
Sequences, series and limits
with the HP49G

(and with the HP48)

By Nick Karagiaouroglou

The programs that come with this document are changed several times according to the descriptions in the document. As only the newest versions of the programs are supplied
each time a new part of the marathon is posted, you might not get the errors that earlier versions gave. Also, some of the programs of the first parts are no more necessary and
thus are not part of the zip archive. The functionality of such programs is implemented in other programs, so that you have no functionality loss. However the code of old
programs which were replaced and the code of old versions of programs which were updated is described in the document for study purposes.

Before you start working you should set your flags.
Enter the list { #A003008D8103F0h #0h #190101402000028h #0h } and press STOF

Hi all out there!

After a long fantastic vacation this is the start of the sequences, series
& limits marathon, which promises to bring us more insight about the
capabilities of the HP49G. I tried to collect many ideas during a long
trek with Trabakoulas and for the very very first time in my life I made
a to do list, so that I don't forget anything. Note that the programs
written at the start of this document are not the same programs that
come along with the document. The programs in the files for the
HP49G are given at the end. Through the document we are going to
change the programs and see how they get better (though not perfect).

We are going to examine thoroughly the powers (and flaws) of the
HP49G regarding sequences, series & limits. What we do here will
help us when examining limits and derivatives and integrals.

Let's bring in our minds some very elementary things, that will help us
understand what a condensation point is. First we need to remember
what a point set is. For the time being it suffices to accept that such a
set is given, when we can prove for any point of some space, if this
point is member of the set or not. Notice that "space" and "point" both
don't need to be the space in which we live and its points. We could
take as space for example all integers, and prove if some given integer
(the point) is member of some given set or not.

Such a set, for which we can prove what are its members, is bounded,
when a number exists that is bigger than the distance between any two
points of the set. Often we measure the distance of such points by
means of their coordinates. It suffices to consider such point sets on a
straight line, on which we bring the coordinates of points. We can use
more than one coordinates if necessary, that is when our set has more
than one dimensions. For some one-dimensional set, if we denote the
coordinates of two points with x i and xk , then the distance of the two

points is given by xi − xk .

Can we prove if an one-dimensional set is bounded with the HP49G?
Let's see. We should check if the biggest possible distance xi − xk

between the points with coordinates x i and xk is a finite number. for

example, we consider the set of points Pn with coordinates
1
n

, n

going from 1 to +∞ . In this case we see that the point P1 with x1 = 1 is
the biggest possible while the smallest possible is the point 0 as n
approaches infinity. So the biggest possible distance between the
points of the set is 1 and hence the set is bounded. But how should the
HP49G know what the biggest and what the smallest possible points

are? We can't of course evaluate
1
n

 for any possible value of n . And

we also can't assume that the biggest coordinate is for n = 0 and the

smallest for n → ∞ . Consider for example
n

n− 2()2 + 3
. Here the

biggest possible coordinate is
3
4

 for n = 3 and the smallest 0 for

n = 0 . But there is hope on the horizon. We have the command
TABVAR which can help us. First of all let's see what it does. It takes
a univariate function of the current variable VX and returns a variation

table. Enter for example
1

X − 2
 and press TABVAR. (The command is

well hidden in menu [SYMB] GRAPH [NXT].) The results are the
function itself on stack level 3, a list that contains two sub lists in stack
level 2 and a GROB on stack level 1 that contains a graphical
representation of the variation table along with the function and its first
and second derivatives. If you press the key [arrow-down] you can
take a look at this GROB. On its lower part it contains the variation

table, an array which looks like
−∞ − 2 − +∞ X

0 ↓ ∞ ↓ 0 F









 . If we

take a look at the function plot then we see
what the variation table means. Starting at
X = −∞ the function has the value 0 . Then
we have a minus sign and an arrow
downwards, which tell us that the function

Sequences, series and limits with the HP49G - Part 1

1-1

falls when we walk from X = −∞ to X = 2 . At X = 2 the function
goes to infinity. And then when we go from X = 2 to X = +∞ the
function falls again from infinity to 0 . Press [CANCEL] and
[BACKSPACE] to get rid of the GROB. Now you have the variation
table as a list on stack level 1. This list can be used to find possible
extremal absolute values of a function. But there are also some things

to be aware of. Our set
1
n

 was discrete, n could be 1,2,3, and so on.

In the function
1
X

 the variable X can take any value, like 3.5 or −1.8

. That means, when an extremal value is found by TABVAR, this
doesn't have to be also the extremal value of coordinates of the set.

For example consider
X

X − 2()2 + 3
. TABVAR returns:

−∞ − − 7 + 7 − +∞ X

1 ↓ − −2 + 7
6

↑ 2 + 7
6

↓ 0 F















We see that for X = 7 the function goes through a maximum
2 + 7

6
 and for X = − 7 the function goes through a minimum

−
−2 + 7

6
. But in

n
n− 2()2 + 3

 n can only have only integer values,

so it can't be 7 or − 7 . That means, if we use TABVAR for such a
purpose in a program, we must check if the returned values for X are
integers and if they are not, then we check what the members of the set
are, that have integer coordinates adjacent to those returned. In this
example we have X = 7 ≈ 2.65 which means that we take n = 2

and n = 3 and find the values
2
3

 and
3
4

 as potential extremal values of

n
n− 2()2 + 3

. Another thing that we must do is to filter out those

coordinates and corresponding values that are not part of the set.
TABVAR has returned −∞ , − 7 , 7 and +∞ as x-coordinates, but
our set has n going from 1 to +∞ . So we must throw away −∞ and

− 7 and the corresponding values of
X

X − 2()2 + 3
. And we must

also throw away all symbols like +, -, ↓ and↑ that TABVAR returns
in order to show what happens between the x-coordinates. Additional
work that must be done is to exchange n (or whatever is used as
index) with the current variable VX when TABVAR is used and make
the backwards substitution if needed later. That's because TABVAR
works only with VX (which often is X). (You see here the misery of
having commands that want a special variable in order to work.) And
there is yet another thing that we must be aware of. Suppose you want

to examine the set
1
n

 for n = 1,2,3L. Using TABVAR on
1
X

 will

return the variation table
−∞ − 0 − +∞ X

0 ↓ ∞ ↓ 0 F









 . The set

1
n

 with

 n = 1,2,3L has a maximum value at n = 1. But this isn't included in

the variation table, because TABVAR examines
1
X

 from −∞ to +∞

and in this interval nothing special happens at X = 1. So we should
add our start and end coordinates in the list that is returned by
TABVAR. When we have all special points, we can find the maximum
and the minimum and then the absolute value of their difference.
Comparing that with +∞ we can find if the set is bounded or not. Let's
make a first version of such a program. We denote a set with a list of
the form:

memberGeneralForm variablestart end{ }{ }

Sequences, series and limits with the HP49G - Part 1

1-2

For example the set
1
n

 for n = 1,2,3L would be denoted as

1
n

n 1 +∞{ }







The program should take such a set as a list and return a 1 if the set is
bounded or a 0 if not. It should also return the bounds themselves as a
list.

<<
OBJ-> DROP
OBJ-> DROP @explode set denoted as list
EVAL SWAP @Evaluate eventual infinities
EVAL SWAP
-> genMemb var lo hi @store in local variables
<<

"Calc. variation table"
1 DISP @Show message
genMemb var RCLVX = @Substitute with VX and
SUBST
IFERR @If error occurs when we
TABVAR @calculate the variation table

THEN
IF

ERRN #DE65h == @If we the function is const.
THEN

lo hi 2 ->LIST @Make list {lo hi}
OVER DUP 2 ->LIST @and {genMemb genMemb}
2 ->LIST 0.

ELSE
? DUP 2 ->LIST @else make list {? ?}
0.

END
ELSE
DROP @Drop returned GROB
OBJ-> @Transform the variation table
<< 2 ->LIST >> @to a list of lists with pairs

DOLIST @coordinate, member.

"Filtering out +,-,↓,↑"
1 DISP @Show message
1
<< @Throw away all elements

IF @in even positions

NSUB 2 MOD NOT @i.e. those with +,-,↓,↑
THEN

DROP
END

>>
DOSUBS
"Adding low bound" @Show message
1 DISP @We use lim and not simply
lo PICK3 @EVAL to avoid errors for
RCLVX lo = lim @n=+∞ and similar cases.
2 ->LIST 1 ->LIST +@Add pair to list of variation
"Adding high bound"@Show message
1 DISP @Same again for max. n
hi PICK3
RCLVX hi = lim
2 ->LIST 1 ->LIST +@Add pair to list of variation
"Transforming non-

integer to integer" 1 DISP @Show message
1
<<

IF @If coordinate is algebraic
DUP HEAD DUPDUP @but not +∞ or −∞
TYPE 9 ==
SWAP ABS ∞ ≠
AND

THEN @Then add coordinates of
NIP ->NUM DUP @adjacent integers and
FLOOR R->I DUP @corresponding members
var SWAP =
genMemb SWAP
SUBST EXPAND
2 ->LIST

Sequences, series and limits with the HP49G - Part 1

1-3

SWAP CEIL
R->I DUP
var SWAP =
genMemb SWAP
SUBST EXPAND
2 ->LIST

ELSE
DROP

END
>>
DOSUBS
"Filtering out < min" @Message
1 DISP
1
<< @Throw away coordinates < nmin

IF @and corresponding members
DUP HEAD lo <

THEN
DROP

END
>>
DOSUBS
"Filtering out > max" @Message
1 DISP
1
<< @Throw away coordinates > nmin

IF @and corresponding members
DUP HEAD hi >

THEN
DROP

END
>>
DOSUBS
1 @Throw away coordinates
<< @but hold members

2 GET
>> DOSUBS
"Searching min" @Message

1 DISP @Find minimum member
DUP
<<

MIN EXPAND
>>
STREAM
SWAP
"Searching max" @Message
1 DISP @Find maximum member
DUP
<<

MAX EXPAND
>>
STREAM
DUP2 2 ->LIST @Build up list with min.
UNROT @and max. member
- ABS ∞ < @Compare abs. diff. with ∞

END
>>

>>

STOre the program in 'BOUNDS1'. (Or just use the programs which
come with this document.) Before testing it let's explain some of its
not so obvious parts. You certainly noticed that at the start of the
program we EVALuate the starting and ending coordinates. Why do
we need that? Well, the answer has to do with infinity as it is
implemented on the HP49G. Remember that we enter the coordinates
in a list. When we enter infinity in a list, then the resulting object does
not contain something that can be used in algebraic objects. To see that
better, enter ∞{ } , press [HEAD] to get the first element of the list on
the stack. The infinity that now stands on stack level 1, cannot be used
in algebraics. For example press [X] [SWAP] and then [=]. This
should create the equation X = ∞ , should it? But instead of this you
get a "Bad Argument Type Error". Enter again ∞{ } , and press
[HEAD]. Press [DUP] to make a copy on stack level 2. Now press
[TYPE]. The result is 14., the object type of a built-in CAS-command.
Commands are not allowed in algebraic objects, at least not using

Sequences, series and limits with the HP49G - Part 1

1-4

"standard" methods. DROP the 14. from stack level 1, and press
EVAL. Now you have +∞ and if you press [TYPE], you get a 9., the
object type of algebraic objects. Such objects can be used to build up
other algebraics. When you start typing a list, then you can see that the
announciator PRG lights up on the top right of the screen. What you
enter now, will not be EVALuated but only written as a command in
the list. It is the EVAluation of the command ∞ that puts the algebraic

infinity on the stack. When you simply press
[blue-shift] and then [0] all this happens
automatically, that is the command ∞ gets
EVAluated first and the result, the algebraic
infinity, is put on the stack.

In the program we use often the command
STREAM. This command takes a list and some
program from the stack, that uses two
arguments. It then applies the program to the
first two elements of the list and replaces the
used elements with the result. This program is
applied then to the new two first elements of the
list, that is, the result of the first run and the
third element of the original list. The process is
repeated until all elements are consumed and a
single result is returned. If for example we enter
the list 1 2 3 4{ } , then the program << +
>> and we press [STREAM], then the process
shown on at the left takes place.

Note that for the sum of all list elements it is
easier to use the command ΣLIST and for the

product it is easier to use ΠLIST. STREAM can
be used for more complicated things than simple
addition of multiplication.

The last thing to explain is why we do not
simply use << MAX >> and << MIN >> when
we find the biggest and smallest members of the

set. This is because sometimes the algebraic result MAX(a,b) would be
returned unevaluated. So we EVAluate to make sure that an evaluated
result is returned.

Let's test the program. Enter
1
n

n 1 ∞{ }







 and press

[BOUNDS1]. In about 9,5 seconds the HP49G returns 0 1{ } and 1.
The 1 means that the set is bounded, and its bounds are 0 and 1.

Enter
n2

n− 2()2 + 3
n −∞ ∞{ }









 and press [BOUNDS1]. The

results 0
16
7









 and 1 are returned in about 31 seconds.

Now another example of a set that isn't bounded. Enter
n2 − 3
n− 1

n 0 ∞{ }







 and press [BOUNDS1] to get the results

3 +∞{ } and 0 (for a set that isn't bounded) in 19 seconds.

But the program isn't successful in all cases. For example it will not

work for the set e
− n2()

n −∞ ∞{ }{ } , which is bounded. The

reason is that TABVAR protests with "Not reducible to a rational
expression", though the HP49G has all necessary things to make a

variation table of the corresponding function e
− X 2()

.

If you use TABVAR with SIN(X) then you get the variation table:

−∞ ? −π + 0 − − π
2

+ + 0 + π
2

− π − 0 ? +∞ X

? ? 0 ↓ −1 ↑ 0 ↑ 1 ↓ 0 ? ? F















Sequences, series and limits with the HP49G - Part 1

1-5

1 2 3 4{ }

<< + >>

3 3 4{ }

<< + >>

6 4{ }

<< + >>

10

STREAM in action

It shows that TABVAR has found what happens between −π and π .
It also shows that TABVAR can't tell you what happens outside this
interval. (Or does this result mean "repeat what found between −π and
π endlessly?") Anyway, at least we know for sure what happens
between −π and π . If you enter the set SIN(n) n 0 ∞{ }{ } and
press [BOUNDS1] then at the moment when the program tries to find
the limit of SIN(X) for X = +∞ , you first get the error "Bounded var
error". At this point you must press [OK] to continue the calculation
and get another error "SERIES remainder is O(1) at order 3". Press
again [OK] to continue. These two errors that occur are somewhat
unusual in the sense that they can't be caught with an IFERR THEN
ELSE END clause! They are some kind of warnings which are
displayed to you, so that you know what happened, but otherwise
don't necessarily stop the calculation. The result of this operation is a
?, which on the HP49G means an undefined result. When the program
BOUNDS ends, it returns ? ?{ } and ? to tell you that it can't
determine if the set is bounded. Now, if we knew what the question
marks in the variation table want to tell us, if we knew what the
warnings want to tell us, then perhaps we could face such cases and
handle them appropriately. But while the makers of the CAS keep
silent we must just accept that we can't use the whole power of the
HP49G, because the makers feel more comfortable answering one
question at a time and telling us the truth only when we ask.

Let's go on with sets. An one-dimensional set is bounded when an
upper bound K and a lower bound k can be given, such that for the
coordinate x i of an arbitrary point of the set the relation holds:
k ≤ xi ≤ K . Any number greater than K is also an upper bound of the
set, and any number less than k is also a lower bound of the set.

For example all points between 0 and 1 on your ruler are such a
(continuous) bounded set. Note that bounds are not limits (while limits
are bounds).

Let's now take a look at condensation points. Consider a set with

points Pn having the coordinates
1
n

, with n = 1,2,3,L . This set is

bounded. The upper bound is G = 1 while the lower bound is g = 0 .
This set is bounded but endless, it has infinite number of members but
they all fit between 0 and 1. (So I can't be a member of this set since
my physical dimensions don't allow me to fit in such a small interval.
;-)) If we chop this interval in two equal parts, then at the left part we
have again an infinite number of these points.

If we cut the left part again in two equal parts, then again the left part
has an infinite number of points. We can go on forever dividing each
new left part into two equal subparts. The left part will always have an

infinite number of points. Each of these parts, is an interval that begins

with 0 and has a length of
1
2



 




k

 after k chops and it contains an

infinite number of points of our set. By means of these nested intervals
we just catch the condensation point of our set. Its name implies its
meaning. In any arbitrary small neighbourhood of the condensation
point, a neighbourhood given by an arbitrary small positive number ε ,
there is an infinite number of points of the set. That means, go as near
to the condensation point as you like (without reaching it), you will
still find an infinite number of members of the considered set, lying

Sequences, series and limits with the HP49G - Part 1

1-6

10

1/21/4 1/31/5...............

10

1/21/4 1/31/5...............

between you and the condensation point itself. (Condensation points
are also not limits, we'll see the difference some pages later.) In this
example we also see that though 0 is a condensation point, it does not
belong to our set.

Let's have an additional example. Consider the set M with points Pn

with a coordinate xn given by −1()n ∗
n + 3
2∗n

, where n = 1,2,3,L . The

set is infinite, it has an endless number of elements, but it is bounded.

It has an upper bound G =
5
4

 and a lower bound g = −2 , as the

following table implies. (This is not a prove. We use it only for
guessing.)

n 1 2 3 4 5 6 7 8 9 10

xn -2
5
4

-1
7
8

−
4
5

3
4

−
5
7

11
16

−
2
3

13
20

How could the HP49G help us here? If we enter the set

−1()n ∗
n + 3
2∗n

n 1 ∞{ }







 and press BOUNDS, then the HP49G

errors out with "Parameters not allowed" when it tries to find the

variation table of the corresponding function −1()X ∗
X + 3
2 ∗X

. Now the

question is where the HP49G sees parameters. This is a single variable
function with no parameters at all. Even if we assume X ≥ 1 first, the
same error happens again. What can we do to handle such cases?
Well, we consider the factor (−1)n , which alternates between -1 and 1
if n is integer going from 1 to +∞ . The lower bound is assumed to be
-2 for n=1. If all of the negative members prove to be greater than or
equal to −2 , then we are half the way through. In real mode enter n
and then UNASSUME (to start with a "clean" n). Enter n ≥1 and then

ASSUME. Enter −1∗
n+ 3
2∗ n

≥ −2 and EXPAND. We use -1 instead of

−1()n because we check if all negative coordinates are greater that or
equal to −2 . The result is 1, which shows that the inequality

−1()n ∗
n + 3
2∗n

≥ −2 is true for any n ≥ 1 that turns −1()n to −1. Enter n

and UNASSUME again. Now, the upper bound is assumed to be
5
4

for n=2. If all of the positive members prove to be less than or equal to
5
4

, then we won. Enter n ≥2 and then ASSUME. Enter 1∗
n + 3
2 ∗n

≤
5
4

and press EXPAND. The result is again 1. But is that the proof? Not
exactly. We just found that one lower bound in -2 and one upper

bound is
5
4

. We don't know if there is some lower bound greater than

−2 and we also don't know if there is some upper bound less than
5
4

.

If we could prove this, then we could say that these are the bounds of
the set. But wait! Couldn't we use the program BOUNDS separately

for each possible outcome of −1()n ∗
n + 3
2∗n

, that is for the sets

−1∗
n+ 3
2∗ n

 and 1∗
n + 3
2 ∗n

? Let's try. Enter −1∗
n+ 3
2∗ n

n 1 ∞{ }







and press BOUNDS. The results are −2
−1
2









 and 1. Oh nice! we

just got the lower bound −2 . Now enter 1∗
n + 3
2 ∗n

n 1 ∞{ }







 and

press BOUNDS. The results are −2
−1
2









 and 1. Oh no! Where is

5
4

? Do, you see what happened (?). The set −1∗
n+ 3
2∗ n

n 1 ∞{ }







is "alternating". Because of this, it has a "positive peak" at n = 2 . But

Sequences, series and limits with the HP49G - Part 1

1-7

the two sets −1∗
n+ 3
2∗ n

n 1 ∞{ }







 and 1∗
n + 3
2 ∗n

n 1 ∞{ }







are "smooth". Because of this the "peak" at n = 2 disappears. The
picture below demonstrates this.

If you remember, we wrote code in the program BOUNDS1 that adds
the starting and ending coordinates and members of the set to the
variation table. Now, the second time we used the set

1∗
n + 3
2 ∗n

n 1 ∞{ }







, the program added 1 2{ } for n = 1 (start),

while the original set −1()n ∗
n + 3
2∗n

n 1 ∞{ }







 has its first (and

biggest) positive member for n = 2 . This member is
5
4

. Use DROP2

to get rid of the two last results, enter 1∗
n + 3
2 ∗n

n 2 ∞{ }







 and

press BOUNDS again. Now you get the results
1
2

5
4









 and 1.

Hurrah! Let's put all that in a program. We must:

1) Find any possible outcome of such alternating factors like −1()n

2) Build up partial cases of the set for each of the possible
outcomings.

3) Find what the value of n is for the first element of each partial
case.

4) Use BOUNDS for each partial case.
5) Get the smallest of the smallest and the greatest of the greatest

bounds.

For the sub task (1), we can use the following procedure. We
transform the whole general member from an algebraic object to a list
using ->LST. Then, we check each object for being a ^ (the power
function). If it isn't we just evaluate. But if it is, we check to see if the
exponent depends linearly on the coordinate, and if the base is 1 or -1.
If these conditions aren't true, then we simply evaluate. If the
conditions are true, we find all possible outcomes and build up lists
with replacement patterns that will be used to build up all special sub
cases.

For the sub task (2), we can use ↑ MATCH to build all possible sub
cases of the set.

For the sub task (3), we can use the following: When we found all
possible outcomings of the alternating factor, we found also the
corresponding values of n. If we hold these values we can use them
pair wise for each special sub case, when we use BOUNDS later.

Let's make code for all these things. After the program listing we'll see
it's workings more detailed in every part using an example.

Sequences, series and limits with the HP49G - Part 1

1-8

2

1

0

-1

-2
109876543210

Largest member

of −1()n ∗
n +3
2∗n

is no special point for
the continuous function

1∗
X +3
2∗X

Smallest member

of −1()n ∗
n +3
2∗n

−1∗
X +3
2∗X

<<
OBJ-> DROP
OBJ-> DROP @explode set denoted as list
EVAL SWAP @Evaluate eventual infinities
EVAL SWAP {} {}
PUSH @Save current flags
-> genMemb var lo hi @store in local variables
explist spclist
<<

"Checking alternating
exponents" 1 DISP @Message

genMemb ->LST @Turn algebraic to RPL list.
-> gmlst @store in local variable
<<
gmlst 1 @We'll use DOSUBS (again ;-))
<<

IF @If the current command is ^
{^} OVER POS

THEN @then
IF

OVER var @If the exponent is linear
LININ @in coordinate
4 PICK @and the base is
1 == @either 1
5 PICK @or -1
-1 ==
OR
IF @Convert result if it is alg.

DUP TYPE @to a value of 0
9 == @for FALSE (Why can we

THEN @do that?)
DROP 0

END
AND

THEN @All conditions met, so
3 DUPN EVAL
DUP 3 DISP @Display what was found.
'explist' SWAP @add it to local explist

STO+
END

END
EVAL @Evaluate the command

>> DOSUBS @Do to all objects of 'gmlst'
 HEAD 'genMemb' STO @Store eval. gmlst in genMemb
-103 SF @Go to complex mode

 "Solving for m

" 1 DISP @Another message
IF

explist SIZE @If explist contains anything
THEN

explist 1 @Another DOSUBS
<<
DUPDUP var DUP @Substitute var=var+m in
'm' + = SUBST = @alternating factor.
var lo = SUBST @Substitute var=lo
DUP 2 DISP @Display what will be solved
'm' SOLVE @Solve for m
EQ-> NIP EXPAND @Get right hand side of sol.
IF @If the result was m=? which

DUP ? SAME @means that the base was 1,
THEN @then drop it and put a 1 on

DROP 1 @stack.
END
DUP 0
-> expr evexpr @Store in locals
intval
<<

WHILE
evexpr TYPE @While the eval. expression
28 ≠ @is no integer

REPEAT @repeat putting incrementing
expr 'n1' @values of n1 in expr,
'intval' INCR @expanding expr for this value
= DUP 3 DISP @of n1
SUBST EXPAND @and putting the result in

Sequences, series and limits with the HP49G - Part 1

1-9

'evexpr' STO @evexpr
END @Build up list containing
lo DUP evexpr + @expr low and upper values
1 -
3 ->LIST 1 ->LIST
'spclist' SWAP @add to specials list
STO+

>>
>>
DOSUBS

END
IF

spclist SIZE @If spclist contains something
THEN

"Building list of
special replacements
"

1 DISP @Message
spclist 1
<< HEAD >> DOSUBS @Get heads of spclist elements
{}
-> exprlist replist @Store in locals
<<
lo spclist 1
<< 3 GET >> DOSUBS @Get 3rd. elem. of spclist

@elements
IF

DUP SIZE 1 > @If resulting list has more
THEN @than 1 elements, then

<< LCM >> STREAM @Find LCM of elements
ELSE

HEAD @Else take first (and only)
END @element.
FOR I

exprlist 1 @Make list with elements
<< @and expressions with

DUP var I = SUBST @which they will be
2 ->LIST EXPAND @matched.

>> DOSUBS
I 2 ->LIST 1 ->LIST @Add the corresponding

@low value
'replist' SWAP STO+ @Add to list of replace.

NEXT
replist

>>
1
<<
"Replacing, case " NSUB
+ 1 DISP @Message
-> repcase
<<

genMemb 1 repcase
HEAD SIZE @Do for all elements
FOR I @in repcase

repcase HEAD @Display the list for
I GET DUP 2 DISP @the match and do a match

↓MATCH DROP
NEXT
var repcase 2 GET @Make a set with matched
hi 3 ->LIST @alternating factors.
2 ->LIST

>>
>> DOSUBS
ELSE @If spclist is empty
genMemb var lo hi @Build up original set
3 ->LIST 2 ->LIST @and wrap it in a list.

END
>> POP @Restore flags

>>

STOre this in SPCASES. We're going to use the code in a bigger
program later on. Now the explanations.

Suppose we have the set −1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

, with

Sequences, series and limits with the HP49G - Part 1

1-10

 n = 1,2,3L+∞ . We enter this set as a list, that is

−1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

n 1 ∞{ }







.

The first part of the program

OBJ-> DROP
OBJ-> DROP
EVAL SWAP
EVAL SWAP {} {}
PUSH
-> genMemb var lo hi
explist spclist

explodes the list that represents the set and evaluates the start and end
value of n . It also enters two empty lists that we need later for
accumulating such factors like −1()n

 and the special sub expressions
that we are going to replace. It also uses the command PUSH,which
stores all current flags and the current working directory in the list
ENVSTACK in CASDIR. We do that because we are going to change
settings later in the program and we should restore the user's settings
when the program finishes. Then the part

"Checking alternating
exponents" 1 DISP

genMemb ->LST
-> gmlst

displays a message and converts the algebraic object that represents the
general member of the set to a sequence of RPL objects enclosed in a
list. We do that because we want to check each object for being a ^ and
act accordingly if it is. At this point the stack contains the list:

 1 − n 1 + ^ L ∗ / ∗{ }

Notice that the - at the second place in the list is not the operator for
subtraction but rather the negation NEG. This list is stored in the local

variable gmlist. Then we have:

gmlst 1
<<

....
>> DOSUBS

The part between << and >> is what will be applied to each object of
the list. First we check if the object is the power function ^.

IF
{^} OVER POS

THEN
...

If it is, then we do:

IF
OVER
LININ
4 PICK
1 ==
5 PICK
-1 ==
OR

That is we check if the variable, the index of the set is only linearly
present in the exponent. We do that because if the exponent isn't linear
in the variable of the set, then, well then it can be hard to determine
how many different values the term can have. For example −1()n with

 n = 1,2,L can be either 1 or −1. But for −1()
n2 −3∗n
2∗n− 3 it gets harder or

even impossible to say how many different values this can have.
(Infinite? Are there any other exponents that do the same? And what
about periodic functions? We will see later on ;-)))

We also check if the base is 1 or −1, because for other values it

Sequences, series and limits with the HP49G - Part 1

1-11

doesn't make big sense to start checking how many and what

outcomes the sub expression may have. Consider for example
3
2







n

.

Then comes the part:

IF
DUP TYPE
9 ==

THEN
DROP 0

END
AND

Why do we determine if the result of the comparisons of the base with
1 and −1 is of type 9 (algebraic)? Well, consider the case where the
base contains some formal variable (variable with no value). Then the
comparisons with 1 and −1 would return base ==1 and base == −1
because the base couldn't be evaluated in order to be compared with
the two numbers. The following OR would return
base ==1 OR base == −1. This can't be used for the THEN-
part of the IF-THEN-END clause. If you for example try the code
..IF X 1 == THEN "OK" END.. and there is nothing stored in
variable X, then the HP49G will say to you: "THEN Error: Undefined
Name" meaning that it can't determine if X ==1 because it doesn't
know what the value of X is. If we get an algebraic as result of the
comparisons and the following OR, we can be sure that the base was
neither 1 nor −1, so we DROP this result and put 0 on the stack. If
the result was not an algebraic, then we keep it. At this point there can
be two possible results, a 1 for "Yes, the base was 1 or −1" or a 0 for
"No, the base is something else". We AND this result with the result
regarding linear dependency of the exponent on the set index.

THEN
3 DUPN EVAL
DUP 3 DISP
'explist' SWAP
STO+

END
END

If all conditions were met, then we make a copy of the three objects in
stack levels 1,2 and three using the command DUPN. These are:
3: theBase
2: theExponent
1: theFunction ^

Then we EVAL and we get the Object theBase theExponent on stack level
1, which we DUPlicate and display on line 3 of the screen, so that the
user says "Hurrah, we found something to work with". We then put
the 'explist' on the stack, SWAP and use STO+ to add the found
algebraics −1()n +2

 and −1()n∗3 +2
 to explist. After that we:

EVAL
>> DOSUBS

so that the partial RPL sequence gets transformed to the corresponding
algebraic object, which will be used by the next pass of DOSUBS
eventually adding another object of the form 1linearFunctionOfn or
−1()linearFunctionOfn

 and return another algebraic object, and so on until the
whole RPL sequence has been completely examined.

The next thing that we do is:

 HEAD 'genMemb' STO

and you might ask yourself why we store the completely evaluated
RPL sequence in 'genMemb', since it looks the same like what we
already have stored there. Well, the reason for doing that is that we

Sequences, series and limits with the HP49G - Part 1

1-12

will use this later on as argument for ↓ MATCH and sometimes this
commands shows an unexpected behaviour. To understand this better
let's have an example. Enter SIN X() , then COS X() , then press [+],
then enter 1 and press [+] again. You have now SIN(X)+ COS(X)+1
on the stack. Now enter the list COS(X)+1 A{ } and use ↓ MATCH
to match the pattern COS X() +1 with A . Would you expect to get
SIN(X)+ A? I would! But instead of this you get the expression
SIN(X)+ COS(X)+1 and a 0 on stack level 1, which tells that the
pattern COS X() +1 isn't contained in SIN(X)+ COS(X)+1. Do the
same again, enter SIN X() , then COS X() , then press [+], then enter 1
and press [+]. Now press EXPAND. The algebraic
SIN(X)+ COS(X)+1 just looks the same like before. Re-enter
COS(X)+1 A{ } , press ↓ MATCH and see: SIN(X)+ A . Strange?

What is the difference between the EXPANDed and the not
EXPANDed form of SIN(X)+ COS(X)+1? They look the same. Well,
let's take a closer look. Set flag -53. This is the flag that let's the
HP49G show all existing parentheses in algebraic objects, when they
are not shown in pretty print. Now do the same a third time, enter
SIN X() , then COS X() , then press [+], then enter 1 and press [+].
(It's getting monotonous but soon the monotony will break.) Press
[blue-shift] and then [arrow-down] to get the algebraic
SIN(X)+ COS(X)+1 in the command line editor. You see that the
HP49G put SIN(X)+ COS(X) in a pair of invisible parentheses, so
that the whole object is in reality SIN(X)+ COS(X)() +1. You see now

why the first ↓ MATCH didn't work. Though the object looked like
SIN(X)+ COS(X)+1 in reality it was SIN(X)+ COS(X)() +1. In this
object there is no exact pattern COS X() +1. Press [ENTER],
EXPAND and then press [blue-shift] and [arrow-down] to get the
algebraic on the command line again. Now you see
SIN(X)+ COS(X)+1() . The HP49G liked more to have COS X() +1

in parentheses, so the second ↓ MATCH worked. This phenomenon is
the reason for saving the completely evaluated RPL sequence of our

general set member in 'genMemb' again. Since we can't know how the
user will enter some algebraic and we also can't know where the
HP49G will put parentheses, we can't be sure that using the command
↓ MATCH later in the program will give us always the right results.
But we have sub expressions −1()n +2

 and −1()n∗3 +2
 which were made

through sequential evaluation of the corresponding commands and we
have the complete general member which was also formed by
evaluating all participating RPL objects in the same sequence. Since the
evaluation sequence was the same, the "inner form" of the resulting
objects will also be the same. And so we make sure that matching will
work.

On with our program.

-103 SF

We set flag -103 for a switch to complex mode, because we are going
to solve equations that the HP49G can solve only in complex mode.

Then:

 "Solving for m

" 1 DISP

we just tell the user that the program starts solving some equations.

IF
explist SIZE

We then check if explist contains anything and if it does:

Sequences, series and limits with the HP49G - Part 1

1-13

THEN
explist 1
<<
..procedure for each object

>>
DOSUBS

END

we apply a procedure to each object of explist. The objects of explist
are all the objects of the form 1linearFunctionOfn or −1()linearFunctionOfn

 that we
found. Let's see what this procedure does. First

DUPDUP var DUP
'm' + = SUBST =

we make two copies of the object using DUPDUP. We then built up
the equation var = var+ m . For example, if the set index was n , then
this equation will be n = n +m . (Note that because we use m , the
general set member shouldn't contain any m .) We the use SUBST to
substitute n with n+ m . For example the object −1()n∗3 +2

 will be

transformed to −1() n+m()∗3+2
. Then we use = again to form the equation

−1()n∗3 +2 = −1() n+m()∗3+ 2
. Next we do:

var lo = SUBST

that is we substitute var with the starting value of var. With a starting
value of 1 for n the above equation now would be:

−1()1∗3+ 2 = −1() 1+m()∗3 +2
. You see now what we want. If we solve this

for m , then it is like getting the answer to the question, "For what
value of the exponent does −1()exponent

 equal to −1()startValue
?" Or "How

many values exist for n , which cover all possible outcomes of
−1()n∗3 +2

, when n starts at, say 1, and goes on to infinity?".

On with the program:

DUP 2 DISP
'm' SOLVE

We show a copy of the equation to be solved to the user and solve it
for m . Then

EQ-> NIP EXPAND

we split the solution (m = something) to its left and right hand side
and throw away the left hand side and expand the right hand side.
Then

IF
DUP ? SAME

THEN
DROP 1

END

we check if the solution was a ? (undefined) which means that we
solved something like 11 = 11+m with base being equal to 1. This
equation has infinite number of solutions, that is m can be any integer.
So we drop the ? and put a 1 on stack. If the solution wasn't ?, then
we keep it.

DUP 0

We make a copy of this and put a 0 on the stack, which will be used
as a counting variable. Now,

-> expr evexpr intval

we store in local variables and

Sequences, series and limits with the HP49G - Part 1

1-14

WHILE
evexpr TYPE
28 ≠

REPEAT

keep doing while evexpr (evaluated expression) is not integer. At this
point we must look at the expressions of the form 1linearFunctionOfn or
−1()linearFunctionOfn

. For example we have detected the existence of

−1()n∗3 +2
. We solve −1()1∗3+ 2 = −1() 1+m()∗3 +2

 for m and find the

solution m =
2∗n1

3
. This result is what the HP49G returns, as it

wants to tell us that any quotient of the form
2∗ n1

3
 will satisfy the

equation, n1 being also an integer. (Notice that n1 is returned as a part
of the result, so your initial general set member also shouldn't contain

n1.) Now, that means that m can be
2
3

 or
4
3

 or 2 and so on. But we

also want m to be integer itself, because we started with a general set
member that contained −1()n∗3 +2

, and n was also integer, so the whole
exponent has to be integer.

REPEAT
expr 'n1'
'intval' INCR
= DUP 3 DISP
SUBST EXPAND
'evexpr' STO

END

For this reason we start putting integer values in n1 (starting at the start
index of the set, and continue until we detect an integer. Notice that
INCR is handy for this purpose, as it not only increments 'intval' but
also leaves a copy of the incremented value on stack, which we use for
creating the equation that is used as one argument of SUBST. Notice

also that we can use STO or INCR for local variables just like we do
for global variables. After the WHILE-REPEAT-END loop we have:

lo DUP evexpr +
1 -
3 ->LIST
'spclist' SWAP
STO+

We calculate the start and end of the index range of var, that covers all
possible outcomes of objects like −1()n∗3 +2

. We then make a list
consisting of the object, the starting and the found ending index. This
list is added to 'spclist' so that we can use these data later. We wrap
the list of three elements in another list, because adding a list like
a b c{ } to a list like otherContents{ } would simply put the

elements of the first list in the second, resulting in
otherContents a b c{ } and this would require additional work

later because we lose the information that a , b and c belong together.
But adding a list like a b c{ }{ } will result in

otherContents a b c{ }{ } which preserves the information that
a, b and c belong together.

Now we do

IF
spclist SIZE

THEN

which checks is spclist contains something and if it does

"Building list of
special replacements
"

1 DISP

Sequences, series and limits with the HP49G - Part 1

1-15

we start making a list that contains what we need to ↓ MATCH the
general set member with any possible outcome that it can have.

spclist 1
<< HEAD >> DOSUBS
{}

We make a new list consisting of the first elements of each sub list of
spclist, in our case −1()n +2

 and −1()n∗3 +2
 and put also an empty list on

the stack.

-> exprlist replist

We store them in local variables and start the local variables procedure.

lo spclist 1
<< 3 GET >> DOSUBS

We calculate the start and end values of a FOR-NEXT loop that comes
a little bit later on. The starting value is in the local variable 'lo', it is
the starting index of the set. For the end value we must work a bit
more. First we make a list of all third elements of the sub lists of
spclist. These are the found values for the possible outcomes of
−1()n +2

 and −1()n∗3 +2
. For the first algebraic we have a 2 and for the

second another 2 . That means that −1()n +2
 will take all possible values

if we only calculate it for n = 1 and n = −1. Same for −1()n∗3 +2
. So

now we have a list 2 2{ } on the stack.

IF
DUP SIZE 1 >

THEN
<< LCM >> STREAM

ELSE
HEAD

END .

Now, if the list contains more than one elements then we must
somehow find all possible combinations of results. This is achieved by
STREAMing LCM, the function that returns the least common multiple
of two integers, over the elements in the above list. If for example we
had the two objects −1()2∗n

 and −1()n then the list would be 1 2{ } .
So we would have 2 possible combinations:

n −1()2∗n −1()n
1 1 -1
2 1 1

because the third would already be identical to the first. If the list
contains only one element then this is already what we want to have.
Having the start and end for the loop we do:

FOR I
exprlist 1
<<

DUP var I = SUBST EXPAND
2 ->LIST

>> DOSUBS
I 2 ->LIST 1 ->LIST

'replist' SWAP STO+
NEXT .

We apply a DOSUBS procedure to each element of exprlist. This
procedure DUPlicates the element and substitutes all values for n , in
our case n = 1 and n = 2 . Then it makes a list out of the two objects.
In our case when DOSUBS is ready on the first pass of the FOR-

NEXT loop we have the list −1()n +2 −1{ } −1()n∗3 +2 −1{ }{ } which

we use to make the list −1()n +2 −1{ } −1()n∗3 +2 −1{ }{ } 1{ } , which

contains the arguments for ↓ MATCH and the corresponding value of

Sequences, series and limits with the HP49G - Part 1

1-16

n . The second pass gives −1()n +2
1{ } −1()n∗3 +2

1{ }{ } 2{ } . Both

lists are added to the local variable 'replist'. When ready we

replist

return replist to the stack.

1

After that we put a 1 on the stack that is going to be used by the next
DOSUBS. The next DOSUBS procedure starts with

"Replacing, case " NSUB
+ 1 DISP

which shows messages counting the replacements that are made.

-> repcase

we store each element of replist, in our case the first list

−1()n +2 −1{ } −1()n∗3 +2 −1{ }{ } 1{ } , and the second list

−1()n +2
1{ } −1()n∗3 +2

1{ }{ } 2{ } in the local repcase.

genMemb 1 repcase
HEAD SIZE

We put the general set member on the stack and then we do a FOR-
NEXT loop as many times as there are elements in the first sub list of
the above lists, in our case two times.

FOR I
repcase HEAD
I GET DUP 2 DISP

↓MATCH DROP
NEXT

Each pass takes the Ith element of the first element of repcase, displays
a copy of it on the screen and ↓MATCHes. The flag on stack level 1 is
dropped.

var repcase 2 GET
hi 3 ->LIST
2 ->LIST

Then we make a list out of the ↓MATCHed general set member, the set
index and the start and end values. When done we have on the stack:

−1+−1()∗
n + 2
3∗n

n 1 +∞{ }







1+1()∗
n+ 2
3∗ n

n 2 +∞{ }















Next part is

genMemb var lo hi
3 ->LIST 2 ->LIST

which runs if the list spclist was empty. It simply reconstructs the
original set and puts it in a list.

At the end we use

POP

to restore the user's settings.

Sequences, series and limits with the HP49G - Part 1

1-17

Now we have the two possible outcomes of

−1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

 along with the right variable starting and

ending values.

Let's test it. Enter −1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

n 1 ∞{ }







 and

press SPCASES. The result is returned in 30 seconds:

1+ −1() ∗
n + 2
3 ∗n

n 1 +∞{ }







−1+1()∗
n+ 2
3∗ n

n 2 +∞{ }















Enter −1()n ∗ −1()
3∗n−2

5 ∗
n − 2

3
n 1 ∞{ }








 and press SPCASES.

The result is returned in 70 seconds an is a big list containing all
possible outcomes.

We can use BOUNDS1 and SPCASES in another program to find
bounds of such sets.
<<
SPCASES {} {}
-> setcases extrmlst flaglst
<<

1 setcases SIZE
FOR I
setcases I GET
BOUNDS1 'flaglst' SWAP STO+
'extrmlst' SWAP STO+

NEXT
extrmlst
<< MIN >>
STREAM
extrmlst
<< MAX >>

STREAM
2 ->LIST
flaglst 1 + @We put an additional 1 in the list
<< AND >> @flaglst so that STREAMing works even
STREAM @if there was only one 1 or 0 in the

>> @list
>>

Store this in BOUNDS and test it. Enter again

−1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

n 1 ∞{ }







 and press BOUNDS. In

about 67 seconds you get the results −2
4
3









 and a 1.

Enter −1()n ∗
n − 2
3∗n2 n 0 ∞{ }








. Press BOUNDS to get the results

−1
24

+∞







 and 0 in 63 seconds.

We move on now to condensation points. These thingies can be
erroneously taken for limits, but they aren't. If we consider again

−1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

 with n = 1,2,3,L then we see the

difference. When n grows to +∞ the set members alternate between

−2∗
n+ 2
3∗ n

 and 2∗
n + 2
3 ∗n

. The first approaches −
2
3

, the second
2
3

.

But we see also the similarities. If we consider alone the first possible

outcome of −1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

, that is −2∗
n+ 2
3∗ n

, then we

see that lim
n→+∞

− 2 ∗
n + 2
3 ∗n

= −
2
3

. If we consider the second we see that

Sequences, series and limits with the HP49G - Part 1

1-18

lim
n→+∞

2 ∗
n + 2
3∗n

=
2
3

. So the idea arises to use the same technique as we

did for BOUNDS. Find all possible outcomes and then use the
command lim to find condensation points. The next program does this.
It is very similar to the already programmed things. It searches for
special sub expressions that lead to more than one possible outcomes
and it finds a separate set for each one of these possible outcomes.
Then it uses lim to find the limit of each possible outcome, which is a
condensation point for the original set. Because of the similarity we
don't comment the program. But here we make an additional
improvement (which you can use to improve the code in SPCASES.

Consider for example
1
n

∗COS n∗π() where n = 1,2,3L. The

periodic factor COSn ∗π() can be −1, 0 or 1, that is we have again

three possible outcomes for
1
n

∗COS n∗π() which are: −
1
n

, 0 ,
1
n

. In

the next program code is added to handle such periodic functions like
COS, SIN or TAN, that "branch" the original set to a finite number of
cases. We also added code that filters out eventually duplicates of
condensation points. The additional code is bold will be explained after
the program listing.

<<
PUSH
OBJ-> DROP OBJ-> DROP
SWAP EVAL SWAP EVAL
{} {} {} RCLVX
-> genMemb var low high explist perlist spclist xvar
<<

"Checking exponents
containing " var + 1 DISP

genMemb ->LST
-> genMemblst
<<
genMemblst 1
<<

IF

{^} OVER POS
THEN

IF
OVER var LININ
4 PICK 1 ==
5 PICK -1 == OR
IF

DUP TYPE 9 ==
THEN

DROP 0
END
AND

THEN
3 DUPN EVAL
DUP 3 DISP
'explist' SWAP STO+

END
END
EVAL

>>
DOSUBS
"Checking periodics

containing " var + 1 DISP
OBJ-> DROP ->LST 1
<<

IF
{COS SIN TAN}
OVER POS DUP

THEN
IF

OVER LNAME
IF

DUP TYPE 29 ==
THEN

AXL
END
var POS

THEN

Sequences, series and limits with the HP49G - Part 1

1-19

OVER EVAL DUP
3 DISP
'perlist' SWAP STO+

ELSE
DROP

END
END
EVAL

>>
DOSUBS
HEAD 'genMemb' STO

>>
-103 SF
"Solving for m" 1 DISP
IF
explist SIZE

THEN
explist 1
<<

DUPDUP var DUP 'm' + =
SUBST = var low = SUBST DUP 2
DISP 'm' SOLVE EQ-> NIP EXPAND
DUP 0
-> expr evexpr intval
<<

WHILE
evexpr TYPE 28 ≠

REPEAT
expr 'n1' 'intval' INCR = DUP
3 DISP SUBST EXPAND 'evexpr' STO

END
low DUP evexpr + 1 - 3 ->LIST 1 ->LIST
'spclist' SWAP STO+

>>
>>
DOSUBS

END
IF

perlist SIZE
THEN
"Solving for m" 1 DISP
perlist 1
<<

DUP OBJ-> DROP2 DUP var low = SUBST
'm' π *
IF

4 PICK OBJ->
UNROT DROP2
{COS SIN} SWAP POS

THEN
2 *

END
+ = DUP 2 DISP var SOLVE
EQ-> NIP EXPAND DUP 0
-> expr evexpr intval
<<

WHILE
evexpr TYPE 28 ≠

REPEAT
expr 'm' 'intval' INCR = DUP
3 DISP SUBST EXPAND 'evexpr' STO

END
low DUP evexpr + 2 - 3 ->LIST
1 ->LIST 'spclist' SWAP STO+

>>
>>
DOSUBS

END
IF
spclist SIZE

THEN
"Building list of

special replacements" 1 DISP
spclist 1
<< HEAD >> DOSUBS {}
-> exprlist replist

Sequences, series and limits with the HP49G - Part 1

1-20

<<
low spclist 1
<< 3 GET >> DOSUBS
IF

DUP SIZE 1 >
THEN

<< LCM >> STREAM
ELSE

HEAD
END

FOR I
exprlist 1
<<

DUP var I = SUBST 2 ->LIST
>>
DOSUBS
1 ->LIST 'replist' SWAP STO+

NEXT
replist

>>
1
<<
"Replacing, case " NSUB + 1 DISP
-> repcase
<<

genMemb 1 repcase SIZE
FOR I

repcase I GET

DUP 2 DISP ↓MATCH DROP
NEXT

>>
>>
DOSUBS

ELSE
genMemb

END
var high EVAL =
"Finding limits for

" OVER + 1 DISP
lim POP
xvar STOVX @Store previous vx, as lim can change it!
"Searching duplicates" 1 DISP
IF

DUP TYPE 5 ≠
THEN

1 ->LIST
END
IF

DUP SIZE 1 >
THEN

{}
-> lst
<<
1
<<

IF
EXPAND lst OVER
POS NOT

THEN
'lst' OVER
STO+

END
>>
DOSUBS
DROP
lst

>>
END POP

>>

And now the explanation of the additional code. Imagine that we have

found COS
n∗π

5




 and we want to know how many different values

of n exist, such that starting at n = low we get all possible outcomes
of this trigonometric expression. It is sufficient to solve

Sequences, series and limits with the HP49G - Part 1

1-21

n∗π
5

=
low ∗π

5
+ 2∗ m∗π for n , where m is just another integer.

Solving this is like answering the question: "What can n be different

that low , in order for COS
n∗π

5


 


 to be equal to COS

low ∗π
5



 


 ?"

Look at the next picture to understand this better.

That is, because the cosine (and the sine) have a period of 2∗π , there

are 10 possible outcomes for COS
n∗π

5




 . Starting at n = 1 we have

COS
1∗π

5




 , COS

2∗π
5





 ,..., until COS

10 ∗π
5





 . The outcome

COS
11∗π

5




 is already equal to COS

1∗π
5





 . We found that the

solution was n = low +10 ∗m . The value low was 1 and so we have
n = 1+10 ∗m . Then we start substituting m = 1,
m = 2 and so on, until n becomes an integer because
n can't have non-integer values. In this example
m = 1 results in n = 1 which is already integer. But

there are cases like for example SIN
n∗ 3

7
∗ π +

1
8







for which we get the solution n =
14 ∗m + 3

3
. Here n

becomes integer for m = 3 .

As already said we sort out eventual duplicates of the
found condensation points. The code for this is the
second block in bold in the above program. We use
some extra features of the HP49G to do this. One of
these features has to do with the command SORT
which sorts lists. This command can also sort lists of
lists, provided that the first element in the sub lists is
something that can be sorted. For example if you
enter the list 2 3 1{ } 1 2{ } 4 3{ }{ } and
press SORT, the result will be

1 2{ } 2 3 1{ } 4 3{ }{ } . To get the command
SORT on a menu press [blue-shift], [SYMB] and
then [F3].

Another nice thing that we use is the command LNAME which returns
a vector of all variables in an algebraic on stack level 1 and the
algebraic itself on stack level 2. If the algebraic contains no variables
then the command returns an empty list. (Why not empty vector?)

