) / [ Gam((1-m-n)/2) Gam((2-m+n)/2 ]
      d1 = P'nm(0) = ( m + n ) 2m sqrt(PI) / [ Gam((2-m-n)/2) Gam((1-m+n)/2 ]
 
 
      STACK        INPUT      OUTPUT
       Level 1             b         Smn(b)

Example:        m = 0.2 + 0.3 i  ,  n = 0.6 + 0.7 i  ,  c2 = 1.7 + 1.8 i   ,   l = 1.46245588721 + 2.19744971776 i

                        b = ( 0.05 + 0.1 i ) + ( 0.15 + 0.2 i ) e1 + ( 0.25 + 0.3 i ) e2 + ( 0.35 + 0.4 i ) e3

     m , n , c2  and  l are to be stored in the variables 'L'  'M'  'N'  'C2'   ( they are already stored if you've used LMN below )

    [ ( 0.05 , 0.1 ) ( 0.15 , 0.2 ) ( 0.25 , 0.3 ) ( 0.35 , 0.4 ) ]   SMNB  returns
 

       Smn(b) = ( 0.628023288 - 0.491662142 i ) + ( -0.021846567 + 0.346286108 i ) e1
                                                                      + ( -0.006377755 + 0.541954055 i ) e2 + ( 0.009091056 + 0.737622001 i ) e3
 

Note:

-l may be choosen arbitrarily, but the solution will not be regular for  b = 1
 

Calculating the eigenvalues
 

-Given m , n and c2  ,  store these real numbers into  'M'  'N'  'C2'  then press  LMN
-Your HP-48 will display the successive approximations and will finally store the eigenvalue l in the variable 'L'

-LMN solves the transcendental equation   U1(Lmn) + U2(Lmn) = 0   where    U1 & U2  are 2 continued fractions:

                                                 -brm                      -br-2m
   U1(Lmn) = grm - Lmn +    ---------------       ---------------   ..............
                                           gr-2m - Lmn +         gr-4m - Lmn +

                                                                                                              r = n - m
                                     -br+2m                    -br+4m
   U2(Lmn) =           ---------------       ----------------   ..............
                               gr+2m - Lmn +         gr+4m - Lmn +

   with      brm  =  [ r.(r-1).(2m+r).(2m+r-1).c4 ] / [ (2m+2r-1)2.(2m+2r+1).(2m+2r-3) ]
   and      grm  =  (m+r).(m+r+1) + (c2/2).[ 1 - (4m2-1)/((2m+2r-1).(2m+2r+3)) ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 1             /           Lmn

Example:        m = 0.2 + 0.3 i  , n = 0.6 + 0.7 i  ,  c2 = 1.7 + 1.8 i

-Store  these 3 numbers in the variables  'M'  'N'  'C2'  and press the  LMN  key.
-The successive approximations are displayed and finally, we get in level 1 and in 'L'  the eigenvalue  l = 1.46245588721 + 2.19744971776 i

Notes:

 LMN  uses an iteration method to find the eigenvalue.
 It's only a first order method - therefore very slow.
 It involves 2 continued fractions that are computed "from right to left" with 12 terms
 ( 12 is stored in 'ITER' , modify this value to check if there is no significant change in the result )
 Of course, this is not the best way to calculate continued fractions...
 

Legendre Polynomials
 
 

Formulae:      n.Pn(b) = (2n-1).b.Pn-1(b) - (n-1).Pn-2(b)  ,  P0(b) = 1  ,  P1(b) = b
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n            /
       Level 1             b         Pn(b)

   Where  n is a non-negative integer

Example:          n = 7   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  LEGB     returns

      P7(b) =  ( -240.8232644 + 180.2220152 i )  +  ( -8.4974508 + 82.1615056 i ) e1
                                                                            + ( -6.6831028 + 128.8517448 i ) e2 + ( -4.8687548 + 175.541984 i ) e3
 

Generalized Laguerre's Polynomials
 

Formulae:      L0(a) (B) = 1  ,   L1(a) (B) = a+1-B   ,    n Ln(a) (B) = (2.n+a-1-B) Ln-1(a) (B) - (n+a-1) Ln-2(a) (B)
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             a            /
       Level 2             n            /
       Level 1             b       Ln(a) (b)

   Where  n is a non-negative integer

Example:         a = 2 + 3 i     n = 7        b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                             ( 2 , 3 )                                    ENTER
                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  LANB     returns

      L72+3i (b) =  ( 70.827967066 + 59.563907953 i )  +  ( 46.126010715 + 4.093189916 i ) e1
                                                                                    + ( 72.284031989 + 2.695295412 i ) e2 + ( 98.442053102 + 1.297400908 i ) e3
 
 

Chebyshev Polynomials - 1st kind
 

Formula:            Tn(b) = 2b.Tn-1(b) - Tn-2(b)   ;  T0(b) = 1  ;   T1(b) = b
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n            /
       Level 1             b         Tn(b)

   Where  n is a non-negative integer

Example:         n = 7   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  CHB1B     returns

      T7(b) =  ( -558.0438464 + 462.2275712 i )  + ( -7.670764800 + 203.3249536 i ) e1
                                                                            + ( 4.299603200 + 317.8005888 i ) e2 + ( 16.26997120 + 432.2762240 i ) e3
 

Chebyshev Polynomials - 2nd kind
 

Formula:     Un(b) = 2b.Un-1(b) - Un-2(b)  ;  U0(b) = 1  ;  U1(b) = 2b
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n            /
       Level 1             b         Un(b)

   Where  n is a non-negative integer

Example:          n = 7   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  CHB2B     returns

      U7(b) =  ( -1176.6665728 + 804.7309824 i )  + ( -61.19336960 + 378.9647872 i ) e1
                                                                              + ( -65.14447360 + 596.0805376 i ) e2 + ( -69.09557760 + 813.1962880 i ) e3
 

