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1 IntroductionCircuit simulation is often considered to be very complicated and hard to under-stand. This is also often the case, especially for large circuits with nonlinear com-ponents. However, the basics of circuit simulation are not complicated, and in factanyone understanding ordinary nodal formulation and Laplace-transform theory caneasily develop a simple circuit simulator. This is what we want to show in this tuto-rial, by presenting the theory needed for such a circuit simulator, capable of doingDC, AC and transient (TRAN) analysis. A program capable of this, Csim, programmedfor the HP 48SX handheld calculator is also presented. The reason that this speci�ccalculator has been chosen, is that it has the matrix handling tools required. Devel-oping code for circuit simulation purposes also requires access to matrix handlingtools. Since in our case these are provided from the beginning we are able to focuson the problems involved with circuit simulation, without spending too much timeon writing mathematical tools that suit our needs.The Csim program is kept small, due to the memory and processing capabilityrestrictions of the HP 48SX. Therefore certain restrictions on the simulating capa-bilities also exist. Csim is programmed using the RPL (reverse polish) language,uses 10 kB of memory and is capable of� performing AC and DC analysis.� performing transient analysis (TRAN analysis).� simulating linear circuits composed of lumped components with constant val-ues. Lossless transmission lines are provided for AC analysis.� simulating independent sources with time (in TRAN analysis) or frequency (inAC analysis) dependency. In TRAN analysis any functional dependency of nodevoltages or branch currents in the circuit can be simulated, if this depen-dency is allowed to have the delay of one time step. This can also be usedin DC analysis, if an iterative solving-method together with e.g. the Newton-Raphson algorithm is used. Any functional dependency can be speci�ed for anindependent source, as long as the function parameters have some meaningfulvalues. This includes both current (J) and voltage (E) sources.� plotting the results obtained from AC and TRAN analysis. Also, any user speci-�ed functional expression of the results in these analyses can be plotted. Theplotting capability can be expanded to include DC analysis with circuit param-eter sweeping (i.e. analyzing the circuit at di�erent parameter values).1



Although there is no restriction on how many nodes and branches the circuitto be simulated may have, the performance of the HP 48SX restricts the practicalsize of the circuit. The method used for setting up the simulation equations (i.e.component matrices and source vectors) is modi�ed nodal formulation (MNF) [5].The components supported in the current version of Csim, 2:61, are� R, G, L, M, C, i.e. resistors, conductors, inductors, transformers and capac-itors with constant values.� m, i.e. a mutual inductance between two components. This is not a com-ponent, instead it speci�es a dependency between two components that havebeen de�ned.� Y, Z, i.e. impedances and admittances with constant complex values. For ACanalysis at a single frequency only.� T, i.e. lossless transmission lines. For AC analysis at a single frequency only.� J, E, i.e. ideal independent current and voltage sources with functional val-ues.� S, O, i.e. short circuits and ideal operational ampli�ers.� r, p, g, u, a, b, i.e. current-controlled voltage sources (CCVS; r andp), voltage-controlled current sources (VCCS; g), voltage-controlled voltagesources (VCVS; u) and current-controlled current sources (CCCS; a and b).� y, z, i.e. two-ports with y- or z-parameter representation. For AC analysis ata single frequency only.Since we use modi�ed nodal formulation, E, L, M, S, O, r, u, a and b allrequire one (or two) speci�ed branches in addition to the nodes speci�ed. Thismeans that the currents of these branches are solved for and included in the resultvector.In the following sections we will discuss modi�ed nodal formulation, the di�er-ent analyses, and some underlying theory in detail. Some aspects of programmingwill also be discussed. The \component stamps" used in MNF are reproduced inappendix A. The derivation of the formulas for truncation errors involved in the TRAN2



analysis methods used by Csim is presented in appendix B, and �nally, a programlisting is presented in appendix C. Together with the program listing a short manualis also provided. The theory for this tutorial has been obtained mostly from [5], butalso from material used in the courses [3], [4]:� Ele-55.141, Circuit Analysis 1,� Ele-55.142, Circuit Analysis 2,� Ele-55.165, Computer-Aided Circuit Design,held at the Helsinki University of Technology, Faculty of Electrical Engineering.1.1 NotationIn this presentation we will use uppercase letters in DC and AC analysis. In TRANanalysis all vectors are in lowercase, e.g. w. Also, when indexing is used, it denotesthe value of e.g. a vector at that time point. E.g. w1 refers to the value of thesource vector after one time step. For time derivatives we use_x = @x@t ; (1)_x0 = @x@t jt=t0 (2)Sometimes the notationx0 = @x@t (3)is also used, especially for higher order derivatives for which it is more convenient.Superscripts, such as in Ik, are used to denote the solution of the k'th iterationround, when iterative solving is required.
3



2 Modi�ed nodal formulation2.1 The set of equationsRegardless of the analysis in question, the circuit simulating problem is describedby the matrix equation (which is equivalent to a set of equations)T X =W: (4)This is exactly what e.g. ordinary nodal formulation [4] is based on. In that casewe have the matrix equationY U = I: (5)The drawback of ordinary nodal formulation is that e.g. ideal voltage sources can-not be represented. This is one of the reasons we here decided to use modi�ednodal formulation, that does not have this restriction. Another solution would havebeen using gyrator transformation [2], which allows any circuit to be represented byvoltage-controlled current sources only. In our case, matrix T contains the contribu-tions of the components in the circuit, and the vector W those of the independentsources. The unknowns, which in the modi�ed nodal formulation can be both nodevoltages and branch currents, are represented by the vector X. This means that theabove set of equations can actally be separated into two di�erent kinds of sets:Y XU +AI XI = W J ; (6)AU XU + Z XI = WE: (7)Here we denoteW = W J +WE; (8)X = XU +XI : (9)The components that have an admittance description (e.g. capacitors) belongto Y , and those that have an impedance description (e.g. inductors) belong toZ. Independent current sources belong to W J whereas the independent voltagesources belong to WE. The matrices AI , AU contain only �1; 0; 1-valued entriesand sums of these and represent the Kirchho�'s voltage and current laws. Finally,the two vectors XI and XU include the unknown branch currents (for componentsthat have an impedance description, or ideal independent voltage sources) and nodevoltages (for components that have an admittance description, or ideal independentcurrent sources). The terms admittance description and impedance description willbe further explained in section 2.2, where the component equations are presented.This should also make the notation used more obvious.4



2.2 Component equationsConsider �rst the case of a simple ideal capacitor. In DC analysis there is no currentthrough the capacitor, i.e. it represents an open circuit. In AC analysis, the currentthrough the capacitor (with capacitance C farads) isIC = j!C � UC : (10)Thus, the higher the frequency, the larger the absolute value of the admittance of thecapacitor. At ! = 0 rad/s the absolute value of the admittance is zero. Now, let uscompare this to the case of an ideal inductor. In DC analysis, the inductor representsa short circuit. If any DC voltage would be applied across an ideal short-circuit, thecurrent through it would become in�nite. If we would formulate the inductor in ACanalysis the same way as we did with the capacitor, we would haveIL = 1j!L � UL: (11)But when the radial frequency, !, approaches zero (i.e. the DC condition), then theabsolute value of the admittance of the inductor approaches in�nity. Clearly, this isnot a desirable situation if the same set of equations for the circuit is to be used inboth DC and AC analyses. Thus, we write the equation for the inductor asUL = j!L � IL: (12)As ! approaches zero, the impedance of the inductor also approaches zero, i.e.that of a short circuit. We say that the inductor is a component with impedancedescription. Similarly, the capacitor is a component with admittance description.We use impedance or admittance description depending on which gives nonin�nitevalues for real values of !.Since the current through the inductor is unknown, as well as the voltage acrossit, we need another equation in order to solve for both unknowns. The equations(Kirchho�'s voltage and current laws, KCL and KVL [4]) for the inductor areULj � ULj0 � j!L � IL = 0; (13)ILj = IL; ILj0 = �IL; (14)where IL refers to the current through the inductor from node j to node j 0. This isshown in �gure 1. By doing this we obtain one single matrix equation which can beused in both DC as well as AC analysis, without any of the matrix entries becomingin�nite. This same matrix equation can also be used in TRAN analysis, as will beseen further on. The code used for the simulator thus only requires a setup routine,that creates the matrices required, and a simple subroutine that uses these matricesfor each speci�c analysis type. 5



rr?IL ������j!L ?ULj � ULj0Figure 1: Ideal inductor.What is the case of independent current and voltage sources? Clearly, for anindependent current source we know the current through it, whereas the voltageacross it is determined by the rest of the circuit. For an independent voltage sourcethe situation is the opposite. It is assumed that the reader is familiar with ordinarynodal formulation [4], [5], thus the case of an independent current source is notdiscussed further. However, for the ideal voltage source E (let us say, betweennodes j and j 0) we obtain the following equationsUj � Uj0 = E; (15)Ij = IE; Ij0 = �IE: (16)rr?IE����6E ?Uj � Uj0Figure 2: Ideal independent voltage source.Here, Uj, Uj0 refer to the voltages of nodes j, j 0 and Ij to the current from node jto node j 0 (denoted as positive1 as in the case of an inductor). This is presentedin �gure 2. Since the voltages of each node are included among the unknowns inordinary nodal formulation, the �rst equation simply adds one element to the sourcevector, and a row (that has the entries 1 and -1) to the component matrix. Theother equations add IE to the vector of unknowns. This can be presented as (seealso appendix A)264 1�11 �1 375264 UjUj0IE 375 = 264 E 375+ 264 IjIj0 375 (17)As an example, consider the matrix equation generated by a simple circuit inwhich a resistor with conductance G mhos is connected to an ideal voltage source of1This is on the left side of the equality sign in the equation system.6



