
Erable 3.2

Bernard Parisse∗

Institut Fourier (CNRS UMR 5582)
Université de Grenoble I

F-38402 St Martin d’Hères Cédex
Bernard.Parisse@ujf-grenoble.fr

November 3, 1998

Abstract

This is the manual for the Erable computer algebra system for the
HP48 calculators. Section 1 describes the end user license. Section 2
describes how to install Erable on your HP48. Section 3 gives an overview
of the capabilities of Erable, compared to other computer algebra systems
available on calculators. Section 4 explains the user interface of Erable.
The rest of the manual gives more details on Erable functions, topic
by topic, and the appendix, starting with Frequently Asked Questions
(section A). gives some references.

This manual is intended more as a reference manual than as a tuto-
rial. It is not intended as a replacement for a textbook or as remedial
instruction.

Special thanks to Randolph J. Herber who helped me a lot in porting the manual from

version 3.024 to version 3.2

1

Contents

1 License. 5

2 Installation. 5
2.1 Simplified installation. 5
2.2 Personalized installation. 7

2.2.1 Getting the binaries from a computer. 7
2.2.2 Getting the binaries from another HP48. 8
2.2.3 Installing the binaries . 8
2.2.4 Installing the user keys redefinition. 8
2.2.5 Improving your installation 8
2.2.6 Abstract of the installation commands 9

3 Introduction. 9
3.1 Overview. 9
3.2 Warnings. 10
3.3 Erable and alg48. 10
3.4 Implementation notes. 11
3.5 Next upgrades. 12

4 Getting started. 12
4.1 Current variable. 12
4.2 Complex and real modes . 13
4.3 Exact and numeric mode. 13
4.4 Main functions of Erable. 13
4.5 The beginners menu. 17

5 Simplifications. 20
5.1 Rational simplifications instructions. 20
5.2 Presimplification instructions . 20

5.2.1 Linearization. 20
5.2.2 Development. 20
5.2.3 Trigonometry . 21
5.2.4 The TSIMP instruction . 21

5.3 Recurse flag. 21

6 Limits, Taylor and asymptotic series. 21

7 Derivation and integration. 23
7.1 Derivation . 23
7.2 Integration . 24
7.3 Integration by parts . 25

8 Ordinary differential equations. 26
8.1 Linear differential equations with constant coefficients 26
8.2 First order equations. 27

2

9 Substitution, change of variables: EXEC. 27

10 Arithmetic. 29
10.1 Complex arithmetic . 29
10.2 Integer and polynomial arithmetic 29
10.3 Infinities. 31
10.4 Modular arithmetic . 31

11 Factorization. Solving equations. 32
11.1 Summary of the instructions. 32
11.2 A word about factorization. 34

12 Linear algebra. 36
12.1 Building a matrix . 36
12.2 Operations . 36
12.3 Gauß-Jordan row reduction. 36

12.3.1 Solving a linear system. 37
12.3.2 Inversion . 38
12.3.3 Determinant . 38

12.4 Kernel and image of a linear application. 38
12.4.1 Other examples. 39
12.4.2 Stack input/output for reduction instructions. 40

12.5 Diagonalization . 40
12.6 The MMULT instruction. 42

13 Multivariate analysis. 43

14 Quadratic forms. 44

15 Customization and other utilities. 46
15.1 Data types. 46
15.2 Flags . 46
15.3 Conversions . 47
15.4 Other functions . 48
15.5 Permutations . 49
15.6 Variables . 49
15.7 Differential geometry . 49

16 Final remarks. 49

A Frequently asked questions. 50

B All functions of Erable listed in alphabetic order. 51

C User Keys. 58

D Erable 3.024 compatibility. 59

3

E User flags. 59

F Error codes for the SERIES command. 61

G Thanks to 61

4

1 License.

Erable v3.2 c© 10/1998 by Bernard Parisse, with code from ALG48, c© 1998 by
Claude-Nicolas Fiechter and Mika Heiskanen,

The Erable package includes the ERABLE library itself and the add-ons li-
braries ARIT, GEO, LIN and PREP. A part of the ERABLE library is a work based
on ALG48 (using long integer routines) hence is subject to the license of ALG48
(see the file license.txt). See eqstk.doc in eqstk.zip for license information
about eqstk and readme.txt for information about minwriter. The rest of the
package is subject to the ERABLE license (see the file copying.doc).

2 Installation.

This section describes the installation of Erable with using the Kermit or
X-Modem file transfer protocol. You must choose one of the methods described in
section 2.1 or in section 2.2. The first method will install Erable and a “pretty
print” stack displayer (a modified eqstk), which is recommended for new users.
Choose the second method if you want to install Erable using X-modem or
kermit, this method is not recommended for beginners.

2.1 Simplified installation.

Erable now provides a simplified installation procedure which should make
it much easier for new users. Thanks to Mika Heiskanen and Claude-Nicolas
Fiechter for letting me modify and distribute their eqstk library, to Jean-Yves
Avenard (for the minwriter), and to Andre Schoorl (for ufl102) for letting me
include their programs in the Erable distribution.

1. Go to the directory where you have unzipped erable.zip.

2. Run Kermit or some other Kermit file transfer protocol capable commu-
nication program or terminal emulator on your computer. If you don’t
have Kermit, you can get it at, e.g.:

ftp://kermit.columbia.edu,
http://www.columbia.edu/kermit/index.html
or at a mirror site.

If your version of Kermit does not work under Windows, restart your com-
puter in MS-DOS mode and try again.

3. Set the line to the HP48, e.g. type:

set port 2

if the HP48 is connected to the second serial port COM2 (for Linux type
set line /dev/cua1).

4. To insure binary file transfer, type:

5

set file type binary

5. Set the speed of Kermit to 9600 baud, type:

set speed 9600

6. To put Kermit in server mode, type:

serv

7. Now take your HP48. If you do not have any ram card, you must have at
least 120K free in your HP48. If you do not have important data in your
memory, press the ON key, then the A key, then the F key and release them,
then press the F key to answer NO to Try to recover memory. Otherwise,
if you are running a stack replacement like java or eqstk, switch to the
HP48 built-in stack handler.

8. Type the left shift key followed by the 1 key, type the B menu key to select
IOPAR, press the A menu key until line 1 looks like:

IR/wire: wire

9. Press the α key, and type:

S E T U P K G E T

release the α key and press the ENTER key. this will get the program SETUP
from the computer to the HP48. If an error occurs, verify the configuration
of Kermit and try again.

10. Press the VAR key, then the A menu key (for SETUP), this will get and install
the binaries for you. If you don’t have enough memory, an Insufficient
memory error will occur. You may get a Object in use error if you are
running a stack replacement like java or eqstk, in this case, exit them (for
java, type JAVA and for eqstk, type simultaneously ON and C). Otherwise,
after about 10 minutes your HP48 will reboot.

11. After the reboot, press the VAR key, then the E menu key (again for SETUP).
This will continue the installation and reboot the calculator after about 1
minute.

12. Eventually press the VAR key, then the A menu key (for INIT). This will
launch the modified eqstk stack handler. Congratulations, you’re done!!

The installation is complete. All should work smoothly. You can go to
section 3.

6

2.2 Personalized installation.

You must first get the binary either from a computer or from another HP48
where Erable is installed. Then you have to install the binary and eventually
install the user keys redefinition. Four binaries are provided, you must choose
one of them depending how you will install Erable:

• ERABLE0.LIB: must be installed at the end of port 0: it is intended for
G+ users or GX users without ram cards.

• ERABLEMK.LIB: must be installed at the end of port 0 (like ERABLE0.LIB)
but for Metakernel users (version 2 or higher)

• ERABLE1.LIB: must be installed at the beginning of port 1 (GX users) or
port 2 (SX users).

• ERABLE.LIB: like ERABLE1.LIB but using the built-in polynomial factoring
command, it saves 2.5K of RAM but will sometimes not work on a SX.

Before installing Erable, you must empty the port where you will install it. For
port 1, this can be done by typing:
1 PVARS
look at the list at level 2. If it is empty, you are done, otherwise you must purge
the libraries and backup objects (you can save them in variables before), e.g.
by exploding the list at level 2:

DROP EVAL

then delete the libraries on the stack:
DUP DETACH PURGE

For port 1 (or 2 on a SX), the best method is to merge the card (1 MERGE), get
ERABLE1.LIB, then free the card ({ :0:788 } 1 FREE).

2.2.1 Getting the binaries from a computer.

Prepare your computer to send data:

• Kermit users: run kermit in server mode.

• X-modem users: run your client (e.g. minicom for the Linux operating
system), select send file, write the names of the files to transfer. Note
that the computer must be ready to send files before you type the HP48
XRECV command.

Connect your HP48 to your computer and type
{ ERABLEx.LIB GXKEYS } KGET

for Kermit or
{ ERABLEx.LIB GXKEYS } XRECV

for X-modem where ERABLEx.LIB is one of the four flavours of Erable. You
can get some of the optional libraries (ARIT.LIB GEO.LIB LIN.LIB PREP.LIB)
and/or directories (other crypt decrypt) as well.

7

2.2.2 Getting the binaries from another HP48.

This method works only if are able to use the same flavour of Erable on both
HP48s. Check that both HP48s are in IR mode for I/O transfers. If Erable is
installed in a RAM card, check that the RAM card is writable (otherwise the
RCL function below will fail). Put the receiving HP48 in server mode. On the
sending HP48 (where Erable is installed), call the SENDIR program if you have
it or type the following little program:

<< :&:787 RCL :&:788 RCL RCLKEYS ->
ERABLE.LIB UKEYS
<< { ERABLE.LIB UKEYS } SEND
>>

>>

and EVAL it.

2.2.3 Installing the binaries

The Erable library must be installed in the correct port (0 for ERABLE0.LIB
and ERABLEMK.LIB or if your ram card is merged, otherwise 1 for a GX or 2 for
a SX), type:

’ERABLEx.LIB’ DUP RCL SWAP PURGE 0 STO for port 0
’ERABLEx.LIB’ DUP RCL SWAP PURGE 1 STO for port 1

where ERABLEx.LIB stands for the name of the flavour you have selected. The
remaining libraries may be installed in any port, for example in port 2:

’ARIT.LIB’ DUP RCL SWAP PURGE 2 STO

2.2.4 Installing the user keys redefinition.

This step is optional but recommended. If you got algb or algbg from your
computer, go in the algb or algbg folder and hit INIT. This will assign keys for
the user mode. If you got GXKEYS directly, type:

’GXKEYS’ DUP RCL SWAP PURGE STOKEYS

to assign keys for user mode.

2.2.5 Improving your installation

If you have the Metakernel, you should put the following program in the
STARTEQW variable:

<< 27 SF MAIN EVAL 27 CF>>

to enable the use of the main Erable commands in the EQW environment by
hitting the CST key.

If you have enough memory, you can download the optional components of
Erable like the other directory or the on-line help (fr or us).

If you choose not to install EQSTK.LIB, you must unassign the left shift-down
arrow key by typing

8

35.2 DELKEYS

2.2.6 Abstract of the installation commands

This is the list of commands in the algb or algbg directory:

• GETALL: down loads directories with some programs using Erable

• INIT: down loads the Erable libraries if they are not installed and reboots.
Otherwise, installs GXKEYS as user keys redefinition and reboots.

• PURG: purge the algb or algbg directory

• SENDIR: used to transfer the Erable libraries and the user keys assignment
from one HP48 to another HP48. Before calling SENDIR, you must check
that both HP48 are in IR mode (in the I/O menu) and you have to put
the receiving HP48 in server mode.

• SETFR: sets some flags: e.g. European date display, or radian mode,

3 Introduction.

3.1 Overview.

Erable is a computer algebra system for the HP48. The main features are sim-
plifications (including complex arithmetic and square roots), integration, first
order differential equations, partial fraction decomposition, Laplace and inverse
Laplace transform, limits, Taylor and asymptotic series, row reduction to ech-
elon form of matrices, linear system (including over and under determined),
eigenvalues and eigenvectors, quadratic forms, permutations, variables substi-
tution, With Erable you will be able to solve most problems solved by a
TI92 and some problems which are not solved by a TI92: some integrals (the
Risch algorithm is not implemented in the TI92), some Taylor series, arith-
metic, diagonalization of matrices, change of variables, If you have both
alg48 and Erable, then you have the most complete computer algebra
system currently available on a calculator (HP48, TI and CASIO).

Examples:

ln(1 + i) EXPAND
ln(2)

2
+

1
4
πi

1
ex − 1

INTVX

EXPAND
−x+ ln(ex − 1)

lim
x→0

yx − 1
x

LIMIT ln(y) 1 1 a
1 a 1
a 1 1

 rref

 2− a− a2 0 0
0 −2 + a+ a2 0
0 0 2− a− a2

9

y′ = xy2 DESOLVE

EXPAND
y =

y0

e−1/2x2+1/2x2
0

Examples not solved natively by a TI89:

sin(x)/(ex − 1), x, 4 SERIES 1− 1
2
x− 1

12
x2 +

1
12
x3 +O(x4)

cos(x)2 LAP
1

2x
+

1
4(x− 2i)

+
1

4(x+ 2i)
1

(x2 + 1)(x+ 1)
ILAP

−1
2

cos(x) +
1
2

sin(x) +
1
2
e−x∫ 1

0

(1 + 2x2)ex
2
dx EXPAND e∫ b

a

ex

x
dx, ex = y EXEC

∫ eb

ea

1
y
· y

ln(y)
dy(

0 1
−1 2

)
JORDAN Char :1:(1, 0); Eigen :1:(−1,−1)

3.2 Warnings.

• Using a computer algebra system does not mean that you don’t have to
think. Most of the time, all works perfectly and you get the answer within
30 seconds. But sometimes, after 1 or 2 minutes, you don’t get the answer
or you get a Insufficient memory error. In this case, you should think
“Is there a different way to get the answer? Is there a way which will be
easier for the system?” And most of the time, there is a better way! Think
of double integrals where you can reverse the integration order or define
integrals where you may do a variable substitution to have less variables, or
linearity in inverse Laplace transforms, You should learn mathematics
and algorithms to get the best use of any computer algebra system. And
a system is never complete, you will need to program sometimes!

