Cosmology for the HP48S/SX/G/GX


 Overview
 

1°)  Cyclic Universes:  CYCL Subdirectory

   a)  Negative Radiation Pressure - Zero Matter
   b)  Negative Matter Density - Zero Pressure

2°)
 Empty Universes
3°)  Tolman Universes
4°)  Our Universe ?:  UNIV Subdirectory
 
    a)  With Carlson Integrals
    b)  Numerical Integrations

5°)  Carlson Elliptic Integrals  RF  RJ  RFZ  RJZ



-These programs employ Einstein's equations

  2 R(t).d2R/dt2 + (dR/dt)2 + k.c2 = ( -(8.PI.G/c2 ).p + (Lambda).c2 ).R2(t)
     (dR/dt)2 + k.c2  = ( (8.PI.G/3) (rho) + (Lambda/3).c2 ).R2(t)

    R(t) is the scale factor = the "radius" of the Universe ,  Lambda = cosmological constant , rho = density of matter and energy ; p = pressure

     k = +1  for Spherical   Universes
     k =  0   for Euclidean   ---------
     k = -1  for Hyperbolic ---------

-Knowing the cosmological redshift z of a galaxy, and the values of the current parameters,
  the following routines compute one or several "distances", the recessional velocity and the age of the Universe.

              D  =  light-travel time distance ( in Giga-light-years ) = light-travel time ( in Giga-years )
             D0 = comoving distance ( in Giga-light-years )
             DL = luminosity-distance ( in Giga-light-years )
             VR = recessional velocity ( speed of light = 1 )
              t0  = age of the Universe ( in Giga-years )

     t0 = (c/H0)     §01     y. [  (Omega)lambda.y4 + ( 1-(Omega)tot ).y2 + (Omega)mat.y + (Omega)rad  ] -1/2 dy
    D  = (c/H0)  §y(em)1  y. [  (Omega)lambda.y4 + ( 1-(Omega)tot ).y2 + (Omega)mat.y + (Omega)rad  ] -1/2 dy           y(em) = y at the instant of emission
    D0 = (c/H0)  §y(em)1      [  (Omega)lambda.y4 + ( 1-(Omega)tot ).y2 + (Omega)mat.y + (Omega)rad  ] -1/2 dy               z + 1 = R0/R = 1/yem

  where  (Omega)tot = (Omega)mat + (Omega)lambda + (Omega)rad


IMPORTANT NOTE:

-The variable 'H0'  contains in fact  1/H0 = 13.7717214286 giga-years,  which corresponds to  H0 = 71 km/s/MPc
-Change this number if you want to use another Hubble "constant".


1°) Cyclic Universes:  CYCL Subdirectory


        a) Negative Radiation Pressure - Zero Matter


-With this program, you choose the minimum , current and maximum scale factor: Rmin , R0 , Rmax ( in giga-light-years ) and the redshift z of a galaxy
-H0 is computed with these data, not with the number stored in 'H0'
-In these universes, k = -1: they are hyperbolic.


         STACK           INPUTS        OUTPUTS
          Level 6
                 /
             L
          Level 5
                 /
             q
          Level 4                Rmin              H0
          Level 3                R0               P
          Level 2                Rmax               t0
          Level 1                 z               D

 where  L = cosmological constant ( in Gy-2 ) , q = deceleration parameter , H0 = Current Hubble "constant" ( km/s/Mpc )
            P = period ,  t0 = Age of the universe ( since the last minimum scale factor ) ,  D = light-travel-time distance ( G-l-y )

Example:
   

      1   ENTER  
     14  ENTER
    314  ENTER
      7     NRAD     ->     D = 12.5328286472
                                      t0 = 13.9689888753
                                     P = 986.465095748
                                    H0 = 69.5942743888
                                     q = -0.00313633521
                                     L = -0.0000304268892563

Note:

-The formulas are simple: all may be expressed with trigonometric functions.
-Unfortunately, it's not always the same:


        b) Negative Matter Density - Zero Pressure


-The inputs are the same as the program above.
-You choose the minimum , current and maximum scale factor: Rmin , R0 , Rmax ( in giga-light-years ) and the redshift z of a galaxy
-In these universes, k = -1: they are hyperbolic.


