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Hi everybody!

This is part 4 of the Basic Calculus Marathon and it is also the start of 
volume 2. The first volume of the marathon contains parts 1, 2 and 3, 
and because it is already so big, I decided to continue in a new 
separate document. I wonder how many volumes this marathon will 
have when it is ready.

As we have seen, the HP49G provides very good tools for finding 
and working with derivatives. We will continue with one of the most 
typical things that have to do with calculus, namely finding extrema of 
functions. We begin with functions of a single variable. On the 
HP49G we can find local maxima and minima in many ways. Let's 
first choose a function to work with. Go to the EQW and enter 
X3 − 3 ⋅X2 − 9 ⋅X +17 . Store this function in FTEST  as we are 
going to use it more than once. We search for extrema of this 
function. As you know a function f x( )  has  a maximum at x = x0  
when:

∂f x( )
∂x x= x0

= 0  and 
∂2f x( )
∂x2

x=x 0

< 0

Similarly a function f x( )  has a maximum at x = x0  when:

∂f x( )
∂x x= x0

= 0  and 
∂2f x( )
∂x2

x=x 0

> 0

That means that we must find the roots of the first derivative of our 
function, and then plug these roots in the second derivative and check 
if it is greater or less than 0. Recall FTEST , enter X , press  and 
then  to get 3 ⋅ X2 − 6 ⋅ X − 9 . We will need the first 
derivative later, so store it in FTEST ′ . (The character " ′ " is character 
number 180.) Now we will find the roots of the first derivative. 
Recall FTEST ′ , enter X  and press . The HP49G returns 

X = 3 X = −1{ } . That means that for X = 3  and for X = −1 the 

function X3 − 3 ⋅X2 − 9 ⋅X +17  has extrema. Store the list in 
EXTREMA . Let's find the second derivative of FTEST  now. We will 
differentiate the first derivative for X  again. Recall FTEST ′ , enter X , 
press  and then  to get 6 ⋅ X − 6 . Store this result in FTEST ′′
. Now we will plug the values in the second derivative. Recall FTEST ′′  
and then the list EXTREMA . Press  and expand to get 
12 −12{ } . That means that for X = 3  the function has a local 

minimum and for X = −1 the function has a local maximum. What are 
the values of the local maximum and the local minimum? Recall FTEST  
and EXTREMA  and press  and . The HP49G says: 
−10 32{ }  which means that the function X3 − 3 ⋅X2 − 9 ⋅X +17  at 

X = 3  has a local minimum value of −10  and at X = −1 a local 
maximum value of 32 .

As you can see, the ability to find maxima and minima analytically 
strongly depends on the ability to solve analytically the equation:

∂f x( )
∂x

= 0

If the HP49G can solve that, then you win. If it can't solve that, then 
you can still win, but you can as well lose. Let's have such an example. 
We try to find the extrema of the function:

SIN X( )
X

Enter the above function and store it in FTEST . Take its first derivative:

−
SINX( ) − X ⋅ COS X( )

X2

and its second derivative: 
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−
X2 − 2( )⋅ SINX( ) + 2 ⋅ X ⋅COS X( )

X3

for X  and store them in FTEST ′  and FTEST ′′  respectively, like we 
did before.

Now, the equation:

−
SINX( ) − X ⋅ COS X( )

X2 = 0

can't be solved analytically on the HP49G (or elsewhere). We have to 
try other techniques to find the roots of this equation. Of course when 
analytical methods fail, we can try numerical methods, but then, oh 
then the magic is gone. If we could find some analytic closed 
solution, then one single formula would give us all solutions of the 

equation, i.e. all extrema of 
SIN X( )

X
. But if we use numerical 

methods, then we have to apply them over and over again, once for 
each extremum. Boring! But let's at least take a look at what the 

HP49G provides in such cases. Store 
SIN X( )

X
 in EQ , and do a 

function plot of it from X = −12.57  to X = 12.57  and with 
automatic scaling of the Y -view range. As you can see the function is 
symmetric under 
c o o r d i n a t e s  
t r a n s f o r m a t i o n  
X → −X , i.e.: 
SIN X( )

X
=

SIN −X( )
−X

. 

So we can examine 
only the function for 
positive values of X  
and then extend what 
we find to negative 

values of X . When the plot is ready the graphics cursor id positioned on 

the centre of the plot. Press  and then  to move it to the right 
edge of the screen leaving its Y -coordinate unchanged. We are going to 
re-centre the plot at the 
new graphics cursor 
position. Press  
then  and then 

. The plot is 
redrawn centred at 
12.57,.39( ) . As you 

can see the function has 
a series of maxima and 
minima. The maximum 
at X = 0  is "easy" to 
find, since the equation 
of the first derivative

−
SINX( ) − X ⋅ COS X( )

X2  is equal to 0  at X = 0 . This maximum is not 

found analytically but rather empirically through looking at the plot, but 
nonetheless it is exact and no approximation. Move the graphics cursor 
somewhere near the X -coordinate of the first minimum. Press  and 
then . The HP49G starts searching for an extremum of the 
function. It finds the extremum next to the current X -coordinate of the 
graphics cursor. When it finds it, it moves the cursor to that point, and 
displays the X - and Y -coordinates of the extremum at the bottom of the 
display. A copy of these coordinates is put on stack level 1 as a complex 
number. Move the cursor to the X -coordinate of the next maximum to 
the right. Press some menu key to display the menu again, and then 

 again to find the coordinates of the maximum. Repeat the same 
procedure for each of the displayed extrema. (That's the boring part.) 
When done, press  to return to the stack, which is full of 
labelled coordinates of extrema. We don't need the Y -coordinates, so 
let's isolate the X -coordinates of all these points. Press  to go to the 
interactive stack, and then repeat pressing  until you are at stack 
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level 7. Press  and then . This puts all objects from the 
current stack level to stack level 1 in a list. Press  to exit the 
interactive stack. Now press  to get the real part of all the labelled 
complex numbers in the list, i.e. the X -coordinates of the extrema. 
Store the list in EXTREMA . Let's examine the list. Since we have to 
do with a function in which trigonometrics are involved, we "smell" 
the presence of π . Recall EXTREMA , press ,  and then  
to divide all numbers in the list by the numeric value of π . Press  
to view the list. Notice that the numbers agree better and better with 

the formula 
2 ⋅ n+ 3

2
, where n = 0,1,2,…. We already have a first 

general result from the examination of the extrema of 
SIN X( )

X
. For 

big values of X , the extrema approach 
2 ⋅ n+ 3

2
⋅π . This is of course 

no proof, it is only an observation that leads to an assumption about 
the extrema. Let's make a further test of this assumption. Store the 
first derivative

−
SINX( ) − X ⋅ COS X( )

X2

in EQ . Press  to get the pop-up menu with the built-in 
applications of the HP49G. Using the arrow keys select 
4.Numeric Solver… . Press . Now a new pop-up appears 
that contains all numeric solvers of the HP49G. The first one is 
1.Solve Equation… and it is already selected. Press  to go 
to the SOLVE EQUATION screen. The first derivative is already 
stored in EQ  and so it appears in the input field Eq: . Select the input 

field X:. Let's use a guess value of 
2 ⋅ n+ 3

2
⋅π , with n = 100 . Type 

2 100 ∗ 3 + 2 / π ∗ → NUM and press . The 
numeric value 318.871654339  is put in the input field X:, and the 
field Eq:  is selected. Select the input field X: again, press  and 

then . After a while the HP49G returns 318.868518261 in the 
input field X:, which is almost what we used as a guess value. It seems 
that our assumption about the extrema is correct. Press  to 
return to the stack which contains the found solution at level 1. Drop the 
solution. The HP49G has also stored the solution in variable X . Since 
this is often the variable VX  and the CAS doesn't like numeric values 
stored in VX , purge variable X  to avoid problems later. As we see the 

sequence of X -values that correspond to the extrema of 
SIN X( )

X
 

resembles the sequence 
2 ⋅ n+ 3

2
⋅π  more and more as n  gets greater 

and greater. Can we use this fact in our investigations? Can we use it to 
at least get an analytic approximation of the extrema, that is better than 
2 ⋅ n+ 3

2
⋅π ? Let's see. Since we smelled that for X =

2 ⋅n + 3
2

⋅π  the 

function has (almost) extrema and that for growing n  we approach the 
extrema better and better, we can try to make a series expansion at 

X =
2 ⋅n + 3

2
⋅π , take the derivative of the series, and solve the series 

for X . Recall FTEST , enter X = X0 , then enter 3 , and then press 
. The HP49G shakes, rattles and rolls and it gasps out a huge 

list in stack level 2 and h = X − X0  in stack level 1. Press  to 
substitute X − X0  for h in all algebraic objects in the list. Enter 3  and 
press  to get the third item of the list which is the series expansion. 
Now press  to get rid of the label. The series expansion that the 
HP49G returned is of 4th order. Press  to get the series expansion 
in the EQW for editing. We want a series expansion of 3rd order (didn't 
I tell you that?), so we are going to delete the 4th order term, i.e. 
truncate the series the brutal way. In the EQW press  to select the 
first (4th order) term, and then press . The 4th order term is deleted 
and the 3rd order term is now selected. Press  to put the edited 
series expansion on the stack. The expression is now:
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3 ⋅ X02 −6( ) ⋅SIN X0( ) − X02 − 6 ⋅X0( ) ⋅COS X0( )
6 ⋅ X04 ⋅ X − X0( )3

−
X02 − 2( ) ⋅SIN X0( ) + 2 ⋅ X0 ⋅ COS X0( )

2 ⋅ X03 ⋅ X − X0( )2

−
SINX0( ) + X0 ⋅ COS X0( )

X02 ⋅ X − X0( ) +
SIN X0( )

X0

Store that in SERTEST . Now, we know that for extrema the 
equation holds:

∂f x( )
∂x x= x0

= 0

where x0  is the value for which the function f x( )  goes through the 
extremum. The series expansion is:

f x0( ) +
1
1!

⋅
∂f x( )
∂x x=x 0

⋅ x − x0( ) +
1
2!

⋅
∂2f x( )
∂x2

x= x0

⋅ x − x0( )2
+…

If we use the fact that we did the series expansion at (approximately) 
the points where the extrema occur, we can stripe off the term

−
SINX0( ) + X0 ⋅ COS X0( )

X02 ⋅ X − X0( )

(first derivative) from our series expansion, since it is (approximately) 
0.

Recall SERTEST , press  to get it into the EQW, press  and 

then twice  to select the first order term, and press  to let it 
go. Press  to put the series on the stack. The expression now 
must be:

3 ⋅ X02 −6( ) ⋅SIN X0( ) − X02 − 6 ⋅X0( ) ⋅COS X0( )
6 ⋅ X04 ⋅ X − X0( )3

−
X02 − 2( ) ⋅SIN X0( ) + 2 ⋅ X0 ⋅ COS X0( )

2 ⋅ X03 ⋅ X − X0( )2 +
SIN X0( )

X0

Now enter X  and press  to get the derivative. You get:

3 ⋅ X02 −6( ) ⋅SIN X0( ) − X02 − 6 ⋅X0( ) ⋅COS X0( )
6 ⋅ X04 ⋅3 ⋅ X − X0( )2

−
X02 − 2( ) ⋅SIN X0( ) + 2 ⋅ X0 ⋅ COS X0( )

2 ⋅ X03 ⋅ 2 ⋅ X − X0( )

Enter:

X0 =
2 ⋅n + 3

2
⋅π

and press  to substitute 
2 ⋅ n+ 3

2
⋅π  for X0 . The expression now 

is:

3 ⋅ 2 ⋅ n+ 3
2

⋅ π 
 

 
 

2

− 6
 

 
  

 
  ⋅SIN

2 ⋅ n+ 3
2

⋅π 
 

 
 

− 2 ⋅ n + 3
2

⋅π 
 

 
 

2

− 6 ⋅ 2 ⋅n + 3
2

⋅π 
 

 
 

 

 
  

 
 ⋅ COS 2 ⋅ n+ 3

2
⋅π 

 
 
 

 

 

 
 
 

 

 

 
 
 

6 ⋅ 2 ⋅ n + 3
2

⋅π 
 

 
 

4 ⋅ 3 ⋅ X − 2 ⋅ n+ 3
2

⋅π 
 

 
 

2

−

2 ⋅ n+ 3
2

⋅π 
 

 
 

2

− 2
 

 
  

 
 ⋅ SIN

2 ⋅ n + 3
2

⋅π 
 

 
 

+2 ⋅ 2 ⋅ n +3
2

⋅π 
 

 
 ⋅ COS 2 ⋅n + 3

2
⋅π 

 
 
 

 

 

 
 
 

 

 

 
 
 

2 ⋅ 2 ⋅ n+ 3
2

⋅π 
 

 
 

3 ⋅ 2 ⋅ X − 2 ⋅ n +3
2

⋅ π 
 

 
 
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Store this result in DSER1. Recall DSER1 and let's continue. The 
derivative of the series contains

COS
2 ⋅n + 3

2
⋅π

 
 

 
 

and 

SIN
2 ⋅n+ 3

2
⋅π

 
 

 
 

All cosines of 
2 ⋅ n+ 3

2
⋅π  are equal to 0  for integer values of n . 

(Should I repeat the story about the missing feature 
INTEGERASSUME ? ;-)) Enter the list:

COS
2 ⋅n + 3

2
⋅π

 
 

 
 0

 
 
 

 
 
 

and press . Drop the 1 from the stack. The sines of 

2 ⋅ n+ 3
2

⋅π  will be either 1 or −1 for integer values of n . Press 

 to make a copy of the expression on stack level 1. Enter the 
list:

SIN
2 ⋅n + 3

2
⋅π

 
 

 
 1

 
 
 

 
 
 

press  and drop the 1 again. The expression on stack level 
1 is now:

3 ⋅ 2 ⋅n + 3
2

⋅π 
 

 
 

2

− 6
 

 
  

 
 ⋅1− 2⋅ n+ 3

2
⋅π 

 
 
 

2

− 6⋅ 2 ⋅n + 3
2

⋅π 
 

 
 

 

 
  

 
 ⋅0

6 ⋅ 2 ⋅n + 3
2

⋅π 
 

 
 

4 ⋅3 ⋅ X − 2 ⋅n + 3
2

⋅π 
 

 
 

2

−

2 ⋅n + 3
2

⋅π 
 

 
 

2

− 2
 

 
  

 
 ⋅1+ 2⋅ 2 ⋅n + 3

2
⋅π 

 
 
 ⋅ 0

2⋅ 2 ⋅ n+ 3
2

⋅π 
 

 
 

3 ⋅ 2 ⋅ X − 2⋅n + 3
2

⋅π 
 

 
 

Store the resulting expression in DSERP . Now enter the list:

SIN
2 ⋅n + 3

2
⋅π

 
 

 
 −1

 
 
 

 
 
 

press  and drop the 1. The expression on stack level 1 is 
now:

3 ⋅ 2 ⋅n + 3
2

⋅ π 
 

 
 

2

− 6
 

 
  

 
 ⋅ −1− 2 ⋅n + 3

2
⋅π 

 
 
 

2

−6 ⋅ 2 ⋅ n+ 3
2

⋅ π 
 

 
 

 

 
  

 
 ⋅ 0

6 ⋅ 2 ⋅n+ 3
2

⋅ π 
 

 
 

4 ⋅3 ⋅ X −
2 ⋅n+ 3

2
⋅π

 
 

 
 

2

−

2 ⋅n + 3
2

⋅ π 
 

 
 

2

− 2
 

 
  

 
 ⋅−1+ 2 ⋅ 2 ⋅n+ 3

2
⋅π 

 
 
 

⋅0

2 ⋅ 2 ⋅n+ 3
2

⋅π 
 

 
 

3 ⋅2 ⋅ X −
2 ⋅n + 3

2
⋅π

 
 

 
 

Store the resulting expression in DSERN . These two expressions are 
polynomials of second degree in X  which we can solve analytically. 
Actually we only need to solve one of them since DSERP = −DSERN . 
Recall both DSERP  and DSERN  on the stack, press  and expand to 
get 0 , which tells us that indeed the one polynomial is the negative of 
the other. Since the first derivative of some function is 0 at the extrema, 
recall DSERP , enter X  and press . The HP49G returns:
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X =
10 ⋅n +15( )⋅π

6
X =

2 ⋅n + 3( )⋅π
2

 
 
 

 
 
 

The first of these two solutions is not useful in this case. The second 
is exactly our first analytic approximation of the real extrema. So we 
didn't get a better approximation. But we don't give up. On our way 
to a better approximation we deleted the first order term of the series 
expansion because we assumed that it is approximately 0, since the 
first derivative of the expression vanishes at the extrema. But we 
didn't have the exact extrema. We had only the approximations 

X0 =
2 ⋅n + 3

2
⋅π , of which we know that they are almost  the 

extrema. Would it help to not delete them? Let's see. Recall 
SERTEST , enter X  and press  to get the derivative:

3 ⋅ X02 −6( ) ⋅SIN X0( ) − X02 − 6 ⋅X0( ) ⋅COS X0( )
6 ⋅ X04 ⋅3 ⋅ X − X0( )2

−
X02 − 2( ) ⋅SIN X0( ) + 2 ⋅ X0 ⋅ COS X0( )

2 ⋅ X03 ⋅ 2 ⋅ X − X0( )

−
SINX0( ) + X0 ⋅ COS X0( )

X02

Store this in DSER1. Now enter:

X0 =
2 ⋅n + 3

2
⋅π

and press  to substitute 
2 ⋅ n+ 3

2
⋅π  for X0 . Again the sub 

expressions:

COS
2⋅n + 3

2
⋅π

 
 

 
 

are all equal to 0 , and the sub expressions:

SIN
2 ⋅n+ 3

2
⋅π

 
 

 
 

are all equal to 1 or −1.

Enter the list:

COS
2 ⋅n + 3

2
⋅π

 
 

 
 0

 
 
 

 
 
 

and press . Drop the 1 from the stack. Press  to make 
a copy of the expression on stack level 1. Enter the list:

SIN
2 ⋅n + 3

2
⋅π

 
 

 
 1

 
 
 

 
 
 

press  and drop the 1 again. The expression on stack level 1 
is now:

3 ⋅ 2 ⋅n + 3
2

⋅ π 
 

 
 

2

− 6
 

 
  

 
 ⋅1− 2 ⋅ n+ 3

2
⋅ π 

 
 
 

2

− 6 ⋅ 2 ⋅n + 3
2

⋅ π 
 

 
 

 

 
  

 
 ⋅0

6 ⋅ 2 ⋅n+ 3
2

⋅ π 
 

 
 

4 ⋅3 ⋅ X−
2 ⋅n+ 3

2
⋅ π

 
 

 
 

2

−

2 ⋅n + 3
2

⋅ π 
 

 
 

2

− 2
 

 
  

 
  ⋅1+2 ⋅ 2 ⋅n + 3

2
⋅π 

 
 
 

⋅ 0

2 ⋅ 2 ⋅n+ 3
2

⋅π 
 

 
 

3 ⋅2 ⋅ X −
2 ⋅n+ 3

2
⋅ π

 
 

 
 −

1+
2 ⋅n+ 3

2
⋅ π

 
 

 
 ⋅0

2 ⋅n+ 3
2

⋅ π 
 

 
 

2

Store the resulting expression in DSERP . Now enter the list:
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SIN
2 ⋅n + 3

2
⋅π

 
 

 
 −1

 
 
 

 
 
 

press  and drop the 1. The expression on stack level 1 is 
now:

3 ⋅ 2 ⋅n + 3
2

⋅ π 
 

 
 

2

− 6
 

 
  

 
 ⋅−1− 2 ⋅n + 3

2
⋅π 

 
 
 

2

− 6 ⋅ 2 ⋅ n+ 3
2

⋅π 
 

 
 

 

 
  

 
  ⋅0

6 ⋅
2 ⋅n+ 3

2
⋅ π

 
 

 
 

4 ⋅ 3 ⋅ X −
2 ⋅ n+ 3

2
⋅π

 
 

 
 

2

−

2 ⋅n + 3
2

⋅ π 
 

 
 

2

− 2
 

 
  

 
 ⋅−1+ 2⋅ 2 ⋅ n+ 3

2
⋅π 

 
 
 ⋅0

2 ⋅
2⋅ n+ 3

2
⋅π

 
 

 
 

3 ⋅2 ⋅ X −
2 ⋅n+ 3

2
⋅π

 
 

 
 −

− 1+ 2 ⋅n + 3
2

⋅ π 
 

 
 

⋅0

2⋅n + 3
2

⋅ π
 
 

 
 

2

Store the resulting expression in DSERN . Again both expressions 
are negatives of each other, so we only need to solve one of them. 
Recall DSERP , enter X  and press . The HP49G returns:

32 ⋅n3 + 144 ⋅n2 + 216 ⋅n +108( ) ⋅π 3 − 64 ⋅n + 96( ) ⋅ π

−π ⋅

64 ⋅n6 + 576 ⋅ n5 + 2160 ⋅n4

+4320⋅ n3 + 4860⋅ n2 + 2196 ⋅n + 729

 

 
  

 
 ⋅π4 +

128 ⋅ n4 + 728 ⋅n3 + 1728⋅ n2 + 1728⋅ n+ 648( )⋅ π2 −

512 ⋅n2 + 1536⋅n + 1152( )

 

 

 
 
 
 
  

 

 

 
 
 
 
 

24⋅ n2 + 72 ⋅ n+ 54( )⋅π2 − 48

32 ⋅n3 + 144 ⋅n2 + 216 ⋅n +108( ) ⋅π 3 − 64 ⋅n + 96( ) ⋅ π

+π ⋅

64 ⋅ n6 + 576 ⋅ n5 + 2160⋅n4

+4320⋅ n3 + 4860⋅ n2 + 2196 ⋅n + 729

 

 
  

 
 ⋅π4 +

128 ⋅ n4 + 728 ⋅n3 + 1728⋅ n2 + 1728⋅ n+ 648( )⋅ π2 −

512 ⋅n2 + 1536⋅n + 1152( )

 

 

 
 
 
 
  

 

 

 
 
 
 
 

24⋅ n2 +72 ⋅ n+ 54( )⋅π2 − 48

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Let's see how good these solutions are. Press  to explode the 
list, and then  to drop the element count. Now the second solution is 
on stack level 1. Press  to make a copy of it. We are going to 
make a sequence for n = 0  to n = 6 . Enter n , 0 , 6 , 1, and press  
to create the sequence. The HP49G returns the sequence in a list after a 
while. Now we will convert the members of the sequence to numbers. 
Enter a 1, then the program << →NUM >>, and then press . 
The HP49G converts all expressions in the list to numbers. Are these 

numbers the values of X  for which 
SIN X( )

X
 goes through extrema? 

