INFO48 program description

The HP48

The HP48 uses a proprietary language called RPL for reverse polish lisp.
This is a FORTH like language in that it is stack based, and every "word" gets trans-
lated into a token to be run by an inner interpreter. Several extensions have been

made including the following:
1. Stack is a tagged data structure. Possible data types include flags, binary integers, real
numbers, complex numbers, arrays of real or complex numbers, lists of any data type, and
secondaries (program objects).

2. A system of local variables has been implemented. Local variables are defined by taking a
group of items on the stack, and executing the word BIND to associate these stack items
with a list of LAMs (local variable names).

3. secondaries (programs objects) can be manipulated just as easily as lists.

The HP48 is programable at three levels. User RPL is the language directly
enterable/editable/debugable via the calculator keyboard. User RPL is actually a
subset of system rpl. Though system rpl is the language used for the HP48's sys-
tem programs and is run by the same inner interpreter as user rpl, it is not normally
possible to create programs written in system rpl on the calculator itself. HP com-
pany has supplied several tools for programming system rpl offline on a PC, includ-
ing a compiler, an assembler and a linking loader to convert entry points into binary
tokens. Third party products, filling in the gaps left by HP, include system rpl de-
bugger, and more thoughough documentation of supported and unsupported entry
points.

INF 048 program organization

INFO48 is divided into two modules. Select_obj is the basic browser engine
which allows the user to move around the data structure, and info is the main
program.

Select_obj is based on the HP48's parameterized outer loop, which defines a
standard means of implementing a user interface. Parameters passed to it define a
display update secondary, keyboard definitions, menu definitions, and various mis-
cellaneous flags such as wether or not user and default keyboard definitions are to
be executed for undefined keys.

One parameter for the parameterized outer loop is the list of menu key defini-
tions. For each menu key, there is a list containing the key's label, and secondaries
for the menu key's unshifted, left-shifted, and right-shifted actions. Since these sec-
ondaries are programs in their own right, they can refer to select_obj's local vari-
ables and even call upon select_obj recursively when it is necessary for the user to
specify a second object for the menu key command to act upon. When select_obj is

INFO48 program description, page 2

called recursively, it is called with menu keys simply defining an exit condition, and
a flag preventing the user from doing anything but selecting an object.

To minimize memory used by local variable identifiers, an include file
"INFODEFN.S" is used to translate the long meaningfull names into single or dou-
ble character identifiers. For example "cursor_pos" gets translated to "c"; "cur-
sor_line" gets translated to "cl". When debugging the program, it is these single and
double character variables names that get displayed.

INFO48 eventually is translated into an HP48 library object. The <-LIB->
translator, resident on the HP48, looks for the following objects which define its

operation:

1. SROMID a unique number used to diferentiate library objects. The programer must
be sure not to use an id already in use by another library. Several FTP sites
maintain lists of previously used ROMID's. INFO48 uses 1702, a currently
unused library ROMID.

2. $VISIBLE alist of routines visible to the user. All other routines are translated into
romptr's which are a pair of numbers, as opposed to a named identifier.
INFO is the only visible identifier in INFO48.

3. $TITLE The name under which the library is displayed in the library menu. (
"INFO48")

4. SCONFIG A secondary to be executed when the calculator is warm-booted. (occurs
whenever a change in memory configuration is detected, or the calculator is
attempting to recover from a crash.)

All identifiers for program objects are downloaded into the HP48 prior to li-
brary creation. Since we are dealing with an MSDOS file for each program object;
"INFODEFN.S" converts each global program object identifier into a name suitable
for an MSDOS filename. For example, select_obj gets translated to SELOBJ; re-
order_vars gets translated to reordvar. Each of these MSDOS files is stored with
a .s extension, and a batch file was created to compile them and put them into a di-
rectory of executables. A kermit batch download was then used to transfer all these
program objects to the HP48, which was put into kermit server mode.

Brief description of INF 048 routines:

select_obj module:

routine nameDOS filename description
1. check_display CHKDISP check display; perform scroll or
complete updated as required

2. disp_def_msg DISPDEF display default message; clear
previous message from top of display

10.

11.

12.

13.

14.

15.
16.
17.

INFO48 program description, page 3

disp_msg

draw_obj

disp_search

enter_cmd

first_dir

home_dir

id_descr

init_ vars

pop_dir

print_screen

save_path

search_cmd

select_obj
select_keys

up_dir

info module:

routine name
copy_obj

create_link

DISPMSG

DRAWOBJ

DISPSEA

ENTER

FIRSTDIR

HOMEDIR
IDDESC

INIVARS

POPDIR

PRINTSCR

SAVEPATH

SEARCH

SELECT
SELKEYS
UPDR

DOS filename
COPYOBJ

CRLINK

display message; convert string to
graphics object, display at top

draw object; a single line on display,
two columns

display search; display current search
string at top of display

enter command; command executed

when user hit enter key: either go to
subdirectory/link, or call up standard
object editor

first directory; go to directory that
INFO48 was started from

home directory; go to root directory

id description; given id, produce
string used for first column

init vars; read variables in current
directory, store them and count

pop_dir; return to prior directory

print screen; how do you think
calculator pictures in documentation
were created?

save path; save current directory, and
cursor position in path_history

search command; alphanumeric
search

select_obj; main module program
select keys; keyboard definitions

up directory; go to parrent of current
directory

description
copy object; select
destination/source, copy to/from

create link; select object, create
pointer to that object

10.

11.

INFO48 program description, page 4

edit_link

get_obj

get_uniq_id

info

move_obj

put_obj
rename_obj

reorder_vars

sort_vars

EDLINK

GETOBJ

GETUNIQ

INFO
MOVOBIJ

PUTOBIJ
RENOBJ
REORDVAR

SORTVAR

edit link; call select to allow user to
edit where link points

get object; select another object
move above/below current

get unique id; prompt to name, make
sure it is valid, and does not already
exist

INFO48 main program

move object from one place to
another; params for
source/destination directory/location

put object in new location
just like it sounds

reorder variables; call system routine
and let user know info48 hasn't
crashed

use Joe Horn's quicksort; sort is 10
times faster then reordering done
immediately afterwards

INFO48 program description, page S