Jacobi Polynomials
 

Formula:      P0(a;b) (B) = 1  ;   P1(a;b) (B) = (a-b)/2 + B (a+b+2)/2

        2n(n+a+b)(2n+a+b-2) Pn(a;b) (B) = [ (2n+a+b-1).(a2-b2) + B (2n+a+b-2)(2n+a+b-1)(2n+a+b) ] Pb-1(a;b) (B)
                                                              - 2(n+a-1)(n+b-1)(2n+a+b) Pn-2(a;b) (B)
 
 
      STACK        INPUTS      OUTPUTS
       Level 4             a            /
       Level 3             b            /
       Level 2             n            /
       Level 1             B      Pn(a;b) (B)

   Where  n is a non-negative integer

Example:          a = 2 + 3 i     b = ( 4 + 5 i )     n = 7        B = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                             ( 2 , 3 )                                    ENTER
                                             ( 4 , 5 )                                    ENTER
                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  JCPB     returns

    Pn(a;b) (B) =  ( 8797.6726159 + 1795.6342573 i )  + ( 2742.28422507 - 3357.50546715 i ) e1
                                                                                    + ( 4009.36295372 - 5457.09126675 i ) e2 + ( 5276.44168239 - 7556.67706636 i ) e3
 

UltraSpherical Polynomials
 

Formulae:

       C0(a) (b) = 1  ;   C1(a) (b) = 2.a.b   ;    (m+1).Cm+1(a) (b) = 2.(m+a).b.Cm(a) (b) - (m+2a-1).Cm-1(a) (b)      if  a # 0

       Cm(0) (b) = (2/m).Tm(b)
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             a            /
       Level 2             n            /
       Level 1             b       Cn(a) (b)

   Where  n is a non-negative integer

Example:          a = 2 + 3 i     n = 7        b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                             ( 2 , 3 )                                    ENTER
                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  USPB     returns
 

      C72+3i (b) =  ( 38963.6390236 + 23801.2308334 i )  + ( 10363.1939383 - 3209.20241371 i ) e1
                                                                                      + ( 15909.8463506 - 5835.41128046 i ) e2 + ( 21456.498763 - 8461.6201472 i ) e3

-Likewise, you will find:

     C7(0) (b) =  ( -159.441098971 + 132.065020343 i )  + ( -2.19164708571 + 58.0928438857 i ) e1
                                                                                       + ( 1.22845805714 + 90.8001682286 i ) e2 + ( 4.6485632 + 123.507492571 i ) e3
 

Associated Legendre Functions - 1st kind - Type2
 

-Though this is not always a polynomial, PMN2B is included here to remind that the indexes must be non-negative integers !
 

Formula:      (n-m) Pnm(b) = b (2n-1) Pn-1m(b) - (n+m-1) Pn-2m(b)

     Type 2                Pmm(b) = (-1)m (2m-1)!!  ( 1-b2 )m/2                    where (2m-1)!! = (2m-1)(2m-3)(2m-5).......5.3.1
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             m            /
       Level 2             n            /
       Level 1             b       Pnm (b)

   Where m & n  are non-negative integers  with  m <= n

Example:      m = 3  ,  n = 7  ,   b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                  3                                        ENTER
                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  PMN2B     returns

     P37 ( b ) = ( 6071.56627353 + 53115.3198363 i )  + ( 17513.3557081 - 15006.5407838 i ) e1
                                                                                    + ( 26120.3116418 - 24811.2720794 i ) e2 + ( 34727.2675758 - 34016.003375 i ) e3

Note:

-See also  ALF12
 

Associated Legendre Functions - 1st kind - Type3
 

-Though this is not always a polynomial, PMN3A is included here to remind that the indexes must be non-negative integers !
 

Formula:      (n-m) Pnm(b) = b (2n-1) Pn-1m(b) - (n+m-1) Pn-2m(b)

    Type 3                Pmm(b) =   (2m-1)!!  ( b2-1 )m/2                    where (2m-1)!! = (2m-1)(2m-3)(2m-5).......5.3.1
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             m            /
       Level 2             n            /
       Level 1             b       Pnm (b)

   Where m & n  are non-negative integers  with  m <= n

Example:       m = 3  ,  n = 7  ,   b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                                  3                                        ENTER
                                                  7                                        ENTER
            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]  PMN3B     returns

     P37 ( b ) = ( -46823.112327 + 45127.5481765 i )  + ( 1048.34156612 + 18931.3209529 i ) e1
                                                                                    + ( -3149.91851935 + 29448.9933613 i ) e2 + ( 5251.4954726 + 39966.6657695 i ) e3

Note:

-See also  ALF13
 

Airy Functions
 

Formulae:

    Ai(b) =   f(b) - g(b)                             with            f(b) = [ 3 -2/3 / Gamma(2/3) ]  0F1( 2/3 ; b3/9 )
    Bi(b) = [ f(b) + g(b) ] sqrt(3)               and            g(b) = [ 3 -1/3 / Gamma(1/3) ]  0F1( 4/3 ; b3/9 )   b
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             /         Ai (b)
       Level 1             b         Bi (b)

Example:             b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

            [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    AIBIB     returns

     Ai(b) =  ( 0.478468884 - 0.045373965 i ) + ( -0.040623036 - 0.145492499 i ) e1
                                                                       + ( -0.075011336 - 0.223718455 i ) e2 + ( -0.109399636 - 0.301944411 i ) e3

in level 2 and in level 1:

    Bi(b) = ( 0.650545600 + 0.036453982 i ) + ( 0.247761441 + 0.146528307 i ) e1
                                                                      + ( 0.398230113 + 0.208763244 i ) e2 + ( 0.548698784 + 0.270998180 i ) e3
 

Anger & Weber Functions
 

Formulae:
 

  Jm(b) = + (b/2) sin ( PI.m/2 ) 1F~2( 1 ; (3-m)/2 , (3+m)/2 ; -b2/4 )     Anger's functions