Sequences, series and limits with the HP49G - Part 1

1-22

n=1,
1∗π

5
 or

n=2,
2∗π

5n=3,
3∗π

5

n=4,
4∗π

5

And so on
....

n=9,
9∗π

5
until

n=1+10=11,
11∗π

5

n=10,
10∗π

5

And a remark about saving the variable VX and restoring it later.
Sometimes the function lim will replace your current VX with the
variable for which you find a limit. Because we are trying to make
programs that leave the user environment untouched, and because we
know that lim may change VX, we recall it using RCLVX, do our job,
and the restore it using STOVX.

And now here cometh the time of the truth. We test the program. Store
it in CONDENSPT and let's go. Enter again our old friend

−1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

n 1 ∞{ }







 and press CONDENSPT.

In about 39 seconds you get −
2
3

2
3









. So, the old friend is a

bounded set with bounds −2
4
3









 and has the two condensation

points −
2
3

2
3









. Interesting to see this on a picture. Enter the set

again and press SPCASES. The result is the list:

−1+ −1()∗
n+2
3∗n

n 1 ∞{ }







1+1() ∗
n +2
3∗ n

n 2 ∞{ }















Do << HEAD >> DOSUBS to get −1+−1()∗
n + 2
3∗n

1+1() ∗
n + 2
3 ∗n









and then STEQ to store the two equations in EQ for plotting. Now, I
have heard many times complains about the missing capability of the
HP49G to plot only points of some sequence without curves and lines.
But the available plot types are so flexible that we can use them for
plots quite different than we do the usual way. Press [blue-shift], hold
it pressed and press [F4]. In the PLOT-SETUP screen choose plot
type Function , enter n as Indep: and uncheck the option _Connect, so
that you get only points but no lines between them. Now press [blue-
shift], hold it pressed and press [F2] to go to the PLOT WINDOW -
FUNCTION. Enter H-View from -1 to 10 and V-View from -2 to 2.
Enter 1 for Low, 10 for High, 1 for Step and uncheck the option
_Pixels. These settings will let the HP49G draw points starting at n=1
and going up to n=10 in steps of 1. Press [F6] and wait until the plot is
done. The screen now must be like the picture below, of course

without the red point. This point
doesn't belong to the plot and it
appears only because we also
plotted the second case

1+1() ∗
n + 2
3∗n

 from 1 to 10,

though it should be from 2 to 10.
You see how the set

Sequences, series and limits with the HP49G - Part 1

1-23

2

1

0

-1

-2
109876543210

y=4/3

y=-2

Bounds

y=2/3

y=-2/3

Condensation points

−1()n +1 + −1()n∗3 +2() ∗
n + 2
3∗n

n 1 ∞{ }







 behaves. All points are

between −2 and
4
3

. There are infinite points getting closer and closer

to
2
3

 and infinite points getting closer and closer to −
2
3

 as n goes to

+∞ .

Another example. Enter:

−1()n ∗ 2∗n − 3()∗ COS
n∗π

3
− π

7






5∗n
n 1 ∞{ }

















and press CONDESPT. The HP49G rattles and roles and after 65
seconds it wins the rock'n'condence dancing competition ending its
performance with:

−
2∗ COS

4∗π
21







5
−

2 ∗COS
32 ∗π

21






5
−

2 ∗COS
6∗π

7






5

















The interested reader may now add such code to SPCASES and
BOUNDS1 that they also handle such trigonometric expressions. This
is already done in the programs that come with this documents, so
lucky guys you don't need to type. But - there's always a big but -
there are many shortcomings in these programs. What if the index isn't
in the exponent of 1 or −1? Will the programs work or error? What if
the trigonometric expressions just don't branch to a finite number of
special subsets? What will happen if we have SINn2 ∗π() in our set?
How can we then prevent the programs from going insane while they
are trying to win the dancing competition? Think about that in your
spare time and search for solutions. Study the code of the programs

BOUNDS, BOUNDS1, SPCASES, CONDENSPT and exercise
critics and new ideas. The HP49G has all needed commands to make
the programs better and more robust. And when you are ready, post
your excellent thoughts, to help Trabakoulas find the condensation
points of the cows. ;-)

One remark about debugging. When you want to debug the programs
then there is a potential problem about such commands like DOSUBS,
DOLIST and so on. Consider the following code:

..
2
<< / >>
DOSUBS
... .

When you debug this pressing SST, you reach at some point the
number 2. Pressing SST puts this number on stack level 1. Pressing
SST again puts the DOSUBS procedure << / >> on the stack. Pressing
SST again, applies << / >> to all pairs of the list at once. If the
contains for example a 0, then the DOSUBS will error but you will not
be able to find what was wrong, especially if the list was huge and the
DOSUBS procedure complicated. So, if you want to watch how the
DOSUBS procedure is applied to the arguments in the list, you should
edit the program and add a HALT at the very beginning of the
procedure, which then would be for example << HALT / >>. Now,
when you press SST and the procedure is applied to its arguments,
then it halts right at the start and subsequent presses of SST just
evaluate the commands contained in the procedure one by one for each
argument of the list, without running the whole thing at once. So you
can find exactly where/when the error occurs inside the DOSUBS
procedure.

Let's continue with condensation points. Bolzano and Weierstraß, two
great mathematicians have found out that:

An infinite bounded set has at least one condensation
point.

Sequences, series and limits with the HP49G - Part 1

1-24

The above could be of importance for us. Why? Because if we want to
check some set for existence of condensation points, then we could
run into troubles if lim can't find a limit. But we can check if it is
infinite and at the same time bounded. Then we know that there is at
least one condensation point. However this doesn't have to mean that
an infinite unbounded set has no condensation points. A simple

example like
1
n

n 0 ∞{ }







 shows that though the set is infinite

and unbounded it does have the condensation point 0 . So if we find
that a set is infinite and bounded we can immediately say that it has at
least one condensation point. If we find that it is infinite and
unbounded then we have to try to find its condensation points if there
are some.

How could we check if some set is infinite, that is has an infinite
number of members (points)?. Our notation of sets could make us
think: "Look if n comes from or goes to −∞ or +∞ and if so, then the
set is infinite." But this doesn't have to be always true. Consider for
example COSn ∗π() n −∞ ∞{ }{ } . It has only two points which
are −1 and 1. But we can use the program SPCASES, when we have
sets containing such expressions that SPCASES can handle. If there is
a finite number of special outcomes, then the code will hopefully find
them and replace them with expressions that are evaluable to numbers.
(If there is an infinite number of cases then the code will continue
happily to find one after the other without noticing that it has just
started a job which it can never end. This is the weak point of the
programs, but let's hope that someone out there will have an idea.)

When SPCASES finishes, it returns a list of sets that represent the
special cases. We can temporarily switch to numeric mode and
EVALuate each of these cases. The evaluation will return either an
algebraic expression or a number. If it returns an algebraic expression
which contains the index of the set, then we check if the index domain
contains at least one infinity. If it does, then we know that the set
represented by the current special case of the original set is infinite,
while if the domain is finite then we know that the set is also finite. If
the evaluation it returns a number then the set is finite. When we

finished examining each case, then we can say that the original set is
infinite if some of the sets represented by the special cases proved to be
infinite.

<<
PUSH
"Checking existence

of special cases" 1 DISP
SPCASES
"Checking existence

and domain of index" 1 DISP
1
<<

LCD-> @Return current display as GROB
{#0h #Eh}
PICK 3
0 ->GROB @Make GROB of the set in pretty print
REPL ->LCD @Replace part of the display GROB

@with the GROB of the set
OBJ-> DROP @explode set
SWAP -105 SF EVAL @Evaluate in numeric mode
LNAME -105 CF NIP @Find names and switch to exact
IF
DUP TYPE 5 ≠ @If result isn't list

THEN
OBJ-> HEAD ->LIST @the convert it to list

END
OVER HEAD POS @Find if index is in member
SWAP OBJ-> 4 ROLL
DROP 2 SWAP - @Find how big index domain is
∞ SAME AND @and compare it to ∞

>>
DOSUBS @Do to all special cases
0 + @Add a 0 in list of results
<< OR >> @so that streamed OR always
STREAM @works OK
POP

>>

Sequences, series and limits with the HP49G - Part 1

1-25

1

0

-1
50403020100

p1
p2

p3

p4
p5

p6

p7

p8
p9

p10

Store that in 'ISINF?'. The program takes a set from the stack and
returns a 1 if it is infinite or a 0 otherwise. Notice the usage of the
commands LCD->, ->GROB and ->LCD for showing messages to
Trabakoulas the impatient who wants to know if the set of sheep is
infinite. ;-) LCD-> returns what is currently displayed on screen as a
GROB on the stack. ->GROB takes something from stack level 2, and
a number from stack level 1, and reruns a GROB of that something. If
the number on stack level 1 is a 0 , then the GROB is in pretty print for
algebraic objects. The command ->LCD just takes a GROB from the
stack and makes it to the current display on the screen.

Now let's test the program. Enter n2 n 1 ∞{ }{ } and press

ISINF?. The calc says 1. (yes) after some seconds. Enter
n2 n 1 10{ }{ } and press ISINF?. This time the calc says 0 . (no)

because the index runs only from 1 to 10 .

And a crazier one. Enter COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 n 1 ∞{ }









and press ISINF? When I tried this the first time, I though that it had to
be infinite. I expected the COS function to send the quadratic argument
to different points as n goes from 1 to infinity. But the HP49G proved
me wrong. It said that the set is finite! Let's see if that is true. Enter

COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 and press STEQ. Set 'n ' as the

independent variable of the plot, set H-View form 0 to 50, set V-View
from -1.3 to 1.3 and set Step to 1 unit (not pixel) so that only the
points n=1,2,... will be plotted. Also disable the option _Connect. Let
that draw and you see the unexpected. The set has a finite number of
points (10) which are repeated as n grows from 1 to infinity! So our
methods are not perfect but also not so bad at all, it seems.

Now we can make another program, that checks if the
set has any condensation points without actually
finding them.
<<

-> set
<<

IF
set ISINF?

THEN
IF

set BOUNDS NIP
THEN

1.
ELSE @In this case there might

? @be condensation points.
END @We must use CONDENSPT

ELSE
0. @Set is finite, no condensation

END @points
>>

>>

Sequences, series and limits with the HP49G - Part 1

1-26

Store it in HASCNDSPT?. Let's check it in combination with the other
program CONDENSPT which calculates the condensation points.

Enter the set −1()n ∗ SIN
2∗ n∗π

3




 ∗

n −1
3∗n +1

n 1 ∞{ }







, make a

copy of it on stack level 2 and press HASCNDSPT?. The HP49G
shakes its brain, shows messages, rattles a lot, and after about 5
minutes (!) it returns a 1, which means that the set has at least one
condensation point. Drop the 1 and press CONDENSPT. You just
sent the HP49G to the next "Jump in the fire competition", which it
accepts with enthusiasm and which it finishes in about 1 minute
bringing you the prises that it won, namely the condensation points

−
3

6
0

3
6









.

Another example: Enter the crazy little set

COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 n 1 ∞{ }









 again and make a copy of

it on stack level 2. Press HASCNDSPT?. The HP49G needs about 3
minutes to return a 0 . The set has no condensation points because it is
finite, as we already have seen before. Now, drop the 0 and press
CONDENSPT. The result is given to you after 2.5 minutes. (It is a big
list.) Our program finds incorrectly that the set has condensation points
though it can't have them since it is finite. The problem is that the
program CONDENSPT doesn't check to see if the calculated special
cases really depend on the index and if the index domain in infinite.
There are two ways to correct this. Either we add such code in
CONDENSPT, or we add a check at the start of the program:

<<
IF

DUP HASCNDSPT?
IF @If HASCNDSPT? said
DUP 1 == @1 or ?
SWAP ? SAME OR

THEN @then put 1 on the stack

1. @to let the calculation of
ELSE @condens. points begin.
0. @else put 0 on the stack,

END @and do no calculation
THEN

PUSH
OBJ-> DROP OBJ-> DROP
SWAP EVAL SWAP EVAL
{} {} {} RCLVX
-> genMemb var low high explist perlist spclist
 xvar

<<
..blah blah rest of code of HASCNDSPT?

lst
>>

END POP

ELSE
DROP
{}

END
>>

The additional code is bold in the partial listing of CONDENSPT.
Let's take a look at the programs until now, and what they do.

SPCASES Finds a finite number of special cases of sets that
contain powers of 1 and -1 containing the index or
periodic functions with arguments that contain the
index. Returns a list in which the general member has
no more such powers and periodics but the special
outcomes instead.

BOUNDS1 Finds bounds of a set and returns also a 1, if the set is
bounded or 0 if it isn't.

CONDENSPT Finds condensation points of a set.

Sequences, series and limits with the HP49G - Part 1

1-27

BOUNDS Finds bounds of a list of special cases of a set.

ISINF? Returns a 1 for infinite sets or a 0 for finite sets.

HASCNDSPT? Returns a 1 if a set has condensation points or a 0 if it
doesn't without actually calculating the condensation
points themselves always.

Notice however that these programs are not at all optimised. For
example, CONDENSPT uses HASCNDSPT? to check if there are any
condensation points and
HASCNDSPT? uses
SPCASES to find special
case. But CONDENSPT
itself contains also code that
finds special cases. So let's
optimise a little bit.

The first thing that we do is
"mapping" our mathematical
knowledge to a set of
functions for the HP49G,
trying to give the functions
the roles of modules that can
call other modules or be
called from other modules.
Take a look at the picture on
the right to understand better
how the modules will be
organised. Start at the
bottom and work your way
to the top.

The first problem that we
have, is that CONDENSPT
as displayed on pages 1-19
to 1-21, contains itself the
code of SPCASES. This is

of course not very efficient and wastes memory. If we replace the code
with a call to SPCASES then we will save RAM. But if we do that,
then the code of SPCASES will run three times when we let
CONDENSPT run. This is because CONDENSPT should also contain
a call to HASCNDSPT? which in turn contains a call to BOUNDS and
a call to ISINF? and these two programs call SPCASES themselves.
So let's go to the first floor, there where ISINF? and BOUNDS live,
and take a look around. Up to the first floor we have no problems. But
when HASCNDSPT? one floor higher calls ISINF? then ISINF? calls
SPCASES. SPCASES gives a list with all special cases of the set.

Sequences, series and limits with the HP49G - Part 1

1-28

SPCASES

SPCASES is at the basis of the collection of modules
because all the programs above need its results.

ISINF?

ISINF? is one floor higher
because it uses the results
of SPCASES as it needs to
know if the original set
"splits" to many different
sub-sets (the special
cases).

BOUNDS

BOUNDS is one floor higher
because it uses the results of
SPCASES as it needs to know if
the original set "splits" to many
different sub-sets (the special
cases).

HASCNDSPT?

HASCNDSPT? lives on the second floor , like
Suzan Vega, because it needs to know if
ISINF? says that the set is infinite and also
needs to know if BOUNDS says that the set
has bounds. Here we have the first problem,
like Suzan Vega. Look at the text for further
explanations.

CONDENSPT

CONDENSPT lives on the top floor,
because it needs to know if the set
has condensation points, which is
what Suzan Vega, err, I mean of
course HASCNDSPT? tells. The
problem of CONDENSPT is also
explained in the text.

Then HASCNDSPT? calls BOUNDS which also calls SPCASES and
so the same code runs again. We can see that this second run of
BOUNDS is not necessary when the programs are called from
HASCNDSPT?. But the programs BOUNDS and ISINF? should
work also as stand alone programs, which means that each of them
must call SPCASES then. We are in a dilemma, it seems. Should both
programs BOUNDS and ISINF? contain a call to SPCASES or not? If
we only could tell for example BOUNDS "call SPCASES only when
you are called by HASCNDSPT? but otherwise not." Well, how about
passing some variable value from HASCNDSPT? to BOUNDS and
letting BOUNDS determine if it should call SPCASES by checking
what this value is? That's a possible method. Let's do that.

First of all, we don't need to modify SPCASES at all, it stays the way
it is on pages 1-9 to 1-10.

Then we have ISINF? which should return only a 1 or a 0 if it is
directly executed by the user, but in case it is called by Suzan Vega (or
by HASCNDSPT?) it should also return the special cases found by
SPCASES, because they are needed by Suzan (or by HASCNDSPT?)
on the second floor. At this point we make a small excursion to the
mysterious local variables which are very very etherious beings,
existing like ghosts only when their procedures are running and
disappearing otherwise. You know of course that the special syntax

-> a b
<<

a b +
>>

creates two local variables a , and b that exist only in the bold part of
the program lines above. Outside this region no local variables a and
b exist. The local variables are also distinct from any global variable a
and b that might exist in the current path. That means that even if you
have a an b as globals in the current path, evaluating a and b in the
bold part of the program will give you the local and not the global
variables. Another thing to be aware of when working with such
ghosts is that if some program that defines local variable calls some

other program while the
local variables exist, and
if the called program
contains the same names,
then the variables in the
called program are not the
same like the variables in
the caller. That means that
where the locals exist is
defined when the
program that contains
them is compiled, or in
other words when you press [ENTER] after having typed the program.
The program PROG2 in the picture above, was ENTERed and thus
compiled at some other time than the program containing the locals a
and b and so the variables a and b in PROG2 are different entities
than those in the other program. (Many different ghosts here, its like
being in Great Britain ;-)) This makes us a bit sorrow because we
would like to define a local variable in HASCNDSPT? that can be used
in ISINF? or in BOUNDS. But to our biggest possible happiness,
there are local
variables that do
exactly this, they
exist also in
programs that are
compiled to some
other time than the
compile time of the
program that
defined the local
variables. This
kind of local
variable is called
"compiled local variable".

A compiled local variable is a local variable whose name begins with a
<- (arrow left, character 142), like for example the variables ← a ,
← b or ← Trabakoulas. These variables exist only while programs

Sequences, series and limits with the HP49G - Part 1

1-29

<< -> a b
 <<
 a b +
 PROG2
 >>
>>

<<
 a b +
>>

These a and b are not

those a and b

<< -> <-a <-b
 <<
 <-a <-b +
 PROG2
 >>
>>

<<
 <-a <-b +
>>

These <-a and <-b are the same like

those <-a and <-b

run and to no other times. But they exist for all programs. They exist
everywhere and yet appear in no menu, that is they are in the twilight
zone!

Now, we know what we should do, in order to let the programs
ISINF? and BOUNDS run one way if the user presses their menu key,
and another way if they are called from HASCNDSPT? Take a look at
the code of the new ISINF?. Notice the difference at the end of the
program
<<
PUSH
"Checking existence

of special cases" 1 DISP
SPCASES
"Checking existence

of index and domain of
index in

" 1 DISP DUP 1
<<

LCD-> { # 0h # 15h}
PICK3 0 ->GROB REPL
->LCD OBJ-> DROP SWAP
-105 SF EVAL LNAME
-105 CF NIP

 IF
DUP TYPE 5 ≠

 THEN
OBJ-> HEAD
->LIST

 END
OVER HEAD POS
SWAP OBJ-> 4 ROLL
DROP2 SWAP - ∞ SAME
AND

 >> DOSUBS 0 +
<< OR >> STREAM
IFERR @If <-Trabakoulas doesn't exist

<-Trabakoulas @that means that the user
 THEN @started the program and so nip

NIP @the special cases.
 ELSE @else

DROP @drop poor <-Trabakoulas.
 END POP
>>

The picture above shows the situation. The same technique we use in
BOUNDS. If ← Trabakoulas exists, then we don't call SPCASES.
But if not, then we do call BOUNDS. The code of BOUNDS is now:

Sequences, series and limits with the HP49G - Part 1

1-30

SPCASES

ISINF?

If the user started ISINF?
then <-Trabakoulas doesn't
exist. So ISINF? only
returns if the set is infinite or
not and drops the specials.
But if Suzan from the
second floor started ISINF?
then she already had an
affair with <-Trabakoulas. ;-)

HASCNDSPT?

HASCNDSPT? from the second floor, (Suzan)
starts ISINF?, then <-Trabakoulas has been
defined and so ISINF? keeps the specials
returned from SPCASES.

SPCASES returns the specials in any case

<-Trabakoulas is defined here

and used here

<<
PUSH

 IFERR @If <-Trabakoulas doesn't exist then
<-Trabakoulas @the user started BOUNDS. That means

 THEN @call SPCASES
SPCASES

 ELSE @But if he does exist then
DROP2 @drop two objects

 END
{ } { } -> setcases extrmlst flaglst

 <<
1 setcases SIZE
FOR I
setcases I
GET OBJ-> DROP OBJ->
DROP EVAL SWAP EVAL
SWAP -> set var lo hi

 <<
"Building var. table of

"
1 DISP LCD-> { # 0h # 7h }
set 0 ->GROB
REPL ->LCD set var
RCLVX = SUBST

 IFERR
TABVAR

 THEN
 CASE

ERRN # DE65h ==
 THEN

lo hi 2 ->LIST OVER DUP 2
->LIST 2 ->LIST 0

 END
ERRN # DE25h ==

 THEN
-105 SF EVAL XQ TABVAR

 END

? DUP 2 ->LIST 0.
 END
 END DROP OBJ->
 << 2 ->LIST >> DOLIST

"Filtering out +,-,|v,|^"
1 DISP 1

 <<
 IF

NSUB 2 MOD NOT
 THEN

DROP
 END
 >> DOSUBS

"Adding low" 1 DISP lo PICK3 RCLVX lo =
lim 2 ->LIST 1 ->LIST +
"Adding high" 1 DISP hi ROT RCLVX hi = lim
2 ->LIST 1 ->LIST +
"Transforming non-

integer to integer " var + 1 DISP 1
 <<

IF
DUP HEAD DUPDUP TYPE 9 == SWAP
ABS ∞ ≠ AND

 THEN
NIP ->NUM DUP FLOOR R->I
DUP var SWAP = set SWAP SUBST EXPAND 2
->LIST SWAP CEIL R->I
DUP var SWAP = set
SWAP SUBST EXPAND 2 ->LIST

ELSE
DROP

END
>> DOSUBS
"Filtering out " RCLVX + "<" + var + "min

" + 1 DISP 1
 <<

IF
DUP HEAD lo <

Sequences, series and limits with the HP49G - Part 1

1-31

THEN DROP
END

>> DOSUBS
"Filtering out " RCLVX + ">" + var + "max

" + 1 DISP 1
<<

IF
DUP HEAD hi >

THEN
DROP

END
>> DOSUBS 1
<< 2 GET >> DOSUBS
"Searching min." 1 DISP DUP
<< MIN EXPAND >>
STREAM SWAP
"Searching max."
1 DISP
<< MAX EXPAND >>
STREAM DUP2
2 ->LIST UNROT -
ABS
∞ <

>> 'flaglst'
SWAP STO+ 'extrmlst'
SWAP STO+

NEXT
extrmlst

 << MIN >> STREAM
extrmlst
<< MAX >> STREAM 2
->LIST
flaglst 1 +

 << AND >> STREAM
 >> POP
>>

← Trabakoulas is used here to decide if the user or HASCNDSPT?
was the the one that started BOUNDS. If HASCNDSPT? started
BOUNDS then ← Trabakoulas exists and so BOUNDS doesn't call
SPCASES, because SPCASES has already been called by ISINF?
before. Note also that the code of the previously made program
BOUNDS1 is now included in BOUNDS and BOUNDS1 is not
necessary any more.

The program HASCNDSPT? includes code, that defines the compiled
local variable ← Trabakoulas, so that BOUNDS and ISINF? can
distinguish between the user or HASCNDSPT? as callers:

Sequences, series and limits with the HP49G - Part 1

1-32

SPCASES

ISINF?

If the user started ISINF?
then <-Trabakoulas doesn't
exist. So ISINF? only
returns if the set is infinite or
not and drops the specials.
But if Suzan from the
second floor started ISINF?
then she already had an
affair with <-Trabakoulas. ;-)

HASCNDSPT?

HASCNDSPT? from the second floor, (Suzan)
starts ISINF?, the <-Trabakoulas has been
defined and so ISINF? keeps the specials
returned from SPCASES.

SPCASES returns the specials in any case

<-Trabakoulas is defined here

and used here

BOUNDS

If the user started BOUNDS then
<-Trabakoulas doesn't exist. So
BOUNDS calls SPCASES. But if
HASCNDSPT? from the second
floor started BOUNDS, then
<-Trabakoulas exists, which
means that BOUNDS has already
done its work when it was called
by ISINF? and so it isn't called
once again.

<<
PUSH 1 -> set <-Trabakoulas
<<

 IF
set ISINF? @ISINF? sees now <-Trabakoulas defined

 THEN
 IFERR

<-Suzan @If <-Suzan doesn't exist, then the
THEN @the user has started the program, so

DUP @make copy of stack level 1
ELSE @else

DROP @drop poor
DUPDUP @<-Suzan

END
IF

BOUNDS @BOUNDS sees
NIP @<-Trabakoulas

THEN @defined
1.

ELSE
?

END
ELSE

DROP 0.
END
>> POP

>>

As you can see HASCNDSPT?
calls ← Trabakoulas into
existence and so when the
program calls ISINF? and
BOUNDS these called programs
will act accordingly.

HASCNDSPT? uses a new local
compiled variable ← Suzan, to
determine what arguments will be

put on the stack. Why? Because when the program is started by the
user it should only return a 1 (yes) or 0 (no) as answer to the question
if there are condensation points. But when CONDENSPT calls the
program then HASCNDSPT? returns the special cases which are used
further from CONDENSPT. On the next page we have the code of
CONDENSPT:

Sequences, series and limits with the HP49G - Part 1

1-33

SPCASES

ISINF?

If the user started ISINF?
then <-Trabakoulas doesn't
exist. So ISINF? only
returns if the set is infinite or
not and drops the specials.
But if Suzan from the
second floor started ISINF?
then she already had an
affair with <-Trabakoulas. ;-)

HASCNDSPT?

HASCNDSPT? from the second floor, (Suzan)
starts ISINF?, the <-Trabakoulas has been
defined and so ISINF? keeps the specials
returned from SPCASES. The program also
uses <-Suzan to determine if it was started by
the user or by CONDESPT in order to put the
appropriate arguments on the stack

SPCASES returns the specials in any case

<-Trabakoulas is defined here

and used here

BOUNDS

If the user started BOUNDS then
<-Trabakoulas doesn't exist. So
BOUNDS calls SPCASES. But if
HASCNDSPT? from the second
floor started BOUNDS, then
<-Trabakoulas exists, which
means that BOUNDS has already
done its work when it was called
by ISINF? and so it isn't called
once again.

CONDENSPTCONDENSPT defines <-Suzan for
HASCNDSPT?.

<-Suzan is defined here

and used here

<< PUSH 1 -> <-Suzan
<<

IF
IF

DUP HASCNDSPT? DUP 1. == SWAP ? SAME OR
THEN

1.
ELSE

0.
END

 THEN
SWAP OBJ-> DROP NIP
OBJ-> DROP NIP EVAL
RCLVX -> var high xvar
<< 1

<< HEAD >> DOSUBS
var high EVAL =
"Finding limits for

"
OVER + "

"
+ 1 DISP lim xvar
STOVX "Searching

duplicates" 1 DISP
IF

DUP TYPE 5 ≠
THEN

1 ->LIST
END
IF

DUP SIZE 1 >
THEN

{ }
-> lst
<< 1

<<
IF

EXPAND lst

OVER POS NOT
THEN

'lst' OVER STO+
END

>> DOSUBS
DROP lst

>>
END

>>
ELSE

Sequences, series and limits with the HP49G - Part 1

1-34

SPCASES

ISINF?

If the user started ISINF?
then <-Trabakoulas doesn't
exist. So ISINF? only
returns if the set is infinite or
not and drops the specials.
But if Suzan from the
second floor started ISINF?
then she already had an
affair with <-Trabakoulas. ;-)

HASCNDSPT?

HASCNDSPT? from the second floor, (Suzan)
starts ISINF?, the <-Trabakoulas has been
defined and so ISINF? keeps the specials
returned from SPCASES. The program also
uses <-Suzan to determine if it was started by
the user or by CONDESPT in order to put the
appropriate arguments on the stack

SPCASES returns the specials in any case

<-Trabakoulas is defined here

and used here

BOUNDS

If the user started BOUNDS then
<-Trabakoulas doesn't exist. So
BOUNDS calls SPCASES. But if
HASCNDSPT? from the second
floor started BOUNDS, then
<-Trabakoulas exists, which
means that BOUNDS has already
done its work when it was called
by ISINF? and so it isn't called
once again.

CONDENSPTCONDENSPT defines <-Suzan for
HASCNDSPT?. <-Suzan is defined here

and used here

CONVERGES? CONVERGES? uses CONDENSPT
because it wants to count the
condensation points

DROP { }
END

>> POP
>>

Now the complete situation of Trabakoulas flirting Suzan looks like in
the picture on the bottom of the right column on the previous page.
Quite ideal stuff for a mathematical soap opera ;-)

We make another program that answers the question if a point set
converges with a 1 (yes) or 0 (no). The mathematics behind this
program say that if such a set has one and only one condensation
point, then it converges and its condensation point is its limit.
<<
IF

CONDENSPT SIZE 1 ==
THEN

1.
ELSE

0.
END

>>

Store it in CONVERGES? Ready for a test. Examine the point set

(−1)n ∗ COS
2∗n∗π

3




 ∗

2 ∗n − 3
4 ∗n

n 1 ∞{ }







 with all programs.

SPCASES returns:

−1∗ −1
2

∗ 2∗ n−3
4∗ n

n 1 ∞{ }
 


 

1∗ −1
2

∗ 2∗n −3
4∗n

n 2 ∞{ } 


 


−1∗1∗ 2∗n −3
4∗ n

n 3 ∞{ } 


 


1∗
−1
2

∗
2∗n −3

4∗n
n 4 ∞{ } 


 


−1∗
−1
2

∗
2∗n −3

4∗n
n 5 ∞{ } 


 


1∗1∗
2∗n −3

4∗n
n 6 ∞{ } 


 












 






















 












These are the special cases to which the factor (−1)n ∗ COS
2∗n∗π

3






splits the set. (They are all given twice. Perhaps add code to filter out
unnecessary copies?)

ISINF? returns 1 for yes. Indeed if you plot

(−1)n ∗ COS
2∗n∗π

3




 ∗

2 ∗n − 3
4 ∗n

 for n=1,2,3,... you see that the set

has an infinite number of points that approach
1
2

 or −
1
2

 or
1
4

 or −
1
4

as n goes higher and higher. The picture on the top of the left column
on the next page demonstrates this.

Sequences, series and limits with the HP49G - Part 1

1-35

BOUNDS returns
−1
2

1
2









 and a 1 because the set is bounded.

HASCNDSPT? returns a 1 (yes).

CONDENSPT returns
−1
2

−1
4

1
4

1
2









, the four condensation

points of the set.

And finally CONVERGES returns 0 . because the set has 4
condensation points.

Of course the programs are way not perfect. It will crash in some
cases, or even return wrong results in other cases. But I hope you
had a good overview over some of the capabilities of the HP49G
which are good when it comes to creating new things.

This was a very very difficult birth but now that we're through I
think it was worth it. Next time we will continue with sequences
and we'll see how our programs can help and what the HP49G
offers for working with them. And of course we will see where the
affair of Suzan and Trabakoulas ends ;-)

Infinite unbounded yet condensed greetings,
Nick.

Sequences, series and limits with the HP49G - Part 1

1-36

0,6

0,5

0,4

0,3

0,2

0,1

0

-0,1

-0,2

-0,3

-0,4

-0,5

-0,6
24201612840

All points contained between the bounds -1/2 and 1/2

condensation point 1/2

condensation point 1/4

condensation point -1/4

condensation point -1/2

Hi again and may the (con)sequences of your decision to buy the
HP49G always lead your way.

In the second part of SESELIMA (SEquences, SEries and LImits
MArathon, sounds quite swiss, almost Sesseli Matt, what Thomas?)
we will extend the romance story of Trabakoulas and Suzan of the
second floor to sequences. And see what the (con)sequences of the
romance were. (Nick, you are repeating yourself! ;-))

What has been said and done until now about point sets are reasonably
extendable for sets of numbers and number sequences. We only need
to switch from the points to the coordinates. Any number sequence is
then also a set of numbers. But from any given number set we can
build up many different sequences, for example through choosing a
special sequence in which the numbers will be ordered. The resulting
ordering of numbers is then characterised by a number symbol, which
is often an index.

We can then repeat the same sayings of part 1 of this marathon for
number sequences.

1) A finite sequence has a finite number of elements (numbers),
an infinite has an infinite numbers.

2) A sequence is bounded, if an upper bound K and a lower
bound k exist such that for each number a of this sequence
k ≤ a ≤ K .

A positive number K can then be given such that for the
absolute values a of the numbers of the sequence: a ≤ K .

3) If we denote the whole sequence with an() and a particular

member of the sequence an (with the index n for nth element)
then we can formulate the definition of a condensation point as
follows: A number A is a condensation point of the sequence
an() if for an arbitrary positive number ε the inequality holds:

an − A ≤ ε for an infinite number of indices n of the
sequence.

For example, the sequence an = −1()n ∗
n+ 3
2∗ n

 has the two

condensation points ′ λ =
1
2

 and λ = −
1
2

 because in an arbitrary close

neighbourhood of
1
2

 and of −
1
2

 we can fine infinite numbers an of

the sequence.

A second example: The sequence given by:

1+
1
2

, 2 +
1
2

, 3 +
1
2

, 1+
1
3

, 2 +
1
3

, 3 +
1
3

, 1+
1
4

,

2 + 1
4

, 3 + 1
4

,L

has the three condensation points 1, 2 and 3 . The rule for building up

the sequence is an = n − 3∗FLOOR
n −1

3




 +

1

2 + FLOOR
n −1

3






with n =1,2,3,4,L . The function FLOOR is in the third page of the
menu MATH/REAL. It takes a real number or integer from the stack
and returns the biggest integer that is less than or equal to the
argument. This is one of the functions that are not very logical in their
behaviour. If the result of some operation is an integer, then one would
also expect the result to by of type integer, that is 28. But no, the result
is an integer with type 0 (real number) that is with decimal point. And
to make things even funnier, if you give FLOOR an integer number
then suddenly the result is of type integer. Sometimes one way,
sometimes the other way around. So that you always have to think
about many things that can go wrong when you program and to waste
time on things that wouldn't be necessary if care had been taken when

Sequences, series and limits with the HP49G - Part 2

2-1

the HP49G was designed right from the start. But let's move on.

4) Any infinite and bounded sequence has at least one
condensation point. (That was Bolzano and Weierstraß)

5) A sequence an() converges against the limit a , when almost
all numbers of the sequence are in an arbitrary close ε -
neighbourhood of the limit. That means: You can choose ε to
be as small (but positive) as you like. Then an index N that
depends on your choice of ε can always be given, such that all
sequence members an with index n f N are between a −ε
and a + ε .

This means the same as that the sequence an() has one and
only one condensation point, which then is the limit of the
sequence.

We denote this with lim
n→∞

an = a .

The difference to the condensation points is that beginning
with some index n not only infinite numbers an but all
numbers an must be in the arbitrary close ε -neighbourhood of
a . (Rcobo this was for you ;-))

The opposite is also valid: One sequence with exactly one
condensation point converges always.

The programs that we have up to now, work also with sequences
because we have on the HP49G no distinction whatsoever between
sets and sequences. Actually it would be better to keep the notation
generalMember indexVar low high{ }{ } for sequences, as sets

can be much much more general. But the sequences are also more
general than the above notation implies. So perhaps we should take a
closer look at the construction plans of sequences. First of all, any
sequentially ordered set of numbers is a number sequence. For

example the set a1 = 7, a2 = 3, a 3 = 13 is a finite number

sequence. The set of even numbers

a1 = 2, a2 = 4, a3 = 4,L is

one infinite number sequence, that is each member has its next.

A sequence an() is given, if each natural number 1,2,3,L can be

mapped to exactly one number an , which is then called the nth member
of the sequence.

The recipe for building up the members is often analytic. For example

the sequence an =
1
n

 describes all members with an analytic formula.

Such sequences are covered good by our notation. The above sequence

for example would be denoted as
1
n

n 1 ∞{ }







.

But there are also non analytic sequences. Let's first take a sequence
that is non-analytic in the sense of the HP49G CAS. The sequence

from the last page an = n − 3∗FLOOR
n −1

3




 +

1

2 + FLOOR
n −1

3






is such an example. The HP49G doesn't know the derivative of
FLOOR and so this sequence is non analytic for it. We can denote this
sequence as

n− 3 ∗FLOOR
n −1

3




 +

1

2 +FLOOR
n −1

3






n 1 ∞{ }
















, but

how would our programs react when they see the function FLOOR?
Will they find on which floor Suzan lives? ;-) Let's try. Enter that
monster and store it in some cave like 'NONAN' to have it handy
whenever blood thirsty programs appear. ;-) Now try SPCASES. We
won, 1-0 for us. SPCASES did its work OK and returned the only

Sequences, series and limits with the HP49G - Part 2

2-2

special case, that is the sequence itself, in a list:

n− 3∗FLOOR
n −1

3




 +

1

2 +FLOOR
n −1

3






n 1 ∞{ }
































Try ISINF?. After some seconds in suspense the result is 1. Oh yes,
the sequence is infinite and the score 2-0 for us.

Now we go on with BOUNDS. And here the program crashes!. But it
crashes because Nick has forgotten something, so we can blame it on
him. All together now: "Think again, Nick!" Fortunately the correction
isn't hard to do. Just add the bold code in BOUNDS.

......
 IFERR

TABVAR
 THEN
 CASE

ERRN # DE65h ==
 THEN

lo hi 2 ->LIST OVER DUP 2
->LIST 2 ->LIST 0

 END
ERRN # DE25h ==

 THEN
-105 SF EVAL XQ TABVAR

 END
lo hi 2 ->LIST
? DUP 2 ->LIST
2 ->LIST 0.

 END
.......

Now we can try again. This time it is the function lim that errors out
with "Bad Argument Type". It can't deal with FLOOR. What are we

going to do? Well, let's try SERIES, which is more powerful in
finding limits. Bring the sequence on the stack and use HEAD to get
the head of the monster. Enter n , then RCLVX, press [=] and then

SUBST to get X − 3∗FLOOR
X −1

3




 +

1

2 +FLOOR
X −1

3






 (if your

VX is X). Why do we change variables here? Press again RCLVX,
enter ∞ and then press [=] to get X = +∞ (again, if your VX is X) and
then enter the order of the expansion, for example 1. Now press
[SERIES]. The HP49G needs a couple of seconds and returns a result:

On stack level 1 you have h =
1
X

 and on stack level 2 the list

Limit: ∞ Equiv:
?
X

Expans:0 Remain:
?
X









. Hurrah! SERIES

found a limit. The rest is not very helpful but since we are interested
only for the limit, we decide to use SERIES in cases where lim fails.
Second correction to BOUNDS:
.............

"Adding low" 1 DISP lo
PICK3 RCLVX
lo =
IFERR @Use SERIES if lim errors out

lim
THEN

1 SERIES
DROP HEAD

END
 2 ->LIST 1 ->LIST +
"Adding high" 1 DISP hi ROT RCLVX hi =
IFERR @Use SERIES if lim errors out

lim
THEN

1 SERIES
DROP HEAD EVAL

END

Sequences, series and limits with the HP49G - Part 2

2-3

2 ->LIST 1 ->LIST +
.............

Try again. This time BOUNDS doesn't crash but returns ? ?{ } and
? . It says "Dunno", so to speak. This "dunno" is the result of using
TABVAR, which it errors in this case but because it is in an error trap,

the HP49G returns the variation table 1
3
2









+∞ ?{ }







. The

question mark ("dunno") in this table keeps appearing as the result of
any subsequent operation.

But wait a minute! SERIES said that the limit for X → ∞ of the
monster is ∞ . This is wrong! The monster has no limit because it has
three condensation points! It's good to have the code that puts the
"dunno" in the variation table, so that the result at the end is also
"dunno", which is better than "Yes, I know the wrong result"! We use
SERIES here only as an eventual life saver that let's us proceed after
lim crashes the program and/or perhaps a better command to find limits
that lim can't find. Do you see how the sincerity of one and the
robustness of the other give a better combination? It's like real life,
man! ;-) Let's hope that SERIES won't cause any great crashes. And
what about the score? Well, hard to say who wins this time. Leave it at
2-0 for us. (We win, so we can let the score unchanged ;-))

Now we try HASCNDSPT?. Since the corrections of BOUNDS also
influence the fate of HASCNDSPT? we can be sure that if it crashes, it
crashes for other reasons. And it really does. After several seconds
you see a "THEN Error: Bad Argument Value" and a ? on stack level
1. Let's correct that. Replace the red code

ELSE @else @drop poor <-Suzan
DROP DUPDUP

END
IF

BOUNDS NIP @BOUNDS sees <-Trabakoulas defined
THEN

1.
ELSE

?
END

with the new bold code

ELSE @else @drop poor <-Suzan
DROP DUPDUP

END
BOUNDS NIP
CASE

DUP ? SAME
THEN
END
DUP
THEN

DROP 1.
END
?

END

Now try again. It takes quite a long time but the program returns ? ,
also an honest answer. Score remains 2-0?

Last check. What does CONDENSPT with the monster? It needs
several seconds until it crashes when it tries to find the limit of the
monster for n = ∞ . If we use the correction again:

"Finding limits for
" OVER + "
" + 1 DISP
IFERR
lim

THEN
1 SERIES DROP HEAD EVAL

END
xvar STOVX

then CONDENSPT returns the unhonest answer :Limit: ∞{ } . Would it
be better to use the following correction?

Sequences, series and limits with the HP49G - Part 2

2-4

"Finding limits for
" OVER + "
" + 1 DISP
IFERR
lim

THEN
DROP2 ?

END
xvar STOVX

I can't say. If we don't use SERIES we perhaps lose some results
which SERIES can calculate but lim can't. On the other hand using
SERIES can give wrong results. What can we do? Perhaps put a
"dunno" and the result of SERIES with its label in a list, so that we
know that SERIES was in work, so perhaps the found condensation
point is OK but perhaps also not? Be it that way. We correct
CONDENSPT:

"Finding limits for
" OVER + "
" + 1 DISP
IFERR
lim

THEN
1 SERIES DROP HEAD ? 2 ->LIST 1 ->LIST

END
xvar STOVX

With this correction CONDENSPT returns :Limit: ∞ ?{ }{ } as if to
say, "hmm, is it correct what I found?". Now the score is 2-1 (too
much sincerity can cause damage ;-)). But we have at least a more or
less well behaved collection of modules.

Sequences can also be also made recursively. The famous Fibonacci
numbers for example are such a sequence. The recipe for them is
a1 = 0, a2 = 1, an = an −1 + an− 2 . The HP49G allows to define
functions that calculate members of such recursively defined

sequences. The Fibonacci sequence for example can be defined just
like its definition. You just go to the EQW and type:

FIBO n() = IFTE n == 1,0,IFTE n == 2,1,FIBO n −1() +FIBO n − 2()()()
Then you press [ENTER] and [DEF]. The HP49G creates a user
function FIBO that has all it needs to calculate Fibonacci numbers. If
you recall it on the stack it looks like:

<<
-> n
'IFTE(n==0,1,IFTE(n==1,FIBO(n-1)+FIBO(n-2)))'

>>

This was one of the most amazing examples given in the manual of the
old HP48SX! A function that calls itself until some break condition is
true. No loops, no explicitly saving sum results in-between, just a
clear and compact mathematical definition. By the way, this is the
second way of user function definitions. A local variable structure
including only one algebraic object directly after the definitions of local
variables. Its general structure is:

<<
-> var1 [var2 [var3 [...]]]
'algebraic that uses the local variables'

>>

This type of user defined function takes 1 or more arguments from the
stack and returns exactly one result. It can be used in other algebraic
objects. For example you could put the function FIBO in another
algebraic object:

FIBO 3() ∗X2 − FIBO 2() ∗ X .

If you write the above in the EQW you can use the soft key for FIBO
from the menu VARS. When you press that key the name FIBO appear
on the EQW already selected (inverse). You must then press

Sequences, series and limits with the HP49G - Part 2

2-5

[BACKSPACE] (delete backwards) and then start putting the
parentheses and the argument of the function. If you EXPAND the
above you get X2 − X . You can even use FIBO as a part of other
definitions. For example DEFine the user function:

F X,m() = FIBO m() ∗ Xm

Then EVALuating F U2 −1,4() will return 2∗ U2 − 1()4
. You can enter

F X,FIBO 5()() and EVALuate it to get X3 . Let's take a look how
EVALuation takes place. If you give the function F two arguments,
the name X and one integer, say 4 , then a cascade of evaluations
takes place. You are kept away from all this inner complications. You
only have your clear mathematical definition and let the HP49G do the
dirty work. In addition to putting such user functions in algebraics,
you can also use them in RPL just like any other function. For
example you could also enter X , then 4 and then press the soft key of
the function F . The result is the same.

A bit of caution is required sometimes. If you for example enter a
symbolic argument n and then press FIBO you get:

IFTE n == 1,0,IFTE n == 2,1,FIBO n−1() + FIBO n − 2()()()
n= n

This is logically correct. EVALuating again you get:

You see what happens? The function has no way to determine if the
symbolic argument n has one of the special values 1 or 2 which break
the recurrence. You could evaluate this again and again and you would
get always more complicated results. The disadvantage of such a user

function is that it can't test the type of the argument. IFTE that is
allowed in algebraics is of course a big help, but it can be only used for
tests that are allowed in algebraics. A hypothetical algebraic definition
like for example:

FIBO n() = IFTE

TYPE n() == 6,APPLY FIBO,n(),

IFTE n == 1,0,IFTE
n == 2,1,FIBO n −1() +

FIBO n − 2()



 




























is not possible because TYPE isn't allowed in algebraic objects. The
above hypothetical definition brings a couple of questions. First of all,
what is (officially) allowed in algebraic objects? To answer this, we
must make a small excursion to the types of objects of the HP49G. As
you already know, the HP49G has a great variety of different objects,
which are characterised by their object type. The objects that are
allowed in algebraics are of type 18. (the old "analytic functions"), of
type 14. (the new CAS-functions), of type 6. (global names) and of
type 7. (local names). Other types are not allowed. TYPE is of type
19. (command) so you can't put in in an algebraic object.

Another question that the above hypothetical definition throws is, what
is the function APPLY?. Well, when APPLY function,argument()
gets evaluated it just returns the function function to the argument
argument and returns function argument() holding the evaluation
at this step, even if it could be further carried out. For example, enter

F X() = X2 and press DEF. If you
now evaluate F 2() , you get of course
4. But if you evaluate APPLY F,2()
you get F 2() though the evaluation

could be further carried out to return 4!

So, let's return to the above "impossible" definition. In fact this
definition can be made on the HP49G, but not the algebraic way. You
have to enter it as follows:

Sequences, series and limits with the HP49G - Part 2

2-6

IFTE n == 1,0,IFTE
n == 2,1,IFTE n −1== 1,0,IFTE n == 2,1,FIBO n −1() +FIBO n− 2()()()

n =n−1
+

IFTE n − 2 == 1,1,IFTE n == 2,1,FIBO n −1() +FIBO n − 2()()()
n =n− 2




 




 











 

<<
-> n
<<

CASE
{ 6. 7. 9.} @If the argument is a local or
n TYPE POS @global name or algebraic

THEN @
'APPLY(FIBO,n) @Just apply FIBO
EVAL @on n and return FIBO(n)

END
n 1 == @If n is equal to 1

THEN
0 @return 0

END
n 2 == @If n is equal to 2

THEN
1 @return 1

END @If nothing of the above is
n 1 - FIBO @true, then calculate
n 2 - FIBO @FIBO(n-1)+FIBO(n-2)
+

END
>>

>>

Store this in FIBO. It is also a user function, but one with a program
as definition. If you evaluate now FIBO 5() + FIBO 4() , then you get
5. But evaluating FIBO 5() + FIBO X − 2() returns FIBO X − 2() + 3 .
Evaluating the last result simply re-returns FIBO X − 2() + 3 . So we're
just out of the endless repeating evaluation. For Mathematica users:
Does this somehow reminds you of Hold[]? ;-)

Now, the question is, how do we use APPLY when we want it in
RPL? Here we must be careful a little bit. Though almost all functions
if used in RPL syntax expect their arguments to be on the stack in the
same sequence like in algebraic syntax, APPLY behaves differently. It
expects the function to be applied on stack level 1, and arguments of

that function as a list on
stack level 2.

And another question is,
how do we use APPLY
when some function has
to be applied on more
than one arguments?
Perhaps the answer is
clear for RPL syntax. We
just put a list of all
arguments on stack
level 2. For example
enter X Y{ } then F
and use APPLY to
get F X,Y() . But
what do we do when
we want algebraic
syntax? We can't put
a list in an algebraic
object. The answer is
a bit frustrating.
From the command
line we enter the arguments after the function, separated with commas.
The command line contains then for example 'APPLY F,X,Y()' . When
you press [ENTER] to send this to the stack, then
'InvalidExpression' appears on stack level 1. Captain Jean-Yves!
You said to me in the group that such "illegal" expressions should
not be made using ->ALG, and we should only use the "officially
supported" syntax. But, as you can see, the "officially supported"
syntax creates itself "illegal" objects! You can't expect from the
users to know when a simple "officially supported" command line
will create an 'InvalidExpression'. It is not that I say that this
should error out with "Invalid Syntax", not at all. The contradiction
and inconsistency of your argumentation is what I find frustrating.
Anyway, for us it is a bless to know that the 'InvalidExpression' can

Sequences, series and limits with the HP49G - Part 2

2-7

F arg1,arg2()

2: arg1
1: arg2

Algebraic syntax RPL syntax

F

Most functions behave like this:

APPLY F,arg()

2: {arg}
1: F

Algebraic syntax RPL syntax

APPLY

But APPLY behaves like this:

be evaluated. Press [EVAL] to get F X,Y() . And to make things even
more frustrating. Up to today I just have not found any possible
method to get an algebraic object that contains APPLY() in the EQW.
Can somebody find a method?

