
Progress in Pascal compiler for HP 48/38 calculators

 YUAN, Feng
Software Engineer

(Hewlett Packard Singapore)
email: yuanfeng@hpsgrt1.sgp.hp.com

Paper presented at 1995 HP Handheld Users Conference
Aug 5&6, 1995, Mall of America, Bloomington, Minnesota

Abstract

This paper continues discussion of how Pascal programs can be compiled to system RPL code,
and how applications for the HP48S/48G and the latest HP38G calculator can be developed in
Pascal.

1. Introduction

The popular HP 48S/48G series of calculator is built using mainly a special programming
language system RPL, so is the latest HP graphical calculator HP38G. Although system RPL
is a very powerful language, especially in dynamic memory management, versatile control
structure, symbolic processing, error handling, etc., programming in system RPL is very hard.

Recently, there have been some interesting development in compiling C++ into Saturn
Assembly language, and compiling Pascal into system RPL. This paper continues discussion
reported in a paper submitted to Prompt 94 Conference on compiling Pascal into system RPL
and shows how Pascal can be used to write applications for HP38G (also called aplets).

2. Compilation of Pascal constructs

System RPL is an intermediate code that works on a software emulated stack machine.
Another popular stack based intermediate language is P_code, which was first used in the
public domain P4 compiler written by Urs Ammann and others from ETH Zurich and
documented in S.Pemberton's book Pascal Implementation. The work reported here is
based on the P4 compiler in the front end with substantial redesign in the code generation
part.

Compiling of major Pascal language constructs into system RPL can be illustrated below use
simple examples.

Integer operations

Although it sounds very simple, compiling of Pascal integer into RPL is not straightforward.
This is because RPL system only supports 20 bits unsigned integer operations, and conversion
routines between real and unsigned integers. The following routines have been created to
support signed integer operations:

#ODD (d -> T/F) integer odd test
#NEG (d -> d) integer negation
#ABS (d -> d) integer absolute value

d> (d d -> T/F) integer > comparison
d< (d d -> T/F) integer < comparison
d>= (d d -> d>=) integer >= comparison
d<= (d d -> d<=) integer <= comparison
d* (d d -> d) integer multiplication
dDIV (d d -> d) integer division
dMOD (d d -> d) integer remainder
d>% (d -> %) integer to real conversion
%>d (% -> d) real to integer conversion

Local variable and function definition

Local variables are allocated on the data stack together with parameters, so is function return
value.
For example, the following Pascal function declaration:

function p(a,b,c: real): real;
 begin
 p:=sqrt(b*b-4.0*a*c);
 end;

can be compiled into:

NAMELESS proc_3 (a b c -> sqrt(b*b-4.0*a*c))
 ::
 ZERO (a b c ZERO)
 3PICK 4PICK %* (a b c ZERO b*b)
 %4 6PICK %* 4PICK %* %- %sqrt (a b c zero p)
 SWAPDROP (a b c p)
 4UNROLL3DROP (p)
 ;

Global variables

For HP48 calculators, global variables can be stored into temporary environment that is
created on entry into program and destroyed on quit from program. Global variables can be
accessed using GETLAM and PUTLAM. For HP38 calculators, there is a special region of
updateable pointers TopicVar1 through TopicVar91 that can be used by individual
applications (aplets in HP38G's term). This provides a much faster way to access global
variables through special routines like TopicVar1@, TopicVar1!, etc.

program test(input,output);
 var a,b,p: real;
 begin
 p:=a+b;
 end.