         STACK           INPUTS        OUTPUTS
          Level 6
                 /
             L
          Level 5
                 /
             q
          Level 4                Rmin              H0
          Level 3                R0               P
          Level 2                Rmax               t0
          Level 1                 z               D

 where  L = cosmological constant ( in Gy-2 )  q = deceleration parameter  H0 = Current Hubble "constant" ( km/s/Mpc )
            P = period  t0 = Age of the universe ( since the last minimum scale factor )  D = light-travel-time distance ( G-l-y )

Example:
   

      1   ENTER  
     14  ENTER
    314  ENTER
      7     NMAT     ->     D = 13.5614979392
                                      t0 = 15.4905798443
                                     P = 993.86512963
                                    H0 = 67.2299023844
                                     q = -0.036404800874
                                     L = -0.0000303302969336

Notes:

-This program employs Carlson elliptic integrals.
-With an HP48G/GX, execution time = 11 seconds in example above


2°) Empty Universes


-With these universes, (Omega)mat = (Omega)rad = 0  
-You choose (Omega)lambda and the redshift z of a galaxy


         STACK           INPUTS        OUTPUTS
          Level 7
                 /
             k
          Level 6
                 /
            R0
          Level 5
                 /
            VR
          Level 4                  /              t0
          Level 3                  /              DL
          Level 2       (Omega)lambda              D0
          Level 1                 z              D


Example:
    (Omega)lambda = 0.4     z = 7

    0.4  ENTER
      7    VAC    ->    D = 14.0146633022
                               D0 = 34.6018530194
                               DL = 487.804123114
                                t0 =  16.2332249293
                               VR = 2.51252925778
                                R0 = 17.7792159139
                                 k = -1

Notes:

-This routine is very fast.
-If the universe is cyclic ( it's the case if   (Omega)lambda < 0 ) , the period is returned in level 8
-For instance, with   (Omega)lambda = -0.4 ,  P = 68.4081910522



3°) Tolman Universes


-In Tolman universes, (Omega)mat = 0  

-So, you choose  (Omega)rad & (Omega)lambda > 0


         STACK           INPUTS        OUTPUTS
          Level 4                  /              k
          Level 3       (Omega)rad > 0              R0
          Level 2     (Omega)lambda > 0              t0
          Level 1                 z              D


Example:
   (Omega)rad = 0.001 ,  (Omega)lambda = 0.4     z = 7

    0.001  ENTER
     0.4     ENTER
       7       TOL      ->    D = 13.9333170727
                                     t0 = 15.5435004234
                                     R0 = 17.7940504729
                                      k = -1


4°) Our Universe (?)  UNIV  Subdirectory


        a) With Carlson Elliptic Integrals


-You choose positive (Omega)mat , (Omega)lambda , (Omega)rad  and the galaxy redshift z


         STACK           INPUTS        OUTPUTS
          Level 7
                 /
             k
          Level 6
                 /
            R0
          Level 5
                 /
            VR
          Level 4       (Omega)rad               t0
          Level 3       (Omega)lambda               DL
          Level 2       (Omega)mat               D0
          Level 1                 z              D


Example1:
    With    (Omega)mat = 0.044 ,  (Omega)lambda  = 0.519 ,  (Omega)rad  = 0.000049   &   z = 7  

     0.000049  ENTER
        0.519     ENTER
        0.044     ENTER
            7         Z->D       D = 14.1190889700
                                      D0 = 34.1900167447
                                      DL = 413.922726233
                                       t0 =  15.5877288348
                                     VR = 2.48262477004
                                     R0 = 20.8339616550
                                      k = -1

Example2:     With    (Omega)mat = 0.271 ,  (Omega)lambda  = 0.732 ,  (Omega)rad  = 0.000049  &   z = 7

    ( These Omega-values are close to those suggested by WMAP = NASA's Wilkinson Microwave Anisotropy Probe )

      0.000049  ENTER
        0.732     ENTER
        0.271     ENTER
           7          Z->D       D = 12.8904186966
                                      D0 = 28.7574862107
                                      DL = 229.550460568
                                       t0 =  13.6678867998
                                     VR = 2.08815480039
                                     R0 = 249.407504594
                                      k = +1


Notes:

-With an HP48G/GX, execution time is about 18 seconds.
-If (Omega)rad  = 0 , choose Infinite = 9E499  ( otherwise, there would be an error )
-The precision may be small if z is very small.
-This program uses Carlson elliptic routines RFZ & RJZ.


        b) Numerical Intregration

 ITG  uses the built-in integral function.