The above recursive definition of the Fibonacci sequence has the
advantage of clarity but it also has a disadvantage. It is very slow.
Each time FIBO is evaluated with some argument n , it calculates all
members of the Fibonacci sequence form n down to 0. This doesn't
have to be. Consider for example:

<< -> n
<<

CASE
{ 6. 7. 9.} @If the argument is a local or
n TYPE POS @global name or algebraic

THEN @
'APPLY(FIBO,n) @Just apply FIBO
EVAL @on n and return FIBO(n)

END
n 1 == @If n is equal to 1

THEN
0 @return 0

END
n 2 == @If n is equal to 2

THEN
1 @return 1

END @If nothing of the above is
0 1 3 n @true, calculate FIBO
START

DUP ROT +
NEXT
NIP

END
>>

>>

This FIBO works much much faster than the other one. But the clarity
of the definition is gone!

Now that we have a faster FIBO let's calculate some Fibonacci
numbers, say the first 20. We don't have write another program and
put FIBO in a loop, because we have the command SEQ. From the
EQW enter FIBO n() . Then enter n , 1, 20 , 1 and press SEQ. (The
command is in the second page of the menu PRG/LIST/PROC.) In
about 11.5 seconds you have a list of the first 29 Fibonacci numbers.
SEQ expects an
algebraic object or
program on stack
level 5, a name on
stack level 4, a
start and an end
value on levels 3
and 2 and the step
on stack level 1. It
gives the variable
of stack level 4 different values starting at start and ending at end,
stepping with the step value each time. It evaluates the algebraic or
program of stack level 5 using the values of the variable on stack level
4. The results are then wrapped in a list. The above example is
equivalent to:

<<
1 20
FOR I

I FIBO
1

STEP
20 ->LIST

>>

SEQ can of course also be used to get sequences of algebraic objects.
For example entering CYCLOTOMIC n() , n , 2 , 10 , 2 and pressing
SEQ will five you a list with the first 5 even cyclotomic polynomials.

Sequences, series and limits with the HP49G - Part 2

2-8

5: alg. or prg.
4: name
3: start
2: end
1: step

 Evaluate this

 for all values of this

 starting at this

 and ending at this

 in steps of this

There are also sequences, for which we still don't have any recipe, be
it analytic, by recurrence or whatsoever, to calculate their members.
For example the sequence 3,1,4,1,5,9,2,6,5,L is known as the
sequence of the digits of the decimal representation of π . Nobody can
give an analytic recipe to calculate these digits. (But we do have
algorithmic methods to do that.) Such a sequence is also the sequence
of the prime numbers. Thanks to the flexibility of the HP49G it is also
possible to get such non-analytic sequences. For example the program:

<<
-> n
<<

0
0 n
START
NEXTPRIME
DUP

NEXT
DROP n ->LIST

>>
>>

will take a number n from the stack and give you the first n prime
numbers in a list. But can you think about how we can do that using
SEQ? Take a look at the following program:

<<
0
<< NEXTPRIME DUP >>
n 1
5 ROLL
1 SEQ
REVLIST TAIL REVLIST
+

>>

The program << NEXTPRIME DUP >> used by SEQ has no
appearance of the variable n in it. This variable is in this case only a

place holder, a dummy, to just count from 1 to the number of primes
that we want. The same program also duplicates the last found prime
number so that the next evaluation of NEXTPRIME finds its argument
on the stack. The 0 at the beginning of the program is for giving the
very first evaluation of NEXTPRIME something to work with.
(NEXTPRIME takes a number from the stack and returns the next
prime greater than the given number.) We could also have written:

<<
<<

IF
n 0 ==

THEN
0

END
NEXTPRIME DUP

>>
n 0
4 ROLL 1 -
1 SEQ
REVLIST TAIL REVLIST
+

>>

In this case it is the program used by SEQ that puts the 0 on the stack,
when SEQ runs the first pass.

We see: Though the HP49G has many many quirks, when it comes to
flexibility there is no other calc on this earth that comes even close to it.
The lonesome king of flexibility is the HP49G. This is the most
important thing for a calculator with a CAS. To be flexible enough so
that we, the users, can formulate our problems. In other words, how
should we describe the word "red" to somebody who has no idea what
a colour is? ("Somebody" could stand for TI this time ;-))

As you can see we have more than enough power in our hands, to
create finite parts of non analytic sequences. But this is only a part of
the story. The non analytic sequences can't be handled at all by our

Sequences, series and limits with the HP49G - Part 2

2-9

programs. Of course we could denote a the Fibonacci sequence as
or as

but what's the use of it? Our programs can't do much with it. They can
only work with analytic sequences. There could be two principal ways
to handle also such non analytic sequences. One would be a module
that can find an analytic expression out of the recurrence by recursively
solving for the general member form an , and working with the
analytic form instead. The other would be some algorithm that can
work directly with the recurrence and for example find if the sequence
is infinite, has bounds and so on.

Perhaps you don't believe me now, but it is possible in principle to
convert recurrences to analytic closed forms. I for myself am still quite
astonished about it. But this doesn't change anything to proven facts.
The question is where to begin when explaining such astonishing
things. Hmmm, I see Trabakoulas smiling with his well known smile
that he always put on, when something is so tricky. He says, "My
son, start at the beginning!". And so I do.

You perhaps have the impression that all maths about sequences are
just counting a little bit, adding a little bit, making sums and the like.
But as always, when we search better, we find more things, beautiful
things, extraordinary mysterious things.

Let's take the simple sequence A n() = A n −1() +1, with A 0() = 0 and

 n = 0,1,2,3,L , which is defined by recurrence. It says that you start
at the first member, which is A 0() = 0 . Then, to find A 1() you simply
add 1 to the previous member. So you have
A 1() = A 0() +1= 0 +1= 1. And so it goes on.

A 0() =0
A 1() = A 0() +1=0+1=1
A 2() = A 1() +1=1+1=2
A 3() = A 2() +1=2+1=3
A 4() = A 3() +1=3+1=4
. .
. .
A n() = A n −1() +1=???

Did you already notice that the members are the positive integers
themselves? What does this mean? Is the whole set of the natural
numbers a recursively defined sequence? One could interpret this fact
exactly this way. Or even say that the recipe for constructing these
numbers is to just start at 0, adding 1 to the just passed number every
time.

Did you also notice something else? Instead of the definition
A n() = A n −1() +1, with A 0() = 0 and n = 0,1,2,3,L , we can simply
write A n() = n with n = 0,1,2,3,L . This is an analytic closed form.
It has a tremendous advantage, that exists in any analytic closed form.
When you have such a form, you are able to know anything that there
is to know about something. (That's why these forms are Nick's
favourites. ;-))

What we actually did with this sequence, is that we mapped positive
integers onto themselves. So the two definitions A n() = A n −1() +1,
with A 0() = 0 and

 n = 0,1,2,3,L on
one hand, and
A n() = n with

 n = 0,1,2,3,L on the
other, are equivalent.
They both construct
the positive integers

Sequences, series and limits with the HP49G - Part 2

2-10

FIBO n() = IFTE n ==1,0,IFTE n ==2,1,FIBO n−1() +FIBO n −2()()() n 1 ∞{ }{ }

0 1 2 3

0 1 2 3

Index n

Member A(n)

FIBO n() = IFTE n ≤ 2,n−1,FIBO n− 1() +FIBO n− 2()() n 1 ∞{ }{ }

out of the positive integers. Big deal, you may say, but wait 'cause
you ain't seen nothing yet!

Before we go further, a small visit from the future. The differential
equations marathon hasn't taken place yet, but for those already
familiar with differential equations, did you notice how the definition
A n() = A n −1() +1, with A 0() = 0 and n = 0,1,2,3,L , resembles a
diffeq? No? Then look: A n() = A n −1() +1 ⇔ A n() − A n −1() = 1.
The left hand side of the equation is now the discrete analogon of a the

differential quotient
dA n()

dn
. Instead of an infinite small change in

A n() you have a finite change, a difference. The equation

A n() − A n −1() = 1 is the discrete version of
dA n()

dn
= 1. The later is a

differential equation whose solution is A n() = n + C , and C is the
integration constant, which varies from case to case according to some
initial or boundary conditions. The similarities are even more. If we
interpret the second part of the recurrence A 0() = 0 as an initial or
boundary condition, then we can find the particular solution of the
differential equation: A 0() = 0 ⇒ 0 + C = 0 ⇒ C = 0 . And so:
A n() = n + C

C = 0





⇒ A n() = n + 0 ⇒ A n() = n , which looks

exactly like the closed analytic form of the recurrence. Of course both
things aren't exactly the same. For example A n() and n are
continuous in the case of the differential equation, but discrete in the
case of the sequence. On the one side we have a function and its
variable, on the other side we have a sequence and its index.

Let's get back to the present. We make another easy example,
B m() = B m −1() + 2 , with B 0() = 0 and m = 0,1,2,3,L . Its analytic
closed form is B m() = 2∗ m with m = 0,1,2,3,L . You see again the
advantage of the analytic closed form? You don't really have to carry
the additions. For example if some teacher (who wants to punish you)

tells you that you must find B 12345678901234567890() , then you
could of course sit a couple of years at your desk and carry out
12345678901234567890 additions. Or you could buy an HP49G and
let the program run:

<<
0 SWAP 1 SWAP
START

2 +
END

>>

It takes any number n from the stack and returns the nth member of
the sequence, so also the 12345678901234567890th member. This is
SCATA. What, you don't know what SCATA is? That is Super
Calculators Against Teacher's Authority.1 ;-) But then you would just
cause a psychic problem of the HP49G. And in the year 2010 you will
say, "Poor little HP49G calculates since a decade!"

Even better it would be to program:

<<
2 *

>>

which does exactly the same as above in a time which will give the
punishing teacher a heart attack. This is MATH. Oh no, no not
mathematics, but Mathematics Against Teacher's Health2 ;-)

It is also interesting to see what this sequence does, what it maps the
positive integers onto. Turn page to take a look at the construction of
the even numbers.

1 Just ask a Greek it means in greek language ;-)
2 Interesting to know that the word mathematics in greek language, gave its root
"math" to the verb mathaino, "To learn".

Sequences, series and limits with the HP49G - Part 2

2-11

Applying the recipe B m() = B m −1() + 2 , with B 0() = 0 and

 m = 0,1,2,3,L , or equivalently torturing our teacher with
B m() = 2∗ m with m = 0,1,2,3,L , is the same like making the even
numbers.

Now, can you say what the recipe for the odd numbers is? Right, it is
C l() = C l− 1() + 2 , but now with C 0() = 1 and m = 0,1,2,3,L , or in
its analytic closed form C l() = 2∗ l +1 with m = 0,1,2,3,L . Perhaps
unexpected but after some thought understandable. The recurrence
recipe for constructing the odd numbers is the same like the recipe for
constructing the even numbers. Only the initial condition changes, that
is we start at 0 for even numbers but at 1 for odd numbers. Later we
do the same for both. Just add 2 and go on until infinity. (or until the
teacher surrenders ;-))

Next example: D k() = 2 ∗D k −1() , with D 0() = 1 and k = 0,1,2,3,L .
This sequence just creates our beloved numbers 1, 2, 4, 8, 16, 32, 64,
128,... and so on. It's analytic closed form is D k() = 2k with

 k = 0,1,2,3,L . (Computer basics come from mathematics? It seems
to be this way!)

A note for the eager inpatient people who can't wait until the
differential equations marathon: Try to find the corresponding
differential equations for the above examples. Try to solve them using
the given initial conditions. Do you find any interesting things? (Hint:

For the last example split 2∗ D k −1() to
D k − 1() +D k −1() and then find the difference
D k() − D k −1() .)

I know what you think now. What is with more
complex recurrences? For example, let's suppose

you know that P j() = P j −1() −
3
8

∗ j2 −
5
6

∗ j +
1
3

,

with P 0() = 0 and j = 0,1,2,3,L . What are then
the numbers P j() ? What does P 1000() look like? Did the teacher win
after all? Are we lost?

But here cometh the HP49G our hero and life saver, the intellectual
child of the Professor and the Captain, the one and only. (Butter them
up, so that they have grace and give us the HP5000GX in future ;-)).
One of its not so widely know functions is the rarely used SIGMA.
What this function does, will amaze you now! It takes a difference,
like for example the above A n() − A n −1() (which was 1) and the a
variable (the index) and returns the general analytic closed form of the
sequence. Don't believe it? Then enter a 1, then 'n', and then press
SIGMA. (It is on the second page of menu CALC/DERIV). What do
you see? Yes, n the analytic closed form of A n() − A n −1() = 1.
Second example was B m() −B m −1() = 2 . So enter 2 , 'm' and press
SIGMA again. Result is 2∗ m , the analytic closed form of the even
numbers. Now I hear the rebellion boiling. "For the odd numbers we
have also C l() − C l− 1() = 2 , but entering 2 , then l and pressing
SIGMA gives us 2∗ l , the even numbers!" Yes, yes, my rebels, but
don't forget the boundaries. You remember of course the integration
variable which varies from case to case according to the
initial/boundary condition? The point is that SIGMA returns the
solution without consideration of boundaries. (How could it, when we
don't give it any?) So when you get a solution from SIGMA, you just
add a constant, say C to it. For example, add C to the solution 2∗ l .
Now you have 2∗ l+ C . Press DUP to make a copy on stack level 2.

Sequences, series and limits with the HP49G - Part 2

2-12

0 1 2 3

0 1 2 3

Index n

Member A(n)
4 5 6 7

Now, we know that the initial condition, the start so to speak, is at
C 0() = 1. That means, when the index l is 0 , then C l() is 1. So, enter
l = 0 and press SUBST. Now you have 2∗ 0 + C . This is the member
C 0() , which is equal to 1 according to our initial condition. Enter a 1
and press [=] to make the equation 2∗ 0 + C = 1. Enter C and press
SOLVE to get C = 1. Now, SUBSTitute this in the equation on stack
level 2. You have now 2∗ l+ 1, the odd numbers, which come out
when the recurrence C l() = C l− 1() + 2 , m = 0,1,2,3,L has the initial
condition C 0() = 1. (For the even numbers we would find C = 0 and
so the solution given by SIGMA doesn't change.)

Actually SIGMA wants the difference F(n +1)−F n() and not
F(n)− F n− 1() . This makes no difference, when such differences
don't depend on the index n but it does make difference when they

do. Let's try P j() = P j −1() −
3
8

∗ j2 −
5
6

∗ j +
1
3

, with P 0() = 0 and

 j = 0,1,2,3,L . We make first the definition by recurrence. Go to the
EQW and enter:

PRCR j() = IFTE j == 0,0,PRCR j −1() −
3
8

∗ j2 −
5
6

∗ j+
1
3







Then press ENTER to put this on the stack and press DEF. The
HP49G creates the user defined function PRCR which you can find in
the menu VAR. Let's try some points. Enter 'PRCR(n)', 'n', 0, 5, 1
and press SEQ. The calculation takes a moment and returns the first 6
numbers of this sequence wrapped in a list:

0
−7
8

−89
24

−37
4

−73
4

−755
24









. Now for the analytic

definition. Enter −
3
8

∗ j2 −
5
6

∗ j +
1
3

 (this is the difference

P j +1() −P j()). Enter j (the index) and press SIGMA. The result is

−
6∗ j3 + 11∗ j2 − 33 ∗ j

48
. Now, we must apply the initial condition but

we must be a little bit careful. This result is meant as

P j +1() = −
6 ∗ j3 +11∗ j2 − 33 ∗ j

48
+ C . We can't make such a

definition on the HP49G. The left hand side must contain a function
with one or more names of variables separated with commas. This
doesn't mean that we can't calculate things like P j +1() , P j −k() or

even P n
n =0

10

∑

 


. It is only the definition that wouldn't work that way.

Because we can't define such a function on the HP49G, we simply
shift the initial condition. The recursive definition contains the initial
condition as the part IFTE j == 0,0,L() . We see that for j = 0 the
function will return 0. The index of the analytic expression is ahead of
the index in the recurrence by 1. It is not P j() but P j +1() instead. That
means that we must apply the initial condition P(1) = 0 when we make
the analytic definition. All clear? OK! First enter 'C' and press [+] to
add the constant. Now press ENTER to duplicate. Enter 0 and press

[=] . Now, enter 'C' and SOLVE. The result is C =
−1
3

. SUBSTitute

this to the expression on stack level 2. Press EXPAND to get

−
6∗ j3 + 11∗ j2 − 33 ∗ j +16

48
. Now, because we shifted the index j by

1 for the initial condition, we must also do that for the expression
itself, or else the results will be shifted. We must add 1 to j in the
expression. Enter j = j +1 and SUBSTitute. Note that j = j +1 is an
impossible mathematical equation, it doesn't have solutions. But doing
this in this case we simply mean, find all occurrences of j and replace
by j+ 1. Now press EXPAND. The result should be

−
6∗ j3 + 29 ∗ j2 + 7∗ j

48
. We make a couple of values also for this

analytic form. Press ENTER to make a copy and then enter 'n', 0, 5,
1. Press SEQ. In a few seconds the HP49G returns

Sequences, series and limits with the HP49G - Part 2

2-13

0
−7
8

−89
24

−37
4

−73
4

−755
24









, the same list of numbers like

for the recurrence. That means that starting at the number P 0() = 0 ,

counting j from 1 to infinity and adding always −
3
8

∗ j2 −
5
6

∗ j +
1
3

 to

the previous number, is exactly the same like counting j from 0 to

infinity and plugging the value of j in −
6∗ j3 + 29 ∗ j2 + 7∗ j

48
. DROP

the list of numbers and using the already available copy of

−
6∗ j3 + 29 ∗ j2 + 7∗ j

48
 DEFine PANL j() = −

6∗ j3 + 29 ∗ j2 + 7∗ j
48

.

Now, enter 1000 and calculate P 1000() using the new function

PANL. The result −
251208625

2
 comes instantly and turns the

teacher to a maniac running with hands up, shouting at the people:
"Teachers and directors against MATH!!!". ;-) If you remember I
already said that the recurrence has some kind of elegance not present
in loops. But as you can see there is even more elegance in the analytic
closed form. If we can find such a form (though not always possible)
we should work with it. Not to speak about other considerations, like
for example bounds, condensation points and limits. For example

consider the sequence Sn() = Sn −1() +
1
n

, with n = 1,2,3,L and

S1() = 1. Can you say if it has a limit for n → +∞ ? You would
perhaps say that it seems to have one, because we add something that
always gets smaller and smaller and so we expect the overall
accumulation to be finite. But let's look at the analytic side of things.

1.Enter
1
n

 and then n .

2. Press SIGMA. The result is Psi n() , a special function built-in in the
CAS of the small wonder.

3.Enter 'C', press [+] and [ENTER].

4. Enter a 1, press [=].
5.Enter n = 2 (start index shifted by 1) and press SUBST.
6.SOLVE for C. Result is: C = − Psi 2() −1()
7.SUBSTitute.
8. Enter n = n +1 and SUBSTitute again. The result is the analytic

closed form of the recurrence: Psi n +1() − Psi 2() −1() .

Now let's see if it has a limit for n → +∞ . Enter n = +∞ and press

lim. You get +∞ which clearly shows that adding

1+

1
2

+
1
3

+
1
4

+L

will grow above all finite quantities.

What about Sn() = Sn −1() +
1
n2 , with n = 1,2,3,L and S1() = 1 ?

Does this has a limit for n → +∞ or not? We could tend to say "No, it
doesn't" because of the previous example. But if you follow the
instructions of the previous example, you find the analytic closed form:
−PSIn + 2,1() + PSI2,1() +1, PSI being another special built-in

function. If you now take the limit for n → +∞ you find
π 2

6
.

SIGMA will also handle other functions, like for example

exponentials. If you enter e
n∗π

6
−1

, then n and press SIGMA, you will

get
e

n∗π−6
6

e
π
6 − 1

. And what about trigonometrics? Well, if you enter

SIN
n∗π

6
−1





 and n and press SIGMA, then you get

SIGMA SIN
n∗π

6
−1





 ,n



 


. But we don't give up! Remember what

we said at the old times of the trigonometry and the complex marathon?
The HP49G seems to like complex exponentials much more than

Sequences, series and limits with the HP49G - Part 2

2-14

trigonometric functions. We jumped to complex hyper space, got the
solution, and jumped back to real normal space. Let's try it also here.

If you still have the result SIGMA SIN
n∗π

6
−1





 ,n



 


 on stack, then

press OBJ->. This is one of the most versatile commands, since it can
take just about anything and explode it to its components. In this case

it returns SIN
n∗π

6
−1





 and n to levels 4 and 3. These were the

arguments for SIGMA before it was blown to pieces. On stack level 2
you have a 2, the number of arguments of SIGMA. And on level one
you have the function itself, SIGMA. Press DROP2 to get rid of the 2
and of SIGMA. Now, because we are going to work in complex
mode, we should make the assumption first, that n is real. So we
avoid complicated results containing RE n() and/or IM n() later. Press
UNASSUME to erase all assumptions about n , so that we make a
clean start. UNASSUME leaves its argument on the stack, so press
DUP and ADDTOREAL. Now the HP49G assumes that n is real.
(We already have seen in the complex numbers marathon under which
circumstances such assumptions are used.) Press SWAP to get the
trigonometric function on stack level 1. (Instead of SWAP you can
also press the key [arrow right].) Now press EXPLN. This is our
jump to complex hyper space. It converts the trigonometric functions

to complex exponentials. The result is:

e
i∗n∗π−6

6 −
1

e
i∗n∗π− 6

6

2∗ i
. Press

SWAP to get the flying n to the ground and press SIGMA. After
some seconds you get the huge result:

− 1+ 2 ∗ i() − i∗ 3()∗ e
i∗n∗π−6∗ i

6

2
−

− 1− 2∗ i() + i∗ 3

2∗ e
i∗n∗π−6∗ i

6

2 ∗ i

Now we can calculate the real and imaginary part of this monster.

(This is our jump back to real normal space.) DUPlicate that and press
RE. RE returns the real part of some complex quantity, taking all
assumptions into consideration. IM returns the imaginary part and as
you have guessed also uses the assumptions that you have previously
made. The HP49G says now:

COS
π∗ n− 6

6




 ∗ −2 − 3() +−1∗ SIN

π∗ n − 6
6







3

−
2 + 3() ∗COS

π∗ n − 6
6





 − −1∗2 ∗SIN

π∗ n −6
6







SQ COS
π∗ n− 6

6




 ∗ 2



 


+ SQ 2*SIN

π∗ n − 6
6









 


2

We get an even bigger monster. But soon we gonna put it on a diet.
Press TCOLLECT and then EXPAND to get the final answer for the

real part:
SIN

π∗ n − 6
6





 + 2 + 3()∗ COS

π∗ n − 6
6







2

Press SWAP to get the previously made copy of the expression

− 1+ 2 ∗ i() − i∗ 3()∗ e
i∗n∗π−6∗ i

6

2
−

− 1− 2∗ i() + i∗ 3

2∗ e
i∗n∗π−6∗ i

6

2 ∗ i
 on stack level 1.

Now press IM, and then TCOLLECT to get a fat round 0. So the jump
to hyper space was successful. (Watch out for low flying assumptions
when you are there ;-)) That means that the general analytic closed

form of Sn() = Sn −1() + SIN
n∗π

6
− 1





 , with n = 1,2,3,L is equal

to:

Sequences, series and limits with the HP49G - Part 2

2-15

SIN
π∗ n − 6

6




 + 2 + 3()∗ COS

π∗ n − 6
6







2

This was a simple recurrence but it is the analytic form that allows us
to say how the sequence behaves. We can first create the analytic
closed form for some initial conditions, say S 0() = 0 . Then we can
find our special cases, eventually bounds or condensation points. We
couldn't do that with the recurrence.

Now, imagine what happens with even more complicated recurrences.
They are too hard to handle in that form but when an analytic closed
form comes, many many things get clear. Use SIGMA3 for such
things, and don't listen to the voices that having null understanding of
the underlying MATHematics still continue to flood the group with
stupid opinions, like "They changed things that worked just to put a
few more functions on the calc that nobody needs." Such statements
you can PURGE immediately.

The opposite of finding the analytic expression for a recurrence, would
be to find the recurrence out of an analytic expression But that's easy.
You just enter your analytic closed form, for example n2 , DUPlicate
it, enter n = n +1 and SUBST. Then you SWAP and press [-] and
EXPAND. The result 2∗ n +1 means P n +1() = P n() + 2 ∗n +1.

Now, we said that SIGMA only works when the difference
F(n +1)−F n() doesn't depend on F itself. For example it doesn't
work with the recurrence FIBO n() = FIBO n−1() + FIBO n − 2() ,
where n goes from 1 to infinity and where FIBO 1() = 0 and
FIBO 2() = 1. In this case, if we calculate the difference
FIBO n() −FIBO n −1() , then we see that it is equal to FIBO n − 2() ,

3 There is also SIGMAX on the third page of the menu CALC/DERIV. It is analogous

to SOLVEVX. It only needs the expression for the difference F(X + 1) −F X() on
stack level 1 and does the same like SIGMA for the current VX (which often is X).

that is, it is equal to something that depends on FIBO itself. But that
doesn't mean that there are not ways to find an analytic closed form
even for such sequences. In fact, we can program the HP49G to do
that. This is the program that we do a few pages later. But first a bit
more theory. Hold your hats on, we go with great velocity! Teachers,
the performance of the MATH-virus has just began!

Because we already are familiar to the Fibonacci sequence, let's stay
with it. We use it as an example for a general method, which will help
us in many cases to find such analytic closed forms. We have used
recurrences, which in general say that we must do something with past
members of the sequences, in order to find the future members. The
legacy of the past dictates the future, recurrences must have studied
history ;-) Now, what we do to past members is often add them
together multiplied perhaps with some factor. When we add many
things together, hmm, reminds us of infinite sums in some way,
doesn't it? So let's consider such a sum, an easy one:

B X() = b0 +b1∗X + b2 ∗ X2 +L = bn ∗ Xn

n =0

∞

∑ . Mathematicians tend to

play very often. (That's why we don't have many of them in Greece,
now that games are banned ;-)) What games can be arranged with such
a thing like the above sum? We can look if it converges to something
when we keep on adding and adding. We can check if it converges no
matter what X is, or if it converges only for some particular range of
values for X . Or we can forget the convergence for a moment and look
at the coefficients bn . What happens if they change? Are there any sets
of such coefficients, any special recipes of how construct them? And
what happens when we construct them according to some particular
recipe.

Consider for example our beloved sequence of RAM capacities, that is,
the sequence 1,2,4,8,16,32,64,L. What if we plug these numbers in
the positions of the slots bn in the sum? We have then

1+ 2 ∗ X + 4 ∗ X2 + 8∗ X3 +16 ∗ X4 +L = 2n ∗ Xn

n= 0

∞

∑ . Now, it turns

Sequences, series and limits with the HP49G - Part 2

2-16

out that for X p 1 the sum converges to
1

1− 2 ∗ X
. Again a closed

analytic expression for something infinite! Now you remember of
course that the same sequence 1,2,4,8,16,32,64,L is also defined as
the recurrence D k() = 2 ∗D k −1() , with D 0() = 1 and k = 0,1,2,3,L .

So this recurrence seems to have to so something with
1

1− 2 ∗ X
. (We

forget here totally if it converges or not. We focus solely on the
coefficients bn .) Imagine that you knew right for the start such an

expression, like
1

1− 2 ∗ X
, but for some other sequence. "Great!", you

say, "so what?". Well, look what happens when you expand
1

1− 2 ∗ X

to a series around X = 0 . Enter first
1

1− 2 ∗ X
, then X = 0 and then

the highest power that you want to have in the series, say 8. Now
press SERIES. The result is

Limit:1 Equiv:1

Expans:16∗h4 +8∗h3 +4∗h2 +2∗ h+1 Remain:h5









on stack level 2 and h = X on stack level 1. Press SUBST to
substitute h = X in all algebraic objects of the list. Now press enter 3
and press GET to get the series from the list. The series is tagged with
the string "Expans". You can remove such tags with the command
DTAG. Now you should have the series alone on stack level 1:
16 ∗ X4 + 8 ∗ X3 + 4∗ X2 + 2∗ X +1. Do you see? Of course you do!
The coefficients of X are the sequence D k() = 2 ∗D k −1() , with
D 0() = 1 and k = 0,1,2,3,L . So what a strange thing is this? You

have a function, namely
1

1− 2 ∗ X
, which doesn't look so

extraordinary at all, and when you expand it to a power series around
0, it generates the numbers of the recursion D k() = 2 ∗D k −1() , with

D 0() = 1 and k = 0,1,2,3,L , as coefficients of the powers of the

series. This is why
1

1− 2 ∗ X
 is called the generating function of

D k() = 2 ∗D k −1() , with D 0() = 1 and k = 0,1,2,3,L . Wow! If we
had a way to guess the right generating function, I tell you man, we
have the whole infinite recurrence in one single analytic closed form.

Let's trick around a bit with Fibonacci. We want to have B(X) the
generating function of the Fibonacci sequence. That means, we want to
have:

B(X) = F0 + F1∗ X +F2 ∗ X2 +F3 ∗ X3 +Lblahblah= Fn ∗ Xn

n =0

∞

∑ .

The Fn are our known Fibonacci numbers. (Those with which the
teacher can still punish you, by telling you to calculate F1000000 . ;-)) The
recurrence definition of the Fibonacci numbers is Fn = Fn−1 +Fn− 2 . So
let's substitute this in the sum above. We get:

B(X) = Fn ∗ Xn

n=0

∞

∑ = Fn−1 + Fn− 2()∗ Xn

n= 0

∞

∑ . Now, because we know that

F0 = 0 and F1 = 1, we can take the first two numbers out of the sum
and start summing at n = 2 . So we have a new sum:

B(X) = F0 + F1∗ X + Fn−1 + Fn− 2()∗ Xn

n= 2

∞

∑ = X + Fn−1 + Fn− 2()∗ Xn

n= 2

∞

∑ .

We distribute the multiplication Fn −1 +Fn −2() ∗ Xn and so we get

B(X) = X + Fn −1∗ Xn +Fn −2 ∗ Xn

n =2

∞

∑ . Now, we know that

a + b
n =2

∞

∑ = a
n= 2

∞

∑ + b
n= 2

∞

∑ . We apply this and so we get:

B(X) = X + Fn −1∗ Xn

n =2

∞

∑ + Fn− 2 ∗ Xn

n= 2

∞

∑ . Now let's look at the first sum

Sequences, series and limits with the HP49G - Part 2

2-17

a bit closer. If the power of X were not n but n− 1, then the sum

would be: Fn −1∗ Xn −1

n =2

∞

∑ . Do you notice something? The sum would

then be itself B(X) , the generating function. If we would write out this
sum we would get F1 ∗ X + F2 ∗ X2 +F3 ∗ X3 +Lblahblah, which is
indeed the generating function since F0 = 0 . Now, because all terms in

the sum

Fn −1∗ Xn

n =2

∞

∑ = F1∗ X2 + F2 ∗ X3 +F3 ∗ X4 +Lblahblah share

a common the common factor X , we can factor X out and get:

Fn −1∗ Xn

n =2

∞

∑ = F1∗ X2 + F2 ∗ X3 +F3 ∗ X4 +Lblahblah=

X ∗ F1∗ X1 + F2 ∗ X2 +F3 ∗ X3 +Lblahblah() = X ∗ Fn−1 ∗ Xn−1

n= 2

∞

∑

In the expression X ∗ Fn−1 ∗ Xn −1

n= 2

∞

∑ we can change indices and say

n− 1= j , where j is a new index going from 1 to ∞ . So we get

Fn −1∗ Xn

n =2

∞

∑ = X ∗ Fn−1 ∗Xn−1

n= 2

∞

∑ = X ∗ Fj ∗ X j

j=1

∞

∑ = X ∗B X() . If we

substitute this in our last state of the generating function, then we get:

B(X) = X + X ∗B X() + Fn −2 ∗ Xn

n=2

∞

∑ . It starts looking like happiness.

Using the same arguments like for the first sum, we can also convert

the second sum Fn −2 ∗ Xn

n =2

∞

∑ to X2 ∗ Fk ∗ Xk

k =0

∞

∑ , which is equal to

X2 ∗B X() . Our equation now, looks like

B(X) = X + X ∗B X() + X2 ∗B X() . Enter this equation and then B(X) .

Press SOLVE and you get B(X) = −
X

X2 + X − 1
. This my dear math

freaks is the generating function of the Fibonacci numbers. (And the
start of all teacher's nightmares ;-)) Press EQ-> to separate the two

sides of the equation. Enter X = 0 and then 10. Press SERIES. When
the calc is done, press SUBST and then 3 GET and DTAG. You have
the magnificent series:

 89 ∗ X11 + 55 ∗ X10 + 34 ∗ X9 + 21∗X8 + L+ 3 ∗X4 + 2∗ X3 + X2 + X

Ho! The coefficients are the Fibonacci numbers! The generating

function B(X) = −
X

X2 + X − 1
 has just generated them!

Another example without explanations. Let's do that for the RAM
chips recurrence, D k() = 2 ∗D k −1() , with D 0() = 1 and

 k = 0,1,2,3,L .

B X() = D k() ∗Xk

k =0

∞

∑ = 1∗ X0 + 2 ∗D k −1()∗ Xk

k=1

∞

∑ =

1+ 2 ∗ D k −1()∗ Xk

k =1

∞

∑ = 1+ 2∗ X ∗ D k()∗ Xk

k=1

∞

∑ = 1+ 2 ∗ X ∗B X()

We have found that B X() = 1+ 2∗ X ∗B X() . Solving this for B X() we

find B X() =
1

1− 2 ∗ X
, the generating function of D k() = 2 ∗D k −1() ,

with D 0() = 1 and k = 0,1,2,3,L . The series expansion of

B X() =
1

1− 2 ∗ X
 at the point X = 0 gives us the series

 1+ 2 ∗ X + 4 ∗ X2 + 8∗ X3 +16 ∗ X4 +L , whose coefficients are the
numbers of the sequence D k() = 2 ∗D k −1() , with D 0() = 1 and

 k = 0,1,2,3,L .

We have a mechanical (=implementable as an algorithm) method to
turn such sequences to something easier to handle with. Now, if we
also had a method to find how these numbers, the coefficients of the
series expansion of the generating function, depend on n

Sequences, series and limits with the HP49G - Part 2

2-18

(symbolically, not numerically) we would be able to calculate really
big Fibonacci or whatever numbers in seconds. The method shown
here for finding the generating function will be programmed some
pages later. (Yes, it is possible to program this method on the HP49G,
but be patient, the student's revenge will come later ;-)) Unfortunately
the HP49G can't give you the coefficients of a series expansion, if you
do that pure symbolically. If you enter F(X) , X =0 and 4 , and press
SERIES, then it complains "Operator not implemented (SERIES)".
(This is another error that you can't catch in error traps, it just escapes
from the trap and pops up in front of your eyes.) So we can't use
generic SERIES expansion for finding an analytic closed form for the
coefficients. For this reason we will use here the approach of the
characteristic polynomial which is also possible to program on the
HP49G. Nonetheless we will make a program for calculating the
generating function, even if we don't use it now for getting the analytic
closed form of a series. We do that for two reasons: First to
demonstrate how the rich command set of the HP49G can be used for
very "unusual" things. Second because it is possible that someone of
the guys out there programs a generic series expansion, which then
can be applied on the generating function and give us the symbolic
dependance of the coefficients on the sequence index n . For now,
let's see how the method of the characteristic polynomial works. Again
we take the example of the Fibonacci numbers. We give here mainly
the "mechanical" part. If someone wants more mathematical proof,
then any good mathematics book about sequences and series will give
more information.

The method starts letting the nth Fibonacci number FIBO n() be a

characteristic polynomial rn . Then, we plug these characteristic
polynomials in the definition of the Fibonacci numbers:

We solve the last equation r2 − r −1= 0 for r . The HP49G can solve
this symbolically. (Of course it can, it is a quadratic equation in r .)

SOLVE returns the solutions list: r = −
−1+ 5

2
r =

1+ 5
2









.

Now, the general solution of FIBO n() = rn is any linear combination
of the roots. That means:

FIBO n() = C1∗ −
−1+ 5

2











n

+ C2∗
1+ 5

2











n

It starts looking very bad for teachers. If we now find what C1 and
C2 are, then we catch them by surprise. We can find what these C1
and C2 are if we use the initial conditions FIBO 0() = 0 and
FIBO 1() = 1. For n = 0 we have:

FIBO 0() = 0 ⇒ C1∗ −
−1+ 5

2



 




0

+ C2 ∗
1+ 5

2



 




0

= 0 ⇒

C1+ C2 = 0

For n = 1 we have:

FIBO 1() = 1⇒ C1∗ − −1+ 5
2



 




1

+ C2 ∗ 1+ 5
2



 




1

= 1⇒

C1∗− −1+ 5
2

+ C2 ∗1+ 5
2

= 1= 1

The system of equations:

C1+ C2 = 0

C1∗−
−1+ 5

2
+ C2 ∗

1+ 5
2

= 1

is a linear equations system in C1, C2 . The command LINSOLVE is
exactly what we need for solving such systems. We enter the vector of

Sequences, series and limits with the HP49G - Part 2

2-19

FIBO n() = FIBO n−1() + FIBO n − 2() ⇒ rn = rn−1 + rn −2 ⇒ r2 − r − 1= 0

equations, C1+ C2 = 0 C1∗−
−1+ 5

2
+C2 ∗

1+ 5
2

= 1= 1


 


  ,

then the vector of the variables to solve for, C1 C2[] , and then use
LINSOLVE. The command returns among other information that we

don't need here, the vector of solutions: C1=
− 5

5
C2 =

5
5



 


  .

Substituting these solutions in the analytic closed form of the
Fibonacci numbers, we get

FIBO n() =
− 5

5
∗ −

−1+ 5
2



 




n

+
5
5

∗
1+ 5

2



 




n

You don't believe that the Fibonacci numbers can be calculated with
this formula, using square roots and other things that are not likely to
return integer results? Don't worry, I can't believe that too! We enter

FIBO n() =
− 5

5
∗ −

−1+ 5
2



 




n

+
5
5

∗
1+ 5

2



 




n

 and press DEF.

Now the function FIBO is ready for use. Come on FIBO, give us
some Fibonaccis. Enter a 0 and press the menu key of FIBO in the
menu VAR. After 2 very suspended seconds we have the result
− 5

5
+

5
5

 which we EXPAND to get 0 , the first Fibonacci number.

Next one please. Enter 1, press FIBO. You get the result,
− 5

5
∗−

−1+ 5
2

+
5

5
∗

1+ 5
2

. EXPAND it and you have 1, the

second Fibonacci number. The final EXPAND is a bit too much to
press it after every run of FIBO. We recall FIBO on the stack and add
EXPAND at the end of the program:
<<
->
'-√5/5*(-((-1+√5)/2))^n+√5/5*((1+√5)/2)^n'
EXPAND

>>

We store that in FIBO and go ahead. Enter 2, press FIBO. Result is 1,
OK. Enter 3, press FIBO to get 2. 4 FIBO is 3, 5 FIBO is 5 and so
on. Now for the big ones. Enter 20, press FIBO. You get 6765. If you
want to accelerate the calculation switch to numeric mode. You lose
accuracy and you can the right results only up to 999999999999. 30
FIBO gives 832040. 40 FIBO gives 102334155. 50 FIBO gives
12586269025. In numeric mode it works very very fast, in exact mode
it is not so fast. And for big big FIBOS which can't be calculated in
numeric mode it is very slow. So it seems that after all we have to use

<< -> n
<<

CASE
{ 6. 7. 9.} @If the argument is a local or
n TYPE POS @global name or algebraic

THEN @
'APPLY(FIBO,n) @Just apply FIBO
EVAL @on n and return FIBO(n)

END
n 1 ≤ @If n is equal to 1

THEN
0 @return 0

END
0 1 2 n @If nothing of the above is
START @true, calculate FIBO

DUP ROT +
NEXT
NIP

END
>>

>>

It is faster than the analytic version because it takes so long to

EXPAND for example
− 5

5
∗ −

−1+ 5
2



 




1000

+
5
5

∗
1+ 5

2



 




1000

.

It looks for us like one single command, namely EXPAND the
monster. But the HP49G must fire up an algorithm to expand this

Sequences, series and limits with the HP49G - Part 2

2-20

thing. And the algorithm itself must do many many things when
expanding such beasts. The program with the START-NEXT loop
needs 10 seconds to return the right result (huge integer with 209
digits). The analytic version..., well I didn't time it because I lost my
patience. So did the teachers win, after all? No! We won a wonderful
insight in the secret life of sequences. And we will see that we also
win ways to get information about sequences that seem impossible to
handle. Before we go on with the programs, one last remark about the
Fibonaccis. They seem to be so easy to understand, because their
construction recipe is so easy. But would you ever imagine that they
have to do with geometry? Did you notice what the analytic closed
form of them contains? No? Look again! Oh, what a marvel! The

golden section, the divine proportion! Φ =
1+ 5

2
 And also its

counter part Φ
∧

=
1− 5

2
! The Fibonacci numbers, constructed out of

the divine proportion! Their analytic closed form is equivalent to:

FIBO n() =
5

5
∗ Φn −Φ

∧ n

 


. This insight alone was worth the long

excursion, wasn't it? Now, just sit and wonder if Fibonacci knew
what he was initiating when he discovered his numbers. And a

philosophical question: Was this relation FIBO n() =
5

5
∗ Φn −Φ

∧ n

 


existent at the moment of the discovery of the Fibonacci numbers?
Was it then existent but not discovered? If the definition of the
Fibonaccis exists, then this formula also exists but we don't know that
it exists until we find it? Or does it come into existence at the very
moment of its own discovery? Think of it, when you have time. But if
you tend to say that the formula existed when the Fibonaccis were
discovered, then ask yourself: Did the Fibonaccis exist from the
moment on, when the integers were discovered? Fascinating!

Enough philosophy for the moment. Let's get on the dirtier part of the
job, coding. First of all we must think about our notation of
sequences. We used lists that have the form

memberGeneralForm indexstart end{ }{ } to represent sequences.

If possible we should generalise this notation to include recurrences.
We add the following variation of this representation:
recurrenceEquation initialConditions{ }{ } . Now, our sequences

can be of two forms, the one that we had until now and in addition the
new form for recurrences. For example, for the Fibonacci sequence we
would write:

FIBO n() = FIBO n−1() + FIBO n − 2() FIBO(0) = 0 FIBO(1) = 1{ }{ }
The sequence of the RAM chip numbers would be denoted as:

D n() = 2 ∗D n−1() D(0) = 1{ }{ } . Our programs should then check to

see what kind of sequence they
have to do with and act
accordingly. If you remember
the whole group of programs
that we made until now was
structured like the picture at the
right shows. All of the
programs base on SPCASES. If
we use this structure further, we
only need to change SPCASES,
or any program below
SPCASES, so that the kind of
sequence is checked. In case of
recurrence, we try to find an
analytic closed form, then
construct an equivalent analytic
sequence of the first kind, and
replace the recurrence with this
equivalent form. The programs
above SPCASES will only see
what SPCASES shows them, namely the possible special cases of a
normal analytic sequence, with which they can do something. The
check for the kind of the sequence can be made very thorough by
checking for example if the first element of the sequence list contains a
"=" and if all elements of the sub list also contain also a "=". But we

Sequences, series and limits with the HP49G - Part 2

2-21

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

CONVERGES?

restrict ourselves to check if the first element of the sequence list
contains a "=", in which case we assume a recurrence. The interested
reader could make additional checks and let the program error out
"civilised" without leaving the stack totally messed up.

We start giving the code of some smaller auxiliary programs that we
can use also for other purposes. We will need them later for the bigger
programs. The HP49G can't distribute the symbolic sum over two or
more terms in the summand. We can't transform for example

an + bn
n =0

+∞

∑ to an
n =0

+∞

∑ + bn
n =0

+∞

∑ . And we need this capability for a

program that would calculate generating functions. We could also find
such a capability useful for other algebraic manipulations in future
marathons. So, let's program it. The strategy is to convert the whole
summand to a sum of terms and then match all patterns of the form

&A + &B
&N= &L

&H

∑ to &A
&N= &L

&H

∑ + &B
&N= &L

&H

∑ and of the form − & A
&N= &L

&H

∑ to

− &A
&N =&L

&H

∑ until nothing changes anymore. (We will see later why we

need the second transformation.) The next program implements this
strategy.

<< ->LST 1 @Convert to a list for sub-
 << @sequent DOSUBS
 IF @If current element is ∑

{ ∑ } OVER POS
 THEN @then apply FDISTRIB to the

SWAP FDISTRIB SWAP@summand and convert it to a
 END @sum of terms
 >>
DOSUBS @Do to each list element
->ALG @Re-convert to algebraic

 WHILE @MATCH until nothing changes
{ '∑ (&V=&L,&H,&A+&B)'
'∑ (&V=&L,&H,&A)+∑ (&V=&L,&H,&B)' }

↓MATCH

 REPEAT
 END
 WHILE @MATCH until nothing changes

{ '∑ (&V=&L,&H,-&A)'
'-∑ (&V=&L,&H,&A)' }

↓MATCH
 REPEAT
 END
>>

We store this in FDISTR∑ . Perhaps you have already asked yourself,
why we don't need to match also the patterns that eventually have the
form '∑ (&V=&L,&H,&A-&B)' to corresponding patterns that have
the form '∑ (&V=&L,&H,&A)-∑ (&V=&L,&H,&B)' }. This is
because of two reasons that in this case combine wonderful to let us do
what we want. First: When ->LST is applied on an algebraic object
that contains a sum, then the whole summand is returned as a single
object. For example, if you apply ->LST to 'X+∑ (n=0,10,n^2-1)'
then the returned list is { X n 0 10 'n^2-1' ∑ + } rather than { X n 0
10 n 2 ^ 1 - ∑ + }. Second: If the summand is some factored
expression, then FDISTRIB will convert it to a sum, that contains
terms combined all with +. That means than for example 'a*(x-c)' will
be converted to 'a*x+-(a*c)' rather than 'a*x-a*c'. So we can be sure
that the only match needed is matching '∑ (&V=&L,&H,&A+&B)' to
' ∑ (&V=&L,&H,&A)+∑ (&V=&L,&H,&B)'. The Professor knew
exactly what he did when he made the CAS. (Sure he did, that's why
he is the Professor! ;-)) The second match is needed for having only
positive terms in the sums, because the programs later will love this
property.

As always, we test FDISTR ∑ now. Enter the sum

SIN(X) − COS(index∗ X)()∗ e index+1()∗π

index= 1

U −3

∑ . Press FDISTR∑ to get

SIN(X)∗ e index+1()∗π

index= 1

U −3

∑ − COS(index∗ X) ∗ e index+1()∗π

index=1

U− 3

∑ . It works.

If someone of you out there finds an example in which FDISTRIB

Sequences, series and limits with the HP49G - Part 2

2-22

behaves differently, please please post it. The whole program and the
next programs are based on this property.

The next small auxiliary program that we need, is a program that
returns all terms of an algebraic expression.

<< EQ-> - FDISTRIB 1 @Convert a=b to a-b
->LIST { } -> sums terms @and store in locals

 << @While the list sums is
 WHILE @not empty, repeat

sums SIZE 0 >
 REPEAT @Show some message to

"Sums: " sums SIZE + " @Trabakoulas
" + "Terms: " + terms SIZE +

1 DISP sums @get head of sums
HEAD sums TAIL 'sums' @Store the rest in sums
STO -> obj @Store head in local obj

 << IF @If obj is real, integer
{ 0. 6. 28. } obj @or name
TYPE POS

THEN @then add it in terms
terms obj +
'terms' STO

 ELSE @else
obj OBJ-> @explode it
IF @If the obj was two arguments

{ + } SWAP @hold together with a "+"
POS

THEN @then add both arguments in
DROP sums @sums
ROT +
SWAP +
'sums' STO

ELSE @else add obj in terms
DROPN terms
obj +
'terms' STO

END

END
>>

END terms @return terms
>>

>>

We store this in ->TERMS. It is good to see how this program works,
so let's make a flow diagram (next page). The program first turns
equations to differences using EQ->. If EQ-> has an argument that
wasn't an equation, then it returns the argument and a 0, which if
subtracted from the argument doesn't change anything at all. So we
make sure that it will work for equations and expressions. The whole
expression is put in a list 'sums' and an empty list is put in 'terms' The
program keeps on exploding the first element of sums, and if it sees
that the object just being exploded was itself a sum, it just adds the
arguments of + to the end of the list 'sums', because they could be
themselves sums. If the exploded expression wasn't a sum, then it
adds it to 'terms'. In every pass the expression that is exploded is also
removed from the first position of 'sums'. The additional check if the
expression is real, integer or name is done, because applying OBJ-> to
such an object would error with "Bad Argument Type". Since we
know, that if we have a real number or integer or name this was a
term, we add them also to 'terms'. When all expressions of 'sums'
have been processed, then we are ready and returns the list terms. The
FDISTRIB at the start of the program again makes sure that we have
only arguments hold together with a +. (Like in FDISTR∑ .)

And now for the test. Enter some equation, like for example
eX ∗ SIN(X) − X ∗ COS(X) + 3()() = P(X) ∗ X + 3∗ X2() . Press now
the soft key ->TERMS. You get as result a list containing all terms of

the equation

SIN X() ∗eX − X ∗P(X)() L − 3∗ X ∗eX(){ } . Keep in

mind however that the terms are not in the same order as in the
equation.

And now the main programs. We make a program that takes a list
representing a sequence and finds the type of the sequence. As said
before, we have two main types of sequences. First, the analytic

Sequences, series and limits with the HP49G - Part 2

2-23

sequences memberGeneralForm indexstart end{ }{ } . We give

such sequences the type 1. If the program finds such a sequence, it
returns the sequence unchanged and a 1. Then we have the recurrence
sequences recurrenceEquation initialConditions{ }{ } . We have two
variations of these sequences. The first is of type
P(n+1) = someSumOfPreviousMembers initialConditions{ }{ } .

The expression "someSumOfPreviousMembers" denotes expressions
like for example P(n−1)+P(n− 2) or

3∗P(n−1)+ 2∗P(n− 2) −P(n− 3) but not P(n−1)+
P(n− 2)
P(n− 3)

. Such

sequences we will handle using the method of characteristic
polynomials. We give such sequences the type 2. When the program
finds such a sequence, it returns a list of the form
terms factors initConditions index{ } and a 2. "Terms" denotes

the terms P(n), P(n−1), and so on, that appear in the sequence.
"Factors" are the factors with which these terms are multiplied.
"InitConditions" is the list of initial conditions and "var" is the index of
the sequence. (Why we do that? We will see in a few minutes.) The
second variation of recurrences is of the type
P(n+ 1) = P(n) + someFunctionOfTheIndex initialConditions{ }{ } .

