
multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 1

m u l t i F I T

The program multiFIT (less than 800 bytes) was written by Bruno Hampel for
the Hewlett-Packard HP 48GX & appropriate series in the middle of the nineties,
and it is freeware. You are permitted to use this program and its documentation
in a non-commercial environment without any payment. The personal give-away
is allowed, as far as you hand out the complete and unmodified package as well as
you do not earn money doing this. Any other usage requires a separate written
permission. The program is presented ”as-is” and there is no warranty neither
concerning the functionality of the algorithm, nor the delivered results.

As far as there is small resonance on it, you can try to contact me by e-mail
at bruno@cerasela.de or at bruno.hampel@t-online.de. You can send me a fax
at +49 – 69 – 7 91 24 56 34, too. I will do my best to answer you. On big
resonance, I will establish a support site at www.cerasela.de.

You can either use the Serial Interface Kit to transfer the file mf to your cal-
culator (do not change anything in this file), or you can type in the program,
which is listed at the end of this document.

In ”Introduction” I will introduce the purpose of the program and the notifi-
cations used. There is a brief ”Mathematical Deduction” following, where I am
relating about the mathematical background. Then you can read about how to
use my program in the section ”Program Usage”. Under ”Examples” you will
encounter four examples. In ”Listing” there is the complete code of the program
listed.

Kaarst in Germany, the 13 th of November 1999

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 2

Introduction

The program multiFIT can compute (method: Least Squares Fitting) the constants ck ∈ R for an
equation of the following appearance:

y (x1, x2, . . . , xm) =
n∑
k=1

ck · fk (x1, x2, . . . , xm)

My program does a little bit more than a multiple regression – it performs a multi-dimensional re-
gression. Unfortunately, the regression can be done for the liner ck, only. However, this is much more
than the calculator can do originally, particularly because there is just one limitation for the fk among
one another. The data (z, x1, x2, . . . , xm), which you may have obtained previously by measurements,
might look this way:

i x1 x2 . . . xm z
1 〈x1〉1 〈x2〉1 〈xm〉1 〈z〉1
2 〈x1〉2 〈x2〉2 〈xm〉2 〈z〉2
...

...
s 〈x1〉s 〈x2〉s . . . 〈xm〉s 〈z〉s

Please get used to my notifications. The fk are any functions depending on none, one or even more
variables xj , where j ∈ {1, 2, . . . ,m}. This dependency on variables can be independent for the different
fk. There should exist s > n data sets, each consisting of m+ 1 values. The z refers to the measured
value for y, while y itself refers to the potentially calculated value, which would be exact if we knew
the ck exactly. In the table above 〈xj〉i is the abbreviation for the i th value of the j th variable. The
abbreviation 〈fλ〉i is equivalent to fλ (〈x1〉i , 〈x2〉i , . . . , 〈xm〉i).

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 3

Mathematical Deduction

This deduction bases on the assumption that the measured values 〈xj〉i are all exact and
the tolerances 〈w〉i = w are for all 〈z〉i equal. The difference |〈z〉i − 〈y〉i| is made between measured
value 〈z〉i and calculated (exact) value 〈y〉i. Of course, 〈y〉i is not valuable because we do not know the
values for the ck – that is what we are going to do.
The probability to obtain a definite value 〈z〉i can be described by the Gaussian Distribution using
next proportionality:

Pw [〈z〉i] ∼ exp
{
− 1

2 · w 2
· [〈z〉i − 〈y〉i]

2

}
The parameter w is called width parameter of the Gaussian Curve. The standardizing factor (constant
and w-dependent) is of no interest for us because we are finally interested in the exponent.
I shortly introduce now the equation for w in order to clarify, where the condition s > n does come
from:

P ≡ P (w) and
∂P

∂w
= 0 ⇒ . . . ⇒ w2 =

1
s− n

·
s∑
i=1

[〈z〉i − 〈y〉i]
2 ≥ 0 ⇒ s > n

Do not match this result into the equation for the probability Pw! As we see, the required number
of measurements should be greater than the number of coefficients! For example if you would
like to fit y (x) = b + m · x, which contains two coefficients, you must have measured at least three
(y, x)-pairs. Otherwise, through two points, it is always possible to draw a straight line. This kind
of reflection can be extended for multi-dimensional surfaces, which require a minimum of points to be
defined by.
The probability to obtain the whole set of values {〈z〉1 , 〈z〉2 , . . . , 〈z〉s} is then given by:

Pw [〈z〉1 , 〈z〉2 , . . . , 〈z〉s] =
s∏
i=1

Pw [〈z〉i]

Introducing the next definition will simplify the notifications:

q =
def

1
w2
·

s∑
i=1

[〈z〉i − 〈y〉i]
2

It would have been more instructive than simple to define q2 instead of q because the computations
used are called least squares fitting and this name comes from the q2. However, using the definition
given above, the probability becomes:

Pw [〈z〉1 , 〈z〉2 , . . . , 〈z〉s] ∼ e
− 1

2
·q

Our intention is to compute the ck in a way that will cause the probability to reach a maximum.
Therefore we regard to the q as being a function of the ck:

q ≡ q (c1, c2, . . . , cn)

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 4

In order to maximize Pw, we have to minimize q. That is why the next two conditions must be fulfilled:

∂

∂cλ
q = 0 and

∂ 2

∂c2
λ

q > 0 for all λ ∈ {1, 2, . . . , n}

The first derivative is:

∂q

∂cλ
= − 2

w2
·

{
s∑
i=1

〈z〉i · 〈fλ〉i −
s∑
i=1

n∑
k=1

cλ · 〈fk〉i · 〈fλ〉i

}
Setting the brace to zero will deliver:

s∑
i=1

〈z〉i · 〈fλ〉i =
n∑
k=1

s∑
i=1

cλ · 〈fk〉i · 〈fλ〉i for all λ ∈ {1, 2, . . . , n}

These represent n equations, each containing n variables. The result can be written as:

B = M ·X

Here is M = MT a symmetric n× n matrix. B and X are both n-element vectors:

Mαβ =
s∑
i=1

〈fα〉i · 〈fβ〉i and Bβ =
s∑
i=1

〈z〉i · 〈fβ〉i and X =

c1

c2
...
cn

We will obtain the values for the ck if we solve the equation B = M ·X. My program delivers
B and M . At this point, we know how the ck have to be computed causing the probability be an
extreme.
To fix if this extreme is the required minimum, we take a look to the second derivation:

∂

∂cλ

∂q

∂cλ
= . . . =

2
w2
· (−1)2 · ∂

∂cλ

n∑
k=1

s∑
i=1

cλ · 〈fk〉i · 〈fλ〉i =
2
w2
·

s∑
i=1

〈fλ〉2i > 0

As we can see, the sum of squares is always greater than zero, so that if we calculate the ck using
B = M ·X, the q gets its minimum and therefore Pw is maximized.
You surely remarked that my program does not deliver X but B and M , and you may ask yourself
why Bruno (that’s me) did not put this final step in his program. Well, if the resulting matrix were
a matrix with det (M) = 0 or one that is of bad condition, the final division would cause an error. I
could trap such an error but this would increase the size of the program considerably and you would
not know what is happening. By the way, I did not trap any possible error! To avoid matrices with
det (M) = 0 you should take care that the following condition is fulfilled:

fa 6= µ · fb for all a, b ∈ {1, 2, . . . , n} where a 6= b and µ ∈ R

In words: For different a and b it is necessary that fa and fb can be distinguished by more
than a real number.

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 5

Here two examples (you can use the substitute ỹ instead of y):

y1 (x, y) = a · sin (x) + b · sin (y) + c · sin (x) → ỹ1 (x, y) = c1︸︷︷︸
a+c

· sin (x) + c2︸︷︷︸
b

· sin (y)

