Computer Algebra Commands

For HP48 Version 3.3 revision 3 oct 20,2001

By: Jaime Fernando Meza meza

 

 

http://www.geocities.com/hp4x/cashp48/computeralgebracommandshp48g.htm

http://www.geocities.com/hp4x/cashp48/font8forcashp48.zip

 

CAShp48.LIB  alone works jointly with:

(Library 909 Algebra48 version 4.2),

(Library 913 Symbolic integration version 0.1)

(Library 1494 PolySymbolic version 6.6) and

(Library 905 QPI version 5.3)

 

CASHP48.LIB Contains a large number of computer algebra commands similar to those in the (HP49 version 1.19-5), (DERIVE version 5.04)(www.derive.com), Texas Instruments(TI89/TI92plus) AND (MATLAB version 6.0)

 

Algebra:

 

{ SIMPLIFY CSIMPLIFY FACTOR EXACT APPROXIMATE SUBST SOLVE SOLVEVX TABVAL }

___________________________________

 

Arithmetic: { PROPFRAC FACTORS PROPFRAC2}

___________________________________

 

Arithmetic integer:

 

{ ISPRIME? PREVPRIME NEXTPRIME MOEBIUS DIVISORS PRIMEDIVIS PERFEC? }

___________________________________

 

Arithmetic Modulo:

 

{ MODSTO ADDTMOD SUBTMOD MULTMOD DIVMOD POWMOD INVMOD }

___________________________________

 

Calculus:

 

{ INTGRS DERIVS GRADIENT DIV CURL LAPLACIAN POTENTIAL VPOTENTIAL HESS LAGRANGE JACOBIAN DERIVN WRONSKYAN ARCLEN FMATRIX MCOS MSIN MEXP BESSEL }

___________________________________

 

Polynomial Function:

 

{ FXND PCOEF CPOL CFRAT REORDER PROOT RPOL PMROOT MULT2POL DIV2POL QUOT REMAINDER PROPFRAC PARTFRAC CPARTFRAC FACTOR GCD LCM PCAR RANDPOLY PTCHEBYCHEV PUCHEBYCHEV PLEGENDRE PALEGENDRE PHERMITE PLAGUERRE PGLAGUERRE PSPHERICALHARM POLEVALM HORNER }

___________________________________

 

Matrices, vector and Linear Algebra

 

Create:

 

{ NEWMAT NEWVECTOR RANDMAT RANDVECTOR RANDCMAT RANDCVECTOR RANDSYSMAT RANDASYSMAT RANDUPPERMAT RANDLOWERMAT RANDSTOCMAT AUGMENT APPENDCOL MDIAG LCXM MAKEMAT HILBERT MVANDERMONDE VECTOR }

___________________________________

 

Operations:

 

{ LISTMAT MATLIST AXL TRAN DIMMAT MAPRG XNUM XEVAL AXM DIST ANGLE DANGLE VPRBA PRYBA HADAMARD .* MDIV ./ .^ MADD .+ MSUB .- MULT POWMAT INVS MINV ADJOINT NORMAT i_ j_ k_ }

___________________________________

 

Quadratic form: AXQ QXA

___________________________________

 

Vector: { ABS2 DOTP CROSSP PRODH UNITV COSDIR DIST }

___________________________________

 

Factr: { lu qr CHOLESKY }

___________________________________

 

Linear Systems: { LINSOLVE REF oref CRAMER MINOR COFACT }

___________________________________

 

Eigenvector: { PCAR PMINI IMAGE KER EGBS JORDAN }

___________________________________

 

Col AND Row: { COLDIM -COL COL-2 ROW-2 ROWSAWP }

___________________________________

 

Complex:

 

{ RE2 IM2 CR2 RC2 ABS2 ARG2 SIGN2 NEG2 CONJ2 CRxy CEILING }

___________________________________

 

Statistics:

 

{ SORTA SORTD CUMSUM CUMPROD %TILE MEAN2 MEDIAN ONETWOVAR FACTORIAL }

___________________________________

 

Differencial equations: { DESOLVE LAPLACE ILAPLACE }

___________________________________

 

List: LAND LOR LXOR LDIFFERENCE LSAME LDEL LSWAP LDELMULT

___________________________________

 

Misc:

 

MAKEVX CATALOG CASCMD AUTHOR ARPN pi FIBONACCI PRg OBj Id BZIP UNZIP PREFIXES TYPE? VXPURGE CRCASDIR TMENU2 PROMPT2 VER up EXIT }

______________________________________________________________

 

Objects:

 

[ Left vector/matrix delimiter

] right vector/matrix delimiter

{ Left vector/matrix delimiter

} right vector/matrix delimiter

{ Left list delimiter

} right list delimiter

' Left and right expression delimiter

"Left and right string delimiter to represent long precision floating point numbers or unlimited precision binary integer (hexstring).

 

A*X=b

 

[[ x11 x12 ... x1n ]   [[ X1 ]   [[ X1 ]

 [ x21 x22 ... x2n ]  * [ Xi ] =  [ Xi ]

 [ xm1 xm2 ... xmn ]]   [ Xn ]]   [ Xn ]]

     MATRIZ(A)         Vector columns(X,b)

 

A: Numeric Vector

 

a vector with elements numeric can be entered by typing delimiters of the form:

 

where the Xi are the elements numeric of the vector. The elements must be separated by spaces, and the vector must be delimited using square brackets [ Xi ], or using square braces { Xi }.

 

A1: vector column

 

[ X1 X2 Xi ... Xn ] or [[ X1 ]

                        [ Xi ]

                        [ Xn ]]

 

Example #1: [ 18 24 4 ] (vector column)

 

Example #2: [[ 18 ]

             [ 24 ]

             [ 4  ]] (vector column)

 

Example #3: { 18 24 4 } (vector column)

 

Example #4: {{ 18 }

             { 24 }

             { 4  }} (vector column)

 

A2: vector row

 

[[ X1 X2 Xi ... Xn ]]

 

Example #5: [[ 18 24 4 ]] (vector row)

 

B: Symbolic Vector

 

A vector with elements symbolic or numeric can be entered by typing delimiters of the form:

 

where the 'Xi' are the elements symbolic or numeric of the vector. The elements must be separated by spaces, and the vector must be delimited using square braces { 'Xi' }.

 

A1: vector column

 

{  'X1' 'X2' 'Xi' ... 'Xn' }  or {{ 'X1' }

                                  { 'X2' }

                                  { 'Xn' }}

 

Example #1: { '2*x' –5 '' 1.5 'x^2'}

 

Example #2: { X Y Z } or {{ x }

                          { y }

                          { z }}

 

 

A2:  vector row

 

{{ 'X1' 'X2' 'Xi' ... 'Xn' }}

 

Example #3: {{ X Y Z }}

 

C: Numeric Array

 

A matrix with elements numeric can be entered by typing delimiters of the form:

 

[[ x11 x12 ... x1n ]

 [ x21 x22 ... x2n ]

...

 [ xm1 xm2 ... xmn ]]

 

where the xij are the elements numeric of the matrix. The elements of a row must be separated by spaces, and the matrix must be delimited square brackets [ xij ], or using square braces { xij }.

Internally matrices are stored as vectors of vectors row.

 

Example #1: [[ 2 4 6 ]

             [ 4 5 6 ]

             [ 3 1 -2 ]]

 

Example #2: {{ 2 4 6 }

             { 4 5 6 }

             { 3 1 -2 }}

 

D: Symbolic Array

 

A matrix with elements symbolic or numeric can be entered by typing delimiters of the form:

 

{{ 'x11' 'x12' ... 'x1n' }

 { 'x21' 'x22' ... 'x2n' }

...

 { 'xm1' 'xm2' ... 'xmn' }}

 

where the xij are the elements numeric of the matrix. The elements of a row must be separated by spaces, and the matrix must be delimited square brackets [ xij ], or using square braces { xij }.

Internally matrices are stored as vectors of vectors row.

 

Example #1: {{ a 4 }

             { b e }

             { c 5 }}

E:  Algebraic expression: '(X^2+2*X+1)/(X+1)'

F:  Variables: 'X' 'S' 't' 'XY' ... etc

G:  To represent long precision floating point numbers "130529377836972488251268578591"

 

_____________________________________________________________

 

EXPAND or SIMPLIFY are similar to expand of the (TI92+) or SIMPLIFY of the HP49

 

Description: Expands and simplifies an object or a list of objects.

 

Access: Library 697: CAS48 SIMPLIFY

 

Example #1: Simplify the following algebraic expression:

 

Input:

Level 1: '(X^2+2*X+1)/(X+1)' SIMPLIFY [ENTER]

 

Output:

Level 1: 'X+1'

 

input:            output:

___________________________________

 

Example #2: Simplify the following algebraic expression:

 

Input:

Level 1: '3*X*(X^2-3*X+1)*(X^4+X-5)*(5*X-7)^2' SIMPLIFY [ENTER]

 

Output:

Level 1: '75*X^9-435*X^8+852*X^7-576*X^6-663*X^5+3027*X^4-4911*X^3+3402*X^2-735*X'

___________________________________

 

Example #3:  Simplify the following Symbolic Matrix of expressions:

Input:

Level 1: {{ '(X+1)^2' }

          { 'COS()' }} RAD SIMPLIFY [ENTER]

Output:

Level 1: {{ 'X^2+2*X+1' }

          { -1 }}

 

input:            output:

___________________________________

 

Example #4:

input:            output:

___________________________________

 

'-b*d+a*d*(0,1)+b*i*c+a*c' CSIMPLIFY

 

'a*c-b*d+(a*d+b*c)*i'

 

'INV(a+b*i)' CSIMPLIFY

 

'a/(a^2+b^2)-b/(a^2+b^2)*i'

_____________________________________________________________

 

FACTOR similar to factor of the (TI92+) or FACTOR of the HP49

 

Description: Factorizes a polynomial or Symbolic Matrix.

 

Access: Library 697: CAS48 FACTOR

 

Example #1: Factorize the following polynomial:

Input:

Level 1: 'X^2+5*X+6' FACTOR

 

Output:

Level 1: '(X+2)*(X+3)'

___________________________________

 

Example #2: Factorize the following expression:

 

Input:

Level 1: '75*X^9-435*X^8+852*X^7-576*X^6-663*X^5+3027*X^4-4911*X^3+3402*X^2-735*X' FACTOR

 

Output:

Level 1: '3*X*(X^2-3*X+1)*(X^4+X-5)*(5*X-7)^2'

___________________________________

 

Example #3: Factorize the following integer:

 

 

___________________________________

 

Example #4: Factorize the following long precision numbers:

 

"130529377836972488251268578591" FACTOR

 

 

'2647*3691*5113*11779*398609*556517681' APPROXIMATE

 

 

'a^3*X^2+a*X^2+a^3+a' FACTOR

 

'a*(a^2+1)*(X^2+1)'

___________________________________

 

'a^3*X^2-a*X^2-a^3+a' FACTOR

 

'a*(a-1)*(a+1)*(X-1)*(X+1)'

___________________________________

 

'P*T^2-P+1-T^2' FACTOR

 

'(T-1)*(T+1)*(P-1)'

_____________________________________________________________

 

EXACT similar to exact of the (TI92+) or XQ of the HP49

 

Description: Uses Exact mode arithmetic

 

Access: Library 697: CAS48 EXACT

 

Example #1: Express in exact format.

 

Input:

Level 1: .25 EXACT

 

Output:

Level 1: '1/4'

___________________________________

 

Example #2: Express in exact format.

 

Input:

Level 1: {{ 2.5 2.71828182846 1.5707963268 }

          { (0,1) 1.41421356237 0.33 }} EXACT

 

Output:

Level 1: {{ '5/2' 'EXP(1)' '1/2*' }

          { 'i' 'ƒ2' '33/100' }}

 

See also: XQ APPROXIMATE XQ ~~ XNUM

_____________________________________________________________

 

APPROXIMATE similar to approx of the (TI92+)

 

Description: Returns the evaluation of expression as a decimal value

where each element has been evaluated to a decimal value.

 

Access: Library 697: CAS48 APPROXIMATE

 

Example #1:

 

Input:

Level 1: '1/4'

 

Output:

Level 1: .25

___________________________________

 

Example #2:

 

Input:

Level 1: {{ '5/2' 'EXP(1)' '1/2*' }

          { 'i' 'ƒ2' '33/100' }} APPROXIMATE

 

Output:

Level 1: {{ 2.5 2.71828182846 1.5707963268 }

          { (0,1) 1.41421356237 0.33 }}

 

See also: XQ ~~ XQ

_____________________________________________________________

 

AXL similar to listmat or matlist of the (TI92+)or AXL of the HP49

 

Description:  Converts a Symbolic/numeric Matrix {{ xi }} to a numeric Matrix [[ xij ]].

 

Access: Library 697: CAS48 AXL

 

Example #1:  Convert the following numeric Matrix [[ xij ]] to a numeric Matrix {{ xij }}

 

Input:

Level 1: [[ 2 4 6 ]

          [ 4 5 6  ]

          [ 3 1 -2 ]] AXL

 

Output:

Level 1: {{ 2 4 6  }

          { 4 5 6  }

          { 3 1 -2 }}

 

Example #2:  Convert the following numeric Vector [ xi ] to a numeric Vector { xi }

 

Input:

Level 1: [ 18 24 4 ] AXL

 

Output:

Level 1: { 18 24 4 }

 

 

Example #3:  Convert the following numeric Matrix {{ xi }}to a numeric Matrix [[ xij ]]

Input:

Level 1: {{ 2 4 6 }

          { 4 '10/2'  6 }

          { 3 1 -2 }} AXL

 

Output:

Level 1: [[ 2 4 6 ]

          [ 4 5 6 ]

          [ 3 1 -2 ]]

 

Example #4:

 

Convert the following numeric Vector { xi } to a Vector[ xi ]

 

Input:

Level 1: { '5/2' '7/2' '' } AXL

 

Output:

Level 1: [ 2.5 3.5 3.14159265359 ]

 

See also: LISTMAT MATLIST

_____________________________________________________________

 

TRAN similar to T of the (TI92+) or TRN of the(HP48 but TRAN accepts symbolic arguments) or TRAN of the HP49

 

Description: Returns the transpose of matrix1.