Recall EXTREMA and compare the two lists. The numbers we found 
are not what we wanted. Press  three times to get rid of the lists and 
of the solution that we don't need. Now the first solution is on stack 
level 1. Let's try our luck with it. Press  to make a copy of it. 
Enter n , 0 , 6 , 1, and press  to create the sequence for n = 0  to 
n = 6 . Let's use MAP  instead of DOSUBS to turn the expressions to 
numbers. Enter the small program << →NUM >>, and then press . 
The HP49G converts all expressions in the list to numbers. Recall 
EXTREMA and compare the two lists. The numbers we found are 
almost equal to the numbers in the list which was stored in EXTREMA . 
And they are indeed good approximations of the real extrema. Press  
to see that the worst of our analytic approximations differs only about 
.00091 from the real extremum. Drop the differences list. Store the 
solution in APREXTR . We have found that the values of X  for which 
SIN X( )

X
 goes through extrema can be very well approximated by:

X =

32 ⋅n3 +144 ⋅n2 + 216 ⋅n + 108( )⋅π3 − 64 ⋅n + 96( )⋅π

− π ⋅

64 ⋅n6 + 576 ⋅ n5 + 2160⋅ n4

+4320⋅n3 + 4860⋅n2 + 2196⋅ n+ 729

 

 
  

 
 ⋅π 4 +

128⋅ n4 +728 ⋅n3 + 1728 ⋅n2 +1728 ⋅n +648( ) ⋅π 2 −

512 ⋅n2 +1536 ⋅n +1152( )

 

 

 
 
 
 
  

 

 

 
 
 
 
 

24 ⋅n2 + 72 ⋅n + 54( )⋅π 2 − 48
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where n = 0,1,2,…. Of course the negatives are also such values, i.e.:

X = −

32 ⋅ n3 +144 ⋅n2 + 216 ⋅ n+ 108( )⋅π 3 − 64 ⋅ n+ 96( )⋅π

− π ⋅

64 ⋅n6 + 576 ⋅n5 + 2160⋅n4

+4320⋅n3 + 4860 ⋅n2 + 2196⋅n + 729

 

 
  

 
 ⋅π 4 +

128 ⋅n4 + 728 ⋅n3 +1728 ⋅n2 +1728⋅ n+ 648( ) ⋅π 2 −

512 ⋅n2 +1536 ⋅n+ 1152( )

 

 

 
 
 
 
  

 

 

 
 
 
 
 

24 ⋅n2 + 72 ⋅n + 54( ) ⋅π 2 − 48

since we examined only the part 
SIN X( )

X
 for X > 0  and we know that 

the function 
SIN X( )

X
 is symmetric under the coordinates change 

X → −X . Let's make the formula stored in APREXTR  a little bit 

nicer. Enter n ≥ 0  and press . Drop the assumption from the 

stack. Recall APREXTR  and press  to get it in the EQW. Select 
the whole square root and press . After some centuries the 
HP49G returns:

2 ⋅ n+ 3( )⋅
16 ⋅n4 + 96 ⋅n3 + 216 ⋅n2 + 216 ⋅ n+ 81( )⋅π 4

+ 32 ⋅ n2 + 96 ⋅n +72( )⋅π 2 −128

Still in the EQW select the whole expression and press  and 
then . This will convert the expression to:

X = 4 ⋅ n+ 6( )⋅ π
3

−

2 ⋅n + 3( ) ⋅ π ⋅
16 ⋅n4 + 96 ⋅n3 + 216⋅ n2 + 216 ⋅ n+ 81( )⋅π4

+ 32 ⋅n2 + 96⋅ n+ 72( )⋅ π 2 − 128

24 ⋅ n2 + 72 ⋅n + 54( ) ⋅π 2 − 48

Select the sub expression 
4 ⋅n+ 6( ) ⋅π

3
 and press  and then 

. The sub expression is converted to 
2 ⋅ n+ 3( )⋅ π ⋅2

3
. Select the 

whole sub expression under the square root, 
16 ⋅n4 + 96 ⋅n3 + 216 ⋅ n2 + 216 ⋅ n+ 81( )⋅π 4 + 32 ⋅n2 + 96 ⋅n + 72( ) ⋅π 2 −128  

and press again  and , to turn it to 

4 ⋅ n2 +12 ⋅n + 9( )⋅π 2 +16( ) ⋅ 4 ⋅n2 +12 ⋅n + 9( )⋅π 2 − 8( ) . Now select 

the first sub expression 4 ⋅n2 +12 ⋅n + 9  and collect it the same way to 
2 ⋅ n+ 3( )2

. Repeat the same for the second sub expression 

4 ⋅n2 +12 ⋅n + 9 . Select the whole denominator of the ratio, 
24 ⋅n2 + 72 ⋅n + 54( )⋅π 2 − 48, and collect it to 

4 ⋅ n2 +12 ⋅n + 9( )⋅π 2 − 8( ) ⋅6 . Collect now the sub expression 

4 ⋅n2 +12 ⋅n + 9  of the denominator to 2 ⋅ n+ 3( )2
. The expression in 

the EQW must be now:

X =
2 ⋅n + 3( )⋅ π ⋅2

3
−

2 ⋅n + 3( ) ⋅ π ⋅ 2⋅ n+ 3( )2 ⋅π 2 +16( )⋅ 2⋅ n+ 3( )2 ⋅ π 2 − 8( )
2 ⋅n + 3( )2 ⋅π2 − 8( ) ⋅ 6

Press  to put the edited expression to the stack, and store it in 
APREXTR . Now we are going to try to understand why the 

expression 
2 ⋅ n+ 3

2
⋅π  is a good approximation for big values of n , and 

what it has to do with:
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X =
2 ⋅n + 3( )⋅ π ⋅2

3
−

2 ⋅n + 3( ) ⋅ π ⋅ 2⋅ n+ 3( )2 ⋅π 2 +16( )⋅ 2⋅ n+ 3( )2 ⋅ π 2 − 8( )
2 ⋅n + 3( )2 ⋅π2 − 8( ) ⋅ 6

Recall APREXTR  and take it to the EQW. When we move to big 
values of n , then we have:

2 ⋅ n+ 3( )2 ⋅π 2 + 16 ≈ 2 ⋅n + 3( )2 ⋅π 2

and also:

2 ⋅ n+ 3( )2 ⋅π 2 − 8 ≈ 2 ⋅ n+ 3( )2 ⋅π 2

That means:

X = 2 ⋅n + 3( )⋅ π ⋅2
3

−
2 ⋅n + 3( ) ⋅ π ⋅ 2 ⋅n + 3( )2 ⋅π2 +16( )⋅ 2⋅ n + 3( )2 ⋅π2 − 8( )

2 ⋅n + 3( )2 ⋅π2 − 8( )⋅ 6
≈

2⋅ n + 3( )⋅π ⋅ 2

3
−

2 ⋅n + 3( )⋅ π ⋅ 2 ⋅n + 3( )2 ⋅π 2 ⋅ 2⋅ n+ 3( )2 ⋅π 2

2 ⋅n + 3( )2 ⋅π 2 ⋅6
=

2⋅ n + 3( )⋅π ⋅ 2

3
− 2 ⋅n + 3( )⋅π

6
= 2 ⋅n + 3( )⋅π

2

Our approximated formula is good enough to create very good 
numeric results and to explain why bigger values of n  result in X -

values for the extrema, which behave more and more like 
2 ⋅ n+ 3

2
⋅π . 

The HP49G was a great helper in our quest for an analytic 

approximation of the extrema of 
SIN X( )

X
. Now we can calculate 

numeric values of the extrema not only for big but for small values of 
n  with a maximum difference of less than 1E − 3  from the real 
values, and we can examine the behaviour of the extrema further, and 
we can create a user defined function or program that calculates the 

extrema for any n  instead of working interactively in the graphics 
environment, and we can use this user defined function or program in 
other programs. For those who still prefer the HP48: Do the same! 
(Without support from Mathematica of course. He, he, you are going to 
wait a loooooong time, if you ever going to reach the end.) The HP49G 
is  the flagship. It is sometimes a strange flagship with many quirks and 
a peculiar idiosyncrasy, but it is the flagship. Compared to it the HP48 
is more sort of fisherman's boat. Period!

Before we go further, we repeat how to use the technique using the 
picture below. We approximate the original function with a polynomial 
of degree 3 at the point in the neighbourhood of which we have extrema 
(blue curve, blue point). We used the parameter n  to distinguish 
between the different extrema. Then we differentiate that polynomial. 
We get a quadratic polynomial (red curve) and we solve this instead of 
the derivative of the original function. One of its solutions is a better 
analytic approximation of the extrema (red point).

We continue with yet another demonstration of the superiority of this 
machine compared to the fisherman's boats. First enter n  and press 
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 to remove all assumptions about n . Press  to drop 

'n'  from the stack. We are going to use Newton's method to get 
analytic closed approximations of the extrema fo the function 
a ⋅X4 + b ⋅X3 + X . I include in this marathon Aaron's excellent 
posting about Newton's Method. I only replaced the text formulae and 
the keys with graphics for better lookings. Here we go:

 Aaron starts here 

The first of teaching aids for Calculus with the HP-49G and the TI-89.  
This topic will cover the Newton-Raphson recursive algorithm, commonly 
known as Newton's Method.  Given the fact that we already know how to 
calculate derivatives and find the equations of tangent lines to curves at 
a given point, we will move on.  To set the stage for a problem, suppose a 
used car
dealer offers to sell you a car for $18,000 or for payments of $375 per 
month for five years.  You would like to know what monthly interest rate 
the dealer is, in effect, charging you.  To find the answer, you have to 
solve the equation (for our time here we will not discuss how we come up 
with the equation.  Accept it right now for no better reason than 
authority):

48 ⋅ x ⋅ 1+ x( )60 − 1+ x( )60 + 1= 0

How would you approach solving it?  (Note for a quadratic 
a ⋅x 2 + b ⋅x + c , there is a well known formula to find the roots called 
the quadratic equation, 3rd and 4th degree equations get much more 
complicated and there are formulas to find the roots there, but if  f x( )  is 

a polynomial of degree 5 or higher, there is no such formula to find exact 
roots.)  We could graph the function in our HP-49 or TI-89, set the 
viewing rectangle to x → 0,.012{ } , y → −.05,.15{ } , and then use the 

trace function to approximate the root between .007 and .008.  Zooming 
in repeatedly, we could find correct to nine decimal places that the root 
is .007628603 .  But this is tiresome, redundant, and takes a great 

deal of time.  We could use the Solve( ) command in our calculators to 

find the approx solution as well.  But how does the calculator find the root?  
They use a variety of methods, but the most commonly used method is 
Newton's Method.  Now what is Newton's Method? Lets discuss it detail:

Suppose you have a curve that has a root R  and suppose R  is not known.  
To find R , we take a known value close to R  and call it x1 .  Then we locate 

the y -value on the curve so that we have a point x1,f x1( )( ) .  Then calculate 

the tangent line at that point and sketch it such that the tangent line crosses 
the x  axis.  That root where the tangent line crossed we will call x2 .  Then 

find the y -value of x2  and repeat the process.  What you will find is in 

effect x2 , x3 , etc will get closer and closer to your R  root (there are 

cases where this will fail, we will discuss these later).  In fact, you only 
need to find about x5  or x6  to be correct to 6-8 decimal places!  To find a 

formula for x2  in terms of x1 , we use the fact that the slope of L  is 

f'9x10, so its equation is:

y − f x1( ) = f' x1( )⋅ x − x1( ) ; where f' x1( )  is the derivative of f x1( ) .

Since the x -intercept of L  is x2 , we set y = 0  and obtain;

0 − f x1( ) = f' x1( )⋅ x2 − x1( ) .

If f' x1( ) ≠ 0 , we can solve this equation for x2 :

x2 = x1 −
f x1( )
f' x1( )

We use x2  as a second approximation to R :

x3 = x2 −
f x2( )
f' x2( )

If we keep repeating this process, we obtain a sequence of approximations 

x1,x 2,x3 ,x 4,…  In general, if the nth approximation is xn  and f' xn( ) ≠ 0 , 
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then the next approximation is given by:

xn+1 = xn −
f xn( )
f' xn( ) .

If the numbers xn  become closer and closer to R  as n  becomes large, 

then we say that the sequence converges to R  and we write:

lim
n→∞

xn = R

Although the sequence fo successive approximations converges to the 
desired root for some functions, in other circumstances the sequence 
may not converge.  This is likely to be the case when f' x1( )  is close to 0 .  

It might even happen that an approximation falls outside the domain of f .  
THEN NEWTONS METHOD FAILS AND A BETTER INITIAL APPROXIMATION 
X1 SHOULD BE CHOSEN.

Now how would you use this with the HP-49 or the TI-89?  Well, each 
calculator goes about it differently but the idea is the same.  Suppose we

want to find the root of x3 + x +1= 0 . Let's make our first guess (x1) 

be −1.  f' x( ) = 3 ⋅ x2 +1, so our equation would be:

−1( ) −
−1( )3 + −1( ) +1
3 ⋅ − 1( )2 +1

.

Which yields −.75 .  Putting .75  in x2  and re-evaluating gives us 

−.686046511628 .  Put our answer now in for x3  and evaluate again, 

and we get −.682339582597 .  One more time yields 

−.682327803947 , and a last evaluation gives us 

−.682327803828 .  (Note: Notice how on our 2nd and 3rd evaluations 

.68  is repeated, and on our 3rd and 4th .6823 is repeated and on our 
4th and 5th −.682327803  is repeated?  Newton brought to light 

something interesting when coming up with his recursive formula.  For 

each evaluation after x2 , your accuracy will double.  Notice we have two 

decimal places of accuracy by our 3rd evaluation, 4 by our fourth, and 9 by 
our fifth. Newton's Method is a GREAT way to get accurate in a hurry.  
Chances are by our 6th evaluation, we would be accurate to 18 decimal 
places!)

Now those of you with the HP-49, you can program it so each time you hit 
enter, your answer will be displayed.  To program the algorithm, do the 
following (assuming you are in RPN mode): Place your first equation ( f x( ) ) 

on the stack.  Press , then . Now put the derivative of your first 

equation (f' x( )) on the stack.  Press  then .  Press your first 

initial guess on the stack (in our previous example, it would be −1), press 
 then .  Now for the program.  Key in the following, then press 

enter to place it on the stack:

<< X Y Z / - →NUM { X } PURGE X STO X >>

Now that it is on the stack, press  twice, type NEWT , the .  
If you press the  button you will notice your variables X , Y , Z , and 
NEWT  above their respective soft keys. Now every time your press 

, you will get a numerical value closer and closer to your root.  On 

the TI-89, the idea is the same.  Press  then .  This brings you to 

the y =  screen.  Type your first equation in y1, and your second equation 

in y2 . Then press the home button.  For your program here, press your 

first initial guess (ours was −1) the press  , press , then 
.  Here you assigned a value to x ,  Then in this sequence, press the 

following:

X - Y1(X) / Y2(X) STO→ X ENTER

Each time you press , you will get closer and closer to the root you 
are seeking.
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I know this was a lengthy post, so your comments are appreciated.  Any 
questions, feel free to email me, or respond to the post.  Thanks!

-Aaron

 Aaron ends here 

Comments? What comments? There can be no other comments but a 
big fat "Thank you" for such an excellent posting. I wish there would 
be more postings like this, which not only illustrate so nicely the 
usage of our tools, but which at the same time also show that there are 
no "dark sides", "light sides" and other sides whatsoever. Hopefully 
we will be able to converge at the end, and leave the stupid prejudice-
patterns behind us.

The above posting of Aaron describes a method for finding analytic 
approximations of extrema of functions when the HP49G can't find 
the roots of the first derivative of some function analytically. We use 
again one example to demonstrate the method. We try to find the 
extrema of the function SIN3 ⋅X( ) + e− X  from 0  to +∞ . This function 
consists of two parts, one of which is an exponential. The exponential 
part rapidly approaches 0  when X  approaches +∞ . So we expect that 
the function is essentially equal to SIN3 ⋅X( )  for big values of X . 

The extrema of this function are 
n ⋅π

3
+

π
6

. This will be our "guess" 

value for finding the extrema using Newton's method. We will use 
this method to find analytic approximations of the extrema of 
SIN3 ⋅X( ) + e− X . That means that we will use the method for finding 

the roots of the first derivative of the function. Enter SIN3 ⋅X( ) + e− X , 
then enter X , and press  to get the first derivative, 
3 ⋅ COS 3 ⋅ X( ) + e− X ⋅−1. This will be the function for which we want 
to find the roots. The roots of this function are the extrema of the 
original function. Store the function in FTEST . Recall FTEST , 
enter X , and press  to get the derivative of the derivative, 
3 ⋅− 3 ⋅ SIN3 ⋅X( )( ) + e−X ⋅−1⋅−1. Store it in FTEST ′ . Now we take 

a closer look to Newton's method again. As Aaron said, if we start at 
some "guess" value x0  for the root, the first approximation that this 
method gives us, is:

x1 = x0 −
f x0( )
f' x0( )

The second approximation is:

x2 = x1 −
f x1( )
f' x1( )

If we substitute:

x1 = x0 −
f x0( )
f' x0( )

in formula for the second approximation, we get:

x2 = x0 −
f x0( )
f' x0( ) −

f x0 −
f x0( )
f' x0( )

 

 
  

 
 

f' x0 −
f x0( )
f' x0( )

 

 
  

 
 

Let's try first to find out how good the first approximation is. Enter 
F X( ) , recall FTEST , and press . Now you have 

F X( ) = 3 ⋅COS 3 ⋅ X( ) + e−X ⋅−1 on stack level 1. Press  to make 
the user defined function F . Now enter F′ X( ) , recall FTEST ′ , press 

 and then  to make the user defined function F′ . Enter:
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APPREX X( ) = X −
F X( )
F′ X( )

and press  to make the user defined function APPREX  which 
returns the approximations of roots using Newton's method. Now, 

enter our "guess" for the extrema, 
n ⋅π

3
+

π
6

. Press  to get:

n ⋅π
3

+
π
6

+
3 ⋅ COS 3 ⋅ n ⋅π

3
+ π

6
 
 

 
 

 
 
  

 
+ e

−
n⋅π

3
+

π
6 ⋅−1

3 ⋅− 3 ⋅SIN 3 ⋅
n ⋅π

3
+

π
6

 
 

 
 

 
 
  

 
 
 
  

 
 + e

− n⋅π
3

+ π
6 ⋅−1⋅−1

Press  to get the expression in the EQW for a little bit editing. 
Select the sub expression:

3 ⋅
n ⋅π

3
+

π
6

 
 

 
 

in the COS  function and expand it to get:

2 ⋅ n+1( ) ⋅π
2

.

Now select the sub expression

COS
2 ⋅n +1( )⋅π

2

 
 
  

 

and press . The sub expression is converted to:

0 ⋅ COSn ⋅π( ) −1⋅SINn ⋅π( )

Since SINn ⋅π( ) = 0  for integer n , the whole sub expression 
0 ⋅ COSn ⋅π( ) −1⋅SINn ⋅π( )  is equal to 0 . While the whole sub 
expression is selected, press  to replace the whole sub expression 
with 0 . Now select the sub expression:

3 ⋅
n ⋅π

3
+

π
6

 
 

 
 

in the SIN  function, expand it, select the sub expression

SIN
2 ⋅ n+ 1( ) ⋅π

2

 
 
  

 

and press  and then . The sub expression is converted 
to COSn ⋅π( ) . Press  to put the edited expression on the stack, 
which now should be:

n ⋅π
3

+
π
6

+

3 ⋅0 +
1

e
n⋅π
3

+ π
6

⋅−1

− 3 ⋅ 3 ⋅COS n ⋅π( )( ) +
1

e
n⋅π
3

+
π
6

⋅−1⋅−1

The expression COSn ⋅π( )  is either 1 or −1 for integer n . Press 

 to make a copy of the expression, enter COSn ⋅π( ) −1{ } , and 

press  to convert the expression to:

n ⋅π
3

+
π
6

+

3 ⋅ 0 +
1

e
n⋅π
3

+ π
6

⋅−1

− 3 ⋅ 3 ⋅−1( ) +
1

e
n⋅π

3
+

π
6

⋅−1⋅−1
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Press , select the sub expression:

3 ⋅0 +
1

e
n⋅π

3
+ π

6

⋅−1

− 3 ⋅3 ⋅−1( ) +
1

e
n⋅π
3

+
π
6

⋅−1⋅−1

and expand to convert it to:

1

9 ⋅ e
2⋅n+1( ) ⋅π

6 +1

Press . The expression is now:

n ⋅π
3

+
π
6

+
1

9 ⋅e
2 ⋅n +1( )⋅π

6 +1

Store it in EXNEG . Enter COSn ⋅π( ) 1{ } and press  
again. Now you get:

n ⋅π
3

+
π
6

+

3 ⋅ 0 +
1

e
n⋅π
3

+ π
6

⋅−1

− 3 ⋅ 3 ⋅1( ) +
1

e
n⋅π
3

+
π
6

⋅−1⋅−1

on stack level 2, and a 1 on stack level 1. Drop the 1. Press , 
select the sub expression:

3 ⋅0 +
1

e
n⋅π
3

+ π
6

⋅−1

− 3 ⋅3 ⋅1( ) +
1

e
n⋅π

3
+

π
6

⋅−1⋅−1

and expand to convert it to:

−1

9 ⋅ e
2⋅n+1( ) ⋅π

6 −1

Press . The expression is now:

n ⋅π
3

+
π
6

+
−1

9 ⋅e
2 ⋅n +1( )⋅π

6 − 1

Store it in EXPOS .