• Most of the problems in the real life don’t have exact answers but can
only be solved approximately. Think of integrals, differential equations,
large matrices (say e.g. 80×80), Before learning how to solve exactly
a problem, I strongly recommend that you learn how to solve numerically
a problem. Then for a real life problem, you will know when you must
stop finding an exact solution and begin to use a numerical algorithm.

3.3 Erable and alg48.

Erable is partially derived from the alg48 package. The arithmetic functions
of Erable are derived from those of alg48. Erable and alg48 have some other

10

common features like simplifications, partial fraction expansion or integration.
The main differences are:

• Erable handles complexes and square roots natively. It means that for
example

√
5 is considered as a constant not as an unknown, hence:

GCD1(X^2-5,X-2*sqrt(5)*X+5 will return X-sqrt(5).

• Erable accepts strings embedded in symbolics, this means that if you
EXPAND (5x + 12)16 with Erable you’ll get the exact answer. You may
also do arithmetic operations on strings representing integers, e.g., try:

"123456789123456789" DUP MULT
15241578780673678515622620750190521

• Erable handles numerical data (reals which are not integers and complexes
with non integral real and/or imaginary parts)

• Erable has a partial implementation of the Risch integration algorithm:
it handles most of the common integrals.

• alg48 implements the complete factorization algorithm over the rationals,
Erable finds only first order factors of the square-free factorization and
then, for 1-variable polynomials, calls the numeric solver if necessary and
tries to rebuild 2nd order factor. Hence, alg48 factors the expanded form
of (x4 +x3 + 1)(x4 +x+ 1) but not x4 + 1 and Erable does not factor the
first example but factors the second one.

• The main specific feature of alg48 is the Gröbner base computation.
The main features of Erable are eigenvalues and eigenvectors of matrices,
differential equations (first order: linear, Bernoulli, homogeneous; linear
with constant coefficients), limits, Taylor and asymptotic series, quadratic
forms, permutations, variable substitutions.

If you have enough memory, do like me: keep both on your calculator and choose
the right instruction!

3.4 Implementation notes.

This software is written in ML and SysRPL with HP48 supported entries and
standard instructions (and a few unsupported but static entries), hence it should
work on all versions of the HP48. Of course, you should backup your calculator
before trying it: no software is bug free!

This package was written on a 90MHz Pentium PC running under Linux
(RedHat 5.0), the GNU emacs editor, my patched version of the x48 emulator
(with almost instantaneous file transfers) the JAZZ SDB/DB debuggers, the gtools
package (HP48 GNU compiler), Kermit and Minicom (sx/rx).

11

3.5 Next upgrades.

The latest versions are available by anonymous FTP at the URL:
ftp://fourier.ujf-grenoble.fr/pub/hp48/

If you have a WEB browser (such as Netscape), you may prefer to go to my
professional home page:

http://www-fourier.ujf-grenoble.fr/ parisse/english.html

or to my personal home page:
http://perso.wanadoo.fr/bernard.parisse/english.html

4 Getting started.

Like any computer algebra system (CAS), Erable provides functions which
may behave differently depending on the current status that may be configured.
Like other CAS, Erable can use algebraic notation, but in addition you may
use the power of the postfixed RPN notation. We begin by exploring the most
important features of Erable that may be configured, then we will explain the
main functions of Erable.

Warnings:

• If you have choosen the simplified installation, check that you have did
step 12, if not type the VAR key then hit the menu key which corresponds
to INIT and go to section 4.1.

• If you have choosen the personalized installation method, please check
that you have installed the user keys redefinition as explained in section
2.2.4. If you have installed EQSTK, type ASTK to activate it.

• Verify that your calculator is in user mode. Look at the status lines, if
USER appears then you are done. Otherwise (or if NORM appears when
using JAVA), type the left shift key followed by the α key once or twice
(try once and type a key, if USER disappears then type the left shift- α key
sequence twice).

4.1 Current variable.

The current variable is the name of the unknown that is used for common
operations like derivation, integration, factorization, series expansion, ... When
you start Erable (and each time you reset it by typing VER followed by the
ENTER key), the current variable is set to ’X’.

The DEL key is assigned to X. It is therefore easy to enter a symbolic expres-
sion depending of X because you do not need to press the α key.

12

4.2 Complex and real modes

Erable has two major modes: complex and real mode. This mode affects
the way Erable outputs results. For example, factorization or partial fraction
decomposition is made over CC or over IR depending of the current mode. If you
see an unwanted i on the stack, this means that Erable is probably in complex
mode.

4.3 Exact and numeric mode.

Most of the time, you will use Erable in exact mode, where no approximation
are made. But sometimes, exact solutions can not be computed on the HP48
(e.g. if you want to factor x5 + x + 1), and Erable will switch to the numeric
approximation mode where e.g.

√
2 is handled as 1.414235....

4.4 Main functions of Erable.

The HP48 arithmetic operations (+, −, ×, ...) have a corresponding Erable
command (ADDT, SUBT, MULT, ...) that you can easily access by preceding the
usual HP48 key with the α and right-shift keys. For example, the ADDT ad-
dition function of Erable is obtained in USER mode by hitting three keys: α ,
Right Shift , + . More precisely the +, −, ∗, /, yx,

√
x, ±, 1/x, ∂,

∫
keys are

redefined (after α and Right Shift) as ADDT, SUBT, MULT, DIV1, POWER, SQRT,
CHS, inv, DERVX, INTVX. These commands are Erable commands for addition,
subtraction, multiplication, division, power, square root, change sign, derivation
and integration with respect to the current variable 1.

Many functions of Erable may be reached by the MTH-Erable menu or some-
times by a key preceded by α-right shift. To launch the MTH-Erable menu, type
the MTH key, use the white A-F menu and NXT keys to select a topic and select
the desired command again by hitting a menu key.

Remark 1 A beginners menu of the HP48GX is also available by hitting the
PRG key and may be useful for beginners. Note that the former MTH and PRG key
definition are reached by α-right shift-MTH or α-right shift-PRG. If you want to
delete the PRG key assignment, type 22.1 DELKEYS.

An easy way to configure Erable is the ERCFG command which may be
selected from the MTH menu of Erable. You can alternatively configure Erable
using flag setting commands (SF and CF) or storing desired values for the current
variable (VX), etc.. For example, you can change the content of the VX variable
to ’Y’ using the ERCFG command or go to the { HOME } directory, and type:

Y ’VX’ STO
1This variable is contained in ’VX’, it is by default set to ’X’, note that you can easily type

X by hitting the DEL key

13

You can directly reach a topic of Erable by hitting left shift followed by
the number of the topic in the MTH-Erable menu. For example, if you hit left
shift-1, you will get the BASE ALGEBRA menu, that is the most useful commands
of Erable that are illustrated with an example below:

• EXPAND (expand an expression):

(X+1)4

X2−1 EXPAND gives X3+3X2+3X+1
X−1

• FACTOR (factor an expression):

X4 − 1 FACTOR gives (X2 + 1)(X + 1)(X − 1)

• EXEC (to make a substitution at stack level 2, you must specify the sub-
stitution at level 1, e.g. ’X=1+Y’):

ln(X2 + 1) + arctan(X), X = 2 EXEC gives ln(22 + 1) + arctan(2)

• DERVX (derive an expression with respect to the current variable):

ln(ln(X))2 DERVX gives 2 1
X

1
ln(X) ln(ln(X))

• INTVX (integrate an expression with respect to the current variable):

eX sin(X)2 INTVX gives eX 1
2 + eX((− sin(2X) 1

5 + −1
10 cos(2X))

• LIMIT (of the expression at stack level 2, you must specify the variable
and the limit point at level 1, e.g. ’X=0’):

(1 + 1
X)X , X =∞ LIMIT gives e

• TAYLOR0: Taylor expansion of order 4 at x = 0 (where w is the current
variable):

sin(X) TAYLOR0 gives X − 1
3!X

3

• SERIES: Taylor expansion with respect to a variable at a specified order,
example:

sin(X) X 4SERIES gives X − 1
3!X

3

• SOLVEX: tries to find the current variable values that zero the expression
at level 1:

X4 − 1SOLVEX gives { ’X=1’ ’X=-1’ }

• PLOTSTK: plot stack level 1

• PLOTADD: adds the graph of a function to the graph of previous functions.

Some of these commands are directly assigned to a shortcut:

• the EXPAND command is assigned to the α-right shift-SPC sequence,

• the EXEC command is assigned to the α-right shift-EVAL sequence,

14

• i is assigned to the CST key,

• X is assigned to the DEL key,

• ∞ or +∞ is assigned to the α-right shift-DEL sequence,

• −∞ is assigned to the α-left shift-DEL sequence,

Here is a brief description of all the functions of Erable which may be
launched this way:

• left shift-1: basic algebra commands:

EXPAND, FACTOR, DERVX, INTVX, LIMIT, TAYLR, EXEC, SOLVEX
PLOTSTK, PLOTADD (see above)

• left shift-2: complex:

inv abs neg re, im, conj, arg

Note that you can get i if you hit the CST key.

• left shift-3: trigonometry:

EXPLN (convert trigonometric expressions to exp and ln)
SINCOS (convert complex exp and ln to trigonometric expressions),
TLIN (trig. linearization),
TCOLLECT (linearization and sin/cos combinations)
TRIG (applies sin2 + cos2 = 1 to simplify an expression),
TRIGCOS (same as TRIG, returns only cosines if possible),
TRIGSIN (same as TRIGCOS but returns only sines if possible),
TAN2SC (tan(x)→ sin(x)/cos(x)) HALFTAN (convert to tan of the half-
angle),
TAN2SC2 (convert tan to sin and cos of the double angle) and
ATAN2S (convert arctan to arcsin)
ASIN2T (arcsin to arctan)
ASIN2C (arcsin to arccos)
ACOS2S (arccos to arcsin)

• left shift-4: matrices

NORM (norm of a vector)
CROSSP (cross product of 3-d vectors)
DOTP (dot product of vectors)
IDENTITY (symbolic identity matrix),
TRAN (transpose of a matrix),
TR (trace of a square matrix),
det (determinant),
rref (row reduction to echelon form),
REF (rank of matrix),
JORDAN (diagonalization of matrices),

15

PCAR (characteristic polynomial),
SYST (solves a linear system),
SOLGEN (returns all solutions of a linear system),
RDET (determinant by row reduction),
LCXM (build a matrix),
HILBERT (build Hilbert matrix) and
VANDERMONDE (build Vandermonde matrix)

• left shift-5, calculus:

DERVX (derivative),
INTVX (integration),
LIMIT (limits),
TAYLOR0 (Taylor at 0, order 4),
SERIES (asymptotic series expansion),
SOLVEX (solve for X),
PLOTSTK (plot stack),
PLOTADD (add stack to plot),
IBP (integration by parts),
PREVAL (primitive evaluation),
RISCH (integration, Risch algorithm),
DER (derivative),
DESOLVE (ordinary first order differential equation solver),
LDEC (linear differential equation with constant coefficients solver),
LAP (Laplace transform) and
ILAP (invert Laplace transform)
TEXPAND (transcendental expand)

• left shift-6, integer and polynomial arithmetic:

DIV2 (Euclidean division),
GDC1 (usual greatest common denominator),
GCD3 (extended gcd),
LGCD (list GCD),
LCM1 (least common multiple),
SIMP2 (simplification of stack levels 2 and 1),
PARTFRAC (partial fraction decomposition),
PROPFRAC (integer part/fractional part decomposition),
PTAYL (Taylor method for polynomials),
HORN (Horner evaluation),
ISPRIME (Pseudo-prime test),
NEXTPRIM (next prime),
PREVPRIM (previous prime),

• left shift-7, solve and factorization:

SOLVE (isolate a variable in an equation),
ZEROS (same idea as SOLVE, different return format),

16

FROOTS (roots and poles of a fraction with multiplicity),
FCOEF (reverse of FROOTS),
FACTOR (factorization),
DIVIS (list of divisors),
SQRT (square root)

• left shift-8, exponentials and logarithms:

TEXPAND (transcendental expand)
LIN (linearization of exponentials),
LNCOLLECT (collect logarithms),
EXPLN (convert sines and cosines to exponentials),
SINCOS (convert complex exp and ln to trigonometric expressions),

4.5 The beginners menu.

If you hit the PRG key in user mode, you will get a menu for the HP48 as well
as for Erable. This menu will help new users of the HP48. Experienced users
can remove this key assignment, saving some memory (using the command 22.1
DELKEYS). Here is a brief description of this main menu:

1. EDITORS:

• EDIT LEVEL 1:
To modify the object at stack level 1 (shortcut: down arrow)

• VIEW LEVEL 1:
To view (not modify) the object at stack level 1 (shortcut: left shift-
down-arrow)

• EDIT STACK:
To Delete, copy or move object from one stack level to another stack
level (shortcut: uparrow or right shift-uparrow)

• SPEC. CHAR.:
To get special characters (shortcut: right shift-PRG)

• NEW EQUATION:
To enter a new equation in the EquationWriter environment (short-
cut: left shift-ENTER)

• NEW TEXT:
Enter a new string with the Minwriter editor. See the Minwriter
documentation for editing keys.

• NEW MATRIX:
Enter a numeric array in the MatrixWriter environment (shortcut:
right shift-ENTER)

• NEW LIST:
Enter a new list with the Minwriter editor.