NAMELESS proc_3 (->)
 ::
 %0AllTopicVars (CLEAR ALL TOPICVARS)
 TopicVar3@ TopicVar2@ %+ (a+b)
 TopicVar1!
 %0AllTopicVars
 ;

Array, Record and String

Array as in Pascal is a composite data type, with each element being a valid data object. In
current implementation, Pascal array is mapped to a chunk of stack locations or topicvars.
The basic program of compiling array access is to generate code to compute the address of a[i],
which may be defined as:

a: array [min..max] of type;

For local variable access, we need to generate code for computing offset of a[i] as:

offset(a[i])=offset(a)-(i-min)*sizeof(type)
 =(offset(a)+min)*sizeof(type)-i*sizeof(type);

Compilation of record is quite straightforward, because only fixed offsets are involved. The
following example contains both array and record:

var p: array [1..5] of record x,y: integer end;

procedure movex(i,dx: integer);
 begin
 p[i].x:=p[i].x+dx
 end;

NAMELESS _proc_3 (i dx ->)
 ::
 OVER TWO d* ZERO #+ TopicVarN@ (i dx p[i])
 OVER #+ (i dx p[i]+dx)
 3PICK TWO d* -1 #+ #1+ TopicVarN! (i dx)
 2DROP (i dx)
 ;

It would be very inefficient if string type is also handled in the same way as array, because it
would require 81 updateable pointers or LAMs to implement a variable length string with
maximum length of 80 characters. A much efficient way to implement string is to map it to
RPL character string object as illustrated below:

program stringtest;
 var s:string;
begin
 s:=' Pascal'+'-'+'RPL';
 s[1]:=chr(length(s));
end.

NAMELESS _proc_24 (->)
 ::
 $ " Pascal" (string constant)
 FORTYFIVE (ASCII code for '-')
 >T$ (append character to string)
 $ "RPL" &$ (string concatenation)
 TopicVar1! (assign to s)
 TopicVar1@ ONE (s 1)
 TopicVar1@ LEN$ #>CHR (s 1 chr(length(s)))
 CHR># $PutByte
 ;

where $PutByte is a newly added Saturn assembly routine to overwrite a character within a
string, which can also be interpreted as changing one byte within a byte array:

$PutByte ($ index #ch ->)

Control Structures

System RPL has a very rich set of control structure words like , SEMI, COLA, RDROP, SKIP,
IT, ITE, DO_LOOP, BEGIN_WHILE_REPEAT, BEGIN_AGAIN, BEGIN_UNTIL, case and
even GOTO. We base our implementation here on relative jumps, as an optimization for space
system RPL control constructs can also be generated when possible. Three new routines (
JMP, FJMP, CaseJump) are defined to implement Pascal control structures: IF_THEN,
IF_THEN_ELSE, WHILE_DO, REPEAT_UNTIL and CASE.

JMP expects a binary integer object as next object in the run stream, adding this offset to the
next RPL instruction pointer will get the target instruction pointer.

FJMP expects a T/F flag on the stack and a binary integer object as next object in the run
stream. If the flag is FALSE, JMP is performed, otherwise the binary integer object is skipped
and execution continues.

CaseJump expects a binary integer on the stack and a character string in the run stream. The
integer is an index into a series of relative jumping addresses encoded in the character string.
Default jump address is stored first in the character string.

The following example demonstrates compilation for major Pascal control structures:

program control;
 var i,n: integer;
 begin
 i:=1961;
 for n:=1 to 20 do (* for *)
 if odd(i) then i:=i*3+1 else i:=i div 2; (* if_then_else *)

 case i of (* case *)
 1: while i<10 do i:=i+1; (* while *)
 2: repeat i:=i-1 until I=0 (* repeat *)
 end
 end.