Let's test how good the extrema are represented by EXPOS  or 
EXNEG . Recall EXNEG , enter n , 0 , 5 , 1, and press  to make 
a sequence of the approximated extrema for n = 0,1,2,3,4,5 . When the 
HP49G is ready, enter the program << →NUM >>, and then press 

, to convert all expressions in the list to numbers. The list contains 
now numbers that are very close to the actual extrema of the original 
function. The expression:

n ⋅π
3

+
π
6

+
1

9 ⋅e
2 ⋅n +1( )⋅π

6 +1

is already a very good analytic approximation of the extrema of 
SIN3 ⋅X( ) + e− X . You can check this by finding the extrema 
interactively in the plotting environment, as shown on page 1-2 of this 
marathon. And it is not only that it gives good numerical results. It also 
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allows us to understand how the extrema behave. In the formula:

n ⋅π
3

+
π
6

+
1

9 ⋅e
2 ⋅n +1( )⋅π

6 +1

the term:

1

9 ⋅ e
2⋅n+1( ) ⋅π

6 +1

rapidly approaches 0  as n  gets greater. This means that the extrema 

are represented better and better by 
n ⋅π

3
+

π
6

 for big values on n .

Let's consider the method by means of a picture. First of all we have 
the function SIN3 ⋅X( ) + e− X , whose graph we see below. We find 

the derivative of this function, 3 ⋅ COS 3 ⋅ X( ) − e− X , whose graph we 
see below. The roots of the first derivative are the extrema of the original 

function. Using Newton's method, we find the tangent at our "guess" 
values for the roots, and then find where the tangent cuts the x -axis. 
This point is the (first) analytic approximation of one of the roots of 
3 ⋅ COS 3 ⋅ X( ) − e− X , i.e. the (first) analytic approximation of one of the 

extrema of SIN3 ⋅X( ) + e− X . The picture on the next page illustrates 
this. Of course we can proceed and use the first analytic approximation 
to find out a second (better) analytic approximation. But in this case it is 
enough to have the first one, since the second doesn't bring much better 
numeric values and it makes understanding harder, because it is much 
more complicated.
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The question the remains is: what if the first and the second derivative of 
the function are both 0  at the x = ξ  (extremum)? How can we find out 
the extremum then? In this case we use higher derivatives. If a function 
f x( )  is differentiable at least n -times (n ≥ 2 ), then if the function has an 
extremum if n  is even, and:

∂f x( )
∂x x=ξ

=
∂2 f x( )
∂x2

x=ξ

=… =
∂n−1f x( )
∂xn−1

x =ξ

= 0

and:

∂n f x( )
∂xn

x=ξ

≠ 0

In case 
∂n f x( )
∂xn

x=ξ

> 0  we have a minimum. In case 
∂n f x( )
∂xn

x=ξ

< 0  we 

have a maximum.

Consider for example the function X4 . The first derivative is 4 ⋅X3 . It 
has a root at X = 0 , so we assume a possible extremum there. The 
second derivative is 12 ⋅ X2 , and it is also equal to 0  at X = 0 . So we 
must use higher derivatives. The third and the fourth derivatives are 
24 ⋅ X  and 24  respectively. The function is differentiable four times. So 
we have n = 4 . For the derivatives we have:

∂X4

∂X x=0

=
∂2X4

∂X2
x= 0

=
∂3X4

∂X3
x=0

= 0

and:
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∂4X4

∂X x=0

= 24 > 0

which means that the function X4  has a minimum at X = 0 .

On the HP49G we don't have to follow the above cumbersome 
procedure for monovariate functions. The command TABVAR  is 
what we need. It takes a monovariate function and returns the function 
itself at stack level 3, a list representing the variation table of the 
function on stack level 2, and a graphics object on stack level 1, 
which contains the same information like the list on stack level 2, but 
in graphics format. The variable of the function must be your current 
VX . Let's have one example. If your current VX  is not X , then enter 

X  and press . Enter X3 − X  and press . The 

HP49G returns the function itself, X3 − X , on stack level 3, the list:

−∞ + − 3
3

− 3
3

+ +∞
 
 
 

 
 
 

−∞ ↑ 2⋅ 3
9

↓ − 2⋅ 3
9

↑ +∞
 
 
 

 
 
 

 
 
 

 
 
 

on stack level 2, and a graphics object on stack level 1, which looks 
like:

F =: X 3 − X( )
F' =: 3 ⋅X2 − 1( )

− >:
3 ⋅X + 3( ) ⋅ 3 ⋅ X − 3( )

3
Variation table:

−∞ + − 3
3

− 3
3

+ +∞ X

−∞ ↑ 2 ⋅ 3
3

↓ − 2 ⋅ 3
3

↑ +∞ F

 

 

 
 

 

 

 
 

The results mean:

The function was X3 − X  and its first derivative was 3 ⋅ X2 −1. The 
HP49G found the roots of the first derivative. In order to do so it had to 
factor the first derivative. It found:

3 ⋅ X + 3( )⋅ 3 ⋅ X − 3( )
3

The roots of this expression were:

−
3

3
 and 

3
3

These are the values of X  for which the function X3 − X  goes through 
extrema. The matrix on the graphics object and the list on stack level 2 
say more about these extremal values. Let's take a look at the matrix:

−∞ + − 3
3

− 3
3

+ +∞ X

−∞ ↑ 2 ⋅ 3
3

↓ − 2 ⋅ 3
3

↑ +∞ F

 

 

 
 

 

 

 
 

We see that when X  comes from −∞ , the function increases from −∞  

until X  has the value −
3

3
. The function at this point has a local 

maximum, which is F X( ) =
2 ⋅ 3

3
. Then, after X = −

3
3

, the function 

decreases until X =
3
3

, where the function has a local minimum, 

which is F X( ) = −
2 ⋅ 3

3
. After X =

3
3

 the function increases again to 

+∞ . The same information as in the matrix is contained in the list on 
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stack level 2. The results of the command TABVAR  depend on the 
capability of the HP49G to solve F' X( ) = 0 . If you for example enter 
SIN X( )

X
 and press , the HP49G will complain 

Not reducible to a rational expression because in can't 
solve:

∂
SINX( )

X
∂X

= 0

In such cases we must try other methods, like those described in the 
previous pages. If we are interested for a specific interval of X  
values, then we can try to make a series expansion around the centre 
of the interval and work with the expansion instead of the function 
itself. The results will of course be only an approximation. Suppose 

for example that we want the extrema of 
SIN X( )

X
 in the interval from 

−2 ⋅π  to 2 ⋅π . We can use the series expansion of the function at 
X = 0 . Of course the question is what order should we choose for an 
adequate representation of the function by the series. Plotting the 
function and the series together can help to answer this question. 

Enter 
SIN X( )

X
 and press  to make a copy of the function. Enter 

X = 0  (the point at which we make the series expansion), and then 
12  (the order). Press . The HP49G returns a list on stack 
level 2 and the equation h = X  on stack level 1. Press  to 
substitute h = X  in all expressions contained in the list. The series is 
the third element of the list, so enter 3  and press  to extract it 
from the list. Press  to get rid of the label. Now you have the 
polynomial

1
6227020800

⋅ X12 +
−1

39916800
⋅X10 +

1
362880

⋅ X8 +
−1

5040
⋅ X6 +

1
120

⋅X 4 +
−1
6

⋅X 2 + 1

on stack level 1. Enter 2  and press  to make a list that contains 

the original function and the series. Press  to store the list in EQ . 

If you now plot the two functions from −2 ⋅π  to 2 ⋅π  you see that the 
series represents the function quite well, especially at the extrema which 
are of interest for us. Recall EQ , enter 2  and press  to extract the 

series from the list. Before you do anything else set flag -109 to allow 
numerical factorisation. This is important because the polynomial can't 
be factored symbolically and so numerical methods must be involved in 
order to find its roots and extrema. When this flag is set the HP49G will 
automatically use numerical methods for factorisation, if symbolical 
methods fail. Now press . The HP49G needs a couple of 
seconds to answer, so be patient. When it finishes a big graphics object 
is on stack level 1. Press  to view it. The graphics object is 
displayed centred on the screen, so you must move around to see the 

information you want. Press  and then  to activate scroll mode. 

Now press  and then  to go to the left of the graphics object. 
Press  and then  to go to the bottom. At the bottom of the screen 
you see the left part of the variation table. It says that when X  goes to 
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−∞  the polynomial goes to 1.6059…E490 . This number should 
have been exactly ∞ , but the HP49G returns this number because of 
the numerical methods that have been used. This part of the variation 
table doesn't apply to the function itself, since the polynomial 
represents the function well only in the interval from −2 ⋅π  to 2 ⋅π . 

Press  and hold it pressed to scroll to the right. You see that the 
polynomial has a minimum at X = −4.48015167546 . The 
polynomial has the the value −.216280730319 . This is in very 
good agreement with the results that we have obtained previously for 

the function 
SIN X( )

X
. If you move a little bit more to the right you 

will see that the HP49G found that the polynomial (and so also the 
function) has a maximum at X = 0 . Another minimum occurs at 
X = 4.48015167546 . We see that an adequate series expansion can 
help us examine the behaviour of a function in some interval. The 
results of TABVAR  have to be examined thoroughly though. There 
might be points where the series behaves very differently.

Notice also what TABVAR  has done apart from returning the results. 
It has switched to approximate mode because it used numerical 
factorisation. Press -  to return to exact mode. Also, it has 
put the series expansion in EQ  overwriting its old contents. If you 
have some other expressions in EQ  that you want to keep. then you 
should store them in some other variable before using TABVAR . The 
command changes the contents of PPAR  too. It alters the viewing 
range parameters so that the examined function can be plotted 
including the extrema that TABVAR  has found. Again, if you would 
like to keep your own plot settings, you should save the contents of 
PPAR  in some other variable before using TABVAR .

Another problem that TABVAR  has is that it can't handle functions 
that contain other additional parameters except the variable VX . If you 
enter a2 ⋅ X2  and press , then the HP48G will complain 
Parameters not allowed. (In this case TABVAR  fortunately 

doesn't change EQ  and PPAR .) In the case of a2 ⋅ X2  it should have 
been easy for TABVAR  to return the minimum that the function has at 
X = 0 . And there are yet additional problems, even for monovariate 
functions without any parameters. Enter COSHX 2 −1( )  and press 

. After some seconds the HP49G complains: 
Not reducible to a rational expression. Yes, my machine, 
but you are able to convert hyperbolics to exponentials. If I press 

 to convert to exponentials, you answer correctly:

eX2 −1 +
1

eX 2 −1

2

Pressing  now still results in 
Not reducible to a rational expression. If I press  
you answer:

eX2 −1( )2
+ 1

2 ⋅ eX2 −1

Pressing  now still makes you complain 
Not reducible to a rational expression. But you are able to 
find the extrema of the function, my machine! If I differentiate the 
expression

eX2 −1( )2
+ 1

2 ⋅ eX2 −1

for X  and then expand it, you answer:
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X ⋅ eX2 −1( )2
− X

eX2 −1

If I solve this for X  then you say:

X = −1 X = 1 X = − LN e1( ) LNe1( ) X = 0{ }
which shows that you should find the extrema of the function at 
X = −1, X = 0 , and X = 1 when I pressed . Since 
TABVAR  seems to be unwilling to do what you can do, my 
machine, I will program you. Let's see if we can produce 
supplementary code that we can use when TABVAR  doesn't want to 
tell us the truth. Consider the program:

<<
{} {}
→ f v f´ sols
<<

'f´' f v ∂  STO+ @Find 1st. der., add to f´
HEAD v @Prepare for SOLVE
IFERR @If SOLVE errors out

SOLVE
THEN @then clean up and return

DROP2 f v @user input
"FINDEX Error: @and mimic system errors

Can't solve f´=0
Reason:
"

ERRM + 1 DISP
1200 .08 BEEP
3 FREEZE

ELSE @else (SOLVE worked)
IF @If solution was empty list

DUP {} SAME
THEN @then clean up and return

DROP f v @user input
"FINDEX Error:

No solutions of f´=0
were found"
 1 DISP 1200 .08 BEEP

3 FREEZE @Mimic system errors
ELSE @else (solutions weren't {})

IF @If solutions weren't a list
DUP TYPE 5 ≠

THEN @then convert them to a list
1 →LIST

END
'sols' STO
f´ v ∂ @find 2nd derivative
DUP 'f´' SWAP STO+ @add to list f´
HEAD sols SUBST @subst. solut. in 1st. der.
sols 2 @Do for all solutions
<<

CASE
OVER 0 == @in case 2nd. der equals 0

THEN
"HIGHER" @return "HIGHER"

END
OVER 0 ≥ NOT @in case 2nd. der. < 0

THEN
"MAX" @return "MAX"

END
OVER 0 ≤ NOT @in case 2nd. der > 0

THEN
"MIN" @return "MIN"

END
END
→TAG @Label solution
2 →LIST @Wrap function value and sol.

>> @in a list
DOLIST
1 @Do for all sub lists
<<

OBJ→ DROP @Explode
2 f´ 2 GET
→ derV sol n derF
<<

IF @If solution is labeled
sol OBJ→ NIP @with "HIGHER"
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"HIGHER" SAME
THEN @then keep on finding

WHILE @higher derivatives
derV 0 ==

REPEAT
derF v ∂
'derF' STO
'n' 1 STO+ @keep track of deriv. order
derF sol
SUBST @Substitute solutions in
'derV' STO @higher derivative

END
IF

n 2 MOD NOT @If der. order is even
THEN

CASE @in case higher der. < 0
derV 0
≥ NOT

THEN @return "MAX"
"MAX"

END
derV 0 @in case higher der. > 0
≤ NOT

THEN
"MIN" @return "MIN"

END
END
sol DTAG @remove label "HIGHER"
SWAP →TAG @add label "MAX" or "MIN"

END
ELSE @else (2nd. der. wasn't 0)

sol @simply return solution
END

>>
>>
DOSUBS
1 @Do for all sub lists
<<

f OVER SUBST @find f(x) at extremum
EXPAND "F(X)" @Label and wrap in list
→TAG 2 →LIST

>>

DOSUBS
END

END
>>

>>

This is the (preliminary) code of FINDEX, a program for finding 
extrema of monovariate functions. (The program FINDEX that comes 
with this document has additional code, but we will examine the final 
version later.) The program takes the function from stack level 2 and its 
variable from stack level 1, and returns a list of extrema (if possible). 
Let's try it (as always). Enter COSHX 2 −1( ) , then X , and press 

. The HP49G works for some seconds and then it returns the 
list:

MIN: X =− 1( ) F X( ) = 1{ } MIN: X = 1( ) F X( ) = 1{ } MAX: X = 0( ) F X( ) = COSH1( ){ }{ }

If you plot the 
f u n c t i o n  
COSHX 2 −1( )  
then you get 
something like 
the picture to 
the right an so 
you can see 
that the results 
are OK. The 
program can 
also handle 
monovariate 
functions that 
contain parameters if you make assumptions for these parameters 
before you run it. Let's try such a case. Enter the function 
X3 + 2 ⋅a ⋅X2 − a 2 ⋅ X − 2 ⋅ a3 , and then enter the variable X . Before 

you run the program enter a ≥ 0 , and press  to specify that the 
parameter a  is non negative. Drop the inequality from the stack, and 
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press . The HP49G takes the assumption for a  into 
consideration and returns:

MAX: X = −
2 + 7( )⋅ a

3

 

 
 

 

 
 F X( ):

−20 +14 ⋅ 7( ) ⋅a 3

27

 
 
 

 
 
 

MAX: X =
−2 + 7( )⋅ a

3

 

 
 

 

 
 F X( ): −

20 +14 ⋅ 7( ) ⋅a 3

27

 
 
 

 
 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

TABVAR  would error out with this function, saying 
Parameters not allowed. The program FINDEX will also 
handle functions whose first and second derivatives are equal to 0 , 
and which have some higher derivative of even order that is not equal 
to 0 . Enter a ⋅X4 , then X , and then press . The HP49G 
needs some seconds to return MIN: X = 0( ) F X( ):0{ }{ } . The 
program (in this preliminary version) will not handle functions whose 
first and second derivatives are equal to 0 , and which have some 
higher derivative of odd order that is not equal to 0 . But we add code 

for this purpose later on. Enter a  now, and press  to 
remove assumptions about variable a , and drop variable a  from the 
stack.

If you are interested for a 
particular extremum rather 
than the global behaviour of 
the function, then you can use 
some of the built-in numeric 
solvers. For example, 
consider the function:

eSIN5 ⋅X( )

X

Its plot shows that it has a maximum somewhere around X = 1.5 . let's 
use the numeric function solver to find the maximum. Enter:

eSIN5 ⋅X( )

X

We must find a root of the first derivative somewhere around X = 1.5 , 
so we must find the first derivative first. Enter X  and press  and 

 to get:

5 ⋅ X ⋅COS 5 ⋅X( ) −1( )⋅ eSIN5 ⋅X( )

X2

Press  to get the pop up menu of built-in applications. Select 
4. Numeric solver…  and press  to get a new pop up menu 
with all built-in numeric solvers. The first menu item, 
1. Solve equation…  is already selected, so press  again to 
go to the SOLVE EQUATION  screen. The input field Eq:  is already 
selected and we must input there the first derivative of our function, 
which we left on the stack. Press  to go to the interactive stack, 
and then press . Press  to return to the 
SOLVE EQUATION  screen. The derivative was put in the command 
line of the screen when you pressed . Press  to put it in 
the input field Eq: . The HP49G selects automatically the next input 
field, which is X:. Enter the guess value 1.5  here, since the plot has 
shown us that the maximum occurs somewhere around X = 1.5 . The 
HP49G selects automatically the next input field, which is again Eq: . 
Press  to move the selection to the input field X:. Now press 

 to solve (numerically) for X . After some seconds the HP49G 
returns 1.54483063848  in the input field X:. 
This is a root of the first derivative and an 
extremum (maximum) of the function. If you 
press  the HP49G displays a message box 
with information about the solution. As you can 
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see, the HP49G didn't find a value for X  for which the first 
derivative is 0. , but it found a value which makes the first derivative 
almost equal to 0. . That means that it found two subsequent values 
for X , which differ 1E −12 from each other and for which the value 
of the first derivative changes its sign. Press  to let the message 
box go away and return to the solver. Press  to go to the input 
field Eq:  and press . The HP49G returns the value of the 
expression for the current value of X . Press  to return to the 
stack. Stack level 1 contains now Expr: −2.59779932048E −11( ) , 
which shows that we (presumably) have to do with root of the first 
derivative, i.e. with an extremum of the original function. On stack 
level 2 we have the solution labeled with X . This was returned to the 
stack when you pressed .

In the above example we 
worked with the first 
derivative of the function. 
When we have a positive 
minimum or a negative 
maximum we can work with 
the function itself in the 
numeric solver. For example, 

the function 
eSIN5 ⋅X( )

X
 has a 

positive minimum somewhere around X = 1, as the plot shows. Go to 
the SOLVE EQUATION  screen again. The input field Eq:  is 
selected and it contains the first derivative of our previous example. 
Press  and type:

eSIN5 ⋅X( )

X

Press  to put the function in the input field Eq: . The HP49G 
moves the selection to X:. Enter 1. Press  and then . After 

some seconds the HP49G returns 
.983437204036  in the input field X:, and 

X:.983437204036  to the stack. Press . 
The HP49G displays a message box again, which 
shows that an extremum was found. If you press 

 to go to the input field Eq:  and press  the HP49G returns 
the value of the expression for the current value of X . Press  to 
return to the stack. Stack level 1 contains now Expr:.381974744011, 
which shows that we have to do with a positive minimum of the 
function. Don't forget that you can find roots and extrema in the plotting 
environment too, as shown on page 1-2 of this marathon. You can also 
use the command ROOT  to find extrema programmatically. Let's have 
an example. Press   to recall the current equation. Enter 'X' , the 
variable to solve for, in single quotes. We use quotes because when we 
solved for X  in the previous examples, the solution was stored in 
variable X . This is the behaviour of the numeric function solver, it 
always stores the found solution in the variable that we solved for. Enter 

1, our guess value. Press  and wait until the HP49G returns 

.983437204036 . The command ROOT  doesn't return any 
information about the solution. But of course we can substitute the 
solution in the function and see if it is 0.  or almost 0. , positive or 
negative. Purge variable X  now so that it doesn't interfere with our 
work later on.