17

• NEW PROGRAM:
Enter a new program with the Minwriter editor.

• PICTURE:
Modify the graphic object (e.g. the graph of a function) in the
PICTURE environment (shortcut: left shift-right-arrow)

2. VAR, I/O:

• MEMORY:
The memory handler of the HP48: see your variable and their con-
tents (shortcut: right shift-VAR)

• SEND/GET:
The Input/Output menu of the HP48, to exchange files with a com-
puter or another HP48 (shortcut: right shift-1)

• PORTS:
Management of your RAM/ROM card extensions (shortcut left shift-
1)

3. PROGRAMS:

• USER PROG:
The programmatic menu of the HP48 (shortcut in user mode: α-right
shift-PRG)

• LIBRARIES:
The libraries installed (shortcut right shift-2)

4. PHYSICS

• EQ. LIBRARY:
The Equation Library of the HP48 (shortcut: right shift, 3)

• CONSTANTS:
Physical constants and other utilities (shortcut left shift-3). Choose
COLIB (B menu key) to get either the library of constants (CONLIB) or
the CONST function (convert e.g. ’c’ at level 1 to the speed of light)

• DATE & TIME:
To set or modify the date and the time, and compute with dates and
time (shortcut: left shift-4)

5. SETUP

• CALC MODES:
Modes of the HP48: system flags, angle format, clock display, . . .
(shortcut right shift-CST)

• RESET ERABLE:
Like the VER command of Erable: restore standard state (no short-
cut)

18

• REAL MODE:
Put Erable in real mode, like the command 13 CF

• COMPLEX MODE:
Put Erable in complex mode, like the command 13 SF

• INTEGER ARIT:
Assumes now that you are doing arithmetic on integers, not polyno-
mials, like the command 10 SF

• POLYN. ARIT:
Assumes now that you are doing arithmetic on polynomials, not in-
tegers, like the command 10 CF

• NUMERIC MODE:
Assumes now that your integer inputs are not exact but numeric, like
the command XNUM

• SYMBOLIC MODE:
Assumes now that your integer inputs are exact, not numeric approx-
imations, like the command XQ

• TIME SETUP:
The TIME menu of the HP48 to set, browse alarms and date/time
(shortcut right shift-4)

6. STATISTICS:
The STAT menu of the HP48: single-variable, frequencies, fit data, sum-
mary statistics (shortcut: right shift-5)

7. UNITS:
The UNITS menu of the HP48: length, area, volume, time, speed, mass,
force, energy, power, pressure, temperature, electricity, angle, light, ra-
dioactivity, viscosity (shortcut: right shift, 6)

8. NUMERIC:
The built-in numerical functions of the HP48:

• MATH FNCS
vectors, matrices, list, hyperbolic, real functions, base probability,
Fast Fourier Transform, complex, constants: the built-in MTH menu
(shortcut in user mode: α-right shift-MTH)

• SOLVE EQN
The SOLVE menu of the HP48: numeric or semi-numeric solutions for
equations, differential equations, polynomial, linear systems, finan-
cial problems (shortcut: left shift-7)

9. GRAPH:
If you want to plot the function at stack level 1, choose PLOT LEVEL 1,
otherwise choose PLOT MENU

19

10. ERABLE:
To launch the Erable main menu if you don’t remember that the MTH key
does it directly. See description above.

5 Simplifications.

Two kinds of simplifications are provided: full rational simplification (EXPAND)
and transcendental presimplification (TEXPAND, LIN, TLIN, TRIGSIN, TRIGCOS,
. . . , LNCOLLECT, TSIMP). In many situations, full rational simplification achieve
the whole simplification, but sometimes you will need to detect relations between
exponentials and logarithms; in this situation you should call TEXPAND, TLIN,
. . . , TSIMP, followed by EXPAND or FACTOR to finish the simplification.

5.1 Rational simplifications instructions.

EXPAND does a complete simplification of an expression viewed as a rational
fraction, FACTOR tries to factor a symbolic. For convenience, arithmetic opera-
tions of Erable perform automatic rational simplifications: e.g. ADDT (shortcut:
α-right shift-+) is equivalent to + EXPAND.

5.2 Presimplification instructions

To simplify non rational expressions, you will most of the time apply identities
like ln(xy) = ln(x) + ln(y) or conversely and afterwards you will call EXPAND.

5.2.1 Linearization.

Exponential and trigonometric linearization are implemented via:

• LIN: exey gives ex+y and for integral powers (ex)n = enx

• TLIN: sin(x) sin(y) = 1
2 (cos(x − y) − cos(x + y)) and similar identities,

sin(x)n and cos(x)n for n integer

• TCOLLECT: like TLIN but in real mode TCOLLECT combines sin and cos of
the same argument, e.g. sin(x) + cos(x) becomes

√
2 cos(x− π/4).

5.2.2 Development.

The TEXPAND instruction applies the following identities:

• ex+y = exey and enx = (ex)n for n integer,

• ln(xy) = ln(x) + ln(y).
Warning: this identity is only valid modulo 2iπ

• sin(x+ y) = sin(x) cos(y) + sin(y) cos(x) and cos(x+ y) = cos(x) cos(y)−
sin(x) sin(y)

20

5.2.3 Trigonometry

The remaining trigonometric simplifications instructions are:

• EXPLN and SINCOS to apply Euler identities in both directions

• TRIGCOS, TRIGSIN: replace sin2 [resp. cos2] by 1− cos2 [resp. 1− sin2]

• TRIG: replace complex logarithms with arctan functions and then does
whichever of TRIGCOS or TRIGSIN had been done last

• TAN2SC: replace tan by sin / cos, depending upon previous use of TRIGCOS
or TRIGSIN

• TAN2SC2: replace tan(x) by sin(2x)/(1+cos(2x)) or (1−cos(2x))/ sin(2x).

• HALFTAN: replace sin(x), cos(x) and tan(x) in terms of tan(x/2)

• ATAN2S: replace arctan(x) by arcsin(x/
√
x2 + 1)

• ASIN2T: replace arcsin(x) by arctan(x/
√

1− x2)

• ASIN2C: replace arcsin(x) by π/2− arccos(x)

• ACOS2S: replace arccos(x) by π/2− arcsin(x)

5.2.4 The TSIMP instruction

TSIMP is used to minimize the number of rational “variables”. It may be used if
INTVX fails because it returns an expression which is “weak-normalized”. Note
that TSIMP considers trigonometric functions as complex exponentials, and sim-
plifies them this way and that the output of TSIMP is affected by the state of
the flag 13 (complex flag): if flag 13 is cleared, then complex logarithms and
exponentials are converted to arctan and sin/cos functions.

5.3 Recurse flag.

If flag 21 is set, “variables” of an expression are simplified recursively (global
name are evaluated, integrals are evaluated by a call to INTVX, etc.).

6 Limits, Taylor and asymptotic series.

The program SERIES computes Taylor series, asymptotic development and limit
at finite and infinite points. It should cover many weird limits, even some that
are not handled by the TI89 (not surprising!) nor by maple (more surprising!)
like:

lim
x→0

sin(1/x+ x)− sin(1/x)

The LIMIT instruction may be used if you need only the limit. Note that SERIES
handles more limits than LIMIT, but is a lot slower for trivial cases. SERIES

21

can not be used with non-exact arguments (like 0.1) and should not be used
with parameters. LIMIT may give strange results with parameters. If you see
a warning message, you will get a binary integer as answer, this means that
SERIES or LIMIT was not successful, the binary integer is an error code (see
section F).

Syntax of SERIES:
Put on the stack the following arguments in this order:

• the function f(x)

• the variable if the limit point is 0 or an equation x = a if the limit point
is a (and the variable is x). This entry is optional if the stack as only 1
argument.

• the order for series expansion (optional), by default 4 (minimum 2, max-
imum 20). If the order is a positive integer, the series expansion is made
from the right, if the order is a negative integer from the left. For bidirec-
tional series expansions, give the order as a binary integer (e.g. #5d).

Type SERIES, this computes the bidirectional limit at level 3. At level 2, you
get a list of two elements: the series expansion and the rest order. They are
expressed in terms of a small parameter h. At level 1, h is expressed in terms
of the initial variable (hence calling EXEC would return the series expansion and
the rest in terms of the initial variable).

Remark 2 • Note that the series expansion is not always fully truncated,
don’t forget to look at the rest. If you need to truncate the series expansion,
split the list on the stack (hit the EVAL key) and call the TRUNC function.

• Sometimes SERIES will not be successful and returns an error code. You
can look at section F for more information about the failure.

• For mono-directional series expansion, either specify the order as a positive
or negative integer, or for default order, put an equation x = a + 0 for a
left-directional series expansion at a or x = a − 0 for a right-directional
series expansion.

• For limits at infinity: you may use the ∞ symbol (from keyboard type α-
right shift-DEL in user mode or α-right shift-I in normal mode). To get
X = +∞, type X =∞, then hit EVAL.

Examples:
’1/x’ ’x =∞’ SERIES
’1/x’ ’x = +∞’ SERIES
’1/x’ ’x = −∞’ SERIES
’sin(x)/x’ ’x’ SERIES
’sin(x)/x’ ’x = +∞’ SERIES
’
√

(2 + x)’ ’x’ ’5’ SERIES
’sin(1/x+ x)− sin(x)’ ’x’ SERIES
’(ln(− ln(x+ x2))− ln(− ln(x))) ∗ ln(x)/x’ ’x = 0 + 0’ SERIES

22

The syntax of LIMIT is similar: put the function and the the specification of
the limit variable and the limit point, ’variable=limit_point’, on the stack.
Note that you can not force the order for series expansions and LIMIT handles
only bidirectional limits (except at infinity). LIMIT returns only the limit at
stack level 1.

Erable can handle relatively complex limits, like the example below (ex-
tracted from the Mupad on-line help):

exp

(
e−x

e−x+e

−2x2
x+1

x

)
−ex

x , X =∞, LIMIT returns −e2.
In addition Erable provides the:

• TRUNC instruction which truncates a series expansion at level 2 with respect
to the rest at level 1.
For example, to truncate x+ x5 with respect to x4, try:
’X+X^5’ ’X^4’ TRUNC
that will return x since x5 can be neglected with respect to x4.

• DIVPC instruction which make a division in ascending power up to an
integer order. The numerator is at level 3, the denominator at level 2 and
the order at level 1.
For example, if you want to compute the Taylor expansion of (1+x)/(1−x)
at x = 0 at order 4, you type ’1+X’ (numerator) then ’1-X’ (denominator)
then the order 4 and DIVPC returns:
’1+2*X+2*X^2+2*X^3+2*X^4

These instructions may be used to understand series expansions without cum-
bersome calculations.

7 Derivation and integration.

7.1 Derivation

The Erable derivation instructions are DER and DERVX, they compute the deriva-
tive of a (list of) function(s) like the built-in instruction but do not evaluate
numeric expressions (like

√
2 or 1

2). DERVX is used for derivation with respect
to the variable contained in VX and takes only one argument (the function to
derive). DER is used with 2 arguments: the (list of) function(s) to derive at level
2 and the variable with respect to which you want to derive at level 1. If level
1 is a list, DER returns the gradient of level 2:

2: ’X^2+2*X*LN(Y)-1/Y’
1: { X Y } DER gives
{ ’2*X+2*LN(Y)’ ’2*X*(1/Y)+1/SQ(Y)’ }

DER returns djZ(. . .) for the derivative of the user-defined function Z(. . .) with
respect to the j-th variable of z(x, y, . . .).

Examples:

23

Suppose that x→ z(x) is the primitive of
√
x3 − 1. Type ’Z(X)’ X DER, you

get ∂1z(x) on the stack. Enter
√
x3 − 1 and hit = then enter DEFINE. Now, you

can type ’Z(X^2)’ X DER EVAL and get 2x
√

(x2)3 − 1. Try ’Y(X,X^2)’ X DER.

7.2 Integration

The main integration commands are INTVX and EXPAND. The INTVX program
accepts functions as input and (tries to) return the primitive. EXPAND should be
called for symbolic expressions which contains the

∫
symbol. The last computed

antiderivative is stored in the variable PRIMIT. The variable ERABLEMSG contains
additional information if INTVX returns an unevaluated antiderivative (with a

∫
sign).

Some examples for INTVX:

• 1
x2−4 gives 1

4 ln(x− 2)− 1
4 ln(x+ 2)

• x ln(x) gives 1
2x

2 ln(x)− 1
4x

2

•
√
x2 − 1 gives 1

2 ln(−x+
√
x2 − 1) + x

2

√
x2 − 1

• 1/(sin(x) + 2) gives −2
3

√
3 arctan(−2 tan(x/2)−1

3

√
3)

The INTVX program must sometimes be used in conjunction with the TSIMP
function to get “weak normalization”. If you get No closed form in ERABLMSG,
try TSIMP and INTVX again, if you get again the message No closed form, this
does not mean that INTVX failed, but that your input does not admit to an
antiderivative which may be expressed in terms of elementary functions.

Remark 3 • INTVX is only a partial implementation of the Risch algorithm:
it works with pure transcendental extensions (i.e. square root are gener-
ically not allowed), and exponential polynomial parts must not contain
logarithms or other exponentials. Examples:

ln ln(x),
1

ex2+1 − 1
, x3e(

x+1
x+2)

are allowed (and returned since they do not have an antiderivative which
may be expressed with elementary functions), but:√

ln(x)2 − 1, eln(x)2+1

are not allowed as input.

In addition to this partial implementation, INTVX can integrate fractions
of the type F (x,

√
ax2 + bx+ c).

• You can not use the name of the current variable as a parameter name in
an integral, for example if VX is set to X, evaluation of:∫ T

0

(X2 − Y 2) dY

24

does not return a correct answer, because X in the integral is a parameter.
You can however use X as integration variable, e.g.∫ T

0

(X2 − Y 2) dX

works.