The term "someFunctionOfTheIndex" denotes something that doesn't
contains any sequence member. This type of recurrence sequence will
we will handle using SIGMA. We give such sequences the type 3. If
the program finds such a sequence, it returns a list
terms factors initConditions index matches{ } and a 3 on

the stack. The additional element "matches" is a list that indicates with
a 1 which terms in "terms" are members of the sequence, like P(n),
P(n−1) and so on, and with a 0 which are not. The code is on the next
page.

Sequences, series and limits with the HP49G - Part 2

2-24

Convert any algebraic to a standard
form (sum of terms). Store it in 'sums', store
an empty list in 'terms'.

Does 'sums'
contain
anything?

YES

Store its first element in
'obj'. Store rest in 'sums'

is 'obj' real,
integer or
name?

YES

Add it to 'terms', as it is a
term

NO

Explode it

Was it a
sum?

YES

Add both summands
to 'sums'

NO

Add it to
'terms'

Done

NO

<<
-> seq @Store in local variable
<<

"Checking sequence type" @Message in a bottle
1 DISP

 IF @If the first element
"Analytic closed form" @of the sub list in the
2 DISP @sequence is a name (the
seq 2 GET HEAD @sequence index)
TYPE 6 ==

THEN @then just return the
seq 1 @sequence and a 1

ELSE @else we must make some
"Extracting terms" @some checks
2 DISP
seq HEAD ->TERMS @return all terms
DUP HEAD OBJ-> NIP @get first term and use

it
"" + "'" SWAP + @to construct the pattern
"(&N)'" + OBJ-> @P(&N), P being the name

@of sequence members
{ } NOVAL seq @Store in local variables
2 GET -> terms var @all that we need to
seqpatt mtch factors @proceed.
bcond

<<
CASE @In case

"Recurrence 1"
2 DISP
terms 1 @Match any occurrence of
<< seqpatt 1 @type P(&N) with a 1. If

2 ->LIST @we had a match, then any

↓MATCH 'mtch' @term of the form
SWAP STO+ @factor*P(&N) will be
EXPAND @matched to factor*1

>> DOSUBS
mtch @Stream AND over the

 << AND @matches flags

 >> STREAM
SWAP DUP @Store matched factors in
'factors' @local 'factors'
STO
1 @Find the positions of

 << LNAME NIP @all terms which do not
 IF DUP @contain the seq. index

TYPE 5 ≠
 THEN AXL END var POS NOT
 >> DOSUBS

1 + @Add a 1 in the list of
 << AND @positions and stream
 >> STREAM @AND

AND @If we had only P(&N) and
@no other expressions
@with the seq. index

THEN @then return the approp.
terms @list and a 2.
factors bcond
var 4
->LIST 2

END @In case
"Recurrence 2"2 DISP
mtch @Return matches list
factors @and factors list
2 @Check if we have only

 << LNAME NIP @factors of P(&N) not
IF DUP @containing the seq. index
TYPE 5 ≠ @or other factors
THEN AXL
END
IF SWAP
THEN var POS NOT
ELSE DROP 1
END

>> DOLIST
1 + @Add 1 to the result list
<< AND @stream AND over the result list

Sequences, series and limits with the HP49G - Part 2

2-25

>> STREAM
mtch ∑ LIST @Check if only two terms
2 == AND @match pattern P(&N)
factors mtch
2 @Get the factors of
<< @P(&N)

IF NOT
THEN DROP
END

>> DOLIST @Check if factor of first
DUP HEAD @P(&N) is 1 and of second
1 == SWAP 2 @is -1 (Diff. of two seq.
GET -1 == AND @members
AND

THEN @If conditions OK then
terms factors @return approp. list and
bcond var @ a 3
mtch 5 ->LIST 3

END @Else return sequence and
seq 0 @a 0 (we don't handle

such
 END @sequences)
 >>
 END
 >>
>>

Store in SEQTYPE. Now the obligatory test of SEQTYPE. Enter the

analytic type sequence −1()n ∗
n2 − 3
3∗n2 n 0 ∞{ }








 and press

SEQTYPE. Almost immediately you get the sequence unchanged and a
1. The program recognised that as an analytic type sequence. Enter
P n() = P n −1() + P n − 2() P 0() = 0 P 1() = 1{ }{ } and press

SEQTYPE. The program shows some messages and returns the list
P n() −P n −1() −P n−2(){ } 1 −1 −1{ } P 0() =0 P 1() =1{ } n{ }

with the summands of the recurrence, their factors the initial conditions

and the index variable. It also returns a 2 because this is a recurrence of
first type. (Which we handle with the method of characteristic
polynomials later on.)

Enter the sequence P n() = P n −1() +
3

n+1()2 P 0() =0{ }








 and press

SEQTYPE. The program returns the list

with the summands of the recurrence, their factors (or the summand
itself in case it is not of the form P &N()), the initial conditions, the
index variable and a list that indicates which of the summands are of
the form and P &N() . It also gives a 3 because it recognised the list as
recurrence of type 2, which we will handle later on with SIGMA. If
you enter some other sequence, like for example
P n() = P n −1() + P n − 2() ∗n P 0() = 0 P 1() = 1{ }{ } which we don't

handle (yet), then the program returns the sequence unchanged and a
0.

The results of SEQTYPE are needed by the next program that we
make, RCR->ANL. It takes a sequence and if it is a recurrence (of the
types that we handle) it converts it to an analytic closed form. I think
you see now what we aim at. We want to convert recurrences to
analytic closed forms, in order to let them examined by the other
programs that we have already from the first part. This has also the
advantage that we don't need to change the programs from the first
part, except for minor modifications.

Note: The program that comes along with this document is named
RCR2ANL. After you transferred it to your HP49G, you must rename
it to RCR->ANL.

Sequences, series and limits with the HP49G - Part 2

2-26

P n() −P n −1() −
3

n +1()2









1 −1 −
3

n2 + 2 ∗ n +1








P 0() = 0{ }

n 1. 1. 0.{ }

















Let's take a look at the code of RCR->ANL now.

<<
PUSH @Save user's settings
{ -114 -128 -123 } @ Display powers
CF @in ascend. order,

@allow compl. vars
@allow mode switch

{ -103 -109 -120 } @real mode,
SF @num. factorize

@silent
-> seq @store in local

 <<
seq SEQTYPE @find seq. type

 CASE @in case of seq.
DUP 2 == @type 2

 THEN
DROP OBJ-> @explode list
DROP{ } { } @store in locals
-> terms
factors bcond
var uc ninit

 <<
"Creating @Disp. message
 characteristic
 polynomial"
 1 DISP
 terms factors
/ @Divide terms by their factors
EXPAND @and expand
1
<< @Extract index out of

{ '&F(&N)' &N } @of the form '&F(&N)'

↓MATCH DROP
>> DOSUBS
var bcond 1
<< @Extract start values of

EQ-> DROP @index from initial

{ '&F(&N)' &N } @(boundary) conditions

↓MATCH DROP
>> DOSUBS
DUP 'ninit' STO @Store these indices
∞ + @Add ∞ to the list of
<< MIN @initial indices (why?)
>> STREAM = @and find the smallest
SUBST EXPAND @Substitute the smallest
DUP ∞ + @Subtract smallest index
<< MIN
>> STREAM -
XQ RCLVX @Construct X^index for
SWAP ^ @every index
factors SWAP * @Multiply each power of X
0 + @with its factor. Add 0
∑ LIST @to the list (why?). Find

@sum of list.
"Solving" 1 @Message in a bottle.
DISP
FROOTS AXL 1 @Use FROOTS to find roots
<< @If we have a root

IF @multiplicity
NSUB 2
MOD NOT

THEN
IF @which is greater than 1

DUP 1 >
THEN @then

1 SWAP @repeat it the appr.
1 - @amount of times
START

DUP
 NEXT

ELSE @else drop root multiplicity
DROP

END
END

>> DOSUBS

Sequences, series and limits with the HP49G - Part 2

2-27

var ^ @Raise root to the power n
"Multiplying roots with

unknown coefficients
"

1 DISP @Message again
1
<< @Construct coeffs. C1, C2,...

uc "C"
NSUB R->I
+ OBJ-> +
'uc' STO

>> DOSUBS uc
SWAP * 0 + @Multiply then with roots^n
∑ LIST DUP @Find sum of Cn*X^n
"Substituting initial @Message

conditions"
1 DISP
var ninit = @Substitute init. conds.
SUBST
bcond 1 @Create equations P(n)=initCond
<< EQ-> NIP
>> DOSUBS =
"Solving linear system @Message

for "
uc ->STR + 1 DISP
AXL @Solve linear system for
uc AXL LINSOLVE @C1, C2 ...
"Substituting solutions"
1 DISP @Message
UNROT DROP2 @Substitute C1, C2 back
AXL 1
<< SUBST

 >> DOSUBS
-105 CF @Set again exact mode
var ninit @Find smallest init. index
∞ +
<< MIN
>> STREAM

∞
3 ->LIST @Create analytic seq. as
2 ->LIST @the other programs want them

>>
END

DUP 3 == @Sequence of type 3
 THEN

DROP OBJ->
DROP { }
-> terms @Store in locals
factors bcond var
mtch ninit

 <<
"Determining analytic

closed form"
1 DISP @Message
var bcond
HEAD @get first init. cond.
EQ-> DROP @make equation n=smallestIndex
{ '&F(&N)' &N }

↓MATCH DROP =
'ninit' STO
terms
mtch 2
<< @If we have a term of the form

IF @P(n) then drop it.
THEN DROP

 END
>> DOLIST
0
+ ∑ LIST NEG @Add all terms not of the form

@P(N)
IF @If sum trig. function appears

DUP ->LST
DUP { SIN }
HEAD POS
OVER { COS }
HEAD POS

Sequences, series and limits with the HP49G - Part 2

2-28

OR SWAP { TAN }
HEAD POS OR

THEN @then,
var @make assumptions
UNASSUME @and convert to complex
DROP ninit @exponential. Also set flag 1
EQ-> 1 + >= @as an indicator for later.
ASSUME DROP
EXPLN 1 SF

END
var SIGMA @Use SIGMA to find P(n+1)-P(n)
"Substituting initial

conditions"
1 DISP @Message
'C' + DUP @Substitute init. conds.
bcond HEAD
EQ-> NIP =
ninit '0=1' + @Add equations n=start and

@0=1 to get n=start+1
SUBST
'C' SOLVE @Solve for C and
SUBST @substitute back
var DUP 1 + = @Substitute n=n+1
SUBST EXPAND
LIN @Linearize
IF @If trigs were involved

1 FS?
THEN

DUP RE @Find real part
-103 CF @Expand in real mode to avoid
EXPAND @complicated forms
TCOLLECT @Collect trigonometrics
EXPAND
SWAP @Do the same again for the
-103 SF IM @imaginary part.
-103 CF
EXPAND
TCOLLECT

EXPAND i * + @Construct real+i*imaginary
END @Make analytic sequence as the
ninit @other programs want it.
EQ-> -105 CF ∞
3 ->LIST
2 ->LIST

>>
END
DUP @Sequence of type 0?
0 ==

THEN
DROP POP @Stop here! We don't handle that (yet)
"Can't deal with this
kind of sequences"
DOERR

END
DROP @Else drop type

END
>> POP @Restore user's settings

>>

Before we test the program, a couple of words about LINSOLVE,
about FROOTS and about adding equations. LINSOLVE will take a
vector of linear equations from stack level 2, and a vector of unknowns
from stack level 1, and will return the vector of solutions for the
unknowns along with other information. For example, entering
'2 ∗X − Y = 1' 'X + Y = 3'[] and 'X' 'Y'[] and then pressing

LINSOLVE will return the vector of solutions X =
4
3

Y =
5
3






 on

stack level 1, and other information on levels 2 and 3 (which we will
describe more detailed in some future marathon).

FROOTS solves polynomials of the current VX but it doesn't return a
list of solutions of the form X = sol1 ...{ } . Instead of this it returns a
vector of roots and multiplicities. When it is not only important to
know the roots but also their multiplicities (like in our case here), it is
better to use this command. For example, using SOLVEX to solve

Sequences, series and limits with the HP49G - Part 2

2-29

X3 − 5 ∗X2 + 8 ∗ X − 4 will return X = 1 X = 2{ } , which doesn't
tell us which root is double. The polynomial could be
X −1()∗ X −1()∗ X − 2() or X −1()∗ X − 2() ∗ X − 2() . But FROOTS

will return 1 1. 2 2.[] , which tells us that the first root 1 is a single
root (1.) while the other root 2 is a double root (2.). That means that
the polynomial is X −1()∗ X − 2() ∗ X − 2() .

Perhaps you noticed that we add a strange equation 0 = 1 to the
equation n = startIndex . This is only an abbreviation for adding
nothing (0) to the left hand side and 1 to the right hand side. The
HP49G can also add equations with the normal command +. If two
equations are added, then the sides of the equations are added
separately to each other, and we (ab)use this to make for example
n = 2 out of n = 1. If an equation an an expression are added
together, then the expression is added to both sides of the equation.
For example X = 3 , 5 , + will return X + 5 = 8 .

And now for the tests. Enter −1()n ∗
n2 − 3
3∗n2 n 0 ∞{ }








 and press

RCR->ANL. Since this is already analytic, the program returns it
unchanged almost immediately.

Enter our old friend, the Fibonacci sequence
P n() = P n −1() + P n − 2() P 0() = 0 P 1() = 1{ }{ }

and press RCR->ANL again. After some 23.5 seconds you get the
analytic closed form of the Fibonacci sequence:

− 5
5

∗ −
−1+ 5

2



 




n

+
5

5
∗

1+ 5
2



 




n

n 0 ∞{ }








Hurrah! Notice however: You must enter such sequences in exactly
this form. The member with the biggest index alone in the left hand
side and the rest in the right hand side of the recurrence, and the initial
conditions in ascending order of the index variable.

Now another recurrence of the second type. Enter

P n() = P n −1() +
3

n+ 1()2 P 0() = 0{ }







 and press RCR->ANL.

About 22 seconds later you get the awaited answer

−
6∗PSI n+ 1+1,1() − π2 − 6()

2
n 0 ∞{ }









.

And one with trigonometric functions. Enter the sequence

P n() = P n −1() + COS
n∗π

3




 P 0() = 0{ }








 and press RCR->ANL.

After looong 106 seconds the HP49G says:

2 ∗COS
n −1()∗π

3



 


−1

2
n 0 ∞{ }

















We now move on to the next program, the program that finds
generating functions for the same types of recurrences that REC->ANL
also handles. We don't use generating functions for anything now, but
because they are so useful we should make a program that can find
them. (And who knows what we'll do in future ;-))

First of all, here is the commented code of GENFUNC.
<<
DUP SEQTYPE NIP @Find sequence type
IF

2 == @If it is of type 2
THEN

OBJ-> DROP OVER
EQ-> DROP OBJ->
DROP2 ->
seq bcond var @Store sequence, init conds,
<< @and index variable in locals

Sequences, series and limits with the HP49G - Part 2

2-30

'Σ (itVar=0,∞,COEFF(itVar)*X^itVar)'
"Inserting sequence in

" OVER + 1 DISP @Message
'COEFF(itVar)'
seq EQ-> DROP

2 ->LIST ↑MATCH @Match P(n) in series
DROP
"Replacing itVar with

"var + "
" + 1 DISP @Message

'itVar' var 2 ->LIST @Match index var. in

↑MATCH DROP @series
1 bcond
SIZE

 FOR I
"Extracting boundary @Message

condition " bcond I GET + "
" + 1 DISP

bcond I GET EQ-> @Extract known initial
NIP 'X' I 1 - R->I ^ @members of the series
* SWAP ->LST DUPDUP @out of the sum
{ Σ } HEAD POS 3 -
GET 1
+ OVER { Σ } HEAD POS
3 - SWAP PUT ->ALG +

 NEXT
"Inserting recurrence

in " OVER + "
" + 1 DISP @And another message

seq EQ-> 2 ->LIST @Match P(n) with its recurrence

↑MATCH DROP @definition in the series
"Distributing Σ over +

" 1 DISP @Yet another message
FDISTRΣ @Use FDISTRIBΣ to distribute Σ
"Extracting series

" 1 DISP @Yet another message
DUP ->LST 1 @Turn to list
<< @Turn to list of sums and other

IF @terms
{ Σ } OVER
POS

THEN
5 ->LIST
->ALG

END
>> DOSUBS
1
<< @Hold the sums, throw away rest

IF
DUP TYPE 9
== NOT

THEN
DROP

END
>> DOSUBS
"Extracting common

factors" 1 DISP
DUP 1
<< @Create list of common factors

{ } 0 -> @of the summands in the sum.
comFact comPower @These factors can be
<< @extracted out of the sum

DUP OBJ->
DROP2 4 ROLLD 3 DROPN
FACTORS
"Raising factors to

powers" 1 DISP 1
<< @Raise to appropriate powers

IF
NSUB 2
MOD NOT

THEN
R->I

Sequences, series and limits with the HP49G - Part 2

2-31

^
END

>> DOSUBS
"Checking if factors

independent of " var + 1 DISP 1
<< @Add to list of common factors

IF @only if independent of index
LNAME @variable
IF

DUP
TYPE 5 ≠

THEN
AXL

END var
POS NOT

THEN
comFact SWAP +
'comFact' STO

END
>> DOSUBS
"Getting index of @Get common powers of X

series" 1 DISP
seq EQ-> DROP
var &N = SUBST &N
2 ->LIST
-> rl
<< 1

<<
IF

DUP

rl ↓MATCH
THEN

'comPower' STO
ELSE

DROP
END

 >> DOSUBS
>>

"Extracting common @Extract common
power " @powers of X

comPower + " of X" + @out of series
1 DISP 1
<<

IF

{ 'X^&N' &N } ↓MATCH
THEN

comPower - EXPAND X
SWAP ^ comFact SWAP +
'comFact' STO X
comPower ^

END
>> DOSUBS
"Creating new summand

" 1 DISP
CASE @If no common powers of X

DUP { } SAME @the return a 1
THEN

1
END
DUP SIZE 1 == @If only one common power
THEN @then get that power

HEAD
END @else multiply common
ΠLIST @powers

END
"Inserting new summand

" 1 DISP
SWAP OBJ-> ROT @Insert new summands in
DROP 6 ROLL UNROT @series
SWAP 1 + ->LIST ->ALG
"Multiplying with @Multiply sums with

common factors" 1 DISP @their extracted common
comFact @factors
CASE

DUP { } SAME

Sequences, series and limits with the HP49G - Part 2

2-32

 THEN
1

END
DUP SIZE 1 ==
THEN

HEAD
END
ΠLIST

END *
>>

>> DOSUBS
"Substituting new

series
" 1 DISP

2 @Substitute old with new
 << 2 ->LIST @series

↓MATCH DROP
 >> DOLIST

"Substituting
generating function
" 1 DISP @Put GF where the sums are

{ 'Σ (&N=&L,&U,&F(&n)*X^&n)' GF }

↓MATCH DROP
"Solving for @Solve for GF

generating function
" 1 DISP

GF = GF SOLVE
>>

ELSE @We don't deal with other sequences
"Can't deal with this

kind of sequences"
DOERR

END
>>

The program will only deal with recurrences of the Fibonacci type. Of
course interested readers will add their code for other types of
recurrences.) We test the program giving it the Fibonacci sequence.

Enter P n() = P n −1() + P n − 2() P 0() = 0 P 1() = 1{ }{ } and press
GENFUNC. The HP49G needs about 30 seconds to return

GF = −
X

X2 + X −1
, the generating function of the Fibonacci sequence.

Enter now F n() =

F n −1()
8

+ F n− 2()
2

F 0() = 0 F 1() = 2{ }





 






 
 and

press GENFUNC again. In 36 seconds you see that the generating

function of this series is GF = −
16 ∗ X

8∗ X2 + X −16
.

By the way, one of the example problems in the manuals of the TI92
(oh yes, I read them - how else could I say that the HP49G is better?)
is of the type: We start with, say 100 trees. Each spring we cut 1/3 of
the available trees and we plant another 50. How much trees we have
after 10 years? The recurrence for this sequence is

T n() = T n −1() −
T n −1()

3
+ 50 T 0() = 100{ }








 which is the same

with T n() =
2∗ T n −1()

3
+ 50 T 0() = 100{ }








. Our programs don't

handle such recurrences. But perhaps the following thoughts on the
next page will wake your appetite for additional code ;-)

Sequences, series and limits with the HP49G - Part 2

2-33

GF X() = T n()∗ X n

n=0

∞

∑ = 100 + T n()∗X n

n =1

∞

∑ =

100 +
2 ∗ T n − 1()

3
+ 50



 

 ∗ Xn

n=1

∞

∑ = 100 +
2∗ T n − 1()

3
∗Xn + 50∗ Xn

n=1

∞

∑ =

100 +
2

3
∗ T n − 1() ∗Xn

n=1

∞

∑ + 50 ∗ Xn

n=1

∞

∑ =

100 +
2

3
∗X ∗ T n −1() ∗ Xn−1

n =1

∞

∑ + 50∗ X n

n =1

∞

∑ =

100 + 2

3
∗X ∗ T n()∗X n

n=0

∞

∑ + 50 ∗ Xn

n=1

∞

∑ =

100 +
2

3
∗X ∗GF(X) + 50 ∗ X n

n=0

∞

∑ − 1


 


=

50 + 2
3

∗ X∗ GF(X)+ 50 ∗ Xn

n=0

∞

∑

Now, if we only new what to fo with the sum 50 ∗ Xn

n= 0

∞

∑ which isn't

turned in some expression containing the generating function. But

clever guys as we are, we notice that Xn

n =0

∞

∑ is the series expansion of

1
1− X

 at X = 0 . Can we put that in the above equations instead of

Xn

n =0

∞

∑ ? Let's try that. If we replace Xn

n =0

∞

∑ with
1

1− X
, then we get

GF X() = 50 +
2
3

∗ X ∗ GF(X) + 50 ∗
1

1− X
. Solving for GF X() gives

us GF X() = −
150 ∗ X − 300

2 ∗X2 − 5 ∗ X + 3
. Expanding −

150∗ X − 300
2∗ X2 − 5∗ X + 3

 to a

series at X =0 returns the following series:

100 +

350
3

∗ X +
1150

9
∗ X2 +

3650
27

∗X3 +
11350

81
∗X4 + L. If

replacing Xn

n =0

∞

∑ with
1

1− X
 was OK, then the coefficients must be

members of the sequence.

We test our assumption. We enter the following small program:

<< DUP
-> n
<< 2 n * 3 / 50 + EXPAND >>

>>

and store it in TISEQ. (Or something else if you think that the HP49G
could be angry about that name and stop servicing ;-)) Now, we enter
100 (the starting number of trees). Pressing TISEQ (or whatever you
called the program) leaves 100 and 350/3 on the stack. Another press
and you have 100, 350/3 and 1150/9. It seems to be OK that we

replaced Xn

n =0

∞

∑ with its counterpart
1

1− X
. Can you add code to

GENFUNC, so that it returns the generating functions of recurrences
of the type T n() = a ∗T n−1() + b T 0() = c{ }{ } , where a , b and c
are constants (independent of the
index variable n)? And would it
be possible to let RCR->ANL
also take care of this type of
sequences?

Now that we are at last ready
with the new programs let's take
a look, how they depend on each
other. We are going to put the
programs of part 1 on this
fundament. Those programs of
part 1 haven't changed

Sequences, series and limits with the HP49G - Part 2

2-34

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

significantly. There are a
few minor changes and
corrections but the whole
remains the same. So we
don't give their listings
again here. The whole
group of programs looks
now like the picture at the
right.

Let's test them with some
sequences. We start with a
sequence that is already in
its analytic closed from:

Enter:
2

n+ 1
n 0 ∞{ }








 .

Store the sequence in some
variable because we are
going to use it more than
once.

Now, recall it back to the
stack and press SPCASES.
In about 2.5 seconds the
same sequence is returned,
wrapped in a list, because
it doesn't branch to other
sequences.

Recall the sequence again and press ISINF?. In 4.5 seconds the
HP49G returns a 1, and so it says, "Yes, the sequence is infinite".

Recall it again, press BOUNDS. In 5.5 seconds the HP49G returns
the list 0 2{ } , the bounds of the sequence, and a 1, to indicate that

bounds exist.

Recall it again. Press HASCNDSPT? It takes 7.5 seconds to see a 1
on the stack, which means that condensation points exist.

You know what I'm going to say, recall it again and press
CONDENSPT. In 20 seconds you get the list 0{ } with the only
condensation point of the sequence.

Last test with this sequence, recall it and press CONVERGES?. You
wait again 20 seconds and you get a 1 for a converging sequence.

Now we test one more complicated sequence, but still in an analytic

closed form. Enter −1()n ∗ TAN
n∗π

3




 ∗

n− 3
n2 n 0 ∞{ }








 and

test again with all programs of part 1. You find for example that the

bounds are
− 3
12

2 ∗ 3








 and that the sequence has one

condensation point 0{ } . (That means, it converges.) Note that the
programs need often about 5 minutes or more to complete, so be
patient until they finish (or crash ;-))

The real fun is when we use recurrences. Enter the recurrence
P n() = P n −1() + 2 ∗P n − 2() P 0() = 0 P 1() = 1{ }{ } , store it in

some variable and use the program RCR->ANL to turn it to the

analytic closed form
1
3

∗ 2n +
−1
3

∗ −1()n n 0 +∞{ }







, for which

is already much easier to say if it converges or if it has condensation
points with only taking a look at it. Recall the recurrence and use

GENFUNC to find that its generating function is −
X

2∗ X2 + X −1
.

Recall it again and use ISINF? to see that this is an infinite sequence.
Unfortunately BOUNDS returns ? ?{ } and ? to denote that it can't
find if the sequence is bounded. We can "see" easily that it isn't

Sequences, series and limits with the HP49G - Part 2

2-35

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

CONVERGES?

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

bounded but the program can't "see" that. This has to do with the fact

that TABVAR doesn't find that
1
3

∗ 2n +
−1
3

∗ −1()n grows to infinity

when n → +∞ . Here we have room for improvement (which will be
implemented on the next part of this marathon ;-)).

And a last example with the other recurrence type. Store

P n() = P n −1() + COS
n∗π

3




 P 0() = 0{ }








 to some variable. Then

recall it and run RCR->ANL. The result is
2 ∗COS n −1() ∗π() −1

2
n 0 +∞{ }









. BOUNDS finds the

bounds to be
−3
2

1
2









. Check what the other programs say.

Of course the programs introduced here are not jewels of the
programming art. They have their quirks, they are slow and they will
crash sometimes. But it is nowhere intended here to make a second
CAS. The marathons are only made to show how much possibilities
hide inside this small machine. Especially when the numerous built-in
commands are used in combination, one can achieve almost anything.
(We used LINSOLVE and TABVAR for completely different reasons
than those which these commands are often used for.) And another
reason for the marathons to show that a CAS should better be a system
of tools that enables us to program our tools, with which we program
other tools, and so on. It shouldn't be a fixed system, that provides a
lot of functions but makes it difficult to make new ones according to
our needs.

It is late at night and my eyes approach their condensation point.
(Sleep.) So let's end this part with the description of what comes in the
next part. We are going to give the answer to the question of the
example sequence in the manuals of the TI, we are going to examine
the monotony behaviour of sequences and also take a closer look to
some sequences that appear quite often. We are also going to take a

closer look to some particularly nice sequences and check what the
HP49G provides to help us work with them. Then we are going to
examine some of the important rules about sequences, like for example
limits of sums, differences, products and quotients of sequences and
the like.

Converging to sleeping state I send you the nth member of the
greetings-sequence, which I expect you to convert to its analytic closed
form ;-)

Nick.

Sequences, series and limits with the HP49G - Part 2

2-36

Good morning everybody!

After a looong sleep of about one and a half weeks faaar faar away
from home, I return to Mathlands fully recovered and with a fat cold
that I caught who knows where. I tell you, my nose was one of those
super strange manifolds that don't fit in any other space except their
own! It is a very big advantage of Mathlands that you never catch a
cold no matter how long you walk on the paths of the marathon
adventures. (Eventually occurring psychic diseases are completely
different problems ;-))

We had a special appearance of the TI in the last episode of this
marathon, where we looked closer at the sequence

T n() = T n −1() −
T n −1()

3
+ 50 T 0() = 100{ }








 which the TI can

plot out of the box, while the HP49G can't do much with it, even
equipped with our programs. Of course this is unacceptable and so we
are going to teach the HP49G to wipe this hubris out of the world. ;-)
If we could expand RCR->ANL so that it returns an analytic closed
form of the above sequence, then we would have done a first step in
the right direction. So let's look at this sequence a bit closer again. We

can rewrite it as T n() =
2
3

∗ T n −1() + 50 T 0() = 100{ }







. Now we

see that it can be expressed more generally as
T n() = b∗ T n −1() + c T 0() = a{ }{ } , a , b and c being arbitrary

constants. We try to get the generating function of the beast:

GF X() = T n()∗ Xn

n=0

∞

∑ = a + T n()∗ Xn

n= 1

∞

∑ =

a + b∗ T n −1() + c()∗ Xn

n =1

∞

∑ = a + b ∗ T n −1() ∗ Xn + c ∗Xn

n=1

∞

∑ =

a + b ∗ T n −1() ∗Xn

n =1

∞

∑ + c ∗ Xn

n=1

∞

∑ =

a + b ∗X ∗ T n −1()∗ Xn−1

n= 1

∞

∑ + c ∗ Xn

n=1

∞

∑ =

a + b ∗X ∗ T n()∗ Xn

n =0

∞

∑ + c ∗ Xn

n =1

∞

∑ =

a + b ∗X ∗GF(X) + c ∗ Xn

n =0

∞

∑ −1


 


=

a + b ∗X ∗GF(X) + c ∗ Xn

n= 0

∞

∑ − c =

a − c + b∗ X ∗ GF(X)+ c ∗ 1
1− X

Which means that GF(X) = a − c +b ∗ X ∗GF(X) + c ∗
1

1− X
.

SOLVEing this equation for GF(X) on the HP49G we obtain:

GF X() = −
a − c() ∗ X −a

b ∗X2 − b +1() ∗ X +1

Now, let's expand the right hand side to a series about X = 0 and try
to "guess" the general dependence of the coefficients on a , b and c .

Press EQ-> and NIP so that the expression −
a − c() ∗ X − a

b∗ X2 − b +1()∗ X +1

remains on stack level 1. Enter X =0 and 5 and then press SERIES.
After a few seconds the HP49G returns a list on stack level 2 and
h = X on stack level 1. Press SUBST and then 3 GET to extract the
series expansion from the list. Press DTAG to remove the label
"Expans" from the series. Now you have on stack level 1:

b5 ∗a + c ∗b4 + c ∗b3 + c ∗b2 + c ∗b + c()∗ X +K

+ b ∗a + c()∗ X + a

Sequences, series and limits with the HP49G - Part 3

3-1

Now comes the difficult part of "guessing" how the coefficients of the
powers Xn depend on a , b and c . We observe that all coefficients
are the sum of two expressions. The first is bn ∗ a . The second is

c ∗ b j

j= 0

n−1

∑ . So each summand of the the series expansion can be written

as: bn ∗ a + c ∗ b j

j= 0

n−1

∑



 


 ∗Xn . Fortunately the HP49G can calculate the

symbolic sum bj

j=0

n−1

∑ . If you enter bj

j=0

n−1

∑ and press EXPAND, the

HP49G answers:
b

n −1
b −1

. Now we now that the coefficients of the

powers Xn are bn ∗ a + c ∗
b

n −1
b −1

. And since these coefficients are

themselves the members of the sequence, we have the analytic closed

form T n()=bn ∗ a + c ∗
b

n −1
b −1

. So RCR->ANL can be extended to

also handle with recurrences of the type
T n() = b∗ T n −1() + c T 0() = a{ }{ } . I leave this as an exercise for

the interested reader, saying only that the SEQTYPE has to recognise
this type of the sequence and RCR->ANL has to convert it to its
analytic closed form.

We move on now to another property of sequences, the monotony. A
sequence is monotonically increasing iff any of its members is greater
than its predecessor, which means that an f an −1. It is monotonic non
decreasing if an ≥ an−1. A sequence is monotonic decreasing iff any of
its members is less than its predecessor, which means that an p an −1.
It is only monotonic non increasing if an ≤ an−1.

How could we make a program which tests the monotony of a given
sequence? Well, generally speaking, it looks like such a program

should have to do with EXPANDing the inequalities like the above
an ≥ an−1, an ≤ an−1 and so on. If the result is 1, then the inequality is
true. If it is 0 then it is false. But we must do a bit of additional work.

First of all we must do the above for each special case that SPCASES

returns. If we deal for example with the sequence
1
n

n 1 ∞{ }







,

then SPCASES returns
1
n

n 1 ∞{ }















, which contains only one

case, so the method of the above paragraph can be applied directly. But

if we have to do with −1()n ∗
n + 3
2∗n

n 1 ∞{ }







, then SPCASES

will return −1∗
n+ 3
2∗ n

n 1 ∞{ }







1∗
n + 3
2 ∗n

n 2 ∞{ }















,

that is two cases of which one rises and the other falls. We could be
inclined to do the following: Apply the method of the previous
paragraph to each case and then we follow the schema:

Method that doesn't always work

If for each special case: Then the sequence
 an f an −1 Monotonic increasing
an ≥ an−1 Monotonic non decreasing
an ≤ an−1 Monotonic non increasing

 an p an −1 Monotonic decreasing

But this will not always work. We can understand this better if we
follow a simple hypothetical example. Let's suppose that we have a

sequence that has the following recipe: an =
1
n

 if n is odd, and

an =
1

2 ∗n
 if n is even, and with n = 1,2,3,L The fact that we can't

easily find an analytic closed form for this sequence is not important

Sequences, series and limits with the HP49G - Part 3

3-2

here, as we only need the reason why the above algorithm wouldn't

always work. Each special case, an =
1
n

 for odd n , and an =
1

2 ∗n

for even n , is monotonic decreasing if taken alone for itself. But both
special cases taken together form a new sequence which neither
increases nor decreases. So we must think of a different method.

Notice how the differences of the special case behave and you're on
the right way. We have a2 − a1 p 0 , a3 − a2 f 0 , a4 − a3 p 0 , and
so on. That means, instead of checking each special case for itself, we
must check the difference of each pair of "adjacent" special cases.
These differences are the quantities which must be all positive, if the
sequence is non decreasing or negative if the sequence is non
increasing.

Last but not least, we must make the appropriate assumptions because
many (most?) of the inequalities that appear, can only be solved if the
HP49G knows some assumption about the index variable. Consider

for example the simple sequence
1
n

n 1 ∞{ }







. To let a program

decide if it increases or decreases, we must first check if

1
n

f
1

n +1
holds. Let's try that. Enter 'n' and use UNASSUME to remove any

assumptions about n . In the equation writer type

1
n

−
1

n +1
f 0 and

press ENTER. Press now EXPAND. The result is the inequality
itself, as the HP49G can't decide if it holds or not. And it does the
right thing, because the inequality holds only for n < −1 or n > 0 .
We didn't specify what n is, so the HP49G tells us that under such
conditions no answer can be given. But now let's tell the confused
machine that n starts at 1 and goes to infinity. Enter n ≥ 1 and press
ASSUME. DROP and EXPAND. Oops, nothing happens! The
HP49G can still not answer. The HP49G seems to be only able to
solve inequalities containing ≤ or ≥ , but not p or f . (And that
means even more additional work, grrrrrr!!) But now, enter
1
n

−
1

n +1
≥ 0 and press EXPAND. Aha! The HP49G says 1, which

means that the inequality holds. If you now enter 'n', press

UNASSUME, DROP, then re-enter
1
n

−
1

n +1
≥ 0 and then

EXPAND, then you get again the inequality as result. That means: It
seems to be better to use the range of the index variable to make the
appropriate assumptions, and then expand the inequalities
an+1 − an ≥ 0 and/or an+1 − an ≤ 0 , but not an+1 − an f 0 or

 an+1 − an p 0 . But then we can only find if the sequence non
increasing or non decreasing. How could we find if it increases or
decreases monotonically? Well, one way to do that is to just solve
an+1 − an = 0 for n . For example we have already seen that for the

sequence
1
n

n 1 ∞{ }







 the inequality holds:
1
n

−
1

n +1
≥ 0 . If we

try to solve
1
n

−
1

n +1
= 0 for n , then the HP49G returns an empty

Sequences, series and limits with the HP49G - Part 3

3-3

1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0
201612840

list, as it wants to tell us that there is no solution. That means that the

"equals" in
1
n

−
1

n +1
≥ 0 is never true, and so we know that

1
n

−
1

n +1
f 0 holds, which means that the sequence not only falls, but

it also falls monotonically.

The following program implements these ideas. It takes a sequence as
input and returns its monotony behaviour, coded as in the following
table.

Sequence Result

Monotonic increasing 2

Non decreasing for sure and perhaps :?:1
monotonic increasing

Non decreasing 1

Constant 0

Non increasing −1

Non increasing for sure and perhaps :?:−1
monotonic decreasing

Monotonic decreasing −2

Nothing of the above 3

Can't determine monotony behaviour ?

Note that the two last rows in the above table are different results. The
last row tells us when the HP49G can't find what happens, for
example because it can't solve some inequality. The row before the last
tells us that the sequence is not ascending and not descending but

shows some other behaviour.
<<
PUSH SPCASES @Find special cases
"Determine differences @Add difference of last

of special cases" 1 DISP @special case minus first
DUP HEAD OBJ-> DROP OBJ-> @special case with the
DROP UNROT 5 PICK SIZE R->I @appropriate indices.
+ ROT 3 ->LIST 2 ->LIST 1 @(Why do we have to do
->LIST + @ that?)
1 @Do to each special case
<< OBJ-> DROP SWAP OVER @Substitute n=n in first
HEAD DUP NSUB 1 - R->I + @special case, n=n+1 in
= SUBST SWAP 2 ->LIST >> @second, and so on
DOSUBS
DUP HEAD 2 GET -> @Get index range of first
initcond @special case, store local

 << 1
 << HEAD >> @Get each special case

DOSUBS ∆LIST @Difference of spc. cases
EXPAND
1 @Do to each difference

 << initcond 2 ->LIST @Convert it to spc. case
 >> @with initial condition

DOSUBS @of the first spc. case
 >>
1 @Do to each spc. case

 << OBJ-> DROP OBJ-> DROP
-> seq var lo hi
<< var UNASSUME lo ≥ @Make assumption
ASSUME DROP -103 CF
"Checking An>=An+1 @Expand inequalities

" 1 DISP seq 0 ≤ EXPAND
"Checking An<=An+1

" 1 DISP seq 0 ≥ EXPAND
"Checking An=An+1

" 1 DISP seq 0 = var
IFERR @Try to solve An=An+1

ZEROS

Sequences, series and limits with the HP49G - Part 3

3-4

THEN
DROP2 { NOVAL }

ELSE
{ } + @Make sure we have a list

END @of solutions
CASE

"Checking unevaluated
inequalities" 1 DISP PICK3 @In case the HP49G didn't

TYPE 9. == PICK3 @expand the inequalities
TYPE 9. == AND

THEN
3 DROPN 0 0 / @Return ?

END
"Checking constant

" 1 DISP PICK3 PICK3 AND OVER @In case the solution
0 0 / POS OR @of An=An+1 returned ?

THEN
3 DROPN 0 @We have a "constant" seq.

END
"Checking monotony

" 1 DISP DUP { } SAME @In case no solution of An=An+1
THEN

IF @If An>An+1
PICK3

THEN
3 DROPN -2 @Then it decreases

monotonically
ELSE

3 DROPN 2 @else it increases
monotonically

END
END

DUP NOVAL POS @In case the HP49G couldn't
THEN @find if An=An+1 has solutions

IF @If An>An+1 return 3
PICK3

THEN
3 DROPN -3

ELSE
3 DROPN 3 @else return -3

END
END

DUP NOVAL POS NOT @Case the HP49G found
THEN @solutions of An=An+1

IF @If An>An+1
PICK3

THEN
3 DROPN -1 @Then non increasing

ELSE
3 DROPN 1 @Else non decreasing

END
END

END
var UNASSUME DROP @Remove assumptions
>>

 >>
DOSUBS -> mlst @Store results locally

 <<
 CASE

"Checking unsolved
inequalities" 1 DISP mlst @Any ? appeared?

0 0 / POS
THEN

0 0 / @Return ?
END

"Checking monotonic
increasing" 1 DISP mlst 1 @All 2?
 << 2 == >> DOSUBS 1 +
 << AND >> STREAM @Increasing monotonically
 THEN

2
 END

"Checking eventually @All 3?
monotonic increasing"

1 DISP mlst 1
 << 3 == >> DOSUBS 1 +

Sequences, series and limits with the HP49G - Part 3

3-5

 << AND >> STREAM
 THEN @Incr. eventually monot.

:?: 1
 END

"Checking non
decreasing " 1 DISP mlst 1 @All 1?

<< 1 == >> DOSUBS 1 +
 << AND >> STREAM
 THEN

1 @Non decreasing
 END

"Checking constant
" 1 DISP mlst 1

<< 0 == >> DOSUBS 1 + @All 0?
<< AND >> STREAM

THEN
0 @Then "constant"

END
"Checking non

increasing " 1 DISP mlst 1
<< -1 == >> DOSUBS 1 + @All -1?
<< AND >> STREAM

THEN
-1 Then non increasing

END
"Checking eventually

monotonic decreasing" 1 DISP mlst 1
<< -3 == >> DOSUBS 1 + @All -3?
<< AND >> STREAM

 THEN
:?: -1 @Decreasing eventually monot.

 END
"Checking monotonic

decreasing" 1 DISP mlst 1
<< -2 == >> DOSUBS 1 + @All -2?
<< AND >> STREAM

 THEN
-2 @Then monot. decreasing

 END 3
END

>>
POP

>>

Store this in
SEQMONTY
(or use the
program that
comes along
with this
document). I
think that there
is not much to
explain here,
except that we
use the fact that
the HP49G will
return a ? for
an equations or
inequality that
has an infinite
number of
solutions, like
for example
n = n .

Before we test
the program,
let's update the
building of programs for sequences. It starts looking like modern art,
doesn't it? ;-)

Now let's test it. We start with something easy. Enter the sequence
1
n

n 1 ∞{ }







 and press SEQMONTY. In about 17 seconds you

Sequences, series and limits with the HP49G - Part 3

3-6

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

CONVERGES?

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

SEQMONTY

get a −2 for a monotonic decreasing sequence.

Enter the sequence
−1()n
n

n 1 ∞{ }








 and press SEQMONTY. The

HP49G needs 61.5 seconds to return a 3 , which means that this
sequence is neither monotonic increasing or decreasing nor non
increasing or non decreasing.

Enter
3∗n +1
2 ∗n + 2

n 0 ∞{ }







 and press SEQMONTY again. In

about 20 seconds the program returns a 2 for a monotonic increasing
sequence.

We move on to Fibonacci. Enter the recurrence sequence
F n() = F n −1() + F n− 2() F 0() = 0 F 1() = 2{ }{ } and press

SEQMONTY. The HP49G goes all the way from the 5th floor of the
building down to earth and up again while it flashes its messages to
you in about 3 minutes (!) and it returns ?:1 to show you that this
sequence is for sure non decreasing and perhaps also monotonic
increasing. In fact it is only non decreasing, but the HP49G converted
the recurrence to its analytic closed form:

F n() =
− 5

5
∗ −

−1+ 5
2



 




n

+
5

5
∗

1+ 5
2



 




n

Then it tried to solve:

− 5
5

∗ −
−1+ 5

2



 




n

+
5

5
∗

1+ 5
2



 




n

=

− 5
5

∗ −
−1+ 5

2



 




n+1

+
5
5

∗
1+ 5

2



 




n+1

It couldn't find some solution of the above equation for n and so it
said: Master, I can't solve that but perhaps some solution exists, so I
tell you that if such a solution exists, the sequence is non decreasing.
But if none exists, then it is monotonic increasing. Hence the question
mark in front of the returned 1.

Try other examples and don't forget to blame it on me when the
program crashes ;-)

One of the sequences that occur quite often is the arithmetic sequence.
Its analytic closed form is (in our notation): a0 +n ∗d n 0 ∞{ }{ }

and its recurrence a n() = a n −1() + d a 0() = a0{ }{ } . It's interesting
to see if RCR->ANL can handle this. Enter the recurrence and press
RCR->ANL to see that it does and it returns the sequence
a0 +n ∗d n 0 ∞{ }{ } . The constant d is the difference between

each pair of adjacent members. This sequence is called arithmetic
sequence, because any member of the sequence is the arithmetic mean

of its previous and its next member: an =
an−1 + an+1

2
. This also

defines a recurrence. Solving for an+1 we get an+1 = 2∗ an − an−1. Can
we feed RCR->ANL with this recurrence? Let's try. We must change
index because RCR->ANL expects the member with the single index
n without anything else on the left hand side of the recurrence equation
and all members with smaller indices on the right hand side. So we
enter a n() = 2∗ a n−1() − a n− 2() a 0() = a0 a 1() = a0 + d{ }{ } .

Pressing RCR->ANL returns −C2 ∗ 0n + C2 ∗0n n 0 +∞{ }{ }
which is... wrong! Panic spreads and Nick runs to save his life. But
while running he is still thinking about the problem, such an
psychomath he is ;-). Suddenly he changes direction and runs back
shouting "I know why it failed!". And he proceeds with his
explanations, which nonetheless can't excuse him.

The recurrence a n() = 2∗ a n−1() − a n− 2() is first transformed by the

program to the characteristic polynomial X2 − 2 ∗X +1 which has the

Sequences, series and limits with the HP49G - Part 3

3-7

solutions X = 1, X = 1. Then the general linear combination
C1∗1n + C2 ∗1n is formed and the program tries to solve the linear
system:

C1∗10 + C2 ∗10 = a0
C1∗11 + C2 ∗11 = a0 + d

for C1 and C2 , which of course fails! LINSOLVE returns in this case
C1= −C2 1= 0[] . The "solution" 1= 0 shows that we run into

troubles, which are caused by the two roots X = 1, X = 1 of the
polynomial.

The method of the characteristic polynomial doesn't work in this case.
And since it is always better to return no results instead of the wrong
results, we can just use the "impossible solution" 1= 0 to detect that
something went wrong. In general we have to just check if all
solutions contained in the returned vector are "possible" or not. But
before we do that we must examine what "equals" means for the
HP49G.

First of all the HP49G has three "equals". The first is the normal =
which we use in equations, and plays a different role according to how
we manipulate the equation. If we solve some equation for a variable,
then the sign = plays the role of a proposition. The commands of the
HP49G that solve equations consider the sign = as a proposition. That
means, they search to find for what values of the variable to solve for
the equation holds. The opposite happens for equations used for
SUBSTitutions. SUBST consider the equation on stack level 1 to be
an identity. That means, an equation which holds always.

Then we have the command == . This is an "equals" that resembles a
boolean operation. It simply tries to evaluate left and right hand sides
and check if both sides are equals. This command can return a 1 for
"yes", a 0 for "no", or the symbolic expression
leftHandSide== rightHandSide if no complete evaluation is
possible. The command == can also return 1 if no evaluation is

necessary. For example using == with the two arguments X + Y and
Y + X , will return equals even if no values are stored in variables X
and Y .

The third "equals" is the command SAME. This is a "stronger equals"
than ==, because it checks if two given objects are completely
identical, not in their mathematic sense, but in their "computeral"
sense. For example using SAME for X + Y and Y + X will return 0 ,
because the two expressions are not identical for the HP49G. (The
HP49G represents them using different bit patterns.)

The program RCR->ANL can be corrected now, to return
? n 0 +∞{ }{ } instead of wrong results, when the vector returned

by LINSOLVE contains "impossible" things. We simply replace each
= in the vector of solutions to ==, we expand, and if the result is 0 ,
then we use it further. We replace it with a 1, if it is 1 or if it is of type
9 (symbolic expression), because then there will be (hopefully) some
value for C1, C2 etc. that satisfies the equation. The corrected code is:

.................
uc AXL LINSOLVE
"Checking solutions"
1 DISP DUP AXL 1

<< { '&A=&B' '&A==&B' } ↓MATCH
DROP EXPAND
IF

DUP TYPE 9 ==
 OVER 1 == OR
THEN DROP 1
END

>>
DOSUBS
1 +
<< AND >> STREAM
IF
THEN
"Substituting solutions"

Sequences, series and limits with the HP49G - Part 3

3-8

1 DISP UNROT DROP2
AXL 1
<< SUBST >> DOSUBS

ELSE
4 DROPN 0 0 /

END
....................

The program that comes along with this document contains the
corrected code, so you don't need to type anything. Perhaps you
didn't even notice this problem, if you already have installed the
programs at the start of this part.

Enter a n() = 2∗ a n−1() − a n− 2() a 0() = a0 a 1() = a0 + d{ }{ }

and press RCR->ANL again. The result is ? n 0 +∞{ }{ } , which
the HP49G uses to tell you that it can't solve this problem. If you enter
F n() = F n −1() + F n− 2() F 0() = 0 F 1() = 2{ }{ } and use the

corrected RCR->ANL again, then you get the result:

− 5
5

∗ −
−1+ 5

2



 




n

+
5

5
∗

1+ 5
2



 




n

n 0 +∞{ }








which shows that the program still remembers what to do when the
method of the characteristic polynomial works :-)

Well, if RCR->ANL can't help then perhaps the program GENFUNC
can help us. We could find the generating function of the arithmetic
sequence a n() = 2∗ a n− 1() − a n − 2() a 0() = a0 a 1() = a0 + d{ }{ } ,
then expand it to a series around X = 0 and then try to "guess" the
analytic closed form of the coefficients. We enter the sequence
a n() = 2∗ a n−1() − a n− 2() a 0() = a0 a 1() = a0 + d{ }{ } and

press GENFUNC to get the result GF =
X +1()∗ a0 + d∗ X

X2 − 2∗ X +1
. If you

expand the right hand side
X +1()∗ a0 + d∗ X

X2 − 2∗ X +1
 to a series around

X = 0 you get:

 a0 + 3∗ a0 + d() ∗ X + 5 ∗a0 + 2∗ d()∗ X2 + 7∗ a0 + 3∗ d()∗ X3 +L

which is... again wrong!!! Instead of this it should be

 a0 + a0 + d() ∗ X + a0 + 2∗ d()∗ X2 + a0 + 3∗ d() ∗ X3 +L . Again,
Nick must run for his life ;-)

Let's follow what the program GENFUNC did but this time the
mathematic way.