NAMELESS _proc_3 (->)
 ::
 ZERO (alloc for_end index)
 1961 TopicVar2! (i:=1961)
 ONE TopicVar1! (n:=1)
 TWENTY SWAPDROP (for_end:=20)
LOCALLABEL lab_4
 DUP TopicVar1@ d>= (for_end>=i)
 FJMP DOBINT (if not goto end_loop)
ASSEMBLE
 REL(5) lab_5
RPL
 TopicVar2@ #ODD ITE (ITE odd(i))
 :: TopicVar2@ THREE d* #1+ ; (I*3+1)
 :: TopicVar2@ TWO dDIV ; (I div 2)
 TopicVar2! (I:=)
 TopicVar1@ #1+ TopicVar1! (n:=n+1)
 JMP DOBINT (loop_back)
ASSEMBLE
 REL(5) lab_4
RPL

LOCALLABEL lab_5
 TopicVar2@ #1- CaseJump (case i:zero_based)
ASSEMBLE
 CON(5) =DOHSTR
 CON(5) 20 (three cases)

 REL(5) lab_9 (default)
 REL(5) lab_10 (i'=0)
 REL(5) lab_13 (i'=1)
RPL
LOCALLABEL lab_10
 BEGIN (system RPL control)
 TopicVar2@ TEN d<
 WHILE (while I<10)
 TopicVar2@ #1+ TopicVar2! (i:=i+1)
 REPEAT (loop_back)
 JMP DOBINT (goto end_case)
ASSEMBLE
 REL(5) lab_9
RPL
LOCALLABEL lab_13
 BEGIN (system RPL control)
 TopicVar2@ #1- TopicVar2! (i:=i-1)
 TopicVar2@ ZERO #=
 UNTIL (until I=0)
 JMP DOBINT (goto end_case)
ASSEMBLE
 REL(5) lab_9
RPL
LOCALLABEL lab_9
 DROP (drop for_end index)
 ;

3. Optimizations

Although the code examples shown above still look quite naive to experiences system RPL
programmers or any one with some basic knowledge of modern compilers features, some level
of optimization has already been implemented.

The original P4 compiler generates P_code by writing text representation of P_ codes directly
into output
file, without any optimization. Generating text output also makes optimization very hard. To
be able to extend the limited P_code instruction set to the rich system RPL instruction set and
optimize the code generate, the code generation phase of the P4 compiler has been rewritten to
generate binary code. A separate code optimization and (text form) system RPL generation
phase is added.

The following words have been added to extend P_code, all of them have corresponding system
RPL words:

it IT
semi ;
ite ITE
colon ::
begin BEGIN
while WHILE
repeat REPEAT
until UNTIL
nop NOP
tick
list DOLIST
endlist SEMI
takeoverTakeOver
getch $Putbyte
putch $SUB1#

The following library function words have been added to extend Pascal built_in functions and
implement string as a simple object:

push NOP (ob -> ob)

pop DROP
length LEN$
asin %ASIN
log %LOG
tan %TAN
acos %ACOS
sinh %SINH
cosh %COSH
tanh %TANH
asinh %ASINH
acosh %ACOSH
atanh %ATANH
chrstr >H$
strchr >T$
strstr &$

Most of the currently implemented peephole optimizations can be described used the following
pattern and replacement rules:

<const> <const> #+ => <const>+<const>
<const> <const> #* => <const>*<const>
<const> <const> #- => <const>-<const>

<object> flo => flt <object>
<const> chs => -<const>
<const> #+ => inc(<const>)
<const> #- => dec(<const>)
<const> <object> #+ => <object> inc(<const>)

0 <object> #+ => <object>
<const> <object> <const > + + => <object> inc <const>+<const>
<const> <object> <const > - + => <object> inc <const>-<const>

<const> ind => ldo(<const>)
<const> <object> str => <object> sro(<const>)

if . then . ob else . ob endif => if . then . else . endif ob

Optimizations as currently implemented are far from enough. System RPL programs
generated by current implementation can be reduced by as much as 40%, as shown by the
following manually rewritten version of the control structure example shown above:

NAMELESS _proc_3 (->)
 ::
 1961 TopicVar2! (i:=1961)

 TWENTYONE ONE_DO (DO) (for n:=1 to 20 do)
 TopicVar2@ DUP #ODD ITE (ITE odd(i))
 :: #3* #1+ ; (i*3+1)
 #2/ (i div 2)
 TopicVar2! (i:=)

