INFO48, project description

The HP48SX is a scientific expandable calculator manufactured by Hewlett-
Packard company. It is based on HP's Saturn processor which is a four bit microproces-
sor with twenty bit integer registers and sixty-four bit floating point registers, and is opti-
mized for low current consumption. The HP48 includes HP's Reverse Polish Lisp (RPL)
operating system, a FORTH like system with extensions for handling symbolic math.
The data stack is tagged to allow complex data types to be stored including integers, re-
als, arrays, lists, and even programs. The HP48SX has two plugin slots which allow the
system to be extended with additional ROM software, or user programmable RAM up to
a possible total of 256K of additional RAM/ROM. Communications facilities are also in-
cluded, based on RS-232 voltage levels and the KERMIT protocol.

These communications facilities have fostered a large body of software to be made
available for the HP48. Unfortunately, the available information organizers have in my
opinion been deficient in several areas. They are usually based on a flat file system, with
a large array of records, each containing a fixed number of fields. The purpose of this
project has been to create a new type of information organizer, based on a more natural
organization modeled after the tree structured directory systems of modern operating sys-
tems and including links to allow multiple pointers from different areas to point to a sin-
gle block of information.

During the design phase of this project, several data structures were considered.
Most of the existing information organizers are based on the RPL list data type which al-
lows lists of any other data type, including nested lists. However, information organized
in this way is very difficult to work on, except while using the application that created the
data structure. I decided to use the HP48's built-in directory structure. This can be ma-
nipulated outside the application and other project oriented data to be intermixed. It also
handles links to other places easily, simply by storing a path and identifier name.

Within any project running on relatively slow hardware, there are design tradeoffs
that must be considered. A decision was made early on to make memory conservation the
lowest priority. The highest priority was assigned to ease of use and compatibility with
the existing directory scheme. Speed was given the next highest priority, with optimiza-
tions for speed frequently producing code spaces four times larger than if memory
conservation had the highest priority. A high priority was also given to idiot-proof (user-
proof?) error handling. Just about every conceivable type of user error has been ac-
counted for.

The HP48 can be programmed at three levels. The usual way of programming is
called user-RPL and is programmable directly on the calculator. An intermediate level
between user-RPL and machine language programming is system-RPL. User-RPL is ac-
tually a subset of system-RPL. They are both executed by the same interpreter and can
call programs written in the other. The main difference is that user-RPL commands in-
clude parameter type and range checking and operate on a limited set of data types.
System-RPL can be developed off-line on a PC, gaining the software development fea-
tures that a PC affords, such as a better keyboard and screen, faster processor speed, and
larger secondary storage.



INFO48, project description, page 2

The speed optimization of system-RPL is realized by the elimination of parameter
type and range checking and makes programming in it much more difficult. A seemingly
trivial bug can easily cause unrecoverable corruption to the system's data structures. Sys-
tem crashes are a frequent result with all memory being lost. However, it is possible to
store libraries of application software within a plug in memory card, and set it up as not
being merged in to the main body of system RAM. This allows software stored in the
plug-in card to be protected from system crashes by setting the card to read-only
operation.

Without third party software tools, this project would have been impossible to
complete. System-RPL is almost impossible to debug using the tools made available by
Hewlett-Packard company. Special thanks go to Detlef Mueller & Raymond Hellstern
for their wonderful set of system-RPL tools which include a calculator resident compiler
and decompiler, a system-RPL debugger and a calculator resident library maker. Special
thanks also go to Mika Heiskanen for his very complete documentation of system-RPL
entry points.

The basic design of INFO48 revolved around a browser engine which gives the
user a display of variables in the current directory. Entering a subdirectory is as simply
as pointing the cursor at the subdirectory's identifier, and hitting enter. Editing an object
is done similarly. Menu key definitions frequently have to recursively call the browser
engine, and this required that it be passed several control parameters. The main program
module simply calls the browser engine with startup values for the parameters, and a list
of menu key definitions.

The browser engine gives the user a two column display; on the left side are
names of objects, and on the right side are the values of the objects. Since an object may
be a subdirectory, some way was necessary to allow some data be displayed for that ob-
ject, such as a phone number. Simply displaying the first object of the directory was not
effective since it often produced undesirable results, such as showing the first person in a
group of people, where that first person was not a summary for the group. I ended up us-
ing a sentinel -- that is, it the first identifier of a subdirectory ends with a period, then it is
used for the display on the right hand column.

INFO48 was designed for general use by the HP48 using population. It will be
posted to Usenet, and uploaded to an FTP site. Packaged in it's .ZIP file will be the li-
brary, the user's manual in postscript form, a simple readme file in standard ascii form,
and the informator's source code so that others may learn from the techniques I used, and
perhaps inform me of better techniques that I'm not aware of yet.



