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1 Introduction

Circuit simulation is often considered to be very complicated and hard to under-
stand. This is also often the case, especially for large circuits with nonlinear com-
ponents. However, the basics of circuit simulation are not complicated, and in fact
anyone understanding ordinary nodal formulation and Laplace-transform theory can
easily develop a simple circuit simulator. This is what we want to show in this tuto-
rial, by presenting the theory needed for such a circuit simulator, capable of doing
DC, AC and transient (TRAN) analysis. A program capable of this, Csim, programmed
for the HP 485X handheld calculator is also presented. The reason that this specific
calculator has been chosen, is that it has the matrix handling tools required. Devel-
oping code for circuit simulation purposes also requires access to matrix handling
tools. Since in our case these are provided from the beginning we are able to focus
on the problems involved with circuit simulation, without spending too much time
on writing mathematical tools that suit our needs.

The Csim program is kept small, due to the memory and processing capability
restrictions of the HP 48SX. Therefore certain restrictions on the simulating capa-
bilities also exist. Csim is programmed using the RPL (reverse polish) language,
uses 10 kB of memory and is capable of

o performing AC and DC analysis.

e performing transient analysis (TRAN analysis).

o simulating linear circuits composed of lumped components with constant val-
ues. Lossless transmission lines are provided for AC analysis.

e simulating independent sources with time (in TRAN analysis) or frequency (in
AC analysis) dependency. In TRAN analysis any functional dependency of node
voltages or branch currents in the circuit can be simulated, if this depen-
dency is allowed to have the delay of one time step. This can also be used
in DC analysis, if an iterative solving-method together with e.g. the Newton-
Raphson algorithm is used. Any functional dependency can be specified for an
independent source, as long as the function parameters have some meaningful
values. This includes both current (J) and voltage (E) sources.

o plotting the results obtained from AC and TRAN analysis. Also, any user speci-
fied functional expression of the results in these analyses can be plotted. The
plotting capability can be expanded to include DC analysis with circuit param-
eter sweeping (i.e. analyzing the circuit at different parameter values).



Although there is no restriction on how many nodes and branches the circuit
to be simulated may have, the performance of the HP 485X restricts the practical
size of the circuit. The method used for setting up the simulation equations (i.e.
component matrices and source vectors) is modified nodal formulation (MNF) [5].
The components supported in the current version of Csim, 2.61, are

e R, G, L, M, C, i.e. resistors, conductors, inductors, transformers and capac-
itors with constant values.

e m, i.e. a mutual inductance between two components. This is not a com-
ponent, instead it specifies a dependency between two components that have

been defined.

e Y, Z, i.e. impedances and admittances with constant complex values. For AC
analysis at a single frequency only.

o T, i.e. lossless transmission lines. For AC analysis at a single frequency only.

e J, E, i.e. ideal independent current and voltage sources with functional val-
ues.

e S, 0, i.e. short circuits and ideal operational amplifiers.

er, p, g, u, a, b, i.e. current-controlled voltage sources (CCVS; r and
p), voltage-controlled current sources (VCCS; g), voltage-controlled voltage
sources (VCVS; u) and current-controlled current sources (CCCS; a and b).

® y, z, i.e. two-ports with y- or z-parameter representation. For AC analysis at
a single frequency only.

Since we use modified nodal formulation, E, L, M, S, 0, r, u, a and b all
require one (or two) specified branches in addition to the nodes specified. This
means that the currents of these branches are solved for and included in the result
vector.

In the following sections we will discuss modified nodal formulation, the differ-
ent analyses, and some underlying theory in detail. Some aspects of programming
will also be discussed. The “component stamps” used in MNF are reproduced in
appendix A. The derivation of the formulas for truncation errors involved in the TRAN



analysis methods used by Csim is presented in appendix B, and finally, a program
listing is presented in appendix C. Together with the program listing a short manual
is also provided. The theory for this tutorial has been obtained mostly from [5], but
also from material used in the courses [3], [4]:

e Ele-55.141, Circuit Analysis 1,
e Ele-55.142, Circuit Analysis 2,

e Ele-55.165, Computer-Aided Circuit Design,

held at the Helsinki University of Technology, Faculty of Electrical Engineering.

1.1 Notation

In this presentation we will use uppercase letters in DC and AC analysis. In TRAN
analysis all vectors are in lowercase, e.g. w. Also, when indexing is used, it denotes
the value of e.g. a vector at that time point. E.g. w; refers to the value of the
source vector after one time step. For time derivatives we use

. Oz
L = E’ (1)
) 0
Lo = 6—C§|t:t0 (2)

Sometimes the notation

,_658

=7 (3)

x
is also used, especially for higher order derivatives for which it is more convenient.
Superscripts, such as in I*, are used to denote the solution of the k’th iteration
round, when iterative solving is required.



2 Modified nodal formulation

2.1 The set of equations

Regardless of the analysis in question, the circuit simulating problem is described
by the matrix equation (which is equivalent to a set of equations)

TX=W. (4)

This is exactly what e.g. ordinary nodal formulation [4] is based on. In that case
we have the matrix equation

YU-=1L (5)

The drawback of ordinary nodal formulation is that e.g. ideal voltage sources can-
not be represented. This is one of the reasons we here decided to use modified
nodal formulation, that does not have this restriction. Another solution would have
been using gyrator transformation [2], which allows any circuit to be represented by
voltage-controlled current sources only. In our case, matrix T contains the contribu-
tions of the components in the circuit, and the vector W those of the independent
sources. The unknowns, which in the modified nodal formulation can be both node
voltages and branch currents, are represented by the vector X. This means that the
above set of equations can actally be separated into two different kinds of sets:

YXy+A X =W, (6)
A, Xy +ZX; =W (7)

= —

Here we denote

= W;+Wg, (8)
= Xy +X;. (9)

< [

The components that have an admittance description (e.g. capacitors) belong
to Y, and those that have an impedance description (e.g. inductors) belong to
Z. Independent current sources belong to W; whereas the independent voltage
sources belong to Wy. The matrices A,, A, contain only —1,0,1-valued entries
and sums of these and represent the Kirchhoft’s voltage and current laws. Finally,
the two vectors X; and X include the unknown branch currents (for components
that have an impedance description, or ideal independent voltage sources) and node
voltages (for components that have an admittance description, or ideal independent
current sources). The terms admittance description and impedance description will
be further explained in section 2.2, where the component equations are presented.
This should also make the notation used more obvious.



2.2 Component equations

Consider first the case of a simple ideal capacitor. In DC analysis there is no current
through the capacitor, i.e. it represents an open circuit. In AC analysis, the current
through the capacitor (with capacitance C farads) is

IC == ]wC . Uc. (10)

Thus, the higher the frequency, the larger the absolute value of the admittance of the
capacitor. At w = 0 rad/s the absolute value of the admittance is zero. Now, let us
compare this to the case of an ideal inductor. In DC analysis, the inductor represents
a short circuit. If any DC voltage would be applied across an ideal short-circuit, the
current through it would become infinite. If we would formulate the inductor in AC
analysis the same way as we did with the capacitor, we would have

L= .0, (11)

Jwl

But when the radial frequency, w, approaches zero (i.e. the DC condition), then the
absolute value of the admittance of the inductor approaches infinity. Clearly, this is
not a desirable situation if the same set of equations for the circuit is to be used in
both DC and AC analyses. Thus, we write the equation for the inductor as

Up = jwl - I. (12)

As w approaches zero, the impedance of the inductor also approaches zero, i.e.
that of a short circuit. We say that the inductor is a component with impedance
description. Similarly, the capacitor is a component with admittance description.
We use impedance or admittance description depending on which gives noninfinite
values for real values of w.

Since the current through the inductor is unknown, as well as the voltage across
it, we need another equation in order to solve for both unknowns. The equations

(Kirchhoff’s voltage and current laws, KCL and KVL [4]) for the inductor are
ULj—ULjI—ij-ILZO, (13)

Ipj =1Ig, Ip;

=
J

—1I, (14)

where I, refers to the current through the inductor from node j to node j'. This is
shown in figure 1. By doing this we obtain one single matrix equation which can be
used in both DC as well as AC analysis, without any of the matrix entries becoming
infinite. This same matrix equation can also be used in TRAN analysis, as will be
seen further on. The code used for the simulator thus only requires a setup routine,
that creates the matrices required, and a simple subroutine that uses these matrices
for each specific analysis type.



Iy,
Jwil Ur; — ULj'

Figure 1: Ideal inductor.

What is the case of independent current and voltage sources? Clearly, for an
independent current source we know the current through it, whereas the voltage
across it is determined by the rest of the circuit. For an independent voltage source
the situation is the opposite. It is assumed that the reader is familiar with ordinary
nodal formulation [4], [5], thus the case of an independent current source is not
discussed further. However, for the ideal voltage source E (let us say, between
nodes 7 and ]') we obtain the following equations

U; - Uy = E, (15)

I =Ig, I; = —Ig. (16)

Figure 2: Ideal independent voltage source.

