Cosmology for the HP48S/SX/G/GX
Overview
1°) Cyclic Universes: CYCL Subdirectory
a) Negative Radiation Pressure - Zero Matter
b) Negative Matter Density - Zero Pressure
2°) Empty Universes
3°) Tolman
Universes
4°) Our Universe ?: UNIV
Subdirectory
a) With Carlson Integrals
b) Numerical Integrations
5°) Carlson Elliptic Integrals RF RJ RFZ RJZ
-These programs employ Einstein's equations
2 R(t).d2R/dt2 + (dR/dt)2 +
k.c2 = ( -(8.PI.G/c2 ).p + (Lambda).c2 ).R2(t)
(dR/dt)2 + k.c2 =
( (8.PI.G/3) (rho) + (Lambda/3).c2 ).R2(t)
R(t) is the scale factor = the "radius" of the Universe
, Lambda = cosmological constant , rho = density of matter and energy
; p = pressure
k = +1 for Spherical Universes
k = 0 for Euclidean
---------
k = -1 for Hyperbolic ---------
-Knowing the cosmological redshift z of a galaxy, and the values of the current
parameters,
the following routines compute one or several "distances", the recessional
velocity and the age of the Universe.
D
= light-travel time distance ( in Giga-light-years ) = light-travel
time ( in Giga-years )
D0 = comoving distance ( in Giga-light-years )
DL = luminosity-distance ( in Giga-light-years )
VR = recessional velocity ( speed of light = 1 )
t0 = age of the Universe ( in Giga-years )
t0 = (c/H0)
§01 y. [ (Omega)lambda.y4
+ ( 1-(Omega)tot ).y2 + (Omega)mat.y + (Omega)rad
] -1/2 dy
D = (c/H0) §y(em)1
y. [ (Omega)lambda.y4 + ( 1-(Omega)tot
).y2 + (Omega)mat.y + (Omega)rad ]
-1/2 dy
y(em) = y at the instant of emission
D0 = (c/H0) §y(em)1
[ (Omega)lambda.y4 + ( 1-(Omega)tot
).y2 + (Omega)mat.y + (Omega)rad ]
-1/2 dy
z + 1 = R0/R = 1/yem
where (Omega)tot = (Omega)mat + (Omega)lambda
+ (Omega)rad
IMPORTANT NOTE:
-The variable 'H0' contains in fact 1/H0 = 13.7717214286
giga-years, which corresponds to H0 = 71 km/s/MPc
-Change this number if you want to use another Hubble "constant".
1°) Cyclic Universes: CYCL Subdirectory
a) Negative
Radiation Pressure - Zero Matter
-With this program, you choose the minimum , current and maximum scale factor:
Rmin , R0 , Rmax ( in giga-light-years )
and the redshift z of a galaxy
-H0 is computed with these data, not with the number stored in
'H0'
-In these universes, k = -1: they are hyperbolic.
STACK |
INPUTS |
OUTPUTS |
Level 6
|
/
|
L
|
Level 5
|
/
|
q
|
Level 4 |
Rmin |
H0 |
Level 3 |
R0 |
P |
Level 2 |
Rmax |
t0 |
Level 1 |
z |
D |
where L = cosmological constant ( in Gy-2
) , q = deceleration parameter , H0 = Current Hubble "constant"
( km/s/Mpc )
P = period , t0
= Age of the universe ( since the last minimum scale factor ) , D =
light-travel-time distance ( G-l-y )
Example:
1 ENTER
14 ENTER
314 ENTER
7 NRAD ->
D = 12.5328286472
t0 = 13.9689888753
P = 986.465095748
H0 = 69.5942743888
q = -0.00313633521
L = -0.0000304268892563
Note:
-The formulas are simple: all may be expressed with trigonometric functions.
-Unfortunately, it's not always the same:
b) Negative
Matter Density - Zero Pressure
-The inputs are the same as the program above.
-You choose the minimum , current and maximum scale factor: Rmin
, R0 , Rmax ( in giga-light-years ) and the redshift
z of a galaxy
-In these universes, k = -1: they are hyperbolic.