For integrals with limits, the right instruction is EXPAND. Example of EXPAND
usage (in real and symbolic mode):∫ 2

1

1
x3 + 1

EXPAND gives
ln(3)− 2 ln(2)

6
+

π

18

√
3

If you have computed the antiderivative e.g. with INTVX, you can evaluate it
between two bounds using PREVAL. Arguments of PREVAL are a function f(x) at
level 3, lower and upper bounds a and b at level 2 and 1. It returns f(b)− f(a)
(x is the variable contained in VX).

Remark 4 Warning: EXPAND does not detect discontinuities of the antideriva-
tive. It blindly computes the value at both ends of the integration interval (by a
call to LIMIT, hence infinite bounds are allowed) and returns the difference. For
example,

∫ 2π

0
1

sin(x)+2 returns 0. You should always check the answer numeri-
cally and if the answers are not the same, you have to study the antiderivative
for discontinuities.

7.3 Integration by parts

Integration by parts is implemented via the IBP command. You have to put an
integral

∫ b
a
f(x) dx, where x is in VX, at level 2 and a function u(x) at level 1.

Let f(x), dx = u(x)v(x) dx, then IBP returns
2: u(x) ·

∫
v(x) dx

1: −
(∫
v(x) dx

)
· du(x)

dx dx

You may call IBP several times, adding an appropriate u(x) each time.
Examples:

For:
∫

arcsin(x)2 dx by entering

2: ’ASIN(X)^2’
1: ’T’
IBP gives
’X*ASIN(X)^2’
’-(X*(2*ASIN(X)*INV(√(1-SQ(X)))))’
adding ’√(1-X^2) to the stack and doing IBP gives
3: ‘X*ASIN(X)^2’
2: ’√(1-x^2)*(2*ASIN(X)*INV(√(1-SQ(X)))))’
1: ’-(√(1-X^2)*(2*INV(√(1-SQ(X)))))’
doing + + EXPAND gives
’-(2-2*√(1-X^2)*ASIN(X)-X*ASIN(X)^2)’

25

which is the antiderivative of arcsin(x)2.

Try:
∫

exp(x) sin(2x) dx with exp(t) IBP twice. Note, after doing EXPAND,
that the last line is -4 times the original integral. Replace the last line
with −4∗ I. Do + +. Put I at the bottom of the stack. Do =. Put I again
on the bottom of the stack. Do SOLVE. The result is the antiderivative of
exp(x) sin(2x).

8 Ordinary differential equations.

8.1 Linear differential equations with constant coefficients

You can solve with LDEC either a linear differential equation of any order or
a first order linear system of differential equations. The syntax is somewhat
similar to the syntax of a division: put the second member on stack level 2 and
the characteristic equation or the matrix of the system at level 1.
Examples:

• to solve y′′ + 4y = x3 type:
’X^3’ ’X^2+4’ LDEC
you will get:

(y0 ∗ cos(2x) +
8y1 + 3

16
sin(2x) +

2x3 − 3x
8

this is the solution such that y(0) = y0 and y′(0) = y1.

• suppose we want to solve the following system:{
y′1(x) = y1(x) − y2(x) + 1
y′2(x) = 2y1(x) + 4y2(x) + ex

Type:
{ 1 ’EXP(X)’ } { { 1 -1 } { 2 4 } } LDEC
you will get the solution such that y1(0) = v1 and y2(0) = v2:(

(2v1 + v2 + 2)e2x − 1
2e
x − 2

3 +− 6v1+6v2+5
6 e3x

−(2v1 + v2 + 2)e2x + 1
3 + 6v1+6v2+5

3 e3x

)
Erable solves these types of equations using the Laplace transform defined

by:

Y (s) = L(y)(s) =
∫ ∞

0

e−sty(t) dt

Example: solve y′ + 2y = cos(x). Apply L, since:

L(y′)(s) = sL(y)(s)− y(0)

we get:
(s+ 2)L(y)(s) = L(cos(x))(s) + y(0)

26

hence:

y(x) = L−1

(s
s2+1 + y(0)

s+ 2

)
= L−1

(s
s2+1

s+ 2

)
+ y(0)L−1(

1
s+ 2

)

since L(cos(x))(s) = s/(s2 + 1).
The program LAP takes the function f as argument and returns L(f) (Laplace

transform is performed with respect to the variable contained in VX).
The program ILAP performs the inverse Laplace transform of rational frac-

tions. Example: for x/((x2 + 1)(x+ 2), type ’X/(X^2+1)’ ’X+2’ / ILAP to get
the answer:

y(x) =
1
5

(2 cos(x) + sin(x)) +
−2
5
e−2x

Remark 5 The name of the Laplace variable is the same name as the normal
variable (and is contained in VX).

8.2 First order equations.

The DESOLVE program recognizes and solves the following equation types:

• y′(x) = f(y(x)),

• y′(x) = f(x, y(x)) with f homogeneous,

• y′(x) = g(x)y(x) + h(x)y(x)α α ∈ IR (Bernoulli type),

• y′(x) = f(x)g(y) (separable, if f and g are rational fractions) and

• y′(x) = f(x)y(x) + g(x) (linear)

The input is the function f(x, y(x)) or an equation like ’d1Y(X)+Y(X)=2’.
Examples:
Y(X)^2+Y(X) DESOLVE which is incomplete
X*Y(X)+1-X^2 DESOLVE which is linear
(Y(X)-X)/(Y(X)+X) DESOLVE which is homogeneous
Y(X)^2+X*Y(X) DESOLVE which is Bernoulli

The output may be y as a function of x or x as function of y or x and y as a
function of t (parametric solution) for an homogeneous ode. The equation type
is stored in the ODETYPE variable.

9 Substitution, change of variables: EXEC.

The EXEC programs checks the object type at stack level 1 and performs the
corresponding action:

27

• one algebraic substitution:
If stack 1 is an equation (’objA=objB’), replace objA by objB in stack2.
The syntax is ’old_name=expression’ EXEC.

oldname may be a global name, an expression (in this case, the first global
name in this expression will be isolated) or an user-defined function.

Examples:

– ’X^2+2*X+5’ ’X=1’ EXEC: evaluate an expression at x = 1.

– ’X=Y^2’ EXEC: change of variables, works in integrals too

– ’2*Z(X)-X*d1Z(X)’ ’Z(X)=X^2 EXEC: in a differential equation, re-
place the function z(x) by x2.

– ’Z(X)+d1Z(X)’ ’Z(X)=EXP(-X)*Y(X)’ EXEC:
change of function in a differential equation.

– ’X^2+X*COS(X)’ ’X^2=1-Y’ EXEC: replace x2 by 1− y and replace x
by
√

1− y.

• multiple substitutions:
If stack 1 and 2 are lists, replace each object of list2 in stack level 3 by
the corresponding object of list1.

The syntax is

{ old_name_1 . . . old_name_n } { expr_1 . . . expr_n } EXEC

Note that here EXEC does only substitutions.

Examples:

– ’SIN(X)^2+SIN(X)*COS(X)’ {’SIN(X)^2’} {’1-COS(X)^2’}
EXEC replaces sin(x)2 by 1 − cos(x)2 without replacing sin(x) by√

1− sin(x)2.

– ’COS(X)+i*SIN(X)’
{ SIN COS }
{ << i * EXP DUP INV - i 2 * / >>
<< i * EXP DUP INV + 2 / >>

}
EXEC

replace sin and cos by complex exponentials. If you call EXPAND,
afterwards you get eix.

• variable isolation:
If stack 1 is a symbolic but not an equality, EXEC tries to isolate stack level
1 in stack level 2. Example:

’X^2-5’
X
EXEC

28

returns ’X=
√

5’.

• doall function:
If stack 1 is a program, EXEC executes program at stack level 1 recursively
on the components of a list object at stack level 2. Example:

{ 1 2 3 } << NEG >> EXEC

is the same as

{ 1 2 3 } CHS

10 Arithmetic.

10.1 Complex arithmetic

• re: real part

• im: imaginary part

• conj: conjugate

• abs: absolute value (modulus)

• arg: argument. Warning: for expressions containing variables, the re-
turned argument is only valid modulo π.

Remark 6 If flag 13 is cleared (real mode), all global names and all non ra-
tional functions are considered as real with respect to the instructions RE, IM,
CONJ. This could lead to false simplifications if a global name stays for a com-
plex, or if a non-rational inverse function is called with an usually forbidden
real argument, like LN(-1) or ASIN(2)

Solution: either replace your global name, say ’Z’, by ’X+iY’ or set flag 13
(shortcut α-right shift-CST or 13 SF)

10.2 Integer and polynomial arithmetic

You may force integer arithmetic by setting flag 10 (shortcut α-right shift-CST
or 10 SF). Otherwise, polynomial arithmetic is assumed. This is important for
instructions like GCD3 or ABCUV.

• DIV2: Euclidean division. Stack 2 is the quotient, stack 1 the remainder.

• GCD1: returns the greatest common divisor d of two objects a and b (inte-
gers, Gauß integers, polynomials). Examples:

’X^2+2*X+1’ ’X^2+3*X+2’ GCD1 returns ’X+1’
25 15 GCD1 returns 5

If flag 12 is clear it returns 1.

29

• LCM1: lowest common multiple (GCD1(a, b)×LCM1(a, b) = a×b). Examples:

’X^2+2*X+1’ ’X^2+3*X+2’ LCM1 returns ’(X^2+2*X+1)*(X+2)’

25 15 LCM1 returns 75

• GCD3: extended gcd algorithm, given x and y returns d , u and v such
that:

ux+ vy = d

(d is a multiple of the gcd of x and y by an invertible, i.e. an integer in
the univariate case)

• ABCUV: (Bezout identity) solve the equation c = ax+ by Examples:

’X^2+2*X+1’ ’X^2+3*X+2’ ’X+1’ ABCUV gives -1 1 1
’X^2+2*X+1’ ’X^2+3*X+2’ 1 ABCUV gives 0

This means for the first case that:

(X + 1) = (X2 + 2X + 1) ∗ (−1) + (X2 + 3X + 2) ∗ 1

as in the second case there is no solution because the gcd of x2 + x + 1
and x2 + 3x+ 2 does not divide 1.

• LGCD: returns the gcd of a list of objects.

• SIMP2: simplifies two objects by dividing them by their gcd. Sets flags 12,
14 and 15. Example:

2: 9
1: 6
SIMP2 gives
2: 3
1: 2

• DIVIS: gives a list of divisors of an object.

Example:

21 DIVIS gives { 1 7 3 21 }

• fact and comb: like the built-in FACT and COMB instructions but for long
integers.

• EULER: Euler indicatrix
Given an integer n, returns an integer e: the number of integers lower
than and prime with n.

Example:

for n = 25, e = 20 because 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18,
19, 21, 22, 23, 24 are prime with 25.

30

• PA2B2 (kernel library):
Given a prime p which is 1 modulo 4, returns a complex z = a + ib such
that |z|2 = a2 + b2 = p. Used for factorization of Gauß integers.

• XFRC:
Same as →Q but handles quadratic irrationals (recognizes a quadratic
irrational if its expansion in continued fractions is ultimately periodic of
period less or equal to 3).

Examples:

1.20710678118 gives 1
2 + 1

2

√
2

1.5 gives 3
2

• ORND:
round object at stack level 2, stack level 1 is the expected denominator of
all rationals of the object.

For example, .49999999999 + .2000000001 ∗ x 10 ORND returns .5 + .2 ∗ x.

10.3 Infinities.

The arithmetic operations of Erable accept infinity arguments. The +∞ symbol
may be obtained from the keyboard by α-right shift-I in normal mode or α-right
shift-DEL in user mode followed by ENTER. The −∞ symbol is obtained by hitting
the quote key, the - key and α-right shift-I or α-right shift-DEL followed by ENTER.
∞ and −+∞ are understood as unsigned infinity (with the following exception:
∞ is understood as +∞ in a bound of an integral or in a LIMIT instruction).
The ? symbol means that the result of an operation is undefined. All operations
involving ? will return ? after simplifications.

Remark 7 The current release returns ? for some expressions which are not
undetermined, like (+∞)−∞.

Be aware of the fact that arithmetic operations on infinities may return false
answers because Erable can not check for nullity if non rational expressions are
encountered. For example (sin(2x)− 2 sin(x) cos(x))/0 will return ∞ instead of
0. This remark applies to the LIMIT instruction too (call SERIES if the answer
of LIMIT seems false).

10.4 Modular arithmetic

You must first store an integer n in the MODULO variable (by default n is set
to 3). All computations are made modulo this integer. The kernel library
provide the following commands MODADD, MODSUBT, MODMULT, MODDIV, MODPOW
and MODINV for the usual operations. MODADD, MODSUBT, MODMULT, MODDIV now
accepts polynomials and Gauß integers as well as integers as input. MODPOW
accepts a polynomial as first argument, the second argument must be a positive
integer.

31

Remark for alg48 users: these functions are analog to AADD, ASUB, . . . ap-
plied to mod-polynomials (like ’MOD(X^2+3*X+7,11)’) but without MOD nota-
tion. I reserve the MOD notation for a future use with a polynomial as second
argument so that it will be possible to compute e.g. in ZZ/3ZZ[X]/(X2 + 1).

11 Factorization. Solving equations.

11.1 Summary of the instructions.

• FACTOR: factor a symbolic fraction (returns a symbolic). Factorization may
be incomplete, but is square-free and all first order factors are detected.

• LNCOLLECT: collect logarithms, e.g. ln(2)+ln(3) LNCOLLECT returns ln(2×
3).