                  + cos ( PI.m/2 ) 1F~2( 1 ; (2-m)/2 , (2+m)/2 ; -b2/4 )

   Em(b) = - (b/2) cos ( PI.m/2 ) 1F~2( 1 ; (3-m)/2 , (3+m)/2 ; -b2/4 )     Weber's functions

                    + sin ( PI.m/2 ) 1F~2( 1 ; (2-m)/2 , (2+m)/2 ; -b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n         Jn(b)
       Level 1             b         En(b)

Example:            n  = 0.4 + 0.7 i          b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.4 , 0.7 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    ANWEB   returns
 

     Jm (b) = ( 1.425286892 - 0.337000374 i ) + ( -0.117808153 + 0.381684478 i ) e1
                                                                        + ( -0.153245961 + 0.604852438 i ) e2 + ( -0.188683769 + 0.828020398 i ) e3

in level 2 and in level 1:

     Em (b) = ( 0.638513901 + 1.155323362 i ) + ( -0.381725526 - 0.246679412 i ) e1
                                                                         + ( -0.615226173 - 0.354281841 i ) e2 + ( -0.848726820 - 0.461884270 i ) e3
 

Catalan Numbers
 

-The Catalan numbers may be defined by  C(n) = 4n Gam(n+1/2) / [ sqrt(PI) Gam(n+2) ]
-This formula is used hereunder after replacing n by the bion b
 
 
      STACK        INPUTS      OUTPUTS
       Level 1             b         C (b)

Example:              b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

      [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    CATB   returns

      C(b) = ( 0.474992331 - 0.263534256 i ) + ( 0.048669669 + 0.153014311 i )  e1
                                                                      + ( 0.088165829 + 0.234808752 i ) e2 + ( 0.127661989 + 0.316603193 ) e3
 

Chebyshev Functions - 1st kind
 

Formula:           Tm(cos B) = cos m.B                           with       cos B = b
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b         Tm (b)

Example:        m = 1.2 + 1.3 i           b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                      ( 1.2 , 1.3 )                                  ENTER
       [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    CHB1B   returns

      Tm (b) =  ( 1.070193726 + 1.688865688 i )  + ( -0.040122707 + 0.878077601 i ) e1
                                                                           + (  0.007654786 + 1.373010874 i ) e2 + ( 0.055432278 + 1.867944147 i ) e3

Note:

-See also Chebyshev polynomials 1st kind
 

Chebyshev Functions - 2nd kind
 

Formula:             Um(cos B) = [ sin (m+1).B ] / sin B                            with       cos B = b
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b         Um (b)

Example:        m = 1.2 + 1.3 i           b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                      ( 1.2 , 1.3 )                                  ENTER
       [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    CHB2B   returns

      Um (b) =  ( 3.332558957 + 2.316362965 i )  + ( -0.806753415 + 1.096755417 i ) e1
                                                                           + ( -1.170794895 + 1.775478723 i ) e2 + ( -1.534836374 + 2.454202030 i ) e3

Note:

-See also Chebyshev polynomials 2nd kind
 

Error Function
 

Formula:     erf b  = (2/pi1/2)  SUMn=0,1,2,.....  (-1)n b2n+1 / (n! (2n+1))
 
 
      STACK        INPUT      OUTPUT
       Level 1             b        erf (b)

Example:            b = ( 1 + 0.9 i ) + ( 0.8 + 0.7 i ) e1 + ( 0.6 + 0.5 i ) e2 + ( 0.4 + 0.3 i ) e3

       [ ( 1 , 0.9 ) ( 0.8 , 0.7 )  ( 0.6 , 0.5 ) ( 0.4 , 0.3 ) ]    ERFB   returns

      Erf(b) = ( 2.952728869 + 8.149265562 i ) + ( 6.172244023 - 1.372589196 i )  e1
                                                                         + ( 4.509301553 - 1.117428242 i ) e2 + ( 2.846359084 - 0.862267288 ) e3
 

Generalized Error Function
 

Formula:           Erfm(b) = b exp(-bm)  M( 1 ; 1+1/m ; bm )     where  M = Kummer's function
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n             /
       Level 1             b         Erfn(b)

Example:           n  = 0.4 + 0.7 i          b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.4 , 0.7 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    GERFB   returns

     Erfn (b) = ( -0.073280236 + 0.530416042 i ) + ( 0.176820829 + 0.257161065 i ) e1
                                                                             + ( 0.296413379 + 0.387025596 i ) e2 + ( 0.416005929 + 0.516890126 i ) e3

Hermite Functions
 

Formula:       Hm(b) = 2m sqrt(PI) [ (1/Gam((1-m)/2))  M(-m/2,1/2,b2) - ( 2.b / Gam(-m/2) ) M((1-m)/2,3/2,b2) ]

     where  Gam = Gamma function
       and      M  = Kummer's function = 1F1
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b         Hm(b)

Example:          n  = 0.4 + 0.7 i          b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.4 , 0.7 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    HMTB   returns

     Hn (b) = ( 0.817434193 + 0.870134918 i ) + ( -0.140724907 + 0.379062436 i ) e1
                                                                         + ( -0.189205861 + 0.602595392 i ) e2 + ( -0.237686814 + 0.826128348 i ) e3
 

Incomplete Beta Function
 

Formula:          Bb(p,q) = ( bp / p )  F(p,1-q;p+1;b)   where  F = "the" hypergeometric function
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             p             /
       Level 2             q             /
       Level 1             b        Bb(p,q)

Example:          p = 0.2 + 0.3 i  ,  q = 1.4 + 1.6 i   ,     b = ( 0.05 + 0.1 i ) + ( 0.15 + 0.2 i ) e1 + ( 0.25 + 0.3 i ) e2 + ( 0.35 + 0.4 i ) e3

                                        ( 0.2 , 0.3 )                                      ENTER
                                        ( 1.4 , 1.6 )                                      ENTER
     [ ( 0.05 , 0.1 ) ( 0.15 , 0.2 )  ( 0.25 , 0.3 ) ( 0.35 , 0.4 ) ]    IBFB   returns