Here, U;, U, refer to the voltages of nodes j, j and I; to the current from node j

to node j' (denoted as positive' as in the case of an inductor). This is presented
in figure 2. Since the voltages of each node are included among the unknowns in
ordinary nodal formulation, the first equation simply adds one element to the source
vector, and a row (that has the entries 1 and -1) to the component matrix. The
other equations add Ig to the vector of unknowns. This can be presented as (see
also appendix A)

117 U, I;
1 —1 Iy E

As an example, consider the matrix equation generated by a simple circuit in
which a resistor with conductance G mhos is connected to an ideal voltage source of

! This is on the left side of the equality sign in the equation system.



E volts. We have two nodes, one being ground and its potential defined as 0 volts.
The two unknowns are the voltage across the resistor and the current through the
ideal voltage source. We obtain

Tolln]-15] )

which is equivalent to

1-U,4+0-Ig = E. (20)

As can be seen, the 1-valued entries in the matrix are dimensionless and represent
additional terms in the equations so that the Kirchhoff’s voltage and current laws
are obeyed. To shed some light on the notation used in equations 6 and 7, we
separate the above into two equation systems:

5ol ][n] -1] o
el el a] - LE ®

where Z contains no entries in this example (i.e. none of the components in this cir-
cuit uses impedance description). By comparing this to what was presented earlier,
the meaning of the different matrices should be clear. This notation is used only so
that the origin (or cause) of each entry is easy to see. For computational purposes

we use T', X and W.

2.3 Some programming aspects

The user interface Csim takes most of the program. The intention was to make
Csim as easy and fast as possible to use. The circuit elements are entered on the

“stack” of the HP 485X in the following fashion:

{E 1 0 "IFTE(t MOD 2 > 1,-1,1)’ 4}
{E 3 0 "IFTE(CV(2) > 0,-1,1)’ 5}
{G 1 2 10}

{c 202}

This defines a simple RC-circuit with a periodic square-pulse voltage source, the
second source being a digital inverter (See also appendix C for a manual).

The first task of the program is to find out how many nodes and branches there
are in the circuit. This of course determines the dimension of the component matrix



and the source vector. It is assumed that the user has the nodes and the branches
in some kind of order, and that they are denoted with integers in a sequence (i.e.
1,2,3,...). One of the nodes should be a reference node (i.e. ground), and denoted
by 0. The number of a node or branch refers directly to a row/column in the matrix
(or vector). When the dimension of the matrix equation is determined, the required
matrix and vectors are created and loaded. Doing this, Csim uses “stamps” that
are coded into the program (functions beginning with put, see appendix C). These
determine what entries each component generates, and into which of the matrices.
After the matrices have been loaded, the circuit is saved as a “list” into a variable
named CIR from where it can easily be fetched for another analysis. Also, if the
stack is empty when Setup is run, the contents of the CIR variable is automatically
used to define the circuit. There is very little syntax checking done when running
Csim, so the user should always make sure the circuit is properly connected and
described. Except for the circuit description, all input is done interactively through
the main program.

All of the steps mentioned above are done in the main program Csim and the
Setup subroutine, mainly using the stack as memory storage. This makes the pro-
gram look fairly complicated, when indeed it is not. It is only in the subroutines that
local variables have been used. Whenever some task is done twice, a subroutine for
that task has been written. Studying the code, it should not be too difficult for the
user to modify it e.g. to add new components (stamps) or to create new algorithms
for time-domain analysis. The user is also provided two functions, CV(node) and
CI(branch) that fetch the previous solution for a node voltage or branch current.
These can be used to define a source with any functional dependency of these val-
ues. However, no method to solve a nonlinear system of equations is provided with
Csim, except for fixed point iteration (i.e. the system is solved over and over until
the result supposedly converges). This method, iterdc, should be combined with
e.g. the Newton-Raphson algorithm to yield results (some nonlinear circuits might
converge with the use of fixed point iteration only).

If an analysis performes plotting, Csim executes the GRAPH command after the
plot is drawn, leaving the user in the Graphics Environment. In order to use all
the capabilities of plotting results, the user should be familiar with the HP 485X
Graphics Environment, which provides zooming, derivatives directly from the plot,
polar plots and much more. For these capabilities, the user should refer to [1].

Since the HP 485X has matrix calculation capabilities included, matrix inversion
and multiplication are not problems to consider. However, to obtain an accurate
solution to a matrix equation

[ES

z=25

when A is ill-conditioned, some iterative process may have to be applied. A program
for this purpose is included in the Csim file, called MTXSLV (See also [1], Advanced
topics relating to matrices). It can be used without major changes in the code.



3 DC and AC analysis

Both DC and AC analysis are solved by inverting the component matrix, which is then
multiplied by the source vector to obtain the vector of unknowns. This is simple
since the HP 485X provides built-in functions for both inverting a matrix as well
as multiplying a matrix (or vector) with another matrix (or vector). For advanced
use a program for more accurate equation system solving, MTXSLV, is also provided
with Csim.

The component matrix can be divided into three terms (matrices), which form
as their sum. The first term, denoted G, contains all the real valued entries of
T. Such are resistances, conductances and the —1,0, 1-valued entries that represent
Kirchhoff’s current and voltage laws. The second term, denoted (', contains all
values of T that are multiplied by the constant s (or jw). These are generated by
capacitors and inductors. Finally, the third term, denoted C , is used only in AC

T
T

analysis at a single frequency point. It contains the constant valued complex entries
of T. These are generated by components with constant admittance, impedance (Y,
Z), two-ports presented with their y- or z-parameters (y, z) and transmission lines
(T). Thus, we have

T'=G+jw- -C+C.. (23)

In DC analysis, we use T at w = 0 rad/s,i.e. T, = G (since C_1is not allowed
to have any entries in DC analysis). The source vector, W is evaluated at ¢ = Os,
w = 0 rad/s. The vector of unknown node voltages and branch currents is therefore

Xpo=Tpe - W=G"-W. (24)

In AC analysis, T is the sum of all three terms. The value of jw - ' depends on
w. W is evaluated at ¢ = 0s (in case any dependency of time is specified) and w
rad/s. Therefore, we need to calculate the value of jw - C and W at each analysis
point and perform the additions required to obtain 7. This complex valued matrix
is then inverted, and multiplied by W to give the vector of unknowns:

£A0|w=wc = g + gc + Jwe - g? (25)
T, = Gtjw-C, (26)
Xac = z;lé' -W. (27)

The first equation refers to the matrices created by Csim when analyzing at a certain
radial frequency, w.. U contains entries from components such as T, Y, Z, y and
z, which are valid at w, only. These components should therefore only be used when
performing AC analysis at one frequency point. The second equation refers to the
general case, where the frequency dependency is known to be a real valued constant
multiplied by jw.



Because of the time it takes to do the matrix inversion in AC analysis, the user
should avoid to sweep w through wsiget . . . Wetop. Instead, AC analysis at single points
should be carried out when possible (by using the program ac).

3.1 Special components for AC analysis

Since we use modified nodal formulation, DC and AC analysis use exactly the same
matrices for obtaining the solution. In fact, DC analysis (for linear circuits) is simply
an AC analysis carried out at w = 0 rad/s. However, as we stated in the previous sec-
tion, we have certain components the values of which are valid at a single frequency
only, which are:

o T, a lossless transmission line.

e Y, a constant (complex) admittance.

e Z, a constant (complex) impedance.

e y, a two-port having a y-parameter representation.

e z, a two-port having a z-parameter representation.

Since the equivalent circuits that these components create have a meaning only
at the specific frequency that their values are given at, the user must remember not
to carry out DC (unless the component values are valid at w = 0 rad/s) or TRAN
analysis, when any of these components appear in the circuit description. No error
is returned if this is done, but the results are of course not valid. By checking that
the matrix C'_ only contains (0,0) valued entries, the user can make sure that other
than AC analyses at w = w, are allowed.

For Y and Z the entries into (' are made as admittances, since

Y =21, (28)
where both are complex numbers. The same approach is used for two-ports having

a y- or z-parameter representation, i.e. in both cases the entries are made using the
equivalent circuit for y-parameters, presented in figure 3. This can be done, since

y=z" (29)

e

Note that we actually must invert the complex matrix z in order to obtain the
equivalent y-parameters.

For the lossless transmission line (an expansion to lossy transmission lines can
easily be done by minor changes in the code), its equivalent II-circuit is used for

10
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Figure 3: Equivalent circuit for y-parameter of a two-port.

matrix entries. The length of the line is given relative to the wavelength, obtained
from the length of the transmission line and frequency by

-7 (30)

where [ is the length of the transmission line (in meters), f is the frequency (in
Hertz) and c is the velocity of light in the transmission line medium (co is often
used, i.e. €, = 1). The second parameter to be given is the characteristic impedance
of the line, Zy (in ohms). The equivalent circuit used is presented in figure 4, which
also presents the reason why the nodes 2 and 4 must be equal for T (see section on
syntax in appendix C) .

1
Zg sinh(~1)

@

cosh(vl)—1

Zjg sinh(~1)

@

Figure 4: Equivalent circuit for lossless transmission line.

