
1 Bu�on's Needle

Probability theory is the mathematics of the 20th century. Its history goes
back to the 16th century, but not until the previous century did physicists
and engineers fully realize that nature and the real world can be described

exhaustively only by the laws governing their randomness. What physicists had
considered exact until relatively recently, turned out to be merely the mean
value of a much more impressive structure; and mean values can be very mis-
leading. (�Put one foot in an ice bucket, and the other in boiling water; then
on the average you will be comfortable.�) Strange to relate, even as brilliant a
physicist as Albert Einstein regarded the probalistic laws of quantum mechanics
as testimony to our ignorance rather than as a valid description of th laws of
nature.

The beginnings of probability theory go back to the Liber de ludo aleaæ
(The book of games of chance), written about 1526 by Gerolamo Cardono
(1501-1576), though not published until 1663. Cardano, of cubic equation fame,
was not only a mathematician, engineer, and physician, but also a passionate
gambler. Until the advent of the kinetic theory of gases in the 19th century,
probability theory was rarely applied to anything else but gambling. The main
contributors to its development were Jacques Bernoulli I (1654-1705, author
of Ars conjectandi, Blaise Pascal (1623-1662, discoverer of the Pascal Trian-
gle), Abraham De Moivre (1667-1754), Leonhard Euler (1707-1783), Pierre Si-
mon Laplace (1749-1827), Carl Friedrich Gauss (1777-1855), and Sim`'eon Denis
Poisson (1781-1840), followed by a large number of mathematicians in the 19th

and 20th centuries.
The number π appears in probability theory very frequently, as it does in all

branches of higher mathematics; but nowhere is its appearance more fascinating
than in a problem posed and solved by George Louis Leclerc, Comte du Bu�on
(1707-1788). Bu�on (as everybody calls him) was an able mathematician and
general scintist, who shocked the world by estimating the age of the earth to be
about 75,000 years, although every educated person in the 18th century knew
that it was no older than about 6,000 years. Among his exploits is a test of one of
Archimedes' supposed engines of war used in the defense of Syracuse. As told by
Plutarch, the story includes a plausible description of the action of Archimedes'
cranes and missile throwers, but by the Middle Ages, it had grown into a much
exaggerated legend, and the Book of Histories by the Byzantine author John
Tzetzes (ca. 1120-1183) repeats the story with many embellishments, such as the
statement that Archimedes had burned the Roman ships to ashes at a distance
of a bow shot by focusing the sun's beams onto the Roman �eet. The story
(which is not contained n Plutarch's description) has persisted in many books
down to our own day. Bu�on, a man of considerable means and spare time,
decided to test the feasibility of such a machine. Using 168 �at mirrors six by
eight inches in an adjustable framework, he was able to ignite wooden planks at
a distance of 150 feet, and he satis�ed himself that Archimedes' alleged exploit
was feasible. He did not, however, satisfy posterity, since the Syracusans would
hardly have had the same leisure to focus 168 beams, nor would the Roman
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ships �oating on the sea have held as still as Bu�on's beams on the ground.
But back to Bu�on's problem involving π. The problem which he posed

(and solved) in 1777 was the following: Let a needle of length L be thrown at
random onto a horizontal plane ruled with parallel straight lines spaced by a
distance d (greater than L) from each other. What is the probability that the
needle will intersect one of these lines?
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Figure 1: Bu�on's needle

We assume that �at random� means that any
position (of the center) and any orientation of
the needle are equally probable and that these
two random variables are independent. Let the
distance of the center of the needle from the
nearest line be x, and let its orientation be given
by φ (�gure 1). Since x is measured from the
nearest line, we need only consider a single line, because the others involve only
repetition of the same solution.

It is obvious from the �gure that the needle will intersect a line if and only
if

x <
1
2
L sin φ (1)

The problem is therefore equivalent to �nding the probability
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Figure 2: Bu�on's problem

To �nd this probability, use the plane of rect-
angular coordinates φ, x, and consideer the inte-
rior of the rectangle OA (�gure2) whose points
satisify the inequalities

0 < x <
d

2
(2)

0 < φ < π

These are the intervals of possible values of x and φ, and therefore any point
inside rectangle OA corresponds to one and only one possible combination of
position (x) and orientation (φ) of the needle. Since all such combinations
are equprobable, and the area of the rectangle represents the sum total of all
possibilities that can arise (because, not quite beyond reproach, we regard this
area as made up of all points inside it). However, not all of these possibilities
will result in an intersection of the needle with a line; such an intersection, as
we have found, will take place only under condition (1), that is, for positions
and orientations corresponding to points lying below the curve x = 1