 

Access: Library 697: CAS48 TRAN

 

Example #1: Transpose the following Matrix

 

Input:

Level 1: {{ a b }

          { c d }} TRAN

 

Output:

Level 1: {{ a c }

          { b d  }}

___________________________________

 

Example #2: Transpose the following vector row.

 

Input:

Level 1: {{ 18 24 4 }} TRAN

 

Output:

Level 1: {{ 18 }

          { 24 }

          { 4 }}

___________________________________

 

Example #3: Transpose the following vector column.

 

Input:

Level 1: { 18 24 4 } TRAN

 

Output:

Level 1: {{ 18 24 4 }}

___________________________________

 

Example #4: Transpose the following vector column.

 

Input:

Level 1: {{ A }

          { B }

          { C }} TRAN

 

Output:  

Level 1: {{ A B C }}

___________________________________

 

Example #5: Transpose the following vector column.

Input:

Level 1: [ 18 24 4 ] TRAN

 

Output:

Level 1: {{ 18 24 4 }}

_____________________________________________________________

 

ROWSWAP similar to rowSwap of the (TI92+) or RSWP of the(HP48 but RSWP2 accepts symbolic arguments)

 

Description: Returns the ROW SWAP. Permutation of a Matrix, the rowi and rowj rows are interchanged

 

Access: Library 697: CAS48 RSWP2

 

Example #1:

 

Input:   

Level 3: {{ a d }

          { b e }

          { c f }} 

Level 2: 2

Level 1: 3 ROWSWAP

 

Output:

Level 1: {{ a d }

          { c f }

          { b e }}

 

See also: RSWP

_____________________________________________________________

 

CRxy similar to P>Rx of the (TI92+) or P>Ry of the (TI92+) or CR  of the HP48 (but CRxy accepts symbolic arguments)

 

Returns the equivalent x coordinate and y coordinate of a complex number.

 

Example #1: in polar form

angle mode: 1: « DEG CYLIN » [ENTER]

 

Input:

Level 1: (4,60) CRxy

 

Output:

Level 1: { 2 '2*ƒ3' }

___________________________________

Example #2: in rectangular form

angle mode 1: « DEG RECT » [ENTER]

 

Input:

Level 1: (3,4) CRxy

 

Output:

Level 1: { 3 4 }

___________________________________

Example #3: in symbolic form

 

Input:

Level 1: '3+4*i' CRxy

 

Output:

Level 1: { 3 4 }

___________________________________

Example #4: in vector form

angle mode 1: « DEG RECT » [ENTER]

 

Input:

Level 1: [ 3 4 ] CRxy

 

Output:

Level 1: { 3 4 }

___________________________________

Example #5: number real

 

Input:

Level 1: 3 CRxy

 

Output:

Level 1: { 3 0 }

___________________________________

Example #6: number complex

 

Input:

Level 1: '4*i' CRxy

 

Output:

Level 1: { 0 4 }

___________________________________

Example #7: in form of symbolic expression

 

Input:

Level 1: 'i^2+2*i+i+3+i' CRxy

 

Output:

Level 1: { 2 4 }

___________________________________

Example #8:  lists of complex expressions

 

To calculate this command in each element you should apply successively << CRxy >> with the command MAPRG.

 

{(-3,€ ‡/3) (10,€ ‡/4) (3,0)}

 

angle mode 1: « RAD CYLIN » [ENTER]

 

Input:

Level 1: { (3,-2.09439510239) (10,-.785398163398) 1.3 }

« CRxy » MAPRG

 

Output:

Level 1: {{ '-3/2' '-(3/2*ƒ3)'}

          { '5*ƒ2' '-(5*ƒ2)'  }

          { '13/10'     0     }}

___________________________________

Example #9: in form of complex matrix

 

To calculate this command in each element you should apply successively << CRxy >> with the command MAPRG.

 

Input:

Level 1: {{ 'a+i*b' 3 }

          {   c   'i' }} « CRxy » MAPRG

 

Output:

Level 1: { {{ a b }

            { 3 0 }}

           {{ c 0 }

            { 0 1 }}}

___________________________________

Example #10:

 

'(a+b*i)/(c+d*i)' CRxy

 

{ '(a*c+b*d)/(c^2+d^2)' '(-(a*d)+b*c)/(c^2+d^2)' }

___________________________________

Example #11:

 

'(a+b*i)*(c+d*i)' CRxy

 

{ 'a*c-b*d' 'a*d+b*c' }

 

See also: CR2

_____________________________________________________________

 

CR2 similar to CR of the (HP48) or CRxy but CR2 accepts symbolic arguments

 

Example #1: in polar form

angle mode: « DEG CYLIN »

 

Input:

Level 1: (4,60) CR2

 

Output:

Level 2: 2

Level 1: '2*ƒ3'

___________________________________

Example #2: in symbolic form

 

Input:

Level 1: '3+4*i' CR2

 

Output:

Level 2: 3

Level 1: 4

___________________________________

Example #3: in form of symbolic expression

 

Input:

Level 1: 'i^2+2*i+i+3+i' CR2

 

Output:

Level 2: 2

Level 1: 4

 

See also: CR

_____________________________________________________________

 

RC2

 

Description: similar to RC of the (HP48) but RC2 accepts symbolic arguments

process inverse to the previous one

 

See also: RC

_____________________________________________________________

 

RE2

 

Description: similar to P>Rx of the (TI92+) or real of the (TI92+) or RE of the (HP48 but it accepts symbolic arguments)

returns the real part of the argument or returns the equivalent x coordinate of a complex number.

 

Access: Library 696: LINEAL DOTS CATALOG

___________________________________

(rExpression Expression) expression

 

Example #1: in polar form

angle mode: « DEG CYLIN »

 

Input:

Level 1: (4,60) RE2

 

Output:

Level 1: 2

___________________________________

expression expression

 

Example #2: in symbolic form

 

Input:

Level 1: 'z' RE2

 

Output:

 

Level 1: z

___________________________________

expression expression

Example #3: in symbolic form

 

Input:

Level 1: 'x+y*i' RE2

 

Output:

Level 1: x

___________________________________

list list

 

Example #4:  lists of complex expressions

 

To calculate this command in each element you should apply successively << RE2 >> with the command MAPRG.

 

Input:

Level 1: { 'a+b*i' 3 i } « RE2 » MAPRG

 

Output:

Level 1: { a 3 0 }

___________________________________

matrix matrix

 

Example #5:  in form of complex matrix

 

To calculate this command in each element you should apply successively << RE2 >> with the command MAPRG.

 

Input:

Level 1: {{ 'a+i*b' 3  }

          {  c     'i' }} « RE2 » MAPRG

 

Output:

Level 1: {{ a 3 }

          { c 0 }}

___________________________________

list list

 

Example #6:  lists of complex expressions

 

To calculate this command in each element you should apply successively << RE2 >> with the command MAPRG.

 

{(-3,€ ‡/3) (10,€ ‡/4) (3,0)}

 

angle mode: « RAD CYLIN »

 

Input:

Level 1: { (3,-2.09439510239) (10,-.785398163398) 1.3 } « RE2 » MAPRG

 

Output:

Level 1: { '-3/2' '5*ƒ2' '13/10' }

 

See also: RE

_____________________________________________________________

 

IM2 similar to P>Ry of the (TI92+) or imag of the (TI92+) or IM of the (HP48 but it accepts symbolic arguments)

 

returns the imaginary part of the argument or returns the equivalent y coordinate of a complex number.

 

Example #1: in polar form

angle mode: « DEG CYLIN »

 

Input:

Level 1: (4,60) IM2

 

Output:

Level 1: '2*ƒ3'

___________________________________

Example #2:  in symbolic form

 

Input:

Level 1: '3+4*i' IM2

 

Output:

Level 1: 4

___________________________________

Example #3:  lists of complex expressions

 

To calculate this command in each element you should apply successively << IM2 >> with the command MAPRG.

 

Input:

Level 1: { 'a+b*i' 3 i } « IM2 » MAPRG

 

Output:

Level 1: { b 0 1 }

___________________________________

Example #4:  in form of complex matrix

 

To calculate this command in each element you should apply successively << IM2 >> with the command MAPRG.

 

Input:

Level 1: {{ 'a+i*b' 3  }

          {  c     'i' }} « IM2 » MAPRG

 

Output:

Level 1: {{ b 0 }

          { 0 1 }}

 

See also: IM

_____________________________________________________________

 

MULT

Description: similar to * of the (TI92+)

___________________________________

matrix1( m1 x n1 ) MULT matrix2( m2 x n2 ) matrix

 

Returns the matrix product of matrix1 and

matrix2.

The number of columns in matrix1 must equal

the number of rows in matrix2. (n1 = m2)

Note:  e=2.71828182846

 

Example #1:

 

Input:  

Level2: {{ 1 2 3 } 

         { 4 5 6 }}

Level1: {{ a d }

         { b E }

         { c f }} 

 

Output:      

Level1: {{ 'a+2*b+3*c'   'd+3*f+2*E'   }

         { '4*a+5*b+6*c' '4*d+6*f+5*E' }}

 

___________________________________

expression MULT list1 list

list1 MULT expression list

 

Returns a list containing the products of

expression and each element in list1.

 

Example #3:

 

Input:  

Level2: ''

Level1: { 4 5 6 } MULT

 

Output:      

Level1: { '4*' '5*' '6*' }

___________________________________

expression MULT matrix1 matrix

matrix MULT expression matrix

 

Returns a matrix containing the products of

expression and each element in matrix1.

 

Example #4: 

 

Input:  

Level2: {{ 1 0 0 }

         { 0 1 0 }

         { 0 0 1 }}

Level1: x MULT

 

Output:      

Level1: {{ x 0 0 }

         { 0 x 0 }

         { 0 0 x }}

___________________________________

list MULT list expression

 

Returns the dot product of two lists.

Both must be column vectors.

 

Example #5: See also: DOTP

 

Input:  

Level2: { a b c }

Level1: { d E f } MULT

 

Output:      

Level1: 'E*b+a*d+c*f'

___________________________________

Example #6: See also: DOTP

 

Input:  

Level2: { 2 a 5 }

Level1: { '2*a' 3 -1 } MULT

 

Output:      

Level1: '7*a-5'

_____________________________________________________________

 

DOTP

Description:  similar to DOTP of the (TI92+) or DOT of the (HP48 but DOTP accepts symbolic arguments).

The dot product of two vectors (also called the scalar product) is the sum of the products of corresponding elements of the vectors.  The dimensions of the vectors must be the same.  Note that the result is a scalar.

 

Access: Library 696: LINEAL DOTP CATALOG

___________________________________

list DOTP list expression

 

Returns the dot product of two lists.

Both must be column vectors.

 

Example #1:

 

Input:  

Level2: { 1 2 }

Level1: { 5 6 } DOTP

 

Output:      

Level1: 17

___________________________________

Example #2

 

Input:  

Level2: {{ a b }

         { c d }}

Level1: { 2 3 } DOTP

 

Output:      

Level1: { '2*a+3*b' '2*c+3*d' }

__________________________________

Example #3: See also: PRODH

 

Input:  

Level2: { (1,0) (2,-1) }

Level1: { (4,-1) (0,2) } DOTP

 

Output:      

Level1: '6+3*i'

__________________________________

Example #4:

 

Input:  

Level2: { (1,0) (2,-1) }

Level1: { (4,-1) (0,2) } PRODH

 

Output:      

Level1: '2+3*i'

_____________________________________________________________

 

CROSS2

 

Description: Returns the cross product of two vectors C = A × B 

Access: Library 696: LINEAL CROSS2

___________________________________

list1 CROSS2 list2 list

 

Returns the cross product of list1 and list2

list1 and list2 must have equal dimension, and

the dimension must be either 3.

 

 

Example #1:

 

Input:  

Level2: { 1 3 4 }

Level1: { 2 7 -5 } CROSS2

 

Output:      

Level1: [ -43 13 1 ]

___________________________________

Example #2:

 

Input:  

Level2: { 1 3 4 }

Level1: { a b c } CROSS2

 

Output:      

Level1: { '-(3*b)+2*c' '3*a-c' '-(2*a)+b' }

___________________________________

Example #3

 

Input:  

Level2: { 1 2 0 }

Level1: { a b 0 } CROSS2

 

Output:      

Level1: { 0 0 '-(2*a)+b' }

___________________________________

vector1 CROSS2 vector2 vector

 

Returns the cross product of vector1 and vector2

list1 and list2 must have equal dimension, and

the dimension must be either 3.

 

Example #4

 

Input:  

Level2: [ 1 2 3 ]

Level1: [ 4 5 6 ] CROSS2

 

Output:      

Level1: [ -3 6 -3 ]

 

_____________________________________________________________

 

ABS2

 

Description: Similar to abs of the (TI92+) or ABS of the (HP48 but ABS2 accepts symbolic arguments).

 

Returns the absolute value of the argument.

If the argument is a complex number, returns

the magnitude (modulos).