@3)

cosh(yl)—1

Zg sinh(~1)

nd

Using the notation of figure 4, we have

v = a+ 38, where in our case (31)
a = 0, (32)
2T

To obtain results in the time domain for the components presented above, equiv-
alent circuits with memory should be introduced. This was considered by far too
complicated for the purposes of Csim, and it would also make the analysis signif-
icantly slower. However, in AC analysis these components can be useful in many
ways.

11



3.2 Nonlinear components

The fact that we do not consider nonlinear components when writing Csim makes
the code substantially easier to develop. Another motivation for not considering
nonlinear components is that this tutorial is intended for students, and thus is
supposed to be easy to digest. However, for those interested in how nonlinear
circuits could be treated, here is a brief introduction to that topic.

Nonlinear circuits introduce some new concepts to Csim. First we need an al-
gorithm that can solve a matrix equation by iteration. This is simple, and indeed
such an algorithm can be found in Csim, called iterdc. By using iterdc by itself,
we apply what is called fixed point iteration. This means that we solve the matrix
equation over and over, update the necessary entries at each iteration, and hope
that the method will converge to a solution. Unfortunately, this rarely happens.

To obtain the means to solve nonlinear circuits in a general way, we need to
apply some method that linearizes our problem using the derivatives of it. Such a
method is e.g. the Newton-Raphson algorithm [3]. The problem is that it introduces
a resistor (which can be considered to be a voltage-controlled current source), the
value of which is not constant. Csim does not support this (using CV() or CI() does
not help in this case; the delay of one time step cannot be accepted, as you will see
from equation 36). In fact, since Csim only accepts constant valued components,
some major changes in the code would be required to make nonlinear components
(such as a diode) possible. Some way of updating the component matrix should be
incorporated into the analysis algorithms.

Let us suppose we have some code written, that can update our component
matrix in each iteration step. In that case we could consider e.g. a nonlinear
conductance, for which we have

I = g(Uy). (34)

This we can approximate by writing

dg
Al = —AU;, 35
I = JF 4 ;Tg(Uk"'l Uk) which leads us to (36)
ij
dg dg
It = (1% - Uk Uktt, 37
( an zj) + an 2 ( )

The superscripts we used above refer to the iteration cycle in question. We expect the
solution to improve for each iteration performed. Thus, the iteration uses the results
obtained from the previous round (the first round uses the initial guesses provided
by the user or simply the initial condition). There is an obvious parallelism between
DC analysis and TRAN analysis when solving a nonlinear circuit; each time step taken

12



requires that the solution for that step is obtained by iteration. This means that
a single DC analysis is equivalent to a TRAN analysis at a specific time point. The
equation 37 gives us the equivalent circuit shown in figure 5.

8g k+1 k 39 17k
Uij 1 _anjUij

Figure 5: Equivalent linearized circuit for a nonlinear conductance.

We note that the equivalent circuit requires that we have a resistor the conduc-
tance of which is not constant. In fact, this is the only restriction imposed by Csim,
since the current source could be defined using J and the functions CV(), CI().
The user should give the partial derivative of the conductance as a function to the
simulating program, and this function should then be calculated at each analysis
point (using the values of voltages or currents obtained as a solution in the previ-
ous iteration). The value obtained should then be used to update the component
matrix.

13



4 Transient analysis

In this section we present a brief presentation on the theory and methods used to
perform transient analysis with Csim. Most of the material in this section can be

found in [3] and [5].

4.1 Simple methods for numerical integration

Consider a differential equation of the following kind:

= f(z,t), (38)
in which, in our case, t denotes time. To solve for z we rewrite this as

t1
z(t1) = z(to) + t f(z,t)dt. (39)
0
Since we need to solve this using a computer, we use numerical integration with
a time step At. We presume that the value of = at the starting point, say to = 0, is
known.
If we approximate the derivative of z at #o, i.e. f(zo,t0), with

Lo & $1A—t$0, where we have denoted (40)
At = toyy — tn, (41)
z, = z(nAt), (42)

we obtain the forward Euler formula, which usually is written as
Tpi1 = T + Al,. (43)

In order to see how this can be used to solve the kind of equation as equation 38,
consider the following example [5]:

& =z +t%, the exact solution of which is (44)
=3 —t* — 2t — 2. (45)

We have as the initial conditions to = 0, o = 1 and #¢ = zo + t3 = 1. If we use a
step size of At = 0.025, we obtain the value of z; from

r1 = xo+ Atzg =1+ 0.025-1 = 1.025. (46)
The consequent values, x,, are obtained similarly, i.e.

z; = 1.025, (47)

14



&1 = 1.025 + (0.025) = 1.02565, (48)
25 = 1.025 + 0.025 - 1.02565 = 1.05064, and so on. (49)

The calculation of a few more time steps and the comparison of the results to the
exact solution are left as an exercise to the reader. However, the error will increase
in magnitude for each time step taken, and it will be negative.

Another way of approximating the time derivative of z would be

1 — Lo

At

Qtlz

i.e. (50)
L1 = X9 —|— Atwl (5]‘)

By comparing this to equation 40, we note that the only difference is the index
of the derivative. This method is called the backward Euler formula. It requires
that we predict the value of #; in order to obtain z;. This can be done using
the forward Euler formula as a predictor [5] and then applying iteration using the
backward Euler formula. However, the solution used in Csim does not require this,
as will be seen in the next section. This is due to the fact that we have restricted
Cstm to linear components. The error obtained using the backward Euler formula
increases, in the problem presented, for each taken time step similarly to the forward
Euler formula, but is positive. One might say that in this case the backward Euler
formula overshoots the real solution, whereas the forward Euler formula undershoots
it. Thus, one would expect a combination of these two methods to result in a smaller
error. This is generally the case (see appendix B), and the method is called the
trapezoidal rule, usually presented as

At

4.2 The algorithms used for transient analysis

Let us use the methods described in the previous section to solve the matrix equation
t=Az+w. (53)

This implies that the vector of unknowns, z, contains unknown functions of time,
i.e.

Using the backward Euler formula, we have

15



Tpy1 = Tt Atin-u ( )

= z,+At(Az,y1 + woy) (56)

= (57)
(L-AtA)z,,, = z,+ Atw,, (58)
Topn = (L AtA)Hz, + Atw,,y), (59)

where [ refers to the unity matrix. Note that no prediction is required if w is known,
although we used the backward Euler formula. Similarly, using the trapezoidal rule,
we obtain

2ia = (L~ 54 L+ 5 M+ 5 (e + )] (60)

Now to discover how this relates to circuit theory, consider the equation
(G+s0)X =W. (61)

This is equivalent to the kind of equation we obtain when using modified nodal
analysis. We know from Laplace transform theory [4] that multiplying with s in the
complex plane is equivalent to taking the derivative in the time domain. We rewrite
this as

z+0z=uw, (62)

z. (63)

[ 1192

I&

=w —

IICD

Using the backward Euler formula we obtain

ggn-l—l = g —I_ At g& 419 (64:)
Qo = Gont Mlay ~ G (65)
Here we have
u1(nAt)
us(nAt)
Lo — ’Ll(’l’LAt) (67)
12(nAt)

16



ji(nAt) ]
Ja(nAt)
Cn = el(n:At) (68)
ea(nAt)

This means that by simply using addition, multiplication and inversion of matrices
we can obtain a time domain solution for a circuit. Clearly, implementing this to
the HP 485X is not difficult, considering its matrix handling capabilities. Since w
contains the contributions of the sources, its values at each time step are known. If
we require (', G and At to be constant valued, we are encountered with the inversion
of a matrix only once before each analysis, and then the solution at each time step is
obtained using addition and multiplication of matrices. This speeds up the solving
procedure considerably, yet is sufficient for our purposes. However, it is essential
to understand that this method must be done step-by-step, and requires the initial
condition to be known. We have to start from the known solution (usually with
t = 0 and all voltages and currents zero, or the DC solution) in order to proceed.
Note that it is not necessary that C contains entries for this method to work.

The derivation of the equation for solving in the time domain using the trape-
zoidal rule is left as an exercise for the reader. The result is presented below:

At At At
2o = (C+ 5O €~ 5@ 2+ S(wa + ). (69)

Both the backward Euler formula and the trapezoidal rule are implemented in
Csim. To see how, look at the code for the tranBE and tranTR subprograms, listed
in appendix C.
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5 Conclusions

The work required for programming this circuit simulator took about two weeks.
However, most of the time was spent writing an user interface that would make
Csim easy to use. In fact, the TRAN analysis algorithm was coded to RPL in just
fifteen minutes!

Cstm is used by numerous students interested in electrical engineering both at
the Helsinki University of Technology as well as at other universities. The response
from these users has mainly been positive, showing that this program does have a
practical use. There are still, however, many ways in which Csim can be improved,
making the code a nice “playground” for students who want to test their ideas. One
possible way of developing Csim would be to rewrite the method of creating the
matrix using the gyrator transform [2]. This method makes it possible to simulate
any circuit just by using voltage-controlled current sources and ideal independent
current sources, eliminating the need of “stamps” and branch currents.