STACK |
INPUTS |
OUTPUTS |
Level 6
|
/
|
L
|
Level 5
|
/
|
q
|
Level 4 |
Rmin |
H0 |
Level 3 |
R0 |
P |
Level 2 |
Rmax |
t0 |
Level 1 |
z |
D |
where L = cosmological constant ( in Gy-2
) q = deceleration parameter H0 = Current Hubble "constant"
( km/s/Mpc )
P = period t0
= Age of the universe ( since the last minimum scale factor ) D = light-travel-time
distance ( G-l-y )
Example:
1 ENTER
14 ENTER
314 ENTER
7 NMAT ->
D = 13.5614979392
t0 = 15.4905798443
P = 993.86512963
H0 = 67.2299023844
q = -0.036404800874
L = -0.0000303302969336
Notes:
-This program employs Carlson elliptic integrals.
-With an HP48G/GX, execution time = 11 seconds in example above
2°) Empty Universes
-With these universes, (Omega)mat = (Omega)rad = 0
-You choose (Omega)lambda and the redshift z of a galaxy
STACK |
INPUTS |
OUTPUTS |
Level 7
|
/
|
k
|
Level 6
|
/
|
R0
|
Level 5
|
/
|
VR
|
Level 4 |
/ |
t0 |
Level 3 |
/ |
DL |
Level 2 |
(Omega)lambda |
D0 |
Level 1 |
z |
D |
Example: (Omega)lambda = 0.4
z = 7
0.4 ENTER
7 VAC -> D
= 14.0146633022
D0 = 34.6018530194
DL = 487.804123114
t0 = 16.2332249293
VR = 2.51252925778
R0 = 17.7792159139
k = -1
Notes:
-This routine is very fast.
-If the universe is cyclic ( it's the case if (Omega)lambda
< 0 ) , the period is returned in level 8
-For instance, with (Omega)lambda = -0.4 , P = 68.4081910522
3°) Tolman Universes
-In Tolman universes, (Omega)mat = 0
-So, you choose (Omega)rad & (Omega)lambda
> 0
STACK |
INPUTS |
OUTPUTS |
Level 4 |
/ |
k |
Level 3 |
(Omega)rad > 0 |
R0 |
Level 2 |
(Omega)lambda > 0 |
t0 |
Level 1 |
z |
D |
Example: (Omega)rad = 0.001 , (Omega)lambda
= 0.4 z = 7
0.001 ENTER
0.4 ENTER
7 TOL ->
D = 13.9333170727
t0 = 15.5435004234
R0 = 17.7940504729
k = -1
4°) Our Universe (?) UNIV Subdirectory
a) With Carlson
Elliptic Integrals
-You choose positive (Omega)mat , (Omega)lambda ,
(Omega)rad and the galaxy redshift z
STACK |
INPUTS |
OUTPUTS |
Level 7
|
/
|
k
|
Level 6
|
/
|
R0
|
Level 5
|
/
|
VR
|
Level 4 |
(Omega)rad |
t0 |
Level 3 |
(Omega)lambda |
DL |
Level 2 |
(Omega)mat |
D0 |
Level 1 |
z |
D |
Example1: With (Omega)mat
= 0.044 , (Omega)lambda = 0.519 ,
(Omega)rad = 0.000049 &
z = 7
0.000049 ENTER
0.519
ENTER
0.044
ENTER
7
Z->D D = 14.1190889700
D0 = 34.1900167447
DL
= 413.922726233
t0
= 15.5877288348
VR = 2.48262477004
R0 = 20.8339616550
k = -1
Example2: With (Omega)mat
= 0.271 , (Omega)lambda = 0.732 ,
(Omega)rad = 0.000049 & z =
7
( These Omega-values are close to those suggested by
WMAP = NASA's Wilkinson Microwave Anisotropy Probe )
0.000049 ENTER
0.732
ENTER
0.271
ENTER
7
Z->D D = 12.8904186966
D0 = 28.7574862107
DL
= 229.550460568
t0
= 13.6678867998
VR = 2.08815480039
R0 = 249.407504594
k = +1
Notes:
-With an HP48G/GX, execution time is about 18 seconds.
-If (Omega)rad = 0 , choose Infinite = 9E499 ( otherwise,
there would be an error )
-The precision may be small if z is very small.
-This program uses Carlson elliptic routines RFZ & RJZ.
b) Numerical
Intregration
ITG uses the built-in integral function.