Let's continue now to another characteristic point of a function, the point 
of inflection. Using the HP49G we can find (one way or another) if 
some given function has an inflection point, and also where this point is. 
A function f x( )  has an inflection point at x = ξ  when:

∂2f
∂x2

x =ξ

= 0  and 
∂nf
∂xn

x=ξ

≠ 0  and n > 2  and n  is odd.

Let's see how what we can do to find inflection points. First of all, we 
can find the second derivative, then find its roots (if possible), and then 
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examine if there is some higher derivative of odd order which is not 
equal to 0  at the roots of the second derivative. For example consider 
the function TAN X( ) ⋅e−2⋅X . Enter TAN X( ) ⋅e−2⋅X , then X , and then 
press  to get the first derivative. Enter X  and press  again to get 
the second derivative. Expand it to get:

2 ⋅ TAN X( )3 − 4 ⋅ TAN X( )2 +6 ⋅ TAN X( ) − 4
e2⋅X

Press  to make a copy of the expression on stack level 2. Now 
enter X  and press  to find the roots of the second derivative. 
The HP49G returns:

X =
4 ⋅ π ⋅n1+π

4

Now we will check to see if the third derivative is not equal to 0  at the 
above roots. Swap stack levels 1 and 2, enter X  and press  again, 
to get the third derivative. Expand it to get:

6 ⋅ TAN X( )4 −12 ⋅ TAN X( )3 + 20 ⋅ TAN X( )2 − 20 ⋅ TAN X( ) + 14
e2⋅X

Press  once to go to the interactive stack, and another time to go to 
stack level 2. Press  to copy the solution to the command line, 

 to leave the interactive stack, and  to put the solution 

on stack level 1. Press  to substitute 
4 ⋅ π ⋅n1+π

4
 for X  in the 

third derivative. Press  to convert all occurrences of:

TAN
4 ⋅ π ⋅n1+ π

4
 
 

 
 

to:

SINn1⋅π( )
COSn1⋅π( ) + 1

1−
SINn1⋅π( )
COS n1⋅π( )

The same old story again, we don't have INTEGERASSUME and so 

we must enter SINn1⋅π( ) 0{ }  and press , to convert all 

SINn1⋅π( )  to 0  (since n1 is integer). Drop the 1.  from the stack and 
press  to get:

8

e
4⋅n1+1( )⋅π

4
 

 
 

 

 
 

2

which is not equal to 0  for any integer value of n1. That means that the 

solutions X =
4 ⋅ π ⋅n1+π

4
 are indeed points of inflection of the function 

TAN X( ) ⋅e−2⋅X .

The above example was relatively easy, since the HP49G could solve 
the equation:

2 ⋅ TAN X( )3 − 4 ⋅ TAN X( )2 +6 ⋅ TAN X( ) − 4
e2⋅X = 0

i.e. 
∂2f
∂x2 = 0  without help. But there will be more than enough cases 

where this isn't possible. In these cases we can again try many different 

methods. Consider for example the function 
SIN X( )

X
 from the previous 

pages. If you differentiate it twice for X  and expand, then you get:
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X2 − 2( )⋅ SINX( ) + 2 ⋅ X ⋅ COS X( )
X3

The HP49G can't find the roots of this function analytically, so we 
can't find the points of inflection analytically. But if you plot it you 
can find out with the help of the root finder in the plotting 
environment that it has roots at approximately n ⋅π , where 
n = 1,2,3,… . The smaller roots have the greatest deviation from n ⋅π , 
but as they go greater and greater they agree better and better with 
n ⋅π . Here are the first four positive roots for a demonstration of this 
fact.

Root n ⋅π
2,08157587782 3.14… (n = 1)

5.94036999057 6.28… (n = 2 )
9.20584014294 9.42477796077 (n = 3 )
12.4044450219 12.5663706144 (n = 4 )

We already see that if we find some analytic approximation r n( )  of 
this behaviour, it has to approach n ⋅π  for greater values of n . Let's 
try to expand the second derivative

X2 − 2( )⋅ SINX( ) + 2 ⋅ X ⋅ COS X( )
X3

to a series at n ⋅π . If you use SERIES  to expand the second 
derivative to a series, then it will presumably take a very long time, 
until the HP49G comes up with an answer. I tried to do that and had 
to interrupt the calculation after about half an hour (!). So we have to 
proceed differently. We can expand the function itself to a series of 
4th order around n ⋅π , and differentiate the series twice to get a 
polynomial of second order. We want a series of second order 
because we know that the HP49G can solve analytically a polynomial 
of second order. (And also because we hope that it will be an adequate 
description of the second derivative in the neighbourhood of n ⋅π  - 

any science based on mathematics is a science based on hope. ;-)) Enter 
SIN X( )

X
, then X = n ⋅π , and then 4  (the order), and press . 

After 2.7 minutes (!) the HP49G returns a list in stack level 2 and the 
equation h = X − n ⋅π  on stack level 1. Press  to substitute 
X − n ⋅π  for h in all expressions contained in the list. We need only the 
series expansion, which is the third element in the list, so enter 3  and 
press  to extract it from the list. Press  to get rid of the label. 
Now you have:

−
n4 ⋅π 4 − 12 ⋅n2 ⋅π 2 + 24( ) ⋅SINn ⋅π( ) + 4 ⋅n3 ⋅π 3 − 24 ⋅n⋅π( )⋅ COSn ⋅π( )

24 ⋅n6 ⋅π 6 ⋅ X −n ⋅π( )5

+
n4 ⋅π 4 − 12 ⋅n2 ⋅π 2 + 24( ) ⋅SINn ⋅π( ) + 4 ⋅n3 ⋅π 3 − 24 ⋅n⋅π( )⋅ COSn ⋅π( )

24 ⋅n5 ⋅π 5
⋅ X − n⋅π( )4

+
3⋅ n2 ⋅π2 − 6( )⋅ SINn ⋅π( ) − n3 ⋅π3 − 6 ⋅ n⋅π( ) ⋅COS n⋅π( )

6⋅ n4 ⋅π4 ⋅ X −n⋅π( )3

−
n2 ⋅π 2 − 2( )⋅ SIN n⋅π( ) + 2⋅ n ⋅ π ⋅COSn ⋅π( )

2 ⋅n3 ⋅π3 ⋅ X −n ⋅π( )2

− SINn ⋅π( ) −n ⋅π ⋅COS n ⋅π( )
n2 ⋅π2 ⋅ X −n ⋅π( )

+ SINn ⋅π( )
n ⋅π

The series is of 5th order, so press  to get the expression in the 
EQW, press  again to select the first term, and then press  to 
delete the 5th order term. (The 4th order term will be automatically 
selected after deletion of the 5th order term.) Press  to put the 
series back to the stack. For n = 1,2,3… the expression SINn ⋅π( )  is 

equal to 0 . Enter the list SINn ⋅π( ) 0{ }  and press . Drop 

the 1.  and expand. Enter X  and press  to sort for powers of 
X . Now stack level 1 contains:
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COSn ⋅π( )⋅π 2 ⋅n2 − 6 ⋅COSn ⋅π( )( ) ⋅ X4

− 5 ⋅ COSn ⋅π( )⋅π 3 ⋅n3 − 30 ⋅ COSn ⋅π( ) ⋅ π ⋅n( )⋅ X3

+ 9 ⋅ COSn ⋅π( )⋅π 4 ⋅ n4 − 60 ⋅COSn ⋅π( ) ⋅π 2 ⋅n2( )⋅ X2

− 7 ⋅ COSn ⋅π( )⋅π 5 ⋅n5 − 60 ⋅ COSn ⋅π( ) ⋅π 3 ⋅n3( ) ⋅X

+2 ⋅COS n ⋅π( )⋅π 6 ⋅n6 − 24 ⋅ COSn ⋅π( )⋅π 4 ⋅ n4

 

 

 
 
 
 
  

 

 

 
 
 
 
 

6 ⋅π 4 ⋅n4

Now we will find the second derivative of this expression. Enter X , 
press , enter X , and press  . Now expand, enter X  and press 

 to get:

2 ⋅COS n ⋅π( )⋅π 2 ⋅n2 −12 ⋅ COSn ⋅π( )( ) ⋅X2

− 5 ⋅ COSn ⋅π( )⋅π 3 ⋅n3 − 30 ⋅ COSn ⋅π( ) ⋅ π ⋅n( )⋅ X

+3 ⋅COS n ⋅π( )⋅π 4 ⋅n4 − 20 ⋅ COSn ⋅π( ) ⋅π 2 ⋅ n2

 

 

 
  

 

 

 
  

π4 ⋅n4

This is a polynomial of degree 2, for which the HP49G can find 
analytical solutions. Before we find the solutions, we simplify it a bit 
more. All terms have a common factor of COSn ⋅π( ) . The expression 
COSn ⋅π( )  can be 1 or −1. No matter which of both we choose, the 
above polynomial will have the same roots, because we just multiply 
it with 1 or −1. As long as we are only interested for the roots, it 
doesn't matter if we replace COSn ⋅π( )  with 1, or with −1. So we 

choose to replace COSn ⋅π( )  with 1. Enter the list COSn ⋅π( ) 1{ } 

and press . Drop the 1.  from the stack, expand and reorder 

for X . Now the polynomial is:

2 ⋅π 2 ⋅n2 − 12( )⋅ X2 − 5 ⋅π 3 ⋅n3 − 30 ⋅ π ⋅n( ) ⋅ X + 3 ⋅π 4 ⋅ n4 − 20 ⋅π 2 ⋅n2

π4 ⋅n4

The HP49G can find the roots of this polynomial for X . Enter X  and 
press . After some seconds you get the list:

X =
5 ⋅n3 ⋅π 3 − 30 ⋅n ⋅π −n ⋅ π ⋅ n4 ⋅π 4 + 4 ⋅n2 ⋅π 2 −60

4 ⋅n2 ⋅π 2 − 24

X = 5 ⋅n3 ⋅π 3 − 30 ⋅n ⋅π +n ⋅ π ⋅ n4 ⋅π 4 + 4 ⋅n2 ⋅π 2 − 60
4 ⋅n2 ⋅π 2 − 24

 

 
 

 
 

 

 
 

 
 

Of these two roots it is the first that we need. The other one is the 
second root of the quadratic polynomial, as the picture below illustrates. 
Actually the polynomial which we obtained replacing COSn ⋅π( )  with 1 
is exactly the negative of the parabola shown in the picture below. But it 
still has the same roots, which is the only thing that we want in this 
example. Take a look at the picture on the next page to understand better 
how the plots of the polynomials with COSn ⋅π( ) = 1 and with 
COSn ⋅π( ) = −1 relate to each other. Let's see how well the found 

solution represent the roots of the second derivative of 
SIN X( )

X
, i.e. 
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how well they represent the inflection points of 
SIN X( )

X
. Press 

 to extract the first element of the list, press  to separate 

the right form the left hand side of the equation, press  to swap 
stack levels 1 and 2, and then press  to drop the X  from the 
stack. Press  to make a copy of the expression. Let's make a 
sequence of the expression for n = 1 to n = 4 . Enter n , 1, 4 , 1, and 
press . After some seconds the HP49G returns a list that 
contains the results of the expression:

5 ⋅ n3 ⋅π 3 − 30 ⋅ n ⋅π −n ⋅ π ⋅ n4 ⋅π 4 + 4 ⋅n2 ⋅π 2 − 60
4 ⋅n2 ⋅π 2 − 24

for n = 1,2,3,4 . Now we will convert all expressions in the list to 
numbers. Enter the program << →NUM >> and press . The 
HP49G returns a list that contains 4 numbers, which are very good 

approximations of the roots of the second derivative of 
SIN X( )

X
.

Root Approximated root
2,08157587782 2.14727275738
5.94036999057 5.9443688354
9.20584014294 9.20724109123
12.4044450219 12.4050705181

Drop the list from the stack and let's look again at the analytic 
approximation of the roots of the second derivative, i.e. the analytic 

approximation of the inflection points of the function 
SIN X( )

X
. When 

n  goes to greater values, the expression:

5 ⋅ n3 ⋅π 3 − 30 ⋅ n ⋅π −n ⋅ π ⋅ n4 ⋅π 4 + 4 ⋅n2 ⋅π 2 − 60
4 ⋅n2 ⋅π 2 − 24

goes to:

5 ⋅ n3 ⋅π 3 − n ⋅ π ⋅ n4 ⋅π 4

4 ⋅n2 ⋅π 2 = n ⋅π

Our analytic approximation does indeed a good job.

Let's do another example that the HP49G can't solve out of the box, but 
which shows how important it can be, to "smell" mathematics. We want 
to find an analytic approximation of the inflection points of SIN X2( ) . 

enter SIN X2( ) , and differentiate twice for X . Expand to get 

− 4 ⋅X2 ⋅SIN X2( ) − 2 ⋅ COS X2( )( ) . Store that in some variable as we are 

going to use it again later. The HP49G can't find the roots of this 
expression analytically. (Again, who can?) If you plot this with 
horizontal view range from 0.  to 6.28  and vertical view range from 
−150. to 150. , then you get a plot that looks like the picture on the next 
page. As you can see the roots are always denser as X  grows. While in 
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the plotting environment, press , move the graphics cursor near 
the location indicated 
by the first arrow from 
the left, and press 

. After some 
seconds the HP49G 
displays the root and 
puts a copy of it on 
stack level 1. Move 
the cursor to the 
second arrow, press 
some menu key to 
display the menu 
again, and press 

 again. Repeat 
this for the remaining three roots. Press  twice to return to the 
stack. Now you have the five roots on the stack. Press  to go to 
the interactive stack, then press  four times to go to stack level 5, 
press  to get the second row of the menu of the interactive stack, 
and then press  to put all roots in one list. Press  to 
return to the stack. We will use Newton' method for finding analytic 
approximations of the roots, so we need good "guess" values for the 
method. How do they relate to π , these roots? Press  to make 
a copy of the list and let's "smell" mathematics. Press  to get the 
squares of all numbers in the list. Press  and then  to get the 
numeric approximation of π . Press  to divide all number in the list 
by the numeric approximation of π . If you now press  to view 
the list, you will see that all numbers except the first are approximately 
integers. Which means that the squares of the roots are (almost) 
divisible by π . If we denote some root with r , then we have:

r2 = n ⋅π ⇒ r = ± n ⋅π

Can you imagine how this could be "smelled"? Anyway, for us this 
means that we can use n ⋅π  as a guess value for getting an analytic 

approximation of the roots of − 4 ⋅X2 ⋅SIN X2( ) − 2 ⋅ COS X2( )( ) , i.e. 

the inflection points of SIN X2( ) . Drop the list form stack level 1. We 

are going to construct X1 = X0 −
F X0( )
F' X0( )  with 

F X( ) = − 4 ⋅ X2 ⋅ SINX 2( ) − 2 ⋅COS X2( )( ) . Enter n ⋅π . Then recall the 

expression − 4 ⋅X2 ⋅SIN X2( ) − 2 ⋅ COS X2( )( ) , enter X = n ⋅π  and 

press . Expand the result. Enter SINn ⋅π( ) 0{ }  and press 

. Drop the 1.  from the stack and expand. Stack level 1 now 

contains 2 ⋅ COSn ⋅π( ) , which is F X0( ) . Recall the expression 

− 4 ⋅X2 ⋅SIN X2( ) − 2 ⋅ COS X2( )( )  and take its derivative for X . Enter 

X = n ⋅π  and press  and expand. Enter again SINn ⋅π( ) 0{ }  

press , and drop the 1.  from the stack. Expand to get 

− 8 ⋅n ⋅ π ⋅ n ⋅π ⋅COS n ⋅π( )( ) . This is F' X0( ) . Press  and expand. 

Press . Now you have the expression:

n ⋅π +
n ⋅π

4 ⋅n2 ⋅π 2

This is our analytic approximation of the roots of 

− 4 ⋅X2 ⋅SIN X2( ) − 2 ⋅ COS X2( )( ) , i.e. the inflection points of SIN X2( )
. Let's try it for some values of n . Press  to make a copy of it, 
enter n , 1, 4 , 1, and press . Enter the program << →NUM >> 
and press . You get a list with numbers that are very close to those 
in the list of roots that we found in the plotting environment. Only the 
first root that we found there, namely .808251932936 , is not in the 
list of numbers that result from the analytic approximation. Can you 
imagine why? (What is the slope of the function 
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− 4 ⋅X2 ⋅SIN X2( ) − 2 ⋅ COS X2( )( )  at X = 0 ⋅π , i.e. X = 0? - read 

Aaron's posting again.)

Before going further, there are a couple of things here, that are worth 
saying. The above examples of analytic approximations may give the 
impression that we did modelling. The truth is that we didn't, if with 
"modelling" we mean physical modelling. We simply took advantage 
of known facts and used them to replace something that we can't find 
exactly with an approximation of that something. The approximation 
might have an analytic closed form, but this doesn't imply that we did 

physical modelling. Consider for example the function 
SIN X( )

X
 that 

we used in some examples. Suppose it describes mathematically some 
physical quantity that occurs in some physical phenomenon. We have 
found (approximately) that the second derivative (i.e. curvature) of 

this physical quantity will be equal to 0  at n ⋅π +
n ⋅π

4 ⋅n2 ⋅π 2  where 

n = 1,2,3…, i.e. we introduced a new variable n  that represents (is?) 
some other quantity, which can only have integer values greater than 
0 . This result is only the consequence of a model which we didn't 
even think about. The process of modelling precedes even the usage 

of the function 
SIN X( )

X
. For example, having a spring and assuming 

that the force which acts on a mass connected to the end of the spring 
is proportional to the spring's amplitude (i.e. distance of the springs 
end from the equilibrium point) is modelling. Obtaining some function 
(or any other mathematical object) that describes the phenomenon is 
rather following the consequences of the model, than modelling itself. 
We make (a minimum of) assumptions and follow their consequences 
the mathematical way, in order to achieve a maximum of details of the 
description of the phenomenon. These details are theoretical 
predictions, which have to be proved by experiments. If we don't do 
them, the theory is unproved and nobody in this world (including 
JHM ;-)) can say that the theory is the absolute truth about the world. 
If we do them and their results contradict what we predicted 
theoretically, then the theory is false! If we do them and their results 

agree with our predictions, then the theory is… usable! It is still not the 
truth! Why? Because modelling, reasonable modelling, abstracts from 
the real existing matter, and creates such ideal meanings, which might 
not even exist. To stay in the example with the spring, Hook's law takes 
birth by using only two quantities, the length of the feather, and its 
"stiffness", ignoring any other property that the spring might have. 
Modelling contains (always?) this simplification. When we do 
experiments, we prove the theoretically predicted quantities that arise 
from the (simplified) model. Now, changes are that we will not measure 
exactly what the theory predicts. There will be deviations. And the 
question is, are these deviations the result of the simplification, of the 
abstraction, or do they have other reasons? (Like for example Nick's 
catastrophic hands in a laboratory ;-)) If we are able to exclude the "other 
reasons", i.e. Nick's hands, we still accept the model not because it lets 
us calculate physical quantities with infinite precision, but rather because 
a reasonable amount of precision and a model that is easy to understand, 
are together something that we can easily grasp, an understandable 
theory that gives us means to falsify it. Don't underestimate the value of 
falsification possibilities. It is exactly this that makes a theory (and the 
underlying model) a usable theory, which in some extend describes 
reality. Without falsification possibilities, like for example experiments, 
the model and the theory is… pa-par-la-pap! Words without any value. 
And even if the theory withstands all falsification experiments, nobody 
can assure us that there will not be somebody that finds an experiment 
that successfully falsifies the theory. This is one of the reasons why you 
won't here physicists (I mean physicists that deserve their name) talking 
about "the truth" about the world. This is something that they leave for 
JHM. ;-) End of philosophy, back to calculus.

Unfortunately the command TABVAR  doesn't include any inflection 
points of a function. It leaves them out. So we can write a program that 
finds them. But before we do that, we make a minor correction in the 
program FINDEX. The program will crash, if at some point the second 
derivative of the function is 0 , and at the same time the next derivative 
that is not equal to 0  is of odd order. So we add code that takes care of 
this case. Turn page for the corrected listing which includes the 
additional code in red colour.
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…………………
IF

n 2 MOD NOT @If der. order is even
THEN

CASE @in case higher der. < 0
derV 0
≥ NOT

THEN @return "MAX"
"MAX"

END
derV 0 @in case higher der. > 0
≤ NOT

THEN
"MIN" @return "MIN"

END
END
sol DTAG @remove label "HIGHER"
SWAP →TAG @add label "MAX" or "MIN"

ELSE @else (der. order is odd)
{}

END
…………………

…………
1 @Do for all sub lists
<<

IF
DUP {} ≠

THEN
f OVER SUBST EXPAND @find f(x) at extremum
"F(X)" →TAG 2 →LIST @Label and wrap in list

END
>>
DOSUBS
……………

This version, which is also the version that comes with this 
document, will return an empty list for each value of the function 
variable, where the second derivative vanishes, and where the first 
derivative that doesn't vanish is of odd order. Not an elegant method, 

but at least it takes care of such cases. Now on to the program 
FINDINFL, which tries to find inflection points. It is quite similar to 
FINDEX. It tries to find the roots of the second derivative of the 
function, and if it succeeds, it checks the higher derivatives until it finds 
one that is not equal to 0  at the root(s). If the found derivative is of odd 
order, the program returns the found inflection point.

