Towards a Pascal compiler for
HP RPN calculators

YUAN, Feng
(Hewlett Packard Singapore)
email: yuanfeng@hpsgrtl.sgp.hp.com

Paper submitted to PROMPT HP-GC Anniversary Conference 1994
ABSTRACT
This paper describes an ongoing experiment to compile Rasgghm into system RPL source code, which
is a high level language used to build the HP RPN calculators.

1. Introduction

Despite the popularity of HP RPN calculators [lRE 48SX and HP 48 GX, the ability to program HP
calculators in user RPL or system RPL is still regarded as something only the super users could do.

System RPL (reverse polish lisp) and user RPL are hard to programming for several reasons:

1) Major differences to other common programming language$hiseal, C or Basic, although user RPL
has done a much better job.

2) Lack of books, manuals, training courses, source code reservoir and knowledgeable friends on RPL.
3) Difficult to debug user RPL programs, not to mention about system RPL programs, for the end users.
4) Hard to modify program because of the close interdependency of RPL codes.

5) Lack of compile time syntaghecking such as variable definedness, type compatibility, number of
operands or parameters, which leaves more errors to the debugging phase.

Technically speaking, RPL is an intermediate code that works on a software emtdatecthachine. RPL

has lots of cousins: for example, Fowhich is one of the predecessor of RPL, P_code which is used by
several Pascalompilers, HPcode which is used by HP in many of its compilers. For this reason, the author
has chosen to work on porting the P4 Pascal compiler to generate system RPL source code.

The P4 package is a pubiomain portable Pascal compiler and P_code interpreter written by Urs Ammann
and others from ETH Zurich and fully documented in S. Pemberton's booK'#dedal Implementation".
The P4 compiler has been substantially modified to generate system RPL code.

The following sectionswvill describe the details of compiling Pascal source code into system RPL code,
familiarity with both languages are assumed.

2. Local Variables, Procedures and Functions
One of the design objective is that weist produce system RPL code that can merge with hand written

system RPL code as smoothly as possible. That is to say we should be alehand written code and
being called by hand written code. One big obstacle to this is variable storage and access.

P_code machine stores local variables on the stack. ffackdure call creates a standard stack frame, a
chunkof parameters and local variables. The stack frame contains 5 elements for return address, function
return valuebase address, last base address and maximum stack extent. To access a variable, you must
specify the static block level and offset within the block. During runtime, ther® i@egister which points

to the first variable of the current block. To access a local variable, adding offset to MP will get the

address. To access variables defined in outer block, you get its base address from the stack frame chain.

For example, the following example shows a simple Pascal procedure and the corresponding P_code:

pr ocedur e p(i,j: i nt eger);
var ki integer;
begi n
k:=i+j
end;
entl 8 p needs 5+2+1 for stack frame, parameters and locals
ent2 7 p will need another 7 stack levels for computation,
not so accurate
lodi 5 copy parameter i to top_of_stack
lodi 6 copy parameter j to top_of_stack
adi integer addition
stri 7 store into local variable k
retp procedure return

In system RPL, there is no MP register and stack frame chain (except sadgress that is pushed on the
return stack), so we can't generate 5 element stack frame and use (block level, offset) based addressing.

Nevertheless, because Pascal $¢rang typed language, for local variable access, we know for sure during
compile time how many elements are there on the (local) stAékcan then use stack operations to fetch
and store variables, similar to what system RPL programmers are d@nghe example shown above, we
know for sure when entering routine p, two elements would be on the stack: i

on stack level 2 and j on stack level 1. So it can be compiled into the following system RPL code:

NAMELESS proc_3
i (2) standard RPL routine entering

ZERO (3) reserve space for local variable k

3PICK (4) iis three levels away

3PICK (5) j is now three levels away too

#+ (4) binary integer addition (integer is implemented as

unsigned integer now, beware)
SWAPDRORP (3) store into location for k
3DROP (0) remove i,j,k from stack
; standard RPL routine quitting

The numbers enclosed in parenthesis indicate the current (local) stack levels. Iwistar2s for 2
parameters, incremented as you reserspage for k, loading i and j, decremented as you adding or storing
and finally cleared before you quit. While the original P4 compiler does maintain a stack level

during compilation, it's not updated in some cases.

Stack levels very critical for compiling into system RPL, the P4 code is modified to maintain exact stack
level. As aside note, because system RPL code uses lots of relative fetching and storing words like 3PICK,
ROT, UNROT and 4UNROLL3DROP, system RPL code is hard to write, understand, debug and wodify.
Pascal or C programmer seldom has to worry about the runtime address of a variable.