 

Access: Library 697: CAS48/ABS2 or CATALOG

 

___________________________________

expression expression

 

Example #1: in polar form

angle mode: « DEG CYLIN »

 

Input:

Level 1: (5,53.1301023542) DEG CYLIN ABS2

 

Output:

Level 1: 5

___________________________________

Example #2: in rectangular form

angle mode: « DEG RECT »

 

Input:

Level 1: (3,4) ABS2

 

Output:

Level 1: 5

___________________________________

Example #3: in symbolic form

 

Input:

Level 1: '3+4*i' ABS2

 

Output:

Level 1: 5

___________________________________

Example #4: in vector form

angle mode: « DEG RECT »

 

Input:

Level 1: [ 3 4 ] ABS2

 

Output:

Level 1: 5

___________________________________

Example #5: number real

 

Input:

Level 1: -3 ABS2

 

Output:

Level 1: 3

___________________________________

Example #6: in form of symbolic expression

 

Input:

Level 1: 'i^2+2*i+i+3+i' ABS2

 

Output:

Level 1: '2*ƒ5'

___________________________________

Example #7:

 

Input:

Level 1: '3*x+4*i' ABS2

 

Output:

Level 1: 'ƒ(9*x^2+16)'

___________________________________

list list

 

Example #8:

Input:

Level 1: { 3 4 } ABS2

 

Output:

Level 1: 5

___________________________________

Example #9:

Input:

Level 1: { 'COS(t)' 'SIN(t)' } ABS2

 

Output:

Level 1: 1

___________________________________

Example #10:

Input:

Level 1: { 3 4 'ƒ11' 'ƒ13' } ABS2

 

Output:

Level 1: 7

_____________________________________________________________

SIGN2

 

Access:  Library 697: CAS48 SING2 / CATALOG

 

Description: Returns the sing of the argument.

If the argument is a real expression:

 

Returns 1 if expression1 is positive.

Returns -1 if expression1 is negative.

SING2(0) returns 0

___________________________________

expression vector

 

For a expression returns A row -unit vector,

expression1/(abs(expression1)).

depending on the form of the expression.

 

Example #1:

 

Input:

Level 1: (3,4) SIGN2

 

Output:

 

Level 1: { '3/5' '4/5' }

___________________________________

Example #2:

 

Input:

Level 1: { 3 4 } SIGN2

 

Output:

Level 1: { '3/5' '4/5' }

___________________________________

Example #3:

 

Input:

Level 1: [ 3 4 ] SIGN2

 

Output:

 

Level 1: { '3/5' '4/5' }

___________________________________

Example #4:

 

Input:

Level 1: 'X+Y*i' SIGN2

 

Output:

 

Level 1: { 'X/ƒ(X^2+Y^2)' 'Y/ƒ(X^2+Y^2)' }

___________________________________

Example #5:

 

Input:

Level 1: '3*z+4*i' SIGN2

 

Output:

 

Level 1: { '3*z/ƒ(9*z^2+16)' 'INV(1/4*ƒ(9*z^2+16))' }

___________________________________

Example #6:

 

Input:

Level 1: { 'COS(t)' 'SIN(t)' } SIGN2

 

Output:

Level 1: { 'COS(t)' 'SIN(t)' }

___________________________________

Example #7:

 

Input:

Level 1: { 3 4 'ƒ11' 'ƒ13' } SIGN2

 

Output:

Level 1: { '3/7'  '4/7' '1/7*ƒ11'  '1/7*ƒ13' }

___________________________________

Example #8:

 

Input:

Level 1: 'i^2+2*i+i+3+i' SIGN2

 

Output:

Level 1: { '1/5*ƒ5'   '2/5*ƒ5' }

___________________________________

Example #9:

 

Input:

Level 1: { a b c } SIGN2

 

Output:

Level 1: { 'a/ƒ(a^2+b^2+c^2)' 'b/ƒ(a^2+b^2+c^2)' 'c/ƒ(a^2+b^2+c^2)' }

___________________________________

 

CONJ2

 

Description: Returns the complex conjugate of the

argument.

 

To calculate this command in each element you should apply successively « CONJ2 » with the command MAPRG.

 

___________________________________

Example #1:

 

Input:

Level 1: Z CONJ2

 

Output:

Level 1: Z

___________________________________

Example #2:

 

Input:

Level 1: 'X-Y*i' CONJ2

 

Output:

Level 1: 'X+Y*i'

___________________________________

Example #3:

 

Input:

Level 1: {{ 2 '1-3*i' }

          { '-i' -7  }} « CONJ2 » MAPRG

 

Output:

Level 1: {{ 2 '1+3*i' }

          { 'i' -7  }}

_____________________________________________________________

 

'2*i' RAD ANGLE

 

'/2'

___________________________________

 

'1+i' RAD ANGLE

 

'1/4*'

___________________________________

 

'x+y*i' RAD ANGLE

 

'1/2**SIGN(y)-ATAN(x/y)'

_____________________________________________________________

 

{{ a b }

 { c d }} NORMAT

 

'ƒ(a^2+b^2+c^2+d^2)'

___________________________________

 

{{ 1 2 }

 { 3 4 }} NORMAT

 

'ƒ30'

_____________________________________________________________

 

{ 'EXP(3*t)' 'EXP(-3*t)' t }

t WRONSKYAN

 

{{ 'EXP(3*t)' 'EXP(-3*t)' t }

 { '3*EXP(3*t)' 'INV(-(1/3*EXP(3*t)))' 1 }

 { '9*EXP(3*t)' 'INV(1/9*EXP(3*t))' 0 }}

 

:DET=: '54*t'

___________________________________

 

{ 'EXP(t)' 'EXP(2*t)' 'EXP(3*t)' }

t WRONSKYAN

 

{{ 'EXP(t)' 'EXP(2*t)' 'EXP(3*t)' }

 { 'EXP(t)' '2*EXP(2*t)' '3*EXP(3*t)' }

 { 'EXP(t)' '4*EXP(2*t)' '9*EXP(3*t)' }}

 

:DET=: '2*EXP(6*t)'

_____________________________________________________________

 

.+ similar to .+ of the (TI92+)

 

{ 1.9 'EXP(1)' 'COS(t)^2' }

 

{ 0.1 'i' 'SIN(t)^2' } .+

 

{ 3 'i+EXP(1)' 1 }

___________________________________

 

{{ a b }

 { c E }}

 

[[ 1 0 ]

 [ 0 1 ]] MADD or .+

 

{{ 'a+1' b }

 { c 'E+1' }}

_____________________________________________________________

 

{{ a 2 }

 { b 3 }}

 

{{ c 4 }

 { d 5 }} MSUB or .-

 

{{ 'a-c' -2 }

 { 'b-d' -2 }}

___________________________________

 

{ 'EXP(X)' 'i' '' }

 

{ 'INV(EXP(X))' 'i' .5 } .*

 

{ 1 -1 '1/2*' }

___________________________________

 

{{ a 2 }

 { b 3 }}

 

{{ c 4 }

 { d 5 }} HADAMARD or .*

 

{{ 'a*c' 8 }

 { 'b*d' 15 }}

_____________________________________________________________

 

{ 'ƒX' X }

 

{ X 'ƒX' } ./

 

{ 'INV(ƒX)' 'ƒX' }

___________________________________

 

{{ a 2 }

 { b 3 }}

 

{{ c 4 }

 { d 5 }} MDIV or ./

 

{{ 'a/c' '1/2' }

 { 'b/d' '3/5' }}

_____________________________________________________________

 

{ 'x+y' 'e' 'EXP(y)' }

 

{ 2 'LN(z)' 'LN(x)' } .^

 

{ 'x^2+2*x*y+y^2' z 'x^y' }

___________________________________

 

{{ a 2 }

 { b 3 }}

 

{{ c 4 }

 { 5 d }} .^

 

{{ 'a^c' 16 }

 { 'b^5' '3^d' }}

_____________________________________________________________

 

AUGMENT similar to AUGMENT of the (TI92+)

 

{{ 1 2 3 }}

 

{ X } AUGMENT

 

{{ 1 2 3 X }}

___________________________________

 

{{ 1 2 }

 { 3 X }}

 

{ 5 6 } AUGMENT

 

{{ 1 2 5 }

 { 3 X 6 }}

___________________________________

 

{{ 1 2 }

 { 3 X }}

 

{{ 5 }

 { 6 }} AUGMENT

 

{{ 1 2 5 }

 { 3 X 6 }}

___________________________________

 

{{ 1 2 }

 { 3 X }}

 

{{ 1 0 }

 { 0 1 }} APPENDCOL

 

{{ 1 2 }

 { 3 X }

 { 1 0 }

 { 0 1 }}

_____________________________________________________________

 

2 RANDMAT

 

[[ 3 -4 ]

 [ 6 -1 ]]

___________________________________

 

3 RANDVECTOR

 

[ 3 -8 -5 ]

___________________________________

 

RANDPOLY similar to RANDPOLY of the (TI92+)

 

5 RANDPOLY

 

'7*X^5-X^4+7*X^3-5*X^2+2*X+2'

_____________________________________________________________

 

{{ 1 2 }

 { a b }} 2 POWMATRIX

 

{{ '2*a+1' '2*b+2' }

 { 'a*b+a' '2*a+b^2' }}

___________________________________

 

{{ 1 2 }

 { a b }} -1 POWMATRIX

 

{{ '-b/(2*a-b)' 'INV(a-1/2*b)' }

 { 'a/(2*a-b)' 'INV(-(2*a)+b)' }}

___________________________________

 

{{ 1 2 }

 { a b }} INVS

 

{{ '-b/(2*a-b)' 'INV(a-1/2*b)' }

 { 'a/(2*a-b)' 'INV(-(2*a)+b)' }}

___________________________________

 

[[ 1 2 ]

 [ 3 4 ]] -2 POWMATRIX

 

{{ '11/2' '-(5/2)' }

 { '-(15/4)' '7/4' }}

_____________________________________________________________

 

CUMSUM similar to CUMSUM() of the (TI92+)

 

{ 1 2 3 4 } CUMSUM

 

{ 1 3 6 10 }

___________________________________

 

{ a b c } CUMSUM

 

{ a 'a+b' 'a+(b+c)' }

_____________________________________________________________

 

{ X Y Z } MDIAG

 

{{ X 0 0 }

 { 0 Y 0 }

 { 0 0 Z }}

_____________________________________________________________

 

VECTOR similar to VECTOR of the (DERIVE V5.02)

 

VECTOR(u, k, n) simplifies to a vector of n elements

generated by simplifying the expression u(k)

with the variable k stepping from begin through n

in steps of size m.

 

example #1:

 

VECTOR(x^2,x,1,5,1)

 

where

level 5: x^2 expression

level 4: x variable

level 3: 1 begin

level 2: 5 end(n)

level 1: 1 step(m)

 

'x^2' x 1 5 1 VECTOR

 

{{ 1 }

 { 4 }

 { 9 }

 { 16 }

 { 25 }}

___________________________________

 

example #2:

 

VECTOR(j!,j,0,4,1)

 

'j!' j 0 4 1 VECTOR

 

[[ 1 ]

 [ 1 ]

 [ 2 ]

 [ 6 ]

 [ 24 ]]

___________________________________

 

VECTOR(SIN(z),z,0,/4,0.2)

 

'SIN(z)' z 0 '/4' .2 VECTOR

 

[[ 0 ]

 [ .198669330795 ]

 [ .389418342309 ]

 [ .564642473395 ]]

 

{{ 0 }

 { 'SIN(1/5)' }

 { 'SIN(2/5)' }

 { '3/5' } }

___________________________________

 

example #4:

 

VECTOR({x,x^2,x^3},x,1,4,1)

 

{ x 'x^2' 'x^3' } x 1 4 1 VECTOR

 

[[ 1 1 1 ]

 [ 2 4 8 ]

 [ 3 9 27 ]

 [ 4 16 64 ]]

___________________________________

 

example #5:

 

VECTOR({x+y,x^2},x,1,4,1.5)

 

{ 'x+y' 'x^2' } x 1 4 1.5 VECTOR

 

{{ '1+y' 1 }

 { '2.5+y' 6.25 }

 { '4+y' 16 }}

___________________________________

 

'GAMMA(X)'

X

1

10

1 VECTOR

 

[[ 1 ]

 [ 1 ]

 [ 2 ]

 [ 6 ]

 [ 24 ]

 [ 120 ]

 [ 720 ]

 [ 5040 ]

 [ 40320 ]

 [ 362880 ]]

___________________________________

 

{ X «X FIBONACCI» }

X

1

9

1 VECTOR

 

[[ 1 1 ]

 [ 2 1 ]

 [ 3 2 ]

 [ 4 3 ]

 [ 5 5 ]

 [ 6 8 ]

 [ 7 13 ]

 [ 8 21 ]

 [ 9 34 ]]

____________________________________

 

{ X «X FACTOR» }

X

1

10

1 VECTOR

 

{{ 1 1 }

 { 2 2 }

 { 3 3 }

 { 4 '2^2' }

 { 5 5 }

 { 6 '2*3' }

 { 7 7 }

 { 8 '2^3' }

 { 9 '3^2' }

 { 10 '2*5' }}

____________________________________________________________

 

SORTA   similar to SortA() of the (TI92+)

 

Sorts the elements of the first argument in

ascending order.

 

[ 2 1 4 3 ] SORTA

 

{ 1 2 3 4 }

___________________________________

 

{ e '' 'ƒ2' 3 } SORTA

 

{ 'ƒ2' 'EXP(1)' 3 '' }

___________________________________

 

[[ 2 3 ]

 [ 3 1 ]

 [ 2 1 ]

 [ 1 5 ]] SORTA

 

{{ 1 5 }

 { 2 3 }

 { 2 1 }

 { 3 1 }}

___________________________________

 

SORTD similar to SortD() of the (TI92+) Identical to SORTA, except SORTD sorts the elements in descending order.