2L sin φ in
Figure 2, so that the sum total of possibilities resulting in the intersection by
the needle is given by the area under this curve. If, then, probability is the
ratio of the number of favorable, to the number of possible, events under given
conditions, the probability of intersection is given by the ratio of the shaded
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part to the entire rectangle OA in Figure 2, that is, the required probability (2)
is

P =
1
2
L

∫ π

0

sinφ dφ :
πd

2
=

2L

πd
(3)

This is the result Bu�on derived. He also attempted an experimental ver-
i�cation of his result by throwing a needle many times onto ruled paper and
observing the fraction of intersections out of all throws. Whether he modi�ed
his result for an evaluation of π we do not know, but the problem and its solution
were largely forgotten for the next 35 years, until one of the great mathemati-
cians with whom France has been blessed, called attention to it and gave it a
new twist.

Pierre Simon Laplace was one of the �three great L's� among French math-
ematicians of the time. The other two, Joseph Louis Lagrange (1736-1813)
and Adrien Marie Legendre (1752-1833), were his contemporaries, and all three
survived the French Revolution as members of the Committee of Weights and
Measures, which discarded the cubits, feet, pounds, and miles of the old regime
and worked out the metric system as we use it today. It was, incidentally, an-
other mathematician, Lazare Carnot (1753-1823) who saved the young French
republic in its hour of greatest need. Scared out of their wits by the cry for
liberty, equality, and fraternity, Europe's kings, princes, princelings, dukes, and
whatnots turned on the Revolution. Threatened by internal confusion and the
invading armies deep inside France, the Revolution seemed about to be crushed;
but Carnot, member of the Committee for Public Safety in charge of military
a�airs, took command and sent the invaders packing on all fronts, becoming or-
ganisateur de la victorire, the hero of the French Revolution. But like so many
other sincere revolutionaries after him, Carnot soon observed that a revolution
only replaces one tyranny by another, and refusing to go along with its excesses,
was driven into exile as a �royalist.� Signi�cantly, his chair of geometry at the
Institut National was unanimously voted to a general; a general by the name of
Napoleon Bonaparte, another one in a long line of power-hungry careerists who
was to preach liberty and practice oppression.

Laplace is known, above all, for authoring two masterpieces, Méchanique
céleste (�ve volumes, 1799-1825) and Théorie analytique des probabilites (1812).
The former was the greatest work on celestial mechanics since Newton's Prin-
cipia, including many new mathematical techniques, such as the theory of po-
tential. Asked by Napoleon why in the entire work on celestial mechanics he
had not once mentioned God, Laplace replied, Sire, je n'avais pas besoin de
cette hypothèse�Sire, I had no need of that hypothesis. Napoleon, inciden-
tally, appointed Laplace Minister of Interior, but after six weeks dismissed him
again, commenting that he �carried the spirit of the in�nitely small into the
management of a�airs.� The Théorie analytique is the foundation of modern
probability theory. Among many new mathematical techniques it contains the
integral transform that is today the daily bread of every systems engineer and
analyst of electrical circuits.
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It also contains a discussion of Bu�on's problem, which Laplace saw in a
new light. From the �rst and last expressions in (3) we have

π =
2L

dP
(4)

and this is an entirely new method of evaluating π: The length of the needle L
and the spacing between the lines d are known (usually one makes L = d),
and the probability of intersection P can be measured by throwing a needle
onto ruled paper a very large number of times, recording the fraction of throws
resulting in an intersection of the needle with a line.

This method, which Laplace generalized for paper with two sets of mutually
perpendicular lines, has been used by several people as a playful diversion to
calculate the �rst decimal places of π by thousands of throws. One of them was
a certain Captain Fox, who indulged in this sport while recovering from wounds
incurred in the American Civil War.

It is not di�cult to calculate the probability of obtaining π correct to k
decimal places in N throws. The results of such a calculation show that this
method is very ine�cient as far as the numerical computation of π is concerned.
Nevertheless, Laplace had discovered a powerful method of computation that
did not come into its own until the advent of the electronic computer. The
method that Laplace proposed consists in �nding a numerical value by realizing
a random event many times and observing its outcome experimentally. This
is today known as a Monte Carlo method (Monte Carlo is the European Las
Vegas), and it is used in a wide �eld of applications ranging from economics to
nuclear physics.