Compiling a Pascal function would be a little more complicatetlandling return value. To following
example illustrates this:

function p(a,b,c: real): real;
begi n
p:=sqrt(b*b-4.0*a*c)
end;

NAMELESS proc_3

@)
ZERO (4) reserve space for return function value
3PICK (5) b is three levels away
4PICK (6) b is four levels away now (DUP would be better)
%* (5) b*b
% 4.0 (6) direct constant (not smart enough to use %4)
6PICK (Ma
%* (6) 4.0*a
4PICK (Nc
%* (6) 4.0*a*c
%- (5) b*b-4.0*a.c
%SQRT (5) real square root
XY>Y (4) store as function return value
4UNROLL3DROP (2) retain top of stack, drop 3 levels under it

3. Global Variables and Interface with Outside World

For global variables, while we can store them on the stack, we have no way to locateitingnmuntime
without using some form of base pointer. So, wedecided to use temporary environment and unnamed
LAM variables for global variables. The compilation is quite straigivard. Here is an example for
globals:

pr ogr amtest(input,output);
var a,b,p: real;
begin
p:=a+b
end.

NAMELESS proc_3

()
ZERO THREE NDUPN DROP (3) three dummy values
' NULLLAM THREE NDUPN DOBIND (0) environment for 3 variables
3GETLAM (1) a is at fixed location now
2GETLAM)b
%+ (1) atb
1PUTLAM (0) p is the first variable
ABND (0) discard environment

Program like shown above can only be useful if it can read value from somewhere outsieteranesult

to somewhere. Generally speaking, we need the power to bypass the Pascal compiler, and tm be able
insert system RPL words into the code generated. Inline procedures as definedPdschbwould be a
solution.

If we define two inline procedures 'tos' to fetch the top of the non local stkaglent and 'push’ to push
something on the non local stack, we can rewrite the above program as:

program test(input,output);

var a,b: real;
function tos: real; inline ' (tos) '
procedure push(val: real); inline ' (push) ';
begin
a:=tos;

b:=tos;

push(a+b)
end.

NAMELESS proc_3

(0)
ZEROZERO (2) two dummy values
"NULLLAM TWO NDUPN DOBIND (0) environment for 2 variables
(tos) (1) comment only
2PUTLAM (O) store tos into a
(tos) (1) comment only
1PUTLAM (O) store tos into b
2GETLAM (1)
1GETLAM 2
%+ (1) atb
(push) (0) leaving result on stack
ABND (0) discard environment

By non local stack, we mean everything on the stack before the first parametee afurrent
procedure/function is pushed. Beware that the tos and push de&rednly works for empty local stack.
They should be defined by the compiler so that they can work even when the local stack is not empty. For
example, the expression 'a+tos' should be compiled into:

2GETLAM (1) local stack contains one element
SWAP (2) get one element from nonlocal stack, remove old copy
%+

With tos, we can even accept variable number of parameters. Here is an ewdmngbledoes list
summation:

function decompose(l: list): integer; inline INNERCOMP";

function sumlist(listlen: integer): integer;
var sum: integer;
begin
sum:=0;
while listlen<>0 do
begin sum:=sum+tos;
listlen:=listlen-1
end;
sumlist:=sum
end;

begin
sumlist(decompose(tos));
end.

Inline procedures/functions can be very useful in extenBimgcal's limited standard procedures/functions
and access HP calculator's rich reservoir of math functions and user interface functionsnjyiireg the
benefits of Pascal compiler at the same time. Here are some examples:

function max(a,b: integer): integer; inline '#MAX'";
function min(a,b: integer): integer; inline '#MIN’;

type string=integer;

(* Define string as occupying one element space *)

(* so that it can be a function return type *)
function concat(s1,s2: string): string; inline '&S";

(* Char is implemented as binary integer internally, so *)

(* it needs to be converted to CHR before calling >T$ *)
function conchr(s1: string; c: char): string; inline '#>CHR >T$';

(* graphics *)
procedure lineon(x1,y1,x2,y2: integer); inline 'LINEON3';

(* complex, list, matrix, etc add your own *)

4. Record and Array

Although user defined record type in Pascal looks dikeajor feature, its implementation is quite straight
forward. The compiler has to remember the offset address of every field relativestartha the record.
When generating code for simple variable access, adigidgpffset to the variable address will get the field
address. Here is an example with both local and global variables:

type complex = record rel: real; img: real end;
var a: complex;

procedure negate;
var b: complex;
begin
b.rel:=-a.rel; b.img:=-a.img
end;

NAMELESS proc_3
:: 0)

