Overview
1°) Water-Level ( 37 waves )
2°) Graphic
3°) Tide
4°) A few Ports
5°) XDoodson Numbers >>> V
WARNING:
"WL37" calculates the water level in a port with the 37 harmonic constituents given by the NOAA at the URL
https://tidesandcurrents.noaa.gov/stations.html?type=Harmonic+Constituents
-Nodal corrections are also taken into account, in the way that is suggested in the "Supplement to Manual of Harmonic Analysis and Prediction of Tides" ( page 3 )
-The water level is computed by the harmonic method:
wl(t) = Z0 + A1 cos ( V1 - G1
) + ............ + Ai cos ( Vi - Gi
) + ..........
where Z0 = the mean sea level ; Ai
and Gi = the harmonic constants of the port. ( A = amplitudes
; G = epochs )
-The Vi's are linear combinations of astronomical arguments, namely:
360° d where d = the number of days since 2000/01/01 at 0h UT
h = 279.97° + 0.98564736°
d
( all angles are expressed in degrees )
s = 211.73° + 13.17639648° d
p = 83.30° + 0.11140352°
d
N' = 234.98° + 0.05295376° d
p1 = 282.94° + 0.00004708°
d
D = 90°
-Actually, the main constituents have "nodal corrections" and each term may be written:
A [ cos ( V - G ) + a cos ( V - 2.N' - G ) + b cos ( V - N' - G ) + c cos ( V + N' - G ) + d cos ( V + 2.N' - G ) ]
where a , b , c , d are constants
-The following formulae and coefficients have been employed:
Constituents | V | a | b | c | d |
M2 S2 N2 K1 M4 O1 M6 MK3 S4 MN4 NU2 S6 MU2 2N2 OO1 LAMBDA2 S1 M1 J1 Mm SSa Sa MSf Mf RHO1 Q1 T2 R2 2Q1 P1 2SM2 M3 L2 2MK3 K2 M8 MS4 |
720d-2s+2h
720d 720d-3s+2h+p 360d+h+90° 1440d-4s+4h 360d-2s+h-90° 2160d-6s+6h 1080d-2s+3h+90° 1440d 1440d-5s+4h+p 720d-3s+4h-p 2160d 720d-4s+4h 720d-4s+2h+2p 360d+2s+h+90° 720d-s+p+180° 360d+180° 360d-s+h+p+90° 360d+s+h-p+90° s-p 2h h 2s-2h 2s 360d-3s+3h-p-90° 360d-3s+h+p-90° 720d-h+p1 720d+h-p1+180° 360d-4s+h+2p-90° 360d-h-90° 720d+2s-2h 1080d-3s+3h+180° 720d-s+2h-p+180° 1080d-4s+3h-90° 720d+2h 2880d-8s+8h 1440d-2s+2h |
0 0 0 0 0 -0.006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
-0.037 0.0022 -0.037 -0.020 -0.075 0.189 -0.112 -0.057 0 -0.075 -0.037 0 -0.037 -0.037 0 -0.045 0 -0.029 -0.029 -0.066 0 0 0.072 0 0.188 0.189 0 0 0.189 -0.011 0 -0.056 -0.037 0.061 -0.013 -0.149 -0.035 |
0 0 0 0.136 0 0 0 0.135 0 0 0 0 0 0 0.640 0 0 0.201 0.199 -0.065 0 0 -0.064 0.415 0 0 0 0 0 0 -0.037 0 0 -0.020 0.298 0 0 |
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.134 0 0 0 0 0 0 0 0 0.039 0 0 0 0 0 0 0 0 0 0 0.032 0 0 |
STACK | INPUTS | OUTPUTS |
Level2 | Date | / |
Level1 | GMTime ( hh.mnss ) | water-level (m ) |
-If need be, take also into account the barometric corrections below:
Atmospheric pressure | 963hPa | 973hPa | 983hPa | 993hPa | 1003hPa | 1013hPa | 1023hPa | 1033hPa | 1043hPa |
corrections | +50cm | +40cm | +30cm | +20cm | +10cm | 0 | -10cm | -20cm | -30cm |
STACK | INPUT | OUTPUT |
Level1 | Date | Date |
STACK | INPUTS | OUTPUTS |
Level2 | [ wl(-2) wl(-1) wl(0) wl(1) wl(2) ] | water-level (m ) |
Level1 | GMTime(0) ( hh.mnss ) | tide time ( hh.mnss ) |
5°) XDoodson Numbers >>> V
-Given a 7-digit Extended Doodson Number XDO = c0c1c2c3c4c5c6 , 'XDO->V' calculates the argument V by the formula:
V = c0 x 360 d + ( c1 - c0 - 5 ) s + ( c2 + c0 - 5 ) h + ( c3 - 5 ) p + ( c4 - 5 ) N' + ( c5 - 5 ) p1 + ( c6 - 5 ) 90° with
h = 279.97° + 0.98564736° d all angles are expressed in degrees
Example: XDO = 2745547 ( R2 wave )
2745547 'XDO-V' returns:
177.03
in level 3
720.98560028
in level 2
{ 720 0 1 0 0 -1 180 }
in level 1
References:
-A slightly different approach is described in the "Manual of Harmonic Analysis and Prediction of Tides" - Paul Schureman - US Gov Printing Office.