• SOLVE: tries to isolate a variable name at stack level 1 in the symbolic
expression located at level 2. Returns the variable name at level 2 and a
list of solutions at level 1. Examples:

– ’X^4-1’ X SOLVE returns:

if real (13 CF), { ’X=1’ ’X=-1’ }
if complex (13 SF), { ’X=1’ ’X=-1’ ’X=i’ ’X=-i’ }

– ’2*SIN(X)^2-3*SIN(X)+1’ X SOLVE returns

{ ’X=(π-4*π*n2)/2’
’X=(π+4*π*n2)/2’
’X=(5*π-12*π*n1)/6’
’X=(π+12*π*n1)/6’ }

where n1 and n2 represent integers.

SOLVE will be successful if the symbolic expression is a polynomial of a
function of the variable or a product of polynomials. Otherwise it will
fail. Hence, it may be useful to rewrite the symbolic expression using
LNCOLLECT or/and FACTOR before calling SOLVE. Example:

’LN(X-1)+LN(X+2)=2’ X SOLVE doesn’t work
but ’LN(X-1)+LN(X+2)=2’ LNCOLLECT X SOLVE works

• SIGNE: returns the sign of a mono-variate rational fraction as a list of signs
+ or − separated by roots or poles of the rational fraction, starting from
−∞ at the left to +∞ at the right of the list.

Example:

’(X^2-1)/(X^3-7*X^2+16*X-2)’ SIGNE

returns:

{ ’-∞’ + -1 - 1 + ’+∞’ }

32

hence x2−1
x3−6x2+11x−6 is negative for x ∈ (−∞,−1) ∩ (1, 2) ∩ (2, 3), positive

for x ∈ (−1, 1) ∩ (3,+∞), and zero or infinite for x ∈ {−1, 1, 2, 3}.

• FROOTS: given an object as input, outputs the list of variables (stack level
3), the list polynomial (2), and the list of root/multiplicity (1) (each root
is followed by its multiplicity). Examples:

* ’X^3-6*X^2+11*X-6’ FROOTS gives
3: { X }
2:’X^3-6*X^2+11*X-6’
1: { 2 1 3 1 1 1 }

* ’1/X^2’ FROOTS gives
3: { X }
2: ’1/X^2’
1: { 0 -2 }

* ’X^2+2*X*Y+Y^2’ FROOTS gives
3: { X Y }
2: ’X^2+2*X*Y+Y^2’
1: { ’-Y’ 2 }

For a symbolic, FROOTS factors the symbolic expression with respect to
the variable contained in VX, or if the symbolic is independent of VX with
respect to the first variable of LVAR applied to the symbolic.

(For the SX version only): If stack 1 is a real integer, FROOTS computes the
roots of a list polynomial with numeric coefficient using Bairstow method
(real coefficients) or Laguerre method (complex coefficients). During iter-
ations, you can modify some parameters:

– E*10: (ε × 10) multiplies the test value by 10, use this when there
are multiple roots.

– E/10: divides the test value/10, for accurate precision (use this after
you have found all multiple roots)

– RAND: reset current iteration (restart with random initial value)

– STOP abort iteration (for the next one or two roots)

Displayed are the last found roots and the current test value (to compare
with the ε value). Before starting the program, you must specify the ε
value and the number of test-successfully iterations using the following
stack input:

– 3: list polynomial,

– 2: test value (positive real),

– 1: iteration number (real integer)

Example:

33

{ 1 -21 183 -847 2196 -3024 1728 }
1E-4
3
FROOTS gives
approximatively { 3 3 3 4 4 4 }

The result is bad since 3 and 4 are multiple roots. (End of specificity of
the SX version)

• FACTORS: same stack as FROOTS but returns a list of ”prime” factors instead
of roots. Example:

* ’X^3-6*X^2+11*X-6’ FACTORS gives
3: { X }
2: ’X^3-6*X^2+11*X-6’
1: { ’(X-2)’ 1 ’(X-3)’ 1 ’(X-1)’ 1 }

* 21 FACTORS gives
3: { }
2: 21
1: { 3 1 7 1 }

• FCOEF: input is a list of roots/multiplicity, output is a fraction or polyno-
mial with leading coefficient 1 having this roots (and poles). Example:

{ 1 1 2 1 3 1 } gives ’(X-3)*(X-2)*(X-1)’
{ A -1 2 1 } gives ’(X-2)/(X-A)’

11.2 A word about factorization.

You should skip this section for a first reading. Factorization of polynomial is
very important in several mathematical functions, like symbolic integration or
matrix diagonalization. It is important to understand the mechanism used by
Erable to perform this tasks.

Let’s begin by recalling some mathematical facts:

• Theorem (d’Alembert):
A polynomial of degree n has exactly n complex roots (counted with mul-
tiplicity).

• Formula exists to get the solution of polynomials up to order 4 but Galois
proved the following theorem last century:

There is no formula for solving a generic polynomial of degree ≥ 5
(by algebraic operations and extraction of n-th roots)

This means that you can not compute the roots of a multivariate polynomial
of order ≥ 5 (for such polynomials, systems like Maple, Reduce, Axiom, Math-
ematica or Mupad use algebraic extension), and that you can only compute the
roots numerically of an arbitrary univariate polynomial of order ≥ 5. Note that
the generic solution of a polynomial of order 3 is still complicated and of order

34

4 very complicated. I think that it is not possible to handle the generic solution
of polynomials of order 3 or 4 on the HP48 in a reasonable amount of time.
Hence, only polynomial of order 2 are generically solved by Erable.

However, in some situations, you can root exactly polynomials of order ≤ 3,
by searching multiple roots and by finding obvious roots (or obvious factors).
The rooting algorithm of Erable searches first for multiple roots by computing
the gcd of the polynomial and its first derivative (this is the SQFFext algorithm
in the source of Erable). Of course flag 12 must be set for this step to be
done. If an univariate polynomial has only integer (or rational) coefficients,
you can find all rational solutions of this polynomial by testing a finite set of
rationals (of the form numerator/denominator where numerator is a divisor of
the constant coefficient and denominator a divisor of the leading coefficient).
This is implemented in Erable by the null named XLIB EVIDENText which is
called if flag 14 is set. Hence, Erable detects all 1st order factors of a symbolic.

If the method above fails, Erable calls the numeric solver for univariate poly-
nomials (which is the HP48GX PROOT function in ERABLEG.LIB or the Bairstow
or Laguerre algorithm in erable.lib) and tries to find second order polyno-
mial with integer coefficients by coupling 2 approximate solutions (this was an
idea of Mika Heiskanen implemented in POLYLIB). Hence Erable should find all
rational and quadratic irrationals roots of an univariate polynomial (unless the
polynomial is badly conditioned).

For multivariate polynomials, the two first steps are achieved (EVIDENText
and SQFFext). Erable should find all rational multivariate roots of a polynomial
(1st order factors). Unfortunately, Erable does not implement the exhaustive
search of all 2nd order (or greater) multivariate rational factors. This can be
performed using the FCTR function of the ALG48 library.

Abstract of the SysRPL XLIBs (include erextdec.h and erhash.h in your
source code to use them) to factor:

• EVIDENText: finds rational roots

• SQFFext: finds square-free factorization of a polynomial

• SOLVext: roots an univariate polynomial numerically and tries to rebuild
quadratic irrationals roots

Abstract of the user commands to factor:

• FACTOR:
for symbolic input calls SQFFext, then EVIDENText, does not call SOLVext,
and for list input calls only SQFFext

• FROOTS: calls SQFFext then EVIDENText then SOLVext,

• FACTORS: calls SQFFext then EVIDENText, does not call SOLVext

Flags 12 and 14 may be cleared to skip respectively SQFFext and EVIDENText.

35

12 Linear algebra.

Lists of lists are used to represent symbolic matrices, in other words a symbolic
matrix is entered like a numeric matrix, replacing [by { and] by }. Symbolic
vectors are allowed as well (represented as lists).

12.1 Building a matrix

To build a matrix, you may type it as usual with { and } instead of [and] or
you may use one of the following instructions:

• IDENTITY: build a symbolic identity matrix In (if n is at level 1)

• LCXM: build a matrix A = (aij)1≤i≤l,1≤j≤c. The command takes 3 argu-
ments: l, c and a program building aij from i and j. Example:

2 4 << SQ + >> LCXM

returns a 2× 4 matrix with aij = i+ j2

• VANDERMONDE returns a Vandermonde matrix given a list of objects

• HILBERT returns a Hilbert matrix given an integer.

12.2 Operations

Erable provides the arithmetic usual operations on matrices and vectors (add,
SUBT, MULT, CHS) and:

• STUDMULT: (MATR directory) student multiplication of matrices (term by
term)

• TR: trace of a matrix

• TRAN: transpose of a matrix (true transpose, no conjugation)

• DOTP: scalar product of two vectors

• CROSSP: cross product of two 3-d vectors.

12.3 Gauß-Jordan row reduction.

Summary of the instructions:

• rref: row reduction to echelon form. At level 2, the list of pivoting
coefficients is given, this is useful to treat particular cases.

• REF: rank of matrix using half row reduction

• det and RDET: determinant (using respectively the O(n ∗ n!) algorithm or
row reduction)

36

• inv: inverse of a matrix using row reduction

• LU2: given a square matrix, returns L−1 and U such that A = LU (i.e.
A =stk2 −1×stk1) where L and U are lower and upper triangular (maybe
with respect to to a permutation matrix, this means that computing the
inverse of L or U is trivial). For comparison, the built-in LU returns three
matrices L, U and P such that A = PLU .

• SYST and SOLGEN: solution of a linear system.

Note that all instructions using row reduction show intermediate steps if flag 1
is set (1 SF). If flag 1 is cleared (1 CF), you get directly the results.

12.3.1 Solving a linear system.

Suppose you want to find (x, y) such that:{
mx + y = −2
mx + (m− 1)y = 2

where m is a parameter. Type a list containing the linear equations and as last
element put the list of unknowns. Here:

{ ’M*X+Y=-2’ ’M*X+(M-1)*Y=2’ { X Y } }

Then call SYST or SOLGEN. For SYST, you get the solution at level 1, the list of
particular cases at level 2 and the original system at level 3. For SOLGEN you
get the same results but at level 2, 3 and 4 and the parameterized solution at
level 1.

On the above example, we get at level 1:
:X:’-2/(M-2)’ :Y:’4/(M-2)’}

At level 2, you get the list of pivots. The result returned by SYST and SOLGEN
is incorrect if one of the pivot is 0. Here level 2 is:

{ ’M^2-2*M’ ’-M+2’ -1 ’M+-2’ }

Using ’M’ SOLVE, we see that we have to solve for the particular cases m = 0
and m = 2. The commands SYST and SOLGEN create a variable named SYSTEM
to help solving particular cases. To solve for m = 2, recall SYSTEM on the stack,
type ’M=2’ EXEC, and call SYST.

For systems, the SOLGEN program provides another way of writing the solu-
tion as an affine space of solutions. Recall the matrix on the stack (simply hit
SYSTEM), type:

’M=0’ EXEC SOLGEN

you get at level 2:
If { }, { X Y }=:{ X -2 }

(level 1 is the same as the result of SYST). This means that (x,−2) is solution
for every x. The If statement shows necessary conditions for the system to
have solutions (here no condition, but if we try m = 2 instead of m = 0, the
system has no solution: the If statement is If { ’0=-1’} never fulfilled).

Another way to solve the system is the enter the matrix of the system

37

{{M 1 -2}{M ’M-1’ 2}}

and call rref to reduce it. You get at level 1:
{{’M^2-2*M’ 0 ’-2*M’}{0 ’M-2’ 4 }}

This means that:

(m2 − 2m)x = −2m, (m− 2)y = 4.

The reduction is correct iff all the coefficients in the list at level 2 are non 0.
You should have at level 2:

{1 ’M-2’}

The second coefficient vanishes if m = 2. You have to solve for this particular
case again. To do this, you can use the variable named MATRIX (which is created
if the argument contains at least one parameter). Recall this matrix and type:

’M=2’ EXEC

This replaces all occurrences of M by 2 in the original matrix. Now type rref
again, you get:

{{2 1 -2}{0 0 4}}

The last line means that:
0x+ 0y = 4

which is clearly impossible; the system has no solution.

12.3.2 Inversion

The inv implements the Gauß method to invert matrices.
{ { ’1/2’ -1 } { 1 ’2/3’ } }

inv returns
{ { ’1/2’ ’3/4’ }{ ’-3/4’ ’3/8’ } }

12.3.3 Determinant

The RDET instruction implements Gauß row reduction to compute determinant.
{ { 1 T T T }
{ 1 K T T }
{ 1 T K T }
{ 1 T T K } }

RDET

gives
’(K-T)*(K-T)*(K-T)’

12.4 Kernel and image of a linear application.

To get the kernel of a linear application f with matrix A, enter the matrix A
and type KERN. This will return the parameterized equations of the kernel like
SOLGEN.

To get a basis of the image of f , enter the matrix A, type:

38

<< TRAN rref >>

the basis is made of the non-zeros lines of this matrix.

12.4.1 Other examples.

• LU decomposition example:

A =
(

1 2
3 4

)
LU2 returns:

L−1 =
(

1 0
−3 1

)
U =

(
1 2
0 −2

)
We have A = LU .

• Rank of a matrix:
1 2 4 6
−1 3 5 7
2 1 0 1
2 6 9 14

 ,

hit REF, and look at the matrix:
1 2 4 6
0 5 9 13
0 0 −13 −16
0 0 0 0

the rank is 3, the number of non zero lines (By the way, you also get a
half reduced matrix)

• Linear relations between vectors
Suppose we want to know the rank and linear relations existing between
v1(1, 2, 0), v2(−2,−1, 1), v3(0, 3, 1) ∈ IR3:

{ { 1 2 0 V1 }
{ -2 -1 1 V2 }
{ 0 3 1 V3 } }

then REF, we get:

{ { 1 2 0 V1 }
{ 0 3 1 ’2*V1+V2’ }
{ 0 0 0 ’-(2*V1)-V2+V3’ } }

The family is of rank 2 (the 3rd line is 0) and −2v1 − v2 + v3 = 0.