First it constructs the sum a n()
n =0

∞

∑ ∗ Xn . Since we know that the initial

conditions are a 0() = a0 and a 1() = a0 + d , we can extract these

summands from the sum and get a0 + a0 + d() ∗ X + a n()
n =2

∞

∑ ∗ Xn .

This is also carried out correctly by the program. Then the program
plugs the recurrence definition a n() = 2∗ a n−1() − a n− 2() in the sum

and yields a0 + a0 + d() ∗ X + 2∗ a n −1() − a n− 2()()
n =2

∞

∑ ∗ Xn . OK.

Then the program uses FDISTRΣ to convert the sum and to yield

a0 + a0 + d() ∗ X + 2∗ a n −1()
n =2

∞

∑ ∗ Xn − a n − 2()
n =2

∞

∑ ∗ Xn which is

also carried out correctly. After this the program gets all sub
expressions that are summations and returns the list

2∗ a n −1()
n =2

∞

∑ ∗Xn a n− 2()
n= 2

∞

∑ ∗ Xn







 which it will use for

extracting common factors and powers of X . By doing this the list is

Sequences, series and limits with the HP49G - Part 3

3-9

converted to 2 ∗X ∗ a n −1()
n =2

∞

∑ ∗ Xn−1 X2 ∗ a n − 2()
n =2

∞

∑ ∗ Xn −2







which is also OK. Then the new summations are substituted in the
original expression giving us the result:

a0 + a0 + d() ∗X + 2 ∗X ∗ 2∗ a n −1()
n =2

∞

∑ ∗X n−1 − X2 ∗ a n − 2()
n= 2

∞

∑ ∗Xn−2

which is also correct. But then the program is too naive. It simply and
erroneously MATCHed any sum with the generating function GF,
giving the result a0 + a0 + d() ∗ X + 2 ∗ X ∗GF − X2 ∗GF . From this

time on everything went wrong. The sum 2∗ a n −1()
n =2

∞

∑ ∗ Xn−1 can't

be just replaced by GF because:

2 ∗a n −1()
n =2

∞

∑ ∗X n−1 = 2 ∗a n()
n=1

∞

∑ ∗ Xn = 2∗ a n()
n= 0

∞

∑ ∗ Xn −a0 = GF − a0

which means that it has to be replaced by GF − a0 . And that means
that Nick has to type again. Grrrrrr!!

The corrected program first determines how the sum, like for example

2∗ a n −1()
n =2

∞

∑ ∗ Xn−1 can be converted to a sum in which the

coefficient and the power of X are only n and not n− 1 or any other
expression. It just "re-numbers" the coefficients and powers by putting
a different starting value for the index n in the sum. So it constructs

2∗ a n()
n=1

∞

∑ ∗ Xn . Then it checks to see what initial members must be

subtracted from the sum if the sum has to be written as

2∗ a n()
n =0

∞

∑ ∗ Xn and it finds that

2∗ a n()
n=1

∞

∑ ∗ Xn = 2 ∗a n()
n= 0

∞

∑ ∗ Xn − a0 . This sum is put back to the

original expression and then the replacement by GF can be carried out
because now we have the right sum. The second sum is treated the
same way.

The old code was:

"Substituting new
series
" 1 DISP

2 @Substitute old with new
 << 2 ->LIST @series

↓MATCH DROP
 >> DOLIST

"Substituting
generating function
" 1 DISP @Put GF where the sums are

{ 'Σ (&N=&L,&U,&F(&n)*X^&n)' GF }

↓MATCH DROP
"Solving for @Solve for GF

generating function
" 1 DISP

GF = GF SOLVE

This code is replaced by:

DUP 4 ROLLD 2 @Make a copy of new sums

 << 2 ->LIST ↓MATCH DROP >>
DOLIST SWAP
"Series index change,

init. cond. insertion

" 1 DISP
1
<<

{ 'Σ(&N=&L,&U,&S)*&F' @Get sum without factors

Sequences, series and limits with the HP49G - Part 3

3-10

 'Σ(&N=&L,&U,&S)' }
↓MATCH DROP
DUPDUP
{ 'Σ(&N=&L,&U,&F*&X^&O)' &O }
↓MATCH DROP SWAP OBJ->
DROP2
-> pow ind lol upl sum @Store power of X, index

 << ind 0 upl @ upper, lower sum.
sum pow ind 2 @sum indices and summand
->LIST

↑MATCH DROP
{ Σ } + + + + \->ALG @Make sum with low=0
bcond 1

 << EQ-> SWAP
OBJ-> DROP2

 IF @If init. cond. has index
pow @lower than start of sum
ind lol =
SUBST
EXPAND <

 THEN - @then subtract
 ELSE @else drop

DROP
 END

>>
DOSUBS @DO to each init cond
2 ->LIST

>>
 >> DOSUBS @Do to each sum

"Substituting new
series
" 1 DISP 1

<< ↓MATCH DROP >> DOSUBS
"Substituting

generating function
" 1 DISP { 'Σ(&N=0,&U, &F(&n)*X^&n)' GF }

↓MATCH DROP

"Solving for
generating function
" 1 DISP GF = GF SOLVE

Again the program that comes with this document is already corrected,
so you might not see the above erroneous result.

We test the program again. Enter the arithmetic sequence
a n() = 2∗ a n−1() − a n− 2() a 0() = a0 a 1() = a0 + d{ }{ } and

press GENFUNC to get GF = −
X −1()∗ a0 − d∗ X

X2 − 2∗ X +1
, which expanded

to a series around X = 0 returns a0 + a0+ d() ∗ X + a0 + 2∗ d() ∗ X2 +L .
The program still works with the recurrences it already handled
correctly. For example you still get the generating function

GF = −
X

X2 + X −1
 for the Fibonacci recurrence.

So the simple arithmetic sequence with its two recurrence forms helped
us find errors in the programs (and put Nick's life in danger ;-)). But
with the help of the HP49G Nick survived and can continue the
Marathon. I tell you, mathematics can be really dangerous ;-)

Now that the dangers seem to be far away, let's continue on the
arithmetic sequence. If for a given arithmetic sequence we have three
of the four variables of its analytic closed form an = a0 +n∗ d , then
we can solve for the remaining variable. for example, if we know that
an = 10 , a0 = 0 and d = 2 , then we can solve for n and find

n =
an −a 0

d
=

10 − 0
2

= 5 . Similarly if we know that an = 13 , a0 = 1

and n = 2 then we can solve for d and find d = an − a0

n
= 13− 1

2
= 6 .

We can make a program that takes an , a0 , n , and d from the stack
and solves for the first unknown parameter:

Sequences, series and limits with the HP49G - Part 3

3-11

<<
-> an a0 n d @Store in local variable
'an=a0+n*d' @Defining procedure

 DUP LNAME @Return vector of names
IF

DUP TYPE 5 == @If no names present
THEN

DROP2 COLLECT @Check if sequence is possible
NOT EVAL

ELSE @Else solve for first variable
1 GET SOLVE @in names vector
2 ->LIST

END
>>

Store this in SOLARSEQ (or just get the program that comes with this
document). The program works the following way:

First, all arguments are stored in local variables. The defining
procedure of these local variables is the part 'an=a0+n*d'. These
variables exist only within this algebraic object but not afterwards.
You remember of course that one type of a local variables procedure
definition is:

<<
-> arg1 arg2 ... @Store in local variable
'algebraicObject' @Defining procedure

>>

where the 'algebraicObject' contains arg1 and/or arg2 etc. This
object is evaluated using the input values of the local variables. Now,
there can be additional commands/functions after the algebraic object,
but these can't use the input values of the local variables anymore, as
the defining procedure has already been finished. We use this kind of
local variables structure only to automatically evaluate the equation
'an=a0+n*d' and work with the evaluated equation afterwards.

After this the program checks to see if there are names in the evaluated

equation. For example the user many have entered 10 , 0 , n and 2 . In
this case the program solves the equation '10=0+n*2' for the variable
n and returns the list 10 = n∗2 n = 5{ } which contains the
evaluated equation and its solution for n . If the program finds no
names, then it uses the evaluated equation to check if the equation
holds or not. For example. if the user enters 10 , 0 , 3 , 2 then the
program will return 0 because there the equation 'an=a0+n*d'
doesn't hold for the given values. But if the user enters 10 , 0 , 2 , 5
then the program returns 1, because these values satisfy the equation
'an=a0+n*d'. This is one way to solve equations with many variables
automatically for that variable for which no numeric value has been
provided, without using the built-in numeric solver.

We continue with the arithmetic sequence. One recurrence definition of
this sequence was a n() = a n −1() + d a 0() = a0{ }{ } . This already
shows that the difference between adjacent points is constant and equal
to d . We can also demonstrate this on the HP49G. We enter the
analytic closed form a0 +n ∗d , and then enter n , 0 , 9 , 1. Then we
use the command SEQ to create the sequence

 a0 a0 + d a0 + 2∗ d L a0 + 9 ∗ d{ }. Now we can use the
command ∆LIST to find a list containing the differences a1 − a0 ,
a2 − a1 , L , a9 − a8 , that is the first differences of the elements in the
list. If we EXPAND then we get d d d L d{ } , which
demonstrates (but doesn't prove at all) that all differences are the same.

We can generalise and also consider the differences of the differences,
then the differences of the differences of the differences, and so on.
We name such differences, first differences, second differences and so
on. If we encounter some sequence whose nth differences are all equal
to each other, then we say that the sequence if an nth order arithmetic
sequence. Consider for example the sequence n3 n 0 ∞{ }{ } . Its

first few members and differences ∆1, ∆2 and ∆3 are summarised in
the table on the next page.

Sequences, series and limits with the HP49G - Part 3

3-12

We can see that the third differences are all the same, so the sequence
n3 n 0 ∞{ }{ } is a third order arithmetic sequence.

You can find the 3rd differences on the HP49G. Enter n3 , n , 0 , 10 ,
1. Then press SEQ. Now, if you press three times ∆LIST, then you
get a list containing only sixes, which demonstrates that
n3 n 0 ∞{ }{ } is an arithmetic sequence of third order.

At this point we make a small excursion to the future calculus
marathon and we notice the resemblance of the behaviour of the
differences and differences of differences etc. of n3 with the
derivatives of n3 with respect to n . The third derivative of n3 is also a

constant:
∂3 n3()

∂n3 = 3
∂2 n2()

∂n2 = 3 ∗2 ∗
∂ n()
∂n

= 6 . The differences are

the discrete analoga of the derivatives. End of excursion, back to the
main path.

As you might have guessed, the next thing that we do is a program that
finds the nth differences of a given sequence at a certain point. For
example we consider again the sequence n3 n 0 ∞{ }{ } . Let's say

that we want the 2nd difference. This is not enough information
because as we can see on the following table, the second difference
depends on the members that are subtracted from each other, or in
other words the index n . We see that it is not so easy to say which
difference belongs to a specific point. For example, which is the
second difference of the point n+ 1()3

? To avoid confusion we can
make the convention shown with arrows on the table, according to

which the point n+ 1()3
 corresponds to the 2nd difference 6∗ n+ 12.

Now we can also specify the point of which we want to have the 2nd
or any other difference.

The program in its first implementation will only try to find differences
if the sequence is in its analytic closed form, or if it can be converted to
such a form. If such a conversion is not possible, it will simply return
?:? to denote that the differences can't be found because no analytic
closed form can be found. The program also will check if the
difference that we want to have doesn't depend on the index n , or in
other words, if it remains the same no matter which point we specified.
If this is the case, then it will return the result as =:∆ , where ∆ is the
found difference. The result will then be tagged with = to denote that
the difference is the same everywhere. If the difference does depend on
n , then the result will be returned as n:∆ , where n is the specified
point. And if Nick's is too stupid to explain what he means by all this,
then don't worry, you'll understand as soon as the first examples will
be calculated. ;-)

How are we going to prove, if some difference doesn't depend on the
specified point n? Good question as we can't sit and calculate if the
difference remains the same for all possible values of n . But, there is
something in mathematics that carries the name perfect induction. And
this is what we will use here. It sounds like: Prove that something is
valid for some n . If you then can prove that it also holds for n+ 1 then
you win because then it holds for any n . The question of course is
then, how can we now for what n this "something" (namely, if the
wanted difference doesn't depend on n) holds? We need that n , or
else we can't find n+ 1. The answer to the question is, do we really
need a special value for n? Perhaps it is better to give an example here.

Sequences, series and limits with the HP49G - Part 3

3-13

n 0 1 2 3 4 5 6

n3
0 1 8 27 64 125 216

∆1
 1 7 19 37 61 91

∆2
6 12 18 24 30

∆3
 6 6 6 6

n n n+1 n+2 n+3

n3
 n3

 n+1()3
 n+2()3

 n+3()3

∆1
 3∗ n2 +3∗n +1 3∗ n2 +9∗n +7 3∗n2 +15∗n +19

∆2
 6∗ n+6 6∗ n+12

We have already seen per demonstration that the third differences of
n3 n 0 ∞{ }{ } are all 6. (It was no proof, but now we will prove it

with the HP49G.) If we want to prove that with perfect induction, then
we must prove first that for some arbitrary n the statement is true. We
need at least four points because we want the 3rd differences. If we
start at some arbitrary n , then the next 3 indices are n+ 1, n+ 2 and
n+ 3 . The corresponding members of n3 n 0 ∞{ }{ } are then n3 ,

n+ 1()3
, n+ 2()3

 and n+ 3()3
. Lets make a list with these points.

Enter n+ m()3
, m , 0 , 3 and 1. Now press SEQ to get the list of

points:

Press ∆LIST and then EXPAND to get the list of the first differences
3∗ n2 + 3∗n +1 3 ∗n2 + 9∗ n+ 7 3∗ n2 +15 ∗n +19{ } . Again

∆LIST and EXPAND to get the list of the second differences
6∗ n+ 6 6∗ n+ 12{ } . Finally another ∆LIST and EXPAND will

give you a 6 , which as you can see doesn't depend on n . Now we
want to to do the same for n+ 1. Following the same procedure we
enter n+ 1+m()3

, m , 0 , 3 , 1 and press SEQ. Then doing ∆LIST
and EXPAND three times, we also get another 6 , which shows that
the result is the same for n+1. That means, the third difference of
n3 n 0 ∞{ }{ } is constant for any other n and so the sequence is a

third order arithmetic sequence.

Now, let's look at the listing of the program N∆SEQ which takes a
sequence, the order of the difference and an index and does all the
above.

<<
PUSH 1 CF ROT DUP
IFERR @If RCR->ANL errors out

RCR->ANL

 THEN
DROP 1 SF @drop sequence, set flag 1

ELSE @else
IF @if it returns a list with ?
DUP ? POS

THEN
DROP 1 SF @drop result, set flag 1

ELSE
NIP @else drop sequence

END
END
-> ord pt seq @Store in locals
<<

IF @If flag 1 is clear
1 FC?

THEN @then we determine the nth
"Determining " ord +
".

difference for n=m" + @differences for n=m and n=m+1
1 DISP seq OBJ-> @Substitute n=n+m and make a
DROP OBJ-> DROP2 @sequence for m=start to
UNROT DUP 'm' + @m=order+1
= SUBST 'm' ROT
DUP ord + 1 SEQ
1 OVER SIZE 1 -
START @Calculate differences, expand

∆LIST EXPAND @use TEXPAND to expand trigs
TEXPAND EXPAND

NEXT
HEAD DUP Get nth difference, make a copy
"Determining " Same again for n=m+1
ord + ".

difference for n=m+1" +
1 DISP seq OBJ->
DROP OBJ-> DROP2 UNROT
DUP 'm' + 1 + = SUBST
'm' ROT DUP ord + 1
SEQ 1 OVER SIZE 1 -

Sequences, series and limits with the HP49G - Part 3

3-14

n3 n3 + 3∗ n2 + 3∗ n+1 n3 + 6 ∗n2 +12 ∗n + 8 n3 + 9 ∗ n2 + 27 ∗n + 27{ }

START
∆LIST EXPAND TEXPAND
EXPAND

NEXT
HEAD == @Both differences the same?
IF

DUP TYPE 9 == @If a==b results in symbolic
 THEN

DROP 0 @drop it and return 0
END
IF @If test returned 1
THEN

"=" ->TAG @Tag with "="
ELSE @else

DROP @we calculate nth diff.
"Determining " @at specified point
ord + ".

difference for n=" +
pt + 1 DISP @same method as above for
seq OBJ-> DROP @n=pt to n=pt+ord
OBJ-> 3 DROPN pt
DUP ord + 1 SEQ 1 OVER SIZE 1 -
START

∆LIST EXPAND
TEXPAND EXPAND

NEXT
HEAD pt ->STR ->TAG

END
 ELSE

? "?" @If flag 1 was set return ?:?
->TAG

END
 >> POP
>>

What's next after a program? Right, testing. Let's use the the sequence
n3 n 0 ∞{ }{ } . Enter it and then enter 3 and 0 to find the third

difference at 0 . Press N∆SEQ and wait about 23 seconds to get =:6 .
The program have found that this sequence is a third order arithmetic
sequence. Its third differences are all the same and equal to 6. Now,
enter n3 n 0 ∞{ }{ } , then a 3 and a 0 to find the second

difference at 0. The program returns 0:6 after 18 seconds. That means
that the second difference it 6 at the point 0, but at other points you
will get other differences.

Try with Fibonacci. Enter F n() = F n −1() + F n − 2() F 0() = 0 F 1() = 2{ }{ } ,
a 1 and a 0 for the first difference at 0. Press N∆SEQ. The program
uses RCR->ANL to turn this sequence to its analytic closed form and
then proceeds to calculating. After about three minutes (!) you get 0:1.

Last example. Enter n2 ∗ SIN 4∗ n+ 1() ∗
π
2





 n 0 ∞{ }








, 2 , 1

and press N∆SEQ. In 57 seconds the HP49G returns
=: 2∗ COS 2∗n ∗π()() . Now, as Veli-Pekka says, if the HP49G
offered some way to make assumptions about variables being integers,
it would be possible to get the result =:0 . But without that, you just
stay at COS 2∗n ∗π() . C'est la vie :-(

Our collection of programs has grown again. Take a look at it on the
next page. N∆SEQ uses the program RCR->ANL. We also see that
SOLARSEQ hovers alone over the whole building. (That's why it is a
solar program. It is lonesome at the top ;)

Now that we have N∆SEQ, we think about having a program that
finds if some given sequence is an arithmetic sequence of some order.
That is, we give it a sequence and it tries to find out if there is some nth
difference that doesn't depend on the index of the sequence. This is a
more difficult task. The program can of course build a limited number
of differences, but it can't know how far to proceed. If we just build
differences one after the other, then we may reach some point where all
differences are the same. But we also may never reach such a point. So
we can't proceed that way. We reconsider the sequence and its

Sequences, series and limits with the HP49G - Part 3

3-15

differences in general. Suppose we have some sequence an and we
derive its members a0 , a1, a2 , a3 , and so on. Then we calculate the
differences a1 − a0 , a2 − a1 , a3 − a2 , and so on. Then we find the
differences of the differences, that is the expressions

a2 − a1 − a1 − a0() = a2 − 2 ∗a1 + a0 ,

a3 − a2 − a2 −a1() = a 3 − 2∗ a2 +a1

and so on. We collect some of them on the table (next page), to get a
better overview of them. Now, you of course can at once see how the
coefficients of the members behave in the rth difference at the nth
point. If you don't then it doesn't matter, as you presumably haven't
seen a Pascal triangle yet. What is this Pascal triangle? That's very
easy. It is shown on the next-next page. Each number on this triangle
is the sum of the two numbers to the left and two the right above it.
The numbers that are at the left or the right edge, are simply "the sum"
of only one number above them. For example, if we start counting
rows and members at 0, then the 2nd number at the 4th row is 1+3=4.
Of course it would be a tedious task to calculate the, say, 30th number
in the 60th row but fortunately there is an analytic closed form for this.
If we denote the row number with r and the position of the number in
the row with n (starting at 0), then the corresponding Pascal's number

is equal to
r!

n!∗ r − n()! . Now you can see that these numbers appear

also in the differences of the previous table. For example, the third
difference at the second point was a5 − 3∗ a4 + 3 ∗a3 − a2 . The
coefficients of the members of the sequence in this difference are 1, -3,
3 and 1. They are the same like the Pascal's numbers 1, 3, 3, 1 at the
third row of the triangle, except for the sign. That means that we can
use the formula of Pascal's numbers for our general rth difference. We
can take care of the signs by just multiplying each Pascal's number
with −1()n , where n is the position of the number in a row. The

coefficient of the nth sequence member in the rth difference at the Nth

point of the sequence is then −1()n ∗
r!

n!∗ r −n()! . The whole difference

is the sum of products of such coefficients with the corresponding
sequence members. Now we must find which are these corresponding
members. We try first an example for, say the third difference at the
second point. The sum will have the general form

Sequences, series and limits with the HP49G - Part 3

3-16

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

CONVERGES?

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

SEQMONTY

N∆SEQ

SOLARSEQ

−1()n ∗
r!

n!∗ r −n()!n =0

?

∑ ∗ a? , in which we must plug the right quantities

where the question marks appear. From the table of differences we see
that this difference is a5 − 3∗ a4 + 3 ∗a3 − a2 . So, the index of a?
goes from 2 to 5. That is, the index it has to be r + N −n , where

N = 2 , r = 3 and n = 0,1,2,3 . The rth difference at the Nth point is

∆N
r = −1()n ∗

r!
n!∗ r − n()!n= 0

r

∑ ∗ar+N −n . This is something that can help us

to calculate any difference of any sequence at any point. Let's first
define a function based on the above formula. Enter

Sequences, series and limits with the HP49G - Part 3

3-17

Point

a0 a1 a2 a3 a4 a5

a1 − a0 a2 − a1 a3 − a2 a4 − a3 a5 − a4

 L

 L

a3 −2∗a 2 + a1 a4 −2∗ a3 + a2 a5 −2∗a 4 + a3 La2 −2∗a1 +a 0

a3 −3∗a 2 +3∗ a1 − a0 a4 −3∗ a3 +3∗ a2 − a1 a5 −3∗a 4 +3∗ a3 − a2

a4 −4∗ a3 +6∗a2 −4∗ a1 + a0 a5 −4∗ a4 +6∗a3 −4∗ a2 + a1

a5 −5∗a 4 +10∗ a3 −10∗a2 +5∗ a1 − a0

 L

 L

 L

0

1

2

3

4

5

0 1 2 3 4 5

Third difference at
second point. L

∆rN r,N() = −1()n ∗
r!

n!∗ r − n()!n= 0

r

∑ ∗a r + N −n() and press DEF. Now

let's find the 4th difference at the 1st point of the some sequence a(n).
Enter 4 and 1 and press ∆rN. The HP49G needs over 11 seconds (!)
to calculate the result a 5.() − 4∗ a 4.() + 6 ∗a 3.() − 4∗ a 2.() + a 1.() .
First thing to complain about is the long time it needs. Second thing is
that we supply integers and get results containing reals as indices. And
third thing is that it switches from real to complex mode. Let's try to
make the time needed a bit shorter. We enter 4. and 1. because we
know that calculations with real numbers are faster in sums. If we now

use ∆rN the HP49G still needs 10.5 seconds.
Not much better. Enter '∆rN' and press
VISIT. Change the program to:

<<
-> r N
'Σ(n=0.,r,(-1.)^n*r!/(n!*(r-
 n)!)*a(r+N-n))'

>>

Notice the decimal point in n=0. and in
(-1.)^n . Press ENTER. The new version
is now stored in ∆rN. Enter 4 and 1 and

press ∆rN. Now you get the same result in
3.8 seconds which is much better. Now we
make the ugly result a bit better looking. Edit
the program again and add XQ as the last
command.

<<
-> r N
'Σ(n=0.,r,(-1.)^n*r!/(n!*(r-
 n)!)*a(r+N-n))' XQ

>>

Now the program needs about 10 seconds to
give you the 4th difference at the 1st point of the sequence a(n). Grrrr!
What we gained through usage of reals we lose again through making
the result looking better. As a last resource, enter 4. and 1. and try
again. Fortunately now the HP49G needed only 4.2 seconds and
returned the result a 5() − 4∗ a 4() + 6∗ a 3() − 4∗ a 2() + a 1() . Not a
speed record, but better than 10 seconds.

Now that we have ∆rN we can calculate the rth difference of any

sequence at the Nth point. Of course the program ∆rN itself only

Sequences, series and limits with the HP49G - Part 3

3-18

1

1 1

21 1

1 3 3 1

1 4 6 4 1

Pascal's Triangle

0

1

2

3

4

0 1 2 3 4

Member

calculates such a difference for a generic sequence whose members are
denoted by a index() where index is calculated by the Σ function and
can also contain the symbolic argument N. If we store some procedure
for calculating the members in variable a then, when ∆rN is evaluated

the procedure in a will also be evaluated, letting ∆rN calculate not the
difference of the generic sequence, but the difference of the particular
sequence a . For example, consider the sequence an = n3 with

 n = 0,1,2,L. A simple program to calculate some member of this
sequence would be:

<<
-> 'n^3'

>>

If we store this in a then entering 2., 1. and pressing ∆rN returns 12 ,
the second difference at the first point. Entering 2., 2. and pressing
∆rN returns 12 , the second difference at the second point. But if we

enter for example 2. and N, press ∆rN and EXPAND, then we get
6∗ N+ 6 , the second difference at point N. The result clearly shows
how the second difference behaves as a function of the point N. If we
enter 3. and N, press ∆rN and EXPAND, then the result is 6 . It does
no more depends on N, the point at which we take the differences.
And so it is the same, constant, for all points. This shows us that the
sequence an = n3 with n = 0,1,2,L is an arithmetic sequence of third
order.

The next idea is to try to find a particular integer value for r , so that

the sum −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r +N − n() is independent of N for

some particular sequence stored in a . If we solve this, then this
particular value of r is the order of the sequence and the sequence is an
arithmetic sequence of order r .

To solve this we must make (again) an excursion at the land of the
Summoids and their customs. This is a sometimes fascinating,
sometimes confusing, but always interesting land. We are going to
explore if/how the HP49G solves such problems. Suppose for

example that you want to solve n
n =0

N

∑ = 10 for N. That means you want

to find how much n you must add, to receive the result 10 . Can the

HP49G solve this? Let's experiment. Enter n
n =0

N

∑ = 10 , then N and the

press SOLVE. Rattle, rattle and result: N = 4 N = −5{ } . The solution
N = 4 is plausible but N = −5? How was this result obtained? Well,
we must take a look at the workings of the CAS. The CAS has
detected a symbolic sum with integer arguments. When such a thing is
detected, the CAS first tries to solve the sum, to turn it to its analytic

closed form. This time it was possible to do so. If you enter n
n =0

N

∑ and

press EXPAND, then you get
N2 +N

2
 which is the same like n

n =0

N

∑ for

any N. Then this expression is put in the equation and the CAS tries

now to solve
N2 +N

2
= 10 , a quadratic equation in N, which has the

above solutions. That's where N = −5 comes from. But because we
know that summing starts at n = 0 , we know that N ≥ 0 . If we make

this assumption before we solve n
n =0

N

∑ = 10 , then we get only the

solution N = 4 . This could be used to also solve our problem. But
there are difficulties. First of all, let's define precisely what we would
like to solve. We already said that we want to find such an r so that

−1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r +N − n() is independent of N for our

particular sequence. We jump now from our excursion to the future
marathon of calculus. When some exp ression is independent of

Sequences, series and limits with the HP49G - Part 3

3-19

some variable, then mathematically that means that the derivative of
exp ression with respect to that variable equals 0 , or written in

math language:
∂ expression

∂ variable
= 0 . Jump back to our excursion path.

For us, this means that we want to solve

∂ −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r + N− n()

∂N
= 0 for r . And here is where the

problems start. First of all the sum itself is too difficult to be always
solvable by the CAS of the HP49G. Remember that a r + N− n() can

be anything. In the above example with the sequence an = n3 ,

 n = 0,1,2,L, we would have to solve the equation

∂ −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ r + N− n()3

∂N
= 0 . Hopeless. Even Mathematica

has problems to solve this analytically. We must find another way.

Well, if analytic solving doesn't work, what about numeric? Can we
use numeric solvers for such problems at all? Again the experiment

will tell us more. We enter n
n= 0.

N

∑ = 10. (notice the decimal points for

faster numeric evaluation), then N, the variable to solve for, and then a
guess value for the solution, say 0. Now we use the command ROOT,
which is the programmable analogon of the numeric solver. Quite fast

the HP49G answers... 4.27272727302 ! Huh? Re-enter n
n=0.

N

∑ = 10. ,

N, but now enter for the guess value 1. and again ROOT. Solution:...
4.53474750039 . Huh2? What is wrong here? Why not just 4? And
why different solutions according to what guess value we use? Well,
the reasons are buried in the way the function Σ works and in the way
the command ROOT works.

The function Σ will start evaluation the summand for n = start and

building the sum. For each next value of n it checks first if n > End
and if not, it evaluates the summand for the next value of n . When n
is greater than end, the sum is returned. For example, the above sum

with end value 4.27272727302 is n
n =0.

4.27272727302

∑ = 10. because the

function iterates n starting at 0 up to 4 . The number
4.27272727302 is already greater than 4 , so the function stops at

n = 4 . Same for n
n =0.

4.53474750039

∑ = 10. or any other ending value between

4 and 4.99999999999 .

Now on to ROOT. This command takes the equation that we want to
solve, variates (systematically) the value of the variable to solve for,

and evaluates the equation until leftHandSide= rightHandSide or

until expression= 0 . As it (systematically) variates N in our
example, it doesn't know that it has to be integer, so it uses also real
values. Eventually it reaches N = 4.something which evaluates the
equation to 10 = 10 and so it returns the found solution. The exact
value of the solution depends on where ROOT started searching, that
means, our guess value. The value of the solution is also stored in N,
or whatever the name of the variable is that we wanted to solve for.
So, when we solve such equations we must take the integer part of the
solution using the function IP. (Enter 'N' and PURGE to get rid of the
stored value now, if you like. Also 'N' UNASSUME DROP to get rid
of the assumptions for N that we already made. BTW, ROOT doesn't
care about assumptions.)

It seems that ROOT could be used to solve our problem, but... there's
always a "but", isn't there? ROOT can only find solutions for
problems with only one unknown. If there are additional variables
without values in an equation, ROOT will error out with "Undefined

Sequences, series and limits with the HP49G - Part 3

3-20

Name". Our problem,

∂ −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r + N− n()

∂N
= 0 , must

be solved for r , but it also contains N which must be symbolic if we
want to solve it for arbitrary N. Only the solution for r will turn the
left hand side to something that doesn't contain N but we must find
that value first. Here comes a very very useful property of ROOT (and
the numeric solver). ROOT can also solve... programs. Perhaps this
sounds a bit strange now, but if we think a bit further then it seems to
be a very natural thing. We consider a simple equation like
3∗ X − 2 = 0 . What does it say? One way to interpret it is to think of it
as a sequence of commands. We could understand it as: "Multiply X
by 3, subtract 2 and check it the result equals 0 ." Now it sounds like
a program, doesn't it? So instead of entering 3∗ X − 2 = 0 when we
want to solve this equation, we could just as well enter the program:

<<
3 X * 2 -

>>

If you enter this, then you can enter X , a guess value 0 and use
ROOT to find a solution. Don't forget that the solution is returned on
the stack and stored in X , so you might want to PURGE variable X
to avoid eventual complications with the CAS later.

For us this means that instead of solving the equation

∂ −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r + N− n()

∂N
= 0 , we can solve some program

that does exactly the same. But the advantage is that in a program we
can check for example if some name appears that has no value, so that
in this case we return some value different from 0 which lets ROOT
continue searching without erroring. But first things first. Before we
make such a program, we need another program that takes a sequence
from the stack and creates the user defined function a r + N− n() , in

order to be able to construct the sum later. Because it is rather likely
that the name a will be used by the user for storing something else, we
change the name a to something more unlikely. Say, USDEFSEQ?
OK, first we must change this in ∆rN. Edit this program to:

<<
-> r N
'Σ(n=0.,r,(-1.)^n*r!/(n!*(r-n)!)*USDEFSEQ(r+N-n))'

>>

Now the program S->UD that makes a user defined program out of a
sequence:

<<
PUSH 1 CF DUP
IFERR

REC->ANL
THEN

DROP 1 SF
ELSE

IF
DUP ? POS

THEN
DROP 1 SF

ELSE
NIP

END
END
IF

1 FC?
THEN

OBJ-> DROP OBJ->
3 DROPN 1 ->LIST
'USDEFSEQ' APPLY
SWAP = DEFINE

ELSE
POP "Can't find analytic

closed form" DOERR

Sequences, series and limits with the HP49G - Part 3

3-21

END
POP

>>

Store this program in S->UD or use the program that comes with this
document. Now enter the sequence n3 n 0 ∞{ }{ } and press the
soft key for S->UD. The program generated a new program:

<<
-> n 'n^3'

>>

and stored it in USDEFSEQ. If you now enter 3 and press
USDEFSEQ you get 27 . If you enter n and press USDEFSEQ then
you get n3 . You can use it for calculating arbitrary member of the
sequence.

Now we can go on, trying to solve our problem using ROOT with a
program. One way to solve this problem is to make a program that
uses r , the order of the difference, the symbolic argument N, an
arbitrary point of the sequence, and passes these arguments to ∆rN to
build up the rth difference at the Nth point of the sequence. The
program then has to take the derivative for N , expand and check if the
resulting expression contains the variable N. If it does, then it can
return something different than 0. to let ROOT know that the search
for a solution for the variable r has to be continued. If the expanded
derivative doesn't contain N anymore, then we have a solution.

<<
S->UD @Create USDEFSEQ
<< @Program to solve with ROOT

r 'N' ∆rN @Find difference, differentiate for N

'N' EXPAND @and expand
LNAME NIP @Return vector of variables
IF @If it isn't an empty list
DUP {}

THEN @then transform it to a list
AXL

END
IF @If the list contains N
'N' POS

THEN @then return a 1.
1.

ELSE @else return a 0.
0.

END
>>
'r' 1. @Variable to solve for and guess value
ROOT

>>

Store that in ORDARSEQ. Let's give it a try. We happily enter the
sequence n3 n 0 ∞{ }{ } and press the soft key for ORDARSEQ.

After some moments the HP49G returns... an error! The name 'N' is
on the stack and the error message says "Undefined Name". What
happened here? To understand that we must have a closer look to the
way ROOT works. It is true that it will evaluate (run) a program
repeatedly for different values of the variable to solve for, in our case
variable r . It is also true that it looks at the result of the program to
decide what to do next, which means that the program has to return a
numeric value. The program that we supply (red part of the code) does
return a numeric value in any case, provided someone plugs a numeric
value for r , which ROOT does. Then why the error? There is an
additional requirement for ROOT to do its job. All names that
somehow participate in order to calculate the result must contain
numeric values! While ROOT lets the red code run one step after the
other, it eventually reaches 'N'. This thing is a name, ROOT says, and
tries to replace it with a value. But as no value is associated with this
name, ROOT ceases and shows an error message. So we have a
problem. (As if there weren't already enough ;-))

So we must find a way to somehow hide 'N' from the sight of ROOT.
Perhaps we can "construct" it? Instead of writing explicitly 'N' in the

Sequences, series and limits with the HP49G - Part 3

3-22

program, we could use "'N'" OBJ->. The program then contains no
name 'N'. We change ORDARSEQ and replace all occurrences of 'N'
with "'N'" OBJ->. We enter n3 n 0 ∞{ }{ } , press ORDARSEQ
and get the same error again. We can use "N" S~N or anything else
that produces the name 'N'. The error remains the same. (Good to
know that some things never change ;-)). To understand better what
happens here, let's experiment a little bit.

Experiment 1:
<< 'N' DROP R >> 'R' 1. ROOT
Enter this and you get the solution 0.

Experiment 2:
<< 'N' 1 + DROP R >> 'R' 1. ROOT
The only change to the first experiment is that we add 1 to 'N'. Enter
this and you get the error again.

That shows us: ROOT constantly checks anything (?) that has to do
with mathematic operations, even simple additions, while it evaluates
the program that we gave it to solve. It doesn't only parse the program
to see if there are names that have no values. If some name somehow
participates in math operations, then it is a suspect and it will be
proved for numeric contents. ROOT does this work thoroughly but in
this case it is just this thoroughly working that brings us troubles.
Sometimes perfection isn't a good thing! Unfortunately!

So the excursion to ROOT was a one way path? Must get back and
search some other way? As Trabakoulas says, "the hard thing in treks
is not to reach the finish. The hard thing is to realise that one has to
turn back to the start". But let's experiment a bit more before we
search other ways. Our problem seems to be the involved mathematic
operations like additions, exponentiations and so on. Now, we ask:
Are there no mathematic operations at all, whose operands ROOT
wouldn't check for numeric contents? A possible candidate group of
operations that ROOT doesn't care if they return a numeric value or
not, could be the group of operations that isn't made for the purpose of
returning a numeric result. For example we consider our well known

EXPAND. This command isn't there for giving numeric results,
though of course it will do so, if we give it an expression that contains
only numbers. So let's try to use ROOT with a test program that
contains EXPAND.

Experiment 3:
<< '(N*(N-2)-N^2+2*N+3)*R-2' EXPAND >> 'R' 1. ROOT
The expanded algebraic expression is 3∗R −2 , so it doesn't contain
the variable N. If ROOT doesn't check EXPAND for numeric values,
then it should find the solution .666666666667 , which it does!

Hurrah! With new hope in our souls we still try to find a solution to
our problem. What if we avoid anything that is checked by ROOT for
returning numeric values? Is there any way to construct the rth
difference at the Nth point of the sequence without any usage of such
"checked" operations? Let's take a look at the rth difference again:

−1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r +N − n()

We could use a loop instead of the function Σ . And we could
construct anything that is made by using additions exponentiations and
so on, by using.... strings!!! Consider for example the result of

∂ rn ∗N
n =0

r

∑
∂N

 for r = 2 which is 20 + 21 + 22 . The following program

returns exactly the same result, but without using any mathematic
operation with N as operand.

<<
"'"
0 2
FOR I

 2 I ^ @Math. operation ^ OK because I has a value

Sequences, series and limits with the HP49G - Part 3

3-23

"*N+" + @Make string "2^I*N+"
+ @Add strings. No math operation!

NEXT
"0'" + @For appropriate closing.
OBJ-> @Transform to alg. object.
'N' ∂ @Derivation isn't checked for num result
EXPAND @Neither is checked EXPAND

>>

If you run this, you get the same result like with

∂ rn ∗N
n =0

r

∑
∂N

, but

without using any command that causes ROOT to say that some name
is undefined (without numeric value). We adopt this method for our
headache problem and write a program for solving the equation:

∂ −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r + N− n()

∂N
= 0

It takes a sequence and a guess value of r and tries to find a solution.
If our sequence is an arithmetic sequence of higher order, then it will
return the order r .

<<
PUSH 1 CF
SWAP DUP
IFERR @If seq. can't be made analytic

RCR->ANL
THEN

DROP 1 SF @Drop and set flag 1
ELSE @Else

IF @If result contains ?
DUP ? POS

THEN
DROP 1 SF @drop is, set flag 1

ELSE
NIP @else drop orig. sequence

END

END
IF @If flag 1 is clear (everything is OK)

1 FC?
THEN @then proceed

OBJ-> DROP OBJ-> 3 DROPN
-> guess seq indx @Locals for guess, seq., index
<<
<< @Here starts the program that ROOT

"'" @will solve numerically.
0 r 0 RND @Loop start and end.
FOR I

-1 I ^ @Math. operations OK because
r 0 RND ! @all variables have values and
* I ! @r is given values by ROOT.
r 0 RND I - !
* /
"*(" + @Now we start making the string
seq indx
"'" r 0 RND + @String version of r+N-n
"+N-" + @Addition with N would
I + "'" + @cause troubles.
OBJ-> @String to algebraic.
2 ->LIST @Match each appearance of n in

MATCH @the sequence with r+N-n
DROP EXPAND @Expand the sequence member
->STR @Turn it to a string
2 OVER SIZE @Get rid of the quotes
1 - SUB
")" + + +
"+" +

NEXT
"0'" + @Correct closing of alg.
OBJ-> EXPAND @Transform to alg., expand
->STR "N" "N" @Transform expanded alg. to
SREPL NIP @string and check how many N's
r 1 DISP @Show us current value of r
DUP 2 DISP @and value of expression

>>

Sequences, series and limits with the HP49G - Part 3

3-24

'r' guess ROOT IP @Take integer part of solution
>>

ELSE @In case of error show a message
POP "Can't find analytic

closed form" DOERR
END
POP

>>

The red code in the above program is the program that is passed to
ROOT. Notice the usage of 0 RND to round the current value of r to
the next integer. We do that because ROOT puts real values in r . Also
notice that we don't even use the function ∂ for finding the derivative
with respect to N. Instead of this we search the string for the
character N and use the number of occurrences as a measure of how
far away ROOT is from a solution. That means that your sequence
shouldn't contain any N, not only as a variable but also as
character in any variable name. The same for character r . Last
thing to notice: The built in numeric solvers are able to show the
current values of the variable to solve for if you press a key during the
solution process is running. ROOT doesn't have this ability. But still,
we can DISPlay the values of the variable to solve for and anything
else, as ROOT repeatedly evaluates the program for different values of
the variable to solve for. The code r 1 DISP DUP 2 DISP in the
program that is passed to ROOT, does exactly this. It DISPlays the
current value of r on the first line of the display. Then it makes a copy
of the result of each evaluation and DISPlays it on the second line, so
that we can follow the process and eventually interrupt it if it starts
going to the false direction.

Store the program in ORDARSEQ. (Or as always use the program
that comes along with this document.) Let's test this unusual thing.
Enter the sequence n3 n 0 ∞{ }{ } and a guess value 1. Press
ORDARSEQ. In 53 seconds the result 3. is returned. The sequence
was an arithmetic sequence of third order. Another example. Enter
n4 + 3∗ n2 n 0 ∞{ }{ } and 1. Press ORDARSEQ. The HP49G

rattles for seconds and after solving that rather non-standard procedure
with string, it proudly returns 4. As already mentioned, ROOT also
stores the found solution in the variable to solve for, so you have a
new variable in the directory where you worked. If don't want to have
it, then do 'r' PURGE, or add 'r' PURGE at the end of the program,
just before the very last POP command.

The other two programs that we already make, S->UD and ∆rN aren't
used by the new ORDARSEQ. Nonetheless you can keep them as they
are useful themselves.

The first moral of the story: Unusual problems (might) need unusual
solutions. What we consider useless at the first sight, might prove to
be exactly what we need to solve twisted problems in twisted ways,
when the standard ways don't work. (Anyway, what is "standard"?)

The second moral of the story: Don't be afraid to go twisted ways.
Mathematics doesn't seem to work always as we might "expect".
Don't let your mind be wrapped in "normality" and don't forget to ask
what might seem nonsense. The description of the numeric solution of

∂ −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r + N− n()

∂N
= 0 using ROOT and strings is

way not the only possibility. Search more twisted paths! A whole
world waits to be discovered. It's math. Let's get crazy! (As if we
weren't already ;-))

The obligatory look to the structure of programs that we have so far
(next page). RCR->ANL gets more important every minute.

We move on to another sequence that appears quite often in
mathematics but also in "real" life, the geometric sequence. The ratio of
two adjacent members of the geometric sequence is constant. The
analytic closed definition of this sequence is:

an = a0 ∗ qn , with n = 0,1,2,L and q = constant .

Sequences, series and limits with the HP49G - Part 3

3-25

Some properties of this sequence are easy to see right
from the start. For example, if q f 1 then the sequence
is monotonically increasing or decreasing, depending on
the sign of q . Let's see if SEQMONTY can figure this
out. We do good if we first make the right assumptions.
Since SEQMONTY does this for the index n , we only
need to make the assumptions for q . The assumption

 q f 1 can't be made directly. If you enter q f 1 and
then ASSUME, the HP49G says "Bad Argument
Value", which shows that the type of argument is OK,
but the particular argument can't be used. We have to
make this assumption in steps. First enter 'q' and
UNASSUME to remove any existing assumptions for q .
Then enter q ≥ 1 and ASSUME. After that enter q ≤ 1
and ASSUME again. (If you take a look at the variable
REALASSUME HOME/CASDIR you will see that it

contains q ≤ −1 AND q ≥ 1. Though this is logically

impossible4 , let's try to use it. Enter the geometric
sequence a0 ∗ qn n 0 ∞{ }{ } . Notice that we write

a 0() as a0 , a symbolic constant. We don't write a 0()
to be compatible with our conventions of notion of the
analytic closed form of sequences. Trabakoulas heard the
word "compatible" spoken by a Greek and smiles ;-)
Because a0 is also symbolic, we must assume
something about it to. Let's suppose first that a0 ≥ 0 .
Remove any existing assumptions for a0 and then
ASSUME a0 ≥ 0 . Press SEQMONTY. In 35 seconds
the HP49G returns −2 for a monotonically decreasing
sequence. Which clearly shows that only the part q ≤ 1 of the existing

assumption q ≤ 1 AND q ≥ 1 was used. That means, if we want

to check the monotony of this sequence, we must check the particular
cases alone. Remove the assumptions for q , and ASSUME q ≥ 1.
4 It should be q ≤−1 OR q≥1 for logical validity.

Enter a0 ∗ qn n 0 ∞{ }{ } and press SEQMONTY again. Now the

result is 2 for a monotonically increasing sequence. Try other
combinations of assumptions, like for example a0 ≤ 0 ASSUME and
q ≥ 0 ASSUME, and so on.

Sequences, series and limits with the HP49G - Part 3

3-26

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

CONVERGES?

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

SEQMONTY

N∆SEQ

SOLARSEQ

∆rN

S->UD USDEFSEQcreatesORDARSEQ

Of course if you have a geometric sequence with known values of a0
and q , then you don't need to make any assumptions. Remove the

assumptions for a0 and q , enter
1
2

∗2n n 0 ∞{ }







 and press

SEQMONTY. The result 2 shows that the program correctly found a
monotonically increasing sequence.

If q p 1, then the geometric sequence is bounded. What does
BOUNDS say in the general case of the sequence? Let's see. Enter
q ≤ 1, ASSUME, q ≥ −1, ASSUME. Now REALASSUME contains

the assumption q ≤ 1 AND q ≥ −1, which is logically OK. (There

are values of q that simultaneously satisfy q ≤ 1 and q ≥ −1.) Now,

enter the general form of the sequence a0 ∗ qn n 0 ∞{ }{ } and

press BOUNDS. The HP49G returns ? ?{ } and ? , an answer that
means "I don't know". This result comes because we used TABVAR
in the program, a command that only works with monovariate
functions, while a0 ∗ qn contains three variables. Remove the

assumptions for q , enter 3∗
1
2







n

n 0 ∞{ }








 and press

BOUNDS. The HP49G returns again ? ?{ } and ? . The reason for

the failure is that TABVAR can't find the variation table of 3∗
1
2







X

.

If you enter 3∗
1
2







X

 and then press TABVAR, then the HP49G

errors "Parameters not allowed" Go figure out where it sees
parameters here! (The programs above BOUNDS rely on what
BOUNDS finds, so they will also return question marks.)

The recurrence form of the geometric sequence is an = an−1 ∗ q , with
a0 = a0 and n = 0,1,2,L. That means, in our notation we can enter

the geometric sequence as a n() = a n −1() ∗q a 0() = a0{ }{ } . Will
our programs find the analytic closed form out of the recurrence? Let's
see. Enter a n() = a n −1() ∗q a 0() = a0{ }{ } and press RCR->ANL.

The result is a0 ∗ qn n 0 ∞{ }{ } . Wow, it worked! Now, let's
find the generating function of the geometric sequence. We enter
a n() = a n −1() ∗q a 0() = a0{ }{ } and press GENFUNC. The

HP49G returns GF = −
a0

q∗ X −1
. Press EQ-> and NIP to get rid of

the left hand side. Enter X = 0 and 5 . Press SERIES and then
SUBST, 3 GET, DTAG. The result of these operations is

 q
5 ∗a0 ∗X5 + q4 ∗ a0 ∗ X4 +L + q∗a0 ∗X + a0 , which shows that

−
a0

q∗ X −1
 was correct.

As you might already imagine, the geometric sequence is called so
because each member is the geometric mean of its neighbours:
an = an +1∗ an−1 . This can be also used to make another recurrence
definition of the geometric sequence. If we solve for an+1 , we find:

an+1 =
an

2

an−1

, or by defining m = n +1: am =
am−1

2

am −2

. So the geometric

sequence can also be written as the recurrence

a n() =
a n −1()2

a n− 2() a 0() = a0 a 1() = a0 ∗ q{ }







. Notice that we now

have two initial conditions, which is the same like number of the
different sequence members on the right hand side of the recurrence

a n() =
a n −1()2

a n− 2() . How do our programs RCR->ANL and GENFUNC

react when they take as argument this recurrence? Again, we test. Enter

Sequences, series and limits with the HP49G - Part 3

3-27

a n() =
a n −1()2

a n− 2() a 0() = a0 a 1() = a0 ∗ q{ }







 and press

GENFUNC. After some seconds the HP49G strikes. "Not reducible
to a rational expression"5 . Something went wrong here. And it was
the program SEQTYPE that determines the type of the sequence. Let's
take a look at the happenings. The program finds out that this is a

recurrence. It uses ->TERMS to find the terms of a n() =
a n −1()2

a n− 2() .

The program ->TERMS correctly returns a n() −
a n −1()2

a n − 2()








. Then

the SEQTYPE checks if the recurrence is of the type
a n() = c1∗ a k() + c2 ∗a l() . It does this by matching the terms with
a &N() and at this point we already have the problem. Both terms do

contain patterns of the form a &N() , but −
a n −1()2

a n− 2() contains members

of the sequence but in non-linear manner, and these case are not
covered by GENFUNC. We must make additional checks to prove if
the members are contained linearly in the terms. We immediately think

of LININ, but... again a "but". If you enter −
a n −1()2

a n− 2() and then for

example a n −1() and press LININ, then you get the error "Bad
argument type". We must go another way. We use the fact that when
these checks take place, the HP49G has already found the terms of the
sequence and so we know that the expressions that represent the terms
are not themselves terms. That means that if more than one members
of the sequence are contained in a term, they will be operands of some
non-linear operation. So we have only to check if more than one
members appear in a term. In the language of string, we must check if
5 The errors described here are those which are generated by the old version of the

programs. If you already have installed the new ones, you won't get these errors.
But we still analyse the code of the old programs for demonstrating how the errors
are produced.

the substring "a(" appears more than once. Of course we can't simply
write "a(" because we can't be sure that the sequence definition will
always name the sequence member a(n). Perhaps the sequence is
named Karagiaouroglou(n) or even worse things. (Is there anything
worse than that? ;-)) So we must construct the string out of the data of
the recurrence definition. We add the (red) code:
.. . . .