 

[ 2 1 4 3 ] SORTD

 

{ 4 3 2 1 }

___________________________________

 

{ A a E C F } SORTD

 

{ a F E C A }

_____________________________________________________________

 

'COS(x)'

'x'

0

'' ARCLEN

 

3.82019778903

_____________________________________________________________

 

[[ 1 5 3 ]

 [ 4 2 1 ]

 [ 6 -2 1 ]] MCOS

 

[[ .212493123035 .205063658269 .12138913931 ]

 [ .160870605001 .259041970092 3.71256719027E-2 ]

 [ .248078814643 -9.01529518783E-2 .218971555953 ]]

___________________________________

 

[[ 1 5 3 ]

 [ 4 2 1 ]

 [ 6 -2 1 ]] MEXP

 

[[ 782.208648399 559.616918461 456.508698092 ]

 [ 680.546446868 488.795481398 396.521387369 ]

 [ 524.929209349 371.221785757 307.878642269 ]]

___________________________________

 

[[ .2 0 ]

 [ 1 -.3 ]

 [ .4 -.5 ]] MEDIAN

 

[ .4 -.3 ]

___________________________________

 

[[ 18 12 ]

 [ 4 7 ]

 [ 3 2 ]

 [ 11 1 ]

 [ 31 48 ]

 [ 20 17 ]] MEDIAN

 

[ 14.5 9.5 ]

___________________________________

 

[ 8 3 1 5 2 ]

50 %TILE

 

3

___________________________________

 

[[ 0 0 ]

 [ 1 2 ]

 [ 2 3 ]

 [ 3 4 ]

 [ 4 3 ]

 [ 5 4 ]

 [ 6 6 ]] ONETWOVAR

 

{{ :STAT: { X   Y }}

 { ::    { 21 22 }}

 { :nStat:{ 7 7 } }

 { ::    { 3 3.14285714286 }}

 { :²:   { 91 90 }}

 { :xy:  { 88 88 }}

 { :min:  { 0 0 }}

 { :max:  { 6 6 }}

 { :SDEV: { 2.16024689947 1.86445447147 }}

 { :VAR:  { 4.66666666667 3.47619047619 }}

 { :PSDEV:{ 2 1.7261494248 }}

 { :PVAR: { 4 2.97959183673 }}}

_____________________________________________________________

 

PTCHEBYCHEV similar to CHEBYCHEV_T(n, x) of the (DERIVE V5.02)

 

0

X PTCHEBYCHEV

 

1

___________________________________

 

1

X PTCHEBYCHEV

 

X

___________________________________

 

6

X PTCHEBYCHEV

 

'32*X^6-48*X^4+18*X^2-1'

___________________________________

 

PUCHEBYCHEV similar to CHEBYCHEV_U(n, x) of the (DERIVE V5.02)

 

0

X PUCHEBYCHEV

 

1

___________________________________

 

1

X PUCHEBYCHEV

 

'2*X'

___________________________________

 

6

X PUCHEBYCHEV

 

'64*X^6-80*X^4+24*X^2-1'

 

___________________________________

 

5

'COS(X)' PUCHEBYCHEV

 

'32*COS(X)^5-32*COS(X)^3+6*COS(X)'

___________________________________

 

PLEGENDRE similar to LEGENDRE_P(n, x) of the (DERIVE V5.02)

 

0

X PLEGENDRE

 

1

___________________________________

 

1

X PLEGENDRE

 

X

___________________________________

 

6

X PLEGENDRE

 

'1/16*(231*X^6-315*X^4+105*X^2-5)'

___________________________________

 

PALEGENDRE similar to ASSOCIATED_LEGENDRE_P(n, m, x) of (DERIVE V5.02)

 

4

2

X PALEGENDRE

 

'15/2*(7*X^2-1)*(1-SQ(X))'

___________________________________

 

0

X PHERMITE

 

1

___________________________________

 

 

1

X PHERMITE

 

'2*X'

___________________________________

 

6

X PHERMITE

 

'64*X^6-480*X^4+720*X^2-120'

___________________________________

 

PLAGUERRE similar to LAGUERRE_L(n, x) of the (DERIVE V5.02)

 

0

X PLAGUERRE

 

1

___________________________________

 

1

X PLAGUERRE

 

'-X+1'

___________________________________

 

4

X PLAGUERRE

 

'1/24*(X^4-16*X^3+72*X^2-96*X+24)' SIMPLIFY

 

'1/24*X^4-2/3*X^3+3*X^2-4*X+1'

___________________________________

 

PGLAGUERRE similar to GENERALIZED_LAGUERRE(n, a, x) of (DERIVE V5.02)

 

5

2

X PGLAGUERRE

 

'-(1/120)*(X^5-35*X^4+420*X^3-2100*X^2+4200*X-2520)'

___________________________________

 

2

1

'COS(X)' PALEGENDRE

 

'3*COS(X)*SIN(X)'

___________________________________

 

2

1

Ø PSPHERICALHARM

 

'-(ƒ(5/(24*))*(3*COS()*SIN()*EXP(i*Ø)))'

 

_____________________________________________________________

 

100 MODSTO 2 500 POWMOD

76

___________________________________

 

2.3 ERF  .998856823403

___________________________________

 

2.3 ERFC 1.14317659736E-3

____________________________________________________________

 

PARTFRAC

 

Description:  Performs partial fraction decomposition on a partial fraction.

Access:  Library 697: CAS48 PARTFRAC

 

Input: Level 2: An algebraic expression.

       Level 1: A variable(s)

Output: The partial fraction decomposition of the expression.

 

Example #1: Perform a partial fraction decomposition of the following expression:

 

Input:

Level 2: '1/(X^2-1)'

Level 1: 'X' PARTFRAC

 

Output:

Level 1: '1/(2*(X-1))-1/(2*(X+1))'

 

Input:           Output:

 

 

Example #2:  Perform a partial fraction decomposition of the following expression:

Input:

 

Level 2: '(10*S+20)/(S^3+4*S^2+5*S)'

Level 1: 'S' PARTFRAC

 

Output:

Level 1:'4/S-(4*S+6)/(S^2+4*S+5)''4/S+(-2-i)/(S-i+2)+(-2+i)/(S+i+2)'

 

Input:           Output: real      complex

  

 

'(10*S+20)/(S^3+4*S^2+5*S)'

'S' CPARTFRAC

 

Output:

Level 1: '4/S+(-2-i)/(S+2-i)+(-2+i)/(S+2+i)'

____________________________________________________________

 

SUBST

 

Description:  Substitutes value(s) for a variable in an expression. The value can be numeric or an expression.

 

Access: Library 697: CAS48 SUBST

Input:  Level  2:  An expression(s).

        Level  1:  The value or expression to be substituted.

Output: The expression with the substitution made.

 

Example #1:  Substitute x=z+1 for x in the following expression, and apply the EXPAND command to simplify the result:

 

Input:

Level 2: 'X^2+3*X+7'

Level 1: 'X=Z+1' SUBST

 

Output 1:

Level 1: '(Z+1)^2+3*(Z+1)+7' SIMPLIFY

Output 2:

Level 1: 'Z^2+5*Z+11'

 

Example #2:

 

Input:

Level 2: { 'X-2*COS(t)' 'Y-2*SIN(t)' 'Z=t' }

Level 1: 't=0' SUBST

 

Level 1: { 'X-2*COS(0)' 'Y-2*SIN(0)' 'Z=0' } SIMPLIFY

Level 1: { 'X-2' 'Y-0' 'Z=0' }

 

Example #3:

 

Input:        

Level 2: {{ 'X-2*COS(t)'  }

          { 'Y-2*SIN(t)'  }

          { 'Z=t'         }

          { 'R^2=a^2+b^2' }}

 

Level 1: { 't=0' 'a=3' 'b=4' } SUBST

 

Output:  

Level 1: {{ 'X-2*COS(0)' }

          { 'Y-2*SIN(0)' }

          { 'Z=0' }

          {'R=3^2+4^2' }} SIMPLIFY

{{ 'X-2' }

 { 'Y-0' }

 { 'Z=0' }

 { 'R^2=25' }}

_____________________________________________________________

PROOT

 

Description:  For a rational polynomial, returns an Vector(list) of  PROOT

Access: Library 697: CAS48 PROOT

Input: Level 2: A Vector { xi }, Matrix {{ xi }}or rationalpolynomial.

       Level 1: A variable

Output: A Vector { xi } of the form {Root1  Root2 . . .}

 

{ a b c }

 

X PROOT

 

{ :X1: '-(b/(a*2))+ ƒ(SQ(-(b/(a*2)))-c/a)'

  :X2: '-(b/(a*2))- ƒ(SQ(-(b/(a*2)))-c/a)' }

___________________________________

 

{ 1 (-12,-4) (73,36) (-232,-184) (363,376) (-268,-324) (75,100) }

 

X PROOT

 

{ 1 1 1 '3-4*i' '3+4*i' '3+4*i' }

 

See also: PROOT

______________________________________________________________

 

{ 1 1 1 '3-4*i' '3+4*i' '3+4*i' }

 

X RPOL

 

'X^6+(-12,-4)*X^5+(73,36)*X^4+(-232,-184)*X^3+(363,376)*X^2+(-268,-324)*X+(75,100)'

___________________________________

 

{ 1 (-12,-4) (73,36) (-232,-184) (363,376) (-268,-324) (75,100) }

 

X PMROOT

 

{{ 1 3 }

 { '3-4*i' 1 }

 { '3+4*i' 2 }}

___________________________________

 

{ 2 '1/3' 'A+B' }

 

X RPOL

 

'X^3+(-7/3-(A+B))*X^2+(2/3-7/3*-(A+B))*X+2/3*-(A+B)'

___________________________________

 

'X^3+(-7/3-(A+B))*X^2+(2/3-7/3*-(A+B))*X+2/3*-(A+B)'

 

SOLVEVX

 

{{ 'X-2=0' }

 { '3*X-1=0' }

 { 'X-(A+B)=0' }}

_____________________________________________________________

 

LINSOLVE

 

Description: Solves a system of linear equations A*X=b.

Access: Library 697: CAS48 LINSOLVE

 

Example #1:  Solve:

 

Input(Levels):

 

3: [[ 2 4 6 ]

    [ 4 5 6 ]

    [ 3 1 -2 ]]

 

2: [ 18 24 4 ]

1: { X Y Z } LINSOLVE  [ENTER]

 

Output(Levels):

 

1: { :X: 4 :Y: -2 :Z: 3 }

___________________________________

 

[[ 2 4 6 ]

 [ 4 5 6 ]

 [ 3 1 -2 ]] (3*3)

 

[[ 18 ]

 [ 24 ]

 [ 4 ]] (3*1)

 

{{ X }

 { Y }

 { Z }} (3*1) LINSOLVE [ENTER]

 

A(3*3)*x(3*1)=b(3*1)

        (3*1)=(3*1)

 

{ :X: 4 :Y: -2 :Z: 3 }

___________________________________

 

[[ 1 2 ]

 [ 3 4 ]]

 

[[ 1 2 ]

 [ -1 -3 ]]

 

{ X Y } LINSOLVE

 

{ :X: { -3 -7 }

  :Y: { 2 4.5 } }

 

See also:  AX=B

 

Input:                          Output:

 

___________________________________

 

Example #2:

Solve: ax + by = 1

       cx + dy = 2

 

Input(Levels):

 

3: {{ a b }

    { c d }}

2: {{ 1 }

    { 2 }}

1: { x y } LINSOLVE [ENTER]

 

Output(Levels):

 

1:      

{ :x: '(-(2*b)+d)/(a*d-b*c)'

  :y: '(2*a-c)/(a*d-b*c)' }

___________________________________

 

{{ a b }

 { c d }}

 

{{ 1 u }

 { 2 3 }}

 

{ x y } LINSOLVE [ENTER]

 

{ :x: { '(-(2*b)+d)/(a*d-b*c)' '(-(3*b)+d*u)/(a*d-b*c)' }

   :y: { '(2*a-c)/(a*d-b*c)' '(3*a-c*u)/(a*d-b*c)'       } 

_____________________________________________________________

DETS

 

Description:  Returns the determinant of a square matrix with or without symbolic elements.

Access: Library 697: CAS48 DETS

 

Example #1: 

 

Input(Levels):

 

1: {{ 'X-5' -8 -16 }

    { -4 'X-1' -8  }

    { 4 4 'X+11'   }} DETS

                    

Output(Levels):

 

1: 'X^3+5*X^2+3*X-9'

 

Input:                         Output:                                       

 

_____________________________________________________________

SOLVE

 

Description:  Solution of systems of nonlinear polynomial equations.

Access: Library 697: CAS48 SOLVE

 

Input:

Level 2: A Vector { xi } of equations.

Level 1:  A Vector { xi } of variables.