E volts. We have two nodes, one being ground and its potential de�ned as 0 volts.The two unknowns are the voltage across the resistor and the current through theideal voltage source. We obtain" G 11 0 # " U1IE # = " 0E # (18)which is equivalent toG � U1 + 1 � IE = 0; (19)1 � U1 + 0 � IE = E: (20)As can be seen, the 1-valued entries in the matrix are dimensionless and representadditional terms in the equations so that the Kirchho�'s voltage and current lawsare obeyed. To shed some light on the notation used in equations 6 and 7, weseparate the above into two equation systems:" G 00 0 # " U10 # + " 0 10 0 # " 0IE # = " 00 # (21)" 0 01 0 # " U10 # + " 0 00 0 # " 0IE # = " 0E # (22)where Z contains no entries in this example (i.e. none of the components in this cir-cuit uses impedance description). By comparing this to what was presented earlier,the meaning of the di�erent matrices should be clear. This notation is used only sothat the origin (or cause) of each entry is easy to see. For computational purposeswe use T , X and W .2.3 Some programming aspectsThe user interface Csim takes most of the program. The intention was to makeCsim as easy and fast as possible to use. The circuit elements are entered on the\stack" of the HP 48SX in the following fashion:{E 1 0 'IFTE(t MOD 2 > 1,-1,1)' 4}{E 3 0 'IFTE(CV(2) > 0,-1,1)' 5}{G 1 2 10}{C 2 0 2}This de�nes a simple RC-circuit with a periodic square-pulse voltage source, thesecond source being a digital inverter (See also appendix C for a manual).The �rst task of the program is to �nd out how many nodes and branches thereare in the circuit. This of course determines the dimension of the component matrix7



and the source vector. It is assumed that the user has the nodes and the branchesin some kind of order, and that they are denoted with integers in a sequence (i.e.1; 2; 3; : : :). One of the nodes should be a reference node (i.e. ground), and denotedby 0. The number of a node or branch refers directly to a row/column in the matrix(or vector). When the dimension of the matrix equation is determined, the requiredmatrix and vectors are created and loaded. Doing this, Csim uses \stamps" thatare coded into the program (functions beginning with put, see appendix C). Thesedetermine what entries each component generates, and into which of the matrices.After the matrices have been loaded, the circuit is saved as a \list" into a variablenamed CIR from where it can easily be fetched for another analysis. Also, if thestack is empty when Setup is run, the contents of the CIR variable is automaticallyused to de�ne the circuit. There is very little syntax checking done when runningCsim, so the user should always make sure the circuit is properly connected anddescribed. Except for the circuit description, all input is done interactively throughthe main program.All of the steps mentioned above are done in the main program Csim and theSetup subroutine, mainly using the stack as memory storage. This makes the pro-gram look fairly complicated, when indeed it is not. It is only in the subroutines thatlocal variables have been used. Whenever some task is done twice, a subroutine forthat task has been written. Studying the code, it should not be too di�cult for theuser to modify it e.g. to add new components (stamps) or to create new algorithmsfor time-domain analysis. The user is also provided two functions, CV(node) andCI(branch) that fetch the previous solution for a node voltage or branch current.These can be used to de�ne a source with any functional dependency of these val-ues. However, no method to solve a nonlinear system of equations is provided withCsim, except for �xed point iteration (i.e. the system is solved over and over untilthe result supposedly converges). This method, iterdc, should be combined withe.g. the Newton-Raphson algorithm to yield results (some nonlinear circuits mightconverge with the use of �xed point iteration only).If an analysis performes plotting, Csim executes the GRAPH command after theplot is drawn, leaving the user in the Graphics Environment. In order to use allthe capabilities of plotting results, the user should be familiar with the HP 48SXGraphics Environment, which provides zooming, derivatives directly from the plot,polar plots and much more. For these capabilities, the user should refer to [1].Since the HP 48SX has matrix calculation capabilities included, matrix inversionand multiplication are not problems to consider. However, to obtain an accuratesolution to a matrix equationA x = bwhen A is ill-conditioned, some iterative process may have to be applied. A programfor this purpose is included in the Csim �le, called MTXSLV (See also [1], Advancedtopics relating to matrices). It can be used without major changes in the code.8



3 DC and AC analysisBoth DC and AC analysis are solved by inverting the component matrix, which is thenmultiplied by the source vector to obtain the vector of unknowns. This is simplesince the HP 48SX provides built-in functions for both inverting a matrix as wellas multiplying a matrix (or vector) with another matrix (or vector). For advanceduse a program for more accurate equation system solving, MTXSLV, is also providedwith Csim.The component matrix can be divided into three terms (matrices), which formT as their sum. The �rst term, denoted G, contains all the real valued entries ofT . Such are resistances, conductances and the �1; 0; 1-valued entries that representKirchho�'s current and voltage laws. The second term, denoted C, contains allvalues of T that are multiplied by the constant s (or j!). These are generated bycapacitors and inductors. Finally, the third term, denoted Cc, is used only in ACanalysis at a single frequency point. It contains the constant valued complex entriesof T . These are generated by components with constant admittance, impedance (Y,Z), two-ports presented with their y- or z-parameters (y, z) and transmission lines(T). Thus, we haveT = G + j!c � C + Cc: (23)In DC analysis, we use T at ! = 0 rad/s, i.e. TDC = G (since Cc is not allowedto have any entries in DC analysis). The source vector, W is evaluated at t = 0s,! = 0 rad/s. The vector of unknown node voltages and branch currents is thereforeXDC = T�1DC �W = G�1 �W: (24)In AC analysis, T is the sum of all three terms. The value of j! � C depends on!. W is evaluated at t = 0s (in case any dependency of time is speci�ed) and !rad/s. Therefore, we need to calculate the value of j! � C and W at each analysispoint and perform the additions required to obtain T . This complex valued matrixis then inverted, and multiplied by W to give the vector of unknowns:TAC j!=!c = G+ Cc + j!c � C; (25)TAC = G+ j! �C; (26)XAC = T�1AC �W: (27)The �rst equation refers to the matrices created by Csim when analyzing at a certainradial frequency, !c. Cc contains entries from components such as T, Y, Z, y andz, which are valid at !c only. These components should therefore only be used whenperforming AC analysis at one frequency point. The second equation refers to thegeneral case, where the frequency dependency is known to be a real valued constantmultiplied by j!. 9



Because of the time it takes to do the matrix inversion in AC analysis, the usershould avoid to sweep ! through !start : : : !stop. Instead, AC analysis at single pointsshould be carried out when possible (by using the program ac).3.1 Special components for AC analysisSince we use modi�ed nodal formulation, DC and AC analysis use exactly the samematrices for obtaining the solution. In fact, DC analysis (for linear circuits) is simplyan AC analysis carried out at ! = 0 rad/s. However, as we stated in the previous sec-tion, we have certain components the values of which are valid at a single frequencyonly, which are:� T, a lossless transmission line.� Y, a constant (complex) admittance.� Z, a constant (complex) impedance.� y, a two-port having a y-parameter representation.� z, a two-port having a z-parameter representation.Since the equivalent circuits that these components create have a meaning onlyat the speci�c frequency that their values are given at, the user must remember notto carry out DC (unless the component values are valid at ! = 0 rad/s) or TRANanalysis, when any of these components appear in the circuit description. No erroris returned if this is done, but the results are of course not valid. By checking thatthe matrix Cc only contains (0; 0) valued entries, the user can make sure that otherthan AC analyses at ! = !c are allowed.For Y and Z the entries into Cc are made as admittances, sinceY = Z�1; (28)where both are complex numbers. The same approach is used for two-ports havinga y- or z-parameter representation, i.e. in both cases the entries are made using theequivalent circuit for y-parameters, presented in �gure 3. This can be done, sincey = z�1: (29)Note that we actually must invert the complex matrix z in order to obtain theequivalent y-parameters.For the lossless transmission line (an expansion to lossy transmission lines caneasily be done by minor changes in the code), its equivalent �-circuit is used for10