      Bb(p,q) =  ( 0.781441740 - 1.586229591 i )  + ( 0.445532319 - 0.184816869 i ) e1
                                                                             + ( 0.680245068 - 0.323956902 i ) e2 + ( 0.914957817 - 0.463096934 i ) e3
 

Incomplete Gamma Function
 

Formula:      g(m,b) = ( bm / m ) exp(-b)  M(1,m+1;b)   where  M = Kummer's function
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             n             /
       Level 1             b         g(n,b)

Example:           n  = 2 + 3 i          b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                          ( 2 , 3 )                                      ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    IGFB   returns

     g(n,b) =  ( 0.316021539 - 0.294439241 i ) + ( 0.097233572 + 0.118344540 i ) e1
                                                                         + ( 0.161151936 + 0.176838797 i ) e2 + ( 0.225070299 + 0.235333054 i ) e3
 

Jacobi Functions
 

Formula:        Pm(a;b) (b) = [ Gam(a+m+1) / Gam(m+1) ]  2F~1 ( -m , a+b+m+1 , a+1 , (1-b)/2 )

     where  2F1 tilde is the regularized hypergeometric function
 
 
      STACK        INPUTS      OUTPUTS
       Level 4            a            /
       Level 3            b            /
       Level 2            m            /
       Level 1            B      Pm(a;b) (B)

Example:        a = 0.2 + 0.3 i  ,  b = 0.6 + 0.7 i  ,  m = 1.4 + 1.6 i    ,    B = ( 1.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                    ENTER
                                        ( 0.6 , 0.7 )                                    ENTER
                                        ( 1.4 , 1.6 )                                    ENTER
          [ ( 1.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    JCFB   returns

  Pm(a;b) (B) = ( -1.594720706 + 3.464906148 i ) + ( -1.081150683 - 0.614094387 i ) e1
                                                                              + ( -1.735722616 - 0.871495189 i ) e2 + ( -2.390294550 - 1.128895991 i ) e3
 

Laguerre's Functions
 

Formula:       Lm(a)(b) = [ Gam(m+a+1) / Gam(m+1) ]  1F~1 ( -n , a+1 , b )           m  # -1 , -2 , -3 , ....

   where  Gam = Gamma function
     and     1F~1 = Regularized Kummer's function
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             a            /
       Level 2             n            /
       Level 1             b        Ln(a)(b)

Example:           a = 0.2 + 0.3 i  ,  m = 1.4 + 1.6 i   ,       b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                  ENTER
                                        ( 1.4 , 1.6 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    LANB   returns

      Lm(a)(b) =  ( 2.195071129 + 1.392323348 i )  + ( 0.503589441 - 0.948842403 i ) e1
                                                                              + ( 0.709692136 - 1.520481304 i ) e2 + ( 0.915794831 - 2.092120204 i ) e3

Note:

-See also LANB
 

Lerch Transcendent Function
 

Formula:

         F( b , s , a ) = SUM k=0,1,2,....   bk / ( a + k )s        ( F is the greek letter "PHI" )

    where  s & a are complex numbers
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             s            /
       Level 2             a            /
       Level 1             b     F( b , s , a )

Example:              s = 3.1 + 3.2 i  ,  a = 1.2 + 1.4 i   ,      b = ( 0.05 + 0.1 i ) + ( 0.15 + 0.2 i ) e1 + ( 0.25 + 0.3 i ) e2 + ( 0.31 + 0.4 i ) e3

                                      ( 3.1 , 3.2 )                                    ENTER
                                      ( 1.2 , 1.4 )                                    ENTER
   [ ( 0.05 , 0.1 ) ( 0.15 , 0.2 ) ( 0.25 , 0.3 ) ( 0.35 , 0.4 ) ]   LERCHB  returns

      F( b , s , a ) =  ( -0.186440788 + 2.364004293 i )  + ( -0.058004148 + 0.054445111 i ) e1
                                                                                      + ( -0.086130862 + 0.089574705 i ) e2 + ( -0.114257576 + 0.124704299 i ) e3
 

Lommel Functions - 1st kind
 

Formula:              s(1)m,p(b)  = bm+1 / [ (m+1)2 - p21F2 ( 1 ; (m-p+3)/2 , (m+p+3)/2 ; -b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             m            /
       Level 2             p            /
       Level 1             b       s(1)m,p(b)

Example:            m = 0.2 + 0.3 i  ,  p = 1.4 + 1.6 i    ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                  ENTER
                                        ( 1.4 , 1.6 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    LOM1B   returns

      s(1)m,p(b)  =  ( 0.093585317 + 0.033014799 i )  + ( -0.071915563 + 0.063783295 i ) e1
                                                                                 + ( -0.107085614 + 0.105255185 i ) e2 + ( -0.142255666 + 0.146727075 i ) e3
 

Lommel Functions - 2nd kind
 

Formula:

    s(2)m,p(b)  = bm+1 / [ (m+1)2 - p21F2 ( 1 ; (m-p+3)/2 , (m+p+3)/2 ; b2/4 )
                      + 2m+p-1 Gam(p) Gam((m+p+1)/2) b -p / Gam((-m+p+1)/2) 0F1 ( ; 1-p ; -b2/4 )
                      + 2m-p-1 Gam(-p) Gam((m-p+1)/2) bp / Gam((-m-p+1)/2) 0F1 ( ; 1+p ; -b2/4 )

   where  pFq is the generalized hypergeometric function and Gam is the Euler Gamma function.
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             m            /
       Level 2             p            /
       Level 1             b       s(2)m,p(b)

Example:           m = 0.2 + 0.3 i  ,  p = 1.4 + 1.6 i    ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                  ENTER
                                        ( 1.4 , 1.6 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    LOM2B   returns

      s(2)m,p(b)  =  ( -1.431572990 - 2.691843964 i )  + ( -1.074362126 + 0.548149519 i ) e1
                                                                                  + ( -1.632152954 + 0.941062220 i ) e2 + ( -2.189943783 + 1.333974920 i ) e3
 

