STACK | INPUT | OUTPUT |
Level 1 | x | Gamma(x) |
Example:
3.14 GAM -> 2.28448063382
Note:
-This program also works with complex numbers:
(1,2) GAM -> (.151904002671,1.98048801618E-2)
-So Gam ( 1+2.i ) = 0.151904002671 + 0.0198048801618 i
STACK | INPUT | OUTPUT |
Level 1 | x | Psi(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Psi(n)(x) |
Examples:
1 ENTER
3.14 PSIN -> .374464556478
( Trigamma )
STACK | INPUT | OUTPUT |
Level 1 | x | Zeta(x) |
Example:
-7.49 ZETA
-> Zeta(-7.49) = 3.31204016904 E-3
(1,2) ZETA ->
Zeta( 1+2i ) = 0.598165569763 - 0.351854745218 i
-Kummer's function M(a,b,x) is defined by
STACK | INPUTS | OUTPUTS |
Level 3 | a | / |
Level 2 | b | / |
Level 1 | x | M(a,b,x) |
Example: Compute M(2;3;-Pi)
2
3
PI CHS KUM yields
0.166374561777
KUM also works with complex numbers, for example:
KUM ( 2 , 3 ; 1+2i ) = 0.22245799696 + 1.80488317429
i
Notes:
a) 2x (Pi)-1/2 M(1/2;3/2;-x2)
= erf(x) = error function
b) (x/2)n
M(n+1/2;2n+1;2x) = Gamma(1+n) ex In(x)
where In = a modified
Bessel function
c) (xa/a)
M(a;a+1;-x) = incgam(a;x) = §0x e-t ta-1 dt
( incgam = incomplete gamma function )
-Kummer functions are in fact a special case of the hypergeometric functions
Formulas: F(a,b;c;x) = 1 +
(a)1(b)1/(c)1. x1/1!
+ ............. + (a)n(b)n/(c)n
. xn/n! + .......... where (a)n = a(a+1)(a+2)
...... (a+n-1) and | x |
< 1
-We also have the folowing properties:
c-a-b > 0 -> F(a;b;c;1) = Gam(c).Gam(c-a-b)/(Gam(c-a).Gam(c-b))
If x < 0 F(a,b,c,x) = ( 1 - x ) -a F(a,c-b,c,-x/(1-x))
If x > 1 F(a,b,c,x) = [ Gam(c) Gam(b-a) / Gam(b) / Gam(c-a) ] (-x) -a F(a,1+a-c,1+a-b,1/x)
STACK | INPUTS | OUTPUTS |
Level 4 | a | / |
Level 3 | b | / |
Level 2 | c | / |
Level 1 | x | F(a,b;c;x) |
Examples: Calculate
F(0.3 , -0.7 ; 0.4 ; 0.49)
0.3 ENTER
-0.7 ENTER
0.4 ENTER
0.49 HGF
-> F(0.3 , -0.7 ; 0.4
; 0.49) = 0.720164355556
-Likewise, we find:
Note:
HGF also works with complex arguments
Formula:
STACK | INPUTS | OUTPUTS |
Level 4 | a | / |
Level 3 | b | / |
Level 2 | c | / |
Level 1 | x | F~( a , b ; c ; x ) |
Examples: Calculate F~(0.3
, -0.7 ; 0.4 ; 0.49)
0.3 ENTER
-0.7 ENTER
0.4 ENTER
0.49 RHGF
-> F~(0.3 , -0.7
; 0.4 ; 0.49) = 0.324667518882
it's simply F(0.3
, -0.7 ; 0.4 ; 0.49) / Gamma ( 0.4
)
-Likewise, F~(0.3 , -0.7
; -2 ; 0.49) = -0.0168034752793
8°) Hypergeometric Function U
U(a,b;x) = [ Gam(b-1) / Gam(a) ] x1-b 1F1(a-b+1;2-b;x)
+ [ Gam(1-b) / Gam(a-b+1) ] 1F1(a;b;x)
if b is not an integer
U(a;n;x) = [(-1)n/Gam(a-n+1)] [ Ln(x) / (n-1) !
1F1(a;n;x) + Sumk=0,1,.....
{ (a)k ( Psi(a+k) - Psi(k+1) - Psi(k+n) ) xk
/ (k+n-1)! / k! } - Sumk=1,...,n-1 { (k-1)! x-k
/ (1-a)k /(n-k-1)! } ] if b = n = positive
integer
U(a;1-n;x) = xn U(a+n;1+n;x)
U(a,a+n;x) = x-a SUMk=0,.....,n-1 Comb(n-1;n-k-1) (a)k x-k if n is a positive integerSTACK | INPUTS | OUTPUTS |
Level 3 | a | / |
Level 2 | b | / |
Level 1 | x | / |
Examples:
U(1.2;2.3;3.4) = 0.23681859297
U(1.2;3;1/Pi) = 13.303479155
9°) Generalized Hypergeometric Functions
-The definition of F(a,b,c;x) may be generalized as follows: given 2 non-negative integers m & p ( at least one of them positive )
mFp( a1,a2,....,am ; b1,b2,....,bp ; x ) = SUMk=0,1,2,..... [(a1)k(a2)k.....(am)k] / [(b1)k(b2)k.....(bp)k] . xk/k!
where (ai)k = ai(ai+1)(ai+2) ...... (ai+k-1) & (ai)0 = 1 , likewise for (bj)k-The regularized generalized hypergeometric function F tilde is defined by
mF~p( a1,a2,....,am ; b1,b2,....,bp ; x ) = SUMk=0,1,2,..... [ (a1)k(a2)k.....(am)k ] / [Gam(k+b1) Gam(k+b2).....Gam(k+bp)] . xk/k!
-If no bj is a negative integer, we simply divide F by the product Gam(b1) Gam(b2).....Gam(bp)STACK | INPUTS | OUTPUTS |
........... |
a1 |
/ |
........... |
.......... |
/ |
........... |
am |
/ |
............ |
b1 |
/ |
............ |
......... |
/ |
Level 4 | bp | / |
Level 3 | m | / |
Level 2 | +/-p | / |
Level 1 | x | / |
Example1: 3F4(
1 , 4 , 7 ; 2 , 3 , 6 , 5 ; Pi ) =
?