ZEROZERO (2) (b.rel b.img)
1GETLAM (3) (b.rel b.img a.rel)
%CHS (3) (b.rel b.img -a.rel)
XYZ>ZY (2) (-a.rel b.img)
2GETLAM (3) (-a.rel b.img a.img)
%CHS (3) (-a.rel b.img -a.img)
XY>Y (2) (-a.rel -b.img)

2DROP ©) ()

Up to now, the compiler still manages to find the exact address (offset) of a variabler gichlal. Array

as defined in Pascal woule totally different. Array in Pascal is a composite data type, with each element
being a valid data object.While system R&hd user RPL defines array as a simple data type (atomic).
Which means that each element is an object body. Object prologue should be addedawnitatovalid
object. When we compile Pascal ingystem RPL here, array is implemented as a composite data type.
Separate mechanism should be provided to handle one dimensional and two dimensional RRayama

to explore HP calculator's rich set of array functions.

The basic problem of compiling array access is to generate codenjute the address of 'a[i]’, where a is
defined as:

a: array [index_min..index_max] of typet;

Any book on compiler will give a formula like:

address(a[i]) = address(a) + (i-index_min)*sizeof(typet);
= (address(a)-index_min*sizeof(typet)) + i*sizeof(typet);

Forlocal variable access, another version of the formula is used, because we are using offset that is relative
to the current top of stack:

offset(a[i]) = offset(a) - (i-index_min)*sizeof(typet);
= (offset(a)+index_min*sizeof(typet)) - i*sizeof(typet);

It follows that, we can't use DUP, OVER, 3PICK, 4PICK ... to fetch an array element, we can't use XY>Y,
XYZ>ZY to store, because address is only available at runtiWide. should instead use PICK and STOI
which both accept an offset on the stack.

STOI means indexed store and can be defined as:

(Indexed store: obn obn-1 ... obl index val)
(==>val obn-1 ... obl)
NAMELESS STOI

" SWAPDUP #2+ ROLLDROP UNROLL

An example will help to illustrate:

procedure p;
var a: array [5..7] of record rel: integer; img: integer end,;
i integer;

begin
i:=6;
a[i].rel:=1;
afi+1].rel:=a[i].rel+1

end;

NAMELESS proc_3
i (0)
ZERO SEVEN NDUPN DROP ('7) 6 for array, one for integer

SIX (8)6

XY>Y (7) store into i
SEVENTEEN (8) 7+5*2, 7 is offset(a)
OVER (9 readi

#2* #- (8) 7+(5-i)*2

ONE (9)1

STOI (7) afi].rel:=1

SEVENTEEN (8) 7+5*2, 7 is offset(a)
OVER (9)i

ONE (10)1

#+ (9)i+1

#2* #- (8) 7+(5-i-1)*2, offset for a[i+1]
EIGHTEEN (9) 8+5*2, 8 is offset(a) now
3PICK 10yi

#2* #- (9) 8+(5-i)*2

PICK (9) a[i]

ONE (10)1

#+ (9) afil+1

STOI (7) afi+1]:=a[i]+1

7DROP (0) clean up

An experienced system RPL programmer would say, this is only the code generated by a compiler, not me.
5. Control structures

Control structures in system RPL is actuallyery rich, we have IT, ITE, DO_LOOP,
BEGIN_WHILE_REPEAT, BEGIN_AGAIN, BEGIN_UNTIL, ', SEMI, COLA, SKIP¢ase and even
GOTO. The excessive usage of SKIP (explicitly or implicitpygke system RPL control structures not as
efficient as GOTO based implementation. For example, skipping one slnjgle or object pointers in run
stream takes about 120 clock cycles. Skipping a block of 33 objects would take 1ms on GX machines.

We base our implementation here oelative jumps. Two new routines are defined to support
IF_THEN_ELSE, WHILE_DO, REPEAT_UNTIL and GOTO in Pascal: JMP and FIMP.

JMP expects a binary integer offset on the stadkling this offset to the next RPL instruction pointer will
get the target instruction pointer. That integer should be a direct embsaiugtent. The original system
RPL word GOTO must be followed by an object pointer. Which is faster, shorter but more restrictive.

FIMP expects a True/False flag and a bimatgger offset on the stack. If the flag is False, control is passed
to that target address, otherwise, the next instruction in run stream is executed.