Struve Function H
 

Formula:           Hm(b) = (b/2)m+1 1F~2( 1 ; 3/2 , m + 3/2 ; - b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             m            /
       Level 1             b         Hm(b)

Example:             m = 2 + 3.i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                          ( 2 , 3 )                                      ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    STRHB   returns

   H2+3.i (b) = ( 1.051041908 - 0.109956743 i ) + ( 0.017273464 + 0.374543488 i )  e1
                                                                          + ( 0.056910083 + 0.582905964 i ) e2 + ( 0.096546702 + 0.791268440 ) e3
 

Struve Function L
 

Formula:               Lm(b) = (b/2)m+1 1F~2( 1 ; 3/2 , m + 3/2 ;  b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2             m            /
       Level 1             b         Lm(b)

Example:               m = 2 + 3.i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                          ( 2 , 3 )                                      ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    STRLB   returns

   L2+3.i (b) = ( 0.996410287 - 0.241120843 i ) + ( 0.064842485 + 0.357891440 i )  e1
                                                                          + ( 0.129785591 + 0.553123248 i ) e2 + ( 0.194728698 + 0.748355055 ) e3
 

Toronto Functions
 

Formula:              T(m,n;b) = exp(-b2) [ Gam((m+1)/2) ] b2n-m+11F~1( (m+1)/2 , n+1 , b2 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2            n            /
       Level 1             b      T(m,n;b)

Example:        m = 0.2 + 0.3 i   ,  n = 1.4 + 1.6 i   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                  ENTER
                                        ( 1.4 , 1.6 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    TORB   returns

      T(m,n;b) =  ( 2.358850039 - 5.982167484 i )  + ( 2.067337944 + 0.962846892 i ) e1
                                                                              + ( 3.302074944 + 1.336654116 i ) e2 + ( 4.536811945 + 1.710461340 i ) e3
 

UltraSpherical Functions
 

Formula:    Assuming  l # 0

          Cm(l)(b) = [ Gam(m+2l) / Gam(m+1) / Gam(2.l) ]  2F1( -m , m+2l , m+1/2 , (1-b)/2 )

                     where  2F1 is the hypergeometric function and Gam = Gamma function
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            l            /
       Level 2            m            /
       Level 1            b       Cm(l)(b)

Example:        l = 0.2 + 0.3 i   ,  m = 1.4 + 1.6 i   ,    b = ( 1.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                  ENTER
                                        ( 1.4 , 1.6 )                                  ENTER
         [ ( 1.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    USFB   returns

     Cm(l)(b) =  ( -1.082467434 + 0.708001466 i )  + ( -0.196556330 - 0.294814041 i ) e1
                                                                                + ( -0.330212998 - 0.444185397 i ) e2 + ( -0.463869665 - 0.593556753 i ) e3

Note:

-See also  USPB
 

Whittaker's M-Functions
 

Formula:

      Mq,p(b) = exp(-b/2)  bp+1/2  M( p-q+1/2 , 1+2p , b )               where  M = Kummer's function
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             q            /
       Level 2             p            /
       Level 1             b       Mq,p(b)

Example:           q = 0.2 + 0.3 i  ,  p = 1.4 + 1.6 i    ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                  ENTER
                                        ( 1.4 , 1.6 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    WHIMB   returns

      Mq,p(b) = ( 1.697417276 - 1.038735336 i )  + ( 0.312886026 + 0.617812024 i ) e1
                                                                            + ( 0.537527163 + 0.938755876 i ) e2 + ( 0.762168300 + 1.259699728 i ) e3
 

Whittaker's W-Functions
 

Formula:

      Wq,p(b) = [ Gam(2p) / Gam(p-q+1/2) ]  Mq,-p(b) + [ Gam(-2p) / Gam(-p-q+1/2) ]  Mq,p(b)  assuming  2p is not an integer.

      where  Mq,p(b)  =  Whittaker's M-function above.
 
 
      STACK        INPUTS      OUTPUTS
       Level 3             q            /
       Level 2             p            /
       Level 1             b       Wq,p(b)

Example:           q = 0.2 + 0.3 i  ,  p = 1.4 + 1.6 i    ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                        ( 0.2 , 0.3 )                                  ENTER
                                        ( 1.4 , 1.6 )                                  ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    WHIWB   returns

      Wq,p(b) = ( 7.064436821 + 2.782608807 i )  + ( 1.108472804 - 2.517738277 i ) e1
                                                                             + ( 1.527798512 - 4.016349537 i ) e2 + ( 1.947124221 - 5.514960797 i ) e3
 

Fractional Integro-Differentiation (FID)
 
 

      (FID) Exponential
 

Formula:                Dµ Exp b = b 1F~1 ( 1 ; 1-µ ; b )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b      Dµ Exp b

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DEXPB   returns

   Dµ Exp b =  ( -206.0578281 - 113.9610513 i ) + ( -44.71994312 + 70.62720219 i ) e1
                                                                             + ( -64.11293509 + 113.7560309 i ) e2 + ( -83.50592706 + 156.8848596 i ) e3
 

     (FID) Logarithm
 

Formulae:              Dµ Ln b = b FC(µ)log (b)

        where     FC(µ)log (b) = (-1)µ-1 (µ-1) !                                              if  µ is a positive integer
          and       FC(µ)log (b) = [ Ln b - Psi(1-µ) - gamma ] / Gam(1-µ)        otherwise

      Psi = Digamma Function , gamma = Euler's constant = 0.577215664901...  and  Gam = Gamma Function.
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b       Dµ Ln b

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DLNB   returns

       Dµ Ln b  = ( 859.0935890 - 587.9181288 i ) + ( -190.2120867 - 316.4051619 i ) e1
                                                                             + ( -322.0432682 - 478.3750856 i ) e2 + ( -453.8744497 - 640.34500927 i ) e3