39

12.4.2 Stack input/output for reduction instructions.

Program Input Output
LU2 1: matrix A = LU 3: pivots, 2: L−1, 1: U
REF 1: matrix 2: pivots

1: half-reduced matrix
rref 1: matrix 2: pivots, 1: rref-ed matrix
RDET 1: matrix 1:determinant
inv 1: matrix 1: inverse
SYST 1: { equations { unknowns } } 3: original system

2: list of pivots
1: list of tagged algebraics

SOLGEN 1: { equations { unknowns } } 4: original system
3: list of pivots
2: result
1: list of tagged algebraics,

12.5 Diagonalization

The diagonalization instructions are:

• MAD: given a square matrix, returns the determinant, the formal inverse,
a list polynomial and the characteristic polynomial. The list polynomial
PA is a matrix coefficient polynomial defined by the relation:

(xIn −A)PA(x) = M(x)In = M(x)In −M(A) (1)

where M denotes the characteristic polynomial of A.

• PCAR: characteristic polynomial using det

• JORDAN: compute eigenvalues and eigenvectors (cf. infra)

Given a square matrix A, JORDAN returns 6 levels:

• 6: det(A)−1

• 5: A−1

• 4: list of eigenvalues (with multiplicities)

• 3: characteristic polynomial

• 2: minimal polynomial M (it divides the characteristic polynomial)

• 1: list of characteristic spaces tagged by the corresponding eigenvalue
(either a vector or a list of Jordan chains, each of them ending by a
”Eigen:”-tagged eigenvector)

Examples:

40

1.

A =

 1 −1 0
0 1 −1
−1 0 1

returns:

6: 0
5: { { inf inf inf }

{ inf inf inf }
{ inf inf inf } }

4: {0 1 ’3/2+i/2*V3’ 1 ’3/2-i/2*V3’ 1 }
3: ’X^3-3*X^2+3*X’
2: ’X^3-3*X^2+3*X’
1: { :0: {1 1 1}

:’3/2+i/2*V3’: {1 ’-1/2-i/2*V3’ ’-1/2+i/2*V3’}
:’3/2-i/2*V3’: {1 ’-1/2+i/2*V3’ ’-1/2-i/2*V3’} }

This means that A has 3 eigenvalues 3±
√

3i
2 , and a basis of eigenvectors is:

{(1, 1, 1), (1,
−1∓ i

√
3

2
,
−1± i

√
3

2
)}

corresponding to 0, (3 +
√

3i)/2, (3−
√

3i)/2. The characteristic and mini-
mal polynomial are identical (this is generically the case) X3−3X2 + 3X.
The matrix is not invertible and has a 0 determinant.

2. For the identity matrix I2 (2 IDENTITY), we get:

6: 1
5: { { 1 0 } { 0 1 } }
4: {1 2}
3: ’X^2-2*X+1’
2: ’X-1’
1: { :1, Eigen: { 0 1 } :1, Eigen: { 1 0 } }

The minimal polynomial is X − 1, which differs from the characteristic
polynomial (X − 1)2 = X2 − 2X + 1.

3. 1 2 1
2 0 0
1 0 3

4. An example with 1 parameter:

{ { 1 A }
{ A 1 } }

41

5. When the dimension is greater than 2, the factorization routines may
fail. For this reason, you may have to call MAD, factor the characteristic
polynomial (e.g. by trying the FCTR instruction of ALG48) before calling
JORDAN. If you have ALG48 installed, try this:

{ { 1 1 A }
{ 1 A 1 }
{ A 1 1 } }

MAD FCTR JORDAN

Note that this example is solved by typing JORDAN directly but it may fail
in other situations.

6. Jordan cycles example:

A =

 3 −1 1
2 0 1
1 −1 2

 ,

returns:

6: -4
5: : { { ’1/4’ ’1/4’ ’-1/4’ }

{ ’-3/4’ ’5/4’ ’-1/4’ }
{ ’-1/2’ ’1/2’ ’1/2’ } }

4: { 2 2 1 1}
3: ’X^3-5*X^2+8*X-4’
2: ’X^3-5*X^2+8*X-4’
1: { :2, Char: {2 2 1} :2, Eigen:{1 1 0} :1: {0 1 1} }

This means that 2 has multiplicity 2, but the corresponding eigenspace
is only 1-dimensional (spanned by (1, 1, 0) the last vector of the Jordan
chain). The first vector (2, 2, 1) is only a characteristic vector, its image
by (A− 2I) is the eigenvector (1, 1, 0) .

Remark 8 You can not use the current variable name as a parameter of a
symbolic matrix that you want to diagonalize. This would lead to incorrect
results. For example, if VX is set to X, you can not diagonalize the following
matrix:

{ { 1 1 X }
{ 1 X 1 }
{ X 1 1 } }

Workaround: make a change of variable, e.g. ’X=A’ EXEC.

12.6 The MMULT instruction.

This multiplication takes 3 arguments: 2 objects at levels 3 and 2, and a real
at level 1: the product type:

42

• 0: matrix, matrix

• 1: matrix, vector

• 2: matrix, scalar,

• 3: vector, scalar

• 6: scalar, matrix

• 7: scalar, vector

It is not intended for interactive mode use (if you plan to write your own program
using Erable, you may need to use MMULT to switch to internal mode data
representation for speed).

13 Multivariate analysis.

Erable implements the following functions:

• DER with a list of variables at level 1 returns the gradient of the expression
at level 2 with respect to these variables.

Example:

’X+2*Y’ { X Y } DER returns { 1 2 } = (∂f∂x ,
∂f
∂y).

• DIV returns the divergence of a list-vector at level 2 with respect to a list
of variables at level 1.

Example:

{ ’X+2*Y’ ’X^2+3*Y^3’ } { X Y } DIV

returns

’1+9*Y^2’ = ∂f
∂x + ∂f

∂y

• CURL returns the rotational (same arguments as DIV). Note that CURL is
only defined in 3-dimensional space

• LAPL returns the Laplacian of a symbolic expression at level 2 with respect
to a list of variables at level 1 (same arguments as DER, LAPL is simply a
shortcut for DER DIV)

• HESS returns at level 1 the Hessian of a symbolic expression with respect
to a list of variables (same arguments as DER). Level 2 is the gradient. This
is useful to find local extrema of a function: you first find the solutions of
gradient=0 (you may use the Gröbner basis program of ALG48 to simplify
this system and use the SOLVE instruction to find all solutions), then you
compute with EXEC the Hessian at these critical points, and you find the
signature of the critical point using GAUSS (in the other directory: see
section 14).

43

Example:
f(X,Y) = X4 +XY + Y 3

{ X Y } HESS returns at level 2:

(4X3 + Y,X + 3Y 2) = (
∂f

∂X
,
∂f

∂Y
)

and at level 1: (
12X2 1

1 6Y

)
To find critical points, you have to solve level 2=(0,0):

(4X3 + Y,X + 3Y 2) = (0, 0)

hence X = −3Y 2. Swap level 2 and 1, type ’X=-3*Y^2’ EXEC, then 1 GET
to have the first coordinate:

4(−3Y 2)3 + Y

then Y SOLVE. This equation has two real solutions: 0 and approximately
0.392026340842 giving two critical points. For (0, 0), the Hessian is:(

0 1
1 0

)
hence (0, 0) is not an extremum (signature (1, 1)). For the second point,
(Y = 0.392..., X = −3Y 2), the Hessian is:(

1.84421582297 1
1 −2.76632373445

)
and hence it is not an extremum.

14 Quadratic forms.

The main program is GAUSS (located in the other directory) to perform reduc-
tion of a quadratic form q. There are two ways to use GAUSS:

• symbolic input:
Input: a quadratic form q (symbolic) at level 1 or the quadratic form q at
level 2 and the list of variables at level 1.

Output:

– 5: D the list of diagonal coefficients (only the number of positive and
negative coefficients is characteristic of q)

– 4: P (the columns vectors of P−1 form a q-orthogonal basis of A at
level 3)

44

– 3: A (A is the matrix of q in the dual base of the coordinates-forms
at level 2, we have A = P tDP where P t denotes the transpose of P)

– 2: list of variables
– 1: symbolic as a sum of independent squares

Examples:

Example 1:

’X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2’ GAUSS
5: { 1 ’-25/6’ ’1/6’ }
4: { { 1 2 -1 } { 0 1 0 } { 0 5 6 } }
3: { { 1 2 -1 } { 2 4 3 } { -1 3 7 } }
2: { X Y Z }
1: ’1/6*(6*Z+5*Y)^2+ -25/6*Y^2+(-Z+2*Y+X)^2’

Example 2: same example but with the variables in the reverse order

’X^2+4*X*Y-2*X*Z+4*Y^2+6*Y*Z+7*Z^2’ { Z Y X } GAUSS
5: { ’1/7’ ’7/19’ ’-25/19’ }
4: { { 7 3 -1 } { 0 ’19/7’ ’17/7’ } { 0 0 1 } }
3: { { 7 3 -1 } { 3 4 2 } { -1 2 1 } }
2: { Z Y X }
1: ’-25/19*X^2+7/19*(17/7*X+19/7*Y)^2+1/7*(-X+3*Y+7*Z)^2

Example 3: if you want to orthogonalize with with one or more parameters,
you need to enter the list of variables of the quadratic form to identify
them:

’X^2+2*A*X*Y’ { Y X } GAUSS
5: { ’-A^2’ 1 }
4: { { 1 0 } { A 1 } }
3: { { 0 A } { A 1 } }
2: { Y X }
1: ’(X+A*Y)^2-A^2*Y^2’

• matrix input:
Input (stack level 1): the formal matrix A of the quadratic form q

Output: at stack level 2 D the diagonal coefficients list and at stack level
1 the transition matrix P . We have A = P tDP where P t denotes the
transpose of P . Note that to obtain a q-orthogonal basis, one can take
the columns of the inverse P−1 of P .

Example:

The matrix of q defined by q(x, y) = 4x2 + 2xy − 3y2 is:

A =
(

4 1
1 −3

)
,

(to get the matrix of q, enter ’4*X^2+2*X*Y-3*Y^2’, then the list of
variables { X Y} and hit QXA). Call GAUSS which returns:

45

2: { ’1/4’ ’-13/4’ }
1: { { 4 1 } { 0 1 } }

This means that:

A =
(

4 0
1 1

)
×
(′1/4′ 0

0 ′ − 13/4′

)
×
(

4 1
0 1

)
.

This means that:

q(x, y) = 4x2 + 2xy − 3y2 =
1
4

(4x+ y)2 − 13
4
y2.

The other utilities are QXA and AXQ to switch between algebraic and ma-
trix representation of a quadratic form (quadratic as symbolic to array). QXA
switches from algebraic representation and accepts an optional list of variables
at level 1. AXQ switches from matrix representation.

15 Customization and other utilities.

15.1 Data types.

Data handled by Erable have two representations: the user representation
which you see most the time and the internal representation (used internally).

List of data types:

True data Example User Example Internal Example
Integer 5 real, 5 hex #5

hex,
string

Float 5.02 real 5.02 long real %% 5.02
Gauß integer 1 + 2i symbolic ’1+2*i’ secondary :: #1 #2;
Complex (1.1,2.3) complex (1.1,2.3) long C

complex
Fractions 2

3 symbolic ’2/3’ symbolic ’#2/#3’
Irr. quadr. 1 + 2

√
5 symbolic ’1+2*

√
3’ program << #1 #2

#3 >>
Unknowns a, x . . . variables A X list variable
Symbolics a+ x2 symbolic ’A+X^2’ list variable
Lists {1 i} list {1 ’i’} list {#1 ::

#0 #1;}
Array [1 2] array [[1 2] array [[1 2]

[3 4]] [3 4]]
Symbolic {1 2} array {{1 2} array {{1 2}
array {3 4}} {3 4}}

15.2 Flags

HP48 user flags are used to control the behavior of Erable and are documented
in section E

46

15.3 Conversions

• AXL: array and list conversion (transforms { } to [] and conversely).

• EPSX0: strip leading zeros in list-polynomials, replace objects by 0 if their
absolute value is less than EPS.

• FXND: splits a fraction in numerator (stack 2) and denominator (stack 1).
Example:

’(X+1)/A’ FXND gives 2:X+1, 1:A

• NDXF: reverse of FXND. Example:

1 2 NDXF gives ’1/2’

Works for all data types (warning: you can get strange symbolics with
NDXF).

• XNUM: convert level 1 to a numeric format like the build-in →NUM, but
accepts lists (this was not the case on S/SX models). Clears flags 12, 14
and 15.

• XQ: convert level 1 to rational format, like the build-in →Q. Sets flags 12,
14 and 15.