1 ENTER
4 ENTER
7 ENTER
2 ENTER
3 ENTER
6 ENTER
5 ENTER
3 ENTER
4 ENTER
Pi GHGF
-> 3F4( 1 , 4 , 7
; 2 , 3 , 6 , 5 ; Pi ) = 1.63101964329
1 ENTER
4 ENTER
7 ENTER
2 ENTER
3 ENTER
6 ENTER
5 ENTER
3 ENTER
-4 ENTER
Pi GHGF
-> 3F~4( 1
, 4 , 7 ; 2 , 3 , 6 , 5 ; Pi ) = 0.000283163132516
Notes:
-If m = p = 0 GHGF returns exp(x)
-The Appell hypergeometric function F1 is defined by:
F1( a , b , b' , c ; x , y ) = Summ,n=0 to infinity [ (a)m+n (b)m (b')n / (c)m+n ] ( xm / m! ) ( yn /n! )
where (a)k = a(a+1)(a+2).....(a+k-1) if k > 0 and (a)0 = 1 ( Pochhammer symbol )STACK | INPUTS | OUTPUTS |
Level 6 |
a |
/ |
Level 5 |
b |
/ |
Level 4 | b' | / |
Level 3 | c | / |
Level 2 | x | / |
Level 1 | y | F1(a,b,b',c;x,y) |
Example:
2 ENTER
3 ENTER
4 ENTER
7 ENTER
0.1 ENTER
0.2 APL1 ->
F1( 2 , 3 , 4 , 7 , 0.1 , 0.2
) = 1.40945520741
Note:
-The series is convergent if Max { | x | , | y | } < 1
-The Appell hypergeometric function F2 is defined
by:
STACK | INPUTS | OUTPUTS |
Level 7 |
a |
/ |
Level 6 |
b |
/ |
Level 5 |
b' |
/ |
Level 4 | c | / |
Level 3 | c' | / |
Level 2 | x | / |
Level 1 | y | F2(a,b,b',c,c';x,y) |
Note:
-The series is convergent if | x | + | y | < 1
-The Appell hypergeometric function F3 is defined
by:
STACK | INPUTS | OUTPUTS |
Level 7 |
a |
/ |
Level 6 |
a' |
/ |
Level 5 |
b |
/ |
Level 4 | b' | / |
Level 3 | c | / |
Level 2 | x | / |
Level 1 | y | F3(a,b,b',c,c';x,y) |
Note:
-The Appell hypergeometric function F4 is defined
by:
STACK | INPUTS | OUTPUTS |
Level 6 |
a |
/ |
Level 5 |
b |
/ |
Level 4 | c | / |
Level 3 | c' | / |
Level 2 | x | / |
Level 1 | y | F1(a,b,b',c;x,y) |
Notes:
-The series is convergent if | x |1/2 + | y |1/2 < 1
-All these double series are special cases of "Kampé de Fériet" functions and may be computed by KdF
-In KAMP sub-directory, we have KdF functions
-Kampé de Fériet function is the generalized hypergeometric
function of 2 variables.
-Given 6 non-negative integers: A , B , C , P , Q ,
S , it is defined by the double series:
A B
C / a1 ,........, aA
; b1 ,........, bB ; c1 ,........,
cC ;
\
FP Q S
|
x , y | =
SUMm=0,1,2,... SUMn=0,1,2,..
Km,n xm yn / ( m! n! )
\ p1 ,........, pP ;
q1 ,........, qQ ; s1 ,........,
sS ;
/
where Km,n
= [ (a1)m+n ......... (aA)m+n
(b1)m ......... (bB)m
(c1)n ......... (cC)n ]
/ [ (p1)m+n ......... (pP)m+n
(q1)m ......... (qQ)m
(s1)n ......... (sS)n ]
STACK | INPUTS | OUTPUTS |
Level 2 | x | / |
Level 1 | y | KdF(x,y) |
Example:
A = 2 B = 3 C = 2
a1 = 1.2 a2 = 2.3
, b1 = 1.1 b2
= 0.7 b3 = 1.4 ,
c1 = 1.6 c2 = 1.5
P = 3 Q = 2 S = 4 p1 = 2 p2 = 3 p3 = 4 , q1 = 5 q2 = 6 , s1 = 7 s2 = 8 s3 = 9 s4 = 10.1
-Calculate F(5,7)
1°) Store the 6 constants A , B , C , P , Q , S in the
corresponding variables
2°) Store the 16 other constants as a vector in'V'
variables
3°)
5 ENTER
7 KdF ->
F(5;7) = 1.02246670867
Note:
-This program doesn't check if the series is convergent ( press ON to stop the loops if they are infinte... or too slow ! )
12°) Lauricella Functions
a) Lauricella
Function FA
-This function is defined by
FA( a ; b1 , b2 , b3 ; c1 , c2 , c3 ; x , y , z ) = SUMm,n,p=0 to infinity (a)m+n+p (b1)m (b2)n (b3)p / ((c1)m (c2)n (c3)p) xmynzp / (m! n! p!)