"Recurrence 1"
2 DISP
terms 1 @Match any occurrence of
<< seqpatt 1 @type P(&N) with a 1. If

2 ->LIST @we had a match, then any

↓MATCH 'mtch' @term of the form
SWAP STO+ @factor*P(&N) will be
EXPAND @matched to factor*1

>> DOSUBS
mtch @Stream AND over the

 << AND @matches flags
 >> STREAM

SWAP DUP @Store matched factors in
'factors' @local 'factors'
STO
1 @Find the positions of

 << LNAME NIP @all terms which do not
 IF DUP @contain the seq. index

TYPE 5 ≠
 THEN AXL END var POS NOT
 >> DOSUBS

1 + @Add a 1 in the list of
 << AND @positions and stream
 >> STREAM @AND

AND
terms 1 @Find num. of occurrences
<< @of pattern "a(" in terms

->STR seqpatt
seqpatt 2 3
SUB DUP SREPL

Sequences, series and limits with the HP49G - Part 3

3-28

NIP 1
>> DOSUBS 1 +
<< AND >> STREAM
AND @If we had only P(&N) and

.

Now SEQTYPE successfully finds that this is not a type 1 recurrence,
but it erroneously finds that it is a type 2 recurrence. So we must add
some checking again.

 << LNAME NIP @factors of P(&N) not
IF DUP @containing the seq.

index
TYPE 5 ≠ @or other factors
THEN AXL
END
IF SWAP
THEN var POS NOT
ELSE DROP 1
END

>> DOLIST
1 + @Add 1 to the result list
<< AND @stream AND over the result

list
>> STREAM
mtch ∑ LIST @Check if only two terms
2 == AND @match pattern P(&N)
factors mtch
2 @Get the factors of
<< @P(&N)

IF NOT
THEN DROP
END

>> DOLIST @Check if factor of first
DUP HEAD @P(&N) is 1 and of second
1 == SWAP 2 @is -1 (Diff. of two seq.
GET -1 == AND @members

AND
terms 1 @Find num. of occur.
<< @of pattern "a("

->STR seqpatt
seqpatt 2 3
SUB DUP SREPL
NIP 1

>> DOSUBS 1 +
<< AND >> STREAM
AND

We make exactly the same additional check, namely if the pattern "a("
appears more than once in the terms.

The corrected version of SEQTYPE recognises that this is a type of
recurrence with which it doesn't deal and so programs that rely on this
program behave themselves better. If you now enter the same sequence

a n() =
a n −1()2

a n− 2() a 0() = a0 a 1() = a0 ∗ q{ }







 and press

GENFUNC, the program will error with "Can't deal with this kind of
sequences". The same does now RCR->ANL.

Next thing we do is a program similar to SOLARSEQ, that takes the
four arguments from the stack, an, a0 , n , and q and solves for the
first name that it finds.

<<
-> an a0 n q @Store in local variable
'an=a0*q^n' @Defining procedure

 DUP LNAME @Return vector of names
IF

DUP TYPE 5 == @If no names present
THEN

DROP2 COLLECT @Check if possible
NOT EVAL

ELSE @Else solve for first variable
1 GET SOLVE @in names vector

Sequences, series and limits with the HP49G - Part 3

3-29

2 ->LIST
END

>>

We name this SOLGESEQ (in analogy to SOLARSEQ). Try some
examples for different combinations of an, a0 , n , and q . Note that
the program will eventually return solutions that are impossible if n is
supposed to be integer. You must decide for yourself if the solutions
are correct for your problem or not.

Let's now take a look again at the program CONVERGES? The
program uses CONDENSPT to find out if a given sequence converges
or not by simply counting the condensation points. Actually the
HP49G has a built-in command that can be used for this purpose. It is
the well known command lim (LIMIT). When for example the index n

of the sequence
1
n

 goes to +∞ , we can enter
1
n

, then n = +∞ and

press [lim] to obtain 0 , the limit of the sequence. For
1
n

 it doesn't

matter if n is real or integer. For big integer or real values of n the

expression
1
n

 approaches 0 . But with other sequences, like for

example
−1()n
n

 we get troubles. If you enter
−1()n
n

, n = +∞ and press

[lim] the HP49G answers with the error "Mode switch not allowed
here". You see what happens. Having no way to specify that n has
only integer values, there is the possibility that n takes real values as it
approaches infinity. The expression −1()n will be in general complex if
n is real and so the HP49G wants to switch to complex mode. And
that is not allowed when we use lim. (Why?) The feature
INTEGERASSUME is the most important missing thing of the
HP49G.

But we can help ourselves using SPCASES. This program will turn

−1()n
n

 to
1
n

 and
−1
n

, the two possible outcomes when n is real.

Applying lim to each of these outcomes we get in both cases the result

0 , which shows that the sequence
−1()n
n

 converges to 0. We change

CONVERGES? so that it works this way. First find all possible
outcomes, then apply lim to each of them. If all limits are the same and
also not infinities or undefined, then the sequence converges. The new
code is:

<< PUSH RCLVX -> vx @Store current vx
 << SPCASES @Find special cases
"Limit of special case" @Message

1 DISP 1
 << NSUB " of " + @Message # of current special

ENDSUB + 2 DISP@case
OBJ-> DROP OBJ-> DROP NIP =

 IFERR lim @If lim errors then return ?
 THEN DROP2 ?
 END
 >> DOSUBS @do to each special case
"Checking infinities
& undefined results"

1 DISP
 IF DUP ? POS @If some result is ? then
 THEN ? @return ?
 ELSE
 IF DUP ∞ POS @If we have infinities

OVER ∞ NEG POS OR
 THEN 0 @then return 0
 ELSE
 IF DUP SIZE 1 == @If only 1 limit
 THEN 1 @then return 1
 ELSE @Else compare limits
"Comparing results
" 1 DISP DUP 2

Sequences, series and limits with the HP49G - Part 3

3-30

 << == @Test limits equality
 >> DOSUBS 1

 +
 << AND
 >> STREAM
 END
 END
 END vx STOVX @Restore vx (we do that because
 >> POP @lim sometimes changes vx
>>

Now we test. Though lim errors when we give it
−1()n
n

, the program CONVERGES? does its work

fine. Enter
−1()n
n

n 1 ∞{ }








 and press

CONVERGES?. In some seconds you get the
results, the list 0 0{ } and a 1. The list contains

the limits od the two possible outcomes of
−1()n
n

when n is an integer from 0 to +∞ . The 1 tells
you that the sequence does converge. It converges
to 0 the limit that is contained in the list. Another

example: Enter a n() = a n −1() +
1
n2 a 1() = 0









.

Press CONVERGES?. The program calls
SPCASES which in turn calls RCR->ANL to
convert the sequence to its analytic closed form.
Then SPCASES finds that there is only one
possible outcome and CONVERGES? uses lim to

find that the sequence converges to
π 2 − 6

6
. If you

enter the sequence a n() = a n −1() +
1
n

a 1() = 0








 and press

CONVERGES? again, then the results are +∞{ } and 0 , because the
sequence doesn't converge.

If you take time to look at the overall interdependence of the programs,
you see that SPCASES is a rather useful program for all the others
over it. And this shows how badly an INTEGERASSUME feature is
needed for the CAS of the HP49G. The only purpose of SPCASES is

Sequences, series and limits with the HP49G - Part 3

3-31

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

SEQMONTY

N∆SEQ

SOLARSEQ

∆rN

S->UD USDEFSEQcreatesORDARSEQ

SOLGESEQ

CONVERGES?

to find what possible outcomes some expression have when its index
is integer.

Though having lim is already enough for many convergence
investigations, we might sometimes want to use the convergence
criterion of Cauchy. Mr Cauchy has found out that if the absolute
value of the difference of two subsequent members of some sequence
approaches 0 as the index approaches infinity, then the sequence
converges. The HP49G can be used for this. (The interested reader
should try to make a program that does what we are going to do now
manually.)

Let's consider again the sequence
−1()n
n

n 1 ∞{ }








 for which lim

can't find the limit for n → +∞ . Enter
−1()n
n

 and press [ENTER] to

DUPlikate the expression. Enter n = n +1 and press SUBST. Now

you have
−1()n
n

 on stack level 2 and
−1()n +1

n +1
. We want to find if

−1()n

n
−

−1()n+1

n +1
 goes to 0 as n goes from 1 to +∞ . Because the

index starts at 1 we should help the HP49G by making the right
assumptions. Enter 'n' then UNASSUME DROP. (We start with no
assumptions for n .) Then enter n ≥ 1, ASSUME and DROP again.
Now the HP49G "knows" that n is greater than or equal to 1. Press
the key [-] and then [ABS]. The HP49G rattles a little bit and returns

the result
−1()n

n
−

−1()n+1

n +1
. (Why did it rattle? This is not a very

"expanded" result.) Before we give this to lim, we can simplify it.
Press EXPAND. The HP49G switches to complex mode (another
result of the inability to assume integer values for variables), and

returns
SINn ∗π()2 + COSn ∗π()2 ∗ 2 ∗n +1∗ n2 + n

SQ n2 + n() . Switch back

to real mode and press TRIG. (Remember the trigonometry marathon?)

After a few seconds the HP49G returns
2∗ n +1
n2 + n

. This is something

which we can use with lim. Enter n = +∞ to specify where the index
goes to. Press [lim] to get 0. That shows us that

lim
n→+∞

−1()n

n
−

−1()n +1

n +1
= 0 which means that

−1()n
n

n 1 ∞{ }








converges. Note that the Cauchy criterion doesn't give us the limit
itself, but only the fact that the sequence converges. It only says that if
lim

n→+∞
an − an +1 = 0 , then an converges. Enter now 'n', UNASSUME

and DROP to get rid of the assumption for n .

We have used assumptions many times in this marathon. While the
HP49G provides ways to make new assumptions and get rid of
assumptions programmatically, there is no built-in command that
returns the current assumptions for some variable. So we program this
functionality, which may prove useful for other programs.

<<
PUSH 1 CF -> var @Store variable in local
<<

{ HOME CASDIR REALASSUME } RCL @Recall REALASSUME
1
<<
IF

LNAME AXL @If variable isn't in
var POS NOT @assumption

THEN @Then drop assumption
DROP

ELSE @Else set flag 1
1 SF

END

Sequences, series and limits with the HP49G - Part 3

3-32

>> DOSUBS @Do to each assumption
IF @If flag 1 is clear
1 FC?

 THEN @Then return an empty list
{ }

 ELSE @Else return the first
HEAD @(and only) element of the list

 END POP
>>

>>

Store this in RCLASSM. The program takes a
name and returns the current assumptions for this
name or an empty list if no assumptions exist for
this name. Note that RCL can be used with a name
to recall the contents of the variable that is in the
current path, or with a list that represents a path to
a variable.

Note also that while you are for example in a
directory called MYDIR1.2, which is a
subdirectory of MYDIR1, which itself is a
subdirectory of HOME, you can access any
variable that is somewhere in the path { HOME
MYDIR1 MYDIR1.2 }. That means that any
variable that is in HOME or in MYDIR1 will be
evaluated exactly the same way as if it were in
MYDIR1.2. A program that runs in MYDIR1.2 and needs to call some
program in MYDIR1 has only to contain the unquoted name of the
program in MYDIR1. Similarly, if you store a value in variable A in
directory MYDIR1 and some program in MYDIR1.2 needs the value,
you simply include the unquoted variable A in the program in
directory MYDIR1.2.

But an object stored in a variable that doesn't reside somewhere in the
current path, can't be accessed that way. One possible way to access
such objects is to put their path on the stack and use RCL. The path to
an object is a list. This list contains all the directories in order starting

with HOME and ending with the directory where the object resides and
the name of the object itself. For example, the variable
REALASSUME is in CASDIR and CASDIR is in HOME. If you need
REALASSUME from, say MYDIR1.2, you put { HOME CASDIR
REALASSUME } on the stack use RCL. Note that if the needed object
is itself a program that must run, then you must use EVAL after
recalling it. RCL will only put the object on the stack, no matter what
type of object it is. The subsequent EVAL will run the recalled object if
it is a program. The command PATH will return the current path.

Some additional comments on sequences. The recipe used for finding
the members of sequences can be just about anything. Consider for
example the following algorithm: Start at a certain integer. To find the
next member of the sequence, add the product of all nonzero digits of
the integer to the integer itself. For example, let's start at 1.

Member Product of nonzero digits integer+product
1 1 2
2 2 4
4 4 8
8 8 16

Sequences, series and limits with the HP49G - Part 3

3-33

HOME

CASDIR MYDIR1

MYDIR1.1 MYDIR1.2

REALASSUME
Current path here:
{HOME MYDIR1 MYDIR1.2}

Any variable in HOME, MYDIR1, MYDIR1.2 is
accessible from MYDIR1.2

But you can recall REALASSUME from CASDIR
by using the list {HOME CASDIR
REALASSUME} with RCL. Doing this you
remain in MYDIR1.2 .

16 6 22
22 4 26
26 12 38
...

A program that takes a number of this sequence and calculates the next:

<< DUP {}
WHILE SWAP MANT DUP 0 ≠
REPEAT DUP IP ROT + SWAP FP SWAP
END
DROP 1 + ΠLIST

>>

The function MANT returns the mantissa of a number. The function
ΠLIST returns the product of all objects in a list. In the program we
add 1 to the list of digits because if the number has only 1 digit, the
function ΠLIST will error as it wants at least two objects in the list.
Since multiplication of anything with 1 doesn't change anything
adding 1 to the list is cheap way to avoid errors.

If you store this program in PRODSEQ, you can just enter a number,
(the initial condition) and calculate subsequent members of the
sequence by pressing the soft key for PRODSEQ a couple of times.

Using the function SEQ you can also find several members at once.
Enter the program

<<
<< DUP PRODSEQ >>

 'n' 1 9 1 SEQ +
>>

Store it in SEQPRODSEQ. It takes a number as the initial member and
calculates the first 10 members of this sequence. For example enter 1.
and press SEQPRODSEQ. Try some other initial values.

The strange thing about this sequence is, that no matter where you start

sooner or later you end up with the same sequence of numbers. For
example the initial number 1. creates the sequence:

 1. 2. 4. 8. 16. 22. 26. 38. 62. 74. L{ }

Of course starting at any member of the above sequence, that is 2, 4,
8, and so on, will produce the same numbers. But start at 3. Enter 3.
and press SEQPRODSEQ. The result is:

 3. 6. 12. 14. 18. 26. 38. 62. 74. 102. L{ }

As you can see, from 26 on we have again the same members. Some
initial numbers need more time some less but they all finally do the
same. Strange isn't it?

At the end of part 2, I said that in part 3 we are going to see how
sequences can be plotted on the HP49G. I think that part 3 is already
big enough and that plotting sequences deserves its own part, so let's
leave that for the next part.

Ending this part, I want to thank all people out there again and
especially Bill Storey and captain Adolph (AKA TimeToPaws) for
sending me their corrections for the trigonometry and this marathon.
Thanks you very much guys, that keeps me going :-)

Greetingsn() = Greetingsn −1()n−1

Greetings1() = g gf1{ }{ }

Sequences, series and limits with the HP49G - Part 3

3-34

Hi again!

Since we mess up with sequences it would be interesting to take a
closer look to the sequence of corrections of programs. Yes, you
guessed right, there is yet another small correction to our programs.
Suspicion comes that this sequence never converges ;-)

Anyway, it is only a couple of additional bytes that sometimes can be
very helpful. Consider for example the sequence

lnn()
n

n 1 ∞{ }







. If you give it to BOUNDS, then the result is

? ?{ } and ?. Why? Because SPCASES rebuilds the sequence and

returns
ln n()

n
n 1 ∞{ }

















. This makes things more difficult for

the subsequent operations, since an absolute value is involved, and no
assumptions are made for n . You can check this by removing all
assumptions for n , then entering n and pressing [LN]. If flag -119 is
clear, that is, if you have rigourous mode on, then you get ln n() . But
now, enter n ≥ 1, ASSUME, and enter n and press [LN] again. Now
you have lnn() . (Remove the assumptions for n again.)

We add code that makes these assumptions and removes them when
the programs are ready. We only need additional code for the
programs SPCASES and BOUNDS. The additional code (in red) is
the same for both programs and is listed in the following paragraphs.

SPCASES:

....
-> genmemb var lo hi explist perlist spclist
<<

"Making assumptions" 1 DISP
var UNASSUME DROP
IF lo NEG AND
THEN var lo ASSUME 2 DISP

END
IF hi NEG AND
THEN var hi ASSUME 2 DISP
END
"Checking powers of 1

and -1 containing "
.......
.......

ELSE genmemb var lo hi 3 ->LIST
2 ->LIST 1 ->LIST

END
var UNASSUME DROP

>> POP
>>

BOUNDS:

....
-> set var lo hi
<<

"Making assumptions" 1 DISP
var UNASSUME DROP
IF lo NEG AND
THEN var lo ASSUME 2 DISP
END
IF hi NEG AND
THEN var hi ASSUME 2 DISP
END
"Building var. table of

"
.......
.......

<< MAX EXPAND >> STREAM DUP2 2 ->LIST
UNROT - ABS ∞ <
var UNASSUME DROP

>> 'flaglst' SWAP STO+
.......

Sequences, series and limits with the HP49G - Part 4

4-1

Now BOUNDS returns 0
ln 3()

3








 and 1 if you give it the sequence

LNn()
n

n 1 ∞{ }







. Of course the programs are as always updated,

so you only need to transfer them to your HP49G.

Now that we have done the work let's go for fun. We are going to plot
sequences with one and with two indices with the HP49G. Hold your
breath, some fascinating things are coming. Trabakoulas lights up his
cigar (no Havana, it's Greekana, the worst smelling cigars since
Archimedes ;-), Nick lights his pipe and here we go.

First, let's do a simple analytic closed form sequence. Let's plot the

sequence
LNn()

n
n 1 ∞{ }








 so that we can visually check if

BOUNDS returned the right results. The HP49G has no special
plot type for sequences. But since we can tell the HP49G exactly
which points of a function to plot, and to plot them without
connecting them with lines, we are able to use the plot type
FUNCTION for plot of analytic closed form sequences.

Press [BLUE-SHIFT], hold the button pressed and press [F4]. The
input screen PLOT SETUP appears, and the input field "Type:" is
highlighted. If this input field doesn't contain "Function", then do
the following: Press the menu key "CHOOS" ([F2]). A pop-up
menu with a list of all available plot types appears. Use the arrow
keys to go to the plot type "Function". Press [ENTER]. Now use
the arrow keys to go to the input field "EQ:". Here we must input

the expression that we want to plot. Press [EQW] and type
LNn()

n
.

Press [ENTER] to put the expression in the input field "EQ:". Go
to the input field "Indep:". Enter 'n'. This is the independent
variable. Go to the option field "_Connect". Use the menu key
labelled "√CHK" or the key "+/-" to uncheck this option. We don't
want the connecting lines between the plot points but just the plot

points themselves. Now go to the fields "H-Tick" and enter 1. Go to
the input field "V-Tick" and enter 0.1. Uncheck the option "_Pixels" as
the units of the tick marks are not pixels.

Press [BLUE-SHIFT], hold the button pressed and press [F2]. The
input screen PLOT WINDOW - FUNCTION appears. Enter "H-View"
from -1. to 20. and "V-View" from -0.1 to 0.4. Now we have
specified which range of coordinates will be shown in the plot. We
must also specify which points will be plotted. Go to input field "Indep

Low:" and enter 1. The first value that n in
LNn()

n
 will take is 1. Enter

18. in the field "High". The last value of n will be 18. Enter 1. in the
input field "Step" and uncheck the option "Pixels". Now we have
specified that n will go from 1. to 18 in step of 1 unit and not 1 pixel.

Press the menu key [ERASE] and then the menu key [DRAW]. ([F4]
and [F5]). The finished plot looks like:

Sequences, series and limits with the HP49G - Part 4

4-2

You can press the menu key [TRACE] ([F3]) to trace the plot. But
tracing will not only be done for the plotted points but for all points of

the continuous function
LNn()

n
, as if you had a plot point on every

column of pixels in the plot environment. Nonetheless you can use the
keys [ARROW-LEFT] and [ARROW-RIGHT] to move the cursor to
any plotted point. You can also press the key [+/-] that toggles normal
and inverse cursor. When the cursor is inverse, then its pixels appear
white if they are over a plot point. If you press the menu key [(X,Y)]
([F2]) or the key [+] once, then a pair of coordinates appears at the
bottom of the screen, to let you know what the exact coordinates of the
cursor are. Pressing the menu key [(X,Y)] ([F2]) or the key [+] or any
menu key again, takes the coordinates away and redisplays the menu
labels. If you press the menu key [TRACE] ([F3]) again, then tracing
is deactivated and you can move the cursor free anywhere on the plot.

Press [ON] to leave the plot. Let's do another one. Press [BLUE-
SHIFT], hold the button pressed and press [F4] to go to the input

screen PLOT SETUP again. Enter
−1()n ∗ n + 2() + 2∗ n− 1()

3∗ n+ 4
 in the

field "EQ:". Press [BLUE-SHIFT], hold the button pressed and press
[F2] to go to the input screen PLOT WINDOW - FUNCTION again.
Enter a horizontal view from 0 to 10 and a vertical view from -.6 to 1.

Enter 1 in
" I n d e p
Low:" and
10 in
" H i g h : " .
P r e s s
[E R A S E]
and then
[DRAW] to
see the plot.

"OK, but
what can we
do when we

have recurrences?" I hear you asking. Well, we can do much! In fact
we can plot recurrences in a dozen ways, some of which will be
described in the following paragraphs, just to wake your appetite.

First of all, here is another benefit of the program RCR->ANL. If it is
able to convert a recurrence to its analytic closed form, then we can use
this analytic closed form to plot the recurrence. Remember Fibonacci?
Ha! Of course you do. Let's plot that. Enter the famous recurrence
F n() = F n −1() + F n− 2() F 0() = 0 F 1() = 1{ }{ } and use the

program RCR->ANL to convert it to its analytic closed form:

− 5
5

∗ −
−1+ 5

2



 




n

+
5

5
∗

1+ 5
2



 




n

n 0 +∞{ }








. Use the

function HEAD to get the first expression of the list on the stack:

− 5
5

∗ −
−1+ 5

2



 




n

+
5

5
∗

1+ 5
2



 




n

. Enter STEQ to store it in EQ.

Go to the screen PLOT SETUP and enter 10 in "V-Tick:". Go to the
input screen PLOT WINDOW - FUNCTION and enter -10 to 100 as
vertical view range, and 0 to 10 as low and high values of the
independent
variable n .
P r e s s
[E R A S E]
a n d
[DRAW] to
see the plot.

A n o t h e r
recurrence?
OK, let's
go! Enter
the sequence

Sequences, series and limits with the HP49G - Part 4

4-3

F n() = F n −1() + SIN
n∗π

6




 F 0() = 0{ }








. Press RCR->ANR. The

program returns:

2 + 6() ∗COS
6∗ ATAN 2 + 3() + n + 4()∗π

6









 + 2 + 3

2

n 0 +∞{ }





 










 






after a while, so be patient. Enter HEAD. Though this expression can
be simplified (using TEXPAND and EXPAND), you can directly
STEQ to store it in EQ. Go to the input screen PLOT SETUP and enter
0.5 for "V-Tick:". Go to the input screen PLOT WINDOW -
FUNCTION and enter 0 to 20 for "H-View:", -1 to 5 for "V-View:""
and "High:". Press [ERASE] and [DRAW] to see the plot.

Now, I hear already the next question: "OK, when RCR-ANL can
convert the recurrence to the corresponding analytic closed form, then
we can plot. But what if RCR->ANL isn't successful? Can we plot
then?".

Listening to this question Trabakoulas has that particular kind of smile
that means only one thing: You bet we can! (No, this was not the

influence of Greekana cigars ;-)) Actually it is exactly this case, which
lets our minds go rattle rattle again and makes us explore the not so
standard graphs.

Let's have an example of a recurrence that can't be plotted as an
algebraic object but as a program. We consider the sequence

T n() =
2∗ T n −1()

3
+ 50 T 0() = 100{ }








. How could we plot that?

We start with the "do all yourself method". We make a program that
calculates all pairs of x-y-coordinates and turns all corresponding
pixels on. Consider for example:

<<
ERASE
{#0 #0} PVIEW
DRAX
100 -> T0 @Store initial value of 100 in T0
<<

1. 15. @We plot for n=1 to n=15
FOR n
n @Put current n (indep. var.) on stack
IF @If n=1

n 1. ==
THEN @then put T0 on stack

T0
ELSE @else "cook" T(n)

2. 3. / T0 * 50 +
END
DUP 'T0' STO @Store a copy on T(n) in T0

@(to use it for the next n)
R->C PIXON @Convert to complex and turn

@the corresponding pixel on.
NEXT

>>
7 FREEZE

>>

Sequences, series and limits with the HP49G - Part 4

4-4

While you are typing this program, you notice that we calculate:

2. 3. / T0 *

Since we only need numeric results we could just multiply T0 by
.666666666667. But on the other hand it is really cumbersome to enter
this number by hand, while entering 2. 3. / is easier. But the
HP49G has the capability of replacing 2. 3. / with .666666666667
while we are typing/editing the program, that is on the fly! While you
edit, use the arrow keys to move the cursor until it is over the entered
2. Now press [RED-SHIFT] and then [APPS] set the beginning of the
marked text. Use again the arrow keys to put the cursor just after the
entered /. Then press [RED-SHIFT] and then [MODE] to set the end
of the marked text. The whole part 2. 3. / is now highlighted. Press
the key [TOOL], then press twice [NXT]. The menu key on the left
([F1]) is now labelled "EXEC". Press it and see how the entered 2.
3. / gets replaced by the number .666666666667, which is the result
of the operation. EXEC is an editing help. It will try to execute
whatever instructions in a program are marked and will replace them
with their result. Store this program in RECPLOT1.

Before you run it, we must setup the plot parameters. Press
simultaneously [BLUE-SHIFT] and [F4] to go to the input screen
PLOT SETUP. Here we only need to set "H-Tick:" to 1 and "V-Tick:"
to 25. We also uncheck the option "_Pixels". Press simultaneously
[BLUE-SHIFT] and [F2] to go to the input screen PLOT WINDOW -
FUNCTION. Enter "H-View:" from 0 to 15 and "V-View:" from -50
to 300. Press [ENTER] to accept the settings. Now let RECPLOT1
run. The produced plot looks like on the next picture. The program
that we used to do this plot doesn't really use the built-in plot types but
rather some of the general graphics commands of the HP49G. The
command ERASE, just clears the current plot picture. DRAX draws a
pair of aces. The command PVIEW shows the current plot picture with
the coordinates (specified at stack level 1) at the upper left corner of the
screen. These coordinates can be of two types. Either a list with two
binary integers or a complex number. The list with two binary integers
represents pixel coordinates. If we start counting the pixels of a
graphics object from its upper left corner starting at #0 horizontally and

vertically, proceeding
downwards and to the right,
then we get the pixel
coordinates of any pixel of the
graphics object. This type of
coordinates is absolute. On
the other hand, when we
setup the view range of some
plot, we have another set of
coordinates, the user
coordinates. These are given
as complex numbers. If we

denote the view range with Xmin to Xmax horizontally and Ymin to Ymax
vertically, then the upper left corner of the graphics object is
Xmin,Ymax() , the upper right corner is Xmax ,Ymax() and so on. The

commands for transforming one type of coordinates to the other type
are P->C and C->P.

Our program does nothing more than calculating the coordinates of the
pixels to be turned on, and turning them on with PIXON. (There is
also the command PIXOFF which turns pixels off.) When it finishes,
it uses the command FREEZE to let the plot persist. (Otherwise the
HP49G would show the normal stack display again at the end of the
program.) FREEZE takes a real number or integer as argument. To
understand how FREEZE works, you must know that the display is
divided in three areas. Staring at the top, the first is the status area
where the HP49G displays information about settings. The second is
the stack area, the area where inputs and outputs are shown. The third
is the menu area, which shows the labels of the current menu. Each of
these areas has a corresponding number. The status area has the
number 1, the stack area has the number 2 and the menu area has the
number 3. FREEZE uses these numbers to "freeze" what us shown in
some particular area after a program has been run. For example, if you
want to let the status area persist after a program has finished, you
must include 1 FREEZE in your program. For combinations of areas
you can use the sum of these numbers. If you for example want to
hold the status and stack area "frozen" after the end of a program, then

Sequences, series and limits with the HP49G - Part 4

4-5

you must include 3 FREEZE in
the program, because the sum
of the numbers for the status
and the stack area is 1+2=3.
The retain the whole display
you use the sum of all areas,
that is 7.

When you press any key after the program has finished and the display
is "frozen", then the current display is restored. (In our case the
normal stack display.) You can press key [ARROW-LEFT] to go to
the plot environment again. You can turn on the display of cursor
coordinates by pressing [F2] or [+] and you can move the cursor
around using the arrow keys. But that's all. No tracing can be done in
this case, because we didn't store the equation to be plotted in EQ. We
did all ourselves, no built-in plot was used. That is one disadvantage
of the "do it all yourself" method. The other is, especially for a
recurrence, that we can't change the initial conditions so easily. We
must edit the program and change the appropriate line for example to:

200 -> T0

to see what happens when we start with 200. Also, if we want to keep
the already plotted sequence and superimpose it with the new, we must
remove the command ERASE from the program. And we must do that
again and again for any new initial value. As experimenting with
different initial values of recurrences can be very interesting, you can
imagine that doing all ourselves is a bit cumbersome. The advantage of
this method however, is that you can draw just about anything. If you
can calculate the coordinates of the pixels to be turned on, then you can
always use this method.

Having the first disadvantage in mind, the impossibility of using the
tracing functions of the HP49G, we search for another way to plot

T n() =
2∗ T n −1()

3
+ 50 T 0() = 100{ }








. We must somehow put

the "cooking recipe" for the members of this sequence into EQ and let

the HP49G plot it. For this purpose it is of great help to understand
how the HP49G does function plots.

You remember what happened as we examined if there is a way to

solve

∂ −1()n ∗
r!

n!∗ r −n()!n =0

r

∑ ∗ a r + N− n()

∂N
= 0 using ROOT? We

solved a program instead of the above expression. Well, the same can
be done when plotting. When the HP49G plots a function it starts
evaluating the object in the system reserved variable EQ for different
values of the independent variable. These different values start at the
value which we input in "Indep Low:" and end at the value which we
input in "High:". In case we didn't enter anything in these input fields,
the values of horizontal and vertical view range are used. The HP49G
steps from the lower to the upper value in steps of the value that we
enter in "Step:". If we don't enter anything there, then a default of
"every second pixel of the screen" is used. The value of the
independent variable is "kept in mind" while it is used to evaluate the
object in EQ. The two corresponding values, independent variable
value and object evaluation value, build together a pair of x-y-
coordinates that correspond to a certain pixel on the screen. This pixel
is turned on and the HP49G continues with the next value of the
independent variable. That means, that anything that returns one real
number at stack level 1 when it is evaluated, can be used for a function
plot. Programs, not all programs but those which behave this way, can
be used for plotting. We consider the sequence

T n() =
2∗ T n −1()

3
+ 50 T 0() = 100{ }








. How can we make a

program that evaluates to exactly the same numbers like the sequence?
Well take a look at:

<<
IF @If n≤0

n 1. ≤
THEN @then put 100 on stack

100.

Sequences, series and limits with the HP49G - Part 4

4-6

Status area 1

Stack area 2

Menu area 4

ELSE @else "cook" T(n)
2. * 3. / 50 +

END
DUP @Make a copy of current T(n) for the

>> @next evaluation

Store this in EQ (STEQ). Press [RED-SHIFT], then [BACKSPACE]
to clear the entire stack!! That's important!!. Let's setup the plot
parameters. Press simultaneously [BLUE-SHIFT] and [F4] to go to
the input screen PLOT SETUP. Choose plot type "Function". Set
"Indep:" to 'n', then "H-Tick:" to 1 and "V-Tick:" to 25. Uncheck the
option "_Pixels". Press simultaneously [BLUE-SHIFT] and [F2] to
go to the input screen PLOT WINDOW - FUNCTION. Enter "H-
View:" from 0 to 15 and "V-View:" from -50 to 300. Enter 1 for
"Indep Low:", 15 for "High:" and 1 for "Step:". Uncheck the option
"_Pixels". Now press [ERASE] and then [DRAW]. Voila! The plot is
done in glory. Now, before pressing [TRACE], move the cursor
horizontally leftwards until it is at one pixel to the left of the first
plotted point. The vertical position of the cursor doesn't matter.
(We will soon see why.) Press [TRACE]. If you press the key
[ARROW-RIGHT] now, you can see that the cursor doesn't follow
the plotted points! It goes higher much quicker than the sequence and
arrives at the final value of about 150 much earlier. Why is that? Well,
many questions, so the answer is a bit long but worth it. First of all,
the program that we used to plot the sequence, is evaluated by the
HP49G. The current value of the independent variable n, is checked if
less than or equal to 1. In this case the number 100 is put on the stack.
If greater then it is first multiplied by 2... and here we have the
problem. When you press [TRACE] the x-current coordinate of the
cursor is used as the value of the independent variable. If you start at
some coordinate greater than 1, then the following part of the program
is evaluated:

ELSE @else "cook" T(n)
2. * 3. / 50 +

END
DUP

You see that the ELSE-part of the IF-THEN-ELSE clause multiplies
the number on stack level 1 with 2. But there is no number on stack
level 1. (Or if there is one, it remained there from other calculations
and the plot will be wrong. That's why you had to clear the whole
stack at the beginning.) So if you start tracing while the cursor is at
some x-coordinate greater than 1, you will get an error "Too few
arguments". If you start at 1 (or a bit smaller), then the number 100
will be put on the stack and the DUP command at the end of the
program make a copy of the value for calculation of the next point, so
that tracing works. (You can think of tracing like pixel-for-pixel
evaluation of the object stored in EQ.) The second mysterious
phenomenon, namely the faster ascending of the cursor, has to do with
our definition of the object in EQ. Notice that the independent variable
is only used for just comparing its value with 1. It is not used for
calculating the next y-coordinate value. It is more or less a dummy
which allows us to just put an initial value on the stack, a value that is
used as a hook for the rest of the calculations and tracing. When you
press the key [ARROW-RIGHT] to trace further to the right, the
program is evaluated again using as value for the independent variable
the current x-coordinate of the cursor. When the x-coordinate becomes
a tiny little bit greater than 1, then the procedure is used: "multiply by
2, divide by 3, add 50" for calculating the y-coordinate. Each time you
go one pixel to the right, this procedure is used again. So you have the
y-coordinates growing for each pixel and not for every next integer
value of n. We should correct this unusual behaviour in order to be
able to do better tracing. One way to do that would be use a procedure
that applies the procedure "multiply by 2, divide by 3, add 50" n-1
times, n being the integer part of the current x-coordinates of the
cursor. take a look at the following program:

<<
100 @Put 100 (initial value) on the stack
IF @If n f1

n 2. ≥
THEN @then "cook" T(n) with 100 as the

1 n IP @initial value
START
2. * 3. / 50 +

Sequences, series and limits with the HP49G - Part 4

4-7

NEXT
END

>>

Store this in EQ and plot it with the same settings like the previous
plot. And now the great moment of truth arrives. Press [TRACE] and
trace freely back and forth.

The only thing that remains is to have an easy way to define many
different initial values. Of course we could edit the program stored in
EQ each time we want another initial value. But it would be just boring
to leave the plotting environment, edit the program, draw again and so
on. There must be an easier way. And guess what? There is. We can
define different initial values by just using the graphics cursor, that is
without having to leave the graphics environment! First edit the above
program and change it to:

<<
T0 @Put T0 (initial value) on the stack
IF @If n f1

n 2. ≥
THEN @then "cook" T(n) with 100 as the

1 n IP @initial value
START
2. * 3. / 50. +

NEXT
END

>>

Re-STOre that in EQ. Next enter the following program:
<<
DEPTH ->LIST @Make a list out of the stack objects
-> stack @Store it locally
<<

ERASE DRAX
DO
PICTURE @Activate the graphics environment
IF

DEPTH @If then user has pressed [ENTER]
THEN

IM @Then store the imaginary part of
'TO' STO @the coordinates in T0,
DRAW 0 @draw, return 0.

ELSE @Else restore stack, return 1
stack
OBJ->
DROP
1.

END
UNTIL
END

>>
>>

Store this program in RECINTERACT. The command PICTURE
activates the plotting environment and all its comfort and the program
that contained it just stays halted at this point. When you press [ON]
the subsequent commands of the program are executed.

Run the program RECINTERACT with the same plot settings like
before. First thing you see is an empty graphics screen. Press the key
[+] to see the cursor coordinates and move the cursor using the arrow
keys to an y-coordinate of about 233. (The x-coordinate doesn't
matter.) Press [ENTER] to let the sequence be drawn again with the
new initial value. When the plotting is done, move to some other y-
coordinate, press [ENTER] and then [ON] to see another sequence.
Play around as long as you wish. If you want to exit the program,
don't press [ENTER] but only [ON] after a plot has finished.
Pressing [ENTER] after the plot has finished and while in the plot
environment, just puts the current cursor coordinates as a complex
number on stack level 1. This complex number will be used by the
program to get its imaginary part (y-coordinate) and use it as the new
initial value. When you press [ON] you leave the plotting environment.
This will let the program continue, draw the sequence for the new
initial value, and stay at the plotting environment again. Notice that
when a new initial value is entered by pressing [ENTER] in the

Sequences, series and limits with the HP49G - Part 4

4-8

plotting environment, the program detects this by checking if the stack
is empty or not. We can use this technique because we make a list of
all stack objects and store it in the local variable "stack" before we start
doing anything else. That is, when the graphs are drawn, we can
assume that there is nothing else on the stack, except (eventually)
coordinates entered by the user. If the stack contains something we
draw again and also return a 0. which is used by the DO-UNTIL-END
LOOP to decide that the user might want another plot. If you don't
enter any additional initial values, that is if you don't press [ENTER]
but only [ON], then the
program detects that there is
nothing on the stack and exits,
putting first the original stack
objects back on the stack and a
1. which is used to exit the DO-
UNTIL-END loop. You can see
the plot for three different initial
values on the picture on the
right. (This was Rcobo's
HP49G, equipped with colour
display ;-))

Another method? OK, we proceed to the more hidden features. Do you
know STORE? No, not the command STO, I mean the function
STORE. Yes, it is a function and it is allowed in algebraic objects! In
stack syntax it takes any object from stack level 2 and a name from
stack level 1. It stores the evaluated object in the name and returns the
result of the evaluation to stack level 1. In algebraic syntax you write:
STORE(object,name). Go on and enter STORE(X − 1,Y) in the
EQW. Put that on the stack, press EVAL. Now you have a new
variable Y which contains X +1, and the content X +1 itself is on
stack level 1. Which is exactly what we need to formulate plottable
algebraic expression for recurrences that can't be transformed to
analytic closed forms. Let's consider the recurrence

T n() =
2∗ T n −1()

3
+ 50 T 0() = 100{ }








 once more. (This can be

transformed to an analytic closed form, but let's use it anyway.) In its

first incarnation let the corresponding algebraic be

STORE
2∗ T0

3
+ 50,T0





 . Enter that, and STEQ to put it in EQ.

Store the initial value of 100 in T0 . Still with the same plot settings,

try to plot it. It simply evaluates
2∗ T0

3
+ 50 , stores the result in T0

and puts the same result in stack level 1. Since the function plotting
software evaluates the object in EQ repeatedly, we would expect it to
draw the same sequence again. But it doesn't! Instead of this it plots all
points at the y-coordinate of about 116.67 which is the numeric result

of the first evaluation of the algebraic
2∗ T0

3
+ 50 . (To see that, store

100 in T0 again, recall EQ and press [EVAL], [->NUM].) So the plot
looks like the picture on the right. Why is that? Well, I am not sure
about that, but through experimentation I believe that the explanation is
the following. Have you ever noticed that there is a more or less
observable delay between the key press [DRAW] and the real start of
the drawing? You get a small (or big) pause and then the plot goes on
faster than what you might have thought when the pause occurred. The
question has been often asked in the news group, "what does the
calculator do in this time?" I believe that one of the things that are done
in this time is the complete numeric evaluation of the function, except
of the independent variable, which takes different values later on,
when the HP49G actually plots. Our function,

STORE
2∗ T0

3
+ 50,T0





 , doesn't contain the independent variable

at all. It is first numerically
evaluated to 116.67, since T0
already contained 100. It is this
evaluated form that is used later
to plot the points of the sequence.
Since this is a plain simple real,
nothing changes while n takes
the values 1,2,... and so on. So,
the only y-coordinate is this
number, 116.67. We need a

Sequences, series and limits with the HP49G - Part 4

4-9

mechanism that prevents this evaluation. And guess what? We have it!

Change the current EQ to QUOTE STORE
2∗ T0

3
+ 50,T0









 


 and

re-store it in EQ. [ERASE] and [DRAW] again. This works! Store 50
in T0 and [DRAW]. The combination QUOTE/STORE does miracles
here. If you want to the function itself to contain the initial value, then
go to the EQW and enter the function to be plotted as:

IFTE n < 2,STORE(50,T0),QUOTE STORE
2 ∗T0

3
+ 50,T0









 




 


 .

This automatically stores the initial value of 50 in T0 and returns 50
for n = 1 (and all values of n less than 2). But for n ≥ 2 it calculates
the next point out of the current point.

Using the same method, we can write for the Fibonacci sequence:

Set "V-View:" from
-10 to 60, "Indep
Low:" to 0, "High:"
to 10 and step to 1
(user units). Let it
plot! Slow, but it
does its work.

So we have yet
another method to
plot sequences given as recurrences. What a blessing in disguise this
STORE was! And still we can do a little better. You have already
noticed that the last couple of methods leave an additional variable in
the current directory when the plot is done. Of course we can manually
purge it, but we can also let the HP49G do that automatically when it
finishes the plot. For the plotting programs given so far, it seems to be
easier. We simply add PURGE at the end. For example the end of the
program RECINTERACT can be changed to:

.......
UNTIL
END

>>
'T0' PURGE @Additional code

>>

But what can we do if we use STORE in an algebraic? Well, there is
also the function UNASSIGN. This function takes a variable name
from the stack, it returns the unevaluated contents of the variable on the
stack and purges the variable. It also allowed in algebraic objects
(hurrah!) where it has the syntax: UNASSIGNname() . So if we want
to get rid of T0 after, say the tenth point of

T n() =
2∗ T n −1()

3
+ 50 T 0() = 100{ }








 has been plotted, we could

change the equation so that it uses
UNASSIGN to purge the variable T0
that isn't needed anymore. I have tried
to do that, with QUOTE and without

QUOTE, but no use. The variable T0 still remained there after the plot
was done. So perhaps some of the people out there could experiment
and tell us what to do. Anyway, we already have seen that STORE and
UNASSIGN are not useless at all. They allow us to do something that
has been thought impossible. Trabakoulas looks at the horizon and
thinks of all the other hidden things waiting to be found.
While he wonders we still insist to find yet another way to get rid of
the variables that hold the initial values after the plot is done. What
about local variables? They are removed after some program has done
its work, so they seem to fit. The code of RECINTERACT can be
changed to:

<<
DEPTH ->LIST @Make a list out of the stack objects
0. @and enter a 0.
-> stack <-T0 @Store locally, <-T0 is a compiled

@local variable.
<<

Sequences, series and limits with the HP49G - Part 4

4-10

IFTE n <1.,STORE 0.,F0,(),IFTE n <2.,STORE 1.,F1(),QUOTE STORE F0+ STORE F1,F0(),F1()()()()

ERASE DRAX
DO
PICTURE @Activate the graphics environment
IF

DEPTH @If then user has pressed [ENTER]
THEN

IM @Then store the imaginary part
'<-TO' STO @of the coordinates in <-T0,
DRAW 0 @draw, return 0.

ELSE @Else restore stack, return 1
stack
OBJ->
DROP
1.

END
UNTIL
END

>>
>>

At the same time we change the program in EQ to:

<<
<-T0 @Put <-T0 (initial value) on the stack
IF @If n f1

n 2. ≥
THEN @then "cook" T(n) with 100 as the

1 n IP @initial value
START
2. * 3. / 50. +

NEXT
END

>>

When RECINTERACT finishes now, there is no global variable T0
left in the current directory, because we never used one. (Why does
the local variable have to be a compiled local variable? Why not an
ordinary local variable?)

Perhaps you wonder if storing the following program in EQ would
work:

<<
.666666666667 * 50. + @Calculate
DUP @Copy for next evaluation

>>

Store that in EQ and enter 50., the initial value required to plot it. Set
"Indep:" to 'n', "H-Tick:" to 1 and "V-Tick:" to 25, "H-View:" from 0
to 15 and "V-View:" from -50 to 300, "Indep Low:" to 1, "High:" to
15 and "Step:" to 1. If you ERASE and DRAW, then you see that it
also works. But the initial value of 50. isn't on the plot. We must make
the program better so that if we plot the first point, the value of the
initial value will be used.

<<
IF

n 2. ≥ @If we don't plot the
THEN first point, then

.666666666667 * 50. + @Calculate
END
DUP @Copy for next evaluation

>>

Store this in EQ, enter 50. and re-ERASE, re-DRAW. This time the
initial value is plotted too. (The value left on the stack after the plot is
ready, is the copy created when DUP is executed for the last time by
the program in EQ. Since nobody uses it any more, it stays all alone on
the stack, poor number.)

Using the last program in EQ, we can change RECINTERACTIVE a
little bit, so that we can use many different initial values interactively.

<<
DEPTH ->LIST @Make a list out of the stack objects
-> stack
<<

Sequences, series and limits with the HP49G - Part 4

4-11

ERASE DRAX
DO
PICTURE @Activate the graphics environment
IF

DEPTH @If then user has pressed [ENTER]
THEN

IM @Put the init. value on the stack
DRAW DROP @Draw and drop the poor number.
0 @Return 0.

ELSE @Else restore stack, return 1
stack
OBJ->
DROP
1.

END
UNTIL
END

>>
>>

This works just like before and lives no poor numbers on the stack
when we finish plotting.

Until now we have used many different ways to plot sequences, but
the plot type was always FUNCTION. Actually there is another plot
type which can be used to plot sequences. This plot type is "Scatter"
and it was initially thought for statistical plots, but we can use it to plot
any sequence of points. First of all let's look at the description of the
plot type and the usage of the plot parameters.

The HP49G uses a reserved variable named ΣDAT to hold the data that
are used for statistics. This is a matrix with the variable data in
columns. To do a scatter plot we must first choose the plot type
SCATTER. Obviously this can be done interactively in the PLOT-
SETUP screen by choosing "Scatter" as the plot type.
Programmatically the same can be done with the command SCATTER.
Because ΣDAT can have any number of columns (that is, any number
of variables) we must also specify which of the columns will be used

as the horizontal variable and which will be used as the vertical
variable. On the PLOT SETUP screen this can be done by entering the
number of the column in the input fields "Cols:". If for example the
data in the first column must be plotted against the data in the second
column, we just enter 1 and 2 in these fields. The commands for doing
the same in programs are XCOL, YCOL and COLΣ. XCOL and
YCOL both take a number n from the stack and assign the role of the
x- or y-variable to the
corresponding column of the
matrix in ΣDAT. COLΣ takes both
numbers from stack level 2 (x)
and 1 (y) and uses them to assign
the roles of both the x- and y-
variables to the corresponding
columns of the matrix. Notice that
these settings can be also made from other inform screens. For
example, if you press [RED-SHIFT] and then [5] you are presented a
pop-up menu. If you choose "3. Fit data..." from this menu, then you
are presented the FIT DATA screen where you can set the x- and y-
column. If you want to put the commands for statistics in programs
and you prefer menu hunting than typing them yourself, then you can
enter 96.01 and then MENU. You are then taken to the old fashioned
main menu for statistics, which contains other menus with commands
like XCOL, YCOL and so on.
Now, the parameters that affect the scatter (and any other statistics
type) plot, are kept in another system reserved variable named ΣPAR.
This variable is a list:

{ x-col y-col intercept slope model }

For the time being it is of interest for us to know that the first two
parameters in ΣPAR are the numbers specifying the x- and y-column.
(We will take a closer look to the other parameters in future.)

Of course the settings that affect the lookings of the plot are stored as
parameters in PPAR. (Look also at the complex numbers marathon.)
PPAR is also a list:

Sequences, series and limits with the HP49G - Part 4

4-12

value1,1 L value1,n

M O M
valuem,1 L valuem,n

















var1 varn

Obs.1

Obs.n

{ (xmin,ymin) (xmax,ymax) indep res axes ptype depend }

The meaning of these parameters for the scatter plot is:

(xmin,ymin): A complex number which specifies the lower left
corner of the display range. The value used as default
is (-6.5,-3.1). The programmable command for this
parameter is PMIN.

(xmax,ymax): A complex number which specifies the upper right
corner of the display range. The value used as default
is (6.5,3.1). The programmable command for this
parameter is PMAX.

indep: A name specifying the independent variable. Default
is X. Programmable command: INDEP.

res: not used with this plot type.

axes : A list that has one or more of the following elements
in order. A complex number specifying the
coordinates of intersection of the axes, a list that
specifies the tick marks of the axes and two strings
that are used as labels for the X- and the Y-axes.
Programmable commands for these parameters are:
AXES, ATICK. AXES takes as argument either a
complex number with the intersection coordinates of
the axes or a list containing all the axes parameters.
ATICK takes as parameters either a number
specifying the tick marks annotation distance in user
units for both axes, or a list with two numbers for
separate tick marks settings for the x- and y-axes, or
a binary integer specifying the tick marks annotation
distance in pixels for both axes, or a list with two
binary integers for separate tick marks settings for the
x- and y-axes in pixels.

ptype : The command name SCATTER.

depnd: Name specifying dependent variable. Programmable
command: DEPND.