• SXL (other directory, obsolete): Used for conversion to internal data type
representation)

– VX variable-fraction representation conversion. Switches from alge-
braic to list-polynomials or fractions. Example:

’(X+1)/(3*X-2)’ is switched between ’{1 1}/{3 -2}’ (which
is displayed as ’UNKNOWN/UNKNOWN’)
’X+3’ is switched between {1 3}

– General stack object conversion. Example:

’X+3*SIN(X)’
{ { 1 ’5*X’ } { ’SIN(X)’ 1 } }
{ ’X^2+7*X’ ’3*SIN(X)’ }
#3h SXL gives { ’SIN(X)’ X }
{ 3 { 1 0 } }
{ { 1 { { 5 0 } } } { { 1 0 } 0 } }
{ { { 1 7 0 } } { 3 0 } }

To go back, type { #0 #1 #2 } SXL

• S2L (other directory, obsolete): convert an algebraic polynomial to a list
polynomial. Example:

’1+2*A’ A S2L gives { 2 1 }

It accepts lists. Example:

47

{ ’1+A’ ’2*A-3’ } A S2L gives { { 1 1 } { 2 -3} }

• L2S (other directory, obsolete): It converts a list polynomial to an al-
gebraic. L2S may be used for multiple variable polynomial evaluation.
Example:

{ { 1 2 3} {4 5 6} } { X Y } L2S gives
’(Y^2+2*Y+3)*X+(4*Y^2+5*Y+6)’

15.4 Other functions

• HORNER executes an Horner scheme. The syntax is:

2: P
1: r

gives

3: P div (X-r)
2: r
1: P(r)

Example: ’X^2+2*X+3’ 5 gives ’X+7’ 5 38 This means thatX2+2∗X+3 =
(X + 7)(X − 5) + 38.

• PTAYL: fast Taylor development for polynomials:

2: P(X), 1: r gives P(X-r)

Example:

’X^3+2*X’ 2 PTAYL gives ’X^3+6*X^2+14*X+12’

which means that X3 + 2X = (X − 2)3 + 6(X − 2)2 + 14(X − 2) + 12

• LEGENDRE [resp. HERMITE and TCHEBYCHEFF]: given an integer n, returns
the n-th degree Legendre [resp. Hermite and Tchebycheff] polynomial.

• PFEXEC: execute the program at level 1 in subexpressions between all +
and − of the symbolic expression at level 2. For example, try:

’1/2/(X^2-1)+1/4/(X^2-4)’ << FACTOR >> PFEXEC

• tEVAL (other directory): evaluate object 1 and returns the time it took
to evaluate it. Not as accurate as TIM of the hacker library.

• LATEX: converts a symbolic to a string, the LATEX translation of the sym-
bolic. To tex it on a computer, you must include the string in a math.
environment (in $ $ or in \[\] or in an equation environment, and you
must include the file hp48.tex).

48

15.5 Permutations

A permutation is represented as a list of images of [1..n] e.g. { 5 1 2 4 3 } means
σ(1) = 5, σ(2) = 1, σ(3) = 2, σ(4) = 4 and σ(5) = 3. The P2C instruction
converts this representation to the cycle decomposition, here { { 1 5 3 2 } { 4 }
} (stack level 2) and computes the signature of p (stack level 1). C2P converts
cycle decomposition to the usual representation of permutations. CIRC compose
2 permutations in the usual representation (returns σlevel 2 ◦ σlevel 1).

15.6 Variables

• LVAR: returns the list of “variables” of an algebraic. The list is sorted by
reverse alphabetic order. Example:

’SIN(A)+B*X+1’ gives { X B ’SIN(A)’ }

• LIDNT: list of global names of an algebraic Example:

’SIN(A)+B*X+1’ gives { X B A }

15.7 Differential geometry

There is currently only one program available in the other directory, written in
UserRPL by John Wilson, that I have translated into SysRPL, it is named TNBA
for tangent, normal, binormal, acceleration. It takes a 3-dimensional vector (as
a list) at level 1 (e.g. { ’2*T’ 1 ’T^2’ }) and returns the position, tangent,
normal and binormal vectors as well as the tangential and normal acceleration.

16 Final remarks.

Remaining things to do:

• extend the Risch algorithm to multiple exponentials?

• improve the factorization algorithm (Berlekamp method over ZZ[i]).

• Z-transform?

•

49

A Frequently asked questions.

• When I call SETUP, I get the error STO Error with 0 at level 1. Why?

You did not use Kermit to down load files to your HP48 and your software
is case-insensitive, or your file system is case-insensitive and translated
uppercase names to lowercase names. Please use Kermit, and unzip the
Erable archive in a case-sensitive file system or a file system where file-
names are uppercase names. MS-DOS should work, as well as ext2 (Linux),
but not VFAT (Windows 9x file system under Linux).

• When I call INIT, I get the RCL Error: Undefined Name with GXKEYS at
level 1 on the stack. Why?

The reason is the same as above, but there is a simple workaround in this
case. Type the following command line:

’gxkeys’ DUP RCL ’GXKEYS’ STO PURGE INIT

• How can I launch the eqstk stack replacement?

Type ASTK.

• ASTK does not launch eqstk. Why?

If you want to shutdown your calculator, you must press the right shift
followed by the ON key. If you press the ON key too fast, this will stop
eqstk unexpectedly and ASTK will not work.

Workaround: type ON and C simultaneously, then again ASTK. If this
doesn’t work, you must reinstall eqstk.

• In previous versions of Erable, a CST menu was created. Is it gone?

Yes, the user interface is now completely handled by the user key redef-
inition, because this is faster. You may create you own CST menu if you
want by compiling the SCST file from the original package.

• How can I simplify
√
x2?

Type 28 SF to simplify
√
x2 = |x|. Otherwise

√
x2 remains not modified.

This flag setting is not the default because setting flag 28 means that
subexpressions are always simplified and this slow down most simplifica-
tions.

• How can I simplify |x| if I know that x > 0?

Type 29 SF. If flag 29 is set, Erable will try to guess the sign of your
expression: either at x = 0+ or at x = +∞ depending of the status of flag
24. The default is x = +∞ but be aware that calling SERIES (directly or
indirectly via LIMIT) sets flag 24 enabling an estimate of x = 0+.

• Sometimes, Erable can not find the antiderivative of sin(x). Why?

50

You are in complex mode. In this mode, INTVX does not recognize trigono-
metric functions, you must convert them to complex exponentials (EXPLN)
or go back to real mode (13 CF).

• I have alg48 installed, I would like to use the factorization routines of
alg48 inside Erable. Is it possible?

Not currently :-(

B All functions of Erable listed in alphabetic or-
der.

The following symbols will be used:

• %: real

• C%: complex

• n: integer (real integer)

• []: numeric array

• { l }: list

• { m }: symbolic array

• p: polynomial ({ p } for a list-polynomial),

• { v }: list of variables

• s: symbolic object

• v: variable (global name or irrational symbolic)

• f : a fraction

• N , D: numerator and denominator of a fraction

• o: object

List of all global variables in HOME, algb or algbg:

51

Name Function Arguments Returns
EPS ε %
ERABLMSG Risch log string
INVLAP Last inverse Laplace nothing s
MATRIX Last matrix nothing m
MODULO Arithmetic in ZZ/nZZ n
ODETYPE Ordinary differential string

equation type string
PRIMIT Last primitive nothing s
SYSTEM Last system nothing {mv}
GXKEYS User keys string nothing string
VX integration variable nothing v
fr French short doc nothing string
us English short doc nothing string

If you are short in memory, you can erase all variables in { HOME } and
subdirectories except EPS, VX and MODULO.

Functions of the Erable, ARIT, GEO, LIN PREP libraries and of the other,
algb or algbg directories:

Name Function Arguments Returns
ABCUV Bezout 3,2,1:a, b, c 1:1 [3,2: x, y] or 1: 0

ax+ by = c
ACOS2S Arccos to arcsin s s
ASIN2C Arcsin to arccos s s
ASIN2T Arcsin to arctan s s
ATAN2S Arctan to arcsin s s
AXL array and list [] or { m } { m } or []
AXQ array to s { m } s

quadratic form
C2P Cycles to { cycles } p

permutations
CHINREM Chinese 2: { n N } { o O }

remainder 1: { m M }
CHS Change sign o −o
CIRC Compose 2 2:p2, 1:p1 p2 ◦ p1

permutations
COSN cos, sin(nx) to n > 0 2: s, 1: s

P (cosx, sinx)
n < 0 2: { p }, 1: { p }

CROSSP Wedge product 2: x, 1: y x ∧ y
CURL Rotational 2: { s1s2s3 } { s′1s′2s′3 }

1: { v }
DEGREE Order { p } n
DER derivative or 2: s, 1: v 1: s

gradient

52

DERVX derivative s s
DIV Divergence 2: { s1 . . . sk

}
s

1: { v }
DIV1 Usual division 2: o2, 1: o1 o2/o1
DIV2 Euclidean 2: o2 2: o2 div o1

division 1: o1 1: o2 mod o1
DIVIS List of divisors o { l }
DIVPC Division in 3: s, 2: s′, 1:

n
s

ascending power
DESOLVE Solve y′(x) = f(y(x), x) y(x)

f(y(x), x)
DOTP Scalar product 2: x 1: y x.y

of 2 vectors
EPSX0 Strip expression o o
ERCFG Erable

configuration
EULER Euler indicatrix n ϕ(n)
EXEC Substitution or 2: { l } 1: { l }

doall 1: program
2: s s
1: o1 = o2
3: s s
2: { l1 }
1: { l2 }

EXPAND Simplification o o′

EXPLN Conversion to s s
exp, ln

FACTOR Factorization s s
FACTORS Factorization o 3: { v }

2: f
1: { f1n1f2n2 . . . }

FCOEF roots/poles to { r1n1r2n2 . . . f
fraction }

FOURIER Fourier 2: f(x)
∫ 2π

0
f(x)einxdx

coefficient 1: n
FROOTS Factorization o 3: { v }

2: f
1: { s1n1s2n2 . . . }

FXND Split a fraction f = N/D 2: N , 1: D
GAUSS Gauß quadratic 1: A 2: D, 1: P

form reduction
GCD1 Greatest com- 2: o2, 1: o1 GCD(o2,o1)

mon divisor

53

GCD3 GCD (solves 2,1: a , b GCD(a,b) = d, u, v
au+ bv = d)

GROBADD Add grobs 2: grob 1: grob
(horiz. gluing) 1: grob

HALFTAN To half angle
tangent

HERMITE Hermite integer n Hn

polynomial
HESS Hessian 2: s, 1: { v } matrix
HILBERT Hilbert matrix integer n n× n matrix
HORNER Horner scheme 2:p 3:p/(X − r)

1: r 2: r
1: P (r)

IBP Integration by
∫ b
a
f(t)dt, u [uv]ba −

∫ b
a
uv′(t)dt

parts v = f/u′

IDENTITY identity real, integer or identity matrix
matrix

ILAP Inverse Laplace s L−1(s)
transform

INIT Initialization nothing nothing
INTVX Symbolic s s

integration
JORDAN Diagonalization endomorphism 7 to 1: cf. section 12
KERN Kernel of a m 4 to 1: cf. section 12

linear appl.
KEYEVAL Execute keynum nn.d ?
L2S Evaluation 2: { p }, 1:v p(v)
LAGRANGE Lagrange . { { x1 ... xn } P such that

interpolation. { y1 ... yn } } P (xi) = yi
LAP Laplace 2:f , 1:g L(f)/g

transform
LAPL Laplacian 2: f , 1: { v } ∆f
LATEX LATEX 1: s 1: string

conversion
LCM1 Least common 2: o2, 1: o1 LCM(o2,o1)

multiple
LCXM Matrix creation 3: r 1: r × c matrix

2: c
1: prog

LDEC Linear Diff. 2: { v }
w/Cnst. Coef. 1: { m } 1: solution

LEGENDRE Polynomials integer r Lr

LGCD GCD of a list { l } o=GCD
LIDNT List of variables s 2: s, 1: { v }

54

LIMIT Limit 3:s, 2:v, 1:n s
LIN Linearization of s s

exp
LNCOLLECT Collect log s s
LU2 LU M L−1, U

decomposition
LVAR list of variables o { v }
MAD inverse, char. o 4: det, 3: 1/o,

polyn., etc. 2: { p }, 1: { p }
MAIN Main menu of

Erable
MENUXY list of Erable 2: n1 1: { }

commands 1: n2

MMULT special product 3: o2, o1, n “o2 × o1”
MULT product 2: o2, o1 o2 × o1
NDXF create a fraction 2: N , 1: D f = N/D
ORND Round an object 2: o, 1: D o
P2C Permutation to p 3: p

cycles 2: cycles
1: signature

PA2B2 Prime 1: p 1: a+ib
a2+b2

factorization p ≡ 1[4] = p
PCAR Characteristic endomorphism s

polynomial
PARTFRAC Partial fraction f

∑
i fi

PFEXEC EXEC between 2:
∑
i fi 1: prg

∑
i prg(fi)

+ and −
PFSTEP Step-by-step f

∑
i fi

partial fraction
POTENCE Euclidean 2: n (or list-

poly)
division 1: n (or list-

poly)
PLOTADD Add stack to s s

plot
PLOTSTK Plot stack s s
POWER integral power 2: o, 1: n on

PREVAL Evaluation 3: primitive s
2,1:bornes

PROMPTSTO Prompt and 1: name nothing
store

PTAYL Taylor for 2: P (X), 1: o P (X − o)
polynomials

PURG Purge algb(g) nothing nothing
QXA s quadratic form 2: s, 1: { v } { m }

55

to array
s 2:{ m }, 1: { v }

RDET Determinant endomorphism 2: { m }
(rref) { m } 1: determinant

REF Sub-diagonal { m } 2: special cases
reduction 1:{ m }

RISCH Symbolic s s
integration x

S2L Symbolic to list 2: o, 1: { v } 2: { v },1:{ p }
2: o, 1: v { p }

SCROLL Scrolls a grob grob
SERIES Series 3: s, 2: v, 1: n 6: 6-1: s
SETFR Set French Flags nothing nothing
SIMP2 Simplification 2: o2, 1: o1 2: o′2, 1: o′1
SINCOS Exponential to s s