 LOOP

 TopicVar2@ #1=case ::
 BEGIN
 TopicVar2@ TEN d<
 WHILE (while I<10)
 TopicVar2@ #1+ TopicVar2! (i:=i+1)
 REPEAT (loop_back)
 ;

 TopicVar2@ #2= NOT?SEMI
 BEGIN (system RPL control)
 TopicVar2@ #1- TopicVar2! (i:=i-1)
 TopicVar2@
 #0=UNTIL (until i=0)
 ;

This also shows that deep understanding of system RPL is still very useful even when
languages as Pascal can be compiled into system RPL automatically. We may even say
knowledge of system RPL is more useful than ever before because Pascal compiler opens a
bigger entrance into the wonderful world of system RPL. This is achieved through Pascal
compiler’s variable allocation, static type checking, parameter checking, address calculation,
infix expression to postfix translation, etc., which are handled manually in traditional system
RPL program development. It will be shown later in this paper how Pascal programs can
debugged first on the DOS platform before they are compiled into system RPL.

4. Generating HP48/38 object code

To make the program runnable on HP48/38 calculators, all the pieces described above should
be glued together into system RPL external library object. External library should contain
library name, library id, configuration code, hash table, link table, and 4_nibble CRC field
besides the actual code. A file header is also needed for downloading.

There are several steps involved in generating HP48/38 object code from the original Pascal
source code:

• PAS2RPL: syntax check, binary internal code generation

• GENRPL: optimization, system RPL source generation

• RPLCOMP: Saturn assembly source generation

• SASM: Saturn object code generation

• SLOAD: Generating HP48/38 downloadble object code

Let’s take a simple program:

program main(input,output);
 var n: integer;
 function add1(i: integer): integer;
 begin
 add1:=i+1;
 end;
 begin
 n:=add1(10);
 end.

System RPL source generated by GENRPL will look like:

xROMID 2FC (external ROMID)

ASSEMBLE
 NIBASC /HPHP48-A/ (binaray header)
=ROMID2FC EQU #2FC
 CON(5) =DOLIB (library prologue)
=LIB2FC REL(5) =SYSEND2FC
 CON(2) 10 (library name)
 NIBASC \PascalDemo\
 CON(2) 10
=SYS2FC CON(3) #2FC
 REL(5) =HasH2FC
 CON(5) 0
 REL(5) =LinK2FC
 REL(5) =CnfG2FC

=CnfG2FC (configuration code)
RPL
 :: #2FC XEQSETLIB ;

NULLNAME proc_3 (procedure add1)
 :: #1+ ;

ASSEMBLE
 CON(1) 8
RPL
xNAME Demo (main program)
 :: ZERO ' NULLLAM ONE DOBIND (allocate globals)
 TEN proc_3 1PUTLAM (main action)
 ABND (deallocate globals)
 ;

ASSEMBLE (hash table)
=HasH2FCCON(5) =DOHSTR
 REL(5) TaBlEnD
 CON(5) 0
 CON(5) 0
 CON(5) 0
 REL(5) oBleN4

 ...
REL(5) naMEend

oBleN4 CON(2) 4
 NIBASC \Demo\
 CON(3) 0
naMEend
=~xDemo EQU #2FC+4096*0 (romptr def)
 CON(5) (*)-(oBleN4)-0
=~proc_3 EQU #2FC+4096*1
TaBlEnD

=LinK2FC CON(5) =DOHSTR
 REL(5) enDLink
 REL(5) =xDemo
 REL(5) =proc_3
enDLink CON(4) 0 (crc)
=SYSEND2FC END
RPL

When the final object code is downloaded into HP48 and installed into Port0, you can run the
program by typing Demo from keyboard or choose it from the port menu.