Since this text does contain all theory used for the algorithms in Csim, we hope it
has shown that the basics of circuit simulation are not all too difficult to understand.
We hope that reading this text encourages more students to find out more about
circuit simulation, since it provides many very interesting problems that can be
solved in a great variety of ways.
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Appendix A

The component stamps used in the program

A collection of stamps for components in modified nodal analysis can be found in [5].
Those used in Csim are reproduced here, together with the equivalent KCL and KVL
equations:

J, an ideal independent current source of J A, between the nodes j and j’ (current
runs from j to j').

L =J (70)
Iy = —J (71)

E, an ideal independent voltage source of E V, between the nodes j and 5 (j has
the higher potential, branch m contains the current from 5 to ]')

Uj~Us = E (72)
I, = Ig (73)
Iy = —Ig (74)

I.\v; Uy I, W ‘

J 1

i -1

m| 1 -1 m | E

Y, admittanceof Y S(C, G, T, y, Y, z, Z).

I; = Y(U;-Uy) (75)
I, = -Y(U;-Uy) (76)
z:‘ Uj UJI
;Y -Y
i l-Y Y

Z, impedance of Z Q (L, M, R, S).

U;-Uy - 2L, = 0 (77)
Li=-1L = I, (78)
T \U; Uy I,
J 1
j -1
m| 1 -1 —Z
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g, voltage-controlled current source, transfer conductance g S (g, y, z).

I =0
I, =0
I, = g(U; -Uy)
I, = —Q(Uj - Uj’)
T: ‘ U; Uy
kg —g
E|l—-g g

u, voltage-controlled voltage source, amplification constant .

u(Uj: — UJ) + U, — Ukl

a, current-controlled current source, amplification constant a (a, b).

I,
I,
T:| U; Uj: U. Uy I,
jl
J
k 1
E -1
m| —u u 1 -1

U; — Uj: =0

I; = —Ij: = I,

Iy =—-1,, = al,
T:|U; Uj: U. Uy I,
J 1
j -1
k a
3 —a
m | 1 -1

r, current-controlled voltage source, transfer resitance r (r, p).

U; — Uy
U, -Uy —rl,
I =—1;
I =—1I;

é\qg’\q@@

21

—~
Qo
ot

SN’

—~~
(0¢]
o¢]

~—



T:

U, Us U, Uy

jl
J
k
k
m
n

O, ideal operational amplifier.

T:

1 -1

Li=-I, = I,

U; Uy U, Uy

L, I,
1
-1
1
-1
r

I

jl
J
k
k
m

1 -1

1
-1

M, transformer with inductances L;, L, and mutual inductance M (M, m).

Uj—Uj: —slqI,—sMI, = 0
U,—-Uy —sLyl,—sMI,, = 0
Li=-1, = I,
IL=-1I, = I,
T:|U; Uj: U, Uy I, I,
J 1
j -1
k 1
E -1
m| 1 -1 —sli —sM
n 1 -1 —sM  —sl,
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Appendix B

Truncation errors involved with the methods used
for transient analysis

We have considered both the backward Euler formula as well as the trapezoidal rule
as methods for transient analysis. Which method is to be preferred and what are
the errors involved with these methods? To answer this, let us consider a general
formula for weighting the derivative at two points [5],

a1y + aogxo

by + bozo = At

(99)
This formula includes both the forward and the backward Euler formula, as well as
the trapezoidal rule. E.g. to obtain the backward Euler formula, choose b, = 1,
a; = 1 = —aq. Alternatively, by choosing b; = by = % and a; = 1 = —ag, we obtain
the trapezoidal rule.

Let us denote t; = o + At and write the previous formula as
Consider now the formula for the Taylor polynomial of a function f(z) at a:

f'(a)

f‘n
51 ot

(z — a)2 + . —(z —a)" (101)

n!

—(z—a)+

1!

If we write the Taylor polynomials of #(¢) and &(t) at ¢o and replace z(¢o + At) and
&(to + At) with them in the second formula, we obtain

arl2(to) + @(to +AE—to) 42 2(f°)(At)2 b ]+ aoz(te)—
Athi[2'(t) + wul(!t")m + C”'I;(!t")(m)2 b ] = Atboz'(t) = 0. (102)

Here, ¢ and z' both refer to the time derivative of z, the latter notation is used for
convenience. Rearranging terms, we finally obtain

2(to)(@ + a0) + AL (to)(ar — by — bo) + (A0 (t0) (52 — b1}t

" a b
(At)’z (to)(3—} - 2—1') +...=0. (103)
This equation can be satisfied by letting the factors containing ag,a;,bp and b,
equal zero. By doing so, we obtain conditions for these four parameters. A first

order approximation gives
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aj + ag — 0, (104:)
a] — bl — b() = 0. (105)

Both forward and backward Euler formulas as well as the trapezoidal rule satisfy
these conditions. A second order approximation gives the condition

a
= b =0. (106)
2
This is satisfied only by the trapezoidal rule. The truncation error can be defined
as the value of the first term not satisfied by the chosen four parameters. For the
trapezoidal rule this results in

— (A2 1(;"), (107)

whereas for the backward Euler formula we obtain

—(At)ﬂ”gto). (108)

Since At is assumed to be small it is easy to see that the trapezoidal rule is more
accurate than either of the Euler formulas. However, if z(t) is not well-behaved (i.e.
2" or " become very large at some points), or At is large, then this assumption
does not necessarily hold.

Note that in this discussion nothing about the stability of these methods is
mentioned. For a discussion on this, the reader is referred to section 9.3 in [5]. As
a general comment it can be said that the trapezoidal rule is to be preferred with
oscillating circuits?. In the case of the forward Euler formula, its instability is one
of the reason it is not used at all for transient analysis. However, the method can
easily be coded to Csim, if the user wants to try it for experimentational purposes
(use the tranBE subroutine as a basis).

Try e.g. an ideal LC resonator with an initial voltage across the capacitor. Compare the
results obtained using the backward Euler formula (Euler= 1, see manual) and the trapezoidal
rule (Euler= 0)
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Appendix C

A short manual and the program listing

Manual

This manual explains the function of Csim and presents the syntax used for circuit
description. It is written in ASCII-form in order to be easily distributed within the
university computer networks.

Csim 2.61 SHORT DESCRIPTION AND MANUAL 12/17/91 (c) Per Stenius
RELEASE NOTE

This version differs from the previous (2.3, 2.5, 2.51, 2.6) in the
following:
Version 2.3:

- Lossless transmission line for AC analysis at a single freq. point. (T)
- The functions CV(node) and CI(branch) that fetch the voltage/current of
given node/branch in the previous solution point. CV = ControlVoltage,
can be used in other sources to define any functional dependency of a
voltage/current in the circuit. Note that there is a delay of ’tstep’

when using these functionms.

- The program ’iterdc’ for iterative dc solving to be used with nonlinear
components.

- Additional examples of circuits in manual.

- New sample circuit.

Version 2.5, 2.51, (and previous versions):

- ABCD-matrix for two-port added.

- Minor changes in code for improved speed (during setup)

- BOTH NODES GND error removed, BOTH NODES SAME used instead.

Version 2.6 (and previous):

- ABCD, y and z matrix two-ports can be used in DC analysis if all matrix
elements are real (i.e. the imaginary part must be zero)

- A->L converts array into list (for easier handling of matrices)

INTRODUCTION
This text describes a simple circuit simulator called Csim for the HP48.

It makes DC, AC and transient simulations and supplies the user with all
matrices used. The method used is modified nodal analysis, and thus
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elements such as an inductor or ideal voltage source require that a current
branch is also specified together with the nodes. As soon as a setup is
done, single analyses can be made with the ’dc’, ’ac’ or ’tran’ sub-
programs. All subprograms return the result as a vector, whereas Csim
provides the user with a plot in transient and AC analysis. Note that for
Csim to work correctly, the ’'node’ variable should be defined (either a
node or branch number) when plotting a result. Note also that the RES
variable (in PLOTR) should be O. Finally, if SYM (in MODES) is not set
Csim does not work correctly.

For a demo on how Csim works do the following:
- download the code (creates the directory CSIM in the current directory)
- enter the directory CSIM and enter the custom menu (the button marked CST
between the PRG and VAR buttons on your HP48)
- press [Csim]:
for: Setup? Y press: <enter>
for: Analysis? (D,A,T) press: T <enter>
for: Sweep range?
:tstart:0
:tstep:0
:tstop:1 press: <backspc> 5 <enter> i.e. :tstop:5
after which a time-domain plot is drawn (if you have something that
you previously have plotted, press [CLRSC] before doing this).
Press <0ON> to exit the graph environment.
Now, press 3 <left-shft> [node] <enter> and redo the above ([node] is
a variable in the custom menu).
Finally, press the CST button, <next> [CIR] [CIR->] to see the circuit
description.

Here is an explanation on the custom menu of Csim (the custom menu is
obtained by pressing the button marked CST on your HP48, and contains
those variables and programs you need for using Csim):

Csim - the simulator program. Runs setup (if requested) and a single
analysis. For ac, a single run directly from the custom menu
provides a fast solution in one freq-point. When choosing T
for transient analysis either tstep (time resolution) or tstop
should be given. If both are given tstep is used and tstop
ignored.