<<
NOVAL {}
→ f v f´´ sols
<<

f v ∂  v ∂  EXPAND
'f´´' STO @Find 2nd. der., store in f´´
f´´ v @Prepare for SOLVE
IFERR @If SOLVE errors out

SOLVE
THEN @then clean up and return

DROP2 f v @user input
"FINDINFL Error: @and mimic system errors

Can't solve f´´=0
Reason:
"

ERRM + 1 DISP
1200 .08 BEEP
3 FREEZE

ELSE @else (SOLVE worked)
IF @If solution was empty list

DUP {} SAME
THEN @then clean up and return

DROP f v @user input
"FINDINFL Error:

No solutions of f´´=0
were found"
 1 DISP 1200 .08 BEEP

3 FREEZE @Mimic system errors
ELSE @else (solutions weren't {})

IF @If solutions weren't a list
DUP TYPE 5 ≠

THEN @then convert them to a list
1 →LIST

END
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'sols' STO
sols
1 @Do for all solutions
<<

NOVAL 2 f´´
→ sol derV n derF
<<

WHILE @Keep on finding higher
derF v ∂ @higher derivatives and
'derF' STO @substituting the solution
derF sol @and updating the derivat.
SUBST @order
'derV' STO @until you find derivative
1 'n' STO+ @that is different from 0
derV 0 ==

REPEAT
END
IF

n 2 MOD @If der. order is odd
THEN @then label solution,

sol "INFL" @find f(x) and label it,
→TAG @and wrap both in a list.
f sol SUBST
EXPAND
"F(X)" →TAG
2 →LIST

ELSE @else (der. order is even)
{} @return empty list

END
>>

>>
DOSUBS

END
END

>>
>>

Let's try the program. Enter:

e
− 1

X

then enter X , and then press . After a couple of seconds you 
get:

INFL: X =
1
2

 
 

 
 F X( ): 1

e2

 
 
 

 
 
 

 
 
 

 
 
 

Of course the two programs FINDEX and FINDINFL will gasp a lot 
when they have to do with solutions that contain arbitrary integers, like 
those returned by SOLVE  for trigonometric functions. The reason is 
(as always ;-)) that there is no INTEGERASSUME in the HP49G. We 
could use the implementation of INTEGERASSUME that was 
introduced on page 2-71 of the first volume of the Basic Calculus 
Marathon. But the problem will be that one has to check many patterns. 
For example suppose that you want to find the inflection points of 
SIN X( )  using the program FINDINFL. The program will find that the 
second derivative of SIN X( )  is −SIN X( ) . Then it will solve −SIN X( )  
for X , and so it will obtain:

X = − 2 ⋅ π ⋅n1−π( ) X = 2 ⋅ π ⋅n1{ }

Now the program has to find out if the next derivative, −COS X( ) , is 
(or isn't) equal to 0  at X = − 2 ⋅ π ⋅n1−π( )  and X = 2 ⋅ π ⋅n1. It will 
substitute these solutions in −COS X( ) , obtaining 

−COS − 2 ⋅ π ⋅n1−π( )( )  and −COS 2 ⋅ π ⋅n1( ) . Consider the second of 
these formulae. We have to somehow teach the HP49G that in this case 
if n1 is integer, then −COS 2 ⋅ π ⋅n1( )  will be equal to −1, no matter if 
n1 is odd or even. We could simply add n1 to INTEGERASSUME , 
and use the proper pattern matching list along with ISINTEG?, to match 
it to −1. But then there is one danger. If we try to find the inflection 

points of, say SIN
2 ⋅X

3
 
 

 
 , then one of the roots of the second 

derivative will be X = 3 ⋅ π ⋅n1. If we then match −COS 3 ⋅ π ⋅n1( )  to −1 
the same way as above, then we will be making a mistake, since 
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−COS 3 ⋅ π ⋅n1( )  is equal to 1 only for even values of n1. In this case 
it doesn't matter, since both 1 and −1 are different than 0 , but for 
more complex functions it might be that we match something that is 
different from 0  to 0  or vice versa. So the problem still remains.

Let's have now some examples of the usage of derivatives in "real 
world", whatever "real" might mean. We will consider some 
examples, in which we can maximise or minimise one quantity that is 
a function of another quantity. We start with an easy example. We 
have a square piece of cardboard with the side length a . Cutting out 
four square pieces from the corners and folding the remaining piece 
we want to make a box. The box should have the biggest possible 
volume. How big must then x  be? The volume of the box will be 
a − 2 ⋅x( )2 ⋅ x . Since the volume of the box has to be a maximum, we 

must solve the equation:

∂
∂x

a − 2 ⋅ x( )2 ⋅ x( ) = 0

for x . Enter the above equation and take care to enter all x 's small. 

Enter x  (also small) and press . The HP49G returns:

x =
a
2

x =
a
6

 
 
 

 
 
 

It is easy to recognise that we need the second solution, x =
a
6

, since 

the first would simply cut the cardboard in four equal pieces, making the 
volume of the box to be 0 . It is clear that finding the roots of the first 
derivative, we find extrema, minima or maxima of the function. If we 
want to mathematically prove if we have a minimum or a maximum, 
then we need the second derivative. Enter a − 2 ⋅x( )2 ⋅ x , and 
differentiate twice for x . Expand to get − 8 ⋅a − 24 ⋅ x( ) . Press  
to get a copy of the solutions list from stack level 2 to stack level 1. 
Press  and then  to get 4 ⋅a − 4 ⋅a( ){ } . Since a > 0 , 

we have 4 ⋅a > 0  and − 4 ⋅a( ) < 0 , which means that the first solution, 

x =
a
2

, minimises the volume, and the second solution maximises the 

volume. Drop the list from stack level 1. How big will be the 

volume of the box when x =
a
2

 or x =
a
6

? Enter the expression 

a − 2 ⋅x( )2 ⋅ x , press , then , then expand to get:

0
2 ⋅ a3

27
 
 
 

 
 
 

which shows that indeed the first solution gives us a box of 
volume 0 , i.e. no box at all. The second gives us a box with the 

maximum possible volume, 
2 ⋅ a3

27
. The same results we can get 

using the program FINDEX. Clear the stack first. Before we use 
the program, we have to make the right assumptions about the 
parameter a , which appears in the expression of the volume of 
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the box. Enter a ≥ 0 , and press . Drop the remaining 

expression a ≥ 0  from the stack. Now enter a − 2 ⋅x( )2 ⋅ x , then enter 
x , and then press . The HP49G needs 34 seconds to return:

MIN: x =
a
2

 
 

 
 0

 
 
 

 
 
 

MAX: x =
a
6

 
 

 
 

2 ⋅a3

27
 
 
 

 
 
 

 
 
 

 
 
 

which also shows that the volume will be maximised, when x  is one 
sixth of the side length of the cardboard. Now we can remove the 

assumptions for a . Enter a , press , and then press  
to drop the remaining a  from the stack.

The second example belongs to the classics. I saw it for the first time 
in the manual of the legendary HP41. It was fun to read and since the 
sentimental remembrance (unfortunately) will not leave us oldies in 
peace, I will use it here. We want to make a cylindrical metal can with 
a certain volume V  and use the minimum possible amount of metal. 

(Though I would prefer the 
maximum amount of heavy 
metal, but that's another 
story ;-)) We use the 
minimum possible amount of 
metal sheet when we 
minimise the surface S  of 
the cylinder which is given 
by:

S = 2 ⋅ π ⋅r2 + 2 ⋅ π ⋅r ⋅ h

Enter 2 ⋅ π ⋅r2 + 2 ⋅ π ⋅r ⋅h . 
Press  to make a copy 
of the expression. Since the 
volume is given by:

V = π ⋅r2 ⋅h

we can solve the last equation for h, in order to transform it to a 
function of r . Enter V = π ⋅r2 ⋅h , press   to make a copy of the 
equation, enter h and press  to get:

h =
V

r2 ⋅π

Press  once to go to the interactive stack, and then again  twice 
to go to stack level 3. Press  to bring the expression 
2 ⋅ π ⋅r2 + 2 ⋅ π ⋅r ⋅h  to stack level 1. Now press  to go to stack level 

2, and then press  to make a copy of the equation h =
V

r2 ⋅π
 in 

stack level 1. Press  to return to the stack. Now press  
and then  to get:

2 ⋅ r3 ⋅ π + 2 ⋅ V
r

This is the surface of the cylinder as a function of its radius r , and V  
being a parameter which has some arbitrary but constant value. (I.e. 
1000cm3  or 345m3  or whatever.) Enter r , press  and then  
to get:

4 ⋅r3 ⋅ π − 2 ⋅V
r2

Press  to make a copy of the expression. Enter again r , press  
and then  to get:

4 ⋅r3 ⋅ π + 4 ⋅V
r3
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This is the second derivative which we will use when we want to tell 

maximum from minimum. Press  to swap stack levels 1 and 2, 
enter r , and press . The result is:

r =
V

2 ⋅π
3

Let's see if this is a minimum or a maximum. Press  and then 
. Now press  to substitute the root of the first derivative 

in the second derivative and then  to get:

12 ⋅π

Since 12 ⋅π > 0  we have a minimum, i.e. what we want. Drop 12 ⋅π  

from the stack. Press , then . Press  and then 
 to find the height of the cylindrical can:

h =
V

π ⋅
V

2 ⋅π
3

2

What is the surface of the can? Press  once to go to the interactive 
stack, and then again  three times to go to stack level 4. Press 

 to bring the expression 2 ⋅ π ⋅r2 + 2 ⋅ π ⋅r ⋅h  to stack level 1. 
Now press  to go to stack level 3, and then press  to make a 

copy of the equation r =
V

2 ⋅π
3  in stack level 1. Press  to 

return to the stack. Now press   to get:

2 ⋅ π ⋅
V

2 ⋅π
3

2

+ 2 ⋅ π ⋅
V

2 ⋅π
3 ⋅h

Now press  to go to the interactive stack once again, and then again 
 to go to stack level 2. Press  to make a copy of the equation 

h =
V

π ⋅
V

2 ⋅π
3

2  in stack level 1. Press  to return to the stack. 

Now press  and then  to get:

2 ⋅π 3 ⋅
V

2 ⋅π
3

3

+ 2 ⋅ V

V
2 ⋅π

3

This is not completely expanded, so press  again to get:

3 ⋅ V
V

2 ⋅π
3

Clear the stack and let's go on to the next example. We want to cut a 
beam out of a trunk. The trunk's cross-section can be assumed to be 
circular with the diameter d . BTW, there is no single tree on this planet 
that has exactly circular cross-section but nonetheless we assume that. 
Modelling and simplification, you know! The beam will have the cross 
section of a rectangle with width w  and 
height h. The ability T  of the beam to carry 
weight is given by the equation:

T = c ⋅ w ⋅h2

where c  is a constant, in which all material 
dependent properties hide. The question is: 
at which width and height does the beam 
have the maximum ability to carry weight? 
Before we solve this problem on the 
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HP49G, let's take a look at our model. As already said, no tree on 
this planet has a circular cross-section. Thus, it is not really exact to 
speak about the "diameter" of the cross-section. Nonetheless the 
model, and the results of the model, are usable. We abstract from the 
tree trunk a property which… almost exist. We idealise the trunk and 
make a cylinder out of it. That means that the results that we will 
get if we follow the mathematics of the model have a certain 
grade of similarity with reality, but they are not reality. They are a 
usable approximation of reality. And many times (if not always) it is 
exactly this process of idealisation that enables us to somehow 
understand more about the world. If we take this strict criticism to the 
limit, we can see that even something as simple as an integer, can be 
considered to be an idealisation, something that takes birth in our 
minds before we project it onto the "world". Think about it. It exists 
in our minds - the idea, the concept - but does it really exist "out 
there"? Nonetheless, even if we could say with absolute certainty that 
it doesn't really exist, it is  the idealisation that creates self-contained 
stable models, which are usable. (Or try to determine the width and 
the height of a beam with maximum ability to carry weight, if you take 
the real cross-section of the trunk, which might be just about 
anything.)

After the philosophy there comes mathematics. Enter c ⋅ w ⋅h2 . This 
quantity depends on two variables (c  is a constant). We want to 
convert it to a function of a single variable. And that is where a 
constraint comes. No matter how long w  and h are, the relation 
d2 = w2 + h2  is always true. We can use it to find h as a function of 
w  and substitute it in c ⋅ w ⋅h2 . Now, we know that all variables and 
constants in the above expressions are real and greater than 0 . Let's 
tell that the HP49G. Enter c ≥ 0 d ≥ 0 w ≥ 0 h ≥ 0{ }  and press 

. Drop the list from stack level 1. Enter d2 = w2 + h2 , then 

h and press . Though we explicitly told the HP49G that h is 
greater than 0 , it returns the solution list:

h = − d2 − w 2 h = d2 − w2{ }

We only need the second solution. Enter 2  and press  to extract it 
from the list. Press  to make copies of the objects on stack levels 
1 and 2. Now press  and . The result is w ⋅ d2 − w3( )⋅ c . 

Let's use FINDEX in this example. The function w ⋅ d2 − w3( )⋅ c  is a 

monovariate function with the additional parameters d  and c , for which 
we have made assumptions. Enter w  and press . The HP49G 
needs some seconds to return:

MIN: w = −
d
3

⋅ 3
 
 

 
 

 
 
  

 
F X( ): −

2 ⋅ 3 ⋅ d3 ⋅ c
9

 
 
  

 
 

 
 
 

 
 
 

MAX: w =
d
3

⋅ 3
 
 

 
 F X( ): 2 ⋅ 3 ⋅d3 ⋅c

9

 
 
 

 
 
 

 

 
  

 
 
 

 

 
  

 
 
 

As we see the maximum ability to carry weight is found for w =
d
3

⋅ 3  

and it is given by:

2 ⋅ 3 ⋅ d3 ⋅c
9

Enter 2  and press  to extract the second sub list. Now we need to 

substitute w =
d
3

⋅ 3  in h = d2 − w2  in order to find the height of the 

beam. Press  to make a copy of the list, then  to extract the 

object MAX: w =
d
3

⋅ 3
 
 

 
  out of the list. Press  to bring the 

equation h = d2 − w2  to stack level 1, and then  to swap stack 
levels 1 and 2. Now press  to make the substitution and then 

 to get:
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h =
6 ⋅d
3

Now we can remove the assumptions that we made. Enter 

c d w h{ } , press , and drop the list from stack 
level 1.

We continue with another example. Through cutting a sector off from 
a metal disc with radius R , and through wrapping the rest conically, 
we want to make a funnel. The funnel should have the greatest 
possible capacity. How big must then the piece be that we cut off? We 
idealise the funnel to a cone. The capacity, i.e. volume of the funnel is 
given by:

π
3

⋅r2 ⋅h

where r  is the radius of the funnel and h is its height. The radius r  of 
the funnel and the radius R  of the metal disc are connected to each other 
by the relation:

r = R2 − h2

Enter the volume of the funnel:

π
3

⋅r2 ⋅h

then enter r = R2 − h2  and press  and  to get:

h ⋅R2 −h3( ) ⋅π
3

The radius of the disc, R , is positive. Enter 

R ≥ 0  and press . Drop the inequality 

form the stack and enter h (the variable). Press 
 to get:

MIN: h = − R
3

⋅ 3
 
 

 
 

 
 
  

 F X( ): − 2 ⋅ 3 ⋅R3 ⋅ π
27

 
 
  

 
  

 
 

 
 
 

MIN: h =
R

3
⋅ 3

 
 

 
 F X( ): 2 ⋅ 3 ⋅R3 ⋅ π

27

 
 
 

 
 
 

 

 
  

 
 
 

 

 
  

 
 
 

It is the second solution that we need, so enter 2  
and press . Let's calculate the radius that the 
funnel will have. Press  to make a copy 
of the solution, and then  to extract:

MIN: h =
R
3

⋅ 3
 
 

 
 
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from the list. Enter r = R2 − h2  again, press , then  and 
then expand. You get:

r =
6 ⋅R
3

The circumference of the funnel, 2 ⋅ π ⋅r  is connected with the angle φ  
be the relation:

2 ⋅ π ⋅r = R ⋅φ

Enter:

2 ⋅ π ⋅r = R ⋅∅

Now enter ∅  and press  to get:

∅ =
2 ⋅ π ⋅r

R

Press  , then  and the , to get:

∅ =
2 ⋅ 6 ⋅π

3

This is the angle of what we use to make the funnel, i.e. the angle of 
the piece that we cut off is the rest:

2 ⋅π −
2 ⋅ 6 ⋅π

3

Press  to make a copy of the expression, then  to 

separate the left from the right hand side of the equation, 
2 ⋅ 6 ⋅π

3
. 

Press  to get rid of the ∅  on stack level 2. Enter 2 ⋅π , press  
and then . Expand the expression to get:

6 − 2 ⋅ 6( )⋅π

3

This is the angle of the piece to be cut out. If you want to convert this to 
degrees, then press  to get: 66.0612308665 . This result is 
meant as decimal degrees. If you want to convert it to degrees, minutes 
and seconds, press now . The result, 66.0340431119  is 

meant as: 66°03'40''431119 . Enter now R  and press  

to remove all assumptions about R , and press  to drop R  from the 
stack.

We continue with an example from physics. Some phenomenon, be it 
radiation, sound, or whatever, propagates itself from medium I to 
medium II. The propagation velocity in medium I is v1 and in medium II 
is v2 . We want a relation 
between the angles θ1  and θ2 . 
That means that we ask: Assume 
that the phenomenon reaches at 
the separation surface between 
the two media at an angle θ1 . 
What will be the angle θ2  when 
the phenomenon leaves the 
separation surface and continues 
its journey in medium II? Without 
further assumptions it is not 
possible to say anything more 
about the angles θ1  and θ2 . The 
phenomenon can choose any 
possible way (red feathered 
lines). We have to assume 
something, then follow the 
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mathematical consequences of the assumptions, make predictions, and 
prove them experimentally. We make the assumption that the 
phenomenon will choose the way that minimises the time to go from 
A  to B . This enables us to find which of the all possible ways the 
phenomenon will choose (blue bold lines). According to Pythagoras 
we have:

s1 = a1
2 +x2  and s2 = a2

2 + b − x( )2

The time t1 needed by the phenomenon to cover the distance s1 in 
medium I is:

t1 =
a1

2+x2

v1

The time t2  needed by the phenomenon to cover the distance s2  in 
medium II is:

t2 =
a2

2 + b − x( )2

v2

The time t  for the sum of the two distances is:

t =
a1

2 +x2

v1

+
a2

2 + b − x( )2

v2

The above expression is a function of x . Varying x  we can cover all 
possible ways that the phenomenon can take. The quantities a1 and 
a2  remain (can be hold) constant when we vary x . We can find a 
minimum for t , if we consider it as a function of x . We have to find 
the roots of the first derivative of this function. Enter:

a12 + x2

v1
+

a22 + b − x( )2

v2

then enter x , and then press . The HP49G returns:

v1⋅
2 ⋅ x

2 ⋅ a12 + x2

SQ v1( ) +

v2 ⋅
2 ⋅ b − x( )⋅−1

2 ⋅ a22 + b − x( )2

SQ v2( )

Instead of solving for x  we consider the following: The quantity 

a1
2+x2  is the distance s1. Enter the list a12 + x2 s1{ }  and press 

 to get:

v1⋅
2 ⋅ x
2 ⋅ s1

SQ v1( ) +

v2 ⋅
2 ⋅ b − x( ) ⋅−1

2 ⋅ a22 + b − x( )2

SQ v2( )

on stack level 2 and a 1.  on stack level 1. Drop the 1.  form the stack. 

