1 Buffon’s Needle

robability theory is the mathematics of the 20*" century. Its history goes

back to the 16" century, but not until the previous century did physicists

and engineers fully realize that nature and the real world can be described
exhaustively only by the laws governing their randomness. What physicists had
considered exact until relatively recently, turned out to be merely the mean
value of a much more impressive structure; and mean values can be very mis-
leading. (“Put one foot in an ice bucket, and the other in boiling water; then
on the average you will be comfortable.”) Strange to relate, even as brilliant a
physicist as Albert Einstein regarded the probalistic laws of quantum mechanics
as testimony to our ignorance rather than as a valid description of th laws of
nature.

The beginnings of probability theory go back to the Liber de ludo aleaze
(The book of games of chance), written about 1526 by Gerolamo Cardono
(1501-1576), though not published until 1663. Cardano, of cubic equation fame,
was not only a mathematician, engineer, and physician, but also a passionate
gambler. Until the advent of the kinetic theory of gases in the 19" century,
probability theory was rarely applied to anything else but gambling. The main
contributors to its development were Jacques Bernoulli I (1654-1705, author
of Ars conjectandi, Blaise Pascal (1623-1662, discoverer of the Pascal Trian-
gle), Abraham De Moivre (1667-1754), Leonhard Euler (1707-1783), Pierre Si-
mon Laplace (1749-1827), Carl Friedrich Gauss (1777-1855), and Sim‘“’eon Denis
Poisson (1781-1840), followed by a large number of mathematicians in the 19*?
and 20" centuries.

The number 7 appears in probability theory very frequently, as it does in all
branches of higher mathematics; but nowhere is its appearance more fascinating
than in a problem posed and solved by George Louis Leclerc, Comte du Buffon
(1707-1788). Buffon (as everybody calls him) was an able mathematician and
general scintist, who shocked the world by estimating the age of the earth to be
about 75,000 years, although every educated person in the 18" century knew
that it was no older than about 6,000 years. Among his exploits is a test of one of
Archimedes’ supposed engines of war used in the defense of Syracuse. As told by
Plutarch, the story includes a plausible description of the action of Archimedes’
cranes and missile throwers, but by the Middle Ages, it had grown into a much
exaggerated legend, and the Book of Histories by the Byzantine author John
Tzetzes (ca. 1120-1183) repeats the story with many embellishments, such as the
statement that Archimedes had burned the Roman ships to ashes at a distance
of a bow shot by focusing the sun’s beams onto the Roman fleet. The story
(which is not contained n Plutarch’s description) has persisted in many books
down to our own day. Buffon, a man of considerable means and spare time,
decided to test the feasibility of such a machine. Using 168 flat mirrors six by
eight inches in an adjustable framework, he was able to ignite wooden planks at
a distance of 150 feet, and he satisfied himself that Archimedes’ alleged exploit
was feasible. He did not, however, satisfy posterity, since the Syracusans would
hardly have had the same leisure to focus 168 beams, nor would the Roman



ships floating on the sea have held as still as Buffon’s beams on the ground.
But back to Buffon’s problem involving w. The problem which he posed
(and solved) in 1777 was the following: Let a needle of length L be thrown at
random onto a horizontal plane ruled with parallel straight lines spaced by a
distance d (greater than L) from each other. What is the probability that the
needle will intersect one of these lines?
We assume that “at random” means that any
position (of the center) and any orientation of ~nearest line ]
the needle are equally probable and that these x 3 Lsing
two random variables are independent. Let the
distance of the center of the needle from the needle
nearest line be x, and let its orientation be given
by ¢ (figure 1). Since x is measured from the
nearest line, we need only consider a single line, because the others involve only
repetition of the same solution.
It is obvious from the figure that the needle will intersect a line if and only

Figure 1: Buffon’s needle
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x < §L sin ¢ (1)
The problem is therefore equivalent to finding the probability
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1l sing rior of the rectangle OA (figure2) whose points
satisify the inequalities
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Figure 2: Buffon’s problem 0<o<m