View - the StackView application, for easy check on components. Use

ATTN (ON) to exit. You can also use the Interactive Stack the
HP48 provides (see manual p.70).
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node

ymin,

CLRSC

outp

CIR->

->CIR

CIR

dc

ac

A->L

tran

the node or branch the value of which is wanted as a solution.
Used to GET the right value from the solution vector.

ymax

define the picture y-axis (ac or tran analysis)
Clears the screen (simply the ERASE command)

a program that takes a vector from the stack and returns one value.
it can be used to plot a result that is a function of the values
in the solution vector. To be edited by the user.

(default << node GET >> )

takes a list of lists, such as the one used to store circuit
descriptions (see also CIR, ->CIR) and puts the lists in it to
the stack (inverse to ->CIR). Usage: Press a variable containing
a circuit description (e.g. CIR) and press CIR->.

takes the circuit description used by Csim and puts it to a list,
that can be stored in a variable.

when ’Setup’ is run, the stack containing the circuit is stored in
this variable as a list. To use again, recall CIR and run ’CIR->’
(see above). Contains a sample circuit as default. Any circuit
description can be stored in a variable as a list of components
(which also are lists).

single DC analysis. Requires that setup is done (the matrices are
ready). Takes no argument from stack and returns a solution vector.

single AC analysis. Requires that setup is done (the matrices are
ready) and that ’w’ is specified (rads/s angular freq). Takes no
argument from stack and returns a solution vector. Note: Complex
values! When A is chosen in Csim, the actual program stored by STEQ
is ’acplot’, which executes ’ac’ and then ’outp’. The program
’outp’ should take a vector from stack and return a single number.
E.g. << node GET ABS >> would return the absolute value of a node
voltage (or branch current) that is to be plotted.

converts an array into a list.

single transient analysis. Takes one time step and returns a
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solution vector. The method used is trapezoidal rule. When T is
chosen in Csim, the actual program stored by STEQ is ’tranBE’ (or
’tranTR’). These return the result vector and call ’outp’. The
program ’outp’ should take a vector from stack and return a single
number. E.g. << node GET >> would return the value of a node voltage
(or branch current) that is to be be plotted.

Setup - setup routine for the simulator. Creates and loads the matrices
needed and stores the stack as a list into CIR. Takes the circuit
description from the stack as an argument (only component declara-
tions are allowed on stack). Setup must be done once before analy-
zing, however, after that the matrices are ready to be used multi-
ple times. This should be remembered e.g. when calculating a DC
solution and thereafter starting a transient analysis from the
obtained results. In this case running Setup a second time would
zero the result vector. Setup also clears flag -3 (i.e. enables
SYM), sets flag -17 and clears flag -18 (i.e. sets radians mode).

W - angular frequency (2*pi*f) rad/s.

G - conductance matrix. Contains all real valued entries, i.e. those
caused by elements the values of which do not have an s or jw

factor.
C - s-matrix. Contains all elements that have an s or jw factor.
Cc - constant valued complex matrix. Can be used in AC analysis only,

at a single value of ’w’ (angular frequency). Contains entries
from Z, Y, z, y (See Section on syntax).

W - numerical values of the sources as a vector. This vector is
updated in every analysis point.

Wlist - the functions representing each source as a list, from which
the numerical values for ’W’ are obtained.

Euler - specifies the method used in the tran analysis. If Euler = 1 then
backward Euler (’tranBE’) is used (faster but more inaccurate), if
Euler = O then the trapezoidal rule is used, which is rather
accurate but slower (’tranTR’ and ’tran’).

iterdc
- if CV() or CI() are used in DC analysis, iterative solution is
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required in order to obtain the correct solution. ’iterdc’ can

be used for this after setup has been done. Note that very few
nonlinear circuits can actually be solved by iteration only.
Usually some linearization method must also be used, e.g. the
Newton-Raphson algorithm. Giving good initial guesses for node
voltages and branch currents in the X vector also helps.

THE SYNTAX USED TO DESCRIBE A CIRCUIT

The syntax by which the components are entered is (NOTE! Each circuit
needs a ground node and its number is always O (zero)):

{R nodel node?2

{G

{c

{L

{y

{z

{J

{E

{s

{0

{M

nodel

nodel

nodel

nodel

nodel

nodel

nodel

nodel

in+ in- out+ out- outbranch}

node?2

node?2

node?2

node?2

node?2

node?2

node?2

node?2

numval branch}
numval}
numval}
numval branch}

complexnumval}

complexnumval}

funcvall}

funcval branch}

branch}

resistance [ohm]

conductance [mho]

capacitance [F]

inductance [H]

admittance with a constant complex value
(re,im). In DC analysis each entry must

be real (im = 0).

impedance with a constant complex value
(re,im) In DC analysis each entry must

be real (im = 0).

indep. current source

indep. voltage source

short circuit (the current is fetched by
branch GET). Can be used to define a current
branch for dependent sources.

ideal opamp (out- should be ground,
outbranch returns the output current)

linodel lilnode2 12nodel 12node2 lival 12val mval libranch 12branch}

transformer i.e. two inductors (11, 12) with
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mutual inductance (mval). The values required
are the four nodes, the value of 11, 12, mval
[H] and the branches of 11 and 12. The dots
for m are at linodel and l1l2nodel.

{m libranch 12branch mvall} - mutual inductance of mval [H]. As M, but can
be used to define e.g. three inductances
that all have mutual inductances. To do
this, define the 3 L:s and then 3 m:s be-
tween them. Note that m takes the branches
of the L:s. Make sure you specify the in-
ductors the right way (the branch of L runs
from n1 to n2). Note also that m is not a
component, it merely states a dependency
between two L:s that should be defined se-
parately. No checking is done that libranch
and 12branch actually belong to L:s.

{T nodel node2 node3 node4 llval Zoval}

- lossless transmission line (to be used in AC
analysis only) of length 11 (in wavelengths)
and with the characteristic impedance Zo.
Note that nodes 2 and 4 must have the same
value (equivalent pi-circuit used).

{g nodel node2 node3 node4 numval}

- voltage-controlled current source i.e.
transconductance. The source current is
from node3 to node4 and the controlling
voltage from nodel to node2.

{r nodel node2 node3 node4 numval branchl branch2}

- current-controlled voltage source. Defines
a short circuit between nodel and node2
and a controlled voltage source between
node3 and node4 (node3 being the positive
node) . The controlling current runs through
branchl and the current of the source is
fetched from branch2. Branchl must not be
a previously defined branch.

{p node3 node4 numval branchl branch2}
- same as r but does not define a short
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circuit between nodel and node2. Instead
branchl must be a predefined branch (e.g.
that of a resistor or inductor).

{a nodel node2 node3 node4 numval branch}
- current-controlled current source. Defines
a short circuit between nodel and node2
and a controlled current source the current
of which runs from node3 to node4. The
controlling current runs through branch
which must not be previously defined.

{b node3 node4 numval branch} - same as a but does not define a short
circuit between nodel and node2. Instead
branch must be a predefined branch (e.g.
that of a resistor or inductor). Compare
with p.

{u nodel node2 node3 node4 numval branch}
- voltage-controlled voltage source. The
current through the source is fetched
from branch.

{y nodeipl node2pl nodelp2 node2p2 yil yi12 y21 y22}

- a two-port with y-parameters that are
constant complex values (re,im). In DC
analysis each entry must be real (im =
0).

{z nodeipl node2pl nodelp2 node2p2 z1l z12 z21 z22}

- a two-port with z-parameters that are
constant complex values (re,im). In DC
analysis each entry must be real (im =
0).

{A nodelipl node2pl nodelp2 node2p2 A B C D}

- a two-port with ABCD-parameters that
are constant complex values (re,im).
In DC analysis each entry must be real
(im = 0).

FUNCTIONS

CV(node) - returns previously calculated value of
the voltage of node. In code << X node
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GET >>

CI(branch) - returns previously calculated value of
the current of branch. In code << X
branch GET >>, the same as CV().

In the above, nodes and branches are integer numbers. The ground node is
represented by 0. All nodes and branches should have a unique number and
they should be given in order e.g. nodes 0,1,2,3 and branches 4,5,6. These
numbers refer DIRECTLY to the position in the matrices/vectors. Thus the
4’th element in the result vector would be the current through branch 4 and
the first element is the voltage of node 1. To help remembering the syntax,
you could e.g. have a variable y with the following contents:

y
{y nip!l n2pl nip2 n2p2 yi1 yi12 y21 y22}

NOTE: The two-port y, z and ABCD parameters are valid in DC analysis ONLY
IF ALL THE ENTRIES in the corresponding matrix are real.

The following components form equivalent circuits:

{s 1 2 5}
{p 3 4 100 5 6} is the same as

{r 123 4 100 5 67},

{s 125}
{b 3 4 100 5} is the same as

{a 123 4 100 5},
{L12

{L 3 4
{m 5 6

o

.1 5}
.2 6}
.05} is the same as

o O

{M12340.10.20.055 67}.