 

Example #1:

 

{ 'X+Y=3' 'X*Y=2' }

{ X Y } SOLVE

 

{ 'X-1=0' 'Y-2=0' }

{ 'X-2=0' 'Y-1=0' }

___________________________________

 

Example #2:

 

{ 'X+Y+Z=6' 'X*Y+X*Z+Y*Z=11' 'X*Y*Z=6' }

{ X Y Z } SOLVE

 

{ 'X-1=0' 'Y-2=0' 'Z-3=0' }

{ 'X-2=0' 'Y-1=0' 'Z-3=0' }

{ 'X-1=0' 'Y-3=0' 'Z-2=0' }

{ 'X-3=0' 'Y-1=0' 'Z-2=0' }

{ 'X-2=0' 'Y-3=0' 'Z-1=0' }

{ 'X-3=0' 'Y-2=0' 'Z-1=0' }

___________________________________

 

Example #3:

 

{ 'X+Y=-b' 'X*Y=c' }

{ X Y } SOLVE

{ 'X+Y+b=0' 'Y^2+b*Y+c=0' }

___________________________________

 

Example #4:  Solve:

 

Input:

Level 2: {'1/9*X^2+1/16*Y^2-1' '4*Y=2/9*X*ß' 4*X=1/8*Y*ß'}

Level 1: { X Y ß } 20 CF SOLVE

 

Output

Level 1: { '4*X-3*Y=0' 'Y^2-8=0' 'ß-24=0' }

          { '4*X+3*Y=0' 'Y^2-8=0' 'ß+24=0' }

 

Level 1: { 'X=s1*(3*Y/4)' 'Y=s1*2.82842712475' 'ß=s1*124' } *s1=±

___________________________________

 

Example #5:  Solve:

 

Input:

Level 2: { '2*X-3*Y-4*Z-49' '4*X=2*ß' '2*Y=-(3*ß)' '6*Z=-(4*ß)' }

Level 1: { X ß Y Z } SOLVE

 

Output  #1:  { 'ß-6=0' 'X-3=0' 'Y+9=0' 'Z+4=0' }

Output  #2:  { 'ß=6' 'X=3' 'Y=-9' 'Z=-4' }

___________________________________

 

Example #6:  Solve:

 

Input:

Level 2:{ 'X^2+Y^2-2' 'X+Z-1' '1=2*X*ß+µ' '1=2*Y*ß' '1=µ' }

Level 1:{ X Y Z ß µ } SOLVE

 

Output #1: { 'X=0' 'Y-4*ß=0' 'Z-1=0' '-µ+1=0' '8*ß^2-1=0' }

Output #2: { 'X=0' 'Y=4*ß' 'Z=1' 'µ=1' 'ß^2=1/8' }

___________________________________

 

{ 'X^2+Y^2=r^2' '(X-r)^2+Y^2=r^2' }

 

{ X Y } SOLVE

 

{{ 'X^2+Y^2=0' 'r=0' }

 { '2*X-r=0' '4*Y^2-3*r^2=0' }} EVAL {X Y} ISOL

 

{ 'X=r/2' 'Y=s1*ƒ(3*r^2/4)' }

 

See also: LINSOLVE

_____________________________________________________________

 

TABVAL similar to TABLE of the (DERIVE V5.02)

 

Description: For an Algebraic Expression or Equations and a List of Values, returns the results of substituting the values for the Variable in the Algebraic Expression or Equations.

 

Access: Library 697: CAS48 TABVAL

 

Input:

Level 3: A Vector { xi } of Equations or an Algebraic expression.

Level 2: A Variable to be evaluated

Level 1: A Vector { xi } of values for which the expression is to be evaluated.

 

Output:

Level 1: A Matrix of values evaluated.

 

Example #1:  Substitute 1, 2, and 3 into 'X^2+1'

Input:

Level 3: 'X^2+1'

Level 2: X

Level 1: { 1 2 3 } TABVAL [ENTER]

Output:

Level 2:  

Input:            Output:

    

 

Example #2:  Substitute  0, ,  /2, /4, 2*  for t

Input:

Level 3: { 'X=2*COS(t)' 'Y=2*SIN(t)' 'Z=t' }

Level 2: t

Level 1: { 0 '' '/2' '/4' '2*' }TABVAL [ENTER]

 

Output:

Level 1:

{{ t 'X=2*COS(t)' 'Y=2*SIN(t)' 'Z=t' }

 { 0 'X=2' 'Y=0' 'Z=0' }

 { '' 'X=-2' 'Y=0' 'Z=' }

 { '/2' 'X=0' 'Y=2' 'Z=1/2*' }

 { '/4' 'X=ƒ2' 'Y=ƒ2' 'Z=1/4*' }

 { '2*' 'X=2' 'Y=0' 'Z=2*' }}

 

See also:  WTABVAL

 

Input:            Output:

    

___________________________________

 

{ 'x^2' 'x^3' 'x^4' }

x

5 TABVAL

 

{{ x 'x^2' 'x^3' 'x^4' }

 { 1 1 1 1 }

 { 2 4 8 16 }

 { 3 9 27 81 }

 { 4 16 64 256 }

 { 5 25 125 625 }}

___________________________________

 

'J!'

J

« J 0 4 1 » TABVAL

 

{{ J 'J!' }

 { 0 1 }

 { 1 1 }

 { 2 2 }

 { 3 6 }

 { 4 24 }}

___________________________________

 

'k^2'

k

{ 2 3 5 7 11 } TABVAL

 

{{ k 'k^2' }

 { 2 4 }

 { 3 9 }

 { 5 25 }

 { 7 49 }

 { 11 121 }}

___________________________________

 

{ 'SIN(z)' 'COS(z)' }

z

« 'z' 0 '/4' .2 » TABVAL APPROXIMATE

 

{{ z 'SIN(z)' 'COS(z)' } 

 { 0 0 1 }

 { .2 .198669330795 .98006657843 }

 { .4 .389418342387 .921060994074 }

 { .6 .564642473398 .825335614254 }}

____________________________________________________________

 

DERIVS

 

Description:  Returns the partial derivative of a function (Algebraic expression), with respect to the specified variable.

Access: Library 697: CAS48 DERIVS

 

Input:

Level 2:  A function or a Vector { xi }.

Level 1:  variable.

 

Output: The derivative, or a vector of the derivatives, of the function or functions.

 

Example #1: Find the derivative of the following function:

 

Input:

Level 2: '2*LN(TAN(0.5*ƒX))'

Level 1: 'X' DERIVS

 

Output:

Level 1: '(TAN(1/2*ƒX)^2+1)/(2*ƒX*TAN(1/2*ƒX))'

 

Input:           Output:

  

 

Example #2:  Find the derivative of the following function:

 

Input:

Level 2: { 'X^2*Y+Z^2*Y' 'SIN(X)' }

Level 1: 'X' DERIVS

 

Output:

Level 1: { '2*X*Y' 'COS(X)' }

___________________________________

 

'F(X)*G(X)'

X DERIVS

 

'ˆX(F(X))*G(X)+ˆX(G(X))*F(X)'

___________________________________

 

'F(X)/G(X)'

X DERIVS

 

'(ˆX(F(X))*G(X)-ˆX(G(X))*F(X))/G(X)^2'

___________________________________

 

'F(X)^N'

X DERIVS

 

'N*F(X)^(N-1)*ˆX(F(X))'

___________________________________

 

'3*X^3-X+7'

X

2 DERIVN

 

'18*X'

___________________________________

 

'X^2'

X

-1 DERIVN

 

'1/3*X^3'

_____________________________________________________________

INTGRS

 

Description: Calculates symbolically and Evaluate a definite or indefinite integral.

Access: Library 697: CAS48  INTGRS

 

Input:

Level 4:  An Algebraic Expression

Level 3:  A Variable

Level 2:  The lower limit. NOVAL for out value or indefinite.

Level 1:  The upper limit. NOVAL for out value or indefinite.

 

Output:

Level 2:  The result symbolic.

Level 1:  The result of the evaluation if you limit.

 

Example #1:  Evaluate  0 3'X^3+3*X' dX

Input:

Level 4: 'X^3+3*X'

Level 3: 'X'

Level 2: 0

Level 1: 3

INTGRS [ENTER]

 

Output:

Level 2: '1/4*X^4+3/2*X^2'

Level 1: '135/4'

 

See also:  WINTGR

 

Input:             Output:

  

 

Example #2:  Calculate '1/(X^2-2)'

Input:

Level 4:  '1/(X^2-2)'

Level 3:  'X'

Level 2:  NOVAL

Level 1:  NOVAL

INTGRS [ENTER]

Output:

Level 1:  '-(1/4*ƒ2*LN(X+ƒ2))+1/4*ƒ2*LN(X-ƒ2)'

 

Input:            Output:

   

_____________________________________________________________

GRADIENT

 

Description: Returns the GRADIENT of an  Algebraic Expression.

compute the general form of the gradient in the Cartesian coordinate system

Access: Library 697: CAS48  GRADIENT

 

Input:

Level 2: An Algebraic Expression.

Level 1: A list  containing the Variables.

 

Output:

Level 1:  The GRADIENT of the Algebraic Expression with respect to the specified Variables.

 

Example #1:  Find the gradient of the following algebraic expression of the spatial variables x, y, and z:

Input:

Level 2: '2*X^2*Y+3*Y^2*Z+Z*X'

Level 1: { X Y Z } GRADIENT [ENTER]

Output:

Level 1: { '4*X*Y+Z' '2*X^2+6*Y*Z' 'X+3*Y^2' }

 

Input:            Output:

 

 

Example #2: Find the gradient of the following algebraic expression of the spatial variables x, y, and z:

 

Input:

Level 2: 'X^2*Y+Z^2*Y'

Level 1: { X Y Z } GRADIENT [ENTER]

 

Output:

Level 1: { '2*X*Y' 'X^2+Z^2' '2*Y*Z' }

 

Input:           Output:

 

___________________________________

 

Example #3: 

 

'x*y^2*z^3'

{ x y z } GRADIENT

 

{ 'y^2*z^3' '2*x*y*z^3' '3*x*y^2*z^2' }

___________________________________

 

Example #4: 

 

'c*w+x^2+y^3+z^4'

{ w x y z } GRADIENT

 

{ c '2*x' '3*y^2' '4*z^3' }

___________________________________

 

Example #5: 

 

'x*y'

{ x y } GRADIENT

 

{ y x }

___________________________________

 

{ y x }

{ x y } POTENTIAL

 

'x*y'

___________________________________

 

{ 'y^2*z^3' '2*x*y*z^3' '3*x*y^2*z^2' }

{ x y z } POTENTIAL

 

'x*y^2*z^3'

 

See also:  WDIV

_____________________________________________________________

DIV

 

Description: Returns the DIVERGENCE of an Vector Function.

Access:

 

Input:

Level 2: A Vector Function: Vector { xi }.

Level 1: A list containing the Variables (n<=3)

Output:

Level 1: The DIVERGENCE of the Vectorial Function with respect to the specified variables.

 

Example #1:  Find the divergence of the following Vectorial Function.

Input:

Level 2: { 'X^2*Y' 'X^2*Y' 'Y^2*Z' }

Level 1: { X Y Z } DIV [ENTER]

Output:

Level 1: 'X^2+2*X*Y+Y^2'

 

See also:  WDIV

Input:            Output:

 

 

Example #2: Find the divergence of the following Vectorial Function

Input:

Level 2: { 'Y*COS(X)' 'X*SIN(Y)' }

Level 1: { X Y } DIV [ENTER]

Output:

Level 1: 'X*COS(Y)-Y*SIN(X)'

 

See also:  WDIV

Input:           Output:

 

_____________________________________________________________

 

CURL

Type: Command

Description: Returns the ROTATIONAL of an Vector Function.

Access: Library 697: CAS48  CURL

 

Input:

Level 2: A Vector Function: Vector { xi }.

Level 1: A  list containing the Variables (n<=3)

Output:

Level 1: The ROTATIONAL of the Vector Function with respect to the specified variables.

 

Example #1:  Find the rotation of the following Vector Function.

Input:

Level 2: { 'X^2*Y' 'X^2*Y' 'Y^2*Z' }

Level 1: { X Y Z } CURL [ENTER]

Output:

Level 1: { '2*Y*Z' 0 '-X^2+2*X*Y' }

 

Input:           Output:

 

 

Example #2: Find the rotation of the following Vector Function

Input:

Level 2: { 'X^3*Y^2*Z' 'X^2*Z' 'X^2*Y' }

Level 1: { X Y Z } CURL [ENTER]

Output:

Level 1: { 0 'X^3*Y^2-2*X*Y' '-(2*X^3*Y*Z)+2*X*Z' }

 

Input:           Output:

  

See also:  WDIV

_____________________________________________________________

LAPLACIAN

 

'x*y^2*z^3'

{ x y z } LAPLACIAN

 

'6*x*y^2*z+2*x*z^3'

___________________________________

 

'X^2+2*X*Y'

{ X Y } LAPLACIAN

 

2

_____________________________________________________________

MAPRG

 

Description: Applies a specified program to a list of objects or matrix.

Access: Library 697: CAS48 MAPRG

 

Input: An object or Vector { xi }of objects.

Output: The new applied object the program.

 

Example #1:  Find the approximate value of /2, 3*e, and 4cos(2).

 

Input:

Level 2: { '/2' '3*e' '4*COS(2)' }

Level 1: « NUM » MAPRG

 

Output:

Level 1: { 1.5707963268 8.15484548538 -1.66458734619 }

 

 

Example #2: Evaluates.

 

Input:

Level 2: {{ 'ƒ4*3_N' 'SIN(/2)' 'ˆX(X^2*Y)' }}

Level 1:  « EVAL » MAPRG

 

Output 1: {{ '6_N'  1 'ˆX(X^2)*Y+X^2*ˆX(Y)'}} «EVAL» MAPRG       

Output 2: {{ '6_N'  1 'ˆX(X)*2*X^(2-1)*Y'  }} «EVAL» MAPRG

Output 3: {{ '6_N'  1 '2*X*Y' }}

_____________________________________________________________

XNUM

 

Description:   Converts an object or a Vector { xi } to approximate numeric format.

 

Access: Library 697: CAS48 XNUM

 

Input: An object or Vector { xi } of objects.

Output: The objects in numeric format.

 

Example #1:  Find the approximate value of /2, 3*e, and 4cos(2).

 

Input:

Level 1: { '/2' '3*e' '4*COS(2)' } XNUM

 

Output:

Level 1: { 1.5707963268 8.15484548538 3.99756330808 }

 

Example #2:

 

Input:

{{ 'LN(e)' 'EXP(1)' 'i' 'ƒ2' MAXR '0.5*' }} XNUM

 

Output:

{{ 1 2.71828182846 (0,1) 1.41421356237 9.99999999999E499 1.5707963268 }}

 

See also: XQ XQ AXM XEVAL MAPRG

_____________________________________________________________

XEVAL

 

Description:   Evaluates an object or a Vector { xi } of objects.