Now that we know about the parameters for the plot, let's plot the

simple sequence
−1()n
n

n 1 ∞{ }








 using a scatter type plot. We

first create the data to be plotted. Enter n , press [ENTER] to make a
copy, then enter 1, 15 , 1. Press SEQ to generate the list

 1 2 L 15{ } . These are going to be our x-column data. The
command SEQ took an expression (in this case simply n) from stack
level 5, the variable n from stack level 4, and the start, end and step
values from stack levels 3, 2 and 1 respectively. It evaluated the
expression n for different values of the variable n starting at 1 and

ending at 15 using a step of 1. Enter now
−1()n
n

, n , 1, 15 , 1 and use

SEQ again to get the list

−1
1
2

L
−1
15









. These are going to be the

y-column data. We must convert these lists to a matrix and store the
matrix in ΣDAT. This is an easy task with the HP49G. Enter 2 and

press ->LIST to create the list

1 2 L 15{ } −1
1
2

L
−1
15

















and use AXL to convert the list of lists to the matrix

1 2 L 15

−1
1
2

L −1
15









 . Now, the data are not in columns but in rows, so

we must transpose the matrix. Enter TRAN to get the transposed

matrix:

1 −1

2
1
2

M M
15

−1
15

















. (The command TRAN is in the second page of

Sequences, series and limits with the HP49G - Part 4

4-13

menu MATRICES/OPER).
Now use the command
STOΣ to store the data in
ΣDAT. Go to the PLOT
WINDOW - SCATTER
screen and set H-View
form 0 to 15 and V-View
from -1.1 to 1. ERASE
and DRAW to see the plot.
Now, this was a rather
simple plot, but how do we
produce the data for, say
the recurrence

T n() =
2∗ T n −1()

3
+ 50 T 0() = 100{ }








? Well, one way is to use

again SEQ, but a little bit... crazier. First of all let's do the x-column
data. Enter n , n , 1, 15 , 1 and press SEQ to get the list

 1 2 L 15{ } . That was easy. For the y-column data we don't have
an analytic closed form to use as expression on stack level 5. But SEQ
accepts also programs instead of algebraic expressions. Enter first
100 , the initial value of the sequence. Then, enter the program:

<<
DUP @Copy for next evaluation
.666666666667 * 50. + @Calculate sequence member

>>

This program works on a copy of the number on stack level 1, and
creates the next member of the sequence. Enter now n or any other
name. (This name doesn't appear in the program, so in this case we
use it as a place holder, a dummy for the command SEQ, which varies
n in the specified range of values, and then evaluates the program for
each current value of n . Since the program doesn't contain n , the
evaluation isn't affected by this value and only does what the program
says.) Enter 1, 14 , 1 and press SEQ. The results are 100. in stack
level 2 and the list 116.6667 L 149.828873918{ } on stack level

1. Press [+] to
include the initial
value in the list.
Now 2 ->LIST,
AXL, TRAN and
STOΣ. Set V-View
from 0 to 300 and
ERASE DRAW
again.

So we have yet
another way to plot
sequences. There is
really a wealth of different methods to plot even recurrences, for which
perhaps one might think that they can't be plotted at all using the
HP49G. Again we see very clearly that a flexible set of available
commands allows to do much more than simply having for example a
rich predefined but inflexible set of plot types.

Enough of one dimensional sequences but not enough of plotting
sequences. We extend our experiments to two dimensions now. We
are going to plot two dimensional sequences. Some of them give us
such interesting plots that we can hardly believe what we see. First of
all, let's describe briefly what is meant by a "two-dimensional"
sequence. Consider for example the two sequences

−1()n
n

n 1 ∞{ }








 and
n− 1

n
n 1 ∞{ }








 simultaneously and

think of the members
−1()n
n

 and
n− 1

n
 as a pair. Many things can be

done with this pair, like for example plotting them one over the other
against n, or plotting them as a pair of coordinates and so on. We start
with something similar to what we had in the complex numbers
marathon. We plot two sequences against n like we did for the real and
imaginary part of a complex quantity. To make an example, let's take
the two sequences from above. Since they both start at n = 1 and go to

Sequences, series and limits with the HP49G - Part 4

4-14

n = +∞ , we can plot them together. Enter the list
−1()n
n

n −1
n









which contains both general members of the sequences. Press STEQ.
Many plot types can plot more than one expressions simultaneously
when we put all expressions in a list and store this list in EQ. We are
going to use again the plot type "Function" which behaves this way.
Go to the PLOT SETUP screen, set "Type:" to Function, "Indep:" to
n, check the option "_Simoult", uncheck the option "_Connect", set
"H-Tick:" to 1, "V-Tick:" to 0.1 and uncheck the option "_Pixels".
Now, go to the PLOT WINDOW - FUNCTION screen and set "H-
View:" from 0. to 15., "V-View:" from -1.2 to 1.1, "Indep Low:" to
1, "Step:" to 1 and uncheck the option "_Pixels". ERASE and DRAW.
The resulting plot contains both sequences. Nice, but you may already
see the problem. If both sequences contain members near to each other
then it will be hard to tell the one sequence from the other. If we
connect the points (like in real function plots) then it gets a little bit
better, but we lose the looks of the sequence and we can't see the
actual points very well. One possible way to see which points belong
to which sequence is to use the built-in capabilities of the HP49G in
graphics. While you are in the plot environment, press the menu key
[FCN] ([F4]). Press [NXT] to go to the second page of the menu.
Press [+] to display the cursor coordinates and use the arrow keys to
move the cursor to X=3. Press again [+] (or any menu key) to display
the menu again and the
press the menu key
[NXEQ] ([F4]). The
cursor moves to the
upper chain of points and
the sequence '(n-1)/n' to
which these points
belong is displayed at the
bottom of the screen.
Press again [+] (or any
menu key) to display the
menu and press again
[NXEQ]. Now the cursor
goes down to the

sequence '(-1)^n/n' and the sequence itself is displayed on the bottom
of the screen. So we can see "where we are" at any time. Press any
menu key to re-display the menu and then the menu key [PICT] ([F6])
to return to the plot environment. Press the menu key [TRACE] to start
tracing. Unfortunately using the keys [ARROW-LEFT] and [ARROW-

RIGHT] while you trace the sequence
−1()n
n

 has the undesired side

effect of temporarily displaying the message "undefined" on the top of

the screen, making the trace slow. This is because
−1()n
n

 is only real

for integer values of n. There is a work around however. Press the
menu key [(X,Y)] ([F2]) or [+] to display the cursor coordinates at the
bottom of the screen. Now the message isn't displayed anymore, but
instead of this the coordinate of Y remains "empty" for any n having
non-integer values. You may also notice that the cursor doesn't "jump"
on every point, but only to the points for n = 3. , n = 6. , n = 9. ,
n = 12. and n = 15. . Why is that? Well, the horizontal coordinate of
the cursor is calculated according to the current xmax , xmin and the
number of pixels available horizontally in the PICT, which is 131.
With our current settings there is simply no pixel having horizontal
coordinate 1, or 2 and so on. But there are pixels having horizontal
coordinate 3 , or 6 and so on. These are "jumped on" by the cursor

because the results
−1()3

n
,

−1()6

n
, etc. are real numbers. Now, you

perhaps ask, how it comes that the other points were plotted? Well,
for the plot the HP49G knew that it has to start at n =1 and go to
n =15 in steps of 1. It calculated all pairs of user coordinates and
then converted them to the pixels that are next to the calculated user
coordinates. And this because we unchecked the option "_Pixels"
when we set up the step to 1. (If you check this option, then ERASE

and DRAW, you can see that almost no point of the sequence
−1()n
n

is plotted. The HP49G then finds first the horizontal coordinates of
the pixels themselves, which under the current settings for xmax, xmin

Sequences, series and limits with the HP49G - Part 4

4-15

are almost never integer. So the expression
−1()n
n

 is not real and so

nothing is plotted.) Now let's change train and trace the other
sequence. While in trace mode press [ARROW-UP] or [ARROW-
DOWN]. While the keys [ARROW-LEFT] and [ARROW-RIGHT]
move the cursor along some plotted curve while in trace mode, the
keys [ARROW-UP] and [ARROW-DOWN] can be used to jump from
one plotted curve to the other. The cursor goes up to the sequence
n− 1

n
, which is always real for n ≠ 0 . While in PICT (even when in

trace mode) you can press [BLUE-SHIFT] and then [ARROW-
DOWN] to temporarily display the current expression on the top of the
screen. This is an additional help to let you see which expression is
currently traced.

Let's do another example now. Enter the list

COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 SIN

n2

2
+

4∗n
6

−
1
8



 


∗π



 












 and press

STEQ. With the same
settings as above
ERASE and DRAW.
On the resulting plot it
is now really hard to
keep the overview of
the points of one
sequence. As you can
see, even if we had
colours it would be
hard to tell the
behaviours of both
sequences from each

other. The points of these sequences are too near to each other, they
mix up in the plot, making it almost impossible to somehow follow the
one or the other with a simple look. So we must somehow separate
them but at the same time keep them on one plot if we want to compare
them visually. We do the same thing like in the complex numbers

marathon. We are
going to plot them one
at the top half the other
at the bottom half of
the screen. Enter
RCEQ to recall the list
stored in EQ. Use the
command OBJ-> to
explode it and DROP
to get rid of the
element count. Store
the expression

SIN
n2

2
+

4∗n
6

−
1
8



 


∗π



 


 in 'TEMP' as we are going to use it later.

Now use STEQ to store COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 in EQ. We will

plot this sequence at
the upper half of the
screen, so we must
set "V-View" from -
4 to 1 to reserve
space for the second
plot. To avoid too
many ticks on the
vertical axes, we set
"V-Tick:" to .5 .
Now, ERASE and
DRAW to get the
first half of the plot.
Now recall TEMP
and press STEQ to

store SIN
n2

2
+

4∗n
6

−
1
8



 


∗π



 


 in EQ. We want this expression to be

plotted under the first in the free space of the plot. So we set "V-
View:" from -1 to 4. Press DRAW (this time without ERASE) to plot

Sequences, series and limits with the HP49G - Part 4

4-16

the second
expression. The plot
now contains both
sequences but
separated from each
other, so that we can
see more clearly what
is the one sequence
and what is the other.
We can add a
dividing line between
the two sequences for
better separation.
While in the plot

environment press [RED-SHIFT] and then [ARROW-LEFT]. This
moves the cursor to the left of the display. Press the menu key [EDIT]
([F5]) to go to the menu with interactive commands for editing
graphics. Press [×] (multiplication key). This puts a mark at the
current position of the cursor. This mark is one of the two points that
are necessary for drawing lines, circles and boxes. Press [RED-
SHIFT] and then [ARROW-RIGHT] to move the cursor to the right.
Now press the menu key [LINE] ([F3]) to draw a line between the
mark and the current cursor position. The plot is now finished.
(Except of course if you want to try your artistic capabilities by
drawing boxes, circles and lines ;-)) We have now both sequences
plotted against n . But we could also plot the one against the other.
And as you can guess we do it, or else why should Nick say that? ;-)

Plotting the expression SIN
n2

2
+

4∗n
6

−
1
8



 


∗π



 


 against

COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 is essentially a parametric plot, with the

parameter n . The HP49G offers this plot type out of the box. The
variable EQ contains then an algebraic expression or program that
evaluates to a complex number. The real part is used as the horizontal
coordinate while the imaginary part is used as the vertical coordinate.

That means that we must store in EQ the expression:

COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 + i∗ SIN

n2

2
+

4 ∗n
6

−
1
8



 


∗π



 




Do that, and then go to the PLOT SETUP screen and set "Type:" to
Parametric. Set also "H-Tick:" and "V-Tick" to 0.2 . In the PLOT
WINDOW - PARAMETRIC screen set "H-View:" from -2 to 2 and
"V-View:" from -1 to 1. Since the dimensions of the PICT are 131x64
pixels, the width of the plot is twice its height. So the above settings
for the horizontal and vertical view range preserve the aspect ratio. Set
"Indep Low:" to 1 and "High:" to 50. Also set "Step:" to 1. Now
ERASE and DRAW. You can see that the plot is interesting because it
is... boring! Actually we would expect that many more different points
would be plotted because the expression

COS
n2

3
+

3∗ n
5

−
1
7



 


∗π



 


 + i∗ SIN

n2

2
+

4 ∗n
6

−
1
8



 


∗π



 


 was

plotted for 50 different values of n . But we have only about 30 plotted
points. If you want, you can set "High:" to, say 100, so that the
expression is evaluated and plotted for 100 different values of n . This
will not change anything. (Except for the time that you spend waiting
for the HP49G to finish
the plot ;-)) The same
points are plotted over and
over again. The sequences
have a finite number of
points which are repeated
periodically! This is
perhaps interesting but it is
nothing compared to what
we are going to see now.
Fasten your sit belts, the
excursion to the depths of
the universe is about to
begin. (Trabakoulas says that we shouldn't forget our towels ;-))

Sequences, series and limits with the HP49G - Part 4

4-17

We are going to plot the recurrence:

against the recurrence X n() = X n − 1() + 0.7∗ Y n − 1() X 0() = X0{ }{ } .
First we write a program that uses the global variable P , a complex
number X n −1(),Y n −1()() , to calculate the next point X n(),Y n()() .
(We will see where the value in P comes from in a minute.) We use
the fact that X n −1() + 0.7∗ Y n −1() appears more than once. We
calculate this quantity only once and then we use stack commands to
make copies of it which are used to complete the calculation.

<<
P RE .7 P IM * + @calculate next X
P IM OVER DUP 3. ^ @calculate next Y
25. / - .7 * +
R->C DUP 'P' STO @store a copy in P for the next

@calculation.
>>

Store that in EQ. Now, we use the same technique like in program
RECINTERACT, to supply initial values for P interactively, that
means out of the current coordinates of the graphics cursor.

<<
DEPTH ->LIST
-> stack
<<

ERASE DRAX
DO

PICTURE
IF

DEPTH
THEN

'P' STO

DRAW 0.
ELSE

stack OBJ->
DROP 1.

END
UNTIL
END

>>
>>

Store the program in REC2DINTRCT. Set parametric plot type,
independent variable to n (or any other name - it is again a dummy),
horizontal and vertical tick to 1 user unit, no connect, horizontal view
from -8 to 8, vertical view from -4 to 4, independent variable low to 1,
high to 500 and step to 1 user unit.

The check list is OK and we are ready for launch. Let REC2DINTRCT
run. The first thing you see is the plot environment and only the axes
are plotted. The program has just executed the command PICTURE
and, as already mentioned, halts there until you leave the plot
environment. While you are there you can move the cursor using the
arrow keys, press [+] to show the cursor coordinates, and in general
do anything that you can do when you manually enter the environment.
Now, press [+] to see the coordinates and use [ARROW-LEFT] to
move the cursor to X=5, Y=0 (or as near to these coordinates as
possible). Press the key [ENTER]. This puts the coordinates of the
cursor on the stack as a complex number. It is exactly this complex
number that is used as the initial value of the recurrences. Press [ON]
to leave the plot environment and let the HP49G draw 500 points
starting at the just entered point 5,0() . The sand clock appears and the
HP49G seems to work but no much happens. (While the plotting is
going on you can press [ON] to stop it, if you are not patient. This
doesn't stop the whole program but only the plotting process.) When
the HP49G is ready, be it because it plotted all 500 points or because
you interrupted the plot, it shows again the plot environment. Press [+]
to see the cursor coordinates, move the cursor to X=4, Y=0 (or as near
to this point as possible), press [ENTER] and then [ON]. Look! Some
kind of loop materialises on the screen in front of your eyes. Let it

Sequences, series and limits with the HP49G - Part 4

4-18

Y n() = Y n −1() +0.7∗ X n −1() +0.7∗ Y n −1() −
X n−1() +0.7∗ Y n −1()()3

25




 




  Y 0() = Y0{ }





 





 

form nearly completely. Again, while the points are plotted you can
press [ON] to jump to the plotting environment. Now that we know
that starting at 5,0() almost doesn't plot anything and starting at 4,0()
plots a loop, we wonder what might happen if we start at 4.5,0() .
Move the cursor there, and again press [ENTER] and then [ON]
Another loop! It seems like we are orbiting around 5,0() if we start
somewhere in the neighbourhood of 5,0() . But if we start at 5,0() we
stay there. Move to 3.5,0() , press [ENTER] and then [ON]. Another
orbit! Repeat starting at 3,0() . Wow! What is this? A chain-like orbit
forms. Actually it is an orbit that consists of... orbits! Repeat starting
at 2,0() . Watch the new orbit as it is being plotted. It starts like a
"wavy" loop but after it has almost completely formed, the plotted
points go to the left, keep moving for a while around a region which
remains white, and then build-up something like space dust around the
white region on the left and the "elliptical galaxy" on the right. We
continue constructing the universe. Repeat starting at 1.5,0() and at
1.6,0() . The cosmic dust is getting denser. And are there new sub-

galaxies forming at the outskirts of the "wavy boundary of the elliptic
galaxy"? Go to the point 2.34,−1.71() and press again [ENTER] and
[ON]. It really seems that the sub-galaxies exist. But let's move to the
left, to the white region of the universe. Go to −5,0() and draw
another iteration. It looks as if −5,0() were a point from where you
can't escape. Initial points −4.5,0() and −4,0() form orbits. −3.5,0()
forms an orbit but very slowly. −3,0() a somehow wavy orbit. But
−2.5,0() creates sub-galaxies at the boundary of the left galaxy.

Wow, we have another galaxy on the left! Starting at −2,0() puts a
halo around the left galaxy and its sub-galaxies. And starting at
−1.5,0() makes cosmic dust even denser. You might have noticed that

there are smaller white regions at the outskirts of the left galaxy. Go to
−1.6, −5.71E −1() and press [ENTER] and [ON]. Are these sub-sub-

galaxies that form in the small white regions?

We already reach the limits of resolution of the HP49G screen at this
scale. If the HP49G had better resolution we would see this:

But 131× 64 pixels are too few to see such details from such a
distance. We must move nearer to the interesting part. If you want to
keep this picture of the universe, just press [STO]. Doing this in the
plot environment just puts a copy of the graph on stack level 1, which
you can later store in some variable. But now, as Trabakoulas says in
such cases: Zoom in, zoom in! Press the key [+] to see the cursor
coordinates and move the cursor to 9.85E −1,1.84() . Press again [+]
to see the menu again. Press the menu key [ZOOM] ([F1]), and then
the menu key [BOXZ] ([F2]). Press the key [+] to see the cursor
coordinates again and move the cursor to 3.2, −6.98E −1() . Press [+]
to switch to menu display and press the menu key [ZOOM] ([F6]).
This will draw the horizontal axis and start the last iteration that we did
again. Press [ON] to interrupt it. Go to 3,0() and again [ENTER],
[ON]. You get a part of an orbit of the right galaxy. Start at 2.5,0() .
Now you see sub-galaxies forming. Let them form well. Then go to
2.57,6.72E −1() and let plot. A new wavy orbit forms just at the

outskirts of the sub-galaxies. Start at 2.59,6.72E −1() . A new orbit

Sequences, series and limits with the HP49G - Part 4

4-19

seems to want to form between the sub-galaxies and the outskirts of
the right galaxy. Start at 2.38,6.32E −1() to get an orbit at the
outskirts of the sub-galaxies, and at 2.26,6.32E −1() to get new sub-
sub-galaxies! Go to 2.69,1.2() and 2.64,1.16() and let plot. The
inner world of the first sub-galaxies is formed. Start at
2.19,6.32E −1() and 2.1775,6.32E −1() . Again white wholes at the

outskirts of the sub-sub-galaxies? Will they contain sub-sub-sub-
galaxies? Let's see. Start at 2.14,9.14E −1() . Yes, it looks like new
sub-sub-sub-galaxies! Does it ever end? Start at 2.08,5.92E −1() ,
2.02,5.92E −1() , 1.97,5.92E −1() to decorate this part of the

universe with glittering dust. Start at 1.75,4.71E −1() and let plot.
What? New galaxies in the middle of the cosmic void? And they
somehow seem to be... triangles! You might be inspired enough to
continue the construction of the universe, adding details and further
zooming in to explore interesting regions. But the more you zoom in
the more points you need to let the structures form well. And as the
poor HP49G is not a CRAY you must be very very patient. On the
next page you see what our zoomed part looks like and also some
deeper zooms which are almost impossible on the HP49G. Isn't that
wonderful? Two simple coupled recurrences construct a whole
universe! And Trabakoulas wonders why in some zoom scales it looks
like if the universe were... wooden! ;-)

And what happens if we change the recipe a little bit? Let's change the
recurrence for Y to:

Change EQ to:

<<
P RE .7 P IM * + @calculate next X
P IM OVER DUP 3. ^ @calculate next Y
25. / - .5 * +
R->C DUP 'P' STO @store a copy in P for the next

@calculation.
>>

set the horizontal view range from -10 to 10 and the vertical from -5 to
5. Also set independent variable high to 2000. We need such a high
number because some of the structures need many plotted points to
form well. For the beginning try with starting values like 0,1() , 0,2() ,
0,3() , 0,3.5() and 0,4() . Remember that you can always press [ON]

while the HP49G is plotting to interrupt the plot and continue with the
next initial point. When you're done with the above initial points try
5,0() , 4.5,0() , 3,0() , and so on until 1,0() . When some initial point

leaves some region more or less white, try starting somewhere inside
that region. Quite often you get smaller structures that form in such
regions. Zoom in interesting regions and look what new structures
appear. The new recipe might be only just a bit different from the old,
but the differences in the overall look of the plot are big. On the second
next page you have again some pictures ot the recurrences.

On the following pages we have some more universes and other
strange products of such sequences. Storing the corresponding

programs in EQ and running REC2DINTRCT you
can explore them on the HP49G. (Until the
batteries are dead, ;-)) Let it be said here that the
following plots are made on a Mac and not on the
HP49G. The plots on the HP49G will be less
perfect.

Sequences, series and limits with the HP49G - Part 4

4-20

Y n() = Y n −1() +0.5∗ X n −1() +0.7∗Y n −1() −
X n−1() +0.7∗Y n −1()()3

25




 




  Y 0() = Y0{ }





 





 

Sequences, series and limits with the HP49G - Part 4

4-21

Sequences, series and limits with the HP49G - Part 4

4-22

Sequences:

X n() = X n−1() +0.01∗ Y n −1()3 ∗ SIN 3∗ X n −1()() X 0() = X0{ }{ }

Sequences, series and limits with the HP49G - Part 4

4-23

Y n() = Y n −1() +0.71∗ X n −1() +0.7∗Y n−1() −
X n −1() +0.705∗ Y n −1()()3

25




 




  Y 0() = Y0{ }





 





 

Sequences:

X n() = X n−1() +0.02∗ Y n −1()2
X 0() = X0{ }{ }

Sequences, series and limits with the HP49G - Part 4

4-24

Y n() = Y n −1() +0.01∗ X n −1() +0.01∗ Y n −1() −
X n −1() +0.09∗Y n −1()()3

25




 




  Y 0() = Y0{ }





 





 

Sequences:

Sequences, series and limits with the HP49G - Part 4

4-25

Y n() = Y n −1() + 0.02 ∗ X n −1() + 0.07 ∗ Y n −1() −
X n −1() + 0.02 ∗ Y n− 1()()3

25









 ∗SIN 3∗ X n −1()() Y 0() = Y0{ }









X n() = X n− 1() + 0.02 ∗Y n −1()2
X 0() = X0{ }{ }

Sequences:

Sequences, series and limits with the HP49G - Part 4

4-26

X n() = X n−1() +0.03∗ Y n −1()3 ∗ X n −1()∗ SINX n −1()() X 0() = X0{ }{ }
Y n() = Y n −1() + 0.01∗ X n −1() + 0.01∗ Y n −1() −

X n −1() + 0.05 ∗ Y n− 1()()3

25









 ∗COS 3∗ X n −1()() Y 0() = Y0{ }









Sequences:

Sequences, series and limits with the HP49G - Part 4

4-27

Y n() = Y n −1() +0.07∗ X n −1() +0.7∗ Y n−1() −
X n −1() +0.7∗ Y n −1()()4

325




 




  Y 0() = Y0{ }





 





 

X n() = X n− 1() + 0.07 ∗ Y n−1()2 ∗ SIN3 ∗ X n −1()() X 0() = X0{ }{ }

Sequences:

Sequences, series and limits with the HP49G - Part 4

4-28

X n() = X n−1() +0.7∗ Y n −1() +0.0001∗ SIN2∗ X n −1()() X 0() = X0{ }{ }
Y n() = Y n −1() +0.7∗ X n −1() +0.7∗ Y n −1() −

X n−1() +0.7∗ Y n −1()()3

25




 




  +0.001∗ SIN3∗X n −1()() Y 0() = Y0{ }





 





 

Wow! That was a journey to fascinating words! Perhaps you have
already noticed that it was also a first look to chaos, which will be
subject of a future marathon. Trabakoulas sits again and thinks about
spiral distributions of goats and how they can be used in order to send
them all to the centre point, the core ;-) Beside such highly scientific
shepherd applications we have also other opportunities to apply what
we have seen.

Take for example Nick and his vegetable. Once he asked himself "why
do we have some vegetable in winter only, while some other vegetable
comes only in summer?". He asked his wife this highly philosophical
question and expected some kind of international conspiration that for
some secret reason forbids spring onions to be sold in winter. But he
was quite amazed to hear that different plants grow at different times
and that one couldn't expect to see ripe bananas growing on the Alps
in the middle of winter. Disappointed from the unexpected simplicity
of the answer (what? no conspiracy?), he decided to construct a small
vegetable house isolated from its surroundings with only one air
exchange window. The inner atmospheric conditions, like
temperature, humidity and so on, should be controlled by the HP49G.
He planned first the temperature control. The HP49G is connected to a
data link, model Rcobo-DeLuxe. This device receives temperature
readings from a temperature meter in the vegetable house every 10
seconds, and sends them to the HP49G. On the HP49G a program is
running which compares the received temperature with a value that
Nick has entered, 20°C. If the temperature inside the vegetable house
is less than 20°C then the HP49G sends the command "Heat" to the
link, which then, intelligent as it is, sends the command to the heater.
The heater starts heating for a second and then stops heating, giving
enough time for the air inside the house to be homogenised, so that the
next temperature reading really measures the temperature of the whole
house and not only at the spatial coordinates of the temperature meter.
If the temperature is over 20°C, then the HP49G doesn't send any
command and the air exchange does the cooling. So he thought that he
could establish a constant temperature in the vegetable house, so that
he could grow and sell swiss bananas in winter and greek spring
onions in summer. Trabakoulas doubt that this was going to be that
easy, but Nick nonetheless wanted to try it. The results were not at all

Sequences, series and limits with the HP49G - Part 4

4-29

25.34

HP49G

Data-Link

Temperature meter Heater

Air exchange

Vegetable

convincing. The bananas look rather like french fries and the spring
onions were stinking so strongly that one could only get in the
vegetable house wearing a diving mask with aqua lung. What went
wrong?

We simulate the above situation on the HP49G with a program.

<<
{#0d #0d} PVIEW @Show us the current PICT
DRAX
{0. 0. 0. 0. 0.
0. 0. 0. 0. 0.} @List of past temp. changes
-1. @Counter (time)
-> θCurrent θTarget ∆θh t @Store in locals
<<

DO
'∆θh'
IF @If current temp. less

θCurrent θTarget. p @target temp.
THEN

.4 @return temp. change because of heater
ELSE

0. @else no heating.
END
STO+ @Add to list of past temp. changes
θCurrent .2 - @Temp. lowering air exchange
∆θh HEAD + @Add temp. raise from before 10 sec.
'θCurrent' STO
∆θh TAIL
'∆θh' STO @Store rest of past temp. changes.
't' INCR @Increment time
θCurrent R->C PIXON @Turn correspond. pixel on.

UNTIL
t 130 == @Until we plot at t=131 seconds

END
PICTURE @We go to the plot environment

>>
>>

This simulation bases on the fact that the heat needs 10 seconds to be
distributed homogeneously in the house by air circulation. That is,
when the heater heats now, the temperature meter will read the
increased temperature because of this heating after 10 seconds. The
heater gives the amount of heat to the air in the house, that is enough
for a temperature raise of 0.4°C. At the same time, if we heat or not,
the air exchange with the outside is always present and lowers the
temperature of the house at the rate of 0.2°C per second. (It's cold out
there ;-))

Store the program in 'NICKOVEG1' and set up a horizontal plot view
range from 0 to 130 and a vertical view from 10 to 25. Because the
PICT is 131 pixels wide, setting H-View from 0 to 131 (or any other
range that contains 131 user units) actually makes 1 pixel equal to one
user unit. The PICT isn't restricted to 131× 64 pixels. It can be much
bigger. The portion that you see at a time however is always 131× 64
pixels. We are going to see how we can change the dimensions of
PICT in the next part of this marathon.

The list ∆θh plays the
role of the "history of
temperature changes
due to heating". We
always take the first
(oldest) change and
add it to the current
temperature and at the
same time we add the
newest temperature
change at the end of
the list.

The program needs
the current

temperature and the target temperature, so enter 15. and 20., ERASE
and run NICKOVEG1. The program starts plotting temperature against
time. When it finishes the plot, it switches to the plot environment, to
let us examine how the temperature changed from 0. to 130 seconds.

Sequences, series and limits with the HP49G - Part 4

4-30

 0. .2 L 0.{ }

Changes shift to
the left (past)
every time the
program plots 1
pixel.

Newest
temperature
change go here

Oldest
temperature
change is taken
from here

We see that the first
8 seconds the
temperature falls
until it reaches
13.1°C. Then it
rises until it reaches
21.9°C at 51
seconds. And from
this time on it
oscillates between
21.9°C and 18.1°C
every 19 seconds.
The poor vegetable never knew what kind of climate that was. ;-)

One reason for the bad controlling of temperature is that the heat used
to make the house warmer is too much when the current temperature
approaches the target temperature, because the thermometer reading
lags 10 seconds. So perhaps we could improve the circumstances
under the vegetable has to grow, if we take a better heater that doesn't
always give a fixed amount of heat. For example we could take the
model TH1 by TRABA-HEAT® which releases an amount of heat that
can be adjusted, so that it that causes a temperature change of
θtarget − θcurrent

10
.

The program for the simulation must now be slightly changed:
.......

IF @If current temp. less
θCurrent θTarget. p @target temp.

THEN
θTarget θCurrent − @return temp. change
10. / @because of heat

ELSE
0. @else no heating.

END
.......

The changed code is in red. Store this in NICKOVEG2, enter again
15. and 20.
and run it.
Now the
behaviour is
quite different.
T h e
temperature
falls to 13.1°C
at 8s but then
rises up to
20°C at 29s.
Then it
oscillates but
the oscillations
get weaker and weaker and from about 108s on it remains constant at
18.1°C. Better than before because the temperature remains constant
after some time, but still not very good because we wanted 20°C and
we stabilise temperature at 18.1°C. What would happen if we provide a
target temperature of 22°C? Enter 15. and 22. and run NICKOVEG2
again. Yeah! Now, after all oscillations the temperature stays at 20°C.
So we can adjust a target temperature of 22°C where we want 20°C. Or
improve the system once more.

Another weakness of the whole system is that the heat simply needs to
much time to be uniformly distributed around. We must somehow
accelerate that. What about a ventilator? Let's install model KAROT-1
from Karagiaouroglou Rotors® and see what happens. The heat needs
now 5. seconds for uniform distribution, so we change NICKOVEG2:

.........
DRAX
{0. 0. 0. 0. 0} @List of past temp. changes
-1. @Counter (time)

.........

making the history of temperature changes shorter. Store the new
program in NICKOVEG3. Enter 15. 20. and run the new program.

Sequences, series and limits with the HP49G - Part 4

4-31

13.1°C

21.9°C

18.1°C

8s

3.8°C

51s 70s

19s

13.1°C

20°C

8s 29 108s

18.1°C

Now the results are better
considering that constant
temperature is achieved
much faster and with
almost no oscillations.
But again we reach
18.1°C and not 20°C. So
we adjust again a target
temperature of 22°C and
see what happens. Enter
again 15. and 22. and run
NICKOVEG3 again.

That was it! After 32s we
reach 20°C. Theoretically
at least. The used model
for simulation is too naive
for accurate predictions,
and I tell you the function
VegetableGrowthθ() can
be very demanding ;-) Not
to speak about all the other
variables that are
important, like humidity
and the like. And not to
speak about perturbations
like for example Nick who forgot to shut the door of the vegetable
house in the middle of winter, or the goats of Trabakoulas that ate up
anything eatable in the house ;-)

That's why Nick thought again and decided not to become a vegetable
farmer but an HP49G enthusiast instead. At least the HP49G never
complained "Sequence Error: Too Low Temperature", though rumour
has that the JYA wanted to include this feature ;-)

End of this part. Next time we'll continue this marathon with series
and we'll see what the HP49G provides for working with them. I

hope that the con-sequences of travelling to wooden universes were
not very dramatic and that you don't decide to become a vegetable
farmer ;-)

Vegi-Greetings,
Nick.

Sequences, series and limits with the HP49G - Part 4

4-32

14°C

18.3°C

4s 23 28s

18.1°C

14°C

20.5°C

4s 23 32s

20°C

Zeno the sophist was a rather seldom kind of human being. He liked
thoughts that produce contradiction. And he liked being the enfant
terrible of the deic establishment of ancient Greece. One day, he was
sitting with his friend Trabakon6 the shepherd at the sea side tavern
drinking his ouzo, he found the situation quite boring. No problems
what so ever, everything peaceful and quite. But the Trabakon noticed
that a few tables away, Herakles the Hero the son of Zeus the God
was sitting and enjoying a good meal. Trabakon told Zeno about the
12 heroic missions of Heracles and that was it! Zeno had just found a
new victim. Smiling with singing voice he approached Herakles.

"Ahey! Son of Zeus, godly Herakles, a good appetite I wish you."

"Join me, oh wise Zeno, the man who brings us headaches!"

"I wish I could, oh Heracles, but studies I must do7. But before I go, a
tiny thing that I must ask,
oh hero of the 12
missions."

"Go ahead and ask wise
man, and I'll be glad to
answer."

"Can you the strongest of
the Greeks run faster
than Mara the turtle, if it
starts 1 stadion ahead of
you?"

"Wise man, of course I
can, and I am going to
prove that by just doing."

"Be careful, oh Herakles,
be careful I tell you. This
6 Ancestor of Trabakoulas
7 Zeno spoke RPL sometimes

mission is more difficult than all the others taken together."

"Wise man, explain to me."

"Suppose the turtle runs 12 times more slowly than you, oh Heracles.
Then, at the time you have just run to the point where she started,
covering the starting distance to her, she is already exactly 1

12 of the
same distance ahead."

"Yes, oh wise man, but then I'll reach her!"

"Not even then, oh Herakles! Because while you are covering that
1
12 of the starting distance, she again runs 1

12 of 1
12 of the same

distance."

Sequences, series and limits with the HP49G - Part 5

5-1

"Yes, but then...."

Herakles stopped and stood up. He understood the problem. He really
put Mara one stadion ahead and started running, but the experiment
didn't worked because Mara had better things to do than running 12
times more slowly than Herakles. The implications of this event were
enormous. Herakles went to his angry father, Zeus the God and told
him about the story. Zeus asked in agony:

"And what did you find out experimentally my son?"

"Errhh, I mean.... Mara wouldn't run.., you know..."

"We sent you to the best hero schools, oh stupid, and you just neither
know, nor you can find out?

"Sir, I..."

"Shut up! The punishment terrible will be8. You will never be a God,
you stay half a God for ever."

"Because I didn't run faster, Sir?"

"Of course not, you stupid! But rather because instead of sitting at the
tavern, eating Souvlaki and Tzatziki and drinking ouzo, you preferred
to let Zeno make a fool out of you!" Saying this Zeus blinked with the
eyes, as he always did when he wanted to say that in reality the
punishment was no punishment at all. Herakles didn't get that
immediately but he did understand after some years, when he
compared again his life with the life of Gods. Night after night at the
sea side tavern, enjoying terrific meals and the presence of the most
beautiful girls, instead of the monotonous nectar and ambrosia of the
Gods. Being a fool has also advantages sometimes ;-)

Despite the big life that Herakles makes, let's try to prove Zeno
wrong. We do it using simple physics first, and later we'll examine it
also using series maths. Let the speed of Mara be v . If Heracles runs
8 Zeus also spoke RPL sometimes

12 times faster than Mara, then his speed is 12∗ v . Let's farther put the
point 0 of the x-coordinate at the starting point of Heracles. Mara starts

at x = l , l being in this particular case the length of 1 antique greek
stadion about 185m. At t =0 we have the situation as demonstrated on
the above picture taken with a Trabon X1000 camera. Now, Zeno fires
a signal and watches both athletes running. To his embarrassment
Herakles dies reach Mara. Let's denote the time when Herakles reaches
Mara with t1. At any time t the x-coordinate of Mara is l+ v ∗ t . At the
time t1, that is when they meet, her x-coordinate is l+ v ∗ t1. Zeno
enters this on his HP49G. The x-coordinate of Herakles at any time is
12∗ v ∗ t . When they meet his x-coordinate is 12 ∗ v ∗ t1. Zeno enters
this expression on his HP49G again. Because they meet both x-
coordinates must be equal. Zeno presses [=] and gets the equation
l+ v ∗ t1 = 12 ∗ v ∗ t1. Now he enters t1 and he presses [SOLVE]. His

HP49G returns t1 =
l

11∗ v
. This is the time when Herakles reaches

Mara. Zeno enters again the x-coordinate of Mara at the time t1 which

is l+ v ∗ t1. He presses [OVER] to get a copy of t1 =
l

11∗ v
 at stack

level 1 and then [SUBST], [EXPAND]. The result is
12 ∗ l

11
, the x-

coordinate of Mara when Heracles reaches her. Very nervous, Zeno re-
enters 12 ∗ v ∗ t1, the x-coordinate of Heracles at t1. He presses
[ARROW-UP] to go to the interactive stack, and then presses again
twice [ARROW-UP] to go to stack level 3. Then he presses the menu

Sequences, series and limits with the HP49G - Part 5

5-2

x=0 x=l

t=0

key [ECHO] ([F1]) to take t1 =
l

11∗ v
 in the command line, and then

he presses [ENTER] to leave the interactive stack. Now his command
line contains 't1 = l / 11∗ v()'. He presses [ENTER], [SUBST],

[EXPAND] and gets the x-coordinate of Heracles
12 ∗ l

11
 at the time t1.

The same x-coordinate as Mara's! Zeno turns red, he fumes, throws

his HP49G to the ground and decides to become a vegetable farmer
without HP49G. ;-) The moral of the story: Never mess up with a
greek Hero when he sits at the tavern ;-)

But why did Zeno such a mistake? What was his error? Well, if we
consider the expression that gives the x-coordinate of Mara, as he
considered it, we have:

xMara = l+
l

12
+

l
12
12

+

l
12
12
12

+L = l +
l

12
+

l
122 +

l
123 + L =

l∗ 1+ 1
12

+ 1
122 + 1

123 +L





with l the length of one stadion. The expression in the parenthesis is a

series for which Zeno believed that it can grow above any limit. This
made him think that Heracles and Mara will meet at x = +∞ , that is

never. He thought that adding
1

12n with n going from 0 to +∞ will

give a number that grows and grows above any finite number. But
adding something an infinite number of times and infinity itself are two
different pairs of shoes in this case. As we know today, the sum

1+

1
12

+
1

122 +
1

123 +L =
1

12n
n=0

+∞

∑ converges to
12
11

. Let's see if the

HP49G knows that. Enter
1

12n
n =0

+∞

∑ and press [EXPAND]. Voila! You

get
12
11

. This sum is but an example of an infinite series (or briefly

series). In general we write for a series:

a0 + a1 +a 2 +L = an

n= 0

+∞

∑ .

The statements that we have for sequences are very useful when we
examine series. Beginning with a series, we can construct the sequence

of its partial sums. We construct all finite sums, s0 = an
n= 0

0

∑ ,

s1 = an
n =0

1

∑ , s2 = an
n= 0

2

∑ ,

and so on and we get a
sequence s0 ,s1,s2,L . Iff
this sequence of partial
sums converges, that is
iff it has a limit, then the
series also converges
and has the same limit.
Let's take for example

Zeno's series
1

12n
n =0

+∞

∑ .

We construct the

Sequences, series and limits with the HP49G - Part 5

5-3

x=0

t = t1 =
l

11∗ v

x =
12∗ l
11

Partial sums sequence of a series an
n =0

+∞

∑

s0 = a0 = an
n =0

0

∑

s1 = a0 + a1 = an
n =0

1

∑

s2 = a0 + a1 + a2 = an
n =0

2

∑
 L L

 sn = a0 + a1 + a2 + L+ aN = an
n =0

N

∑

sequence of partial sums. It is easy to write some certain members of
this sequence, but what does the general Nth member looks like? We

can use the HP49G to find that. In real mode enter
1

12n
n =0

N

∑ and press

[EXPAND]. The HP49G says:
12 ∗12N +1 −12

11∗12N +1 . EXPAND again to

get
12 ∗12N −1

11∗12N . That is, if we use the notation that we used until now

for sequences, we can enter the partial sums sequence of Zeno's series

as
1

12n
n =0

N

∑ N 0 +∞{ }







 or
12 ∗12N −1

11∗12N N 0 +∞{ }







. The

HP49G can find the limit of this sequence in both forms. Enter
1

12n
n =0

N

∑ , then N = +∞, and then press [lim]. After some seconds the

HP49G returns
12
11

. For the other form, enter
12 ∗12N −1

11∗12N , then

N = +∞ and then press [lim]. Again the result is
12
11

. Notice that when

finding the limit using the second form, the HP49G switches the
current VX to N. So if your VX is something else, use STOVX to
reset it to what you had before finding the limit. The HP49G is able to
find many limits of series out of the box. That means, we don't need to
program much. Hurrah! ;-)

Let's have another example. We take
a square and divide it in two equal
parts. Then we divide the right half
in two equal parts, again the right
half i two equal parts and so on. The
picture on the right suggests that the
sum of all parts has to be 1. This
sum is an infinite sum, a series, of

the form

1
2

+
1
4

+
1
8

+ L =
1
2n

n=1

+∞

∑ .

Let's see if it converges. Enter
1
2n

n=1

+∞

∑ and press [EXPAND]. The

result is 1. Again, let's find the
general member of the partial sums sequence of this series. Enter

1
2n

n=1

N

∑ and expand twice. The result
2N−1
2N is the general member of

the partial sums sequence
2N −1

2N N 1 +∞{ }







. Of course, since

the HP49G can find the limit of this series, it isn't necessary to find the
general member the partial sum sequence and then find its limit for
n → +∞ . But it might be useful for other cases to have a program that
takes such a series and returns its partial sum sequence.

<<
->LST -> seqlst @Turn to RPL List
<<

seqlst @Replace ∞ with N
3 'N' PUT

Sequences, series and limits with the HP49G - Part 5

5-4

Partial sums sequence of Zeno's series
1

12n
n =0

+∞

∑

s0 =1=
1

12n
n =0

0

∑

s1 =1+
1

12
=

1
12n

n =0

1

∑

s1 =1+
1

12
+

1
122 =

1
12n

n =0

2

∑
 L L

 sN = a 0 + a1 + a2 +L+ aN =
1

12n
n =0

N

∑ =
12∗12N−1
11∗12N

1
2

1
4

1
8

1
16

 L

->ALG EXPAND EXPAND @Turn to alg. and expand
'N'
seqlst 2 3 SUB @Get sub list with low and high
+
1 ->LIST + @Turn to sequence

>>
>>

Store the program in PARTSUMSEQ. Enter the previous series
1
2n

n=1

+∞

∑

and run PARTSUMSEQ. The result is
2N −1

2N N 1 +∞{ }







, the

partial sums sequence in our notation. Notice that the original series
must not contain N in the summand expression.

Perhaps it is interesting for you to know that even in the 18th century
the was not total clarity about series. For example the limit of the series

1− 1+1−1+1− 1L = −1()n

n=0

∞

∑ was taken to be 0 if the series were

written as 1−1() + 1−1() + 1−1()L , or 1 if the series were written as

 1− 1− 1() − 1−1() −L . But if we use the partial sums sequence,
s0 = 1, s1 = 0 , s2 = 1, s3 = 0 , L , we see that it doesn't converge.
The series has thus no limit, it also does not converge. What does

PARTSUMSEQ do if we give it the series −1()n

n =0

∞

∑ ? Enter it and press

PARTSUMSEQ. The program returns −
e i∗N +i()∗π −1

2
n 0 +∞{ }









and the HP49G switches to complex mode. The expression

−
e i∗N +i()∗π −1

2
 is what the HP49G says when it wants to tell us that it

found an expression which can be 0 or 1. Indeed if in the above
expression we substitute N = 0 and expand, we get a 1. If we

substitute N = 1 and expand we get a 0 . Can the HP49G find if the

series −1()n

n =0

∞

∑ converges or not? Let's see. Enter −1()n

n =0

∞

∑ and press

EXPAND. Be prepared for some unusual things. After some seconds
you get the message "Bounded var error" and you can continue by
pressing the menu key [OK] ([F6]). If you press [OK] then you get
another message, "SERIES remainder is O(1) at order 3". Again press
the men key [OK] to continue. The HP49G rattles some seconds and
then presents you another "Bounded var error". Press again [OK].
Heavens! Another "SERIES remainder is O(1) at order 3" and another
key press of the menu key [OK]. And the result is...? . This can have
two different meanings. Either the HP49G found that the series has no
limit or it didn't find anything any wants to say "Dunno!". Notice that
the Hp49G has switched to complex mode and that it set n as the
current VX. Use STOVX to set your VX again. But the changes go
further. The HP49G has added the assumption that n is real to the list
REALASSUME. Enter 'n' and use the program RCASSM from part 3
of this marathon to see that. If you don't want to have that assumption,
enter 'n' and use the function UNASSUME to remove it.

We can use the program CONVERGES? and the partial sums sequence

to get an answer to the question of convergence of −1()n

n =0

∞

∑ . Enter this

series and use PARTSUMSEQ to get again the partial sums sequence

−
e i∗N +i()∗π −1

2
N 0 +∞{ }









. Now, you remember that the

program SPCASES will find the special cases to which the expression
for the general member of the sequence branches. But we didn't
program any recognition of patterns like ei∗N∗π and so SPCASES will

do nothing with this sequence. We must first convert −
e i∗N +i()∗π −1

2
 to

trigonometric expressions. Press [DUP], [HEAD] and then

[SINCOS]. The result is −
COS π∗ N+1()() + i∗ SIN π∗ N +1()() −1

2
.

Sequences, series and limits with the HP49G - Part 5

5-5

Enter a 1 and press [SWAP], [PUT]. Now the partial sums sequence
is converted to:

−
COS π∗ N+1()() + i∗ SIN π∗ N +1()() −1

2
N 0 +∞{ }









Run the program CONVERGES? and in some seconds you get 1 0{ }
on stack level 2 and 0 on stack level 1. The 0 says that the partial
sums sequence and thus the series itself doesn't converge. The list at
stack level 2 contains the values of the limits of the two "branches" of
the sequence, those two values that in the 18th century were said to be

the limits of the series −1()n

n =0

∞

∑ depending on how it was written. The

program CONVERGES? has given the HP49G has historical
knowledge. ;-)

One of the simplest series that one can examine is the arithmetic series

a0 + n∗ d
n =0

+∞

∑ , which results from the members of the arithmetic

sequence a0 +n∗ d n 0 +∞{ }{ } . The series of course does not
converge, since the members of the arithmetic sequence grow and

grow above any finite number. Enter a0 +n∗ d
n =0

+∞

∑ and expand. The

result is +∞ , the series goes to infinity. But we can also examine the

behaviour of the finite arithmetic series a0 + n∗ d
n =0

N

∑ . It is not known

for sure if the following really happened, but it is nonetheless worth
telling it. When Gauss was 9 years old, his teacher Büttner gave the
class the exercise to add all numbers from 1 to 100. He had hardly
returned to his desk when the small Carl Friedrich Gauss (Kalle Fritz,
as we would say today) put his arithmetic slate on Büttner's desk, and
said: "Dar licht se"9 . The teacher smiled but he was quite surprised
9 "There it lies"

when he collected all the arithmetic slates from the other children and
saw that on Gauss' one there was only the correct result, 5050. No
additions, no calculations what so ever! How did Kalle Fritz calculated

the result of 1+ n∗1
n =0

99

∑ = 1+ n −1() ∗1
n=1

100

∑ = n
n =1

100

∑ so fast? Did he have

an HP49G? Well, such people don't need that, though we can of
course ask, what they would be able to do if they did have an HP49G.
Gauss did the following:

His teacher, Büttner, recognised that small Kalle Fritz should learn
much more than what was taught in that class and so he brought him
from Hamburg a special book, Remers Arithmetica. Gauss' idea can
be applied to any finite arithmetic series.

Does our small HP49G knows about finite arithmetic series? Let's try.

Enter a0 +n∗ d
n =0

N

∑ and expand. After some seconds the HP49G

answers with
2∗ N+ 2() ∗a0 + d∗N2 + d∗N

2
. For the special case of

Gauss, enter 1+ n∗1
n =0

99

∑ or n
n=1

100

∑ and expand to get the result 5050. If

you enter 1+ n∗1
n =0

N −1

∑ or n
n=1

100

∑ for getting the sum of all integers from 1

Sequences, series and limits with the HP49G - Part 5

5-6

 1 + 2 + 3 + L + 50 +
 100 + 99 + 98 + L + 51

 101 + 101 + 101 + L + 101

50 pairs.
Each pair sums to 101
50*101=5050

up to N, you get the result
N2 +N

2
. Press [COLLECT] to get

N∗ N+ 1()
2

, which says exactly what Gauss found for N = 100 . We

have
N
2

 pairs, of which each pair sums to N+1.

We can also use this fact to solve problems like the following:

1) Solve n
n=1

N

∑ = 5050 for N.

Enter n
n=1

N

∑ = 5050, enter N, press SOLVE. The result is

N = 100 N = −101{ } . You get two solutions because the

HP49G first finds the result for the sum, which is
N2 +N

2
, and

then solves the quadratic equation
N2 +N

2
= 5050 for N. This

returns the above two solutions and you have to keep the right
one. If you want the HP49G to automatically filter out the
solution N = −101, then enter N ≥ 1 and then ASSUME, before
solving the problem. The HP49G then will return only the first
solution, N = 100 .