         STACK           INPUTS        OUTPUTS
          Level 7
                 /
             k
          Level 6
                 /
            R0
          Level 5
                 /
            VR
          Level 4       (Omega)rad               t0
          Level 3       (Omega)lambda               DL
          Level 2       (Omega)mat               D0
          Level 1                 z              D


Example:
    With    (Omega)mat = 0.044 ,  (Omega)lambda  = 0.519 ,  (Omega)rad  = 0.000049   &   z = 7  

       4  FIX

     0.000049  ENTER
        0.519     ENTER
        0.044     ENTER
            7          ITG        D = 14.1191
                                      D0 = 34.1900
                                      DL = 413.9227
                                       t0 =  15.5877
                                     VR = 2.4826
                                     R0 = 20.8340
                                      k = -1

Note:

-The precision may be better than with Z->D if z is very small


5°) Carlson Elliptic Integrals  RF  RJ  RFZ  RJZ


    RF  calculates:       RF(x;y;z) =  (1/2) §0infinity  ( ( t + x ).( t + y ).( t + z ) ) -1/2 dt                          with  x , y , z  non-negative and at most one is zero

    RJ  calculates:     RJ(x;y;z;p) =  (3/2)  §0infinity  ( t + p ) -1  ( ( t + x ).( t + y ).( t + z ) ) -1/2  dt        with  x , y , z  non-negative and at most one is zero and p > 0

    RFZ   computes  RF ( x , y+i.z , y-i.z )
 
    RJZ    computes  RJ ( x , y+i.z , y-i.z , p )  with  p > 0

 
 
          STACK          INPUTS        OUTPUTS
          Level 3               x               /
          Level 2               y               /
          Level 1               z      RF( x , y , z )


Example:

  1  ENTER
  2  ENTER
  4     RF    yields  RF( 1 , 2 , 4 ) = 0.685085816632


         STACK          INPUTS        OUTPUTS
          Level 4               x               /
          Level 3               y               /
          Level 2               z               /
          Level 1               p     RJ( x , y , z , p )


Example:

  1  ENTER
  2  ENTER
  4  ENTER
  7     RJ     gives   RJ( 1 , 2 , 4 , 7 ) = 0.147854444980



 
         STACK          INPUTS        OUTPUTS
         Level 3               x               /
         Level 2               y               /
         Level 1               z    RF( x,y+i.z,y-i.z )


Example:

  1  ENTER
  2  ENTER
  4    RFZ    yields   RF( 1 , 2+4.i , 2-4.i ) = 0.631488738054


           STACK           INPUTS           OUTPUTS
           Level 4                x                   /
           Level 3                y                   /
           Level 2                z                   /
           Level 1                p      RJ( x,y+i.z,y-i.z,p )


Example:

  1  ENTER
  2  ENTER
  4  ENTER
  7    RJZ     gives   RJ( 1 , 2+4.i , 2-4.i , 7 ) = 0.126039065103


Remark:

 DL is a subroutine that is called to calculate the luminosity-distance.



References:

[1]  Stamatia Mavridès - "L'Univers relativiste" - Masson  ISBN 2-225-36080-7  ( in French )
[2]  Jean Heidmann - "Introduction à la cosmologie" - PUF  ( in French )
[3]  David F. Crawford - "Curvature Cosmology" - ISBN 1-59942-413-4
      or http://www.davidcrawford.bigpondhosting.com/cc2.pdf
[4]  J. Pachner - "An Oscillating Isotropic Universe without Singularity" - Mon. Not. R. astr. Soc. ( 1965 ) 131, 173-176
[5]  Hua-Hui Xiong, Yi-Fu Cai, Taotao Qiu, Yun-Song Piao, Xinmin Zhang - "Oscillating universe with quintom matter"
[6]  B.C. Carlson, "Numerical Computation of Real or Complex Elliptic Integrals"
[7]  Jacques Colin, Roya Mohayaee, Mohamed Rameez, and Subir Sarkar - "Evidence for anisotropy of cosmic acceleration" - Astronomy & Astrophysic 631, L13 (2019)
[8]  Helge Kragh - Cyclic models of the relativistic universe: the early history.
[9]  Jean-E. Charon - Complex Relativity ( a controversial unitary theory, but with many interesting ideas )