Access:  Library 697: CAS48 XEVAL

 

Input: An object or Vector { xi } of objects.

Output: The objects evaluated.

 

Example: Evaluate.

 

{{'ƒ4*3_N' 'ˆX(X^2*Y)' }} XEVAL

 

Output 1: {{ '6_N'  'ˆX(X^2)*Y+X^2*ˆX(Y)' }} XEVAL

        

2: {{ '6_N'  'ˆX(X)*2*X^(2-1)*Y'}} XEVAL

3: {{ '6_N'  '2*X*Y' }}

 

See also:  MAP XNUM

_____________________________________________________________

PCOEF

 

Description: Returns a list of coefficients of a polynomial expression.

Access:  Library 697: CAS48 PCOEF

 

Input: Level 2:  The polynomial expression.

       Level 1:  The variable of polynomial.

 

Output: A Vector { xi } of the coefficient that the polynomial contains.

 

Example #1:  To find the coefficients of the following polynomial

 

Input:

Level 2: 'X^2+5*X+6'

Level 1: 'X' PCOEF

 

Output:

Level  1:  { 1 5 6 }

 

Example #2:  To find the coefficients of the following polynomial

 

Input:

Level 2: 'u*Y^5+ß*Y^3+C'

Level 1: 'Y' PCOEF

 

Output :

Level 1: { u 0 ß 0 0 C }

 

Example #3:  To find the coefficients of the following polynomial

 

Input: 

Level 2: '2*C*L*R*S^2+C*R^2*S+3*L*S+2*R'

Level 1: 'S' PCOEF

 

Output :

Level 1: { '2*C*L*R' 'C*R^2+3*L' '2*R' }

 

Example #4:  To find the coefficients of the following polynomial

 

Input: 

Level 2: '2*X^3/(X^2+2)'

Level 1: 'X' PCOEF

 

Output :

Level 2: { 2 0 0 0 }

Level 1: { 1 0 2 }

 

See also: CPOL CFRAT FXND

 

_____________________________________________________________

CPOL & CFRAT

 

Example #1:  To find the coefficients of the following polynomial

 

Input: 

Level 2: { 1 5 6 }

Level 1: X CPOL

 

Output :

Level 1: 'X^2+5*X+6'

 

Example #2:  To find the coefficients of the following polynomial

 

Input: 

Level 3: { 2 0 0 0 }

Level 2: { 1 0 2 }

Level 1: X CFRAT

 

Output :

Level 1: '2*X^3/(X^2+2)'

 

_____________________________________________________________

REORDER

 

Description: Given a polynomial expression and a variable, reorders the variables in the expression in decreasing order.

Access: Library 697: CAS48 REORDER

 

Input:  Level 2:  The polynomial expression.

        Level 1:  The variable with respect to which the reordering is performed.

Output: The reordered expression.

 

Example #1:  Reordered expression.

Input:

Level 2: '2*R+2*C*L*R*S^2+C*R^2*S+3*L*S'

Level 1: 'S' REORDER

 

Output:

Level  1:  '2*R*C*L*S^2+(R^2*C+3*L)*S+2*R'

 

Example #2:  Reordered expression.

Input:             Output:                                       

  

_____________________________________________________________

Obj 

 

Description:  Object to Stack Command:

Separates an object into its components

 

Access: Library 697: CAS48 Obj 

 

Input:

Level 1:  An object.

Output:

Level 1:  Object separate.

 

Example #1: To Separate.

 

Input:

Level 1: «« 'X^Y' DUP »» Obj  [ENTER]

 

Output:         

Level 5:  «

Level 4: 'X^Y'

Level 3: DUP

Level 2: »

Level 1: 4

 

See also:  Prg

_____________________________________________________________

Prg

 

Description:  process inverse to OBj

 

Access: Library 697: CAS48 Prg

 

Input:

Level 1:  Objects.

Output:

Level 1:  An Object.

 

Example #1:  To join

Input:

Level 5:  «

Level 4:  'X^Y'

Level 3:  DUP

Level 2:  »

Level 1:  4 Prg [ENTER]

 

Output:         

Level 1:   « 'X^Y' DUP »

 

See also: Obj 

_____________________________________________________________

Id

 

Description: Create a name of special variable.

Access: Library 697: CAS48 Id

 

Input:

Level 1: A string.

Output:

Level 1: A varible.

 

Example #1:

Input:

Level 1: "CAS49 Var" Id [ENTER]

Output:

Level 1: 'CAS48 Var'

 

Example #2:

Input:

Level 1: "„ @ ˆ" Id [ENTER]

Output:

Level 1: ' @ ˆ'

_____________________________________________________________

VER

 

Description:  Returns the Computer Algebra System version number, and date of release.

 

Access: Library 697: CAS48 VER

 

Input: No input required.

Output: The version and release date of the Computer Algebra System software.

_____________________________________________________________

 

HESS

 

Description: Returns the Hessian matrix, determinant of Hessian matrix, critical points, and the gradient of an expression with respect to the specified variables.

 

Access:  Library 697: CAS48 HESS

 

Input:

Level 2: Algebraic expression or variable.

Level 1: A Vector { xi } containing the variables.

 

Output: 

Level 4: The gradient with respect to the variables.

Level 3: Critical points: Solution of the level 4:

Level 2: The Hessian matrix

Level 1: Determinant of Hessian matrix

       

Example #1:

 

Input:  

Level 2: '-X^3+4*X*Y-2*Y^2+1'

Level 1: { X Y } HESS

 

Output:

Level 4: { '-(3*X^2)+4*Y' '4*X-4*Y' }

Level 3: {{ 'X=0' 'Y=0' }

          { '3*X-4=0' '3*Y-4=0' }}

Level 2: {{ '-(6*X)' 4 }

          { 4 -4 }}

Level 1: :DET=: '24*X-16'

 

Input:           Output:

 

 

Example #2:

 

Input: 

'X^2*Y^2'

{ X Y } HESS

 

Output:

Level 4: { '2*X*Y^2' '2*X^2*Y' }

Level 3: {{ 'X=0' }

          { 'Y=0' }}

Level 2: {{ '2*Y^2' '4*X*Y' }

          { '4*X*Y' '2*X^2' }}

Level 1: :DET=: '-(12*X^2*Y^2)'

 

Input:           Output:

 

 

See also: WHESS    

_____________________________________________________________

MLAGRANGE

 

Description: Returns the Multipliers of  Lagrange.

Access: Library 697: CAS48 MLAGRANGE

Input:

Level 3: Algebraic expression or variable.

Level 2: A Vector { xi } containing the variables.

Level 1: Restrictions.

 

Output:

Level 2: The gradient with respect to the variables and restrictions.

Level 1: Solution of the level 2:

                         

Example #1: 

 

Input:

'4*X*Y'

{ 'X^2/9+Y^2/16-1' }

{ X Y } MLAGRANGE

 

Output:        

Level 3: { '4*Y' '4*X' }

Level 2:

{{ '1/9*X^2+1/16*Y^2-1' }

 { '4*Y=2/9*X*ß' }

 { '4*X=1/8*Y*ß' }}

 

Level  1:  

{{ '4*X-3*Y=0' 'Y^2-8=0' 'ß-24=0' }

 { '4*X+3*Y=0' 'Y^2-8=0' 'ß+24=0' }}

 

Input:             Output 2:       Output 1:                            

  

 

See also:  WLAGRANGE 

_____________________________________________________________

 

JACOBIAN similar to JACOBIAN of the (DERIVE V5.02)

 

Description:  Returns the Jacobian matrix of a parametric function.

simplifies to the Jacobian matrix of the above transformation, where = { 1 2 m } and Jacobian . The Jacobian is the n by m matrix of partial derivatives of u, with ˆui/ˆ•j located at row i and column j.  For example, the transformation from parabolic to Cartesian coordinates is x = (w²-v²)/2 and y = w·v and

 

Access: Library 697: CAS48

 

Input:

level 2:  A vector { xi } representing a parametric function.

level 1:  A vector { xi } containing the variables.

 

Output: 

Level 2:  The Jacobian matrix

Level 1:  DET(#2)

                        

Example #1:

 

Input:

{ '(w^2-v^2)/2' 'w*v' }

{ w v } JACOBIAN

 

Output: 

Level 2: {{ w '-v' }

          { v w }}

Level 1: :DET=: 'v^2+w^2'

___________________________________

 

Example #2:

 

Input:

{ 'r*COS(ß)' 'r*SIN(ß)' ß }

{ r ß } JACOBIAN

 

Output:        

Level 2: {{ I J K }

          { 'COS(ß)' 'SIN(ß)' 0 }

          { '-(r*SIN(ß))' 'r*COS(ß)' 1 }}

Level 1:  :DET=: { 'SIN(ß)' '-COS(ß)' r }

 

See also: WJACOBI     

_____________________________________________________________

 

REF similar to ref() of the (TI92+) or REF of the HP49 (but it accepts symbolic arguments and not squared martix )

 

Description: subdiagonal reduction. Reduces a matrix to echelon form.

 

Access: Library 696: LINEAL REF

Flags:  Solution of echelon. if (flag 23 SF).

 

Input:

Level 1: A(m × n) Symbolic/numeric Matrix.

 

Output:

Level 2: A list of solutions of the echelon. if (flag 23 SF).

Level 1: The equivalent matrix in echelon form.

 

Example #1:  Reduces the following matrix m × m

 

Input:

Level 1: [[ 2 4 6 ]

          [ 4 5 6 ]

          [ 3 1 -2 ]] REF [ENTER]

 

Output:

Level 2: {{ 'R1=Row1/2' }

          { 'R2=Row2+Row1*-4' }

          { 'R3=Row3+Row1*-3' }

          { 'R2=Row2/-3' }

          { 'R3=Row3+Row2*5' }

          { 'R3=Row3/-1' }}

 

Level 1: [[ 1 2 3 ]

          [ 0 1 2 ]

          [ 0 0 1 ]]

 

Input:             Output:

A   u

___________________________________

 

Example #2:  Reduces the following matrix m × m

 

Input:

Level 1: [[ (.5,-60) (.5,0) (0,0) ]

          [ (0,0) (.5,-60) (.5,0) ]

          [ (.5,0) (0,0) (.5,-60) ]] REF [ENTER]

 

Output:

Level 2:

{{ 'R1=Row1/(1/2-60*i)' }

 { 'R3=Row3+Row1*(-1/2)' }

 { 'R2=Row2/(1/2-60*i)' }

 { 'R3=Row3+Row2*-(-(60/14401*i)-1/28802)' }

 { 'R3=Row3/(-(12443327940/207388801*i)+103687201/207388801)' }}

 

Level 1: [[ (1,0) (6.94396222485E-5,8.33275466981E-3) (0,0) ]

          [ (0,0) (1,0) (6.94396222485E-5,8.33275466981E-3) ]

          [ (0,0) (0,0) (1,0) ]]

 

Input:             Output:                 

A u 

___________________________________

 

Example #3:  Reduces the following symbolic matrix m × n

Input:

 

Level 1: {{ 0 1 -1 2 b1 }

          { 1 -2 3 0 b2 }

          { 1 -1 2 2 b3 }

          { -1 3 -4 2 b4 }} REF [ENTER]

 

Output:

Level 2: {{ 'Exchange(R1,R2)' }

          { 'R3=Row3+Row1*-1' }

          { 'R4=Row4+Row1*1' }

          { 'R3=Row3+Row2*-1' }

          { 'R4=Row4+Row2*-1' }

          { 'R3=Row3/(-b1-b2+b3)' }

          { 'R4=Row4+Row3*-(-b1+b2+b4)' }}

 

Level 1: {{ 1 -2 3 0 b2 }

          { 0 1 -1 2 b1 }

          { 0 0 0 0 1 }

          { 0 0 0 0 0 }

 

Input:            Output:

A  u

___________________________________

 

Example #4: {{ a b c }

             { E f g }} REF

 

{{ 'R1=Row1/a' }

 { 'R2=Row2+Row1*-E' }

 { 'R2=Row2/((-(E*b)+a*f)/a)' }}

 

{{ 1 'b/a' 'c/a' }

 { 0 1 '(E*c-a*g)/(E*b-a*f)' }}

 

See also:  RREF2 oref

_____________________________________________________________

 

lu similar to LU() of the (TI92+) or lu of the HP49 (but it accepts symbolic arguments and not squared martix )

 

Description: lu Decomposition of a Matrix Command.

Returns the lu decomposition of a m × n Symbolic/numeric Matrix.

 

Access: Library 696: LINEAL  lu

Input:

 

Level 1:  A Matrix[[ brackets ]] or Symbolic Matrix {{ xi }}.

 

Output:

Level 3:  P is a permutation matrix. Output:

Level 2:  l is an upper-triangular matrix.

Level 1:  u is a matrix in echelon.