GOTO statement is just JIMP: goto 00; ... 00: ... can be compiled as:

DOBINT
ASSEMBLE
REL(5) lab_1
RPL
IJMP

LOCALLABEL lab_1

To simplify the example codes, we assume we could define a macro for system RPL compiler:

DEFINE OFFSET(x) DOBINT \
ASSEMBLE \
REL(5) X \

RPL

IF statement: if ... then ... else ... can be compiled as:

. conditional evaluation
OFFSET(lab_1)

FIMP
then part
OFFSET(lab_2)
JMP
LOCALLABEL lab_1
else part

LOCALLABEL lab_2

WHILE statement: while ... do ... can be compiled as:

LOCALLABEL lab_1

conditional part

OFFSET(lab_2)

FIMP

loop body
OFFSET(lab_1)
JMP

LOCALLABEL lab_2

REPEAT statement: repeat ... until ... can be compiled as:

LOCALLABEL lab_1
loop body
conditional part
OFFSET(lab_1)

FIMP

Implementation of FOR statement needs a special location for storiegdhef loop variable index. Our
Prting of P4 to system RPL compiler is designed to be a guagle compiler, so we can't allocate space for
the end of loop indetogether with parameters and other variables. We choose to put them dynamically on
the data stack. FOR statement: for i:=start to end do can be compiled to:

(1) evaluate 'start’
1PUTLAM (0) i:=start
(1) evaluate 'end', leave it on stack

LOCALLABEL lab_1

1GETLAM (2) read currenti
OVER (3) end of loop value
#>NOT (2) i<=end
OFFSET(lab_2) jump to end if index passed end_of_loop
FIMP @
loop body
1GETLAM (2) readi
#1+ (2) increment by 1
1PUTLAM (1) store i back
OFFSET(lab_1) jump to loop test
JMP
LOCALLABEL lab_2
DROP (0) remove end_of loop index from data stack

System RPL programmer would notice that this implementation is less efficient than the Ripdtdilt-

in DO_LOOP which is supported by a runtime Do_Loop_Environment. DO_LOOP is not used to
implement Pascal's FOR statement because DO_LOORP is executed at least once andilaedeep afdex
within and outside the loop body is not well defined (espedifatlyere are more than two levels of FOR
loop). Another reason is DO_LOOP does atiow simple break_out_of_loop mechanism (especially for
nested loops).

Breaking out of WHILE and REPEAT loop is simplynarmal GOTO statement. Breaking out of a FOR
loop using GOTO statement is possible too except toatpiler would not automatically drop the
end_of_loop index(es) for you. You will have to place the exact number of 'tefpl® GOTO, where
‘drop’ is defined as:

procedure drop; inline 'DROP';

For example, the following code fragment will be compiled correctly:

label 00;

for i:=1to 10 do
for j:=1to 10 do
for k:=1 to 10 do
if solution_found(i,j,k) then
begin drop; drop; drop; goto 00 end;
00:

We will finish this section by implementing the CAStatement. The concept of CASE in Pascal or switch
in C is implemented by a series of conditional statementssen RPL. System RPL provides several
methods to perform similar tasks: OVER#=case, EQLookup, CK<n>&Dispatch, etc.

To implement CASE statement, wefine a new basic control word here: XJP (case jump). XJP accepts a
binary integer on the data stack and a binary intagey of relative offsets that follows the XJP word. XJP
just finds the relative jump offset for that index, and jumps to that location. Here is an example:

procedure testcase(c: char);
begin
case c of
0" ...

NAMELESS proc_3

DUP

OFFSET(lab_1)

IMP
LOCALLABEL lab_3

OFFSET(lab_2)
IMP
LOCALLABEL lab_4

OFFSET(lab_2)
IMP
LOCALLABEL lab_5

OFFSET(lab_2)
IMP
LOCALLABEL lab_6

OFFSET(lab_2)
IMP
LOCALLABEL lab_1

fetch ¢

jump forward for XJP

multiple pass compiler can do a better job
'0' goes here

jump pass case statement

'1' goes here

jump pass case statement

'2' goes here

jump pass case statement

'3' goes here

jump pass case statement

actual dispatch without check

FORTYEIGHT subtract internal value of '0'
H-
XJP case jump
ASSEMBLE
CON(5) =DOARRY an array object here
REL(5) lab_2 indicating size of array
CON(5) =DOBINT element type
CON(5) 1 one dimensional array
CON(5) 4 four elements
REL(5) lab_3 offset for '0'
REL(5) lab_4 offset for '1'
REL(5) lab_5 offset for '2'
REL(5) lab_6 offset for '3'
RPL

LOCALLABEL lab_2 end of case code

DROP

6. Limitations and possible future developments

The preceding sections describe how Pascal features can be comjuleystem RPL code, we have
touched:

1) local and global variable declaration and access.