These are the intervals of possible values of x and ¢, and therefore any point
inside rectangle OA corresponds to one and only one possible combination of
position (z) and orientation (¢) of the needle. Since all such combinations
are equprobable, and the area of the rectangle represents the sum total of all
possibilities that can arise (because, not quite beyond reproach, we regard this
area as made up of all points inside it). However, not all of these possibilities
will result in an intersection of the needle with a line; such an intersection, as
we have found, will take place only under condition (1), that is, for positions
and orientations corresponding to points lying below the curve z = %L sin ¢ in
Figure 2, so that the sum total of possibilities resulting in the intersection by
the needle is given by the area under this curve. If; then, probability is the
ratio of the number of favorable, to the number of possible, events under given
conditions, the probability of intersection is given by the ratio of the shaded



part to the entire rectangle OA in Figure 2, that is, the required probability (2)

is
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This is the result Buffon derived. He also attempted an experimental ver-
ification of his result by throwing a needle many times onto ruled paper and
observing the fraction of intersections out of all throws. Whether he modified
his result for an evaluation of ™ we do not know, but the problem and its solution
were largely forgotten for the next 35 years, until one of the great mathemati-
cians with whom France has been blessed, called attention to it and gave it a
new twist.

Pierre Simon Laplace was one of the “three great L’s” among French math-
ematicians of the time. The other two, Joseph Louis Lagrange (1736-1813)
and Adrien Marie Legendre (1752-1833), were his contemporaries, and all three
survived the French Revolution as members of the Committee of Weights and
Measures, which discarded the cubits, feet, pounds, and miles of the old regime
and worked out the metric system as we use it today. It was, incidentally, an-
other mathematician, Lazare Carnot (1753-1823) who saved the young French
republic in its hour of greatest need. Scared out of their wits by the cry for
liberty, equality, and fraternity, Europe’s kings, princes, princelings, dukes, and
whatnots turned on the Revolution. Threatened by internal confusion and the
invading armies deep inside France, the Revolution seemed about to be crushed;
but Carnot, member of the Committee for Public Safety in charge of military
affairs, took command and sent the invaders packing on all fronts, becoming or-
ganisateur de la victorire, the hero of the French Revolution. But like so many
other sincere revolutionaries after him, Carnot soon observed that a revolution
only replaces one tyranny by another, and refusing to go along with its excesses,
was driven into exile as a “royalist.” Significantly, his chair of geometry at the
Institult National was unanimously voted to a general; a general by the name of
Napoleon Bonaparte, another one in a long line of power-hungry careerists who
was to preach liberty and practice oppression.

Laplace is known, above all, for authoring two masterpieces, Méchanique
céleste (five volumes, 1799-1825) and Théorie analytique des probabilites (1812).
The former was the greatest work on celestial mechanics since Newton’s Prin-
cipia, including many new mathematical techniques, such as the theory of po-
tential. Asked by Napoleon why in the entire work on celestial mechanics he
had not once mentioned God, Laplace replied, Sire, je n’avais pas besoin de
cette hypothése—Sire, I had no need of that hypothesis. Napoleon, inciden-
tally, appointed Laplace Minister of Interior, but after six weeks dismissed him
again, commenting that he “carried the spirit of the infinitely small into the
management of affairs.” The Théorie analytique is the foundation of modern
probability theory. Among many new mathematical techniques it contains the
integral transform that is today the daily bread of every systems engineer and
analyst of electrical circuits.



It also contains a discussion of Buffon’s problem, which Laplace saw in a
new light. From the first and last expressions in (3) we have

2L
- = (4)
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and this is an entirely new method of evaluating m: The length of the needle L
and the spacing between the lines d are known (usually one makes L = d),
and the probability of intersection P can be measured by throwing a needle
onto ruled paper a very large number of times, recording the fraction of throws
resulting in an intersection of the needle with a line.

This method, which Laplace generalized for paper with two sets of mutually
perpendicular lines, has been used by several people as a playful diversion to
calculate the first decimal places of 7™ by thousands of throws. One of them was
a certain Captain Fox, who indulged in this sport while recovering from wounds
incurred in the American Civil War.