����?y21U1����? y12U2y11 y22rn1nrn2n rn3nrn4n?U1 ?U2Figure 3: Equivalent circuit for y-parameter of a two-port.matrix entries. The length of the line is given relative to the wavelength, obtainedfrom the length of the transmission line and frequency byl� = l� = lfc ; (30)where l is the length of the transmission line (in meters), f is the frequency (inHertz) and c is the velocity of light in the transmission line medium (c0 is oftenused, i.e. �r = 1). The second parameter to be given is the characteristic impedanceof the line, Z0 (in ohms). The equivalent circuit used is presented in �gure 4, whichalso presents the reason why the nodes 2 and 4 must be equal for T (see section onsyntax in appendix C) . 1Z0 sinh(l)cosh(l)�1Z0 sinh(l) cosh(l)�1Z0 sinh(l)rn1nrn2n rn3nrn4nFigure 4: Equivalent circuit for lossless transmission line.Using the notation of �gure 4, we have = � + j�, where in our case (31)� = 0; (32)� = 2�� , (TEM). (33)To obtain results in the time domain for the components presented above, equiv-alent circuits with memory should be introduced. This was considered by far toocomplicated for the purposes of Csim, and it would also make the analysis signif-icantly slower. However, in AC analysis these components can be useful in manyways. 11



3.2 Nonlinear componentsThe fact that we do not consider nonlinear components when writing Csim makesthe code substantially easier to develop. Another motivation for not consideringnonlinear components is that this tutorial is intended for students, and thus issupposed to be easy to digest. However, for those interested in how nonlinearcircuits could be treated, here is a brief introduction to that topic.Nonlinear circuits introduce some new concepts to Csim. First we need an al-gorithm that can solve a matrix equation by iteration. This is simple, and indeedsuch an algorithm can be found in Csim, called iterdc. By using iterdc by itself,we apply what is called �xed point iteration. This means that we solve the matrixequation over and over, update the necessary entries at each iteration, and hopethat the method will converge to a solution. Unfortunately, this rarely happens.To obtain the means to solve nonlinear circuits in a general way, we need toapply some method that linearizes our problem using the derivatives of it. Such amethod is e.g. the Newton-Raphson algorithm [3]. The problem is that it introducesa resistor (which can be considered to be a voltage-controlled current source), thevalue of which is not constant. Csim does not support this (using CV() or CI() doesnot help in this case; the delay of one time step cannot be accepted, as you will seefrom equation 36). In fact, since Csim only accepts constant valued components,some major changes in the code would be required to make nonlinear components(such as a diode) possible. Some way of updating the component matrix should beincorporated into the analysis algorithms.Let us suppose we have some code written, that can update our componentmatrix in each iteration step. In that case we could consider e.g. a nonlinearconductance, for which we haveI = g(Uij): (34)This we can approximate by writing�I = @g@Uij�Uij; (35)Ik+1 = Ik + @g@Uij (Uk+1ij � Ukij), which leads us to (36)Ik+1 = (Ik � @g@UijUkij) + @g@UijUk+1ij : (37)The superscripts we used above refer to the iteration cycle in question. We expect thesolution to improve for each iteration performed. Thus, the iteration uses the resultsobtained from the previous round (the �rst round uses the initial guesses providedby the user or simply the initial condition). There is an obvious parallelism betweenDC analysis and TRAN analysis when solving a nonlinear circuit; each time step taken12



requires that the solution for that step is obtained by iteration. This means thata single DC analysis is equivalent to a TRAN analysis at a speci�c time point. Theequation 37 gives us the equivalent circuit shown in �gure 5.
rr ?Uk+1ij�H�H�H@g@Uij ����? Ik � @g@UijUkijFigure 5: Equivalent linearized circuit for a nonlinear conductance.We note that the equivalent circuit requires that we have a resistor the conduc-tance of which is not constant. In fact, this is the only restriction imposed by Csim,since the current source could be de�ned using J and the functions CV(), CI().The user should give the partial derivative of the conductance as a function to thesimulating program, and this function should then be calculated at each analysispoint (using the values of voltages or currents obtained as a solution in the previ-ous iteration). The value obtained should then be used to update the componentmatrix.
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4 Transient analysisIn this section we present a brief presentation on the theory and methods used toperform transient analysis with Csim. Most of the material in this section can befound in [3] and [5].4.1 Simple methods for numerical integrationConsider a di�erential equation of the following kind:_x = f(x; t); (38)in which, in our case, t denotes time. To solve for x we rewrite this asx(t1) = x(t0) + Z t1t0 f(x; t)dt: (39)Since we need to solve this using a computer, we use numerical integration witha time step �t. We presume that the value of x at the starting point, say t0 = 0, isknown.If we approximate the derivative of x at t0, i.e. f(x0; t0), with_x0 � x1 � x0�t ; where we have denoted (40)�t = tn+1 � tn; (41)xn = x(n�t); (42)we obtain the forward Euler formula, which usually is written asxn+1 = xn +�t _xn: (43)In order to see how this can be used to solve the kind of equation as equation 38,consider the following example [5]:_x = x+ t2; the exact solution of which is (44)x = 3et � t2 � 2t� 2: (45)We have as the initial conditions t0 = 0, x0 = 1 and _x0 = x0 + t20 = 1. If we use astep size of �t = 0:025, we obtain the value of x1 fromx1 = x0 +�t _x0 = 1 + 0:025 � 1 = 1:025: (46)The consequent values, xn, are obtained similarly, i.e.x1 = 1:025; (47)14



_x1 = 1:025 + (0:025)2 = 1:02565; (48)x2 = 1:025 + 0:025 � 1:02565 = 1:05064; and so on. (49)The calculation of a few more time steps and the comparison of the results to theexact solution are left as an exercise to the reader. However, the error will increasein magnitude for each time step taken, and it will be negative.Another way of approximating the time derivative of x would be_x1 � x1 � x0�t ; i.e. (50)x1 = x0 +�t _x1: (51)By comparing this to equation 40, we note that the only di�erence is the indexof the derivative. This method is called the backward Euler formula. It requiresthat we predict the value of _x1 in order to obtain x1. This can be done usingthe forward Euler formula as a predictor [5] and then applying iteration using thebackward Euler formula. However, the solution used in Csim does not require this,as will be seen in the next section. This is due to the fact that we have restrictedCsim to linear components. The error obtained using the backward Euler formulaincreases, in the problem presented, for each taken time step similarly to the forwardEuler formula, but is positive. One might say that in this case the backward Eulerformula overshoots the real solution, whereas the forward Euler formula undershootsit. Thus, one would expect a combination of these two methods to result in a smallererror. This is generally the case (see appendix B), and the method is called thetrapezoidal rule, usually presented asx1 = x0 + �t2 ( _x1 + _x0): (52)4.2 The algorithms used for transient analysisLet us use the methods described in the previous section to solve the matrix equation_x = A x+ w: (53)This implies that the vector of unknowns, x, contains unknown functions of time,i.e. x = 266664 x1(t)x2(t)...xn(t) 377775 (54)Using the backward Euler formula, we have15



xn+1 = xn +�t _xn+1 (55)= xn +�t(Axn+1 + wn+1) (56)) (57)(I ��tA)xn+1 = xn +�twn+1 (58)xn+1 = (I ��tA)�1(xn +�twn+1); (59)where I refers to the unity matrix. Note that no prediction is required if w is known,although we used the backward Euler formula. Similarly, using the trapezoidal rule,we obtainxn+1 = (I � �t2 A)�1[(I + �t2 A)xn + �t2 (wn+1 + wn)]: (60)Now to discover how this relates to circuit theory, consider the equation(G+ sC)X = W: (61)This is equivalent to the kind of equation we obtain when using modi�ed nodalanalysis. We know from Laplace transform theory [4] that multiplying with s in thecomplex plane is equivalent to taking the derivative in the time domain. We rewritethis asG x+ C _x = w; (62)C _x = w �G x: (63)Using the backward Euler formula we obtainC xn+1 = C xn +�t C _xn+1; (64)C xn+1 = C xn +�t (wn+1 �G xn+1); (65)xn+1 = (C +�t G)�1(C xn +�twn+1): (66)Here we havexn = 266666666664 u1(n�t)u2(n�t)...i1(n�t)i2(n�t)... 377777777775 (67)16



wn = 266666666664 j1(n�t)j2(n�t)...e1(n�t)e2(n�t)... 377777777775 (68)This means that by simply using addition, multiplication and inversion of matriceswe can obtain a time domain solution for a circuit. Clearly, implementing this tothe HP 48SX is not di�cult, considering its matrix handling capabilities. Since wcontains the contributions of the sources, its values at each time step are known. Ifwe require C, G and �t to be constant valued, we are encountered with the inversionof a matrix only once before each analysis, and then the solution at each time step isobtained using addition and multiplication of matrices. This speeds up the solvingprocedure considerably, yet is su�cient for our purposes. However, it is essentialto understand that this method must be done step-by-step, and requires the initialcondition to be known. We have to start from the known solution (usually witht = 0 and all voltages and currents zero, or the DC solution) in order to proceed.Note that it is not necessary that C contains entries for this method to work.The derivation of the equation for solving in the time domain using the trape-zoidal rule is left as an exercise for the reader. The result is presented below:xn+1 = (C + �t2 G)�1[(C � �t2 G) xn + �t2 (wn+1 + wn)]: (69)Both the backward Euler formula and the trapezoidal rule are implemented inCsim. To see how, look at the code for the tranBE and tranTR subprograms, listedin appendix C.
17