2) type declaration and related variable handling: integer, real, character, Boolean, array and record.
3) label declaration

4) procedure and function declaratiom;luding inline procedure/function. Recursive procedure/function is
supported naturally.

5) goto, assignment, procedure call and compound statements

6) if, while, repeat, case statements

Some features are already supported, but not explicitly mentioned:
7) constant declaration

8) enumeration type implemented as binary integer and set type implemented as hexadecimal string
9) most standard functions and procedures

Still, there arelots of standard or commonly accepted extended Pascal features not supported or not
implemented quite well in thismplementation, which provides lots of opportunities for future
developments:

1) Integer type is temporarily implemented as system binary integer in systenwiié is actually
unsigned integer type. Runtime routines for true signed integer arithmetics should be adasgecially
comparisons, conversions to and from real values.

2) variableparameter for procedures/functions is not supported yet. Use of relative stack level as a form of
address and differestorage scheme for local and global variables make it quite hard. The need to support
system RPL's variable number of parameters and return values makes it worse.

3) nested procedure/function, with statement

4) pointer and string type. New and dispose routines

5) write, writeln, read, readIn, text and typed file operations

6) procedure/function as parameters

7) break and return statements

8) conditional compilation, modular stricture of program

9) constant expression

10) peephole optimizations

Another direction of possiblelevelopments is to expand Pascal's limited data types and standard
procedures/functions using system RPL's rich resources and good concepts:

1) high precision integer (user integer type)
2) complex, double precision real

3) vector, matrix

4) list, symbolic, program, units

5) character string

6) graphic object (grob or bitmap)

7) text display routines

8) graphic display routines

9) keyboard input

10) menu, input form, choose box, parameterized outerloop
11) communication, timer, alarm system

Still another direction of possible development is to make the experiment reported here truly acebsible
useful to end users. Things to be done includes:

1) Implement a Pascal language runtime ROM.

2) Generate code for external ROM.

3) Simplify steps to build a final ROM image.

4) Developa scheme such that the user rely more on PC to write and debug program, and only turn into
system RPL when everything seems OK.

5) more complete documentation and example programs for this Pascal compiler.

7. Acknowledgment
The author would like to acknowledge the HP calculator software team members for introducing me to the

wonderful land of HRcalculator. Jim Donnelly gave the first lesson on user RPL programming. Charlie
Patton's lectures and lots of emails are very valuable to the understand of RPL internals.

8. References

[1] W.C. Wickes, "An Evolutionary RPalculators for Technical professionals”, HP Journal, Vol. 38, No.
8, August 1987, pp.11-17

[2] D.K. Byrne et al, "An Advanced Scientific Graphi@alculators”, HP Journal, Vol. 45, No. 4, August
1994, pp.6-22

[3] S. Pemberton & M. Daniels, "Pascal Implementation”, Ellis Horwood, Chichester, UK.

[4] B. Kinnersley, "The Language List", Ver. 2.3, Sep 1994, Internet newsgroup comp.lang.misc

[5] James Donnelly, "The HP48 Handbook", Armstrong Publishing Company, 2nd Edition, 1993

[6] W.C. Wickes, "HP 48 Insights”, Part | and II, Larken Publications, 1992

[7] RPLMAN.DOC, RPLCOMP.DOC, ftp from hpcvbbs.cv.hp.com

9. Appendix

Basic Pascal runtime support library

(data stack: # ->)
(run stream: DOARRY len*5+5 DOBINT off0 offl off2 offn-1)
NAMELESS XJP
CODE
GOSBVL =POP# A=offset
C=A A
A=A+A A
A=A+A A
A=C+A A A*=5

D0=D0+ 10
D0=D0+ 15 DO: point to first offset

C=C+A A C: point to THE offset
A=DATO A A: value of offset

C=C+A A C=D0+offset

NAMELESS JMP (#offset ->)
CODE
GOSBVL =POP# A=offset
CDOEX C=lInstruction pointer
C=C+A A C+=offset
CDOEX DO+=offset
D0=DO0- 10 adjustment (16 for external ROM)

NAMELESS FIMP (T/F #offset ->)
CODE
GOSBVL =POP# A=offset
RO=A.F A RO=offset
GOSBVL =popflag
A=RO.F A
GOC over
CDOEX C=lInstruction pointer
C=C+A A C+=offset
CDOEX DO+=offset
D0=DO0- 10 adjustment (16 for external ROM)
over LOOP
ENDCODE

* Indexed store: stack[n] stack[n-1] stack[1] index value

* ==>value stack[n-1] stack[1]
NAMELESS STOI

" SWAPDUP #2+ ROLLDROP UNROLL

)