Finally, an example of usage for transient analysis:
(This is how your stack should look)

{E 1 0 ’10*SIN(10*t)’ 4}
{c 12 o0.01}
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{L 2 315}
{R 3 0 10 6}

This defines a RLC-circuit with nodes 1,2,3 (and ground) and current
branches 4,5,6. The current through branch 4 is equal to the current
through the ideal voltage source E, the current through branch 5 equals
the current through the inductor L, and the current through branch 6
equals the current through the resistor R. The values of the components
(which ALWAYS must be numerical) are 10 ohms, 1 henry and 0.01 farads.
The voltage source has a time-dependent value (used in transient analysis).
If ’node’ is set to 3 the voltage over the resistor R is plotted in
transient analysis. On the other hand, ’outp’ could be written as << DUP
1 GET SWAP 2 GET - >> to return the voltage between nodes 1 and 2 as a
result. Note that sources (E,J) may have functional values (should be
suitable for the analysis requested! Time dependency for transient
analysis and ’w’ dependency (angular freq) for AC). When running Csim,
the stack may ONLY contain component declarations!

Press the CST button and then [View]. Now press ATTN (low-left corner, i.e.
ON). Press [Csim], press <enter> on "Setup? Y", press D (or T), <enter> on
analysis.

An example for AC analysis (using A in Csim):

{E 201 3}
{¢ 21 1}
{c10 1}

Set ’node’ equal to 1 and write ’outp’ equal to << node GET ABS >>. Se-
lect A on analysis and choose wstart O and wstop 10 (ymin = O, ymax = 1).

Another example for AC analysis (using 'w? =1 and ’ac’):
{301 10}

{¢ 30 1}

{¢ 20 1}

{Z 10 (0,-1)%}

{M3121210.545}

Setup
1 left-shft w ac

The currents through the transformer are the 4’th and 5’th elements in the
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result vector. Here’s an example involving a transistor for which we have
the y-parameters yl11 = 0.001, y12 = -j0.0001, y21 = 0.1 and y22 = 0.0001.
Its base is at node 1, emitter at gnd (node 0) and collector at node 2.

{3011}

{Z 1 0 1E3} @ resistance of 1 kohms

{z 2 0 1E3}

{Z 1 2 (0,-1000)} @ capacitance of -j1000 ohms
{y 1020 1E-3 (0,-1E-4) 0.1 1E-4}

Setup
ac 2 GET ABS (returns |Uo/Jin| = 884.035 V/A)

For the use of the lossless transmission line we have the following ex-
ample (analysis can be made at a single frequency point only, at which 11
is valid):

{3011}
{Z 2 0 (75,-69)}
{T 102 0 0.583 50}

Setup ac 1 GET

returns (25.2092, -34.5800) which is the input impedance (J = 1) of a loss-
less transmission line of the length 0.583 wavelengths (at some frequency)
and with the characteristic impedance of 50 ohms, terminated with a load of
(75,-69) ohms.

DC analysis:

{7011}
{R 1 0 1E3 3}
{p 2 0 10 3 4}

The voltage of node 2 (the 2’nd element in the result vector) should be
10V. The current through the controlled voltage source should be OA (the
4’th element in the result vector).

For iterative DC solving of circuits, consider these two examples:
{E101 3}

{¢ 10 1}
{¢ 12 1}
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{J 02 ’sQ(cv(1))’}
and

{301 1}
{G 101}
{G 121}
{E 2 0 ’sQ(cv(1))’ 3}

Setup iterdc

The first circuit converges after only two iterations, but the second one
requires several hundred to reach the exact solution ([[1] [1] [0]] in the
second case). Good initial guesses may help, and also the use of e.g. the
Newton-Raphson algorithm (see Vlach-Singhal; Computer Methods for Circuit
Analysis and Design). Note that ’iterdc’ should actually also be used at
every time step in transient analysis to avoid the delay when using CV()
and CI().

A simple small signal model for a transistor (B-1 C-2 E-3):

{R 1 3 1E3 4}
{G 2 3 0.0001%}
{b 2 3 100 4}

A voltage source used as an digital inverter; if the voltage of node 2 is
higher than 2.5 volts, then the voltage of node 3 is 0 volts, otherwise
5 volts (note that there is a delay of one ’tstep’).

{E 3 0 "IFTE(CV(2)>2.5,0,5)’ 4}

Including nonlinear components as such would make solving the matrix equ-
ation system a tedious process. It would also make the analysis MUCH slower.
However, it could be done.

ERROR MESSAGES

These are the only error messages in this program. Note that there are not
many error checking routines provided, so the user should be careful when
entering the circuit description. For any strange behaviour or false re-

sults, please email me directly and explain what occurred.

SYNTAX ERROR - an error occurred in ’Setup’ while Csim was loading the
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matrices. Check the circuit description and the component
that is first on stack. See also section on syntax.

NEGATIVE NODE NO. - a negative number was given as a node number. Check the
the first component on stack.

BOTH NODES SAME - a component was specified having two nodes that were the
same value. To override this, use a short-circuit (S) between
these nodes.

ZERD VALUE OR BRANCH - a component with a value of zero was given or its
branch number was zero (which is reserved for the ground
node) .

n2 MUST EQUAL n4 IN T - you have entered a transmission line in the circuit
with nodes 2 and 4 not equal. This is not allowed since the
equivalent pi-circuit to the transmission line is actually
used.

Im{Cc} \=/ 0 IN DC - you have specified components with complex values in
DC analysis.

A good way to avoid errors is to proceed systematically, e.g. in the
following way:

1) Choose one reference node to be ground (GND) and set its node number
to 0.

2) Assign the rest of the nodes a number each, in numerical order:
1,2,3,...

3) Find all the components that require a branch and assign each required
branch a number starting from the highest node number plus one.

1) The node and the branch numbers should follow eachother in numerical
order, with no ’gaps’ in between (e.g. 0,1,2 are nodes and 3,4 are
branches) .

4) Enter the circuit description component by component. Note that the
stack should only contain component descriptions! Check your stack

with ’View’.

5) Decide what results you need and edit ’outp’ if necessary. Also, set
’node’ to the correct value.
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6) Run ’Setup’ once and start analyzing! Remember to run ’Setup’ whenever
you change your circuit or want to start from zero. Sometimes all you
need to do is to edit your X vector.

FREQUENTLY ASKED QUESTIONS

Some people have had trouble with the branch currents (the direction...)
so here’s more on that:

In all components (J,E,L etc.) the current is defined to be FROM the first
node TO the second node. Thus no matter which way you put your source (E)
The value of the branch current remains the same (i.e. in the direction of
the U of the source) with respective to the source. In the sample RLC
circuit, when the first node of E and L is the same, the currents should
be the opposite. When the second node of E is the first node of L, the
currents are the same.

For E the situation looks like this:
--- U=E -->

nodel + o->-( E )---o0 - node2

I
for L:
---U1,2 ->
nodel o->- Ind ---o node?2
I
for J:

nodel o->-( J )---o node2
I=J

for S:
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This could be defined the other way around too, but in this case it isn’t.

For two-ports, the node numbers are defined as

nodel o->—-| | --<-0 node3

node?2 o----| | ----0 node4

Note that the direction of the currents is always towards the two-port.
This should be remembered when defining e.g. ideal opamps, controlled
sources and two-ports with y- or z-parameter representation.

>I can’t get the transient analysis to work properly unless I do

>an entire setup first. If I do a transient plot, and then repeat it, I
>get different results, unless I run setup.

>

What happens is that unless you run setup, the transient analysis continues
from where it stopped (however, this time from the beginning of the screen) .
Thus the new beginning should match with the previous end. As you might
have noticed, the transient analysis should always start from time=0. This
is due to the fact that solving this problem is an iterative process.

>It would be nice to be able to specify initial values for capacitors and
>inductors.
>

This can be done. The X vector contains the starting values, and is zeroed
at setup. However, nothing stops you from running a dc-analysis and then
running a tran analysis without a setup in between, thereby giving the re-
sults from the dc-analysis as beginning values for the tran analysis. The
X vector can also be manually edited. To do this, run setup, then press
enter for analysis?, which stops the program. Edit the X, and run tran
analysis without setup. The execution of setup can be avoided by answering
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something else than ’Y’ at ’Setup?’.

>I’m interested in any references you used, for algorithms for circuit
>solving, this is something I’ve never really looked into before.
>

A good place to start is to look at a book called
Computer Methods for Circuit Analysis and Design

by Jiri Vlach and Kilshore Singhal (Van Nostrand Reinhold Company 1983,
ISBN 0-442-28108-0). Check out chapter 4 and 9. For transient analysis,
(which is normally done by Laplace tranforms when working manually) the
trapezoidal rule is pretty powerful. Also, for all the theory needed for
Csim, I have written a report called

A Tutorial on Developing a Simple Circuit Simulating Program

which I can email (ps-file format) to anybody interested upon request. It
is about 30 pages + 30 pages including this manual and the commented source
code for Csim.

FINAL REMARK
Csim takes 10208.5 bytes when loaded, and its checksum is #45412d.

This simulator is not necessarily completely bug-free, so please report
to me for any strange behaviour. Note also that the transient analysis
methods are not necessarily stable for all values of time steps. Try an-
other time range or time step if this happens. If you get the system error
INV Error:
Infinite Result
in any analysis mode, this usually indicates that the component matrix
cannot be inverted. This error can sometimes be avoided by assigning the
nodes the values 0...n and the branches the values n+l...m. If this does
not help, please send me the circuit description you used.