where (a)k = a(a+1)(a+2) ....... (a+k-1) if k > 0 and (a)0 = 1 ( Pochhammer symbol )
STACK | INPUTS | OUTPUTS |
Level 10 |
a |
/ |
Level 9 |
b1 |
/ |
Level 8 |
b2 |
/ |
Level 7 |
b3 |
/ |
Level 6 |
c1 |
/ |
Level 5 |
c2 |
/ |
Level 4 | c3 | / |
Level 3 | x | / |
Level 2 | y | / |
Level 1 | z | FA(x,y,z) |
Notes:
-With an HP48GX, execution time = 16 seconds
-This function is defined by
STACK | INPUTS | OUTPUTS |
Level 10 |
a1 |
/ |
Level 9 |
a2 |
/ |
Level 8 |
a3 |
/ |
Level 7 |
b1 |
/ |
Level 6 |
b2 |
/ |
Level 5 |
b3 |
/ |
Level 4 | c | / |
Level 3 | x | / |
Level 2 | y | / |
Level 1 | z | FB(x,y,z) |
0.1 ENTER
0.2 ENTER
0.3 ENTER
0.4 ENTER
0.5 ENTER
0.6 ENTER
2.7 ENTER
0.41 ENTER
0.42 ENTER
0.43 LCFB ->
FB( 0.41 , 0.42 , 0.43
) = 1.05774803114
Note:
-The series is convergent if Max { | x | , | y | , | z | } < 1-This function is defined by
FC( a ; b ; c1 , c2 , c3 ; x , y , z ) = SUMm,n,p=0 to infinity (a)m+n+p (b)m+n+p / ( (c1)m(c2)n(c3)p ) xmynzp / (m! n! p!)STACK | INPUTS | OUTPUTS |
Level 8 |
a |
/ |
Level 7 |
b |
/ |
Level 6 |
c1 |
/ |
Level 5 |
c2 |
/ |
Level 4 | c3 | / |
Level 3 | x | / |
Level 2 | y | / |
Level 1 | z | FC(x,y,z) |
Note:
-This function is defined by
FD( a ; b1 , b2 , b3 ; c ; x , y , z ) = SUMm,n,p=0 to infinity (a)m+n+p (b1)m (b2)n (b3)p / (c)m+n+p xmynzp / (m! n! p!)STACK | INPUTS | OUTPUTS |
Level 8 |
a |
/ |
Level 7 |
b1 |
/ |
Level 6 |
b2 |
/ |
Level 5 |
b3 |
/ |
Level 4 | c | / |
Level 3 | x | / |
Level 2 | y | / |
Level 1 | z | FD(x,y,z) |
Notes:
-The series is convergent if Max { | x | , | y | , |
z | } < 1
-All these triple series are special cases of a generalized
hypergeometric series of 3 variables: Srivastava functions
-Srivastava's Functions generalize the hypergeometric functions of 3 variables x , y , z.
-Given 14 non-negative integers A B C D E F G H I J K L M N and
A numbers a1 ..... aA B
numbers b1 ..... bB C numbers
c1 ... cC D numbers d1
.... dD E numbers e1 .... eE
F numbers f1 .... fF
G numbers g1....gG
H numbers h1 ..... hH
I numbers i1 ..... iI
J numbers j1 ... jJ
K numbers k1 .... kK L numbers
l1 .... lL M numbers m1
... mM N numbers n1 ... nN
the following program computes
F AHBICJDKELFMGN(a1 ... aA ;h1 ... hH ; b1 ... bB ;i1 ... iI ; c1 ... cC ;j1 ... jJ ; d1 ... dD ;k1 ... kK ; e1 ... eE ;l1 ...lL ; f1 ... fF ;m1 ... mM ; g1... gG ;n1 ... nN ; x , y , z )
= SUMp,q,r=0 to infinity up,q,r xp yq zr / ( p! q! r! )
where up,q,r = [ (a1)p+q+r
...... (aA)p+q+r (b1)p+q
...... (bB)p+q (c1)q+r
...... (cC)q+r (d1)p+r ......
(dD)p+r (e1)p ...... (eE)p
(f1)q ...... (fF)q
(g1)r ...... (gG)r ] /
[ (h1)p+q+r ...... (hH)p+q+r
(i1)p+q ...... (iI)p+q
(j1)q+r ...... (jJ)q+r
(k1)p+r ...... (kK)p+r
(l1)p ...... (lL)p
(m1)q ...... (mM)q (n1)r
...... (nN)r ]
and (t)n = Pochhammer's symbol:
(t)0 = 1STACK | INPUTS | OUTPUTS |
Level 3 | x | / |
Level 2 | y | / |
Level 1 | z | F(x,y,z) |
a1 =
sqrt(2) b1 = sqrt(3) c1
= sqrt(5) d1 = sqrt(6) e1
= sqrt(7) f1 = sqrt(8)
g1 = sqrt(10)
h1
= sqrt(11) i1 = sqrt(12) j1 = sqrt(13)
k1 = sqrt(14) l1 = sqrt(15) m1
= sqrt(17) n1 = sqrt(18) n2
= sqrt(19)
and x = 0.1 y = 0.2
z = 0.3
1°) Store 1 in all the 14 variables 'A' 'B' .......
'N'
2°) Place the 15 constants sqrt(2) sqrt(3)
..... sqrt(19) in the stack & 15 ->ARRY
and store this vector in 'V' variable
3°)
Notes:
-With an HP48GX, execution time = 37 seconds in the example above
-This program does not check if the series is convergent
or not.
STACK | INPUTS | OUTPUTS |
Level 3 | m | / |
Level 2 | n | / |
Level 1 | x | Pnm(x ) or Qnm(x) |
Examples:
1.2 ENTER
2.3 ENTER
0.7 ALF1 ->
P2.31.2(0.7) = -1.87245992968
-If the m & n-values are integers, with 0
<= m <= n we can use the following formulae, employed
by PMN:
Pmm(x)
= (-1)m (2m-1)!! ( 1-x2 )m/2
if | x | < 1
where (2m-1)!! = (2m-1)(2m-3)(2m-5).......5.3.1
Pmm(x) = (2m-1)!! ( x2-1
)m/2 if | x |
> 1
-We also have the relations used by PQMN
Pnm(x) = ( x2-1
)m/2 dmPn(x)/dxm
if | x | > 1
Pnm(x) = (-1)m ( 1- x2
)m/2 dmPn(x)/dxm if
| x | < 1
Qnm(x)
= ( x2-1 )m/2 dmQn(x)/dxm
if | x | > 1
Qnm(x) = (-1)m ( 1- x2
)m/2 dmQn(x)/dxm
if | x | < 1
-if m = 0 Pnm(x) = Pn(x)
= Legendre polynomials
and
Qnm(x) = Qn(x) with Q0(x)
= 0.5 Ln | (1+x)/(1-x) | ; Q1(x) = x/2 Ln
| (1+x)/(1-x) | - 1 and n.Qn(x) = (2n-1).x.Qn-1(x)
- (n-1).Qn-2(x)
-We have employed the recurrence relations: Pnm+1(x) = | x2-1 |-1/2 [ (n-m).x. Pnm(x) - (n+m). Pn-1m(x) ] ( the same relation holds for Qnm(x) )
Important note:
-If | x | is significantly greater than 1 , Qnm(x) is obtained very inaccurately ( the recurrence relation is unstable in this case )STACK | INPUTS | OUTPUTS |
Level 3 | m | / |
Level 2 | n | Pnm(x ) |
Level 1 | x | Qnm(x) |
4 ENTER
7 ENTER
P74(0.6)
= 715.309056
0.6 PQMN yields
Q74(0.6) = -1011.1718046
-Similarly: P74(1.2)
= 6327.21196829 & Q74(1.2)
= 82.1210783385
JNX computes Bessel function of the 1st kind Jn(x)
= (x/2)n [ 1/Gam(n+1) + (-x2/4)1/
(1! Gam(n+2) ) + .... + (-x2/4)k/ (k! Gam(n+k+1)
) + .... ]
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Jn(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Yn(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | In(x) |
KNX calculates the modified Bessel function of the 2nd kind
Kn(x) = (pi/2) ( I-n(x) - In(x)
) / sin(n(pi))
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Kn(x) |
Formulae:
With p + i.q = -1/(2x) + i + (i/x) [ ( 0.52
- n2 )/( 2x + 2i + ( 1.52 - n2
)/( 2x + 4i + ..... ) ) ]
and gn =
-1/(((2n + 2)/x) - 1/(((2n + 4)/x) - ..... ))
STACK | INPUTS | OUTPUTS |
Level 2 | n | Jn(x) |
Level 1 | x | Yn(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | §0x Jn(t).dt |
STACK | INPUTS | OUTPUTS |
Level 2 | n > 0 | / |
Level 1 | x | jn(x) |
-Spherical Bessel functions of the second kind are defined by
yn(x) = (Pi/(2x))1/2 Yn+1/2(x)
where n is an integer
-We also have::
yn+1(x) =
yn(x) (2n+1)/x - yn-1(x)
STACK | INPUTS | OUTPUTS |
Level 2 | n > 0 | / |
Level 1 | x | yn(x) |
bern(x) = (x/2)n Sumk=0,1,2,...... cos ((3n/4+k/2)180°) (x2/4)k / ( k! Gam(n+k+1) ) where Gam = Euler's Gamma function
bein(x) = (x/2)n Sumk=0,1,2,...... sin ((3n/4+k/2)180°) (x2/4)k / ( k! Gam(n+k+1) )STACK | INPUTS | OUTPUTS |
Level 2 | n | bern(x) |
Level 1 | x | bein(x) |
kern(x) = - (PI/2) [ bein(x) - (ber-n(x)/sin(n.180°)) + (bern(x)/tan(n.180°)) ] ( cf reference [2] for other formulae if n is an integer )
kein(x) = (PI/2) [ bern(x) + (bei-n(x)/sin(n.180°)) - (bein(x)/tan(n.180°)) ]
STACK | INPUTS | OUTPUTS |
Level 2 | n | kern(x) |
Level 1 | x | kein(x) |
Note:
S1 & S2 are subroutines called by the Bessel function programs
STACK | INPUTS | OUTPUTS |
Level 2 | n >= 0 | / |
Level 1 | x | Ln(x) |
Note:
-Some authors divide Ln (x) by n! b) Generalized
Laguerre Polynomials & Functions
Formulae: L0(a)
(x) = 1 ; L1(a) (x) = a+1-x
; n.Ln(a) (x) = (2.n+a-1-x).Ln-1(a)
(x) - (n+a-1).Ln-2(a) (x)
STACK | INPUTS | OUTPUTS |
Level 3 |
a |
/ |
Level 2 | n >= 0 | / |
Level 1 | x | Lna(x) |
1.4 ENTER
7 ENTER
PI PANX ->
L7(1.4)(Pi) = 1.68889351366
-For a non integer n-value, we can use Ln(a)(x) = [ Gam(n+a+1) / Gam(n+1) / Gam(a+1) ] M(-n,a+1,x)
where Gam = Gamma function
STACK | INPUTS | OUTPUTS |
Level 3 |
a |
/ |
Level 2 | n | / |
Level 1 | x | Lna(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n >= 0 | / |
Level 1 | x | Pn(x) |
Formulae: P0(a;b) (x) = 1 ; P1(a;b) (x) = (a-b)/2 + x.(a+b+2)/2
2n(n+a+b)(2n+a+b-2).Pn(a;b)
(x) = [ (2n+a+b-1).(a2-b2) + x.(2n+a+b-2)(2n+a+b-1)(2n+a+b)
] Pn-1(a;b) (x)
- 2(n+a-1)(n+b-1)(2n+a+b) Pn-2(a;b) (x)
STACK | INPUTS | OUTPUTS |
Level 4 |
a |
/ |
Level 3 |
b |
/ |
Level 2 | n >= 0 | / |
Level 1 | x | Pn(a;b) (x) |
Note:
-The hypergeometric function also allows to evaluate Jacobi's functions even when n is not an integer:
Pn(a;b) (x) = [ Gam(a+n+1) / Gam(a+1) / Gam(n+1) ] F ( -n , a+b+n+1 , a+1 , (1-x)/2 )
STACK | INPUTS | OUTPUTS |
Level 4 |
a |
/ |
Level 3 |
b |
/ |
Level 2 | n | / |
Level 1 | x | Pn(a;b) (x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Pn(x) |
Note:
-With non-integer n-values, we have Hn(x) = 2n sqrt(PI) [ (1/Gam((1-n)/2)) M(-n/2,1/2,x2) - ( 2.x / Gam(-n/2) ) M((1-n)/2,3/2,x2) ]
where Gam = Gamma functionSTACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Pn(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n >= 0 | Tn(x) |
Level 1 | x | Un(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Tn(x) or Un(x) |
STACK | INPUTS | OUTPUTS |
Level 3 |
a |
/ |
Level 2 | n >= 0 | / |
Level 1 | x | Cn(a)(x) |
1.5 ENTER^
7 PI 1/X
USP -> C7(1.5)(1/Pi)
= -0.989046385317
Notes:
-If n is not an integer, Ultraspherical functions are defined as:
Cn(0)(x) = (2/n) Tn(x) where Tn(x) = Chebyshev function, first kind and if a#0:
STACK | INPUTS | OUTPUTS |
Level 3 |
a |
/ |
Level 2 | n | / |
Level 1 | x | Cn(a)(x) |
-The Weierstrass Elliptic Function P(x;g2;g3)
satisfies the differential equation: (P')2
= 4.P3 - g2.P - g3
-WEF calculates P(x;g2;g3)
by a Laurent series:
P(x;g2;g3) = x-2 + c2.x2 + c3.x4 + ...... + cn.x2n-2 + ....