Since you can compute c1 and c2, you can obtain the value for b but it is not possible to get a and c
separately (this is a simple example, I know). The second example:

y2 (x, y, z) = a · x3 + c · z + d ·
(
x3 + z

)
⇐⇒

y2 (x, y, z) = a · x3 + c · z + d · x3 + d · z → ỹ2 (x, y, z) = c1︸︷︷︸
a+d

·x3 + c2︸︷︷︸
c+d

·z

In this example multiFIT can compute c1 and c2 but you will not be able to get the values for a, c and
d. Using ỹ (necessary because of the condition on page four) may cause loss of some coefficients that
have been initially used in y. See the fourth example for a complicated equation, too!
Bad conditioned matrices are those consisting in elements, which may convert to zero by internal
calculations even if these elements are not really zero, but a very small number. That is why such a
matrix can suddenly include at least one row or column composed of zeros. This behavior is due to
the numeric conversion of the matrix and to the limitations concerning the representation of numbers
in any computing machine. To learn more about bad conditioned matrices and how to operate with,
please consult the manual of your calculator.

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 6

Program Usage

Do not understand most of the following brackets and braces as being math stuff but syntax of the cal-
culator! There are three objects that need to be transferred to the stack before executing the program:

1. List of functions:

{ f1 f2 . . . fn }

This is a list containing all the fk as algebraic elements of the list.

2. Data matrix:

[[. . .] [. . .] . . . [. . .]]

This is a matrix containing the measured values. This one should have at least m+ 1 columns. Other
columns are not relevant to this program. The number of rows is taken automatically for s – the
number of measurements. Do not confuse the data matrix with the matrix M .

3. Specification list:

{ column (z) x1 column (x1) x2 column (x2) . . . xm column (xm) }

This is a list of 1 + 2 ·m elements, specifying where the program can find its values in the matrix given
above. The first element is always a number related to the column where the measured value for the
function is stored in. The following pairs of elements indicate in which column the named variable can
be found in. The alignment of these pairs among one another is free. I introduced this list for purposes
of facility – you should not extract the relevant columns initially.

4. Execute the multiFIT program:

There is no affection by any flags, and there will be no changes to your calculator after the pro-
gram terminates (proper termination is not required). It will deliver two objects to the stack: the
vector B and the matrix M :

[B1 B2 . . . Bn]

[[M11 M12 . . . M1n] . . . [Mn1 Mn2 . . . Mnn]]

5. Final steps:

The easiest way to get the final result is pressing the division key. You will obtain:

[c1 c2 . . . cn]

If there is an error occurring, the previously delivered matrix probably has been bad conditioned – see
your manual for help (relevant are the command LSQ in dependency with flag 22 and flag 54). Bad
conditioned matrices may be very rarely. This is the reason why these operations have not accessed
my program. Another source for an error could be negligence in setting up the fit equation. Do you
remember the one and only condition that must be fulfilled?

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 7

Examples

Example 1: Imagine that you would like to fit p (x) to the data (p, x) that you have obtained before
by measurements and in order to that you want to get the values for a, b and c:

p (x) = a · x3 + b · x2 − c

Near to my notification, we identify:

f1 ≡ x3 f2 ≡ x2 f3 ≡ −1 c1 ≡ a c2 ≡ b c3 ≡ c

1st step: Put the list of functions on the stack:

{ ’xˆ3 ’ ’xˆ2 ’ ’ − 1 ’ }

2nd step: Put the data matrix on the stack (however your matrix looks like).

3rd step: Put the specification list on the stack:

{ 4 x 2 }

In this example (this is just an example), the list above tells the program that p is located in the fourth
column and x has its location in the second column.

4th step: Run the program. You will obtain a vector and a matrix as a two-object result on your stack.

5th step: Simply press the division key. You will obtain a vector containing the coefficients you
searched for:

[value (a) value (b) value (c)]

Example 2: Imagine that you would like to fit qb (x, y, z) to the data (qb, x, y, z) you have obtained
before by measurements and in order to that you want to get the values for u, (v − 4) and w:

qb (x, y, z) = u ·
(
x3 · z

)
+ (v − 4) · (x · y) + w ·

(
z5−b

)
For qb the variable b is a parameter which cannot be computed by this program! You must know its
value before starting the program.

f1 ≡ x3 · z f2 ≡ x · y f3 ≡ z5−b c1 ≡ u c2 ≡ v − 4 c3 ≡ w

The list of functions is (replace ? by the value for b or the name of the variable b used on your calculator):