But if the method is not very e�cient for calculating π, it is very powerful
in other applications. Suppose, for example, that we wish to calculate the mean
value of a complicated function of a random variable. This is found by an
integration involving the probability density function of the random variable.
But sometimes the resulting integral is so complicated that it takes a long time
to write the program and that it involves a costly amount of processing time.
In that case we do not program the computer for the complicated evaluation of
the integral, but we make it simulate the arithmetic mean of, say, one hundred
thousand trials. The result is the required mean value.

Or suppose we wish to �nd a complicated multiple integral. A Monte Carlo
method of �nding it (instead of writing a cumbersome program) is to let the
computer �shoot� n-tuplets of random numbers. These represent a coordinate in
(n-dimensional) space and the coordinate either lies in the volume determined
by the integral (�hit�) or it does not (�miss�). Then we let the computer shoot
at the target, say, half a million times. The number of hits is then proportional
to the n-tuple integral.

The man who taught us to program electronic computers in this way was
Pierre Simon Laplace. His computer was neither electronic nor digital. It was
an analog computer consisting of one needle and one piece of ruled paper.
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2 Simulation Programs

Bu�on's Needle can be implemented easily on all but the smallest HP pro-
grammable calculators (the HP-16 and the �nancial models will need an

implementation of the sine function).

2.1 RPN
Some of the earlier machines did not have a built-in RNG (random number
generator). One can be programmed, of course, but that requires additional
memory. In addition, the HP-25A/C and HP-33E/C don't have enough memory
registers unless one packs multiple results into each register (which requires
additional code).

The program given here is written for the HP-15C. It takes advantage of
the built-in RNG and the cability to DSE any register. Every other model
lacks one or both of these capabilities, though neither one by itself takes much
programming e�ort to overcome.

001 LBL B 012 LBL 3 023 ISG (i) 034 ×
002 STO .2 013 RAN# 024 LBL .0 035 +
003 ST+ .3 014 RAN# 025 DSE .2 036 DSE I
004 LBL 2 015 π 026 GTO 2 037 GTO 1
005 RCL .2 016 × 027 1 038 RCL .3
006 PSE 017 SIN 028 0 039 x ­ y
007 CLx 018 x > y? 029 STO I 040 ÷
008 STO I 019 ISG I 030 CLx 041 2
009 1 020 LBL .0 031 LBL 1 042 0
010 0 021 DSE .1 032 RCL I 043 ×
011 STO .1 022 GTO 3 033 RCL (i) 044 RTN

Step 018 is actually TEST 7

The memory registers should be cleared before running the program the �rst
time. (Actually, only registers 0 through .0 and .3 need to be clear.) The
program requires RAD mode; if you prefer, you may insert a RAD instruction
before the LBL 2. Enter the desired number of trials (of ten throws each) into X
and press GSB B. It displays a countdown timer showing the number of trials yet
to be done. When �nished, it displays the current estimate of π. The number
of trials that resulted in 0 intersections is stored in R0, the number of trials that
resulted in 1 intersection is stored in R1, and so on up to 10 intersections in R.0.
The number of trials is stored in R.3.

If the program is repeated, the new results are added to the previous ones.
This allows a big run to be broken up into smaller runs.

This is not a fast program, requiring about 18 seconds for each trial of ten
tosses on the author's emulated HP-15C, or not quite 200 trials per hour. A
HP-41CX version is a little faster, requiring about 15 seconds for each trial, or
about 240 trials per hour.
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2.2 BASIC
For the HP-71B the following BASIC program simulates the experiment. It
prompts for the number of ten-throw trials, then prints the occurences of each
outcome and an estimate for π.

10 DESTROY ALL @ OPTION BASE 0 @ RADIANS @ DIM R(11) @ P=0
20 INPUT N @ FOR I=1 TO N
30 H=0 @ FOR J=1 TO 10 @ IF RND()<SIN(RND()*PI) THEN H=H+1
40 NEXT J @ R(H)=R(H)+1 @ P=P+H
50 NEXT I
60 FOR I=0 TO 10 @ PRINT I;R(I) @ NEXT I
70 PRINT 20*N/P

Having neither a physical HP-71B nor an emulator that runs at actual speed,
the author was unable to get actual running times for this program.

2.3 RPL
Using RPL for the HP 48 series, the program practically writes itself from the
problem description, doing everything on the stack and using a vector instead
of numbered registers.

«

0 11 FOR j

j

NEXT

�LIST { 11 } 0 CON

1 4 PICK START

1

1 10 START

RAND RAND � * SIN < +

NEXT

DUP2 GET 1 + PUT

NEXT

OBJ� DROP 11 �LIST SWAP OVER * �LIST ROT 20 * SWAP /

»

Like the RPN version, this program takes the desired number of ten-throw trials
on the stack. Also like the RPN version, it expects to be in RAD mode. It also
expects symbolic mode to be o�. It �nishes with an estimate for π on level 1
and a list holding the results on level 2. Unlike the RPN version, a second run
of this program does not add to a cumulative total.