It is not difficult to calculate the probability of obtaining 7 correct to k
decimal places in N throws. The results of such a calculation show that this
method is very inefficient as far as the numerical computation of 7 is concerned.
Nevertheless, Laplace had discovered a powerful method of computation that
did not come into its own until the advent of the electronic computer. The
method that Laplace proposed consists in finding a numerical value by realizing
a random event many times and observing its outcome experimentally. This
is today known as a Monte Carlo method (Monte Carlo is the European Las
Vegas), and it is used in a wide field of applications ranging from economics to
nuclear physics.

But if the method is not very efficient for calculating m, it is very powerful
in other applications. Suppose, for example, that we wish to calculate the mean
value of a complicated function of a random variable. This is found by an
integration involving the probability density function of the random variable.
But sometimes the resulting integral is so complicated that it takes a long time
to write the program and that it involves a costly amount of processing time.
In that case we do not program the computer for the complicated evaluation of
the integral, but we make it simulate the arithmetic mean of, say, one hundred
thousand trials. The result is the required mean value.

Or suppose we wish to find a complicated multiple integral. A Monte Carlo
method of finding it (instead of writing a cumbersome program) is to let the
computer “shoot” n-tuplets of random numbers. These represent a coordinate in
(n-dimensional) space and the coordinate either lies in the volume determined
by the integral (“hit”) or it does not (“miss”). Then we let the computer shoot
at the target, say, half a million times. The number of hits is then proportional
to the n-tuple integral.

The man who taught us to program electronic computers in this way was
Pierre Simon Laplace. His computer was neither electronic nor digital. It was
an analog computer consisting of one needle and one piece of ruled paper.



2 Simulation Programs

%uffon’s Needle can be implemented easily on all but the smallest HP pro-
grammable calculators (the HP-16 and the financial models will need an
implementation of the sine function).

2.1 RPN

Some of the earlier machines did not have a built-in RNG (random number
generator). One can be programmed, of course, but that requires additional
memory. In addition, the HP-25A/C and HP-33E/C don’t have enough memory
registers unless one packs multiple results into each register (which requires
additional code).

The program given here is written for the HP-15C. It takes advantage of
the built-in RNG and the cability to DSE any register. Every other model
lacks one or both of these capabilities, though neither one by itself takes much
programming effort to overcome.

001 LBL B | 012 LBL 3 | 023 ISG (i) | 034 x

002 STO .2 | 013 RAN# | 024 LBL .0 | 035 +

003 ST+ .3 | 014 RAN# | 025 DSE .2 | 036 DSE 1

004LBL 2 |015 7 026 GTO 2 | 037 GTO 1

005 RCL .2 | 016 x 0271 038 RCL .3

006 PSE 017 SIN 028 0 039 x =y

007 CLx 018 x > y? | 029 STO I 040 =

008 STO1 | 0191SG I 030 CLx 041 2

009 1 020 LBL .0 | 031 LBL 1 042 0

0100 021 DSE .1 | 032 RCL I 043 x

011 STO .1 | 022 GTO 3 | 033 RCL (i) | 044 RTN
Step 018 is actually TEST 7

The memory registers should be cleared before running the program the first
time. (Actually, only registers 0 through .0 and .3 need to be clear.) The
program requires RAD mode; if you prefer, you may insert a RAD instruction
before the LBL 2. Enter the desired number of trials (of ten throws each) into X
and press GSB B. It displays a countdown timer showing the number of trials yet
to be done. When finished, it displays the current estimate of m. The number
of trials that resulted in 0 intersections is stored in RO, the number of trials that
resulted in 1 intersection is stored in R1, and so on up to 10 intersections in R. 0.
The number of trials is stored in R.3.

If the program is repeated, the new results are added to the previous ones.
This allows a big run to be broken up into smaller runs.

This is not a fast program, requiring about 18 seconds for each trial of ten
tosses on the author’s emulated HP-15C, or not quite 200 trials per hour. A
HP-41CX version is a little faster, requiring about 15 seconds for each trial, or
about 240 trials per hour.



2.2 BASIC

For the HP-71B the following BASIC program simulates the experiment. It
prompts for the number of ten-throw trials, then prints the occurences of each
outcome and an estimate for 7.