5 ConclusionsThe work required for programming this circuit simulator took about two weeks.However, most of the time was spent writing an user interface that would makeCsim easy to use. In fact, the TRAN analysis algorithm was coded to RPL in just�fteen minutes!Csim is used by numerous students interested in electrical engineering both atthe Helsinki University of Technology as well as at other universities. The responsefrom these users has mainly been positive, showing that this program does have apractical use. There are still, however, many ways in which Csim can be improved,making the code a nice \playground" for students who want to test their ideas. Onepossible way of developing Csim would be to rewrite the method of creating thematrix using the gyrator transform [2]. This method makes it possible to simulateany circuit just by using voltage-controlled current sources and ideal independentcurrent sources, eliminating the need of \stamps" and branch currents.Since this text does contain all theory used for the algorithms in Csim, we hope ithas shown that the basics of circuit simulation are not all too di�cult to understand.We hope that reading this text encourages more students to �nd out more aboutcircuit simulation, since it provides many very interesting problems that can besolved in a great variety of ways.
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Appendix AThe component stamps used in the programA collection of stamps for components in modi�ed nodal analysis can be found in [5].Those used in Csim are reproduced here, together with the equivalent KCL and KVLequations:J, an ideal independent current source of J A, between the nodes j and j 0 (currentruns from j to j 0).Ij = J (70)Ij0 = �J (71)W :j �Jj 0 JE, an ideal independent voltage source of E V, between the nodes j and j 0 (j hasthe higher potential, branch m contains the current from j to j 0).Uj � Uj0 = E (72)Ij = IE (73)Ij0 = �IE (74)T : Uj Uj0 Imj 1j 0 -1m 1 -1 W :m EY, admittance of Y S (C, G, T, y, Y, z, Z).Ij = Y (Uj � Uj0 ) (75)Ij0 = �Y (Uj � Uj0 ) (76)T : Uj Uj0j Y �Yj 0 �Y YZ, impedance of Z 
 (L, M, R, S).Uj � Uj0 � ZIm = 0 (77)Ij = �Ij0 = Im (78)T : Uj Uj0 Imj 1j 0 -1m 1 -1 �Z 20



g, voltage-controlled current source, transfer conductance g S (g, y, z).Ij = 0 (79)Ij0 = 0 (80)Ik = g(Uj � Uj0 ) (81)Ik0 = �g(Uj � Uj0 ) (82)T : Uj Uj0k g �gk0 �g gu, voltage-controlled voltage source, ampli�cation constant u.u(Uj0 � Uj) + Uk � Uk0 = 0 (83)Ik = Im (84)Ik0 = �Im (85)T : Uj Uj0 Uk Uk0 Imjj 0k 1k0 -1m �u u 1 -1a, current-controlled current source, ampli�cation constant a (a, b).Uj � Uj0 = 0 (86)Ij = �Ij0 = Im (87)Ik = �Ik0 = aIm (88)T : Uj Uj0 Uk Uk0 Imj 1j 0 -1k ak0 �am 1 -1r, current-controlled voltage source, transfer resitance r (r, p).Uj � Uj0 = 0 (89)Uk � Uk0 � rIm = 0 (90)Ij = �Ij0 = Im (91)Ik = �Ik0 = In (92)21



T : Uj Uj0 Uk Uk0 Im Inj 1j 0 -1k 1k0 -1m 1 -1n 1 -1 rO, ideal operational ampli�er.Uj � Uj0 = 0 (93)Ik = �Ik0 = Im (94)T : Uj Uj0 Uk Uk0 Imjj 0k 1k0 -1m 1 -1M, transformer with inductances L1; L2 and mutual inductance M (M, m).Uj � Uj0 � sL1Im � sMIn = 0 (95)Uk � Uk0 � sL2In � sMIm = 0 (96)Ij = �Ij0 = Im (97)Ik = �Ik0 = In (98)T : Uj Uj0 Uk Uk0 Im Inj 1j 0 -1k 1k0 -1m 1 -1 �sL1 �sMn 1 -1 �sM �sL2
22



Appendix BTruncation errors involved with the methods usedfor transient analysisWe have considered both the backward Euler formula as well as the trapezoidal ruleas methods for transient analysis. Which method is to be preferred and what arethe errors involved with these methods? To answer this, let us consider a generalformula for weighting the derivative at two points [5],b1 _x1 + b0 _x0 = a1x1 + a0x0�t : (99)This formula includes both the forward and the backward Euler formula, as well asthe trapezoidal rule. E.g. to obtain the backward Euler formula, choose b1 = 1,a1 = 1 = �a0. Alternatively, by choosing b1 = b0 = 12 and a1 = 1 = �a0, we obtainthe trapezoidal rule.Let us denote t1 = t0 +�t and write the previous formula asa1x(t0 +�t) + a0x(t0)��t[b1 _x(t0 +�t) + b0 _x(t0)] = 0: (100)Consider now the formula for the Taylor polynomial of a function f(x) at a:f(x) = f(a) + f 0(a)1! (x� a) + f 00(a)2! (x� a)2 + : : :+ fnn! (x� a)n (101)If we write the Taylor polynomials of x(t) and _x(t) at t0 and replace x(t0+�t) and_x(t0 +�t) with them in the second formula, we obtaina1[x(t0) + x0(t0)1! (t0 +�t� t0) + x00(t0)2! (�t)2 + : : :] + a0x(t0)��tb1[x0(t0) + x00(t0)1! �t+ x000(t0)2! (�t)2 + : : :]��tb0x0(t0) = 0: (102)Here, _x and x0 both refer to the time derivative of x, the latter notation is used forconvenience. Rearranging terms, we �nally obtainx(t0)(a1 + a0) + �t x0(t0)(a1 � b1 � b0) + (�t)2x00(t0)(a12! � b1)+(�t)3x000(t0)(a13! � b12! ) + : : : = 0: (103)This equation can be satis�ed by letting the factors containing a0; a1; b0 and b1equal zero. By doing so, we obtain conditions for these four parameters. A �rstorder approximation gives 23



a1 + a0 = 0; (104)a1 � b1 � b0 = 0: (105)Both forward and backward Euler formulas as well as the trapezoidal rule satisfythese conditions. A second order approximation gives the conditiona12 � b1 = 0: (106)This is satis�ed only by the trapezoidal rule. The truncation error can be de�nedas the value of the �rst term not satis�ed by the chosen four parameters. For thetrapezoidal rule this results in�(�t)3x000(t0)12 ; (107)whereas for the backward Euler formula we obtain�(�t)2x00(t0)2 : (108)Since �t is assumed to be small it is easy to see that the trapezoidal rule is moreaccurate than either of the Euler formulas. However, if x(t) is not well-behaved (i.e.x00 or x000 become very large at some points), or �t is large, then this assumptiondoes not necessarily hold.Note that in this discussion nothing about the stability of these methods ismentioned. For a discussion on this, the reader is referred to section 9:3 in [5]. Asa general comment it can be said that the trapezoidal rule is to be preferred withoscillating circuits2. In the case of the forward Euler formula, its instability is oneof the reason it is not used at all for transient analysis. However, the method caneasily be coded to Csim, if the user wants to try it for experimentational purposes(use the tranBE subroutine as a basis).
2Try e.g. an ideal LC resonator with an initial voltage across the capacitor. Compare theresults obtained using the backward Euler formula (Euler= 1, see manual) and the trapezoidalrule (Euler= 0) 24



Appendix CA short manual and the program listingManualThis manual explains the function of Csim and presents the syntax used for circuitdescription. It is written in ASCII-form in order to be easily distributed within theuniversity computer networks.Csim 2.61 SHORT DESCRIPTION AND MANUAL 12/17/91 (c) Per SteniusRELEASE NOTEThis version differs from the previous (2.3, 2.5, 2.51, 2.6) in thefollowing:Version 2.3:- Lossless transmission line for AC analysis at a single freq. point. (T)- The functions CV(node) and CI(branch) that fetch the voltage/current ofgiven node/branch in the previous solution point. CV = ControlVoltage,can be used in other sources to define any functional dependency of avoltage/current in the circuit. Note that there is a delay of 'tstep'when using these functions.- The program 'iterdc' for iterative dc solving to be used with nonlinearcomponents.- Additional examples of circuits in manual.- New sample circuit.Version 2.5, 2.51, (and previous versions):- ABCD-matrix for two-port added.- Minor changes in code for improved speed (during setup)- BOTH NODES GND error removed, BOTH NODES SAME used instead.Version 2.6 (and previous):- ABCD, y and z matrix two-ports can be used in DC analysis if all matrixelements are real (i.e. the imaginary part must be zero)- A->L converts array into list (for easier handling of matrices)INTRODUCTIONThis text describes a simple circuit simulator called Csim for the HP48.It makes DC, AC and transient simulations and supplies the user with allmatrices used. The method used is modified nodal analysis, and thus25