I am happy to provide any further information on this program. Please
send also some comments on its appearance, suggestions on improvement
etc. Note that very little syntax checking is done (e.g. no node or
branch number checks!). I hope this short manual is sufficient, if not
please ask me directly via email.
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copyright Per Stenius, Helsinki University of Technology.
email perre@aplac.hut.fi or pstenius@otax.tky.hut.fi
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Source code

This listing is the program file on a personal computer. It can be downloaded to

the HP 485X using the KERMIT file transfer protocol.

WHP:T(3)AR)F(.);

DIR

@ ________________________________________________________
@ Title : CSIM (a simple circuit simulator for the HP48)
@ Version : 2.61

@ Author : Per Stenius

Q@ LastEdit: 16.12.91
@ Copyright Per Stenius (1991)

CST

{Csim View node ymin ymax CLRSC
outp CIR\-> CIR \->CIR Setup dc
w ac A\->L t tstep tran

X G C Cc W Wlist

Euler iterdc}

Csim
\ <<
" Csim_HP-48 2.61

(c) Per Stenius 1991" CLLCD 2 DISP
1 WAIT CLLCD
"Setup?" "Y" INPUT
IF
"y" SAME
THEN
"Wait..." CLLCD 1 DISP
IF
DEPTH 0 ==
THEN
CIR CIR\->
END
Setup
END
"Analysis? (D, A, T)" "" INPUT
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\-> analysis
\<<
CASE

analysis "D" SAME
THEN

dc
END

analysis "A" SAME
THEN
"Sweep range?" {":wstart:
:wstop:" { 1 0 ¥ V } INPUT
0BJ\-> \-> wstart wstop
\<<
wstop wstart - 130 /
’wstep’ STO
wstart ’'w’ STO
’acplot’ STEQ
wstart wstop XRNG
ymin ymax YRNG

’w’ INDEP
DRAX @ Add ERASE to clear PICT
{(0,0) "jw" "£(jw)"} AXES LABEL
DRAW GRAPH
\>>

END

analysis "T" SAME
THEN
"Sweep range?" {":tstart:0

:tstep:0
:tstop:1" { 3 0 } V } INPUT
0BJ\->
\-> tstart ttstep tstop
\<<
IF
ttstep 0 ==
THEN
tstop tstart - 130 /
’tstep’ STO
ELSE

ttstep ’tstep’ STO
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END
tstart tstep 130 * XRNG
ymin ymax YRNG

£’ INDEP
DRAX @ Add ERASE to clear PICT
{(0,0) "t" "f(t+)"} AXES LABEL

IF

Euler NOT

THEN

tstep 2 / ’tstep’ STO
’tranTR’ STEQ

ELSE
’tranBE’ STEQ
END
G tstep * C + INV
’iChG’ STO
DRAW GRAPH
\>>
END
END
\>>
\>>
outp @ Enables user defined
\<< node GET @ calculations
\>>
dc
\<< @ DC analysis
Wlist\->W W checkCc
Gdc / DUP ’X’ STO @ The result vector is
\>> @ returned to the stack
checkCc
\ <<
Cc C\->R DUP
IF
CNRM NOT SWAP RNRM NOT AND
THEN
G + ’Gdc’ STO
ELSE
"Im{Cc} \=/ 0 IN DC" DOERR
END
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\>>

iterdc
N\ 0 \-> 1
\ <<
DO
X dc
UNTIL
i’ INCR 100 > OR
END
IF
i 100 >
THEN
"100 ITERATIONS
CHECK CONVERGENCE"
ELSE
dc
END
\>>
\>>

ac

\ <<
Wlist\->W W G C w * R\->C
Cc + / DUP X’ STO

\>>

tran

\<<

iChG

W Wlist\->W W + tstep 2 / *
CGtstep 2/ * - X x + %
DUP ’X’ STO

t tstep + ’t’ STO

\>>

acplot
\<<

ac outp

wstep w + ’w’ STO
\>>

@ Iterative DC analysis, max 100
@ iterations

1 DISP 1 FREEZE

@ AC analysis
Q@ The result vector is
Q@ returned to the stack

@ Trapezoidal approx.

@ outp is always called last
@ in a plotting program
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tranBE

\<<

iChG @ Inverse Euler approx.

Wlist\->W W tstep * @ Returns the next result to stack
CX=* + x* @ Used as default when plotting
DUP 'X’ STO outp @ outp is always called last

\>>
tranTR

\<< @ Trapezoidal approx.

iChG

W Wlist\->W W + tstep *

C G tstep * - X * + =%

DUP 'X’ STO outp @ outp is always called last
\>>

Wlist\->W @ Functional values -> numerical
\ <<
Wlist LIST\-> 1 SWAP
START
\->NUM
dim ROLL
NEXT
dim 1 getpos \->ARRY
W’ STO
\>>

Setup
\<<
-3 CF @ Set symbolic mode
-17 SF -18 CF @ and radian mode
0 ’¢’ STO
0 ’ndim’ STO
0 ’bdim’ STO
DEPTH 1 SWAP
START
1 GETI
\-> cmptype
\<<
IF
cmptype ’'m’ SAME NOT @ Not a component!
THEN

cmptype
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incbdim GETI
incndim GETI
incndim
IF
cmptype 0’ SAME @ Components with 4 nodes
cmptype 'M’ SAME OR @ New two-ports: add type here!
cmptype T’ SAME OR
cmptype ’'g’ SAME OR
cmptype ’r’ SAME OR
cmptype ’a’ SAME OR
cmptype ’u’ SAME OR
cmptype 'y’ SAME OR
cmptype ’z’ SAME OR
cmptype A’ SAME OR
THEN
GETI incndim
GETI incndim
END
END
DROP DEPTH ROLL
\>>
NEXT
ndim bdim + ’dim’ STO
[[ 0 1] dim DUP getpos RDM DUP
’G’ STO ’C’ STO
[[ (0,0) 1] dim DUP getpos RDM
’Cc’ STO
[[ 0 1] dim 1 getpos RDM
DUP ’X’ STO W’ STO
1 dim
START
0
NEXT
dim \->LIST ’Wlist’ STO
DEPTH 1 SWAP
START
IFERR
DUP 1 GET
loadmatrix
DEPTH ROLL
THEN
"SYNTAX ERROR" DOERR
END
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NEXT
DEPTH \->LIST ’CIR’ STO
\>>

loadmatrix
\<< \-> cmptype
\<<
DUP 2 GET
2 PICK 3 GET @ cmp nl n2
CASE
cmptype ’J’ SAME @ Ideal current source
THEN
getval
putJ
END

cmptype ’'E’ SAME @ Tdeal voltage source
THEN

getval

getbranch

putE
END

cmptype ’G’ SAME @ Conductor and capacitor
cmptype ’C’ SAME OR
THEN
getval
cmptype putGC
END

cmptype 'R’ SAME
cmptype 'L’ SAME OR @ Resistor and inductor
THEN
getval
getbranch
IF
cmptype 'R’ SAME
THEN
}G}
putRL
ELSE
putL
END
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END

cmptype ’Z’ SAME
THEN
getval INV
putY
END

cmptype 'Y’ SAME
THEN

getval

putY
END

cmptype ’S’ SAME
THEN

getval

putsS
END

cmptype 0’ SAME
THEN
getn34
5 PICK 6 GET
putO
END

cmptype 'M’ SAME
THEN
getn34vb
7 PICK 8 GET
8 PICK 9 GET
9 PICK 10 GET
putM
END

cmptype T’ SAME
THEN
getn34vb
putT
END

cmptype ’'m’ SAME

Constant valued impedance

Constant valued admittance

Short-circuit

nl n2 branch

Ideal opamp

nl n2 n3 n4 branch

Transformer

nl n2 n3 n4 11 12 m bl b2

Lossless transmission line

nl n2 n3 n4 11 Zo

Mutual inductance
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THEN

getval
putm @ bl b2 val
END
cmptype ’g’ SAME @ VCCS
THEN
getn34
5 PICK 6 GET @ n1 n2 n3 n4 val
putg
END
cmptype ’r’ SAME @ CCVS
THEN
getn34vb
7 PICK 8 GET @ n1 n2 n3 n4 val bl b2
putr
END
cmptype ’p’ SAME @ CCVS version 2
THEN
getvblb2
putp @ n3 n4 val bl b2
END
cmptype ’a’ SAME @ CCCS
THEN
getn34vb @ n1 n2 n3 n4 val branch
puta
END
cmptype ’b’ SAME @ CCVS version 2
THEN
getn34
putb @ n3 n4d val b
END
cmptype ’u’ SAME @ VCVS
THEN
getn34vb @ n1 n2 n3 n4 val branch
putu
END
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cmptype ’z’ SAME Q@ z-parameters (two-port)
THEN
getn34v1234 @ n1 n2 n3 n4 yi11 y12 y21 y22
{2 2} \->ARRY INV
ARRY\-> DROP
puty
END

cmptype ’y’ SAME Q@ y-parameters (two-port)
THEN
getn34v1234 @ n1 n2 n3 n4 yi11 y12 y21 y22
puty
END

cmptype ’A’ SAME @ ABCD-parameters (two-port)