where c2 = g2/20 ; c3 = g3/28 and cn = 3 ( c2. cn-2 + c3. cn-3 + ....... + cn-2. c2 ) / (( 2n+1 )( n-3 )) ( n > 3 )
STACK | INPUT | OUTPUT |
Level 1 | x | P(x;g2;g3) |
STACK | INPUTS | OUTPUTS |
Level 2 | P(x) | / |
Level 1 | n > 0 | P(2nx) |
-The Laurent series diverges for these arguments but 4.8 =
23* 0.6 and we have already found that P(0.6;0.9;1.4)
= 2.8005007841 , thus:
( without changing 'G2' & 'G3' )
2.8005007841 ENTER
3
DUPW ->
P(4.8;0.9;1.4) = 1.9547041716
b) Jacobian
Elliptic Functions
STACK | INPUTS | OUTPUTS |
Level 3 | / | sn ( u | m ) |
Level 2 | u | cn ( u | m ) |
Level 1 | m | dn ( u | m ) |
Examples:
1- Evaluate sn ( 0.7 | 0.3 )
cn ( 0.7 | 0.3 ) dn ( 0.7
| 0.3 )
sn ( 0.7 | 0.3 ) = 0.63230477631
0.3 ENTER
cn ( 0.7
| 0.3 ) = 0.774719736327
0.7 JEF
-> dn ( 0.7
| 0.3 ) = 0.938113639679
2-Likewise,
sn ( 0.7 | 1 ) = 0.604367777117
sn ( 0.7 | 2 ) = 0.564297007561
sn ( 0.7 | -3 ) = 0.759113420483
cn ( 0.7 | 1 ) = 0.796705459993
cn ( 0.7 | 2 ) = 0.825571854710
cn ( 0.7 | -3 ) = 0.650958381789
dn ( 0.7 | 1 ) = 0.796705459993
dn ( 0.7 | 2 ) = 0.602609139091
dn ( 0.7 | -3 ) =1.65189574594
Note:
JEF also works with complex numbers.
c)
Carlson Elliptic Integrals
STACK | INPUTS | OUTPUTS |
Level 2 | x | / |
Level 1 | y | RC(x;y) |
1 ENTER
3 RC
-> RC(1;3) = 0.675510858854
-Carlson has given a new definition of a standard elliptic integral of the first kind:
RF(x;y;z) = (1/2) §0infinity ( ( t + x ).( t + y ).( t + z ) ) -1/2 dt with x , y , z non-negative and at most one is zero
RF uses the following property:
RF(x;y;z) = RF((x+L)/4;(y+L)/4;(z+L)/4) where L = x1/2y1/2 + x1/2z1/2 + y1/2z1/2
-This transformation is performed until x , y , z are close enough to apply RF(x;y;z) = µ -1/2 with µ = (x+y+z)/3 ( we have RF(x;x;x) = x -1/2 )STACK | INPUTS | OUTPUTS |
Level
3 |
x |
/ |
Level 2 | y | / |
Level 1 | z | RF(x;y;z) |
-The elliptic integral of the third kind RJ is defined by
RJ(x;y;z;p) = (3/2) §0infinity ( t + p ) -1 ( ( t + x ).( t + y ).( t + z ) ) -1/2 dt with x , y , z non-negative and at most one is zero p > 0
-We have RJ(x,x,x,x) = x -3/2
RJ applies RJ(x;y;z;p) = 3 Sumn=0,1,2,....,k RF(an,bn,bn)/4n + 1/(4k+1µ 3/2)
where x0 = x , y0 = y , z0 = z , p0 = p ; xn+1 = ( xn+ Ln )/4 , yn+1 = ( yn+ Ln )/4 , zn+1 = ( zn + Ln )/4 , pn+1 = ( pn +Ln )/4
with Ln = xn1/2yn1/2
+ xn1/2zn1/2 + yn1/2zn1/2
an = ( pn( xn1/2 + yn1/2
+ zn1/2 ) + ( xnynzn
)1/2 )2 ; bn
= pn ( pn + Ln )2
and µ = (xk+1+yk+1+zk+1+2pk+1)/5
-The iterations stop when xn , yn , zn , pn are close enough to produce a good accuracy.STACK | INPUTS | OUTPUTS |
Level
4 |
x |
/ |
Level
3 |
y |
/ |
Level 2 | z | / |
Level 1 | p # 0 | RJ(x;y;z;p) |
1 ENTER
2 ENTER
3 ENTER
4 RJ
-> RJ(1;2;3;4) = 0.239848099749
1 ENTER
2 ENTER
3 ENTER
-4 RJ
>>>> RJ(1;2;3;-4) = -0.23786769473
Notes:
RJ also work if x , y , z are complex numbers if p > 0STACK | INPUTS | OUTPUTS |
Level
3 |
a |
/ |
Level 2 | b | / |
Level 1 | c | RF(a;b+i.c;b-i.c) |
STACK | INPUTS | OUTPUTS |
Level
4 |
a |
/ |
Level
3 |
b |
/ |
Level 2 | c | / |
Level 1 | p # 0 | RJ(a;b+i.c;b-i.c;p) |
-Carlson has also defined a symmetric Elliptic Integral of the second kind:
RG(x;y;z) = (1/4) §0infinity ( ( t + x ).( t + y ).( t + z ) ) -1/2 .( x/(t+x) + y/(t+y) + z/(t+z) ) t.dt
And we have: 2.RG(x;y;z) = z.RF(x;y;z) - (x-z)(y-z)/3 RD(x;y;z) + ( x.y/z )1/2
STACK | INPUTS | OUTPUTS |
Level
3 |
x |
/ |
Level 2 | y | / |
Level 1 | z | RG(x;y;z) |
STACK | INPUTS | OUTPUTS |
Level
3 |
a |
/ |
Level 2 | b | / |
Level 1 | c | Area |
STACK | INPUTS | OUTPUTS |
Level 2 | / | Ai(x) |
Level 1 | x | Bi(x) |
Formulae:
Jn(x) = + (x/2) sin ( 90°n )
1F2( 1 ; (3-n)/2 , (3+n)/2 ; -x2/4
) / Gam((3-n)/2) / Gam ((3+n)/2) ( Anger )
+ cos ( 90°n ) 1F2( 1 ; (2-n)/2 , (2+n)/2
; -x2/4 ) / Gam((2-n)/2) / Gam ((2+n)/2)
STACK | INPUTS | OUTPUTS |
Level 2 | n | Jn(x) |
Level 1 | x | En(x) |
STACK | INPUT | OUTPUT |
Level 1 | x | F(x) |
-We have En(x) = §1+infinity
t -n e -x.t dt
( x > 0 ; n = a positive integer )
En(x) = (-x)n-1 ( -Ln x - gamma + Sumk=1,...,n-1 1/k ) / (n-1)! - Sumk#n-1 (-x)k / (k-n+1) / k! where gamma = Euler's Constant = 0.5772156649...