elements such as an inductor or ideal voltage source require that a currentbranch is also specified together with the nodes. As soon as a setup isdone, single analyses can be made with the 'dc', 'ac' or 'tran' sub-programs. All subprograms return the result as a vector, whereas Csimprovides the user with a plot in transient and AC analysis. Note that forCsim to work correctly, the 'node' variable should be defined (either anode or branch number) when plotting a result. Note also that the RESvariable (in PLOTR) should be 0. Finally, if SYM (in MODES) is not setCsim does not work correctly.For a demo on how Csim works do the following:- download the code (creates the directory CSIM in the current directory)- enter the directory CSIM and enter the custom menu (the button marked CSTbetween the PRG and VAR buttons on your HP48)- press [Csim]:for: Setup? Y press: <enter>for: Analysis? (D,A,T) press: T <enter>for: Sweep range?:tstart:0:tstep:0:tstop:1 press: <backspc> 5 <enter> i.e. :tstop:5after which a time-domain plot is drawn (if you have something thatyou previously have plotted, press [CLRSC] before doing this).Press <ON> to exit the graph environment.Now, press 3 <left-shft> [node] <enter> and redo the above ([node] isa variable in the custom menu).Finally, press the CST button, <next> [CIR] [CIR->] to see the circuitdescription.Here is an explanation on the custom menu of Csim (the custom menu isobtained by pressing the button marked CST on your HP48, and containsthose variables and programs you need for using Csim):Csim - the simulator program. Runs setup (if requested) and a singleanalysis. For ac, a single run directly from the custom menuprovides a fast solution in one freq-point. When choosing Tfor transient analysis either tstep (time resolution) or tstopshould be given. If both are given tstep is used and tstopignored.View - the StackView application, for easy check on components. UseATTN (ON) to exit. You can also use the Interactive Stack theHP48 provides (see manual p.70).26



node - the node or branch the value of which is wanted as a solution.Used to GET the right value from the solution vector.ymin, ymax- define the picture y-axis (ac or tran analysis)CLRSC - Clears the screen (simply the ERASE command)outp - a program that takes a vector from the stack and returns one value.it can be used to plot a result that is a function of the valuesin the solution vector. To be edited by the user.(default << node GET >> )CIR-> - takes a list of lists, such as the one used to store circuitdescriptions (see also CIR, ->CIR) and puts the lists in it tothe stack (inverse to ->CIR). Usage: Press a variable containinga circuit description (e.g. CIR) and press CIR->.->CIR - takes the circuit description used by Csim and puts it to a list,that can be stored in a variable.CIR - when 'Setup' is run, the stack containing the circuit is stored inthis variable as a list. To use again, recall CIR and run 'CIR->'(see above). Contains a sample circuit as default. Any circuitdescription can be stored in a variable as a list of components(which also are lists).dc - single DC analysis. Requires that setup is done (the matrices areready). Takes no argument from stack and returns a solution vector.ac - single AC analysis. Requires that setup is done (the matrices areready) and that 'w' is specified (rads/s angular freq). Takes noargument from stack and returns a solution vector. Note: Complexvalues! When A is chosen in Csim, the actual program stored by STEQis 'acplot', which executes 'ac' and then 'outp'. The program'outp' should take a vector from stack and return a single number.E.g. << node GET ABS >> would return the absolute value of a nodevoltage (or branch current) that is to be plotted.A->L - converts an array into a list.tran - single transient analysis. Takes one time step and returns a27



solution vector. The method used is trapezoidal rule. When T ischosen in Csim, the actual program stored by STEQ is 'tranBE' (or'tranTR'). These return the result vector and call 'outp'. Theprogram 'outp' should take a vector from stack and return a singlenumber. E.g. << node GET >> would return the value of a node voltage(or branch current) that is to be be plotted.Setup - setup routine for the simulator. Creates and loads the matricesneeded and stores the stack as a list into CIR. Takes the circuitdescription from the stack as an argument (only component declara-tions are allowed on stack). Setup must be done once before analy-zing, however, after that the matrices are ready to be used multi-ple times. This should be remembered e.g. when calculating a DCsolution and thereafter starting a transient analysis from theobtained results. In this case running Setup a second time wouldzero the result vector. Setup also clears flag -3 (i.e. enablesSYM), sets flag -17 and clears flag -18 (i.e. sets radians mode).w - angular frequency (2*pi*f) rad/s.G - conductance matrix. Contains all real valued entries, i.e. thosecaused by elements the values of which do not have an s or jwfactor.C - s-matrix. Contains all elements that have an s or jw factor.Cc - constant valued complex matrix. Can be used in AC analysis only,at a single value of 'w' (angular frequency). Contains entriesfrom Z, Y, z, y (See Section on syntax).W - numerical values of the sources as a vector. This vector isupdated in every analysis point.Wlist - the functions representing each source as a list, from whichthe numerical values for 'W' are obtained.Euler - specifies the method used in the tran analysis. If Euler = 1 thenbackward Euler ('tranBE') is used (faster but more inaccurate), ifEuler = 0 then the trapezoidal rule is used, which is ratheraccurate but slower ('tranTR' and 'tran').iterdc- if CV() or CI() are used in DC analysis, iterative solution is28



required in order to obtain the correct solution. 'iterdc' canbe used for this after setup has been done. Note that very fewnonlinear circuits can actually be solved by iteration only.Usually some linearization method must also be used, e.g. theNewton-Raphson algorithm. Giving good initial guesses for nodevoltages and branch currents in the X vector also helps.THE SYNTAX USED TO DESCRIBE A CIRCUITThe syntax by which the components are entered is (NOTE! Each circuitneeds a ground node and its number is always 0 (zero)):{R node1 node2 numval branch} - resistance [ohm]{G node1 node2 numval} - conductance [mho]{C node1 node2 numval} - capacitance [F]{L node1 node2 numval branch} - inductance [H]{Y node1 node2 complexnumval} - admittance with a constant complex value(re,im). In DC analysis each entry mustbe real (im = 0).{Z node1 node2 complexnumval} - impedance with a constant complex value(re,im) In DC analysis each entry mustbe real (im = 0).{J node1 node2 funcval} - indep. current source{E node1 node2 funcval branch}- indep. voltage source{S node1 node2 branch} - short circuit (the current is fetched bybranch GET). Can be used to define a currentbranch for dependent sources.{O in+ in- out+ out- outbranch}- ideal opamp (out- should be ground,outbranch returns the output current){M l1node1 l1node2 l2node1 l2node2 l1val l2val mval l1branch l2branch}- transformer i.e. two inductors (l1, l2) with29



mutual inductance (mval). The values requiredare the four nodes, the value of l1, l2, mval[H] and the branches of l1 and l2. The dotsfor m are at l1node1 and l2node1.{m l1branch l2branch mval} - mutual inductance of mval [H]. As M, but canbe used to define e.g. three inductancesthat all have mutual inductances. To dothis, define the 3 L:s and then 3 m:s be-tween them. Note that m takes the branchesof the L:s. Make sure you specify the in-ductors the right way (the branch of L runsfrom n1 to n2). Note also that m is not acomponent, it merely states a dependencybetween two L:s that should be defined se-parately. No checking is done that l1branchand l2branch actually belong to L:s.{T node1 node2 node3 node4 llval Zoval}- lossless transmission line (to be used in ACanalysis only) of length ll (in wavelengths)and with the characteristic impedance Zo.Note that nodes 2 and 4 must have the samevalue (equivalent pi-circuit used).{g node1 node2 node3 node4 numval}- voltage-controlled current source i.e.transconductance. The source current isfrom node3 to node4 and the controllingvoltage from node1 to node2.{r node1 node2 node3 node4 numval branch1 branch2}- current-controlled voltage source. Definesa short circuit between node1 and node2and a controlled voltage source betweennode3 and node4 (node3 being the positivenode). The controlling current runs throughbranch1 and the current of the source isfetched from branch2. Branch1 must not bea previously defined branch.{p node3 node4 numval branch1 branch2}- same as r but does not define a short30



circuit between node1 and node2. Insteadbranch1 must be a predefined branch (e.g.that of a resistor or inductor).{a node1 node2 node3 node4 numval branch}- current-controlled current source. Definesa short circuit between node1 and node2and a controlled current source the currentof which runs from node3 to node4. Thecontrolling current runs through branchwhich must not be previously defined.{b node3 node4 numval branch} - same as a but does not define a shortcircuit between node1 and node2. Insteadbranch must be a predefined branch (e.g.that of a resistor or inductor). Comparewith p.{u node1 node2 node3 node4 numval branch}- voltage-controlled voltage source. Thecurrent through the source is fetchedfrom branch.{y node1p1 node2p1 node1p2 node2p2 y11 y12 y21 y22}- a two-port with y-parameters that areconstant complex values (re,im). In DCanalysis each entry must be real (im =0).{z node1p1 node2p1 node1p2 node2p2 z11 z12 z21 z22}- a two-port with z-parameters that areconstant complex values (re,im). In DCanalysis each entry must be real (im =0).{A node1p1 node2p1 node1p2 node2p2 A B C D}- a two-port with ABCD-parameters thatare constant complex values (re,im).In DC analysis each entry must be real(im = 0).FUNCTIONSCV(node) - returns previously calculated value ofthe voltage of node. In code << X node31