Similarly the quantity a2
2+ b − x( )2

 is the distance s2 . Enter the list 

a22 + b − x( )2
s2{ }  and press  to get:

v1⋅
2 ⋅ x
2 ⋅ s1

SQ v1( ) +
v2 ⋅

2 ⋅ b − x( )⋅−1
2 ⋅s2

SQ v2( )

on stack level 2 and a 1.  on stack level 1. Drop the 1.  form the stack. 
Press , select the sub expression:
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v1⋅
2 ⋅ x
2 ⋅ s1

SQ v1( )

and press  to convert it to:

x
v1⋅ s1

Now select the sub expression

v2 ⋅
2 ⋅ b − x( )⋅−1

2 ⋅s2
SQ v2( )

and press  to convert it to:

x − b
v2 ⋅ s2

Press enter to put the edited expression to the stack, which now is:

x
v1⋅ s1

+
x − b
v2 ⋅ s2

From the picture on page 1-37 we see that x = s1 ⋅ sin θ1( )  and that 

b = x + s2 ⋅sin θ2( ) . Enter b = x + s2 ⋅ SIN θ2( )  and press  to 
get:

x
v1⋅ s1

+
x − x + s2 ⋅SIN θ2( )( )

v2 ⋅ s2

Press , select the sub expression:

x − x + s2 ⋅SIN θ2( )( )
v2 ⋅ s2

and expand it to convert it to:

−
SIN θ2( )

v2

Press  to put the edited expression to the stack, which now is:

x
v1⋅ s1

−
SIN θ2( )

v2

Now enter x = s1⋅ SIN θ1( )  and press  to get:

s1⋅SIN θ1( )
v1⋅s1

−
SIN θ2( )

v2

Press , select the sub expression:

s1⋅SIN θ1( )
v1⋅s1

and expand it to convert it to:

SIN θ1( )
v1

Press  to put the edited expression to the stack, which now is:

SIN θ1( )
v1

−
SIN θ2( )

v2

This is the second derivative of the propagation time t  for variable x  
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expressed as a function of the angles θ1  and θ2 . It must be equal to 0  
for a minimum of time. Enter 0  and press  to obtain:

SIN θ1( )
v1

−
SIN θ2( )

v2
= 0

which of course is equivalent to the refraction law of Snellius:

SIN θ1( )
v1

=
SIN θ2( )

v2

The results of experiments made for a huge number of media pairs 
agree very well with the above law. The assumption that we made 
about the shortest possible way of propagation (i.e. shortest time) 
seems to be very good. Indeed, it seems that this is a general basic 
principle of nature, to take the shortest "easiest" way. This is 
something that has been proved and checked and examined in 
hundreds and thousands of experiments, and so we simply assume a 
general principle to be existent. It is not a result of deduction, as it 
doesn't follow from any other assumptions (axioms) that are more 
simple. The only argument for accepting this principle is a huge (but 
still finite) number of experiments. We simply assume here that what 
happened many many times (in experiments) will also happen always. 
We draw a general conclusion out of many particular experiments, 
i.e., we conclude for an infinite number of experiments out of a finite 
number of experiments by induction. This induction is not the same as 
perfect induction in mathematical proof. It is imperfect induction. 
Nevertheless, though the word "imperfect" may have a curious taste 
sometimes (what does "imperfect" do in science?), the method that we 
followed in this example, called inductivism, has lead to some of the 
greatest discoveries. The whole building of thermodynamics, and also 
the foundation of the thoughts of Einstein when he started with 
relativity, are based on pure imperfect induction. In thermodynamics 
many many many experiments that failed to produce energy out of 
nothing, led the scientists to the assumption that this might be a 
general principle and that no experiment whatsoever will manage to 
produce energy out of nothing. Note that nobody ever can accomplish 

to do all possible experiments to prove this, simply because there is an 
infinite number of experiments that can be made. After the 10000th 
experiment, we simply thought: "Let's abandon experiments to produce 
energy out of nothing and assume that this is impossible. Let's see what 
follows out of this assumption". And what followed was an enormous 
theory that covers a wide field of phenomena. The discoveries that 
followed were always in agreement with the principle: "You can't 
produce energy out of nothing". So the theory - thermodynamics - is 
one of the most stable buildings of human thought, though it is not 
strictly proven by deduction - i.e. nobody can exclude the possibility 
that Rcobo will make some machine for producing energy out of nothing 
(and be declared to public enemy number one by the CEOs of oil 
producing/selling companies ;-)) Same with relativity. After so many 
experiments that failed to prove the existence of the ether (the assumed 
medium that carries light waves), everybody kept on changing the 
assumed properties of the assumed medium, so that the experiment that 
just failed, shouldn't be able to prove the existence of ether at all. (Fail 
first, then explain the failure… and try again !!!) Einstein simply 
thought: "Let's assume, the darn thing doesn't exist. What follows out 
of this assumption?". And what followed was one of the most 
impressive (and sad) chapters of science. Unbelievable predictions were 
experimentally proved and found to be correct. Our whole picture of the 
world changed dramatically. You see how it goes in this philosophical 
direction. Many experiments with the same result lead to the assumption 
that all (!) possible experiments will also have the same result. The 
scientific world "smells" the presence of a general principle. The 
assumed principle is then taken as an axiom, though it might be much 
more complex than mathematics axioms, and the mathematical 
consequences of this axiom are followed. Working on this we discover 
"laws" which are provable and can be falsified experimentally. We 
make the experiments and compare the results to the predictions of the 
"laws". If there is no agreement, we must accept that the assumed 
principle was either wrong or at least not perfectly conceived. If there is 
agreement, well… then we can use the theory and the principles as long 
as Rcobo doesn't sell his energy producing machine. But still, nobody 
can assure us that the "laws" are really that valid. There is always the 
possibility of another set of assumptions which leads to the same 
predicted results as our "laws" do, but otherwise is completely different 

Basic Calculus with the HP49G - Volume 2 - Part 4

Volume 2, 4-40



from what we assume to be a general principle. It is only the 
immensely big number of successful experiments that make us 
assume that the principle is always valid.

We continue with another example, which is somehow more 
"everyday life". The inhabitants of St. Concrete City have wasted all 
the water that was available around the city washing their cars, going 
under the shower at least ten times every single day, and using it also 
for otherwise "wise chosen" purposes. When they realised that no 
water was available in the neighbourhood any more, they started 
complaining, what government was this that left people without 
water. (Note: As always, it is not "we" that did the mistake, oh no, it 
was the government - stupid humans - the same creatures that 
demanded protection of environment were wasting water until no drop 
was available to drink.) The atmosphere in the city was very 
explosive. The smallest spark would suffice to cause a detonation. 
Then somebody discovered that about 60 kilometres to the west there 
was a big amount of good water hidden in a cavity under Mt. Fresh 
Air. Since humans tend to believe that everything out there is under 
their possession and that they have the God given right to demand 
everything (though God might not even exist) they automatically 
considered the water under the mountain as yet another resource to 
waste. Some environmentalists talked about possible plans to reduce 
water consumption so that nature would have the time to refill that 
cavity, but who cares about what comes after us, if we can live in a 
barrel of waste until we leave this world? He, he, and so the 
administration started planning how to transport the water to the city. 
The one and only factor that they 
considered was: It has to be 
cheap! Oh yes, for them the world 
is a set of things (that of course 
belong to us automatically) and 
each and every thing has an 
adhesive label with its price. The 
distance from St. Concrete City to 
the waters of Mt. Fresh Air was 
60 kilometres, as said above. 
Between the city and the water 

there was a laboratory of Super Calc Corp., where water had to be 
supplied too. It was in a distance of 20 kilometres to the west and 10 
kilometres to the north of the city. The water should be transferred 
through pipelines to the city and to the laboratory. Since the amount of 
water that would flow through the tubes was different at different 
segments of the pipelines, the administration decided that the tubes of 
the whole system would also be different from each other. The tubes for 
the segment from the water to point A were the most expensive at 30 
Solars per meter. (They named their money "Solar" to induce a 
connection to the sun - nature -, so that the thirsty non-thinking 
population had a peaceful sleep, because everybody assumed "we do 
protect our environment".) The tubes from point A to the laboratory had 
a cost of 12 Solars per meter. And the tubes from point A to the city 
were at 22 Solars per meter. Note again that no other specification was 
given in construction plans of the economists. The whole world is for 
them a question of costs. What a beautiful model of the world, a single 
variable is enough to describe everything! Poor mathematicians and 
physicists that still search for the truth, when the truth is known to be 
God and the administrative model of the universe ;-) Having all these 
data, the administration started trying to solve a really difficult problem. 
How big has the distance from Mt. Fresh Air to point A to be (call it X ), 
in order to achieve cost minimisation? Tremendous scientists as they are, 
they started "putting the numbers" and calculating the costs for each and 
every possible length x . Of course the number of possible cases is a bit 
too much to be calculated in a reasonable amount of time, and because 
even time is money (a great economy axiom), the wise administration 
people put themselves in a trap. On the one hand their mathematics skills 
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are, well, at about the same level as that of the cows of Trabakoulas1, 
but on the other hand they insist wanting to solve the problems of the 
world (which, by the way, they create themselves.) After some 
months of planning (i.e. "putting the numbers") they suspected that 
there might be another way to solve the problem, so that they can go 
playing golf with their friends, the lawyers. They had heard of some 
strange people out there, who were able to solve problems by writing 
strange letters and magic formulae on paper. (And by thinking, but 
this concept was not known by the administration.) So, they opened a 
telephone book and searched under "Mathematicians, physicists, and 
other strange people". They found Prof. Matt o'Mathew, an 
unemployed mathematician (he didn't have expensive suits), called 
him and arranged a meeting for describing the "very hard" problem 
that they had to solve. Mr. o'Mathew came to the meeting (some 
minutes too late - you see he was not a "serious scientist"), and the 
economists looked at him from his head to his toes, with a very 
examining expression in their faces (he had blue jeans and a T-shirt 
on). They described their problem, Mr o'Mathew looked at them with 
disbelief, and said:

- Let me see if I understood that right. You are not able to solve a the 
problem that my parrot is able to solve? And you want me to help 
you?

- Errh, yes, well… we just wanted you to prove if we… put the right 
numbers. Of course your efforts will be honoured adequately, with 
1000000 Solars… is that enough?

- Mwahahahah - what a joke! For such a kindergarten problem, I 
don't take money, mwahahaha, a real puzzle you said… mwahahaha 
help me my stomach is aching.

When Mr o'Mathew could breath again, he did what we are going to 
do. He used plain calculus. And had the grace to (try to) explain what 
1 Where the cows at least can solve the equation "Eat as long as you are hungry 

but don't eat up the universe". And, oh yes, there were economists around, who 
cared more for mathematics than for expensive suits, but they were ignored, 
since they were not "serious scientists" in their blue jeans and T-shirts.

he did to the administration. (And also to the lawyers, who were present 
and ready to accuse Mr. o'Mathew later because of possible "wrong" 
solution.)

- Let the unknown distance be called x . Then…

- Wait! What is x ? Is that where… errhhh, we put the numbers?

- This, dear unalphabetised human, is a label. A representative of all 
possible distances.

- Oh no, we don't want all possib…

- All possible distances, out of which we are going to pick that one, 
which minimises the costs.

- Oh no, we want…

- Shut up!

- OK.

- The costs for the segment from Mt. Fresh Air to point A are then 
given by 30 ⋅ x

- Huh?

- Thirty dollars per kilometre times x  kilometres, this will be the cost. 
Got that?

- Mhhh… but x  is not a number and so…

- And so nothing is wrong. The costs of the pipeline for the segment 
from point A to the city consist of two parts. One of these parts is the 
distance of 20 kilometres pipeline with a price of 22 Solars per 
kilometre. This is 20 ⋅ 22.

- Ah, I understood that!
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- Congratulations for your mental powers! The other part is 
40 − x( ) ⋅22 , as we can see on the picture.

- Errh! What is…

- Sigh! Don't bother understanding it. Last thing we have is the costs 
for the tubes for the laboratory. The distance from point A to the 
laboratory in kilometres is given by:

40 − x( )2 +102

- Gasp!

- So that the sum of costs is given by:

30 ⋅ x + 20 ⋅ 22 + 40 − x( )⋅ 22 +12 ⋅ 40 − x( )2 +102

- …

- This is a function of a single variable, x . We can find its minimum 
by finding the roots of:

∂
∂x

30 ⋅x + 20 ⋅22 + 40 − x( ) ⋅22 +12 ⋅ 40 − x( )2 +102 
 

 
 = 0

Some administrators lost their consciousness at this point, Mr. 
o'Mathew smiled with an expression of satisfaction and the lawyers 
prepared the trial against the mathematician because of… planned 
psychological pressure and injury.

Mr. o'Mathew entered:

30 ⋅ x + 20 ⋅ 22 + 40 − x( )⋅ 22 +12 ⋅ 40 − x( )2 +102

and then x  in his HP49G. He pressed  to make a copy of the 

expression for later, then he pressed  and got:

30 + 22 ⋅−1+10 ⋅
2 ⋅ 40 − x( )⋅−1

2 ⋅ 40 − x( )2 +102

He entered x and pressed , and after some seconds he got the 
error:

Not reducible to a rational expression.

He looked at the administrators that were mentally (more or less) 
present, and asked them:

- You had your fingers in the development and production of this 
machine, didn't you?

The administrators looked each other, wondering how mathematics can 
help somebody to find out such top secrets. The lawyers started looking 
the administrators with a sinister smile. They smelled another trial 
against the administrators that helped manufacturing such a machine.

Mr. o'Mathew went the dangerous way. He dropped the x  from the 
stack and pressed . He dropped the +  and the 2 , pressed  and 
then  to get:

30 + 22 ⋅−1= − 10 ⋅
2 ⋅ 40 − x( )⋅−1

2 ⋅ 40 − x( )2 +102

 

 
 

 

 
 

Then he pressed  and  to get:

64 =
100 ⋅x2 − 8000⋅ x +160000

x2 − 80 ⋅ x +1700

At this point he entered x  again and pressed . After some 

Basic Calculus with the HP49G - Volume 2 - Part 4

Volume 2, 4-43



seconds the HP49G told him:

x =
160

3
x =

80
3

 
 
 

 
 
 

Of these two solutions only one would minimise costs. So he pressed 

 to swap stack levels 1 and 

2, pressed  and plotted 

the expression for x = 0  to 
x = 60 using autoscaling. The 
graph had a minimum at about 
x = 30 . He moved the 
graphics cursor near x = 30 , 
pressed  and then 
. After some seconds the 
HP49G displayed a minimum 
at x = 26.6666666667 . The costs there were 1700 Solars. It is the 

second solution, X =
80
3

, which minimises costs. He pressed 

 to return to the stack, looked at the well dressed economists 
and lawyers and said.

- You will have the minimal costs if you fork the pipeline at a 
distance of about 26.6666666667  kilometres from Mt. Fresh 
Air.

The lawyers looked at him with anger and said:

- We don't pay you for results that are not exact. We want exact 
results. You didn't…

- For your information you don't pay me at all. And if you want 

exact results, here you are: 
80
3

- This is not a numb…

- Are you sure about it? Never heard of rationals?

- Errhmm…

- Now, decide what you want from me. A number that you can 
comprehend using the brown cell that you use as brain or the exact 
result.

- Ahem… How did you find this result? How can we be sure? You 
have to prove that this is really the solution.

- Well, I just did. The fact that you didn't understand anything shows 
me that nobody paid attention to what you did when you went to 
school. I suggest you to prove that there is a solution that makes costs 
even smaller.

The joined forces of lawyers, administrators and other unalphabetised 
personnel are still trying to find a better solution. They are still "putting 
the numbers". They still hope to find a better solution, accuse Mr. 
o'Mathew of betraying them, influence the jury (another set of 
independent ignorants) using such "proven facts" like the non-serious 
outfit of Mr. o'Mathew, and charge him with some millions of Solars 
for telling the truth.

And we, the few that are interested for the truth, can only sit and watch 
that on tv. Or send the jury, the lawyers and the administrators back to 
school. With Hulk as teacher of course.

Let's move on to the next example, which takes us out there somewhere 
in the universe. You remember of course the example of satellites with 
almost square orbits that we had in volume 1 of the Basic Calculus 
Marathon. We continue this investigation here, with the question: Under 
which conditions will the satellite have an orbit that is as similar as 
possible to some regular polygon? Let's first recall what we have found 
in the first volume of the Basic Calculus Marathon, when we examined 
the orbit of the satellite of a planet around the star. The coordinates x  
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and y  of the satellite are given by:

x = R ⋅cos Ω ⋅t( ) + d ⋅cos ω ⋅t( )
y = R ⋅sin Ω ⋅t( ) + d ⋅ sin ω ⋅ t( )

where R  is the distance from the planet to the star, d  is the distance 
from the planet to the satellite, Ω  is the circular velocity of the motion 
of the planet around the star 
ω  is the circular velocity of 
the motion of the satellite 
around the planet, and t  is 
time. Enter the expression:

R ⋅COS Ω ⋅ t( ) + d ⋅COS ω ⋅t( )

and store it in x . (Small 
letter.) Enter the expression:

R ⋅SIN Ω ⋅t( ) + d ⋅SIN ω ⋅ t( )

and store it in y . The distance R  is much greater than d . Let's define 

the ratio α =
R
d

, where α  is real and positive,  to replace R  by α ⋅d  in 

the above formulae. Enter R = α ⋅d . Similarly, we can define n =
ω
Ω

, 

where n  is positive integer. It has to be an integer, because we want to 
find the conditions under which the orbit of the satellite is a regular 
polygon. Enter ω = n ⋅Ω . Now, enter { }  (empty list) and press  
twice to get R = α ⋅d ω = n ⋅Ω{ } . The quantity Ω ⋅t  is equal to Φ , 
the angle of the planet in its circular motion around the star. Enter 
Ω ⋅t = ∅  and press  to get R = α ⋅d ω = n ⋅Ω Ω ⋅t = ∅{ } . Store 
this list in SUBSLST. Recall x  to the stack, recall SUBSLST, enter 1 
and then the program << SUBST >>. Press  and then  
to get:

d ⋅ COS ∅ ⋅n( ) + α ⋅d ⋅ COS ∅( )

This is the coordinate x  of the satellite written in terms of our new 
variables. Store it in x1. Now, recall y  to the stack, recall SUBSLST, 

enter 1 and then the program << SUBST >>. Press  and 
then  to get:

α ⋅SIN ∅ ⋅n( ) + α ⋅d ⋅ SIN ∅( )

This is the coordinate y  of the satellite written in terms of the new 
variables. Store it in y1. 
Now let's take a look at 
the almost square orbit 
that we plotted in 
volume 1 of the Basic 
Calculus Marathon. We 
can see that the slope of 
the orbit remains 
constant or almost 
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constant at some intervals of Φ , while it changes rapidly in other 
regions. We will try to find out, for which values of α  and n  the 
slope is as constant as possible. That means, that we have to find out 

the first derivative 
∂y
∂x

 of the parametric function:

x = d ⋅ cos Φ ⋅n( ) + α ⋅d ⋅ cos Φ( )
y = α ⋅sin Φ ⋅n( ) + α ⋅d ⋅ sin Φ( )

as a function of the parameter Φ .

Recall y1, then x1, enter ∅  and press  to get:

−
n ⋅COS Φ ⋅n( ) + α ⋅COS Φ( )

n ⋅SIN Φ ⋅n( ) + α ⋅SIN Φ( )

This is the first derivative 
∂y
∂x

 as a function of the parameter Φ . Store 

it in der1. When the first derivative (slope) is as constant as possible, 
then the second derivative is "as zero as possible". Let's find the 
second derivative with respect to Φ . Recall der1, enter ∅ , press , 

 and then  to get:

−
2 ⋅ α ⋅n2 + 2 ⋅ α ⋅n( )⋅ COS ∅ ⋅n −∅( ) + 2 ⋅ n3 + 2 ⋅α 2

2 ⋅α ⋅n ⋅ COS ∅ ⋅n +∅( ) −

2 ⋅α ⋅n ⋅COS ∅ ⋅n −∅( ) −

n2 ⋅ COS2 ⋅∅ ⋅n( ) +α 2 ⋅COS 2 ⋅∅( ) − n2 +α 2( )( )
 

 
 

 

 
 

 

 

 
  

 

 

 
 

Store this expression in der2 . This is the second derivative with 
respect to Φ . Now we want to find for which values of α  and n  this 
derivative is equal to 0  for certain intervals of Φ . Notice that the 
numerator of the above ration is quadratic in α . We can solve it for α  

and if the denominator is different from 0  for these values of α , then 
we have found corresponding pairs of n  and α  that make the orbit of 
the satellite look like a polygon at the specified range of angle Φ . Recall 
der2 , enter α  and press . The HP49G returns:

α= −

COS ∅ ⋅n − ∅( )⋅ n2 + COS ∅ ⋅n −∅( )⋅ n

−n⋅ COS ∅ ⋅n −∅( )2 ⋅n2 + 2⋅COS ∅ ⋅n −∅( )2 − 4( )⋅ n+ COS ∅ ⋅n −∅( )2

 

 
 

 

 
 

2

α= −

COS ∅ ⋅n − ∅( )⋅ n2 + COS ∅ ⋅n −∅( )⋅ n

+n⋅ COS ∅ ⋅n −∅( )2 ⋅ n2 + 2⋅COS ∅ ⋅n −∅( )2 − 4( )⋅ n+ COS ∅ ⋅n −∅( )2

 

 
 

 

 
 

2

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

We see that there are 2 solutions. Each of them corresponds to a 
physical situation that we are going to examine now. Store the solutions 
list in SOLα . Lets start with the case of an almost square orbit. In this 
case we have n = 5 , i.e. 
ω = 5 ⋅Ω . The orbit of the 
satellite is almost "a line" at 

Φ =
π
4

. Store 5  in n  and 
π
4

in ∅ . Recall SOLα  and 
expand. The result is 
α = 5 α = 25{ } . That 

means that for n = 5  and 
α = 5  or α = 25 , the orbit gets similar to a square. It is "mostly 

similar" to a square at Φ =
π
4

 (and also at Φ =
π
4

+
π
2

, Φ =
π
4

+
2 ⋅π
2

, 

Φ =
π
4

+
3 ⋅π
2

) . Let's try some orbit plots using these values. Recall x1 

and y1. Multiply y1 by i and add the result to x1. Store the result in 
ORBIT . The expression stored in orbit contains also the quantity d , 
which is the distance from the planet to the satellite. No matter how big 
this distance is, the shape of the orbit will remain the same. It will only 
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be scaled according to d . Since we are interested for the shape but not 
the size of the orbit, store 1 in d . Let's try a plot with the first 
solution for α . Store 5  in α . Now set approximate mode, go to the 
PLOT SETUP  screen, choose plot type PARAMETRIC , enter 
'ORBIT'  in the input field EQ:, and ' ∅'  in the input field Indep: . 
(Both with quotes.) Go to the 
PLOT WINDOW − PARAMETRIC  screen, set horizontal 
view from −13  to 13 , vertical view from −6.5  to 6.5 , 
Indep Low:  to 0. , High: to 
6.28319, and Step: to .05 . 
Press  and then 

. The orbit doesn't look 
like a square at all. In fact 
something rather interesting 

happens at Φ =
π
4

 (and also at 

Φ =
π
4

+
π
2

, Φ =
π
4

+
2 ⋅π
2

, 

Φ =
π
4

+
3 ⋅π
2

) but we will 

examine this phenomenon later 
on. Exit the plotting 
environment, store 25  in α  
and redraw. Now you get the 
almost square orbit. If you play 
with different values for α  you 
will see that the best possible 
approximation to a square orbit 
is for α = 25 . All other values 
makes the orbit less square like. 
We found that for:

R = 25 ⋅ d  and ω = 5 ⋅Ω

the orbit gets "as quadratic as 

possible".
Let's try to produce an almost regular 
hexagon. In this case the orbit will be 

almost "a line" at Φ =
π
6

. Switch to exact 

mode, store 
π
6

 in ∅  and then store 7  in n . 