Note:

-Likewise,   with µ = 3 ,   D3 Ln b = ( 0.233801703 + 0.211686544 i ) + ( -0.191588820 - 0.110389215 i ) e1
                                                                                                            + ( -0.307709696 - 0.156880070 i ) e2 + ( -0.423830572 - 0.203370925 i ) e3
 

     (FID) Complex Power
 

Formula:             Dµ bz  = [ z ! / Gam(z-µ+1) ] bz-µ           assuming  z # -1 , -2 , -3 , .....
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2             b            /
       Level 1             z         Dµ bz

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3   ,   z = 1.4 + 1.6 i

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    ENTER
                                       ( 1.4 , 1.6 )                                   DB­X   returns

         Dµ bz =  ( 0.497693400 + 0.217073384 i ) + ( 0.084362474 - 0.160789881 i ) e1
                                                                             + ( 0.118742269 - 0.257581212 i ) e2 + ( 0.153122063 - 0.354372543 i ) e3
 

     (FID) Hyperbolic Sine
 

Formula:           Dµ Sinh b = 2µ-1 sqrt(PI) b1-µ1F~2 ( 1 ; (2-µ)/2 , (3-µ)/2 ; b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b       Dµ Sinh b

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DSHB   returns

         Dµ Sinh b  =  ( 94.46345493 + 13.00295518 i ) + ( 6.540750036 - 33.16801912 i ) e1
                                                                                    + ( 7.550128527 - 52.26536984 i ) e2 + ( 8.559507017 - 71.36272055 i ) e3
 

      (FID) Hyperbolic Cosine
 

Formula:              Dµ Cosh b = (2/b)µ sqrt(PI)  1F~2 ( 1 ; (1-µ)/2 , (2-µ)/2 ; b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b     Dµ Cosh b

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DCHB   returns

         Dµ Cosh b  =  ( -300.52128302 - 126.9640065 i ) + ( -51.26069332 + 103.7952213 i ) e1
                                                                                      + ( -71.66306362 + 166.0214007 i ) e2 + ( -92.06543408 + 228.24758010 i ) e3
 

     (FID) Sine
 

Formula:                        Dµ Sin b = 2µ-1 sqrt(PI) b1-µ1F~2 ( 1 ; (2-µ)/2 , (3-µ)/2 ; -b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b       Dµ Sin b

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DSINB   returns

        Dµ Sin b  =  ( 86.10292846 + 18.96360900 i ) + ( 8.479611306 - 30.08538283 i ) e1
                                                                                 + ( 10.82136301 - 47.61156612 i ) e2 + ( 13.16311472 - 65.13774940 i ) e3
 

     (FID) Cosine
 

Formula:                  Dµ Cos b = (2/b)µ sqrt(PI)  1F~2 ( 1 ; (1-µ)/2 , (2-µ)/2 ; -b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1             b       Dµ Cos b

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DCOSB   returns

         Dµ Cos b = ( -254.7189012 - 135.6609115 i ) + ( -53.38061174 + 87.39494685 i ) e1
                                                                                  + ( -76.28215856 + 140.6065660 i ) e2 + ( -99.18370538 + 193.8181852 i ) e3
 

      (FID) Airy functions
 

Formulae:

     Dµ Ai(b) = 3µ-4/3 b  { 32/3 Gam(1/3) 2F~3 [ 1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; b3/9 ] - b Gam(2/3) 2F~3 [ 2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; b3/9 ] }

     Dµ Bi(b) = 3µ-5/6 b  { 32/3 Gam(1/3) 2F~3 [ 1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; b3/9 ] + b Gam(2/3) 2F~3 [ 2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; b3/9 ] }
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m       Dµ Ai b
       Level 1             b       Dµ Bi b

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DAIRYB   returns

      Dµ Ai(b) = ( -120.0272086 - 52.59871418 i ) + ( -21.13210737 + 41.41275684 i ) e1
                                                                              + ( -29.65306695 + 66.29446926 i ) e2 + ( -38.17402653 + 91.17618168 i ) e3

in level 2 and in level 1:

      Dµ Bi(b) = ( -127.7699689 - 75.03970333 i ) + ( -29.27191693 + 43.70059981 i ) e1
                                                                              + ( -42.16814243 + 70.51468906 i ) e2 + ( -55.06436793 + 97.32877831 i ) e3
 

      (FID) Fresnel Sine Integral
 

Formula:

      Dµ S(b) = 22µ-11/2 PI5/2 b3-µ3F~4 [ 3/4 , 1 , 5/4 ; (4-µ)/4 , (5-µ)/4 , (6-µ)/4 , (6-µ)/4 ; -(PI)2 b4/16 ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ S(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DSB   returns

      Dµ S(b) = ( 14.88193368 - 8.573304423 i ) + ( -2.729648823 - 5.445395137 i ) e1
                                                                           + ( -4.693883775 - 8.276444508 i ) e2 + ( -6.658118727 - 11.10749388 i ) e3
 

     (FID) Fresnel Cosine Integral
 

Formula:

      Dµ C(b) = 22µ-3/2 PI3/2 b1-µ3F~4 [ 1/4 , 3/4 , 1 ; (2-µ)/4 , (3-µ)/4 , (4-µ)/4 , (5-µ)/4 ; -(PI)2 b4/16 ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ C(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DCB   returns

      Dµ C(b) = ( 90.17195800 + 21.68847860 i ) + ( 9.528403546 - 31.46967562 i ) e1
                                                                             + ( 12.34673548 - 49.85496625 i ) e2 + ( 15.16506742 - 68.24025687 i ) e3
 

      (FID) Error function
 

Formula:            Dµ Erf (b) = 2µ b1-µ2F~2 [ 1/2 , 1 ; (2-µ)/2 , (3-µ)/2 ; -b2 ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ Erf(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DERFB   returns