THEN
getn34v1234 @nl n2n3n4 ABCD
ABCDtoy
puty

END

@ Add new components here!
END
\>>
\>>

ABCDtoy
\¢<< \->ABCD
\ <<
DB/
CDAx*xB/ -
B INV NEG
AB/
\>>
\>>

putGC @ Routines to load component
\<< \-> n1 n2 value type Q@ stamp into matrix (or vector)
\<< Q@ Add new stamps here!
value n2 nl checknodes
type RCL
nl n2 value puty2
type STO
\>>
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\>>

putRL
\<< \-> n1 n2 value branch matr
\ <<
branch n2 nl checknodes @ Enables short-circuits
nl n2 branch putL2
matr RCL
branch DUP value NEG putmatrix
matr STO
\>>
\>>

putJ
\<< \-> n1 n2 value
\ <<
value n2 nl checknodes
Wlist DUP
IF n1 0 >
THEN
nl GET value - nl SWAP
PUT DUP
END
IF n2 0 >
THEN
n2 GET value + n2 SWAP PUT
ELSE
DROP
END
’Wlist’ STO
\>>
\>>

putE
\<< \-> nl1 n2 value branch
\ <<
value n2 nl checknodes
nl n2 0 branch putL
Wlist DUP
branch GET value +
branch SWAP PUT
’Wlist’ STO
\>>
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\>>

putM
\<< \-> n1 n2 n3 n4 11 12 m bl b2
\<<
nl n2 11 bl putL
n3 n4 12 b2 putL
bl b2 m putm
\>>
\>>

putm
\<< \-> bl b2 m
\ <<
m bl b2 checknodes
C
bl b2 m NEG putmatrix
b2 bl m NEG putmatrix
’C’ STO
\>>
\>>

putsS
\¢<< \-> n1 n2 b
\ <<
nl n2 0 b putl
\>>
\>>

putT
\<< \-> n1 n2 n3 n4 11 Zo
\ <<
11 2 \135 * * \->NUM \-> gamma
\ <<
11 n1 n3 checknodes
IF
n2 n4 \139
THEN
"n2 MUST EQUAL n4 IN T" DOERR
ELSE
>INV (i*Zo*SIN(gamma))’ \->NUM
Cc
nl n3 4 PICK puty2
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SWAP

’C0S (gamma) -1’ \->NUM *
SWAP

nl n2 4 PICK puty2

n3 n4 4 ROLL puty2

’Cc’ STO
END
\>>

\>>
\>>
putg
\<< \-> nl1 n2 n3 n4 value

\ <<

value n2 nl1l checknodes
value n3 n4 checknodes

G
nl n2 n3 n4 value putg?2
’G’ STO
\>>
\>>
putr
\<< \-> n1 n2 n3 n4 val bl b2
\ <<
bl n2 nl1 checknodes
nl n2 bl putS @ Short circuit
n3 n4 val bl b2 putp
\>>
\>>
putp
\<< \-> n3 n4 val bl b2
\ <<
val n3 n4 checknodes
G

b2 n3 1 putmatrix
b2 n4 -1 putmatrix
b2 bl val NEG putmatrix
n3 b2 1 putmatrix
n4 b2 -1 putmatrix
’G’ STO
\>>
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\>>

putu
\<< \-> n1 n2 n3 n4 value branch
\<<

value n2 nl checknodes
branch n3 n4 checknodes
G
branch nl value NEG putmatrix
branch n2 value putmatrix
branch n3 1 putmatrix
branch n4 -1 putmatrix
n3 branch 1 putmatrix
n4 branch -1 putmatrix

’G’ STO
\>>
\>>
puta
\<< \-> n1 n2 n3 n4 val branch
\ <<
val n2 nl checknodes
nl n2 branch putS @ Short circuit
n3 n4 val branch putb
\>>
\>>
putb
\<< \-> n3 n4 val branch
\ <<
val n3 n4 checknodes
G

n3 branch val putmatrix
n4 branch val NEG putmatrix

’G’ STO
\>>
\>>
putO
\<< \-> n1 n2 n3 n4 branch
\ <<

1 n2 nl1 checknodes
1 n3 n4 checknodes
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G

branch nl1 1 putmatrix
branch n2 -1 putmatrix
n3 branch 1 putmatrix
n4 branch -1 putmatrix

’G’ STO
\>>
\>>
putY
\<< \-> n1 n2 value
\ <<
value n2 nl checknodes
Cc
nl n2 value puty2
’Cc’ STO
\>>
\>>
puty

\<< \-> n1 n2 n3 n4 yi1 yi12 y21 y22
\<<
y11 n2 nl1 checknodes
y22 n2 nl1 checknodes
Cc
nl n2 y11 puty2
n3 n4 y22 puty2
nl n2 n3 n4 y21 putg?2
n3 n4 nl n2 y12 putg?2
’Cc’ STO
\>>
\>>

putL
\ <<

’C’ putRL
\>>

putl2
\<< \-> nl1 n2 branch
\<<
G
nl branch 1 putmatrix
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n2 branch
branch ni
branch n2
’G’ STO
\>>
\>>

putg?2
\<< \-> n1 n2
\ <<

-1 putmatrix
1 putmatrix
-1 putmatrix

n3 n4 value

n3 nl value putmatrix

n4 n2 value putmatrix
n3 n2 value NEG putmatrix
n4 nl value NEG putmatrix

\>>
\>>

puty2
\<< \-> n1 n2
\ <<

value

nl nl value putmatrix
n2 n2 value putmatrix

nl n2 value NEG putmatrix
n2 nl value NEG putmatrix

\>>
\>>

putmatrix

\<< \-> row col val

\ <<
IF

row col AND

THEN

row col getpos

DUP2

GET val +

PUT
END
\>>
\>>

incbdim

\<< \-> cmptype

Q@ matrix in level two

Q@ Increase matrix dimension
@ (branch)
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\ <<
IF

cmptype ’E’
cmptype 'R’
cmptype 'L’
cmptype ’S’

cmptype ’0’°
cmptype ’u’
cmptype ’a’
cmptype ’p’

THEN

bdim 1 +

ELSE
IF

SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME

’bdim’ STO

OR
OR
OR
OR
OR
OR
OR

cmptype ‘M’ SAME

cmptype ’r’ SAME OR

THEN

bdim 2 + ’bdim’ STO

END
END
\>>
\>>

incndim
\<< \-> x
\ <<
IF

x ndim >

THEN

x ’ndim’ STO

END
\>>
\>>

checknodes

\<< \-> value n2 ni

\ <<
CASE

nl 0 <
n2 0 < OR
THEN
"NEGATIVE NODE NO." DOERR

END

Q@ Increase matrix dimension
@ (node)
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nl n2 ==
THEN

"BOTH NODES SAME'" DOERR
END

value O SAME
THEN
"ZERO VALUE OR BRANCH" DOERR
END
END
\>>
\>>

getn34
\ <<
3 PICK 4 GET
4 PICK 5 GET
\>>

getval

\<<

3 PICK 4 GET
\>>

getvblb2

\<<

getn34

5 PICK 6 GET
\>>

getn34vb

\<<

getvblb2

6 PICK 7 GET
\>>

getn34v1234
\<<

getn34vb

7 PICK 8 GET
8 PICK 9 GET
\>>
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getbranch
\<<

4 PICK 5 GET
\>>

getpos

\<<

2 \->LIST
\>>

View @ Stack-View application
\ <<
PICT RCL \-> pict
\ <<
PICT PURGE 1
DEPTH 1 - 10 MIN
DUP
IF
8 >
THEN # 6d 1
ELSE # 8d 2
END \-> rowht tsize
\ <<
FOR I
PICT # 0d 65 I rowht * -
2 \->LIST I \->STR ": "
+ I 3 + PICK \->STR +
tsize \->GROB GOR
NEXT
{ } PVIEW pict
PICT STO
\>>
\>>
\>>

CcVv
\<< \-> node
\ <<
X node GET
\>>
\>>
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CI
\<< \-> branch
\ <<
X branch GET
\>>
\>>

CLRSC @ Clears the screen
\ <<

ERASE

\>>

A\->L

\ <<

ARRY\-> DROP 4 \->LIST
\>>

CIR\->

\ <<

LIST\-> DROP
\>>

\->CIR

\ <<

DEPTH \->LIST
\>>

MTXSLV @ Solves a matrix equation Ax=B
\¢<< \->B A @ Increased accuracy (iteration)
\ <<
BA/BA
3 PICK RSD A / +
\>>
\>>

Q Default values and a sample circuit

CIR @ Sample circuit
{

{E 1 0 "IFTE(t MOD 2 > 1,-1,1)’ 4}

{E 3 0 *IFTE(CV(2) > 0,-1,1)’ 5%}

{¢ 1 2 10}
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{c 2 0 2}

ymin

ymax

node

W @ Angular frequency (omega)

t Q@ Time

Euler
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