Purge α . Recall SOLα  and expand to get:

α = 7 α = 49{ }

Store 7  in α  and draw again to 
get the "flower" orbit with the 

peculiar behaviour at Φ =
π
6

 

(and Φ =
π
6

+m ⋅
π
3

). You must 

zoom out to see the whole orbit. 
We will discuss these 
peculiarities later on. Store 49  in 
α , set horizontal view 

from−128. to 128. , vertical 
view from −64.  to 64.  and 
redraw. Now you get an almost 
regular hexagon. We found that 
for:

R = 49⋅ d  and ω = 7 ⋅Ω

the orbit gets "as quadratic as 
possible".
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The orbit seems to get as similar as possible to a regular m-gon when:

n = m +1 and α = m +1( )2

Is this a general behaviour? Try the case of a regular decagon, i.e. 
n = 11, and α = 121. It seems that we really have a general behaviour 
pattern. We used both empirical and analytic thoughts to find this 
result, so we can't call our method pure deduction, but nonetheless it 
seems to be OK. Now, what if we don't limit our thoughts to regular 
polygons? What if we would allow broken values for n? If we allow 

n  to be for example 
5
2

, then the orbit will "close" after the satellite 

has covered an angle of 2 ⋅ 2 ⋅π  and not after 2 ⋅π . The 

corresponding value of α  would be 
5
2

 
 

 
 

2

=
25
4

 in this case. Store 
5
2

 

in n , 
25
4

 in α , set horizontal view from −16  to 16  and vertical view 

from −8  to 8 . Set also Indep Low:  to 0 , High: to 12.6  (which is 
approximately 4 ⋅π ) and 
Step: to .125.. Now 
redraw the plot. The orbit 
looks rather different now. 
From the relation 
n = m +1 we get 

m = n −1. Since n =
5
2

 in 

this case, we obtain: 

m =
3
2

. So the orbit is 

almost a regular… 1.5-
gon. Or better, a triangle 
whose 3 angles are on the 
circumference of a circle 

and are equidistantly "distributed" over 4 ⋅π  instead of 2 ⋅π . Let's have 
another example for such broken 
values of α  and n . Plot for 

α =
49
9

 and n =
7
3

. The 

independent variable ∅  goes from 
0  to 3 ⋅ 2 ⋅π = 6 ⋅π ≈ 18.9  in steps 
of .189. The plot looks like the 
picture to the right. In this case we 

have m = n −1=
7
3

−1=
4
3

, i.e. 

almost a regular 
4
3

-gon, that is a 

square whose four angles are 
"distributed" over 3 ⋅ 2 ⋅π = 6 ⋅π . 
Imagine the surprise of extraterrestrials if the humans put a satellite in 
such an orbit around the earth! If those extraterrestrials have pattern 
recognition units in their brains that 
are similar to ours, they will ask 
themselves what the heck is going 
on, since such orbits are quite 
unusual in nature. Producing such 
orbits is like a huge light 
advertisement saying that intelligent 
(or almost intelligent) life forms are 
on this planet. (Or that God is 
playing spirograph ;-)) Take a look at 

the orbit with n =
12
7

 and α =
144
49

. 

The independent variable ∅  goes 
from 0  to 7 ⋅ 2 ⋅π = 14 ⋅π ≈ 44  in 
steps of .22 . Such orbits are quite 
difficult (if not impossible) to produce. Note that the satellite comes so 
close to the star, that it will eventually change orbit and become itself a 
planet. Nonetheless the (almost impossible) orbit has a nice shape to 
look.
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The next step is to allow any real value for n . This will produce non 
closed orbits, that means that the orbit will not be strictly periodic. It 
will be a curve that never repeats itself. For example, for n = π  and 
α = π2  we get satellite orbits which are irregular curves, which are 
nonetheless restricted inside a ring around the star. The above plots 
demonstrate this.

Now that we found out empirically, that for a satellite orbit that 
resembles a regular m-gon (as far as possible) the relation 

α = m +1( )2 = n2  holds, we could try to substitute α  in der2  (second 
derivative of orbit), and solve for n . Purge the variables α , n , and ∅ . 
Recall der2  on the stack. The expression is a fraction. We will find the 
roots of the numerator and silently assume that the denominator is not 

equal to 0  when n  is equal to a root of the numerator. Press  
to convert the fraction to its numerator (stack level 1) and denominator 
(stack level 2). Press  to drop the denominator. Enter α = n2  and 
press . Let's suppose that we want to find such values for n , that 
make the orbit similar to a square. This means that the second derivative 

will be 0  around Φ =
π
4

. (Of course, if we want other polygons, we 

have to use other angles.) Enter ∅ =
π
4

 and press . The result of 

the substitutions is:

− 2 ⋅n2 ⋅n2 + 2 ⋅ n2 ⋅n( )⋅ COS
π
4

⋅n −
π
4

 
 

 
 + 2 ⋅n3 + 2 ⋅ n2( )2 

 
  

 

Store this in NUMERATOR . Let's try to solve this for n . Recall 
NUMERATOR , enter n  and press . After some seconds in 
agony the HP49G returns:

n =
8 ⋅n1⋅ π + 8 ⋅ ATAN

−1
2 −1

 
 

 
 

π
n = 0 n = −1

 

 
 

 
 

 

 
 

 
 

Store this in SOLn. Let's examine the solutions. Recall SOLn and 
press  to extract the first solution out of the list. Take it to the 

EQW. The sub expression ATAN
−1
2 −1

 
 

 
  can be converted to a 

quotient but not by expanding. Select this sub expression and press 
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. Then press . The result is 
−3
8

⋅π . Press  and then 

. Now you have n = 8 ⋅n1− 3  on stack level 1. We have 
found that for an almost square orbit - or more precisely, for an orbit 

whose second derivative is 0  at Φ =
π
4

, the possible values for n  are 

of the form n = 8 ⋅n1− 3 , where n1 is an arbitrary integer. Let's find 
some values for n . Enter n1 −2 , 2 , 1, and press . The result is 
the list 

n = −19 n = −11 n = −3 n = 5 n = 13{ } . We already know 
that n = 5  corresponds to an 
almost square orbit, and so we see 
that n = 12 corresponds to a 
dodecagon (12-gon). But what are 
the negative solutions? We already 
know that ω = n ⋅Ω . from this 
relation we see that for negative 
values of n  the satellite will have 
negative angular velocity if the 
planet's angular velocity Ω  is 
positive, which means that the 
satellite runs retrograde. Though 
such orbits are known to be often 

unstable, let's plot such an orbit for n = −3 . Store −3  in n , 9  in α , set 
horizontal view from −20  to 20 , vertical view from −10  to 10 , 
Indep Low:  to 0 , High: to 6.29 , and Step: to .0629. Now, draw 
the plot. Aha! An even better cosmic square is achieved for n = −3 . 
Such negative values of n  correspond to curves that resemble as far as 
possible regular 1− n( ) -gons. The group of curves that the solutions of 
the form n = 8 ⋅n1− 3  describe have all one property in common: Their 

second derivative is (almost) equal to 0  around Φ =
π
4

.

The solution n = 0  is a trivial solution which doesn't produce any orbit 
at all, i.e. the satellite "sits" at x = 1, y = 0 , and the planet sits at x = 0 , 
y = 0 , which means that the planet is in the star. (Poor inhabitants - 
let's exclude this solution for humanity reasons ;-))

The solution n = −1 is also an "inhuman" one, but nonetheless 
interesting. It describes a planet that moves on a circular orbit around its 
star (planet inhabitants saved), with a satellite that oscillates with 
x = 2 ⋅ COS Φ( )  at y = 0  though the star! (Satellite and its inhabitants 
evaporates.)

From the above we clearly see, that the mathematical solutions of a 
problem don't have always to describe some "real existing" system - 
except of course for the case of planets and satellites that withstand the 
conditions inside a star ;-) Mathematics seem to be "more free" than 
physics, it doesn't have to represent any "real world" system at all. 
Complete freedom of thoughts with no restrictions whatsoever. Physics 
is free enough for stating that "heavens is the limit". Mathematics are 
free enough to even wipe out heavens, and thus remove any limit. It is 
so free that it can prove (strictly - no "feeling based assumptions") its 
own imperfectness or incompleteness, its own contradictions - but that's 
stuff for another marathon.

Let's make another (the last) examination of our orbits. Are still other 
solutions possible? And what do they represent? In the previous pages 
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we solved 

− 2 ⋅ α ⋅n2 + 2 ⋅ α ⋅n( ) ⋅COS ∅ ⋅n −∅( ) + 2 ⋅n3 + 2 ⋅α 2( ) = 0  for n  

when α = n2  and ∅ =
π
4

. Let's plot der2  as a function of n  when 

∅ =
π
4

, and α = 25 = 52 , that is for an assumed square orbit. Store 

25.  in α . Enter 
π
4

, press  and store the result in ∅ . Now, go 

to the PLOT SETUP  screen, select Function  plot type, and enter 
der2  in the 
input field EQ:. 
Enter 'n'  (with 
quotes if some 
value is stored in 
variable n ). Go 
to the 

PLOT WINDOW − FUNCTION  screen and enter horizontal 
view range from −10  to 10 . use the arrow keys to select the input 
field Indep Low:  and press . You 

will be presented a 
popup menu with the 
options to reset all 
things in the screen or 
only the value of the 
current input field. 
Select Reset value 
and press . 

Reset also the input field Step:. Now press  to autoscale the plot, 
 and then . You can see that the function has two roots 

at about n = 5 . The first of these roots is indeed n = 5 . Move the 
cursor near the second root, press  and then . The HP49G 
returns the root n = 5.7171656495 . This root describes an orbit which has 

its second derivative almost equal to 0  at ∅ =
π
4

 but is no regular 

polygon. If you make a parametric plot of ORBIT  with ∅  as the 
independent variable from 0  to 2 ⋅π  you will get an open curve. If you 
plot with ∅  from 0  to 10 ⋅π  then you will get the same kind of orbit as 
we saw when we used n = π . These results demonstrate the fact that 
our condition "as similar to a regular polygon as possible" are only 
imperfectly described when we say that the second derivative has to be 

0  at Φ =
π
4

 or any other angle. There are also non-polygonal orbits that 

have this property. And some of the (real) roots that we find describe 
exactly these orbits. Actually we should demand that the second 

derivative is 0  for the range Φ = 0  to Φ =
π
4

 (in the case of a square 

orbit). But that would make the formulation and further work more 
difficult, and would presumably return no results, because this would 
correspond to a perfect square, which is presumably impossible. 
(Remember, our condition was: as similar as possible to a regular 
polygon, but not an exactly shaped polygon.) This also shows how 
assumptions and approximations are used in physics. Often, the solution 
of a problem in physics is very tightly related to the art of approximation 
by modelling and making useful assumptions. We will continue on this 
orbit problem at some future part of this marathon, and we will see how 
to we can make an even better mathematical formulation of the condition 
"as similar to a regular polygon as possible".

Let's turn to another orbit-like problem. We examined orbits in planetary 
system scale. Now we take a look at orbits in atomic scale, though we 
know that the word "orbit" doesn't make sense at all in these 
dimensions. Nonetheless, considering the used models and the history 
of development of quantum mechanics helps understanding many things 
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that have to do with our built-in pattern matching engine and the 
resulting naive and dangerous analogies. The first detailed picture of 
the atoms was constructed with the help of the experiments of 
Rutherford. A thin metal sheet (target) was set under bombardment by 
cathode rays (electrons as projectiles) and Rutherford simply looked at 
"what happens with the projectiles". The results clearly said that most 
of the projectiles simply went through the sheet! As if it wasn't there! 
A smaller number of projectiles changed its course and and even 
smaller number was reflected by the metal sheet as shown in the 
pictures on the next page. That was quite a surprise. It meant that 
what we perceive as a solid material is (at least for electrons) almost 
not there! How could that be? Rutherford was a physicist and not 
transcendental-meditative-analogy-builder. He didn't speculate, he 
didn't tried to guess the "laws of the universe" by postulating things 
that can't be proven experimentally. He simply accepted what he saw, 
and what he saw was definitely not what "transcendental-meditation" 
or religion would tell him. If most electrons simply go though, could 
this imply that the sheet was for its biggest part… simply full of 

"holes"? Was the structure of matter, not continuous? He 
made this assumption, but he didn't raised it to the 
position of a law before doing further examination of the 
consequences of this assumption. If matter had a 
"granular" structure, then the behaviour of all projectiles 
could be explained, no matter if they went trough or not. 
The "granular" structure would explain why most 
electrons went through. They simply didn't meet 
anything that could change their way or send them back. 
And what about the other electrons that were refracted or 
reflected? There had to be something that made them 
behave this way. Rutherford made his assumption a bit 
more detailed by adding that the electrons were repulsed 
by negative charge that had to be concentrated at certain 
places. The atomic units of matter had to be constructed 
in such a way, that negative charge (electrons) can 
experience a repulsive force when they pass near such a 
unit. There had to be negative charge "around" these 
units (the atoms). If so, then there had to be also positive 
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charge "inside" the negative charge, in order to explain why the 
electrons didn't get "glued" and stayed in the sheet. So the assumed 
atoms would be really tiny and make only a tiny part of what we 
perceive as solid matter, the rest of our perception being not even thin 
air. The atoms would have negative charge (electrons) at the outside 
and positive charge at the inside. Was it that way? A huge amount of 
experimental work has been done to prove this assumption. Many 
physicists of that time saw only an "artificial" assumption but not 
"reality" in this explanation. And it was very good to do so. Physics 
is not believing by simply telling. Physics is doubt, hard work, 
experimental proof, experimental proof of the experimental proof, and 
above all… curiosity that doesn't stop to ask questions when 
transcendental meditation declares the world to be understood 
completely. After all this hard work was done, the atomic assumption 
was accepted and the physicists asked questions about the inner 
structure of the atom. They found out that the atom consists of its 
nucleus which carries positive charge and of electrons distributed 
around the nucleus and carry negative charge. Experiments 
demonstrated that the atom can't have any possible energy but only 
certain values. Nothing "between" these values seemed to be allowed. 
This experiment also contradicts what a "meditative-transcendental-
want-it-so-theory" could "deduce". One could speculate about 
planetary-like orbits (naive analogy) of the electrons around the 
nucleus, but then what about continuous energy loss because of 
radiation? One could also speculate about "holy places around the 
nucleus where the electrons just sit and do nothing, embedded in 
cosmic peace", but then what about the attractive forces between the 
negative and positive charges? Instead of doing meditation for solving 
physical problems, the scientists started thinking and having sleepless 
nights. Then Bohr made an assumption which seems to be like the 
naive analogy of planetary-like orbits, but nonetheless is way 
different. He postulated that of all planetary-like orbits only these 
were possible, in which the angular momentum of the electron is an 

integer multiple of 
h

2 ⋅π
, where h is Plank's CONT. That means:

m ⋅ v ⋅r =
n ⋅ h
2 ⋅π

where m  is the mass of the electron, v  its radial velocity around the 
nucleus, r  the radius of its orbit around the nucleus. Why is that not a 
naive analogy? Well, consider our planetary system and you can 
immediately see that any energy is possible for a planet. There is no 
restriction to certain orbits that obey some rule. Of course Bohr's 
assumption was a bit too much, especially because he also postulated 
that no energy loss by radiation takes place in such "allowed" orbits. But 
at least it could be tested experimentally. And the experiments 
demonstrated that indeed his model had to do something with reality. 
Let's try to calculate the "radius" of the orbit of an electron around the 
nucleus of hydrogen, which consists of a simple proton. The energy of 
the electron in its assumed orbit is the sum of potential and kinetic 
energy. The potential energy is the energy of a positive and a negative 
elementary charge at a distance r  from each other. For the potential 
energy enter:

−
qe2

4 ⋅ π ⋅ ε0 ⋅ r

where qe  is the electron charge and ε0  the permitivity of vacuum. For 
the kinetic energy enter:

m ⋅ v2

2

where m  is the mass of the electron and v  its radial velocity around in 
its assumed orbit around the nucleus. Press  to add the potential and 
kinetic energy and get:

−
qe2

4 ⋅ π ⋅ ε0 ⋅ r
+

m ⋅ v2

2

Store a copy of this expression in H.ENERGY . Now we eliminate v  
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from this expression using Bohr's assumption. Enter:

m ⋅ v ⋅r =
n ⋅ h
2 ⋅π

then enter v , and press  to get:

v =
n ⋅h

2 ⋅ π ⋅r ⋅m

Store a copy of this equation in BOHR.POSTUL. Press  to 
substitute v  in the expression for the energy and get:

−
qe2

4 ⋅ π ⋅ ε0 ⋅ r
+

m ⋅ n ⋅h
2 ⋅ π ⋅r ⋅ m

 
 

 
 

2

2

This is the total energy of the electron as a function of the radius of its 
assumed orbit. Since we know that phenomena in nature tend to 
proceed in a direction that minimises the energy of a given system, we 
try to find the radius r  that leads to the minimum energy of the system 
proton-electron. That means that we want to find the roots of the first 
derivative of the total energy for r . Enter r  and press  to get:

−
− qe2 ⋅ 4 ⋅π ⋅ ε0( )
SQ 4 ⋅π ⋅ε 0 ⋅r( ) +

2 ⋅ m ⋅ 2 ⋅
n ⋅h

2 ⋅ π ⋅r ⋅ m
⋅
− n ⋅h ⋅ m ⋅2 ⋅π( )
SQ 2 ⋅ π ⋅r ⋅m( )

4

This is the first derivative of the energy with respect to r . Now enter 
r  and press . You get:

r =
n2 ⋅h2 ⋅ε0
π ⋅m ⋅qe2

Store a copy of this in BOHR.R . The integer n  can have the values 

1,2,3, …. That means that the "allowed" orbits are:

r1 =
1⋅h2 ⋅ε0
π ⋅m ⋅ qe2

r2 =
4 ⋅h2 ⋅ε0
π ⋅m ⋅qe2

r3 =
9 ⋅h2 ⋅ε0
π ⋅m ⋅qe2

and so on. The first of the allowed radii is:

r1 =
1⋅h2 ⋅ε0
π ⋅m ⋅ qe2

and is called the first Bohr radius. It has the value of 52.92pm . This 
was verified experimentally. The results were in excellent agreement 
with the theory and so, at least for the hydrogen atom, the assumption of 
Bohr was found to be usable. Using the theoretical radius and Bohr 
assumption we can find the allowed energies of the electron. Recall 
H.ENERGY , recall BOHR.POSTUL and press . Then recall 
BOHR.R  and press again . Expand the expression to get:

−
m ⋅ qe4

8 ⋅n2 ⋅h2 ⋅ε 02

These are the allowed energies of the electron of the hydrogen atom. 
They were confirmed by experimental work. But still, there were big 
problems regarding Bohr's atom model. As we know today, the reason 
for the problems is more or less our pattern matching recognition. In 
every day life we see physical objects having what we call velocity and 
following some particular way on their movement. So we extrapolated 
these observations to a world in which they might be useless, using the 
naive analogy: "Like a planetary system, the nucleus is like a star and the 
electron is like a planet". We assumed that nature would behave just as 
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we expected, but nature doesn't have any obligation at all, to behave 
as we think, and above all to be understandable the way we want it to. 
Before we proceed to the quantum mechanical description of the 
hydrogen atom, a couple of (I hope destructive) words on the kings of 
analogy, the transcendental meditation "scientists". All transcendental 
meditative "theory" still bases on our perception of the world, and 
because our perception says that "objects have velocities", don't 
expect to find quantum mechanics out of singing their holy songs. Of 
course (ha,ha) after quantum mechanics was formulated and tested 
experimentally, those guys immediately said that it was in agreement 
with their transcendental meditative results without even really trying 
to follow the theory and its formalism by working. I have the feeling 
that whatever theory comes out and proves to be usable, they will say 
that they already knew it since 1483 years. Of course they say that 
only after other people have done the work. Thanks heavens we 
passed the state of the dark ages of charlatanry and nobody in the 
scientific world listens to such stupidities. And thanks heavens this 
sickness of human mind will vanish by itself.

Back to quantum mechanics. After the 
theory was developed, it was found out 
that the electron doesn't behave like an 
object, which is in orbit around the 
nucleus. The world "orbit" doesn't 
have a meaning in the subatomic world. 
At least not the meaning that we 
comprehend using the observations that 
we can make with our senses. The 
electron behaves more like a wave 
around the nucleus. (This analogy is 
also very dangerous but the scientists 
know that - we use it only for imperfect 
grasping of the subatomic world.) The 
electron is described by what we call 
"wave function", a function of the coordinates of the electron. It turns 
out that this wave function Ψ r,θ, ϕ( )  can be written as a product of 
functions of each single coordinate, i.e. it has the form 

Ψ r,θ, ϕ( ) = R r( )⋅Θ θ( )⋅Φ ϕ( ) . The wave function is in general a 
complex function. Without further interpretation we accept here that the 
product of the wave function with its complex conjugate is proportional 
to the probability to "find" the electron at r,θ, ϕ . The first wave function 
is fully symmetric with respect to θ,ϕ  and it depends only on r , the 
distance from the nucleus. This wave function is:

Ψ r( ) = 1

π
⋅ 1

a0

 

 
  

 
 

3
2

⋅e
− r

a 0

where a0  is the first Bohr radius that we have calculated on the previous 
pages. The probability to observe the electron (with the above wave 
function) at some distance r  from the nucleus is proportional to the 
product Ψ r( ) ⋅Ψ∗ r( ) , where Ψ∗ r( )  is the complex conjugate of Ψ r( ) . 