{ ’ (xˆ3) ∗ z ’ ’x ∗ y ’ ’ zˆ (5−?) ’ }

Put the data matrix on the stack. The specification list could be (the following one is randomized):

{ 2 y 6 z 5 x 3 }

Its meaning is: qb is located in the second column, y is located in the sixth column, z is located in the
fifth column and x is located in the third column. Finalizing the operations would deliver:

[value (u) value ((v − 4)) value (w)]

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 8

Example 3: Imagine that you would like to fit ra (t) to the data (ra, t) obtained before by measure-
ments and you want to get the values for A and B:

ra (t) = A · sin (a · t)−B · cos (a · t)

The coefficients A and B can be computed. The parameter a has to be known before.

f1 ≡ sin (a · t) f2 ≡ − cos (a · t) c1 ≡ A c2 ≡ B

The list of functions is:

{ ’ sin (? · t) ’ ’ − cos (? · t) ’ }

Replace ? by the value for a or its name on your calculator. Send the data matrix to the stack and
after that do your specifications:

{ 4 t 3 }

In this example (and only here), the list above would tell the program that ra is located in the fourth
column and the variable t is located in the third column. Run the program and execute the required
division. The result will be:

[value (A) value (B)]

Example 4: There are some functions that allow operating with, provided that you convert them to
look similar to my very first definition y =

∑
k

ck · fk. As an example:

r (x, y, z) =
D · eA+B·x+C·y

2E·z+F
⇐⇒ r (x, y, z) =

D · eA+B·x+C·y

eln(2)·(E·z+F)

Some elementary transformations considering r > 0 and D > 0 lead us to a shape that looks quite
similar to the basic y =

∑
k

ck · fk:

ln r = ln
(
D · eA+B·x+C·y)− ln

(
eln(2)·(E·z+F)

)
⇐⇒

ln r = ln (D) +A+B · x+ C · y − ln (2) · E · z − ln (2) · F

Remember please the condition given on page four, which is fa 6= µ · fb. Due to this restriction, we
have to collect all constants belonging to f1 ≡ 1.

ln r = [ln (D) +A− ln (2) · F]︸ ︷︷ ︸
c1

·1 + B︸︷︷︸
c2

·x+ C︸︷︷︸
c3

·y − ln (2) · E︸ ︷︷ ︸
c4

·z

My program can compute c1 through c4, and therefore you can calculate B, C and E. You will not
be able to get the values for A, D and F , except there are any other equation setting some relations
between A, D and F . Of course, you must generate a column containing ln (r) prior to the usage of
multiFIT.

multiFIT b by Bruno Hampel b Germany 1999 b www.cerasela.de 9

Listing

As you can see, the program is very short. Do not take this code for an explanatory algorithm. It
is self-evident that the pure algorithm is comprised in this code, but I widely made use of program-
ming tricks, which are strongly tied to the capabilities of the calculator and its programming language.
Therefore, this listing is rather a distorted algorithm than a platform-transferable.

<<
DUP SIZE 1 - 2 / 4 ROLL DUP SIZE DUP DUP2 2 →LIST
RANM 0 * ROT 1 →LIST RANM 0 * 7 ROLL DUP SIZE HEAD
<<

→ a V m
<<

m 0
IF >
THEN

1 m
FOR i

a V i 2 * GET ’d(k,l)’ ’l’ V i 2 * 1 + GET 2
→LIST ↓MATCH DROP 2 →LIST ↓MATCH DROP ’a’ STO

NEXT
END
a

>>
>>
0
→ V m f n A B D N M z
<<

V HEAD ’z’ STO
1 n
FOR i

A i i 2 →LIST k 1 N f i GET 2 ^ V m M EVAL
{ d D } ↓MATCH DROP Σ PUT ’A’ STO B i k 1 N f i
GET ’d(k,z)’ * V m M EVAL { d D } ↓MATCH DROP Σ PUT ’B’ STO

NEXT
1 n 1 -
FOR i

i 1 + n
FOR j

’k’ 1 N f i GET f j GET * V m M EVAL { d D } ↓MATCH DROP
Σ ’z’ STO A i j 2 →LIST z PUT j i 2 →LIST z PUT ’A’ STO

NEXT
NEXT
B A

>>
>>