The latest HP38G graphic calculator is based on a concept called aplet, which is a small
application packaged as an electronic lesson. Aplet has a data storage part containing
information like plot setups, numeric setup, symbolic expressions, text note and graphical
sketches. It has a code part that supports the running of 5 main views and 3 setup views of
aplets, where people can do setup and explore. The aplet data part can have multiple
instances to solve different problems of the same class. To be more specific, aplets can have:

• symbolic view, for entering functions and manipulating them

• plotting view, for generating graphs of functions

• numeric view, for generating tables of functions

• note view, for reading and editing text description of problem

• sketch view, for watching and editting sketch description of problem

• symbolic setup view

• plot setup view

• numeric setup view

Down to the implementation level, aplet data are stored into a system RPL directory object
with fixed number of nameless slots. Aplet code is packaged into a system RPL library object
that is referenced to by aplet directory. Aplet code should be able to supply specific view
handlers when certain predefined view keys are pressed.

To benefit from the new HP38 aplet structure, the Pas2Rpl compiler can generate a simple
degenerated form of aplets that has the code part embedded into the directory part, making it
a single object. This simple form of aplets still supports common aplet variables like Xmin,
Xmax, Notetext, Pagenum, Page. It supports note and sketch view, but all the other views are
mapped into a single view by default. Experienced system RPL programmers will be able
provide different handling to different views by working on the system RPL source code
generated.

As the final example of this paper, let’s try a big’ yet still toy program. The vector program
shown below stores coordinates of 5 points of a pyramid, displays it on screen, and lets the
user to rotate it interactively around x, y, z axes in steps of 15 degrees.

Fig 1: initial screen

Fig 2: sample screen after rotation

program vector(input,output);

uses lcd;

const sina=0.258819;
 cosa=0.965926;

var obj : array [1..5,1..3] of real;
 x : array [1..5] of integer;
 y : array [1..5] of integer;

procedure init; far;
 begin
 open_lcd;

 obj[1,1]:= 5.0; obj[1,2]:=-5.0; obj[1,3]:= 2.5;
 obj[2,1]:= 5.0; obj[2,2]:= 5.0; obj[2,3]:= 2.5;
 obj[3,1]:=-5.0; obj[3,2]:= 5.0; obj[3,3]:= 2.5;
 obj[4,1]:=-5.0; obj[4,2]:=-5.0; obj[4,3]:= 2.5;
 obj[5,1]:= 0.0; obj[5,2]:= 0.0; obj[5,3]:=-2.5;

 end;

procedure connect(i,j: integer);
 begin
 lineon(x[i],y[i],x[j],y[j])
 end;

procedure display; far;
 var i: integer;
 begin
 for i:=1 to 5 do
 begin
 x[i]:=trunc(obj[i,2] * 6) + 64;
 y[i]:=trunc(obj[i,3] * 6) + 32;
 end;
 clear(0,0,131,64);
 connect(1,2); connect(2,3); connect(3,4); connect(4,1);
 connect(5,1); connect(5,2); connect(5,3); connect(5,4)
 end;

procedure rotate(s: real; x,y: integer);
 var i: integer; xx,yy: real;
 begin
 for i:=1 to 5 do
 begin
 xx:=obj[i,x]; yy:=obj[i,y];
 obj[i,x]:=xx*cosa - yy*sina*s;
 obj[i,y]:=xx*sina*s + yy*cosa
 end;
 end;

procedure handle; far;
 begin
 case key of
 key_1 : rotate(-1.0,2,3);
 key_3 : rotate(1.0,2,3);
 key_2 : rotate(-1.0,3,1);
 key_8 : rotate(1.0,3,1);
 key_6 : rotate(-1.0,2,1);
 key_4 : rotate(1.0,2,1);
 end;
 keymap
 end;

begin
 setviewui(init,close_lcd,display,handle)
end.

View handler required by HP38 is similar to the parameterized outer loop user interface
specification required by HP48 parameterized outer loop. A simplified version is supported
here by Pas2Rpl compiler through the routine setviewui. Setviewui expects four
parameter_less procedures as view entry routine, view exit routine, view display handler and
view keyboard handler.