      Dµ Erf (b) = ( 92.69786384 + 22.88014402 i ) + ( 10.00128913 - 32.33865652 i ) e1
                                                                                + ( 13.01491852 - 51.24840731 i ) e2 + ( 16.02854791 - 70.15815809 i ) e3
 

      (FID) Hermite functions
 

Formula:
 

          Dµ Hm (b) = [ 2m+µ (PI) b / Gam((1-m)/2) ] 2F~2 [ 1 , -m/2 ; (1-µ)/2 , (2-µ)/2 ; b2 ]
                           - [ 2m+µ (PI) b1-µ / Gam((-m)/2) ] 2F~2 [ 1 , (1-m)/2 ; 1-µ/2 , (3-µ)/2 ; b2 ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2            n            /
       Level 1            b       Dµ Hn (b)

Example:            m = -3.14 + 2.718 i     ,     n = 1.4 + 1.6 i   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
                                       ( 1.4 , 1.6 )                                   ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DHMTB   returns

      Dµ Hn (b) = ( -161.6892429 + 1659.074706 i ) + ( 583.8677499 + 91.94274493 i ) e1
                                                                                 + ( 918.1891095 + 96.72126210 i ) e2 + ( 1252.510469 + 101.4997793 i ) e3
 

      (FID) Bessel function of the 1st kind
 

Formula:

    Dµ Jm (b) = 2µ-2m sqrt(PI)  b-m-µ  Gam(m+1)  2F~3 [ (m+1)/2 , (m+2)/2 ; (m+1-µ)/2 , (m+2-µ)/2 , m+1 ; -b2/4 ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2            n            /
       Level 1            b       Dµ Jn (b)

Example:            m = -3.14 + 2.718 i     ,     n = 1.4 + 1.6 i   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
                                       ( 1.4 , 1.6 )                                   ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DJNB   returns

      Dµ Jn (b) = ( -0.081011034 - 0.280385817 i ) + ( -0.095601814 + 0.020153180 i ) e1
                                                                               + ( -0.147526575 + 0.039087106 i ) e2 + ( -0.199451336 + 0.058021032 i ) e3
 

      (FID) Modified Bessel function of the 1st kind
 

Formulae:

     Dµ Im (b) = 2µ-2m sqrt(PI) bm-µ  Gam(m+1)  2F~3 [ (m+1)/2 , (m+2)/2 ; (m+1-µ)/2 , (m+2-µ)/2 , m+1 ; b2/4 ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2            n            /
       Level 1            b       Dµ In (b)

Example:            m = -3.14 + 2.718 i     ,     n = 1.4 + 1.6 i   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
                                       ( 1.4 , 1.6 )                                   ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DINB   returns

      Dµ In (b) = ( -0.111691408 - 0.292384211 i ) + ( -0.100055670 + 0.030356977 i ) e1
                                                                               + ( -0.153658287 + 0.055361338 i ) e2 + ( -0.207260904 + 0.080365698 i ) e3
 

      (FID) Bessel function of the 2nd kind
 

Formulae:        Assuming  m  is not an integer,
 

     •   Dµ Ym (b) = 2µ-2m (PI)1/2  b-µ-m csc(m.PI) { -16m Gam(1-m)  2F~3 [ (1-m)/2 , (2-m)/2 ; (1-µ-m)/2 , (2-µ-m)/2 , 1-m ; -b2/4 ]

                          + b2m Cos(m.PI) Gam(m+1)  2F~3 [ (m+1)/2 , (m+2)/2 ; (m+1-µ)/2 , (m+2-µ)/2 , m+1 ; -b2/4 ] }
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2            n            /
       Level 1            b       Dµ Yn (b)

Example:            m = -3.14 + 2.718 i     ,     n = 1.4 + 1.6 i   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
                                       ( 1.4 , 1.6 )                                   ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DYNB   returns

      Dµ Yn (b) = ( -1892.715601 + 7911.974085 i ) + ( 2761.990235 + 834.1329921 i ) e1
                                                                                 + ( 4375.435405 + 1080.288249 i ) e2 + ( 5988.880576 + 1326.443506 i ) e3
 

      (FID) Modified Bessel function of the 2nd kind
 

Formulae:          Assuming  m  is not an integer,

       Dµ Km (b) = 2µ-2m-1 (PI)3/2  b-µ-m csc(m.PI) { 16m Gam(1-m)  2F~3 [ (1-m)/2 , (2-m)/2 ; (1-µ-m)/2 , (2-µ-m)/2 , 1-m ; b2/4 ]

                                 - b2m Gam(m+1)  2F~3 [ (m+1)/2 , (m+2)/2 ; (m+1-µ)/2 , (m+2-µ)/2 , m+1 ; b2/4 ] }
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2            n            /
       Level 1            b       Dµ Kn (b)

Example:            m = -3.14 + 2.718 i     ,     n = 1.4 + 1.6 i   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
                                       ( 1.4 , 1.6 )                                   ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DKNB   returns

      Dµ Kn (b) = ( 2353.469156 - 12981.08721 i ) + ( -4547.159627 - 1102.355609 i ) e1
                                                                               + ( -7181.757467 - 1355.901980 i ) e2 + ( -9816.355307 - 1609.448351 i ) e3
 

      (FID) Spherical Bessel function of the 1st kind
 

Formula:

       Dµ jm (b) = 2µ-2m-1 PI  bm-µ  Gam(m+1) 2F~3 [ (m+1)/2 , (m+2)/2 ; (m+1-µ)/2 , (m+2-µ)/2 , m+3/2 ; -b2/4 ]
 
 
      STACK        INPUTS      OUTPUTS
       Level 3            m            /
       Level 2            n            /
       Level 1            b       Dµ jn (b)

Example:            m = -3.14 + 2.718 i     ,     n = 1.4 + 1.6 i   ,    b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
                                       ( 1.4 , 1.6 )                                   ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DBS1B   returns