-It may also be computed by a continued fraction
En(x) = exp (-x) ( 1/(x+n-1.n/(x+n+2-2(n+1)/(x+n+4- .... ))) )
-We also have: E0(x) = (1/x).exp(-x) and En(0) = 1/(n-1) if n > 1STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | En(x) |
0 ENTER
1.4 ENX
-> E0(1.4) = 0.17614068853
2 ENTER
1.4 ENX
-> E2(1.4) = 0.0838899263411
STACK | INPUTS | OUTPUTS |
Level 1 | x | Ei(x) |
Note:
Logarithmic Integral = Li(x) = Ei(Ln(x)) ( x > 1 )STACK | INPUTS | OUTPUTS |
Level 1 | x | Ci(x) or Si(x) |
Example:
1.4 SI -> Si(1.4) = 1.25622673278STACK | INPUTS | OUTPUTS |
Level
3 |
/ |
Si(x) - Pi/2 |
Level
2 |
/ |
Ci(x) |
Level 1 | x | Si(x) |
Examples:
Si(3)-pi/2
= 0.27785620121
Ci(3) = 0.119629786002
3 CISI -> Si(3)
= 1.84865252801
Si(100)-pi/2
= -0.00857085990583
Ci(100) = -0.0051488251426
100 CISI -> Si(100) =
1.56222546689
Note: x must be a real number
STACK | INPUTS | OUTPUTS |
Level 1 | x | Ci(x) or Si(x) |
Example:
1.4 SHI -> Shi(1.4) = 1.56171338837-Catalan numbers may be generalized to real ( or even complex ) arguments via the formula:
Cx = 4x Gam(x+1/2) / [ sqrt(PI) Gam(x+2) ]STACK | INPUTS | OUTPUTS |
Level 1 | x | Cx |
Example:
PI CAT -> CPI = 5.75308575086-Fresnel integrals are defined by: S(x) = §0x sin(pi.t2/2).dt and C(x) = §0x cos(pi.t2/2).dt
Formulae:
S(x) = SUMn=0,1,2,..... (-1)n (pi/2)2n+1 x4n+3 / ((2n+1)!(4n+3))
C(x) = SUMn=0,1,2,..... (-1)n (pi/2)2n x4n+1 / ((2n)!(4n+1))C(x) + i.S(x) = ((1+i)/2) erf z with z = (1-i).(x/2).(pi)1/2
and ( 1 - erf z ) exp z2 = (pi) -1/2 ( 1/(z+0.5/(z+1/(z+1.5/(z+2/(z+ .... ))))) )STACK | INPUTS | OUTPUTS |
Level 2 | / | C(x) |
Level 1 | x | S(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | x | / |
Level 1 | n | db(x;n) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Dn(x) |
STACK | INPUT | OUTPUT |
Level 1 | x | erf(x) |
Example:
2 ERF -> erf (2) = 0.995322265031STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Fn(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Hn(x) or Ln(x) |
-"LOM1" & "LOM2" calculate the Lommel functions of the 1st & 2nd
kind.
-They use the formulae:
s(1)m,n(x) = xm+1 / [ (m+1)2 - n2 ] 1F2 ( 1 ; (m-n+3)/2 , (m+n+3)/2 ; -x2/4 )
s(2)m,n(x) = xm+1
/ [ (m+1)2 - n2 ] 1F2
( 1 ; (m-n+3)/2 , (m+n+3)/2 ; x2/4 )
+ 2m+n-1 Gam(n) Gam((m+n+1)/2) x -n / Gam((-m+n+1)/2)
0F1 ( ; 1-n ; -x2/4 )
+ 2m-n-1 Gam(-n) Gam((m-n+1)/2) xn / Gam((-m-n+1)/2)
0F1 ( ; 1+n ; -x2/4 )
STACK | INPUTS | OUTPUTS |
Level
3 |
m |
/ |
Level 2 | n | / |
Level 1 | x | s(1)m,n(x) or s(2)m,n(x) |
2 SQRT
3 SQRT
PI LOM1 ->
s(1)sqrt(2),sqrt(3)(PI)
= 3.0030603835
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Lin(x) |
STACK | INPUTS | OUTPUTS |
Level
3 |
x |
/ |
Level 2 | a | / |
Level 1 | b | Bx(a,b) |
STACK | INPUTS | OUTPUTS |
Level 2 | a | / |
Level 1 | x | igam(a,x) |
STACK | INPUTS | OUTPUTS |
Level
3 |
x |
/ |
Level 2 | s | / |
Level 1 | a | PHI( x , s , a ) |
-The regular Coulomb wave function FL(n,r) and the irregular Coulomb wave function GL(n,r) are 2 independant solutions of the differential equation:
d2y/dr2 + [ 1 - 2n/r - L(L+1)/r2 ] y = 0Formula:
FL(n,r) = 2L rL+1 [ 1/Gam(2L+2) ] | Gam(L+1+i.n) | exp [ -(Pi) n/2 - i r ] 1F1 (L+1-i.n;2L+2;2i.r) where Mk,µ = Whittaker's function of the 1st kind
STACK | INPUTS | OUTPUTS |
Level
3 |
L |
/ |
Level 2 | n | / |
Level 1 | r | FL(n,r) |
GL(n,r) = i FL(n,r) + | Gam(L+1+i.n)
| [ 1/Gam(L+1+i.n) ] exp [ (PI) n/2 + i L(PI)/2 ] Wi.n,L+1/2
(2i.r)
where Wk,µ = Whittaker's function of the 2nd kind
STACK | INPUTS | OUTPUTS |
Level
3 |
L |
/ |
Level 2 | n | / |
Level 1 | r | GL(n,r) |
-Whittaker's function of the 1st kind Mk,m(x) is defined by
Mk,m(x) = xm+1/2 e -x/2 M(m-k+1/2,2m+1,x)
where M(a,b,x) = Kummer's function.STACK | INPUTS | OUTPUTS |
Level
3 |
k |
/ |
Level 2 | m | / |
Level 1 | x | Mk,m(x) |
-Whittaker's function of the 2nd kind Wk,m(x) is defined by
Wk,m(x) = xm+1/2 e -x/2 U(m-k+1/2,2m+1,x)
where U(a,b,x) = hypergeometricU function.STACK | INPUTS | OUTPUTS |
Level
3 |
k |
/ |
Level 2 | m | / |
Level 1 | x | Wk,m(x) |
STACK | INPUTS | OUTPUTS |
Level
3 |
m |
/ |
Level 2 | n | / |
Level 1 | r | T(m,n,r) |
-We want to solve the differential equation ( 1 - x2 ) d2S/dx2 - 2.x dS/dx + [ Lmn - c2 x2 - m2/( 1 - x2 ) S ] = 0
-First, LMN finds the eigenvalues Lmn by solving the transcendental equation U1(Lmn) + U2(Lmn) = 0 where U1 & U2 are 2 continued fractions:
-brm
-br-2m
U1(Lmn) = grm
- Lmn + ---------------
--------------- ..............