GET >>CI(branch) - returns previously calculated value ofthe current of branch. In code << Xbranch GET >>, the same as CV().In the above, nodes and branches are integer numbers. The ground node isrepresented by 0. All nodes and branches should have a unique number andthey should be given in order e.g. nodes 0,1,2,3 and branches 4,5,6. Thesenumbers refer DIRECTLY to the position in the matrices/vectors. Thus the4'th element in the result vector would be the current through branch 4 andthe first element is the voltage of node 1. To help remembering the syntax,you could e.g. have a variable y with the following contents:y{y n1p1 n2p1 n1p2 n2p2 y11 y12 y21 y22}NOTE: The two-port y, z and ABCD parameters are valid in DC analysis ONLYIF ALL THE ENTRIES in the corresponding matrix are real.The following components form equivalent circuits:{S 1 2 5}{p 3 4 100 5 6} is the same as{r 1 2 3 4 100 5 6},{S 1 2 5}{b 3 4 100 5} is the same as{a 1 2 3 4 100 5},{L 1 2 0.1 5}{L 3 4 0.2 6}{m 5 6 0.05} is the same as{M 1 2 3 4 0.1 0.2 0.05 5 6}.Finally, an example of usage for transient analysis:(This is how your stack should look){E 1 0 '10*SIN(10*t)' 4}{C 1 2 0.01} 32



{L 2 3 1 5}{R 3 0 10 6}This defines a RLC-circuit with nodes 1,2,3 (and ground) and currentbranches 4,5,6. The current through branch 4 is equal to the currentthrough the ideal voltage source E, the current through branch 5 equalsthe current through the inductor L, and the current through branch 6equals the current through the resistor R. The values of the components(which ALWAYS must be numerical) are 10 ohms, 1 henry and 0.01 farads.The voltage source has a time-dependent value (used in transient analysis).If 'node' is set to 3 the voltage over the resistor R is plotted intransient analysis. On the other hand, 'outp' could be written as << DUP1 GET SWAP 2 GET - >> to return the voltage between nodes 1 and 2 as aresult. Note that sources (E,J) may have functional values (should besuitable for the analysis requested! Time dependency for transientanalysis and 'w' dependency (angular freq) for AC). When running Csim,the stack may ONLY contain component declarations!Press the CST button and then [View]. Now press ATTN (low-left corner, i.e.ON). Press [Csim], press <enter> on "Setup? Y", press D (or T), <enter> onanalysis.An example for AC analysis (using A in Csim):{E 2 0 1 3}{G 2 1 1}{C 1 0 1}Set 'node' equal to 1 and write 'outp' equal to << node GET ABS >>. Se-lect A on analysis and choose wstart 0 and wstop 10 (ymin = 0, ymax = 1).Another example for AC analysis (using 'w' = 1 and 'ac'):{J 0 1 10}{G 3 0 1}{G 2 0 1}{Z 1 0 (0,-1)}{M 3 1 2 1 2 1 0.5 4 5}Setup1 left-shft w acThe currents through the transformer are the 4'th and 5'th elements in the33



result vector. Here's an example involving a transistor for which we havethe y-parameters y11 = 0.001, y12 = -j0.0001, y21 = 0.1 and y22 = 0.0001.Its base is at node 1, emitter at gnd (node 0) and collector at node 2.{J 0 1 1}{Z 1 0 1E3} @ resistance of 1 kohms{Z 2 0 1E3}{Z 1 2 (0,-1000)} @ capacitance of -j1000 ohms{y 1 0 2 0 1E-3 (0,-1E-4) 0.1 1E-4}Setupac 2 GET ABS (returns |Uo/Jin| = 884.035 V/A)For the use of the lossless transmission line we have the following ex-ample (analysis can be made at a single frequency point only, at which llis valid):{J 0 1 1}{Z 2 0 (75,-69)}{T 1 0 2 0 0.583 50}Setup ac 1 GETreturns (25.2092, -34.5800) which is the input impedance (J = 1) of a loss-less transmission line of the length 0.583 wavelengths (at some frequency)and with the characteristic impedance of 50 ohms, terminated with a load of(75,-69) ohms.DC analysis:{J 0 1 1}{R 1 0 1E3 3}{p 2 0 10 3 4}The voltage of node 2 (the 2'nd element in the result vector) should be10V. The current through the controlled voltage source should be 0A (the4'th element in the result vector).For iterative DC solving of circuits, consider these two examples:{E 1 0 1 3}{G 1 0 1}{G 1 2 1} 34



{J 0 2 'SQ(CV(1))'}and{J 0 1 1}{G 1 0 1}{G 1 2 1}{E 2 0 'SQ(CV(1))' 3}Setup iterdcThe first circuit converges after only two iterations, but the second onerequires several hundred to reach the exact solution ([[1] [1] [0]] in thesecond case). Good initial guesses may help, and also the use of e.g. theNewton-Raphson algorithm (see Vlach-Singhal; Computer Methods for CircuitAnalysis and Design). Note that 'iterdc' should actually also be used atevery time step in transient analysis to avoid the delay when using CV()and CI().A simple small signal model for a transistor (B-1 C-2 E-3):{R 1 3 1E3 4}{G 2 3 0.0001}{b 2 3 100 4}A voltage source used as an digital inverter; if the voltage of node 2 ishigher than 2.5 volts, then the voltage of node 3 is 0 volts, otherwise5 volts (note that there is a delay of one 'tstep').{E 3 0 'IFTE(CV(2)>2.5,0,5)' 4}Including nonlinear components as such would make solving the matrix equ-ation system a tedious process. It would also make the analysis MUCH slower.However, it could be done.ERROR MESSAGESThese are the only error messages in this program. Note that there are notmany error checking routines provided, so the user should be careful whenentering the circuit description. For any strange behaviour or false re-sults, please email me directly and explain what occurred.SYNTAX ERROR - an error occurred in 'Setup' while Csim was loading the35



matrices. Check the circuit description and the componentthat is first on stack. See also section on syntax.NEGATIVE NODE NO. - a negative number was given as a node number. Check thethe first component on stack.BOTH NODES SAME - a component was specified having two nodes that were thesame value. To override this, use a short-circuit (S) betweenthese nodes.ZERO VALUE OR BRANCH - a component with a value of zero was given or itsbranch number was zero (which is reserved for the groundnode).n2 MUST EQUAL n4 IN T - you have entered a transmission line in the circuitwith nodes 2 and 4 not equal. This is not allowed since theequivalent pi-circuit to the transmission line is actuallyused.Im{Cc} \=/ 0 IN DC - you have specified components with complex values inDC analysis.A good way to avoid errors is to proceed systematically, e.g. in thefollowing way:1) Choose one reference node to be ground (GND) and set its node numberto 0.2) Assign the rest of the nodes a number each, in numerical order:1,2,3,...3) Find all the components that require a branch and assign each requiredbranch a number starting from the highest node number plus one.!) The node and the branch numbers should follow eachother in numericalorder, with no 'gaps' in between (e.g. 0,1,2 are nodes and 3,4 arebranches).4) Enter the circuit description component by component. Note that thestack should only contain component descriptions! Check your stackwith 'View'.5) Decide what results you need and edit 'outp' if necessary. Also, set'node' to the correct value. 36



6) Run 'Setup' once and start analyzing! Remember to run 'Setup' wheneveryou change your circuit or want to start from zero. Sometimes all youneed to do is to edit your X vector.FREQUENTLY ASKED QUESTIONSSome people have had trouble with the branch currents (the direction...)so here's more on that:In all components (J,E,L etc.) the current is defined to be FROM the firstnode TO the second node. Thus no matter which way you put your source (E)The value of the branch current remains the same (i.e. in the direction ofthe U of the source) with respective to the source. In the sample RLCcircuit, when the first node of E and L is the same, the currents shouldbe the opposite. When the second node of E is the first node of L, thecurrents are the same.For E the situation looks like this:--- U=E -->node1 + o->-( E )---o - node2Ifor L: --- U1,2 ->node1 o->- Ind ---o node2Ifor J:node1 o->-( J )---o node2I=Jfor S: --- U=0 --> 37



node1 o----->-----o node2IThis could be defined the other way around too, but in this case it isn't.For two-ports, the node numbers are defined as_________node1 o->--| |--<-o node3| || || || |node2 o----|_________|----o node4Note that the direction of the currents is always towards the two-port.This should be remembered when defining e.g. ideal opamps, controlledsources and two-ports with y- or z-parameter representation.>I can't get the transient analysis to work properly unless I do>an entire setup first. If I do a transient plot, and then repeat it, I>get different results, unless I run setup.>What happens is that unless you run setup, the transient analysis continuesfrom where it stopped (however, this time from the beginning of the screen).Thus the new beginning should match with the previous end. As you mighthave noticed, the transient analysis should always start from time=0. Thisis due to the fact that solving this problem is an iterative process.>It would be nice to be able to specify initial values for capacitors and>inductors.>This can be done. The X vector contains the starting values, and is zeroedat setup. However, nothing stops you from running a dc-analysis and thenrunning a tran analysis without a setup in between, thereby giving the re-sults from the dc-analysis as beginning values for the tran analysis. TheX vector can also be manually edited. To do this, run setup, then pressenter for analysis?, which stops the program. Edit the X, and run trananalysis without setup. The execution of setup can be avoided by answering38