SIGNE Sign of a rati- s tagged list
onal fraction

SOLGEN Solves a linear { eqns { v } } cf. section 12
system

SOLVE Solve 2: s, 1: x solutions
SOLVEX Solve for x s solutions
SQRT Square root n or C% or s n or C% or s
STUDMULT “students” × of M , M ′ “MṀ ′ ”

matrices
SUBT Subtraction 2: o2, 1: o1 o2 − o1
SXL Conversion Internal [user] User [internal]
SYST Solves a linear { eqns { v } } cf. section 12

system
TABVAL Table of values 2: s, 1: { } { }
TABVAR Variation table 1: s
TAN2SC Tangent to

sine/cosine
TAN2SC2 Tangent to

sin/cos 2θ
TAYLOR0 Taylor at x = 0

order 4
s s

TCHEBY- Polynomials integer r Tr
CHEFF
TEXPAND Expand s s

transcendent
functions

TLIN Trigonometric s { p } s
linearization

TNBA Tangent, nor- {v}

56

mal, . . .
TR trace [] or { m }=

∑n
i=1 aii

(aij)1≤i,j≤n
TRAN transpose [] or { m } [] or { m }
TRIG i, ln & exp to s s

sin, cos, arctan
TRIGCOS Trigonometry: s s

sin2 to 1− cos2

TRIGSIN Trigonometry: s s
cos2 to 1− sin2

TRUNC Truncate an 2: s, 1: rest s′ s
asymptotic
expansion

TSIMP Simplification s s
(transcendental)

VANDER- Vandermonde list of objects matrix
MONDE matrix
VER Version nonthing % 3.2
XFRC To quadratic o o

irrational
XGROB to grob o graphic object
XNUM to numeric o o
XQ to rational o o
ZEROS Solve 2: s, 1: x solutions
abs Absolute value s s
add Addition 2: o2, 1: o1 o2 + o1
arg Argument 1: s 1: s
comb Combinations 2: n, 1: n′ Cn

′

n

conj Conjugate o o
det Determinant endomorphism determinant

(expand)
fact Factorial n n!
im imaginary part o =(o)
inv Inversion o o−1

re real part o <(o)
rref Row reduction M { s }, reduced matrix
tEVAL Execution time . . . 1: o EVAL(o), 1: time

Modular functions of the ARIT library. Don’t forget to set an integer n in
the variable MODULO (by default n = 2):

Name Function Arguments Returns
{KERNEL.LIB} (0:788)

57

ADDTMOD Modular addition 2: n1, 1:n2 (n1 + n2) mod n
SUBTMOD Modular subtraction 2: n1, 1:n2 (n1 − n2) mod n
MULTMOD Modular multiplication 2: n1, 1:n2 (n1 ∗ n2) mod n
DIV1MOD Modular division 2: n1, 1:n2 (n1/n2) mod n
POWMOD Modular power 2: n1, 1:n2 nn2

1 mod n
INVMOD Modular inversion 1: n1 n−1

1 mod n
GCD1MOD Modular gcd 2: n1, 1:n2 gcd(n1;n2)
EXPAMOD Modular expand 1: o o mod n

C User Keys.

From top left corner to bottom right corner, α - Right Shift -ed keys:

Princ. Key Reminder Function
MTH MAIN
PRG (normal PRG)
EVAL EXEC
SIN ∂ DERVX
COS

∫
INTVX

√ √ SQRT
yx yx POWER
1/x 1/x inv
± pm CHS
DEL ∞
.
.

.

. DIV1
× × MULT
- - SUBT
SPC EXPAND
+ + ADDT

Left Shift -ed keys:

Princ. Key Reminder Function
7 (solve, factor) SOLVER
8 (exp and ln) EXP&LN
4 (matrices) MATR
5 (diff. calc) DIFF
6 (arithmetic) ARIT
1 (basic algebra) BASE
2 (complex) CMPLX
3 (trigonometry) TRIG

Other redefined keys:

58

• G/GX only: PRG key (runs a HP48GX main menu)

• CST key: i

• DEL key: X

• right shift-DEL key: −∞

• left shift-down arrow (35.2): calls AGROB followed by SCROLL. Needs EQSTK
or JAVA. Type:

35.2 DELKEYS

if you do not have EQSTK or JAVA

• S/SX only: 33.2 (XQ) and 33.3 (XNUM)

• G/GX only: 33.2 (XNUM) and 35.6 (XQ).

D Erable 3.024 compatibility.

Several functions have been renamed to improve compatibility with Texas In-
struments calculators:

Previous Current
COLC FACTOR
DSOLVE DESOLVE
EXPA EXPAND
EXPLIN LIN
FACTO FACTORS
FSIGN SIGNE
HORN HORNER
IPP IBP
INVL inv
LNCOLC LNCOLLECT
PF PARTFRAC
RANG RANK

Previous Current
SOLV SOLVE
TCHEB TCHEBYCHEFF
TEXPA TEXPAND
TRIGCOLC TCOLLECT
TRIGLIN TLIN
VAND VANDERMONDE
WEDGE CROSSP
XY DOTP
cross CROSSP
der DER
der1 DERVX
idn IDENTITY

Many functions have been added or modified: see the CHANGES file.

E User flags.

List of the flags used by Erable. The sign * after the flag number means that
the flag is cleared if VER is called, # means that the flag is set if VER is called,
some flags (e.g. flag 1) are not modified by VER

• 01: if set then verbose mode (details of some algorithms are shown) else
quiet mode.

59

• 10: if set then Erable performs integer arithmetic otherwise Erable per-
forms polynomial arithmetic

• # 11: internal use, cleared if a non-rational algebraic is found

• # 12: if clear then GCD returns always 1 (hence algebraics are not simplified
and multiple roots of polynomials are not detected)

• # 13: if set then complex mode, else real mode (modifies the way of
simplifying expressions with re, im and conj and the way of rooting poly-
nomials)

• # 14: if set then searches formal first order factors

• # 15: if set enables construction of integer fractions and square roots of
integers

• * 16: enables/disables calls of TSIMP inside SERIES.

• * 17: cleared for non modular computations

• * 18: internally used for Euclidean division of polynomials

• * 19: internally used by INTVX

• * 20: “Large data” flag. Set this flag if your data are large e.g. if you
want to invert a 10× 10 matrix.

• # 21: if set then recursive simplification for EXPAND and TSIMP

• * 22: if set then the rule i2 = −1 is not applied

• * 23: if set then INTVX does not try linearity

• * 24: if set then positivity of expressions are tested at x = 0 instead of at
+∞.

• * 25: if set then the rule
√
x

2 = x is not applied

• * 26: if set then TRIG tries to return only sines, otherwise it returns cosines

• * 27: if set MAIN launches a chooser, else a menu

• * 28: determines whether embedded quotients are immediately simplified
or not (for example 2/4 + 3/6 may be simplified first to 1/2 + 1/2 and
then to 1 or directly to 24/24 = 1).

• * 29: “sloppy flag”: if set then |x| is simplified to x for every “variable”
(as returned by LVAR)

To set a flag (e.g. flag 13), type 13 SF. To clear this flag, type 13 CF.
You should only modify user flags 1,10,13,15 and 20 to 29.

60

Remark 9 System flag 27 (-27) affects the way symbolic complex numbers are
displayed. System flag 2 affects the way symbolic constants are evaluated (for
example π is returned as a symbolic constant or as a numeric approximation).
This flag is set or cleared by Erable according to the current mode of Erable
(numeric or symbolic).

F Error codes for the SERIES command.

• 1: can not determine series expansion for arctan(x) function with current
argument x.

• 2: arcsin(x) not defined for infinite argument.

• 3: no series expansion for exp(x) at x =∞ if sign is unknown.

• 4, 5, 6, 7: failed to compare 2 variables.

• 8: can not determine order for the current rest.

• 9: negative argument for logarithm function.

• 10 (<Ah>): insufficient order. (You can try again with a larger order)

• 11 (<Bh>): can not find sign of argument of ABS function

• 16 (<10h>): numeric input are not allowed

G Thanks to

Many people helped me during the creation and distribution of Erable:

• Claude-Nicolas Fiechter and Mika Heiskanen for letting me use their long
integer routines for Erable. Special thanks to Mika for explanations about
the source code of ALG48.

• Some math teachers, particularly Renée de Graeve and Scott Guth who
made tests, suggestions and bug reports.

• Randolph J. Herber for additions, corrections and documentation format-
ting

• Some of my students and net-surfers tested various versions of Erable and
encouraged me to improve it: particularly Maurice Al-Khaliedy, Christo-
phe Burdin, Craig Clifford, Jerome Coss, David Czinczenheim, Benoit
Darcy, Ludovic Dumaine, Eduardo (a.k.a. maciasval@mx2.redestb.es),
Frederic Hermann, Eric Gorka, Stephane Monboisset, Lionel Pilot, Eric
Saya, Quan Tong Duc, Camillo Toselli, Samy Venin, John Wilson,
Special thanks to Gilles Virone who showed me first what an HP28/48 is
able to do.

61

• all anonymous ftp sites administrators, particularly those of

fourier.ujf-grenoble.fr (André Voutier),
ftp.funet.fi,
cbs.cis.com, hplyot.obspm.fr,
hpcvbbs.cv.hp.com and
wuarchive.wustl.edu,

• I used the following software to create Erable: the EQSTK, JAVA stack
displays ([7], [17]), the TED and Miniwriter editors ([13], [1]), the JAZZ
debugger ([12]), the Metakernel ([14]), various compilers (JAZZ, the HP48
tools ([2]), the RPL based tools ([16]) and eventually the GNU tools ([15]).

• I looked at the following books and software: [8], [3], [6], [4], [5], [10], [11],
[9] . One of the best reference is certainly [4] and references therein. M.
Heiskanen’s WWW-homes-page has a lot of interesting math links.

62

References

[1] J.-Y. Avenard. miniwriter. http://www.epita.fr/˜avenar j, 1997.

[2] H. P. Corvallis. TOOLS.EXE. hpcvbbs.cv.hp.com ftp.funet.fi
wuarchive.wustl.edu, 1991.

[3] P. Courbis and S. Lalande. Voyage au centre de la HP 48 S/SX. Angkor,
1993.

[4] J. Davenport, Y. Siret, and E. Tournier. Calcul formel: Systèmes et algo-
rithmes de manipulations algébriques. Masson, 1989.

[5] J. Ferrard. “Mathez” la HP 48 G/GX. D31 Diffusion (HP48), 1993.

[6] C. Ferraro. POLY46SX, POLY46GX, SMATH, SMATHGX. ftp.funet.fi
ftp.cis.com hplyot.obspm.fr, 1993.

[7] C. N. Fiechter and M. Heiskanen. EQSTK92.ZIP.
http://www.hut.fi/˜mheiskan, 1997.

[8] C. N. Fiechter and M. Heiskanen. ALG48V42.ZIP.
http://www.cs.pitt.edu/˜fiechter/hp48
http://www.hut.fi/˜mheiskan, 1998.

[9] B. Fuchssteiner. MuPAD. ftp://ftp.inria.fr/lang/MuPAD
http://www.mupad.de, 1998.

[10] F. Gantmacher. Théorie des matrices, volume 1. Dunod, 1966.

[11] M. Heiskanen. POLYLIB.ZIP. http://www.hut.fi/˜mheiskan, 1992,1995.

[12] M. Heiskanen. JAZZV65.ZIP. http://www.hut.fi/˜mheiskan, 1996.

[13] M. Heiskanen. TED31.ZIP. http://www.hut.fi/˜mheiskan, 1997.

[14] Maubert Development Group. Metakernel, 48+.
http://www.epita.fr/˜avenar j, 1998.

[15] M. Mikocevic. GNUTOOLS. ftp://srcm1.zems.fer.hr:/pub/hp48/tools2.1.9.zip,
1995.

[16] D. Müeller and R. Hellstern. RPL48V20.ZIP. ftp.funet.fi cbs.cis.com
hplyot.obspm.fr, 1993.

[17] R. Steventon, A. Schoorl, and W. Laughlin. JAVA34.ZIP.
ftp://ftp.cis.com/pub/hp48g/uploads/java34.zip
http://www.engr.uvic.ca/˜aschoorl, 1998.

63

	License.
	Installation.
	Simplified installation.
	Personalized installation.
	Getting the binaries from a computer.
	Getting the binaries from another HP48.
	Installing the binaries
	Installing the user keys redefinition.
	Improving your installation
	Abstract of the installation commands

	Introduction.
	Overview.
	Warnings.
	{{tt Erable}} and {tt alg48}.
	Implementation notes.
	Next upgrades.

	Getting started.
	Current variable.
	Complex and real modes
	Exact and numeric mode.
	Main functions of Erable.
	The beginners menu.

	Simplifications.
	Rational simplifications instructions.
	Presimplification instructions
	Linearization.
	Development.
	Trigonometry
	The {tt TSIMP} instruction

	Recurse flag.

	Limits, Taylor and asymptotic series.
	Derivation and integration.
	Derivation
	Integration
	Integration by parts

	Ordinary differential equations.
	Linear differential equations with constant coefficients
	First order equations.

	Substitution, change of variables: {tt EXEC}.
	Arithmetic.
	Complex arithmetic
	Integer and polynomial arithmetic
	Infinities.
	Modular arithmetic

	Factorization. Solving equations.
	Summary of the instructions.
	A word about factorization.

	Linear algebra.
	Building a matrix
	Operations
	Gau{ss }-Jordan row reduction.
	Solving a linear system.
	Inversion
	Determinant

	Kernel and image of a linear application.
	Other examples.
	Stack input/output for reduction instructions./

	Diagonalization
	The {tt MMULT} instruction.

	Multivariate analysis.
	Quadratic forms.
	Customization and other utilities.
	Data types.
	Flags
	Conversions
	Other functions
	Permutations
	Variables
	Differential geometry

	Final remarks.
	Frequently asked questions.
	All functions of {{tt Erable}} listed in alphabetic order.
	User Keys.
	Erable 3.024 compatibility.
	User flags.
	Error codes for the {tt SERIES} command.
	Thanks to {dots }.