gr-2m - Lmn +
gr-4m - Lmn +
r = n - m
-br+2m
-br+4m
U2(Lmn) =
--------------- ----------------
..............
gr+2m - Lmn +
gr+4m - Lmn +
Smn(x) = ( 1 - x2 )m/2 f(x) where f(x) = Sumk=0,1,.... ak xk
with a0 = Pnm(0)
= 2m sqrt(PI) / [ Gam((1-m-n)/2) Gam((2-m+n)/2 ]
Flammer's scheme
and a1 = P'nm(0)
= ( m + n ) 2m sqrt(PI) / [ Gam((2-m-n)/2) Gam((1-m+n)/2 ]
-In both cases, (k+1)(k+2) ak+2 - [ k ( k + 2m + 1 ) - Lmn + m ( m + 1 ) ] ak - c2 ak-2 = 0
STACK | INPUTS | OUTPUTS |
Level 1 | x | Smn(x) |
STACK | INPUT | OUTPUT |
Level 1 | x | W(x) |
Example:
a = -1.2 b = 4.59 k2 = 0.8
q = - sqrt(2)
STACK | INPUTS | OUTPUTS |
Level 2 | / | Ai(x) |
Level 1 | x > 0 | Bi(x) |
Ai(8) = 4.69220761616 E-8
8 AIBI -> Bi(8) = 1199586.00411
Note:
Formulae:
FL(n,r) = g cos µ + f sin
µ where
µ = r - n Ln (2r) - L.(Pi)/2
+ Arg Gam ( 1 + L + i n )
GL(n,r) = f cos µ -
g sin µ and
f + i.g ~ u0 + u1 + u2 + ............
+ uk + ......................
STACK | INPUTS | OUTPUTS |
Level
3 |
L |
/ |
Level 2 | n | / |
Level 1 | r | FL(n,r) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Dn(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | En(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Hn(x) |
Formulae:
Jn(x) = (2/(pi*x))1/2 ( P.cos(x-(2n+1)pi/4)
- Q.sin(x-(2n+1)pi/4) )
Yn(x) = (2/(pi*x))1/2 ( P.sin(x-(2n+1)pi/4)
+ Q.cos(x-(2n+1)pi/4) )
where P ~ 1 - (4n2-1)(4n2-9)/(2!(8x)2)
+ (4n2-1)(4n2-9)(4n2-25)(4n2-49)/(4!(8x)4)
- ......
and Q ~ (4n2-1)/(8x)
- (4n2-1)(4n2-9)(4n2-25)/(3!(8x)3)
+ ......
STACK | INPUTS | OUTPUTS |
Level 2 | n | Jn(x) |
Level 1 | x | Yn(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | n | / |
Level 1 | x | Kn(x) |
-If a function f is defined by a power series: f(x) = SUMk=0,1,2,.....
ck xk , its fractional integro-differentiation
may be computed by
dµ f / dxµ = Dµ f(x) = SUMk=0,1,2,..... ck [ Gam(k+1) / Gam(k+1-µ) ] xk-µ where µ is a real number ( integer or fractional )
-If the function may be expressed in terms of hypergeometric functions pFq , the following relation is very useful too:
Dµ pFq ( a1 , .......... , ap ; b1 , .......... bq ; x ) = x -µ Gam(b1).........Gam(bq) p+1F~q+1 ( 1 , a1 , .......... , ap ; 1-µ , b1 , .......... bq ; x )
where Gam = Euler's Gamma function and pF~q is the regularized generalized hypergeometric functionSTACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ Exp x |
where
FC(µ)log (x) = (-1)µ-1 (µ-1)
!
if µ is a positive integer
and
FC(µ)log (x) = [ Ln x - Psi(1-µ) - gamma
] / Gam(1-µ) otherwise
Psi = Digamma Function , gamma = Euler's constant = 0.5772156649... and Gam = Gamma Function.
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ Ln x |
Psi = Digamma Function , gamma = Euler's constant = 0.5772156649... and Gam = Gamma Function.