something else than 'Y' at 'Setup?'.>I'm interested in any references you used, for algorithms for circuit>solving, this is something I've never really looked into before.>A good place to start is to look at a book calledComputer Methods for Circuit Analysis and Designby Jiri Vlach and Kilshore Singhal (Van Nostrand Reinhold Company 1983,ISBN 0-442-28108-0). Check out chapter 4 and 9. For transient analysis,(which is normally done by Laplace tranforms when working manually) thetrapezoidal rule is pretty powerful. Also, for all the theory needed forCsim, I have written a report calledA Tutorial on Developing a Simple Circuit Simulating Programwhich I can email (ps-file format) to anybody interested upon request. Itis about 30 pages + 30 pages including this manual and the commented sourcecode for Csim.FINAL REMARKCsim takes 10208.5 bytes when loaded, and its checksum is #45412d.This simulator is not necessarily completely bug-free, so please reportto me for any strange behaviour. Note also that the transient analysismethods are not necessarily stable for all values of time steps. Try an-other time range or time step if this happens. If you get the system errorINV Error:Infinite Resultin any analysis mode, this usually indicates that the component matrixcannot be inverted. This error can sometimes be avoided by assigning thenodes the values 0...n and the branches the values n+1...m. If this doesnot help, please send me the circuit description you used.I am happy to provide any further information on this program. Pleasesend also some comments on its appearance, suggestions on improvementetc. Note that very little syntax checking is done (e.g. no node orbranch number checks!). I hope this short manual is sufficient, if notplease ask me directly via email. 39



copyright Per Stenius, Helsinki University of Technology.email perre@aplac.hut.fi or pstenius@otax.tky.hut.fi
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Source codeThis listing is the program �le on a personal computer. It can be downloaded tothe HP 48SX using the KERMIT �le transfer protocol.%%HP:T(3)A(R)F(.);DIR@ --------------------------------------------------------@ Title : CSIM (a simple circuit simulator for the HP48)@ Version : 2.61@ Author : Per Stenius@ LastEdit: 16.12.91@ Copyright Per Stenius (1991)@ --------------------------------------------------------CST{Csim View node ymin ymax CLRSCoutp CIR\-> CIR \->CIR Setup dcw ac A\->L t tstep tranX G C Cc W WlistEuler iterdc}Csim\<<" Csim_HP-48 2.61(c) Per Stenius 1991" CLLCD 2 DISP1 WAIT CLLCD"Setup?" "Y" INPUTIF"Y" SAMETHEN"Wait..." CLLCD 1 DISPIFDEPTH 0 ==THENCIR CIR\->ENDSetupEND"Analysis? (D, A, T)" "" INPUT 41



\-> analysis\<<CASEanalysis "D" SAMETHENdcENDanalysis "A" SAMETHEN"Sweep range?" {":wstart::wstop:" { 1 0 } V } INPUTOBJ\-> \-> wstart wstop\<<wstop wstart - 130 /'wstep' STOwstart 'w' STO'acplot' STEQwstart wstop XRNGymin ymax YRNG'w' INDEPDRAX @ Add ERASE to clear PICT{(0,0) "jw" "f(jw)"} AXES LABELDRAW GRAPH\>>ENDanalysis "T" SAMETHEN"Sweep range?" {":tstart:0:tstep:0:tstop:1" { 3 0 } V } INPUTOBJ\->\-> tstart ttstep tstop\<<IFttstep 0 ==THENtstop tstart - 130 /'tstep' STOELSEttstep 'tstep' STO 42



ENDtstart tstep 130 * XRNGymin ymax YRNG't' INDEPDRAX @ Add ERASE to clear PICT{(0,0) "t" "f(t)"} AXES LABELIFEuler NOTTHENtstep 2 / 'tstep' STO'tranTR' STEQELSE'tranBE' STEQENDG tstep * C + INV'iChG' STODRAW GRAPH\>>ENDEND\>>\>>outp @ Enables user defined\<< node GET @ calculations\>>dc\<< @ DC analysisWlist\->W W checkCcGdc / DUP 'X' STO @ The result vector is\>> @ returned to the stackcheckCc\<<Cc C\->R DUPIFCNRM NOT SWAP RNRM NOT ANDTHENG + 'Gdc' STOELSE"Im{Cc} \=/ 0 IN DC" DOERREND 43



\>>iterdc @ Iterative DC analysis, max 100\<< 0 \-> i @ iterations\<<DOX dcUNTIL=='i' INCR 100 > ORENDIFi 100 >THEN"100 ITERATIONSCHECK CONVERGENCE" 1 DISP 1 FREEZEELSEdcEND\>>\>>ac\<<Wlist\->W W G C w * R\->C @ AC analysisCc + / DUP 'X' STO @ The result vector is\>> @ returned to the stacktran\<< @ Trapezoidal approx.iChGW Wlist\->W W + tstep 2 / *C G tstep 2 / * - X * + *DUP 'X' STOt tstep + 't' STO\>>acplot\<<ac outp @ outp is always called lastwstep w + 'w' STO @ in a plotting program\>> 44



tranBE\<<iChG @ Inverse Euler approx.Wlist\->W W tstep * @ Returns the next result to stackC X * + * @ Used as default when plottingDUP 'X' STO outp @ outp is always called last\>>tranTR\<< @ Trapezoidal approx.iChGW Wlist\->W W + tstep *C G tstep * - X * + *DUP 'X' STO outp @ outp is always called last\>>Wlist\->W @ Functional values -> numerical\<<Wlist LIST\-> 1 SWAPSTART\->NUMdim ROLLNEXTdim 1 getpos \->ARRY'W' STO\>>Setup\<<-3 CF @ Set symbolic mode-17 SF -18 CF @ and radian mode0 't' STO0 'ndim' STO0 'bdim' STODEPTH 1 SWAPSTART1 GETI\-> cmptype\<<IFcmptype 'm' SAME NOT @ Not a component!THENcmptype 45



incbdim GETIincndim GETIincndimIFcmptype 'O' SAME @ Components with 4 nodescmptype 'M' SAME OR @ New two-ports: add type here!cmptype 'T' SAME ORcmptype 'g' SAME ORcmptype 'r' SAME ORcmptype 'a' SAME ORcmptype 'u' SAME ORcmptype 'y' SAME ORcmptype 'z' SAME ORcmptype 'A' SAME ORTHENGETI incndimGETI incndimENDENDDROP DEPTH ROLL\>>NEXTndim bdim + 'dim' STO[[ 0 ]] dim DUP getpos RDM DUP'G' STO 'C' STO[[ (0,0) ]] dim DUP getpos RDM'Cc' STO[[ 0 ]] dim 1 getpos RDMDUP 'X' STO 'W' STO1 dimSTART0NEXTdim \->LIST 'Wlist' STODEPTH 1 SWAPSTARTIFERRDUP 1 GETloadmatrixDEPTH ROLLTHEN"SYNTAX ERROR" DOERREND 46



NEXTDEPTH \->LIST 'CIR' STO\>>loadmatrix\<< \-> cmptype\<<DUP 2 GET2 PICK 3 GET @ cmp n1 n2CASEcmptype 'J' SAME @ Ideal current sourceTHENgetvalputJENDcmptype 'E' SAME @ Ideal voltage sourceTHENgetvalgetbranchputEENDcmptype 'G' SAME @ Conductor and capacitorcmptype 'C' SAME ORTHENgetvalcmptype putGCENDcmptype 'R' SAMEcmptype 'L' SAME OR @ Resistor and inductorTHENgetvalgetbranchIFcmptype 'R' SAMETHEN'G'putRLELSEputLEND 47



ENDcmptype 'Z' SAME @ Constant valued impedanceTHENgetval INVputYENDcmptype 'Y' SAME @ Constant valued admittanceTHENgetvalputYENDcmptype 'S' SAME @ Short-circuitTHENgetval @ n1 n2 branchputSENDcmptype 'O' SAME @ Ideal opampTHENgetn345 PICK 6 GET @ n1 n2 n3 n4 branchputOENDcmptype 'M' SAME @ TransformerTHENgetn34vb7 PICK 8 GET8 PICK 9 GET9 PICK 10 GET @ n1 n2 n3 n4 l1 l2 m b1 b2putMENDcmptype 'T' SAME @ Lossless transmission lineTHENgetn34vb @ n1 n2 n3 n4 ll ZoputTENDcmptype 'm' SAME @ Mutual inductance48