In the vector example, view entry routine init clear screen and all topic variables, initializes
global variables used by the program; view exit routine close_lcd clears topic variables again
and signals screen should be updated; display handler display redraw the pyramid; key
handler handle takes over 6 keys for rotating, handle pre_defined task switch keys and menu
keys (if they are defined) , shows visual warning for other keys pressed. The compiler has
special code generation algorithm for key handler and the setviewui procedure call. The final
object code is 1416 bytes in size.

The procedure handler will be compiled into:

NAMELESS _proc_32 (#code #plane -> keyob TRUE | FALSE)
 ::
 { { FORTYONE :: TakeOver %-1 TWO THREE proc_29 ; (kc1)
 FORTYTHREE :: TakeOver %1 TWO THREE proc_29 ; (kc3)
 FORTYTWO :: TakeOver %-1 THREE ONE proc_29 ; (kc2)
 THIRTYTWO :: TakeOver %1 THREE ONE proc_29 ; (kc8)
 THIRTYEIGHT :: TakeOver %-1 TWO ONE proc_29 ; (kc6)
 THIRTYSIX :: TakeOver %1 TWO ONE proc_29 ; (kc4)
 }
 { } { } { } { } { } (ls, rs, ans, als, ars planes)
 }
 ONE KeyFace (HP38 built_in key handling routine)
 ;

The call to setviewui will be compiled into:

' proc_24
' LeaveGraphView
' proc_26
' proc_32
DummyMenuErr

where DummyMenuErr supplies a dummy menu and error handler.

While Pascal compiler can do a nice job of detecting syntax errors, programs generated
correctly by Pas2Rpl compiler can easily fail badly when run on HP caculators because of
semantic errors. The edit, compile and test loop can be quite long if user has to download
object code into HP calculator for testing every time a modification is made.

To make things much easier for debugging and testing, the Pas2Rpl compiler has been
designed in such a way that accepted programs are compilable and runnable using Borland
International’s famous Pascal compiler on the DOS platform. You can even do symbolic
debugging using Borland Pascal compiler. This is achieved by comforming to syntax
acceptable by Borland Pascal (e.g.: far is needed for procedures passed to setviewui) and
providing a lcd module (unit) to simulate the 131x64 lcd display, text output commands, line
drawing commands, key handling and setviewui.

For example, setviewui (together with view outer loop) can be implemented using:

type proc = procedure;
var appexit: boolean;
 key : integer;

procedure setviewui(init,term,disp,handle: proc);
 begin
 init;
 appexit:=false;
 while not appexit do
 begin
 disp;
 key:=getkey;
 if key=27 then
 appexit:=true
 else
 handle;
 end;
 term;
 end;

5. Future developments

The preceding sections describe how Pascal programs can be compiled into object code for
HP48/38 calculators. Comparing with last year’s work, the following has been done:

• Basic support routines built into HP calculator.

• Signed integer arithmetics support

• String as a simple type

• Peephole optimizations on a two pass compiler structure

• Generate code for HP48 style external ROMPART structure

• Generate code for HP38 style simple aplet structure

• Turbo Pascal compatibly and the lcd module for simulation and debugging on

PC

There are still lots of work to be done to support more Pascal features (e.g.: variable
parameters, with statement, set type), more system features (e.g.: vector, matrix as a
simple object, choose box, input form) and more powerful simulation of HP48/38 on the PC
side (e.g.: small/big font, bitmap display, choose box, input form, multiple views of HP38).

References
1. S.Pemberton & M.Daniels, Pascal Implementation, Ellis Horward, Chichester,

UK
2. J.Donnelly, An Introduction to HP 48 System RPL and Assembly Language

Programming, 1995, Armstrong Publishing Company, OR, USA
3. F.Yuan, Towards a Pascal compiler for HP RPN calculator, Prompt

Anniversary Conference, 1994, pp.7-20, Netherlands