 

Where P x A = l × u

 

Example #1:  Factor the following matrix m×m

 

[[ 0 1 0 0 ]

 [ 1 0 0 0 ]

 [ 0 0 1 0 ]

 [ 0 0 0 1 ]]P

 

[[ 0 1 -1 2 ]

 [ 1 -2 3 0 ]

 [ 1 -1 2 2 ]

 [ -1 3 -4 2 ]]A

 

[[ 1 0 0 0 ]

 [ 0 1 0 0 ]

 [ 1 1 1 0 ]

 [ -1 1 0 1 ]]l

 

[[ 1 -2 3 0 ]

 [ 0 1 -1 2 ]

 [ 0 0 0 0 ]

 [ 0 0 0 0 ]]u  Where P x A = l × u

 

Input:            Output:

PA lu

___________________________________

 

Example #3: Factor the following symbolic matrix 3 × 4

 

[[ 0 1 0 ]

 [ 1 0 0 ]

 [ 0 0 1 ]] P

 

[[ 0 1 -1 2 ]

 [ 1 -2 3 0 ]

 [ 1 -1 2 2 ]] A

 

[[ 1 0 0 ]

 [ 0 1 0 ]

 [ 1 1 1 ]] l

 

[[ 1 -2 3 0 ]

 [ 0 1 -1 2 ]

 [ 0 0 0 0 ]] u

___________________________________

 

Example #2: Factor the following symbolic matrix m × n

 

[[ 1 0 0 ]

 [ 0 1 0 ]

 [ 0 0 1 ]] P

 

[[ 6 12 18 ]

 [ 5 14 31 ]

 [ 3 8 18 ]] A

 

[[ 1 0 0 ]

 [ .833333333333 1 0 ]

 [ .5 .5 1 ]] l

 

[[ 6 12 18 ]

 [ 0 4 16 ]

 [ 0 0 1 ]] u

___________________________________

 

Example #3:

 

[[ 1 0 ]

 [ 0 1 ]] P

 

{{ m n }

 { q p }} A

 

{{ 1 0 }

 { 'q/m' 1 }} l

 

{{ m n }

 { 0 '(m*p-n*q)/m' }} u

 

See also: LU

_____________________________________________________________

 

qr similar to QR() of the (TI92+) or qr of the (HP49)

 

Description: qr Factorization of a Matrix Command: Returns the qr factorization of a m × n numeric Matrix.

 

Access: Library 696: LINEAL  qr

 

Input:

Level 1:  A  Matrix [[ xij ]] or Matrix {{ xij }}.

 

Output:

Level 2:  q is an m × m orthogonal matrix.

Level 1:  r is an m × n upper trapezoidal matrix.

Where A = q × r

q*TRAN(q)=IDN(m)

 

Example #1:  Factor the following matrix m×m

 

Input:

Level 1: [[ -.5 -1 1 ]

          [ 1 0 .5 ]

          [ 0 -1 1 ]] qr [ENTER]

 

Output:

Level 2: {{ '-(1/5*ƒ5)' '-(4/15*ƒ5)' '2/3' }

          { '2/5*ƒ5' '-(2/15*ƒ5)' '1/3' }

          { 0 '-(1/3*ƒ5)' '-(2/3)' }}

 

Level 1: {{ '1/2*ƒ5' '1/5*ƒ5' 0 }

          { 0 '3/5*ƒ5' '-(2/3*ƒ5)' }

          { 0 0 '1/6' }} MULT

 

Input:              Output:                   

A  qr

 

Example #2:  Factor the following matrix m×m

 

Input:

Level 1: {{ m n }

          { k p }} qr [ENTER]

 

Output:

Level 2: {{ 'm/ƒ(k^2+m^2)' 'k/ƒ(k^2+m^2)' }

          { 'k/ƒ(k^2+m^2)' '-m/ƒ(k^2+m^2)' }}

 

Level 1: {{ 'ƒ(k^2+m^2)' '(k*p+m*n)/ƒ(k^2+m^2)' }

          { 0 '(k*n-m*p)/ƒ(k^2+m^2)' }}

 

See also:  QR

_____________________________________________________________

 

PCAR similar to PCAR of the HP49

 

Description: Returns the characteristic polynomial of a m×m matrix.

Access: Library 696: LINEAL PCAR

 

Input:

Level 1: A square Matrix [[ xij ]] or square Symbolic Matrix {{ xi }}

 

Output:

Level 2: The characteristic polynomial of the matrix.

Level 1: A Vector { xi } of the eigenvalues form {Root1  Root2 . . .}

 

Example #1:  Find the characteristic polynomial of the following matrix:

 

Input:

Level 1: [[ 5 8 16 ]

          [ 4 1 8 ]

          [ -4 -4 -11 ]] PCAR [ENTER]

 

Output:

Level 2: 'X^3+5*X^2+3*X-9'

Level 1: { :X1: -3 :X2: -3 :X3: 1  }

 

Input:           Output:

 

___________________________________

 

Example #2:  Find the characteristic polynomial of the following matrix:

 

Input:

Level 1: [[ 4 1 ]

          [ 0 4 ]] PCAR [ENTER]

 

Output:

Level 2: 'X^2-8*X+16'

Level 1: { :X1: 4 :X2: 4 }

 

Input:           Output:

 

___________________________________

 

Example #3: Find the characteristic polynomial of the following matrix:

 

Input:

Level 1: [[ .5 .5 0 ]

          [ 0 .5 .5 ]

          [ .5 0 .5 ]] 'X' PCAR [ENTER]

 

Output:

Level 2: 'X^3-3/2*X^2+3/4*X-1/4'

Level 1: { :X1: 1 :X2: (.25,.433012701892) :X3: (.25,-.433012701892) }

 

Input:           Output 1:

 

___________________________________

 

Example #4: 

 

_____________________________________________________________

 

{{ 2 X }

 { 1 3 }} ADJOINT

 

{{ 3 '-X' }

 { -1 2 }}

_____________________________________________________________

 

Polynomial Function

 

FXND  similar to comDenom() of the (TI92+) or FXND of the HP49

 

returns a reduced ratio of a fully expanded numerator and a fully

expanded denominator.

 

'(Y^2+Y)/(1+X)^2+Y^2+Y' FXND

 

numerator: 'X^2*Y^2+X^2*Y+2*X*Y^2+2*X*Y+2*Y^2+2*Y'

 

denominator: 'X^2+2*X+1'

___________________________________

 

'(X^2+X+1)/(X+1)+(Y^2+Y+1)/(Y+1)=0' FXND

 

numerator: 'X^2*Y+X^2+X*Y^2+2*X*Y+2*X+Y^2+2*Y+2'

 

denominator: 'X*Y+X+Y+1'

___________________________________

 

3.58333333333 FXND

 

43

 

12

_____________________________________________________________

 

MULT2POL similar to conv of MATLAB VERSION 6.0

 

[ 1 2 3 ]

 

[ 4 5 6 ]

 

'X' MULT2POL

 

'4*X^4+13*X^3+28*X^2+27*X+18'

 

'X' PCOEF AXL

 

[ 4 13 28 27 18 ]

___________________________________

 

[ 1 2 3 ]

 

{ 4 5 k }

 

'X' MULT2POL

 

'4*X^4+13*X^3+(22+k)*X^2+(15+2*k)*X+3*k' FACTOR

 

'(X^2+2*X+3)*(4*X^2+5*X+k)'

___________________________________

 

'X^2+2*X+3'

 

'4*X^2+5*X+k'

 

'X' MULT2POL

 

'4*X^4+13*X^3+(22+k)*X^2+(15+2*k)*X+3*k'

 

'k=6' SUBST SIMPLIFY

 

'4*X^4+13*X^3+28*X^2+27*X+18'

_____________________________________________________________

 

DIV2POL similar to propFrac() of the (TI89) or DIV2 of the HP49 or deconv of MATLAB VERSION 6.0

 

N/D=Q+R/D

 

'2*X^3'

'X^2+2'

 

'X' DIV2POL

 

quotient: '2*X'

 

remainder: '-(4*X)'

___________________________________

 

[ 4 13 28 27 18 ]

 

[ 1 2 3 ]

 

'X' DIV2POL

 

quotient: '4*X^2+5*X+6'

 

remainder: 0

___________________________________

 

'5*X^4+4*X^3+3*X^2+2*X+1'

'X+i'

 

'X' DIV2POL

 

quotient: '5*X^3+(4-5*i)*X^2+(-2-4*i)*X+(-2,2)'

 

remainder: '3+2*i'

___________________________________

 

'X^3+(-1-A-B)*X^2+(A*B+A+B)*X-A*B'

'X-(1+C/3)'

 

'X' DIV2POL

 

quotient:

'X^2+(-1+1/3*(3+C)-A-B)*X+(1/3*(-1+1/3*(3+C)-A-B)*(3+C)+A*B+A+B)'

 

remainder:

'1/3*(1/3*(-1+1/3*(3+C)-A-B)*(3+C)+A*B+A+B)*(3+C)-A*B' FACTOR

 

'1/27*C*(3*B-C-3)*(3*A-C-3)'

_____________________________________________________________

 

PROPFRAC similar to propFrac() of the (TI92+) or PROPFRACT of the HP49

 

Q+R/D

 

'2*X^3/(X^2+2)'

'X' PROPFRAC

 

'2*X-4*X/(X^2+2)'

_________________________________

 

'43/12'

'X' PROPFRAC

 

'3+7/12'

___________________________________

 

'(X^2+X+1)/(X+1)+(Y^2+Y+1)/(Y+1)'

'X' PROPFRAC

 

'(X*Y+X+Y^2+Y+1)/(Y+1)+(Y+1)/(X*Y+X+Y+1)'

_____________________________________________________________

 

GCD similar to GCD of the HP49

 

'X^2+2*X+1'

'X^2-1' GCD

 

'X+1'

___________________________________

 

18

33 GCD

 

3

_____________________________________________________________

 

LCM similar to LCM of the HP49

 

'X^2+2*X+1'

'X^2-1' LCM

 

'X^3+X^2-X-1'

___________________________________

 

18

33 LCM

 

198

_____________________________________________________________

 

POLEVALM similar to polyvalm of MATLAB VERSION 6.0

 

[[ 2 4 5 ]

 [ -1 0 3 ]

 [ 7 1 5 ]]

 

[ 1 0 -2 -5 ]

 

X POLEVALM

 

[[ 377 179 439 ]

 [ 111 81 136 ]

 [ 490 253 639 ]]

___________________________________

 

{{ 2 4 5 }

 { -1 0 3 }

 { 7 1 a }}

 

[ 1 0 -2 -5 ]

 

X POLEVALM

 

{{ '35*a+202' '5*a+154' '5*a^2+22*a+204' }

 { '21*a+6' '3*a+66' '3*a^2-5*a+86' }

 { '7*a^2+13*a+250' 'a^2+28*a+88' 'a^3+74*a+144' }}

_____________________________________________________________

 

'1.3-3.2*i' CEILING

 

'2-3*i'

_____________________________________________________________

 

LCXM similar to LCXM of the HP49

 

2

3

« I J 'I+2*J' » LCXM 

 

[[ 3 5 7 ]

 [ 4 6 8 ]]

___________________________________

 

3

3

« X Y '1/(X+Y-1)' » LCXM EXACT

 

{{ 1 '1/2' '1/3' }

 { '1/2' '1/3' '1/4' }

 { '1/3' '1/4' '1/5' }}

_____________________________________________________________

 

3 HILBERT

 

{{ 1 '1/2' '1/3' }

 { '1/2' '1/3' '1/4' }

 { '1/3' '1/4' '1/5' }}

_____________________________________________________________

 

'X^2+1'

1

X HORNER

 

quotient (P/X-a): 'X+1'

P(a): 2

___________________________________

 

'5*X^4+4*X^3+3*X^2+2*X+1'

'-i'

X HORNER

 

quotient (P/X-a): '5*X^3+(4,-5)*X^2+(-2,-4)*X+(-2,2)'

P(a): '3+2*i'

___________________________________

 

'EXP(X)'

X

s LAPLACE

 

'1/(s-1)'

___________________________________

 

't^2'

 t

S LAPLACE

 

'2/S^3'

___________________________________

 

't^2*EXP(5*t)'

t

S LAPLACE

 

'2/(S^3-15*S^2+75*S-125)' FACTOR

 

'INV(1/2*(S-5)^3)'

___________________________________

 

'X*COS(a*X+b)'

X

S LAPLACE

 

'(COS(b)*S^2-2*SIN(b)*a*S-COS(b)*a^2)/(S^4+2*a^2*S^2+a^4)'

S PCOEF

 

{ 'COS(b)' '-(2*SIN(b)*a)' '-(COS(b)*a^2)' }

{ 1 0 '2*a^2' 0 'a^4' }

___________________________________

 

'1/(s-1)'

s

X ILAPLACE

 

'e^X'

___________________________________

 

'2/S^3'

S

t ILAPLACE

 

't^2'

___________________________________

 

'INV(1/2*(S-5)^3)'

S

t ILAPLACE

 

't^2*e^(5*t)'

___________________________________

 

'1/(S^4+6*S^3+14*S^2+16*S+8)'

S

t ILAPLACE EXACT

 

'1/2*e^-(2*t)+1/2*t*e^-(2*t)-1/2*EXP(1)^-t*COS(t)'

 

'(X^4+3.414*X^2+1)/(2.613*X^3+2.613*X)'

X PROPFRAC2

 

'.382701875239*X+1/(1.08243579122*X+1/(1.57719616481*X+1

/(1.53056420907*X)))'

 

___________________________

 

[[ 2 4 7 ]

 [ 1 2 3 ]

 [ 1 5 3 ]]

 

{ 3 2 } MINOR

 

{{ 2 7 }

 { 1 3 }}

___________________________

 

[[ 2 4 7 ]

 [ 1 2 3 ]

 [ 1 5 3 ]]

 

{ 3 2 } COFACT

 

1

___________________________

 

{{ a b c }

 { d E f }

 { g h I }}

 

{ 3 1 } MINOR

 

{{ b c }

 { E f }}

___________________________

 

{{ 3 2 1 }

 { 1 -1 3 }

 { 5 4 -2 }}

 

{{ 7 }

 { 3 }

 { 1 }}

 

 { X Y Z } CRAMER

 

 { :X: -3 :Y: 6 :Z: 4 }

___________________________

 

Input(Levels A b X):

 

3: {{ a b }

    { c d }}

2: {{ 1 }

    { 2 }}

1: {{ x1 }

    { x2 }} CRAMER [ENTER]

 

Output(Levels):

 

1:      

{ :x1: '(-(2*b)+d)/(a*d-b*c)'

  :x2: '(2*a-c)/(a*d-b*c)' }

___________________________

 

3 RANDSYSMAT

 