THENgetvalputm @ b1 b2 valENDcmptype 'g' SAME @ VCCSTHENgetn345 PICK 6 GET @ n1 n2 n3 n4 valputgENDcmptype 'r' SAME @ CCVSTHENgetn34vb7 PICK 8 GET @ n1 n2 n3 n4 val b1 b2putrENDcmptype 'p' SAME @ CCVS version 2THENgetvb1b2putp @ n3 n4 val b1 b2ENDcmptype 'a' SAME @ CCCSTHENgetn34vb @ n1 n2 n3 n4 val branchputaENDcmptype 'b' SAME @ CCVS version 2THENgetn34putb @ n3 n4 val bENDcmptype 'u' SAME @ VCVSTHENgetn34vb @ n1 n2 n3 n4 val branchputuEND 49



cmptype 'z' SAME @ z-parameters (two-port)THENgetn34v1234 @ n1 n2 n3 n4 y11 y12 y21 y22{2 2} \->ARRY INVARRY\-> DROPputyENDcmptype 'y' SAME @ y-parameters (two-port)THENgetn34v1234 @ n1 n2 n3 n4 y11 y12 y21 y22putyENDcmptype 'A' SAME @ ABCD-parameters (two-port)THENgetn34v1234 @ n1 n2 n3 n4 A B C DABCDtoyputyEND @ Add new components here!END\>>\>>ABCDtoy\<< \-> A B C D\<<D B /C D A * B / -B INV NEGA B /\>>\>>putGC @ Routines to load component\<< \-> n1 n2 value type @ stamp into matrix (or vector)\<< @ Add new stamps here!value n2 n1 checknodestype RCLn1 n2 value puty2type STO\>> 50



\>>putRL\<< \-> n1 n2 value branch matr\<<branch n2 n1 checknodes @ Enables short-circuitsn1 n2 branch putL2matr RCLbranch DUP value NEG putmatrixmatr STO\>>\>>putJ\<< \-> n1 n2 value\<<value n2 n1 checknodesWlist DUPIF n1 0 >THENn1 GET value - n1 SWAPPUT DUPENDIF n2 0 >THENn2 GET value + n2 SWAP PUTELSEDROPEND'Wlist' STO\>>\>>putE\<< \-> n1 n2 value branch\<<value n2 n1 checknodesn1 n2 0 branch putLWlist DUPbranch GET value +branch SWAP PUT'Wlist' STO\>> 51



\>>putM\<< \-> n1 n2 n3 n4 l1 l2 m b1 b2\<<n1 n2 l1 b1 putLn3 n4 l2 b2 putLb1 b2 m putm\>>\>>putm\<< \-> b1 b2 m\<<m b1 b2 checknodesCb1 b2 m NEG putmatrixb2 b1 m NEG putmatrix'C' STO\>>\>>putS\<< \-> n1 n2 b\<<n1 n2 0 b putL\>>\>>putT\<< \-> n1 n2 n3 n4 ll Zo\<<ll 2 \135 * * \->NUM \-> gamma\<<ll n1 n3 checknodesIFn2 n4 \139THEN"n2 MUST EQUAL n4 IN T" DOERRELSE'INV(i*Zo*SIN(gamma))' \->NUMCcn1 n3 4 PICK puty2 52



SWAP'COS(gamma)-1' \->NUM *SWAPn1 n2 4 PICK puty2n3 n4 4 ROLL puty2'Cc' STOEND\>>\>>\>>putg\<< \-> n1 n2 n3 n4 value\<<value n2 n1 checknodesvalue n3 n4 checknodesGn1 n2 n3 n4 value putg2'G' STO\>>\>>putr\<< \-> n1 n2 n3 n4 val b1 b2\<<b1 n2 n1 checknodesn1 n2 b1 putS @ Short circuitn3 n4 val b1 b2 putp\>>\>>putp\<< \-> n3 n4 val b1 b2\<<val n3 n4 checknodesGb2 n3 1 putmatrixb2 n4 -1 putmatrixb2 b1 val NEG putmatrixn3 b2 1 putmatrixn4 b2 -1 putmatrix'G' STO\>> 53



\>>putu\<< \-> n1 n2 n3 n4 value branch\<<value n2 n1 checknodesbranch n3 n4 checknodesGbranch n1 value NEG putmatrixbranch n2 value putmatrixbranch n3 1 putmatrixbranch n4 -1 putmatrixn3 branch 1 putmatrixn4 branch -1 putmatrix'G' STO\>>\>>puta\<< \-> n1 n2 n3 n4 val branch\<<val n2 n1 checknodesn1 n2 branch putS @ Short circuitn3 n4 val branch putb\>>\>>putb\<< \-> n3 n4 val branch\<<val n3 n4 checknodesGn3 branch val putmatrixn4 branch val NEG putmatrix'G' STO\>>\>>putO\<< \-> n1 n2 n3 n4 branch\<<1 n2 n1 checknodes1 n3 n4 checknodes 54



Gbranch n1 1 putmatrixbranch n2 -1 putmatrixn3 branch 1 putmatrixn4 branch -1 putmatrix'G' STO\>>\>>putY\<< \-> n1 n2 value\<<value n2 n1 checknodesCcn1 n2 value puty2'Cc' STO\>>\>>puty\<< \-> n1 n2 n3 n4 y11 y12 y21 y22\<<y11 n2 n1 checknodesy22 n2 n1 checknodesCcn1 n2 y11 puty2n3 n4 y22 puty2n1 n2 n3 n4 y21 putg2n3 n4 n1 n2 y12 putg2'Cc' STO\>>\>>putL\<<'C' putRL\>>putL2\<< \-> n1 n2 branch\<<Gn1 branch 1 putmatrix 55



n2 branch -1 putmatrixbranch n1 1 putmatrixbranch n2 -1 putmatrix'G' STO\>>\>>putg2\<< \-> n1 n2 n3 n4 value\<<n3 n1 value putmatrixn4 n2 value putmatrixn3 n2 value NEG putmatrixn4 n1 value NEG putmatrix\>>\>>puty2\<< \-> n1 n2 value\<<n1 n1 value putmatrixn2 n2 value putmatrixn1 n2 value NEG putmatrixn2 n1 value NEG putmatrix\>>\>>putmatrix\<< \-> row col val\<<IFrow col ANDTHENrow col getposDUP2 @ matrix in level twoGET val +PUTEND\>>\>>incbdim @ Increase matrix dimension\<< \-> cmptype @ (branch)56



\<<IFcmptype 'E' SAMEcmptype 'R' SAME ORcmptype 'L' SAME ORcmptype 'S' SAME ORcmptype 'O' SAME ORcmptype 'u' SAME ORcmptype 'a' SAME ORcmptype 'p' SAME ORTHENbdim 1 + 'bdim' STOELSEIFcmptype 'M' SAMEcmptype 'r' SAME ORTHENbdim 2 + 'bdim' STOENDEND\>>\>>incndim @ Increase matrix dimension\<< \-> x @ (node)\<<IFx ndim >THENx 'ndim' STOEND\>>\>>checknodes\<< \-> value n2 n1\<<CASEn1 0 <n2 0 < ORTHEN"NEGATIVE NODE NO." DOERREND 57



n1 n2 ==THEN"BOTH NODES SAME" DOERRENDvalue 0 SAMETHEN"ZERO VALUE OR BRANCH" DOERRENDEND\>>\>>getn34\<<3 PICK 4 GET4 PICK 5 GET\>>getval\<<3 PICK 4 GET\>>getvb1b2\<<getn345 PICK 6 GET\>>getn34vb\<<getvb1b26 PICK 7 GET\>>getn34v1234\<<getn34vb7 PICK 8 GET8 PICK 9 GET\>> 58



getbranch\<<4 PICK 5 GET\>>getpos\<<2 \->LIST\>>View @ Stack-View application\<<PICT RCL \-> pict\<<PICT PURGE 1DEPTH 1 - 10 MINDUPIF8 >THEN # 6d 1ELSE # 8d 2END \-> rowht tsize\<<FOR IPICT # 0d 65 I rowht * -2 \->LIST I \->STR ": "+ I 3 + PICK \->STR +tsize \->GROB GORNEXT{ } PVIEW pictPICT STO\>>\>>\>>CV\<< \-> node\<<X node GET\>>\>> 59



CI\<< \-> branch\<<X branch GET\>>\>>CLRSC @ Clears the screen\<<ERASE\>>A\->L\<<ARRY\-> DROP 4 \->LIST\>>CIR\->\<<LIST\-> DROP\>>\->CIR\<<DEPTH \->LIST\>>MTXSLV @ Solves a matrix equation Ax=B\<< \-> B A @ Increased accuracy (iteration)\<<B A / B A3 PICK RSD A / +\>>\>>@ -------------------------------------------------------------@ Default values and a sample circuitCIR @ Sample circuit{{E 1 0 'IFTE(t MOD 2 > 1,-1,1)' 4}{E 3 0 'IFTE(CV(2) > 0,-1,1)' 5}{G 1 2 10} 60



{C 2 0 2}}ymin-1ymax1node2w @ Angular frequency (omega)0t @ Time0Euler1
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