STACK |
INPUTS |
OUTPUTS |
Level 7
|
/
|
k
|
Level 6
|
/
|
R0
|
Level 5
|
/
|
VR
|
Level 4 |
(Omega)rad |
t0 |
Level 3 |
(Omega)lambda |
DL |
Level 2 |
(Omega)mat |
D0 |
Level 1 |
z |
D |
Example: With (Omega)mat
= 0.044 , (Omega)lambda = 0.519 ,
(Omega)rad = 0.000049 &
z = 7
4 FIX
0.000049 ENTER
0.519
ENTER
0.044
ENTER
7
ITG D = 14.1191
D0 = 34.1900
DL
= 413.9227
t0
= 15.5877
VR = 2.4826
R0 = 20.8340
k = -1
Note:
-The precision may be better than with Z->D if z is very small
5°) Carlson Elliptic Integrals RF RJ RFZ
RJZ
RF calculates: RF(x;y;z)
= (1/2) §0infinity ( ( t + x ).( t
+ y ).( t + z ) ) -1/2 dt
with x , y , z non-negative and at most one is zero
RJ calculates: RJ(x;y;z;p)
= (3/2) §0infinity ( t + p )
-1 ( ( t + x ).( t + y ).( t + z ) ) -1/2 dt
with x , y , z non-negative and at most one is zero and
p > 0
RFZ computes RF ( x , y+i.z , y-i.z
)
RJZ computes RJ ( x , y+i.z ,
y-i.z , p ) with p > 0
STACK |
INPUTS |
OUTPUTS |
Level 3 |
x |
/ |
Level 2 |
y |
/ |
Level 1 |
z |
RF( x , y , z ) |
Example:
1 ENTER
2 ENTER
4 RF yields RF(
1 , 2 , 4 ) = 0.685085816632
STACK |
INPUTS |
OUTPUTS |
Level 4 |
x |
/ |
Level 3 |
y |
/ |
Level 2 |
z |
/ |
Level 1 |
p |
RJ( x , y , z , p ) |
Example:
1 ENTER
2 ENTER
4 ENTER
7 RJ gives
RJ( 1 , 2 , 4 , 7 ) = 0.147854444980
STACK |
INPUTS |
OUTPUTS |
Level 3 |
x |
/ |
Level 2 |
y |
/ |
Level 1 |
z |
RF( x,y+i.z,y-i.z ) |
Example:
1 ENTER
2 ENTER
4 RFZ yields RF(
1 , 2+4.i , 2-4.i ) = 0.631488738054
STACK |
INPUTS |
OUTPUTS |
Level 4 |
x |
/ |
Level 3 |
y |
/ |
Level 2 |
z |
/ |
Level 1 |
p |
RJ( x,y+i.z,y-i.z,p ) |
Example:
1 ENTER
2 ENTER
4 ENTER
7 RJZ gives RJ(
1 , 2+4.i , 2-4.i , 7 ) = 0.126039065103
Remark:
DL is a subroutine that is called to calculate the luminosity-distance.
References:
[1] Stamatia Mavridès - "L'Univers relativiste" - Masson
ISBN 2-225-36080-7 ( in French )
[2] Jean Heidmann - "Introduction à la cosmologie" - PUF
( in French )
[3] David F. Crawford - "Curvature Cosmology" - ISBN 1-59942-413-4
or http://www.davidcrawford.bigpondhosting.com/cc2.pdf
[4] J. Pachner - "An Oscillating Isotropic Universe without Singularity"
- Mon. Not. R. astr. Soc. ( 1965 ) 131, 173-176
[5] Hua-Hui Xiong, Yi-Fu Cai, Taotao Qiu, Yun-Song Piao, Xinmin Zhang
- "Oscillating universe with quintom matter"
[6] B.C. Carlson, "Numerical Computation of Real or Complex Elliptic
Integrals"
[7] Jacques Colin, Roya Mohayaee, Mohamed Rameez,
and Subir Sarkar - "Evidence for anisotropy of cosmic
acceleration" - Astronomy & Astrophysic 631, L13
(2019)
[8] Helge
Kragh - Cyclic models of the relativistic universe: the early
history.
[9] Jean-E. Charon - Complex Relativity
( a controversial unitary theory, but with many interesting
ideas )