Since this wave function is real we have Ψ∗ r( ) = Ψ r( ) , and so the 
probability to observe the electron at some distance r  from the nucleus is 
proportional to Ψ r( ) ⋅Ψ r( ) = Ψ2 r( ) . The complete formula for 
calculating the probability to observe the electron between r1  and r2  is 
given by the integral:

P r( ) =
r= r1

r =r2

∫ 4 ⋅ π ⋅r2 ⋅Ψ 2 r( ) ⋅dr

The part 4 ⋅ π ⋅r2 ⋅Ψ 2 r( )  is known as the radial probability distribution 
function D r( ) . It is this function that gives us the probability to "see" the 
electron at a certain distance r  from the nucleus. Let's find where the 
electron has its maximum probability "to be seen". Enter the radial 
probability distribution function of the first wave function:

4 ⋅ π ⋅r2 ⋅
1
π

⋅
1
a0

 
 
  

 
 

3
2

⋅ e
− r

a0

 

 
  

 

 
 

2
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Now enter r  and press  to find the first derivative with respect to r . 
The roots of this derivative are the distances r  from the radius, where 
the probability to "see" the electron takes its extremal values. Enter r , 
press  and wait until the HP49G returns r = a0 r = 0{ } . The 
first solution, r = a0 , is the distance where we get the maximum 
probability. It is exactly 
the same like the first 
Bohr radius, which shows 
that Bohr's model was 
perhaps not perfect but 
usable! The second 
solution, r = 0 , is where 
this probability has its 
minimum. This minimum 
probability 0 , i.e. the 
electron will never be at 
r = 0 , where the nucleus is. If you plot the radial probability 
distribution function:

4 ⋅ π ⋅r2 ⋅
1
π

⋅
1

52.92
 
 

 
 

3
2

⋅e
− r

52.92

 

 
 

 

 
 

2

where a0  has been replaced by its numeric value in nanometers, then 
you will get the picture to the right (without the annotations).

Quantum mechanics is a fascinating chapter of physics and we are not 
going to examine it in much detail here. But nonetheless let's take a 
look at Bohr's model. Bohr didn't only assume something and raised 
it to a "universal law". He assumed something and followed its 
consequences, making predictions which were confirmed 
experimentally. Still, he and the whole scientific word didn't accept 
that "this is the absolute truth". Why? Well, first of all there can be 
many (in fact infinite many) assumptions and models that lead to the 
same results. A model is never "one and only". In case of many 
models that lead to the same results, further work has to be done, 

theoretically and experimentally, that helps us tell which one is the best. 
In the case of quantum mechanics, the fully developed formalism is 
based on assumptions (postulates) that are even harder to grasp than 
Bohr's assumption. We accept them because the predicted properties 
were confirmed in thousands of experiments, and not because we 
blindly believe that they are true. Furthermore quantum mechanics is a 
theory with which we can calculate and make predictions but the basic 
part of it is not "understandable" for humans. We have objects 
(particles) of which we think they have well defined "borders" to the 
"outer world", and then we find out that they are waves which end at… 
infinity!!! On the other hand the same particles can also behave like tiny 
objects with well defined dimensions, say like mini spheres. 
Presumably these particles-or-waves are neither particles nor waves but 
something else, for which we still don't have an adequate model. We 
can perceive physical bodies and waves with our senses and so we 
extrapolated these concepts (as well as possible) to a world, where they 
perhaps have no meaning. It could also be that these contradicting 
behaviours - sometimes wave, sometimes particle - have their roots in 
the inherently existing imperfectness/incompleteness of (almost) any 
formal theory. We use mathematics that include 
imperfectness/incompleteness, so why do we expect a perfect 
description of the word with no contradictions at all?

Another thing to think of: Suppose that somebody, before Bohr made 
his assumptions, was able to measure the radial probability distribution 
of the electron around the nucleus of the hydrogen atom. He or she 
would collect a number of r − D r( )  pairs. He or she could then plot these 
values in a scatter plot and get the picture to the right. If he or she 
decided to fit the data to some 
function of the type 

C1 ⋅r2 e−C 2 ⋅r( )2
, where C1  and 

C2  are fitable parameters, he 
or she would find that with 
C1 = 2.7E31 and 
C2 = −1.89E10 a perfect 
correlation can be established. 
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But so what? What are C1 = 2.7E31 and C2 = −1.89E10? Why 
don't they have any other value? What does the fit function represent? 
Where does it come from? We see, statistics don't answer questions. 
The statistical method only shows correlations but correlations are 
definitely not physical models. To understand it better, consider the 
example of statistics nonsense that was really done somewhere in 
northern Germany. (I don't give names here, for understandable 
reasons ;-)) It has been found that a correlation existed between the 
number of births of humans and the number of births of… (believe it 
or not) storks! So are we to say that it is a physical proven fact that… 
the storks bring the children? Think again about the answer. If you 
accept this, then certain human activities for children production will 
become unnecessary ;-)
The last thing to discuss is the principle of energy minimisation. Some 
of the transcendental stupids have blindly used it to defend their 
position "lower the energy of your brain and then the world will live 
in peace through transcendental meditation" - or similar bullshit. Apart 
from the fact that lowering the energy of our brains would kill us all 
(peace in its most unexpected form ;-)), they didn't even define what 
is the energy of the brain (or was it temperature? ;-)), they didn't 
consider that the fate of macroscopic phenomena is connected also to 
another quantity, the entropy, but instead of this they "guessed" a 
function with as many fitable parameters as possible, which they 
declared to the "state of the earth", and then fitted the guessed function 
to their (also undefined) transcendental meditation (mama mia!), and 
published this rubbish to the internet. Of course you won't find that 
shit on any serious scientific publication, oh no! Those "scientists" 
know that if they dared publish their garbage there, then… their time 
would come to take what is widely known as "transfer to lunar orbit". 
Even if the "guessed" function of undefined quantities were right 
(which it isn't), it wouldn't be a model and even less a theory, simply 
because it is (stupidly used) statistics and correlations of undefined 
quantities.

I must be in a very green state these days ;-) Anyway, another puzzle 
to think of: There is no recipe in this world that let's you construct any 
line segment with the length of exactly π , or of some expression that 
contains π  in a transcendental manner. (Not the way JHM would like 

it be. The mathematical definition of transcendence is meant here ;-)) 
Nonetheless the electron, this tiny Mistviech, manages to "be in a 

distance" from the nucleus, whose mathematical expression contains 
1
π

 

as a factor!!! Though we can't produce such a distance with any 
mathematical construction in a finite number of steps, the electron can! 
Our mathematical description of nature has also its mysteries. And it is 
good that it does, or else it would be boring. But think about it for a 
moment. (And be sure to have a cup of very strong coffee somewhere 
near ;-))

The last example that we are going to examine using derivatives is the 
function that gives the concentration cB  of a substance B  that appears in 
the reaction:

A →
k1

B

B→
k2

C

The above reaction mechanism means that substance A  is converted to 
substance B  with a rate k1  and at the same time the substance B  is 
converted to substance C  with the a rate k2 . If we UNASSUME that 
mass is a continuum, and if the initial concentration of substance B  is 0
, then for the concentration cB  we have:

cB =
k1 ⋅ cA0

k1 − k2

⋅ e−k 2 ⋅t − e− k1⋅t( )

where cA0
 is the initial concentration of substance A . The question is, 

does the concentration of substance B  have an extremum at some certain 
time t ? Let's see. We will find the roots of the first derivative with 
respect to t . Enter:
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k1⋅ cA0
k1− k2

⋅ e −k2 ⋅t − e−k1⋅t( )

and make a copy of the expression. Now enter t  and press  to get:

k1⋅ cA0
k1− k2

⋅ e −k2 ⋅t ⋅−k2 − e−k1⋅t ⋅−k1( )

Since all quantities that appear in the above expression are real an 
positive, switch to real mode, then enter the assumption list 

cA0 ≥ 0 k1≥ 0 k2 ≥ 0 t ≥ 0{ }, press , and drop the 
assumption list. Now enter t  and press . The HP49G will 
complain Not reducible to a rational expression. It is a 

shame that it doesn't solve this equation, but let's help it. Press  
and then  to get:

e−k2 ⋅t ⋅−k2 ⋅
k1⋅ cA0
k1−k2

− e− k1⋅t ⋅−k1⋅
k1⋅ cA0
k1− k2

Press , then twice , and then  to get:

e−k2 ⋅t ⋅−k2 ⋅
k1⋅ cA0
k1−k2

= e− k1⋅t ⋅−k1⋅
k1⋅ cA0
k1− k2

Now press  to get the natural logarithms of the left and the right 
hand sides. This operation takes some time to complete because the 
HP49G has to consider all the assumptions that we made. When it is 
ready you have:

LN − e−k1⋅t ⋅−k2 ⋅
k1⋅cA0
k1− k2

 
 
  

 
 

 

 
  

 
 = LN − e−k1⋅t ⋅−k1⋅

k1⋅ cA0
k1− k2

 
 
  

 
 

 

 
  

 
 

Press . This operation also takes a bit more time. When it is 

ready you get:

− LN k1− k2( ) − LN cA0( ) + LN k1( ) + LNk2( ) − t ⋅k2( )( ) =

− LN k1− k2( ) − LN cA0( ) + 2 ⋅LNk1( ) − t ⋅k1( )( )
Press  and then  to get:

t =
LNk1( ) −LN k2( )

k1− k2

Press  to get:

t =
LN

k1
k2

 
 

 
 

k1− k2

This is the time at which the concentration cB  has its maximum. To find 
the expression for the maximum concentration, press , then 

. Now you have:

cA0
k1−k2

⋅ e

− k2 ⋅
LN k1

k2

 

 
  

 

 
  

k1−k2

 

 

 
 
 
  

 

 

 
 
 
  

− e

− k1⋅
LN k1

k2

 

 
  

 

 
  

k1− k2

 

 

 
 
 
  

 

 

 
 
 
  

 

 

 
 
 

 

 

 
 
 

If you now expand, then the HP49G will return a huge and 
unnecessarily complicated expression. If you try to take this expression 
in the EQW and apply  separately to each exponential sub 
expression, then the HP49G will convert the exponentials to:
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1

e
k2 ⋅

LN
k1
k2

 

 
  

 

 
  

k1− k2

 and 
1

e
k1⋅

LN
k1
k2

 

 
  

 

 
  

k1−k2

No simplification to:

k1
k2

 
 

 
 

k2
k1−k2

 and 
k1
k2

 
 

 
 

k1
k1−k2

will be carried out, though under our assumptions the expression 
k1
k2

 

is positive and the expressions 
k2

k1− k2
 and 

k1
k1− k2

 are real. So you 

can only "imagine" that the expression for the maximum of cB  is:

cA0
k1−k2

⋅
k2
k1

 
 

 
 

k2
k1− k2

−
k2
k1

 
 

 
 

k1
k1−k2

 

 
 

 

 
 

Anyway, if you give numeric values to the variables ca0 , k1, and 

k2 , and then plot the expression 
cA0

k1−k2
⋅ e−k2 ⋅t − e−k1⋅t( )  with t  as 

the independent variable, then you get a 
graph the shape of which is similar to 
the curve on the right.

Drop anything from the stack, until the 

expression 
k1⋅ cA0
k1− k2

⋅ e −k2 ⋅t − e−k1⋅t( )  is 

on stack level 1. We are going to use it for making some thoughts 
about limits, removable and non-removable discontinuities. It is said 

quite often that for example the function 
SIN X( )

X
 is not defined at 

X = 0  because of division by 0 , but things are not quite that simple. If 

it were that way, then the concentration 
k1⋅ cA0
k1− k2

⋅ e −k2 ⋅t − e−k1⋅t( )  which 

is theoretically obtained by reaction kinetics and experimentally proven, 
would be… undefined in the case k1= k2 , IP if substance A  gets 
converted to substance B  at exactly the same rate as substance B  is 
converted to substance C . Which of course is absurd! We don't expect 
to have a chemical reaction which starts with a well defined 
concentration cA0

 and suddenly (through the influence of some holy 
ghost) the concentrations get undefined, do we? We have to look a little 
bit closer and realise that if k1= k2 , then also e−k2 ⋅t = e− k1⋅t , which 
means that we have to work with limits. If the limit exists:

lim
k1 →k2

k1⋅cA0
k1−k2

⋅ e− k2 ⋅t −e −k1⋅t( )

then we can (or better, we must) accept that the function has to be 
replaced by this limit at k1= k2 , in order to avoid… undefined 
concentrations. We have then a removable discontinuity. Enter k1= k2  
and press . After some seconds the HP49G returns:

t ⋅k2 ⋅cA0
et⋅k2

which means that the concentration cB  is still defined and measurable as 
a function of the time t . If you differentiate and solve for t , you will get 
the solution:

t =
1

k2

which is the time of the maximum concentration of substance B . The 

maximum concentration can then be found by substituting t =
1

k2
 in the 
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expression 
t ⋅k2 ⋅cA0

et⋅k2 , which gives the result 
cA0
e1 . Remove now all 

assumptions that we made by entering cA0 k1 k2 t{ }, pressing 

, and dropping the list from stack level 1. Since t  
belongs per default to the real variables of the CAS of the HP49G, 

enter t  and press  to add t  to the real variables. Also, 

enter X  and press  to set variable VX  to X , since the CAS 

has altered to k1 when we found the limit of cB  for k1= k2 .

Some criticism on the used model of this example. The expression 
that gives us the concentration of substance B  at any time t  is derived 
from the assumption that the reacting mass is a continuum. Which of 
course we know is wrong. Any material object consists of its 
molecules (discrete structure) and if the smallest unit that can react is 
one molecule, then the whole reaction will be probably also a non-
continuous phenomenon. We can only have an integer number of 
molecules that react at some time. Of course, if we consider the huge 
number of molecules in an amount of a substance that we are able to 
weight, then the discrete behaviour can be indeed approximated by a 
continuous behaviour very well, since the smallest substance unit that 
can react - a molecule - is tiny in comparison to the mass of the 
substance. But if we want to be completely correct, we have to 
consider the possibility of a discontinuous model, and its 
consequences. We will do that later on, but now let's reconsider the 
problem that appears when k1= k2 , which we avoided by accepting 
that we have to use limits and to work with a removable discontinuity. 
The problem of concentrations of the used type of chemical reaction, 
can be formulated exactly and solved without any approximations. We 
will handle the formulation and solution of the problem when we deal 
with differential equations. For now it is enough to know that no 
mathematical approximations have to be used in order to derive 

cB =
k1 ⋅ cA0

k1 − k2

⋅ e−k 2 ⋅t − e− k1⋅t( ) . Why then does the solution behave this 

way? What brings the discontinuity, be it removable or not? Let's 

think about it. We have several possibilities to explain this behaviour. 
We could say that this is evidence for the impossibility to have two 
different chemical reactions that proceed with the same rate. This might 
sound not very reasonable, but if we take into consideration that two 
different chemical reactions involve different molecules and different 
reaction paths, and also the fact that the rates of the reactions are (in 
most cases) measured real quantities, we see that perhaps this is indeed 
what the discontinuity "wants to say to us". Measured quantities, 
especially real measured quantities, are always measured up to a certain 
degree of precision and accuracy. But because they are real, they will 
presumably be transcendent. (Not the way JHM wishes them to be ;-)) 
Such numbers are very hard to grasp exactly. Can two measured real 
reaction rates of different chemical reactions be exactly the same? Think 
of it. We will deal with such problems in another future marathon, but 
now let's continue on possible explanations about the reasons for the 
above discontinuity. One could also say that the fundaments of the used 
continuous model are not completely correct, and that a discrete model 
would avoid this problem. Acceptable critics, but we will see in a few 
minutes that this is not the reason for this behaviour.

Let's model the reaction using a discrete model for the case in which at 
the reaction start there are only molecules of the substance A . Some of 
these will react and be transformed to B . We denote the number of 
molecules of the substance A  before the reaction with A n −1( ) , and the 
number of molecules after the reaction with A n( ) . The difference 
between the number of molecules before and after the reaction is exactly 
the number of molecules that reacted and got transformed to B . We 
assume that the number of molecules that react is proportional to the 
number of the existing molecules. This assumption is justified later on, 
when we see that experiments agree with the theory. That means:

A n( ) − A n −1( ) = −k1⋅ A n −1( ) ⇔ A n( ) = 1−k1( )⋅ A n −1( )

where k1 is the proportionality constant, which has to be less than 1 but 
positive. (Why?) Let's denote the initial number of molecules of 
substance A  with A0 . That is: A 0( ) = A0 .
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The above equations define a recursive sequence. If you have the 
Sequences, Series and Limits Marathon, you can enter:

A n( ) = 1− k1( ) ⋅A n −1( ) A 0( ) = 0{ }{ }
and use the program REC → ANL  to get the analytic closed form of 
this sequence:

A n( ) = A0 ⋅ − k1−1( )( )n
n 0 +∞{ }{ }

and then press  to extract A n( ) = A0 ⋅ − k1−1( )( )n
 out of the 

list. If you don't have the Sequences, Series and Limits Marathon, 

just enter the equation A n( ) = A0 ⋅ − k1−1( )( )n
. As you can see, this is 

a decreasing geometric sequence, which shows that we at least caught 
the general behaviour of the reaction of substance A  in our model. 
Since A  gets transformed in B , and since there is no reaction that 
produces A , the number of molecules of substance A  must decrease. 
Now let's consider substance B . According to the reaction, B  is 
"created" by exactly those molecules of A , which have reacted. But it 
also reacts itself and gets transformed to C . The difference between 
the molecules before and each reaction "step" can be represented as:

B n( ) −B n− 1( ) = k1⋅ A n −1( ) − k2 ⋅B n −1( )

which means that:

B n( ) = k1⋅A n −1( ) + 1− k2( ) ⋅B n −1( )

The constant K2  plays the same role for B  as k1 plays for A . If we 
now substitute what we have found for A n( )  in the above equation, 
we get:

B n( ) = k1⋅A0 ⋅ − k1−1( )( )n−1
+ 1− k2( ) ⋅B n −1( )

We create a model for the case that no substance B  is present at the start 
of the reaction, which means that B 0( ) = 0 . These equations also define 
a recursion, which written in our notation is:

B n( ) = k1⋅A0 ⋅ − k1−1( )( )n−1
+ 1− k2( ) ⋅B n −1( ) B 0( ) = 0{ }{ }

Unfortunately the program REC → ANL  can't turn this recurrence to 
its analytic closed form. (Which shows how imperfect Nick's 
programming skills are ;-)) But using RSolve from Mathematica we 
get:

B n( ) =
k1⋅A0 ⋅ 1− k2( )n − 1−k1( )n( )

k1− k2

Did you notice something? Exactly the same problem , k1−k2  appears 
in the denominator. We still have the (removable) discontinuity!!! Again 
we must accept that when k1= k2 , we have to work with:

lim
k1 →k2

k1⋅A0 ⋅ 1−k2( )n − 1−k1( )n( )
k1− k2

=
n ⋅k2 ⋅ A0 ⋅ 1− k2( )n

1− k2

We see that it was not the assumption of mass continuum that was the 
reason for this problem. The discontinuity appears also when we use 
discrete modelling.

Notice also the similarity of the two expressions:

k1⋅ cA0
k1− k2

⋅ e −k2 ⋅t − e−k1⋅t( )  and 
A0 ⋅k1⋅ 1− k2( )n − 1− k1( )n( )

k1− k2
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If you give numeric values to the variables k1, k2 , cA0  and A0 , 
where cA0 = A0 , and plot the first expression with t  as independent 
variable and the second with n  as independent variable, then you see 
that indeed both expressions describe the same thing. (Plot the second 
expression with the option _Connect unchecked.

The above plots were made with 
k1= .02 , k2 = .01, 
cA0 = A0 = 1. If you use much 
greater values for k1 and K2 , 
you will notice that the discrete 
model produces a much higher 
maximum number of molecules 
for the concentration of B , and a 
much faster decrease in 
concentration of B . Can you 
explain why? (How clear can be 
a movie that shows a bullet flying 
at supersonic speeds, when each 
picture shot takes, say, 1 
second?) Using the discrete 
model, we silently assume that 
for each n  the molecules exist 
either in form of the substance A  
or in form of the substance B . 
But it is known that reactions like 
for example A → B  follow a reaction path. Molecule A  is not 
transformed immediately in molecule B , but it rather runs through 

many different phases, until it finally is converted to B . Our discrete 
model takes into consideration all molecules that either didn't even start 
reacting yet, or those which have completed their reaction. But it doesn't 
take into consideration those molecules which are reacting just now. 
How does this agree with the fact that small values for k1 and k2  give 
plots that agree with the continuous model, while bigger values give 
plots that are different from the continuous model? (Consider how big is 
the number of just reacting molecules compared with all the other 
molecules when k1 and k2  get greater.) How could we include the just 
reacting molecules in our discrete model? (The answer of this question is 
not easy and includes reaction probabilities.)

I hope that this marathon has been a source of puzzling twisted thoughts 
and of further ideas for heavy usage of the HP49G. We have seen that 
the machine has many "unexpected" features, which sometimes make 
pour lives really hard. But in general it is a real helper that can be used 
for purposes well beyond the level of education. (Which by no means 
implies that education level is low or easy.) In the next part we will 
continue with extrema of functions of more than one variables and 
similar examples taken from physics and chemistry.

Summer greetings - where is the fridge?
Nick.
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