      Dµ jn (b) = ( -0.090245463 - 0.129873519 i ) + ( -0.045563143 + 0.026935641 i ) e1
                                                                               + ( -0.068923652 + 0.045664652 i ) e2 + ( -0.092284161 + 0.064393662 i ) e3
 

      (FID) Laguerre's functions
 

Formula:

    Dµ Lpq (b) = [ Gam(p+q+1)/Gam(q+1) ] b2F~2 ( 1 , -q ; p+1 , 1-µ ; b )
 
 
      STACK        INPUTS      OUTPUTS
       Level 4            m            /
       Level 3            p            /
       Level 2            q            /
       Level 1            b     Dµ Lpq (b)

Example:     m = -3.14 + 2.718 i   ,  p = 0.2 + 0.3 i   ,   q = 1.4 + 1.6 i   ,   b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
                                       ( 0.2 , 0.3 )                                   ENTER
                                       ( 1.4 , 1.6 )                                   ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DLANB   returns

         Dµ Lpq (b) = ( -225.3837161 - 483.3707173 i ) + ( -175.8661355 + 69.7831884 i ) e1
                                                                                    + ( -268.7685164 + 122.9310648 i ) e2 + ( -361.6708972 + 176.0789411 i ) e3
 

      (FID) Exponential Integral
 

Formulae:

   Dµ Ei b = [ (-1)µ-1 (µ-1) ! ] b + b1-µ  2F~2 ( 1 , 1 ; 2 , 2-µ ; b )       if µ is a positive integer

   Dµ Ei b = [ Ln b - Psi(1-µ) ] b + b1-µ  2F~2 ( 1 , 1 ; 2 , 2-µ ; b )     otherwise
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ Ei(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DEIB   returns

      Dµ Ei (b) = ( 779.2227189 - 646.7105078 i ) + ( -212.7491448 - 289.3230092 i ) e1
                                                                             + ( -355.0345066 - 434.3239628 i ) e2 + ( -497.3198685 - 579.3249163 i ) e3
 

      (FID) Sine Integral
 

Formula:

      Dµ Si b = 2µ-2  PI  b1-µ2F~3 ( 1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; -b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ Si(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DSIB   returns

      Dµ Si (b) = ( 88.89749069 + 17.11318152 i ) + ( 7.881811921 - 31.11285091 i ) e1
                                                                              + ( 9.806598523 - 49.16659237 i ) e2 + ( 11.73138513 - 67.22033384 i ) e3
 

      (FID) Hyperbolic Sine Integral
 

Formulae:

      Dµ Shi b = 2µ-2  PI  b1-µ2F~3 ( 1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; b2/4 )
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ Shi(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DSHIB   returns

      Dµ Shi (b) = ( 91.68566538 + 15.12680078 i ) + ( 7.235730882 - 32.14085789 i ) e1
                                                                                + ( 8.716471545 - 50.71859678 i ) e2 + ( 10.19721221 - 69.29633567 i ) e3
 

      (FID) Cosine Integral
 

Formulae:

        Dµ Ci b =  b [ (-1)µ-1 (µ-1) ! ]  - 2µ-3  sqrt(PI)  b2-µ2F~3 ( 1 , 1 ; 2 , (3-µ)/2 , (4-µ)/2 ; -b2/4 )       if  µ is a positive integer

        Dµ Ci b =  b [ Ln b - Psi(1-µ) ] / Gam( 1 - µ ) - 2µ-3  sqrt(PI)  b2-µ 2F~3 ( 1 , 1 ; 2 , (3-µ)/2 , (4-µ)/2 ; -b2/4 )       otherwise
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ Ci(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DCIB   returns

      Dµ Ci (b) = ( 710.4485603 - 666.1713704 i ) + ( -221.0395273 - 265.3856399 i ) e1
                                                                             + ( -366.0525137 - 396.3184360 i ) e2 + ( -511.0655002 - 527.2512321 i ) e3
 

      (FID) Hyperbolic Cosine Integral
 

Formulae:

          Dµ Chi b = b [ (-1)µ-1 (µ-1) ! ]  + 2µ-3  sqrt(PI)  b2-µ2F~3 ( 1 , 1 ; 2 , (3-µ)/2 , (4-µ)/2 ; b2/4 )       if  µ is a positive integer

          Dµ Chi b = b [ Ln b - Psi(1-µ) ] / Gam( 1 - µ ) + 2µ-3 sqrt(PI)  b2-µ  2F~3 ( 1 , 1 ; 2 , (3-µ)/2 , (4-µ)/2 ; b2/4 )      otherwise
 
 
      STACK        INPUTS      OUTPUTS
       Level 2            m            /
       Level 1            b       Dµ Chi(b)

Example:            m = -3.14 + 2.718 i     ,     b = ( 0.1 + 0.2 i ) + ( 0.3 + 0.4 i ) e1 + ( 0.5 + 0.6 i ) e2 + ( 0.7 + 0.8 i ) e3

                                    ( -3.14 , 2.718 )                              ENTER
         [ ( 0.1 , 0.2 ) ( 0.3 , 0.4 )  ( 0.5 , 0.6 ) ( 0.7 , 0.8 ) ]    DCHIB   returns

      Dµ Chi (b) = ( 687.5370535 - 661.8373086 i ) + ( -219.9848757 - 257.1821513 i ) e1
                                                                               + ( -363.7509782 - 383.6053660 i ) e2 + ( -507.5170807 - 510.0285807 i ) e3
 
 

Remarks:

-The fractional-integro-differentiation of a complex or a bicomplex function is well defined.
-For biquaternions, bioctonions and so on, this is more doubtful:
-Even the 1st derivative of  b2 is not  2.b  because the multiplication is not commutative in general.
-So, these functions may be regarded as other special functions not always related to differentiation of special functions... except for bicomplex arguments !

-All these programs only deal with a few special functions, they might be completed by many others.
HGFB  may be used to calculate most of the special functions.
 
 

Reference:

-Most of the formulae come from:

[1]   http://functions.wolfram.com/