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | FC(µ)log (x) |
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ Cos x |
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ Sin x |
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ Cosh x |
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ Sinh x |
Dµ Ai(x) = 3µ-4/3 x -µ { 32/3 Gam(1/3) 2F~3 [ 1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] - x Gam(2/3) 2F~3 [ 2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] }
Dµ Bi(x) = 3µ-5/6 x -µ { 32/3 Gam(1/3) 2F~3 [ 1/3 , 1 ; (1-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] + x Gam(2/3) 2F~3 [ 2/3 , 1 ; (4-µ)/3 , (2-µ)/3 , (3-µ)/3 ; x3/9 ] }
STACK | INPUTS | OUTPUTS |
Level 2 | µ | Dµ Ai(x) |
Level 1 | x | Dµ Bi(x) |
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ Erf(x) |
STACK | INPUTS | OUTPUTS |
Level 3 | µ | / |
Level 2 |
n |
/ |
Level 1 | x | Dµ Hn (x) |
3.14 ENTER
2.41 ENTER
1.28 DHMT
-> D3.14 H2.41
( 1.28 ) = 3.53770762114
STACK | INPUTS | OUTPUTS |
Level 4 | µ | / |
Level 2 |
a |
/ |
Level 2 |
b |
/ |
Level 1 | x | Dµ F(a;b;x) |
STACK | INPUTS | OUTPUTS |
Level 4 | µ | / |
Level 2 |
a |
/ |
Level 2 |
n |
/ |
Level 1 | x | Dµ Lan (x) |
3.14 ENTER
1.76 ENTER
2.41 ENTER
1.28 DLANX
-> D3.14 L1.762.41
( 1.28 ) = -1.767203465
• Bessel Function - 2nd kind
Dµ Yn (x) = 2µ-2n (PI)1/2 x-µ-n csc(n.PI) { -16n Gam(1-n) 2F~3 [ (1-n)/2 , (2-n)/2 ; (1-µ-n)/2 , (2-µ-n)/2 , 1-n ; -x2/4 ]
+ x2n Cos(n.PI) Gam(n+1) 2F~3
[ (n+1)/2 , (n+2)/2 ; (n+1-µ)/2 , (n+2-µ)/2 , n+1 ; -x2/4
] } where n is not an integer.
• Modified Bessel Function - 1st kind
Dµ In (x) = 2µ-2n sqrt(PI) xn-µ
Gam(n+1) 2F~3 [ (n+1)/2 , (n+2)/2
; (n+1-µ)/2 , (n+2-µ)/2 , n+1 ; x2/4 ]
• Modified Bessel Function - 2nd kind
Dµ Kn (x) = 2µ-2n-1 (PI)3/2 x-µ-n csc(n.PI) { 16n Gam(1-n) 2F~3 [ (1-n)/2 , (2-n)/2 ; (1-µ-n)/2 , (2-µ-n)/2 , 1-n ; x2/4 ]
- x2n Gam(n+1) 2F~3 [ (n+1)/2 , (n+2)/2 ; (n+1-µ)/2 , (n+2-µ)/2 , n+1 ; x2/4 ] } where n is not an integer.
• Spherical Bessel Function - 1st kind Dµ jn (x) = 2µ-2n-1 PI xn-µ Gam(n+1) 2F~3 [ (n+1)/2 , (n+2)/2 ; (n+1-µ)/2 , (n+2-µ)/2 , n+3/2 ; -x2/4 ]STACK | INPUTS | OUTPUTS |
Level 3 | µ | / |
Level 2 |
n |
/ |
Level 1 | x | Dµ Besseln (x) |
• Fresnel Cosine Integral Dµ
C(x) = 22µ-3/2 PI3/2 x1-µ3F~4
[ 1/4 , 3/4 , 1 ; (2-µ)/4 , (3-µ)/4 , (4-µ)/4 , (5-µ)/4
; -(PI)2 x4/16 ]
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ C(x) or Dµ S(x) |
3.14 ENTER
1.28 DCX
-> D3.14 C ( 1.28
) = 16.9561224908
3.14 ENTER
1.28 DSX
-> D3.14 S ( 1.28
) = -11.203027733
• Sine Integral
Dµ Si x = 2µ-2 PI x1-µ2F~3
( 1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; -x2/4 )
• Hyperbolic Sine Integral
Dµ Shi x = 2µ-2 PI x1-µ2F~3
( 1/2 , 1 ; 3/2 , (2-µ)/2 , (3-µ)/2 ; x2/4 )
• Cosine Integral
Dµ Ci x = [ FC(µ)log (x) + gamma
/ Gam(1-µ) ] x -µ - 2µ-3 sqrt(PI)
x2-µ 2F~3 ( 1 , 1
; 2 , (3-µ)/2 , (4-µ)/2 ; -x2/4 )
STACK | INPUTS | OUTPUTS |
Level 2 | µ | / |
Level 1 | x | Dµ ... (x) |
3.14 ENTER
1.28 DEI
-> D3.14
Ei ( 1.28 ) = 1.98213560559
3.14 ENTER
1.28 DSI
-> D3.14 Si
( 1.28 ) = -0.045395643837
3.14 ENTER
1.28 DSHI
-> D3.14 Shi ( 1.28
) = 0.57649521068
3.14 ENTER
1.28 DCI
-> D3.14 Ci
( 1.28 ) = 1.36732389602
3.14 ENTER
1.28 DCHI
-> D3.14 Chi ( 1.28
) = 1.4056403949
Notes:
STACK | INPUTS | OUTPUTS |
Level
3 |
<<
F >> |
<<
F >> |
Level 2 | [ x1(1) , ...... , xn(1) ] | | F(V) | |
Level 1 | [ x1(2) , ...... , xn(2) ] | VSolution |
x + y + z + t - 16 = 0
x y z - 3 t
= 0
4 x2 - y z t - 40
= 0
x y z t - 140
= 0
STACK | INPUTS | OUTPUTS |
Level
3 |
{ 'f1'
........... 'f1'
} |
{ 'fj'
+ partial deriv } |
Level 2 | { 'x1' ......... 'x1' } | { 'x1' ......... 'x1' } |
Level 1 | [ x1(2) , ...... , xn(2) ] | VSolution |
x + y + z + t - 16 = 0
x y z - 3 t
= 0
4 x2 - y z t - 40
= 0
x y z t - 140
= 0
then, for n = 1 , 2 , .......
Cn = bn + an/Cn-1
( Cn is replaced by tiny if Cn = 0 )
Dn = 1/ [ bn + an Dn-1 ]
( Dn = 1/tiny if the denominator = 0 )
STACK | INPUTS | OUTPUTS |
Level3 |
b0 |
/ |
Level 2 | << F >> | / |
Level 1 | x | f(x) |
References:
[1] Abramowitz and Stegun - "Handbook of Mathematical Functions" - Dover Publications - ISBN 0-486-61272-4