Due to advances in calculator technology, this program is much faster, do-
ing nearly three trials per second on the author's physical HP 48GX, or just
over 10,000 trials per hour.
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3 Expected Outcomes

Below are the results from actual runs on an emulated HP-15C (200 trials),
an emulated HP-41CX (300 trials), an emulated HP-71B (10,000) trials, and

a physical HP 48GX (10,000 trials).

Machine Intersections
0 1 2 3 4 5 6 7 8 9 10

15C 0 1 2 3 18 28 55 42 34 14 3
41CX 0 0 1 5 23 55 79 77 48 22 1
71B 0 7 55 239 813 1658 2469 2357 1625 660 117
48GX 0 5 50 287 778 1693 2399 2444 1635 601 108

Their estimates for π are given below.

Machine estimated π
15C 3.129890454
41CX 3.138075314
71B 3.134845374
48GX 3.143962021

Obviously, this is not a great way to calculate π. But that really wasn't the
point of the exercise.

Probability theory tells us how often we may expect each outcome. Bu�on's
Needle is a classic case of a Bernoulli experiment, in which there are just two
outcomes of interest�the needle either intersects a line or it doesn't. The
binomial formula tells us

P (Sn = k) = P (k successes in n trials) =
(

n

k

)
pkqn−k

where q = 1− p.
This RPL program creates a list containing the eleven probabilities for the

problem at hand, n = 10, p = 2/π.
«

2 � / 1 OVER - � p q

<<

{ }

0 10 FOR j

10 j COMB p j ^ * q 10 j - ^ * +

NEXT

>>

»

The output of this program, rounded to �ve decimal places, is given in the table
below.
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k 0 1 2 3 4 5
P (k) 0.00004 0.00070 0.00554 0.02590 0.07942 0.16696

k 6 7 8 9 10
P (k) 0.24375 0.24402 0.16032 0.06241 0.01093

The table below shows the observed and expected values for the four sets of
experiments.

Machine 0 1 2 3 4 5 6 7 8 9 10
15C 0 1 2 3 18 28 55 42 34 14 3

0 0 1 5 16 33 49 49 32 12 2
41CX 0 0 1 5 23 55 79 77 48 22 1

0 0 2 8 24 50 73 73 48 19 3
71B 0 7 55 239 813 1658 2469 2357 1625 660 117

0 7 55 259 794 1670 2438 2440 1603 624 109
48GX 0 5 50 287 778 1693 2399 2444 1635 601 108

0 7 55 259 794 1670 2438 2440 1603 624 109

The observed values seem to match �fairly� well with the expected values. But
how good is �fairly� well? Statistical theory provides several di�erent ways to
measure the goodness of �t. One of the most commonly used is the χ2-test.

A fuller description of the test is outside the scope of this document, but the
data from the 10,000 trials on the HP 48GX produce a χ2 value of about 7.322,
which puts it in the 39st percentile. Loosely translated, this means that for this
theoretical distribution, we may expect a �t this good or better about 39% of
the time. Conversely, we may expect a �t this bad or worse about 61% of the
time. From this we can conclude that there is no reason to suppose that our
experimental results do not match the theory.

The RPL program on the next page is based on the previous one. It is run
the same way, but instead of generating a list and an estimate, it produces
a graphical display. The expected frequencies are shown as thick bars, the
observed frequencies as thin bars.
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«

0 11 FOR j

j

NEXT

�LIST SWAP

{ 11 } 0 CON

1 3 PICK START

1

1 10 START

RAND RAND � * SIN < +

NEXT

DUP2 GET 1 + PUT

NEXT

SWAP / PICT PURGE

0 13 XRNG 0 .4 YRNG { # 0h # 0h } PVIEW

1 11 FOR j

10 j 1 - COMB 2 � / j 1 - ^ * 1 2 � / - 11 j - ^ *

i DUP .8 + FOR k

k OVER R�C k 0 R�C LINE

.1 STEP

DROP

j .3 + DUP .2 + FOR k

k OVER j GET R�C k 0 R�C TLINE

.1 STEP

NEXT

OBJ� DROP 11 �LIST * �LIST "�=" 20 ROT / +

PICT { # 0h # 0h } ROT 1 �GROB REPL

7 FREEZE

»
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