{{ -5 -1 '-(3/2)' }

 { -1 1 -2 }

 { '-(3/2)' -2 -9 }}

___________________________

 

3 RANDASYSMAT

 

{{    0    9/2' '9/2'  }

 { '-(9/2)' 0 '9/2'    }

 { '-(9/2)' '-(9/2)' 0 }}

___________________________

 

{ 3 4 } RANDUPPERMAT

 

{{ 9 -9 -8 9 }

 { 0 -2 '-65/9' 2 }

 { 0 0 '-53/3' 6 }}

 

___________________________

 

{ 3 4 } RANDLOWERMAT

 

{{ 7 0 0 0 }

 { -6 '23/7' 0 0 }

 { -1 '5/7' '-36/23' 0 }}

___________________________

 

{ 2 4 } RANDSTOCMAT

 

{{ '4/31' '5/14' }

 { '7/31' '3/7' }

 { '11/31' '1/7' }

 { '9/31' '1/14' }}

 

SUMA(COL)=1

___________________________

 

 

[[ .5 .5 0 ]

 [ 0 .5 .5 ]

 [ .5 0 .5 ]]

 

'Y'PMINI

 

'Y^3-3/2*Y^2+3/4*Y-1/4'

___________________________

 

[[ 1 2 3 ]

 [ 4 5 6 ]] IMAGE

 

[[ 1 0 ]

 [ 0 1 ]]

___________________________

 

[[ 1 2 3 ]

 [ 4 5 6 ]] KER

 

[[ -1 2 -1 ]]

___________________________

 

[[ 1 2 3 ]

 [ 4 5 6 ]

 [ 7 8 9 ]]

 

[[ 1 2 3 ]

 [ 4 5 6 ]

 [ 7 5 6 ]] EGBS

 

[[ 1 -1 0 ]

 [ 1 0 -1 ]]

___________________________

 

{ 1 3 5 7 9 }

{ 2 3 5 8 13 } LINTERSECTION or LAND

 

{ 3 5 }

___________________________

 

DEL ELEMENTS OF 2 IN LIST 1

 

{ 1 2 3 4 5 6 7 8 9 10 }

{ 2 3 5 7 } LDIFFERENCE

 

{ 1 4 6 8 9 10 }

___________________________

 

{ 1 3 5 7 9 }

{ 2 3 5 8 13 } LOR or LUNION

 

{ 1 3 5 7 9 2 8 13 }

___________________________

 

{ 1 3 5 7 9 }

{ 2 3 5 8 13 } LXOR

 

{ 1 7 9 2 8 13 }

___________________________

 

{ 1 3 5 7 9 } 1 3 LSUB

 

{ 7 9 }

___________________________

 

{ 'COS(X)' 'EXP(X)' 'pi' 'SQ(Y)' }

{ 'pi' 'i' 'LN(X)' 'EXP(X)' } LAND

 

{ 'EXP(X)' 'pi' }

___________________________

 

{ 'COS(X)' 'EXP(X)' 'pi' 'SQ(Y)' }

{ 'pi' 'i' 'LN(X)' 'EXP(X)' } LDIFFERENCE

 

{ 'COS(X)' 'SQ(Y)' }

___________________________

 

{ 'COS(X)' 'EXP(X)' 'pi' 'SQ(Y)' }

{ 'pi' 'i' 'LN(X)' 'EXP(X)' } LOR

 

{ 'COS(X)' 'EXP(X)' 'pi' 'SQ(Y)' 'i' 'LN(X)' }

___________________________

 

{ 'COS(X)' 'EXP(X)' 'pi' 'SQ(Y)' }

{ 'pi' 'i' 'LN(X)' 'EXP(X)' } LXOR

 

{ 'COS(X)' 'SQ(Y)' 'i' 'LN(X)' }

___________________________

 

{ 1 1 0 0 }

{ 1 0 1 1 } LAND

 

{ 1 1 0 }

___________________________

 

{ 1 1 0 0 }

{ 1 0 1 1 } LOR

 

{ 1 1 0 0 1 }

___________________________

 

{ 1 1 0 0 }

{ 1 0 1 1 } LDIFFERENCE

 

{ 0 }

___________________________

 

{ 1 1 0 0 }

{ 1 0 1 1 } LXOR

 

{ 0 1 }

___________________________

 

{ 1 1 0 0 } LDELMULT

 

{ 1 0 }

___________________________

 

{ 1 0 1 1 }

1

2 LSWAP

 

{ 0 1 1 1 }

___________________________

 

{ 1 0 1 1 }

{ 1 0 1 1 } LSAME

 

1

___________________________

 

{ X « X ISPRIME? » }

X 1 16 1 VECTOR

 

[[ 1 0 ]

 [ 2 1 ]

 [ 3 1 ]

 [ 4 0 ]

 [ 5 1 ]

 [ 6 0 ]

 [ 7 1 ]

 [ 8 0 ]

 [ 9 0 ]

 [ 10 0 ]

 [ 11 1 ]

 [ 12 0 ]

 [ 13 1 ]

 [ 14 0 ]

 [ 15 0 ]

 [ 16 0 ]]

___________________________

 

{ X « X DIVISORS » }

X 1 16 1 VECTOR

 

{

{ 1 { 1 }}

{ 2 { 1 2 }}

{ 3 { 1 3 }}

{ 4 { 1 2 4 }}

{ 5 { 1 5 }}

{ 6 { 1 2 3 6 }}

{ 7 { 1 7 }}

{ 8 { 1 2 4 8 }}

{ 9 { 1 3 9 }}

{ 10 { 1 2 5 10 }

{ 11 { 1 11 }}

{ 12 { 1 2 3 4 6 12 }}

{ 13 { 1 13 }}

{ 14 { 1 2 7 14 }}

{ 15 { 1 3 5 15 } }

{ 16 { 1 2 4 8 16 }}

}

___________________________

 

{ X « X PRIMEDIVIS » }

X 1 16 1 VECTOR

 

{

{ 1 { } }

{ 2 { 2 } }

{ 3 { 3 } }

{ 4 { 2 } }

{ 5 { 5 } }

{ 6 { 2 3 } }

{ 7 { 7 } }

{ 8 { 2 } }

{ 9 { 3 } }

{ 10 { 2 5 } }

{ 11 { 11 }}

{ 12 { 2 3  }}

{ 13 { 13 }}

{ 14 { 2 7 }}

{ 15 { 3 5 } }

{ 16 { 2  }}

}

___________________________

 

{ X « X PERFEC? » }

X 6 30 1 VECTOR

 

[[ 6 1 ]

 [ 7 0 ]

 [ 8 0 ]

 [ 9 0 ]

 [ 10 0 ]

 [ 11 0 ]

 [ 12 0 ]

 [ 13 0 ]

 [ 14 0 ]

 [ 15 0 ]

 [ 16 0 ]

 [ 17 0 ]

 [ 18 0 ]

 [ 19 0 ]

 [ 20 0 ]

 [ 21 0 ]

 [ 22 0 ]

 [ 23 0 ]

 [ 24 0 ]

 [ 25 0 ]

 [ 26 0 ]

 [ 27 0 ]

 [ 28 1 ]

 [ 29 0 ]

 [ 30 0 ]]

___________________________

 

{ X « X FACTOR » }

X -1 20 1 VECTOR

 

{{ -1 -1 }

 { 0 0 }

 { 1 1 }

 { 2 2 }

 { 3 3 }

 { 4 '2^2' }

 { 5 5 }

 { 6 '2*3' }

 { 7 7 }

 { 8 '2^3' }

 { 9 '3^2' }

 { 10 '2*5' }

 { 11 11 }

 { 12 '2^2*3' }

 { 13 13 }

 { 14 '2*7' }

 { 15 '3*5' }

 { 16 '2^4' }

 { 17 17 }

 { 18 '2*3^2' }

 { 19 19 }

 { 20 '2^2*5' }}

___________________________

 

{ X « X FACTORS » }

X -1 20 1 VECTOR

 

{{-1   {{ -1 1 }}   }

 { 0   {{ 0 1 }}   }

 { 1   {{ 1 1 }}  }

 { 2   {{ 2 1 }}  }

 { 3   {{ 3 1 }}  }

 { 4   {{ 2 2 }}  }

 { 5   {{ 5 1 }}  }

 { 6   {{ 2 1 } { 3 1 }}  }

 { 7   {{ 7 1 }}  }

 { 8   {{ 2 3 }}  }

 { 9   {{ 3 2 }}  }

 { 10  {{ 2 1 } { 5 1 } } }

 { 11  {{ 11 1 }} }

 { 12  {{ 2 2 } { 3 1 }}  }

 { 13  {{ 13 1 }} }

 { 14  {{ 2 1 } { 7 1 }}  }

 { 15  {{ 3 1 } { 5 1 }}  }

 { 16  {{ 2 4 }}   }

 { 17  {{ 17 1 }} }

 { 18  {{ 2 1 } { 3 2 }} }

 { 19  {{ 19 1 }} }

 { 20  {{ 2 2 } { 5 1 } }}

}

___________________________

 

{{ 5 '8/2' '4/2' }

 { '8/2' 5 2 }

 { '4/2' 2 2 }}

 

 { X Y Z } AXQ

 

 '5*X^2+8*X*Y+4*X*Z+5*Y^2+4*Y*Z+2*Z^2=100'

___________________________

 

{{ 5 '-3/2' 4 '-1/2' }

 { '-3/2' 4 '9/2' '7/2' }

 { 4 '9/2' 2 3 }

 { '-1/2' '7/2' 3 9 }}

 

DIMMAT 1 GET MAKEVX AXQ

 

 '5*W^2-3*W*X+8*W*Y-W*Z+4*X^2+9*X*Y+7*X*Z+2*Y^2+6*Y*Z+9*Z^2'

___________________________

 

13300

FACTORS MULT->1LIST

 

{ 2 2 5 2 7 1 19 1 }

___________________________

 

EJEMPLO DE MATLABV6.0 SISTEMA

 

[[ 1 1 ]

 [ 1 .7408 ]

 [ 1 .4493 ]

 [ 1 .3329 ]

 [ 1 .2019 ]

 [ 1 .1003 ]] A(6x2)

 

[[ .82 ]

 [ .72 ]

 [ .63 ]

 [ .6 ]

 [ .55 ]

 [ .5 ]] b(6x1)

 

{ X Y } x(2x1) LINSOLVE

 

:X:  .475943892709

:Y:  .341333938746

 

* SOL-> (TRAN(A)*A)*X=(TRAN(A)*b)

___________________________

 

6 PASCAL

 

[[ 1 1 1 1 1 1 ]

 [ 1 2 3 4 5 6 ]

 [ 1 3 6 10 15 21 ]

 [ 1 4 10 20 35 56 ]

 [ 1 5 15 35 70 126 ]

 [ 1 6 21 56 126 252 ]]

 

CHOLESKY

 

[[ 1 1 1 1 1 1 ]

 [ 0 1 2 3 4 5 ]

 [ 0 0 1 3 6 10 ]

 [ 0 0 0 1 4 10 ]

 [ 0 0 0 0 1 5 ]

 [ 0 0 0 0 0 1 ]]

___________________________

 

6 MAKEVX MVANDERMONDE

 

 {{ 1 1 1 1 1 1 }

  { U V W X Y Z }

  { 'U^2' 'V^2' 'W^2' 'X^2' 'Y^2' 'Z^2' }

  { 'U^3' 'V^3' 'W^3' 'X^3' 'Y^3' 'Z^3' }

  { 'U^4' 'V^4' 'W^4' 'X^4' 'Y^4' 'Z^4' }

  { 'U^5' 'V^5' 'W^5' 'X^5' 'Y^5' 'Z^5' }}

___________________________

 

'1/(X*(X+1))' X 'Ÿ' 1 INTGMAX

 

.693147180555

 

'1/(X^2+4)' X 'Ÿ' 0 INTGMAX

 

.785398163398 XQ '1/4*‡'

 

'1/(EXP(X)+EXP(-X))' X 'Ÿ' 'Ÿ' INTGMAX

 

'‡/2'

 

'EXP(2)^X' X 0 'Ÿ' INTGMAX

 

 0.5

___________________________

 

 

'X^9+(-191/10-16*i)*X^8+(518/5,2651/10)*X^7+(291/10,-21431/10)*X^6+(-123880898/28569,10145)*X^5+(256059/10,-129071/5)*X^4+(-66412,65216915/1917)*X^3+(868493/10,-215983/10)*X^2+(-279806/5,15604397/3252)*X+(70698/5,1/4*ƒ1880189)'

 

{ (2,8) (3,-5) (3.1,5) (3,4) (2,0) (1,0) (1,0) (1,0) (3,4) }

 

___________________________

 

'Y^4+Y^3-Y-1'

 'Y(X)' DESOLVE1

 

'c1*e^-X+c2*e^X+EXP(-(1/2*X))*(c3*COS(1/2*ƒ3*X)+c4*SIN(1/2*ƒ3*X))'

 

'Y^7+8*Y^6+28*Y^5+56*Y^4+69*Y^3+52*Y^2+22*Y+4'

'Y(X)' DESOLVE1

 

'c1*e^-(2*X)+c2*e^-X+c3*(X*e^-X)+c4*(X^2*e^-X)+c5*(X^3*e^-X)+EXP(-X)*(c6*COS(X)+c7*SIN(X))'

 

___________________________________

 

Package cashp48.zip

AUTHOR: Jaime Fernando Meza Meza

E-MAIL: jaimeza@hotmail.com

 

Visit our Web site at:

http://www.unalmed.edu.co/~ameza or

http://www.geocities.com/hp4x/

 

Software and information about the HP49,HP48 at: http://www.hpcalc.org/

Version: 3.3 revision 1
Update: oct/20/2001

 

Please excuse all the linguistic errors in this Pocket.

English is not my native language.