10 DESTROY ALL @ OPTION BASE 0 @ RADIANS @ DIM R(11) @ P=0
20 INPUT N @ FOR I=1 TO N

30 H=0 @ FOR J=1 TO 10 @ IF RND()<SIN(RND()*PI) THEN H=H+1
40 NEXT J @ R(H)=R(H)+1 @ P=P+H

50 NEXT I

60 FOR I=0 TO 10 @ PRINT I;R(I) @ NEXT I

70 PRINT 20xN/P

Having neither a physical HP-71B nor an emulator that runs at actual speed,
the author was unable to get actual running times for this program.

2.3 RPL

Using RPL for the HP 48 series, the program practically writes itself from the
problem description, doing everything on the stack and using a vector instead
of numbered registers.

Like the RPN version, this program takes the desired number of ten-throw trials
on the stack. Also like the RPN version, it expects to be in RAD mode. It also
expects symbolic mode to be off. It finishes with an estimate for 7 on level 1
and a list holding the results on level 2. Unlike the RPN version, a second run
of this program does not add to a cumulative total.

Due to advances in calculator technology, this program is much faster, do-
ing nearly three trials per second on the author’s physical HP 48GX, or just
over 10,000 trials per hour.



3 Expected Outcomes

%elow are the results from actual runs on an emulated HP-15C (200 trials),
an emulated HP-41CX (300 trials), an emulated HP-71B (10,000) trials, and
a physical HP 48GX (10,000 trials).

Machine Intersections
0 1 2 3 4 5 6 7 8 9 10
15C 0 1 2 3 18 28 55 42 34 14 3
41CX 0 0 1 5 23 55 79 7 48 22 1
71B 0 7 55 239 813 1658 2469 2357 1625 660 117
48GX 0 5 50 287 778 1693 2399 2444 1635 601 108

Their estimates for 7 are given below.

Machine | estimated 7
15C 3.129890454
41CX 3.138075314
71B 3.134845374
48GX 3.143962021

Obviously, this is not a great way to calculate 7. But that really wasn’t the
point of the exercise.

Probability theory tells us how often we may expect each outcome. Buffon’s
Needle is a classic case of a Bernoulli experiment, in which there are just two
outcomes of interest—the needle either intersects a line or it doesn’t. The
binomial formula tells us

P(S,, = k) = P(k successes in n trials) = (Z) prgn*

where ¢ =1 — p.
This RPL program creates a list containing the eleven probabilities for the
problem at hand, n = 10,p = 2/7.

The output of this program, rounded to five decimal places, is given in the table
below.



k 0 1 2 3 4 5

(k) | 0.00004 0.00070 0.00554 0.02590 0.07942 0.16696
k 6 7 8 9 10

P(k) | 0.24375 0.24402 0.16032 0.06241 0.01093

P

The table below shows the observed and expected values for the four sets of
experiments.

Machine | 0 1 2 3 4 5 6 7 8 9 10
15C 0 1 2 3 18 28 95 42 34 14 3
0 0 1 5 16 33 49 49 32 12 2

0 0 1 5 23 55 79 7 48 22 1

HEX 0 0 2 8§ 24 50 73 73 48 19 3
71B 0 7 55 239 813 1658 2469 2357 1625 660 117
0 7 55 259 794 1670 2438 2440 1603 624 109

48GX 0 5 50 287 778 1693 2399 2444 1635 601 108
0 7 55 259 794 1670 2438 2440 1603 624 109

The observed values seem to match “fairly” well with the expected values. But
how good is “fairly” well? Statistical theory provides several different ways to
measure the goodness of fit. One of the most commonly used is the y?-test.

A fuller description of the test is outside the scope of this document, but the
data from the 10,000 trials on the HP 48GX produce a x2 value of about 7.322,
which puts it in the 39% percentile. Loosely translated, this means that for this
theoretical distribution, we may expect a fit this good or better about 39% of
the time. Conversely, we may expect a fit this bad or worse about 61% of the
time. From this we can conclude that there is no reason to suppose that our
experimental results do not match the theory.

The RPL program on the next page is based on the previous one. It is run
the same way, but instead of generating a list and an estimate, it produces
a graphical display. The expected frequencies are shown as thick bars, the
observed frequencies as thin bars.