2) A finite arithmetic series an
n=1

N

∑ = a1 + n −1()∗ d
n=1

N

∑ has a1=3,

aN = 43 and d = 5 . Find N, and the sum of the series.

First we calculate for what value of N the summand of the form
a1 + N −1() ∗d equals 43 . Enter a1+ N−1() ∗ d = 43, a1= 3
and press [SUBST]. Then enter d = 5 and press [SUBST]

again. Now, enter N and press [SOLVE]. The result is N = 9 ,

which means that we have the finite series is a1 + n −1() ∗d
n=1

9

∑ .

Enter a1+ n −1() ∗ d
n =2

N

∑ , N = 9 and press [SUBST]. This will

not only do the substitution but also calculate the sum. The result
is: 9∗ a1+ 36 ∗ d . Enter again a1= 3 and press [SUBST], then
enter d =5 and press [SUBST] again. Expand to get 207, the
sum of the finite series.

3) For a finite arithmetic series a1 + n −1() ∗d
n=1

N

∑ we know that

d = 12 , aN = 60 and that its sum is equal to 180. Calculate N
and a1.

Enter a1+ n −1() ∗ d
n=1

N

∑ = 180 and then d = 12 and press

[SUBST]. The HP49G calculates the sum and returns
N∗a1+ 6 ∗N2 − 6∗N = 180 . Enter a1 and press [SOLVE] to

get a1= −
6∗N2 − 6 ∗N −180

N
. Now enter the Nth summand,

a1+ N−1() ∗ d, press [OVER] and then [SUBST] to substitute
for a1. Enter d = 12 and substitute again. Enter 60 , the value
of the Nth summand, and press [=]. Now you have the equation

−
6∗N2 − 6 ∗N− 180

N
+ N −1()∗12 = 60 which can be solved

for N. Enter N and press [SOLVE]. You get two solutions in a
list: N = 6 N = 5{ } . Both are valid and we will soon see why.
Now press [ARROW-LEFT] to swap stack levels 1 and 2 and
then press [OVER] to get a copy of the solutions list on stack
level 1. Press [SUBST] to make the two substitutions N = 6 and

Sequences, series and limits with the HP49G - Part 5

5-7

N = 5 and then press [EXPAND]. The result is the list
a1= 0 a1= 12{ } . The results tell us that there are two series

are solutions to our problem. The first is 0 + n −1()∗12
n=1

6

∑ and

the second is 12 + n −1()∗12
n=1

5

∑ .

The problem can also be solved using another way. Enter

a1+ n −1() ∗ d
n=1

N

∑ = 180 , d = 12 and press [SUBST] to get

N∗a1+ 6 ∗N2 − 6∗N = 180 . Now, enter a1+ N−1() ∗ d = 60 ,
d = 12 and [SUBST] to get a1+ N−1() ∗12 = 60 . Enter 2 and
press [->LIST] to get a list containing the two equations. Press
[AXL] to convert the list to a vector. Now you have a vector
with the two equations:

N∗ a1+ 6∗N2 − 6 ∗N = 180 a1+ N −1()∗12 = 60[]
Enter the vector of unknowns, N a1[] . Press [GBASIS]. The
command GBASIS takes a vector of simultaneous polynomial
equations and a vector with the unknowns contained in the
polynomials. It returns a vector of equations which can be used
to find solutions. In our case the result is:

12 ∗N + a1− 72 a12 − 12 ∗a1[]
The second equation, a12 −12 ∗a1= 0 , contains only one
unknown, a1. Press [OBJ->] and [DROP] to explode the
vector. Enter a1 and press [SOLVE]. The result is the list
a1= 0 a1= 12{ } . Press [ARROW-UP] to go to the interactive

stack. Press [ARROW-UP] once more to go to stack level 2,
and then press the menu key [ROLL] ([F5]) to roll the contents
of stack level 2 to stack level 1, effectively swapping the two

stack levels. Press the menu key [PICK] ([F4]) to put a copy of
the contents of stack level 2 on stack level 1. Press [ON] to leave
the interactive stack. Now press [SUBST] to substitute the two
solutions for a1 in the equation 12 ∗ N+ a1− 72 . Enter N and
press [SOLVE] to get the solutions N = 6 N = 5{ } .

The results of GBASIS can always be used to find first solutions
for one unknown, substitute these solutions in the previous
equation, find solutions for the next unknown, and so on,
subsequently substituting and solving for all unknowns.

The next series that we examine is the finite geometric series

a0 ∗qn

n =0

N

∑ . First of all, let's see if the HP49G can tell us what the sum

of the series is. Enter a0 ∗ qn

n =0

N

∑ and expand. The HP49G needs some

seconds to return
a0 ∗ q

N+1() − a0
q −1

. What would happen if we give it

assumptions for q? Enter q ≥ 0 and use ASSUME to make this

assumption about q . Enter again a0 ∗qn

n =0

N

∑ and expand. This time the

result is
a0 ∗ q N +1() −a0

q −1
, which means that the assumption was taken

into consideration. Remove the current assumption by entering q

UNASSUME. Enter q ≤ 0 ASSUME. Enter again a0 ∗qn

n =0

N

∑ and

expand. The result is now −
a0 ∗ q N+1() ∗e i∗N+i()∗π − a0

q +1
 and the HP49G

has switched to complex mode. Remember that the expression e i∗N +i()∗π
is HP49G's way to say "either 1 or -1". You can demonstrate this.

Sequences, series and limits with the HP49G - Part 5

5-8

Press [ARROW-DOWN] to get the result in the EQW and select the
sub-expression e i∗N +i()∗π . Press [RED-SHIFT] and then [VAR] to copy
the sub-expression. leave the EQW by pressing [ON]. Now, press
[RED-SHIFT] and then [NXT] to paste the sub-expression on the
command line. Press [ENTER] to put it on stack level 1. Now, enter
N 0 3 1 and press [SEQ] to make a sequence of e i∗N +i()∗π for N = 0 to
N = 3 . The result is the list −1 1 −1 1{ } .

For q = 1 the series is a0 ∗1n

n =0

N

∑ = a0
n=0

N

∑ = a 0 + n∗0
n= 0

N

∑ = a0 ∗ N+1() ,

that is a simple arithmetic series with d = 0 .

Remove now all assumptions for q , by entering q UNASSUME.

Using the fact that the HP49G "knows" about finite geometric series,
we can solve problems like the following:

1) A finite geometric series a0 ∗ qn

n =0

N

∑ has a0 = 2 , q = 5 and its

sum is 976562. Calculate N.

In real mode enter a0 ∗ qn

n =0

N

∑ = 976562 and q = 5 . Press

[SUBST]. The HP49G returns
a0∗ e N+1()∗LN5() − a0

4
= 976562.

If you don't like the exponential form, enter EXP2POW to

convert the result to
a0 ∗ 5 N +1() − a0

4
= 976562. Enter a0 = 2

and press [SUBST] again to get
2∗ 5 N +1() − 2

4
= 976562. Enter

N and press [SOLVE] to get N = 8 .

2) The arab historian Ja'qubi reports: The Sheikh of Persia was
very pleased by the game of chess, that he wanted to do the
inventor of the game, Sessa Ebn Daher, any favour. Sessa Ebn
was apparently much cleverer than the Sheikh. He answered that
he wanted to have the amount of corn that results, if someone
puts one grain of corn on the first square of the checkerboard,
two on the next, four on the next next, and so on continuing
always with twice the number of the previous square. The
unlucky Sheikh accepted, but... he could never do Sessa that
favour. Find out why.

Since the chessboard has 64 squares the total number of grains

would have been 1∗ 2n

n =0

63

∑ which expanded on the HP49G

returns 264 − 1. If we assume that the whole earth is a single
corn field that with the approximate surface of 5.1E10_ha , that

it produces 40_
dt

ha ∗yr
 and each dt has 2E6 grains, then the

whole earth produces the amount of:

5.1E10_ha ∗40_
dt

ha ∗ yr
∗2E6_

grain
dt

= 4.08E18_
grain

yr
.

That means that we can harvest the amount of

264 −1() ∗1_grain in
264 −1() ∗1_grain

4.08E18_
grain

yr

. Pressing ->NUM

this gives us about 4.5_yr ! The moral of the story: Arab game
inventors are much much cleverer than greek sophists. ;-)

Sequences, series and limits with the HP49G - Part 5

5-9

After the finite geometric series we take a look at the infinite geometric

series a0 ∗qn

n =0

∞

∑ , or just geometric series for brevity. We have already

seen that the Nth member of the partial sums sequence of this series is

a0 ∗qn

n =0

N

∑ =
a0 ∗ q

N +1() −a0
q −1

. The fate of the series depends on q. If

 q p 1 then it converges. If q f 1 then it doesn't converge. Let's see

what the HP49G says for a0 ∗qn

n =0

∞

∑ in the case q p 1. We can't make

this assumption in this form. Instead of this, enter q UNASSUME,
q ≤ 1 ASSUME, q ≥ −1 ASSUME. Now the list REALASSUME in

CASDIR contains q ≤ 1 AND q ≥ −1. Enter a0 ∗qn

n =0

∞

∑ and

expand. The HP49G returns −
a

q −1
 which is correct. For the case

 q f 1 we must consider the cases q ≥ 1 and q ≤ −1 separately. Enter

q UNASSUME q ≥ 1 ASSUME. Now, enter a0 ∗qn

n =0

∞

∑ and expand

again. The result now is +∞ which is also correct. Enter q

UNASSUME q ≤ −1 ASSUME. Enter a0 ∗qn

n =0

∞

∑ and expand another

time. Now it takes much longer to get an answer. At the end after
much rattling the HP49G says ?. When q ≤ −1 the summands a0 ∗ qn
will alternative from positive to negative and vice versa, with always
bigger absolute values. So the series doesn't converge as it will switch
its sign from + to - with every new added member. Notice that the
HP49G has switched VX to n. So use X (or what your VX is)
STOVX to restore your current VX. Notice also that the HP49G has
switched to complex mode, so you might want to restore real mode
now. Last thing to do, enter q UNASSUME to get rid of the
assumptions for q.

One of the practical applications of the geometric series is presumably
part of XQ and ->Q. Consider for example the periodical decimal

number .2525L . This can be represented as

25

100
+

25
10000

+L . The

latter is the geometric series with a0 =
25
100

 and q =
1

100
. That is, the

number .2525L is equal to
25

100
∗

1
100





 n =0

∞

∑
n

. As we already found

out, the series converges to −
a

q −1
= −

25
100
1

100
−1

=
25
99

. Enter

25
100

∗
1

100




 n =0

∞

∑
n

 and expand to get the result
25
99

. If you now press

the key [->NUM] you get the original number .2525L .

Another example. Suppose that you have six lines passing through

point O and having all an angle of
π
6

 to each other. From point P0 of

one of the lines we draw one line segment orthogonal to the next line
until point P1. From there we draw a line segment orthogonal to the
next line until P2. And so on. What is the length of the "spiral"?.

For the length l0 of first segment we have: l0 = a∗ SIN
π
6





 . The

length of the segment OP1 is a ∗COS
π
6





 . Thus for the length of l1

we have l1= a ∗COS
π
6





 ∗SIN

π
6





 . The length of OP2 is

a ∗COS
π
6





 ∗ COS

π
6





 = a∗ COS

π
6







2

. Thus for the length of l2

Sequences, series and limits with the HP49G - Part 5

5-10

we have l2= a∗ COS
π
6









2

∗SIN
π
6







 . The infinite sum ln

n =0

∞

∑ is a

geometric series with l0 = a∗ SIN
π
6





 and q = COS

π
6





 . The series

is a∗ SIN
π
6





 n =0

∞

∑ ∗COS
π
6







n

. Because −1≤ q = COS
π
6





 =

3
2

≤ 1

the series must converge. Enter a∗ SIN
π
6





 n =0

∞

∑ ∗COS
π
6







n

 and press

[EXPAND] to get the length of the spiral, 2 + 3()∗ a .

We already see that the build-in ∑ is quite powerful and can find the
sum of many series. But there are also series for which ∑ returns a
question mark. Examples:

1
nn=1

∞

∑ The series doesn't converge. The result

should be +∞ .

−1()n +1

nn=1

∞

∑ The series converges.

COS n∗ π
2

+ π
4







nn=1

∞

∑ Doesn't converge, goes to +∞ .

1−
1
n







n

n=1

∞

∑ Doesn't converge, goes to +∞ .

LN n()
2n

n=1

∞

∑ Converges.

n!
nn

n=1

∞

∑ The series converges. If you try to expand

this the HP49G says "Operator not
implemented (SERIES)" and returns a ?.

First of all we need some criterion that lets us distinguish between
series that we should further examine for convergence, and series for
which we can say that they don't converge and so no further checking

Sequences, series and limits with the HP49G - Part 5

5-11

π
6

a

l0

l1
l2

O P0

P2

P1

is necessary. An easy implementable criterion would be:

For convergence of a series an
n=1

∞

∑ it is necessary (but

inconclusive) that the sequence an of the summands
converges to 0.

The above means that if we find for some series an
n=1

∞

∑ that the limit

lim
n→∞

an f 0 or that the limit doesn't exist, then we can say that the

series diverges. If we find that lim
n→∞

an = 0 then the series an
n=1

∞

∑ can

converge but it doesn't have to, and so we must further examine it.
This criterion (or convergence test) is useful because it lets us filter out
all series for which no further testing is necessary, diminishing thus
the amount of work that the HP49G has to do. Take for example the

series 1−
1
n







n

n=1

∞

∑ . If you expand that then you get ? as the result.

The built-in functionality of Σ is not enough even for saying if the

series converges or not. But we can examine 1−
1
n







n

. Entering that

and then n = ∞ and pressing [lim], returns
1
e

. Because

1
e

f 0 we

know that the series diverges and that no further tests are necessary.

Another example, let's consider
−1()n +1

nn=1

∞

∑ . If you expand this, you

get a ?. Enter
−1()n +1

n
, n = ∞ and press [lim]. The HP49G returns...

"lim Error: Mode switch not allowed here". So we have a problem.
But hey! We have the program CONVERGES?. Let's try that. Enter

the sequence
−1()n +1

n
n 1 ∞{ }









 and press CONVERGES? The

result after some seconds is the list 0 0{ } on stack level 2 and a 1 on

stack level 1 which says that
−1()n +1

n
 does converge. It branches to two

special cases, each of them having the limit 0 when n → ∞ . For us

this means that we have to further examine the series
−1()n +1

nn=1

∞

∑ to see

if it converges or not. It also means that we should rather use the
program CONVERGES? and not the built-in lim. A program for
enhancing the built-in in capabilities of the HP49G regarding series,
would in general:

1) Take a series an
n=1

∞

∑ from the stack.

2) Check if expanding returns a result different than ?.
2) If it does, then we're done.
3) If the result is ?, then check convergence of the sequence

an n 1 ∞{ }{ } using the program CONVERGES?

4) If CONVERGES? finds that the sequence an n 1 ∞{ }{ }
converges to 0 , or if it can't find if the sequence converges, then
do further tests.

5) If CONVERGES finds that the sequence an n 1 ∞{ }{ }
converges to a limit different than 0, or that it diverges, then we

are done and the series an
n=1

∞

∑ diverges.

Perhaps you ask yourself now, why we don't use the partial sums
sequence. If this sequence converges to some limit, then the series
itself converges to the same limit. But the problem is that if the HP49G

can't do anything with the series an
n=1

∞

∑ , then it is likely that it will not

Sequences, series and limits with the HP49G - Part 5

5-12

be able to do much with the partial sums sequence

an
n=1

N

∑ N 1 ∞{ }







. Sometimes it will be able to transform the finite

sum an
n=1

N

∑ to some analytic closed form as a function of N, but then it

will not be able to find if limit of this analytic closed form exists for
N → ∞ . Our program in construction for enhancing the built-in Σ is:

<<
PUSH @Save flags and current dir.
DUP OBJ-> DROP2 @Explode series
{ HOME CASDIR
REALASSUME } RCL @Recall current assumptions
RCLVX @Recall current VX
-> series ivar lo hi
sumnd assmlst vx @Store in locals
<<

IF
"Trying built-in

methods..." 1 DISP
series EXPAND @Try expanding
-103 CF @Sometimes expanding a series

@will switch to complex mode,
@so re-switsh to real mode.

DUP series SAME
NOT @If result is not the series
OVER ? SAME NOT @itself and not ?
AND

THEN
IF @Then if result is +/-∞

DUP ABS ∞
SAME

THEN @Then return 0 (divergence)
0

ELSE @Else return 1 (convergence)
1

END
ELSE
DROP
"Testing summands

sequence -> 0" 1 DISP
sumnd ivar lo hi @Construct summands sequence
3 ->LIST 2 LIST
CONVERGES? @Use CONVERGES?
IF

? DUP SAME @If CONVERGES? can't handle this
ROT HEAD XQ @or if it finds that sequence
0 SAME ROT @converges to 0
AND OR

THEN
CASE

...Convergence test 1
THEN

...Result 1
END

...Convergence test 2
THEN

...Result 2
END

...Further tests
series ? @If all tests failed, return

the series and a ?
END

ELSE @else (summands seq. diverges or
series 0 @it doesn't converge to 0) return

END @series and 0 (for no convergence)
END
vx STOVX @Clean up and restore everything
{ HOME CASDIR } EVAL
assmlst 'REALASSUME'
STO

>>
POP

>>

Sequences, series and limits with the HP49G - Part 5

5-13

The code in light grey is the place where further convergence tests will
be made. The command DISPXY is similar to DISP, except that it can
display at any screen coordinates using any fond. It takes the object to
display from stack level 3, a list with the pixel coordinates from stack
level 2 and 0,1,2,3 (the font size) from stack level 1, and displays the
object starting at the specified coordinates of the screen and using the
specified font size. Notice that when the object to be displayed is a
GROB (GRaphics OBject), then the command will not display the
GROB itself but the description of the GROB, which reads
Graphic n × m and means a GROB with size n× m . If you
want to display some GROB on the screen, then take a look at the
programs of the previous parts of this marathon.

Now, what convergence tests can we use on the HP49G? What criteria
are easily implementable? We have for example the ration test (Cauchy
or d'Alembert ratio test) which we can use. It says:

The series an
n=1

∞

∑ converges if

lim
n→∞

an +1

an

p 1, it diverges if

lim
n→∞

an +1

an

f 1. The case lim
n→∞

an +1

an

= 1 is non-conclusive.

This is very easy to implement and we can again use CONVERGES?
in order to be able to handle more expressions than these that the
HP49G handles out of the box. We have to first construct the

sequence
an +1

an

n 1 ∞{ }








, then give this to CONVERGES? and

use the returned results. So, the light grey part in the above program
becomes:

....
CASE

"Assuming" 1 DISP @Construct assumpt.
"'" ivar UNASSUME + @and make assumpt.
"≥" + lo + "'" +

DUP {#50h #0h} 2
DISPXY OBJ->
ASSUME DROP
"Testing ratio @Build up sequence

criterion" 1 DISP @ABS(An+1/An),
sumnd DUP ivar DUP @make assumptions
1 + = SUBST SWAP
/ EXPAND
-103 CF
ABS EXPAND ivar
lo hi 3 ->LIST
2 ->LIST CONVERGES? @and test if seq.
DUP2 -> l r @converges
<<

CASE
r ? SAME @If CONVERGES? can't

THEN @find an answer
0 @then return 0

END
r 0 == SAME @If seq. diverges

THEN @return 0
0

END
r 1 == @If sequence
l HEAD 1 @converges to 1
== AND @then return 0

THEN
0

END @Else return 1
1

END
>>

THEN @If we have a 1 on stack
IF @If sequence converges
THEN

HEAD
IF

1 ≤ @to limit less than 1

Sequences, series and limits with the HP49G - Part 5

5-14

THEN @then return series and 1 (for
series 1 @convergence)

ELSE @else return series and 0 (for
series 0 @divergence)

END
ELSE @else series doesn't converge

DROP @return series and 0 (for
series 0 @divergence)

END
END DROP2

...Convergence test 2
THEN

...Result 2
END

...Further tests
series ? @If all tests failed, return

the series and a ?
END
....

At this point some strange properties of the HP49G should be

explained. Enter
1
2

, then 1, and then press [≤]. The result is a 1,

clearly because
1
2

 is less than 1. Yes, but now re-enter
1
2

 and 1 and

press [p]. The result is...

1
2

p 1! Press [EXPAND], press

[COLLECT], do anything you want. The darn thing won't return 1,

though
1
2

 is less than 1. The only thing that makes the HP49G give us

a result, is to press [->NUM]. Then we get a 1. . For me this is a rather
strange behaviour, but, as Trabakoulas says, "It is, as it is". Accepting
that we must find ways out of the troubles. Oh, I didn't say what the

trouble is? Well, say if the sequence
an +1

an

n 1 ∞{ }








 converges,

we must find if

lim
n→∞

an +1

an

p 1. But the comparison p doesn't seem to

work as we would expect. That's why the above code tests first if the

limit of
an +1

an

 for n → ∞ is equal to 1 using the function == . If it

isn't, then using the function ≤ and finding that lim
n→∞

an +1

an

≤ 1 is true, is

the same like finding that

lim
n→∞

an +1

an

p 1 is true, because we already

have filtered out the possible case lim
n→∞

an +1

an

= 1.

The code of above tests if the sequence
an +1

an

n 1 ∞{ }








converges using the program CONVERGES? If a question mark is
returned on stack level 1, or if a 1 is returned on stack level 1 and a list
containing only 1s is returned on stack level 2, or if it is found that the
sequence diverges, then the code proceeds with the next convergence
test (which we didn't programmed yet). But if a 1 is returned on stack
level 1, and a list containing something different than only 1s on stack
level 2, then the code compares the contents of the list against 1, to say
if the sequence converges or not.

We move on to the second convergence test. We use the root test
which says:

The series an
n=1

∞

∑ converges if

lim
n→∞

an
n p 1, it diverges if

lim
n→∞

an
n f 1. The case lim

n→∞
an

n = 1. is non-conclusive.

Sequences, series and limits with the HP49G - Part 5

5-15

The code for this test is almost the same with the code of the previous

test, except for the construction of the sequence an
n n 1 ∞{ }{ }

that we give to CONVERGES?. So, to save paper and the trees, we
take a look only at the part that is different.

... @End of first test
END DROP2

"Assuming" 1 DISP @Construct assumpt.
... @Same like above
"Testing root @Build up

criterion" 1 DISP @XROOT(n,ABS(An))
sumnd ABS
-103 CF
EXPAND
ivar XROOT
EXPAND
ivar lo hi @etc like above
.....

@end of second test
END DROP2

...Further tests
series ? @If all tests failed, return

the series and a ?
END

You may have noticed that at some points we switch to real mode
using -103 CF. Why that?`Well, some operations, like ABS, have the
nasty habit to switch to complex mode. This can make things more
complicated than they need to be because then many operations will
ignore the assumptions that we have made for n . So we insert the
instruction -103 CF to make sure that we are in real mode and so the
assumptions are taken into consideration. This can play a significant
role when expanding absolute values and roots.

Let's add a third convergence test, the test of Leibniz for series with an
alternating sequence of summands. Such a series is for example

−1()n +1

nn=1

∞

∑ . Its summands are

1, −

1
2

,
1
3

, −
1
4

, L. Their signs are

alternating +, −, +, −, L and thus the name "alternating
sequence. The test says:

The alternating series an
n=1

∞

∑ converges if the sequence of

the absolute values of the summands is a monotonically
decreasing sequence with the limit 0.

This test is only for this particular kind of series, but we will see later
on some interesting implications that it brings. We can implement this
test, using CONVERGES? and SEQMONTY, the program that returns
the monotony behaviour of a sequence. We also use SPCASES to
find out how many special cases there are, and check if we have an
even number of them, to make sure that alternating behaviour is
possible. (What would be if we have an odd number of special cases?
Can we use this test then?)

.... Previous tests
END DROP 2

"Testing Leibniz @Build up sequence
criterion" 1 DISP @An

sumnd ivar lo hi
3 ->LIST 2 ->LIST
SPCASES @Find sp. cases
IF @If even number

DUP SIZE 2 MOD @of special cases
NOT

THEN
1 @Do to each sp. cas
<<

"Finding sign @Find its sign
" NSUB + " of " + ENDSUB + 1 DISP

OBJ-> DROP
OBJ-> DROP2

Sequences, series and limits with the HP49G - Part 5

5-16

SWAP UNASSUME
"'" SWAP +
"≥" + SWAP +
"'" + OBJ->
ASSUME DROP
SIGN EXPAND

>> DOSUBS
DUP "Checking sign @Find object types

result types" 1 DISP 1 << TYPE >> @of results of SIGN
DOSUBS
9 POS NOT @No alg. objects
"Checking alternating

signs" 1 DISP SWAP 2 << NEG == >> @Check each sign
DOSUBS 1 + @is neg. of next
<< AND >> STREAM AND
"Checking ABS(summand)

sequence -> 0" 1 DISP
"'" ivar UNASSUME
+ "≥" + lo + "'" +
OBJ-> ASSUME DROP @Build up sequence
sumnd ABS -103 CF @ABS(An)
EXPAND ivar lo hi
3 ->LIST 2 ->LIST DUP SEQMONTY
-2 SAME SWAP CONVERGES? SWAP
HEAD XQ 0 SAME AND
AND AND

ELSE @Odd number of sp. cases
DROP 0

END
THEN @Leibniz true, series converges

series 1
END

series ? @No test true, series might
END @converge or not
.... @All tests done

This is the program ΣCONVERGES? that comes with this document.
Before we test it, some words on modifications of the other programs

that we have so far. The programs SPCASES, RCR->ANL,
SEQMONTY, and BOUNDS are modified. They also save the current
assumptions and restore them when they finish. You should transfer
the new versions to your HP49G, or else the examples below might
not work.

And now for the tests. First we give it some series that the HP49G can

deal with out of the box. Enter n
n=1

∞

∑ and press [ΣCONVERGES?] In

about 4 seconds the HP49G returns +∞ on stack level 2 and a 0 on
stack level 1, to say that this series diverges to positive infinity. Enter

1
n2

n=1

∞

∑ and press [ΣCONVERGES?]. Again in about 4 seconds the

HP49G returns
π 2

6
 on stack level 2 and a 1 on stack level 1. This

means that the series converges to
π 2

6
.

And now some series for which the HP49G can't even find if they

converge. Enter the alternating series
−1()n +1

nn=1

∞

∑ and press DUP to

make a copy on stack level 2. Press first [EXPAND]. The HP49G
needs about 5 seconds to return ? (for "I don't know") and switch to
complex mode. Switch back to real mode, DROP the question mark
and press [ΣCONVERGES?]. This time, after 180 seconds, the
HP49G returns the series itself on stack level 2 and a 1 on stack level
1. This means that the series does converge, but we don't know what
it converges to. Well, at least we know that it converges. We will see
later, if and how it is possible to find also what the series converges to.

Enter
1

2n ∗ nn=1

∞

∑ . This is a series which the HP49G can't deal with

out of the box. Press [ΣCONVERGES?]. After 63 seconds the
HP49G returns the series back on stack level 2 and 1 on stack level 1.

Sequences, series and limits with the HP49G - Part 5

5-17

Again, we know that the series does converge but we don't know
what it converges to.

Enter
COS n∗ π

2
+ π

4






nn=1

∞

∑ , press [ΣCONVERGES?]. This time, after

10 minutes (!) the HP49G says that it can't find if this series
converges or not. Well, we can't always win.

Enter 1−
1
n







n

n=1

∞

∑ and press [ΣCONVERGES?]. (If you EXPAND

this the HP49G returns ? .) The HP49G returns the series at stack
level 2 and a 0 at stack level 1, that is, it says that the series diverges
after 101 seconds.

Enter
LN n()

2n
n=1

∞

∑ , another series that the HP49G can't deal with out of

the box. Press [ΣCONVERGES?]. The HP49G needs about 3.5
minutes to find that the series does converge, returning the series on
stack level 2 and a 1 on stack level 1.

Enter
n!

n +1()!n=1

∞

∑ . Expanding this you would get a ? quite quickly,

though this series is the same like
1

n +1n=1

∞

∑ , for which the HP49G can

find that it diverges to +∞ out of the box. But pressing [EXPAND]

with
1

n +1n=1

∞

∑ on stack level 1 also changes the current VX to n . If

you give the series
n!

n +1()!n=1

∞

∑ to [ΣCONVERGES?], then after 3.2

seconds you get +∞ on stack level 2, a 0 (for divergence) on stack
level 1, and the current VX remains the same.

Last example: Enter
n!
nn

n=1

∞

∑ and press [ΣCONVERGES?]. After some

seconds the HP49G flashes the message "Operator not implemented
(SERIES)" and presents you a menu with [OK] ([F6]) for continuing.
Press [OK] and wait until you get the message "SERIES remainder is
O(1) at order 3". Press again the menu key [OK]. After a long time the
message "Operator not implemented (SERIES)" again. Press again
[OK]. After this adventurous story, the HP49G returns the series on
stack level 2 and a ? on stack level 1. This time it was work for
nothing, but we already have so many examples where the program
did its job OK.

Of course there are many more convergence tests that you can add to
ΣCONVERGES? for further expanding its capabilities. As we already
have noticed, it is possible with a little programming work to give the
HP49G more power.

We now move on to some rules that may be helpful for working with
series on the HP49G. The first of them is:

The convergence behaviour and the limit of a convergent
series don't change if the summands are grouped in
parentheses in some arbitrary way.

For example, the convergent series

−1()n +1

nn=1

∞

∑ = 1−
1
2

+
1
3

−
1
4

+L −L

remains convergent if we write it as

1−

1
2





 +

1
3

−
1
4





 +L −L or

1−

1
2

+
1
3





 −

1
4

+
1
5





 −L −L or in any other way, grouping the

summands in parentheses. That means, if we already have checked
that the series converges, we can start grouping the summands in
many different ways. The limit of the sequence remains the same.
How can this be useful for us? Well, let's consider the grouping

Sequences, series and limits with the HP49G - Part 5

5-18

1−

1
2





 +

1
3

−
1
4





 +L −L . Since we know that the series

−1()n +1

nn=1

∞

∑

converges, we know that we can use

1−

1
2





 +

1
3

−
1
4





 +L −L

instead of

1−

1
2

+
1
3

−
1
4

+L−L in any of our considerations. Now,

we could of course consider the groups 1−
1
2





 ,

1
3

−
1
4





 and so on,

as summands of a series. That is, we consider the series
1
n

∑ −
1

n +1
.

But we must be careful because we can't use the same index values.

For example enter
−1()n +1

nn=1

10

∑ and press [->NUM]. The result is

 .645634L . Now enter
1
n

−
1

n +1n=1

10

∑ and press [->NUM] again to get

 .909090L . Obviously something is going wrong. We can see what is
going wrong if we consider the first sum, which is

−1()n +1

nn=1

10

∑ = 1−
1
2

+
1
3

−
1
4

+
1
5

−
1
6

+
1
7

−
1
8

+
1
9

−
1

10
 and compare it

to the second sum:

1
n

−
1

n +1n=1

10

∑ = 1−
1
2

+
1
2

−
1
3

+L −L+
1
9

−
1

10
+

1
10

−
1
11

= 1−
1

11

They are not the same because except for the first summand
1
1

=1 and

the last
1

10 + 1
=

1
11

 each value of n constructs the same summands

twice, once with
positive and once
with negative sign
as shown in the
table.

What we need is to somehow transform the series
1
n

−
1

n +1n=1

∞

∑ in a

way that each summand of the original series
−1()n +1

nn=1

∞

∑ appears only

once with the right sign. Let's look again at the grouping that we

chose:

1
1

−
1
2





 +

1
3

−
1
4





 +L −L . Each group consists of two

members. We want these two members to appear both only once for a
single value of n . Of each two members in a group the first has

always an odd denominator, that is it has the form
1

2∗ n +1
 if we start

at n = 0 instead of n = 1. The second has the form
1

2∗ n + 2
 if we

start at n =0 . That means, we can write the summand
1
n

+
1

n +1
 in the

series
1
n

−
1

n +1
∑ as

1
2∗ n +1

−
1

2∗n + 2
, provided that we start at

n =0 . And so the series becomes now:
1

2∗ n+1
−

1
2∗n + 2n =0

∞

∑ . This

series is the same like
−1()n +1

nn=1

∞

∑ except that it creates two summands

with every single value of n . We could say that "it grows twice as
fast".

You could test this, by entering for example
−1()n +1

nn=1

10

∑ , then pressing

[->NUM] to get .645634L . Then enter
1

2∗ n+1
−

1
2∗n + 2n =0

4

∑ and

press [->NUM] again to get the same result, .645634L . Notice
that the first sum goes from n = 1 to n = 10, while the second goes
from n = 0 to n = 4 . This is because, as already said, the second

Sequences, series and limits with the HP49G - Part 5

5-19

n 1

1
1

−
1
2

1
n

−
1

n +1

2

1
2

−
1
3

3

1
3

−
1
4

...

...

sum (and also the series) creates two summands of the first series by a
single value of n .

If we expand the summand
1

2∗ n +1
−

1
2∗n + 2

 in the series

1
2∗ n+1

−
1

2∗n + 2n =0

∞

∑ , then we get
1

4 ∗n2 + 6∗ n+ 2
 and the series

becomes then
1

4∗ n2 + 6∗n + 2n =0

∞

∑ . The convergence and the limit of

this series is exactly the same like those of
−1()n +1

nn=1

∞

∑ because the new

series was created through grouping and "renumbering" of the
summands. But the second series has two big advantages. The first
advantage is that the HP49G can work much better with the second

series. Enter
−1()n +1

nn=1

N

∑ and press [EXPAND], to try to find what the

general member of the partial sums sequence looks like. Result is,
nada! The HP49G has only switched to complex mode. But enter

1
4∗ n2 + 6∗n + 2n =0

N

∑ and press [EXPAND] again. Aha! Now you get

the result

Psi N +1− −1
2





 − Psi N +1+1() + Psi − −1

2




 −Psi 1()


 


2

. In

order to get the Nth member of the partial sums sequence of the

original series
−1()n +1

nn=1

N

∑ , you have to enter
1

4 ∗n2 + 6∗n + 2n =0

N
2

−1

∑ and

press [EXPAND] because of the altered "numbering". The result is

then

Psi
N
2

− −1
2





 − Psi

N
2

+ 1




 + Psi − −1

2




 −Psi 1()


 


2

. This is the

partial sum
−1()n +1

nn=1

N

∑ of the series
−1()n +1

nn=1

∞

∑ but only for

 N = 2,4,6,8,L . The found function just can't reproduce the partial
sums of with an odd number of summands, because the sum from

which it was derived creates two summands of
−1()n +1

nn=1

N

∑ for each

single value of n . To check this, enter
−1()n +1

nn=1

100

∑ and press [->NUM].

You get .688172L in about 2.3 seconds. Now, enter the function
with N = 100 , that is

Psi
100

2
− −1

2




 − Psi

100
2

+1




 +Psi − −1

2




 −Psi1()


 


2

, and press

again [->NUM] to get the same result in 0.9 seconds! Do the same

with N = 101, that is, enter
−1()n +1

nn=1

101

∑ and press [->NUM]. You get

 .698073L . Enter the function with N = 101, that is

Sequences, series and limits with the HP49G - Part 5

5-20

−1()n+1

nn=1

∞

∑

n 1 2 3

1
1

−
1
2

1
3

1
2∗n +1

−
1

2∗n +2n =0

∞

∑ 1
1

−
1
2

4

−
1
4

1
3

−
1
4

...

...

...

Psi
101
2

− −1
2





 − Psi

101
2

+1




 +Psi − −1

2




 −Psi 1()


 


2

, and press

again [->NUM]. The result is now .688221L! So the expression
with the Psi functions is only good for even N. But nonetheless it is

perfectly right to use it instead of
−1()n +1

nn=1

∞

∑ , that is for N → ∞ .

For even bigger values of N than those that we already used, the time

difference between calculation of
−1()n +1

nn=1

N

∑ on the one hand and

Psi
N
2

− −1
2





 − Psi

N
2

+ 1




 + Psi − −1

2




 −Psi 1()


 


2

 on the other hand,

will be huge because the expression with the sum needs much more
time to complete. For example with N = 1000 it takes 19 seconds to
calculate the sum, but only 0.9 seconds to calculate with the
expression for the Nth member of the partial sums sequence. And here
comes the second advantage of the new created series. If you want to

approximately calculate the limit of the series
−1()n +1

nn=1

∞

∑ by entering

some partial sum
−1()n +1

nn=1

N

∑ , where N is a big number, then you have

to wait a loooong time. The series converges very, very slowly. On

the HP49G each summand
1
n

 will contribute to the partial sum a

significant amount, an amount that is enough to cause a change in the
calculated approximation. For example, let's say that we take

−1()n +1

nn=1

10000

∑ . The last summand, −
1

10000
 is equal to −.0001, a value

that is within the 12 digits approximation of the HP49G. To calculate

the best possible approximation using 12 digits, you should enter
−1()n +1

nn=1

1.E12.

∑ and press [->NUM]. Imagine how long you would have

to wait. (And how big the power generator for the HP49G must be;-)).

But using

Psi
1E12

2
− −1

2




 − Psi

1E12
2

+1




 +Psi − −1

2




 −Psi1()


 


2

and pressing [->NUM] you get the result .69314718055 again in
0.9 seconds. By the way, if you apply XQ on .69314718055 , you
get as result LN2() . Quite silly way to find a limit, I know, but in this
case it works.

If still you have

Psi
N
2

− −1
2





 − Psi

N
2

+ 1




 + Psi − −1

2




 −Psi 1()


 


2

 on

the stack, enter N = ∞ , and press [lim], the HP49G says "Operator
not implemented (SERIES)", returns a ? , and sets N as the current
VX. So it seems that we don't have any alternative for calculating the

limit of
−1()n +1

nn=1

∞

∑ .

This kind of transformation of a series to another can be used also for

other series. Consider for example
COS

2 ∗n∗π
3







nn=1

∞

∑ . The HP49G

can't do much with it. But using SPCASES we can find that

COS
2∗n∗π

3




 can be

−1
2

,
−1
2

, or 1. If we can find that the series

converges, only if we can do that, then we can group the summands,
so that a new series is generated, that converges to the same limit. This
series does converge, even if the HP49G can't find that. Following the
same steps we find this new series to be:

Sequences, series and limits with the HP49G - Part 5

5-21

− 1

2
3∗n + 1

+
− 1

2
3∗n + 2

+ 1
3 ∗n + 3n =0

∞

∑ = − 9 ∗n + 5
54 ∗n3 + 108∗n2 + 66 ∗n +12n=0

∞

∑ .

The Nth partial sum of
COS

2 ∗n∗π
3







nn=1

∞

∑ can be found by entering

−
9 ∗n + 5

54 ∗n3 +108 ∗n2 + 66 ∗ n+ 12n =0

N
3

−1

∑ and expanding. The result is:

−

Psi
N
3

− −2
3





 +Psi

N
3

+ 1
3





 −

2∗Psi
N
3

+ 1




 + Psi − −2

3




 +Psi − −1

3




 − 2∗Psi 1()


 


6

The HP49G can't find the limit of this expression for N → ∞ , but at
least we have a fast formula for plugging some big value for N and see
what happens, instead of waiting for results of summations. (For what
values of N can the above expression with Psi functions be used?)

You now may wonder why and how we find the new values between
which the index varies. How and why did we find that the last sum

−
9 ∗n + 5

54 ∗n3 +108 ∗n2 + 66 ∗ n+ 12n =0

N
3

−1

∑ goes from n =0 to n =
N
3

−1,

where N stands for the Nth partial sum
COS

2 ∗n∗π
3







nn=1

N

∑ ? That is

not hard to see. Let's try to find that out considering the series

COS
2 ∗n∗π

3






nn=3

∞

∑ .

The expression COS
2∗n∗π

3




 with n = 3,4,5,6,7,8L can actually

be only COS
2∗ 3∗π

3




 = 1 for n = 3 , COS

2∗ 4∗π
3





 = −

1
2

 for

n = 4 , and COS
2∗ 5∗π

3




 = −

1
2

 for n = 5 . For n = 6 we have

again 1, and the other values keep repeating themselves. That means

that our series is actually:

1
3

+
−

1
2

4
+

−
1
2

5
+

1
6

+
−

1
2

7
+

−
1
2

8
+ L. This

series does converge, even if the HP49G can't find that, so we accept
its convergence as given. Because it does converge we can group all
summands for n = 3 to n = 5 , then for n = 6 to n = 8 , and so on in

parentheses:

1
3

+
−

1
2

4
+

−
1
2

5















+
1
6

+
−

1
2

7
+

−
1
2

8















+L . Now, each

group, written as a single summand of a series, will give us the series:

1
3∗n + 3

+
−

1
2

3 ∗n + 3 +1
+

−
1
2

3∗ n+ 3 + 2n =0

∞

∑ . We can see that if we want

for example the first group to be equal to
1
3

+
−

1
2

4
+

−
1
2

5
, the second

1
6

+
−

1
2

7
+

−
1
2

8
, then we must replace in the first summand of the

group n by nSpc∗n + nStart , in the second summand of the group
n by nSpc∗n + nStart +1 and in the third summand of the group n
by nSpc∗n + nStart + 2 , where nSpc is the number of distinct

special outcomes of COS
2∗n∗π

3




 , and nStart the starting value of

Sequences, series and limits with the HP49G - Part 5

5-22

n in the original series. When we do this replacement, the new series
will start at n =0 always. In the new series the ending value of n is
still ∞ . But not in the partial sum. Let's say that the original partial
sum in the above example goes up to n = N , N being some arbitrary

integer. That means, we have the partial sum
COS

2 ∗n∗π
3







nn =3

N

∑ .

Since the new partial sum generates three summands of the original
sum with only one single value of n , its ending value must be
different. The last replacement for n in the group of summands will be
in general nSpc∗n + nStart + nSpc−1. If we want the last
expression to be equal to N, then we have to solve the equation
nSpc∗n + nStart + nSpc−1= N for n . This gives us:

n =
N +1−nStart

nSpc
−1. So if the original partial sum goes up to N, the

new grouped partial sum has to go up to
N+1−nStart

nSpc
−1. In the

above example the original Nth partial sum is
COS

2 ∗n∗π
3







nn =3

N

∑ .

The corresponding new grouped partial sum has to be:

1
3∗n + 3

+
−

1
2

3 ∗n + 3 +1
+

−
1
2

3∗ n+ 3 + 2n= 0

N−5
3

∑ , or if we expand the

summand:
9∗n +13

54 ∗n3 + 216 ∗n2 + 282 ∗n +120n= 0

N−5
3

∑ . This is the same as

the original partial sum but only for N = 5 , N = 8 , and so on, that is
only for values of N that correspond to integer number of groups of
summands in the original partial sum. (And for N → ∞ .) In the above
example, for N = 5 we get the first group of summands, for N = 8 the
sum of the first and the second, and so on. To see an example with
N = 5 :

Original partial sum:

COS
2 ∗n∗π

3






nn =3

5

∑ =

COS
2∗ 3∗π

3






n
+

COS
2 ∗ 4∗π

3






n
+

COS
2 ∗ 5∗π

3






n
=

1
3

+
−

1
2

4
+

−
1
2

5
= 13

210

The transformed partial sum:

1
3 ∗n + 3

+
−

1
2

3∗ n+ 3 + 1
+

−
1
2

3∗n + 3 + 2n= 0

5− 5
3

∑ =

1
3∗n + 3

+
−

1
2

3 ∗n + 3 +1
+

−
1
2

3∗ n+ 3 + 2n =0

0

∑ =

1
3∗ 0 + 3

+
− 1

2
3∗ 0 + 3 +1

+
− 1

2
3 ∗0 + 3 + 2

=
1
3

+
− 1

2
4

+
− 1

2
5

=
13
210

In general the values of N, for which the partial sum of the
transformed series will be equal to the partial sum of the original
series, are: N = nSpc∗n + nStart + nSpc−1, where nSpc is the
number of special cases, n some arbitrary integer and nStart the
starting value of n in the original series.

All these things are good and nice, but what can we do with them?
Well, as we already found out some pages ago, it has advantages to
know some analytic closed form of a partial sum, even if the HP49G
can't find what happens when N → ∞ . (For example, Kalle Fritz

Sequences, series and limits with the HP49G - Part 5

5-23

could immediately find the sum n
n =0

100

∑ = 5050 because he found the

analytic closed form of its partial sum n
n =0

N

∑ =
N∗ N+ 1()

2
.)

It is easy to make a small program that takes a series and returns the
transformed series along with its Nth partial sum, if possible to find it.
The program should also return the number of special cases because it
could be important for some other program that calls it.

<<
PUSH
DUP OBJ-> DROP2
{ HOME CASDIR REALASSUME } RCL
RCLVX
-> sum var lo hi exp assmlst vx
<<

expr var lo hi @Construct part. sum
3 ->LIST 2 ->LIST @sequence
SPCASES DUP SIZE @Find special cases
R->I
-> spclst nspc
<<
IF @If more than 1 special

nspc 1. > @cases
THEN @Then transform series

sum
"Converting to sum of

special cases" 1 DISP
spclst 1
<<

OBJ-> DROP OBJ-> DROP2
OVER nspc * + = SUBST

>>
DOSUBS ΣLIST EXPAND var 0 ∞ 3 ->LIST
SWAP + { Σ } + DUP 'N' 1 + lo - nspc / 1 -
EXPAND PUT SWAP ->ALG SWAP ->ALG

ELSE @Else return series
sum DUPDUP ->LST
3 'N' PUT ->ALG

END
"Finding Nth partial

sum sequence" 1 DISP EXPAND
3 ->LIST nspc

>> vx STOVX { HOME CASDIR } EVAL
assmlst 'REALASSUME' STO

>> POP
>>

Sequences, series and limits with the HP49G - Part 5

5-24

Store that in TRANSER and let's test it. Enter
COS n∗ π

2
+ π

4






n2
n=1

∞

∑

and press [TRANSER]. The program returns the list

on stack level 2 and the number of special cases 4 on stack level 1.
Seems to work. Notice that the original sum must not contain the name
N, as it is used to find the Nth partial sum.

Now that we have TRANSER, we can use it in ΣCONVERGES?.
When we test the Leibniz criterion we can call TRANSER to transform
the alternating series and at least give its Nth partial sum if it can't be
found what it converges to. We add a couple of bytes in
ΣCONVERGES?:

.....
THEN @Leibniz true, series converges

series TRANSER + 1
END
.....

Now ΣCONVERGES? will use the Leibniz criterion of convergence,
and if it finds that the alternating series converges, it will return a list
containing the original series, the transformed series, its Nth partial

sum and the number of special cases. Enter for example
−1()n +1

nn=1

∞

∑

and press [ΣCONVERGES?]. The program rattles and rolls and at the

end it returns the list

−1()n +1

nn=1

∞

∑ 1
4 ∗n2 + 6 ∗n + 2n= 0

∞

∑

Psi
N
2

−
−1
2





 − Psi

N
2

+ 1




 + Psi −

−1
2





 −Psi 1()


 


2

2





 









 





on stack level 2 and a 1 on stack level 1. We could use the Nth partial
sum along with N = ∞ to find its limit, but unfortunately the HP49G
seems to be allergic against this partial sum. It says "Operator not
implemented (SERIES)" and returns a ?. It also leaves N as the current
VX, so if you did this, use STOVX to set your VX again. But there
are many cases where the HP49G can find the limit of the partial sum
for N → ∞ , and that's why we include it in the output list.

Now we face another inconvenient question. The whole time we are
talking about series whose summand is in some analytic closed form.
But what about recurrences? Imagine for example that you want to find
what happens if you add all Fibonacci numbers. It's easy to say "hey,

Sequences, series and limits with the HP49G - Part 5

5-25

COS n∗ π
2

+ π
4







n2
n=1

∞

∑
2048∗ 2 ∗n5 + 6400∗ 2 ∗n4 + 7808∗ 2 ∗n3 + 4640∗ 2 ∗n2 + 1348∗ 2 ∗n +155 ∗ 2

32768∗n8 +163840∗n7 + 348160∗n6 + 409600∗n5 + 290944∗n4 + 127360∗n3 + 33440∗n2 + 4800∗n + 288n=0

+∞

∑

6∗ 2 ∗PSI N
4

− −1
2

,1



 − 6 ∗ 2 ∗PSI N

4
− −4

4
,1



 − 6 ∗ 2 ∗PSI N

4
− −1

4
,1



 − 6∗ 2 ∗PSI N

4
+ 1,1



 + 6 ∗ 2 ∗PSI − −1

2
,1



 − 6 ∗ 2 ∗PSI − −3

4
,1



 − 6 ∗ 2 ∗PSI − −1

4
,1



 − 2 ∗π 2


 




 


 


 
























192







 














 








this just can converge since the sequence itself diverges." Granted, but
what about, say, the members of the sequence

P n() = P n −1() +
3

n+ 1()2 P 0() = 0{ }







? If we have the series

P n()
n =0

∞

∑ where P n() = P n −1() +
3

n+ 1()2 and P 0() = 0 and

 n = 0,1,2,3,L , will it converge or not? And is it possible to construct
such sums on the HP49G? Is there any notation that we can use?

Let's see. We start using the simple recurrence sequence
A n() = A n −1() +1 A 0() = 0{ }{ } . In its analytic closed form this

sequence is n n 0 ∞{ }{ } . That means that if we somehow find

how to write A n()
n =0

∞

∑ on the HP49G, then this must be the same with

the series n
n =0

∞

∑ . The first candidate that we check is the function

(where). As an example, go to the EQW and enter X2 − X
X= 2

.

Expanding this, you get 2 , the result of X2 − X for X = 2 . The stack
usage is a bit more flexible as it allows more than one substitutions to
be made at once. For example enter X + Y2 . Now enter the list
X 2 Y 1{ } and press [|]. (This is [red-shift], then [TOOL].) The

result is 1+ 22 , that is the expression X + Y2 with X = 1 and Y = 2 .
Enter X + Y2 again and then X Y Y 1{ } . Now, if you press [|]
again, you might think that this would substitute first X = Y resulting
in Y + Y2 , and then Y = 1 resulting in 1+ 12 . But the result is Y +12 ,
which shows that this function makes the substitutions isolated from
each other. To get the result 1+ 12 , you should first enter the list
X Y{ } , use |, then enter Y 1{ } and then use | again. The same can

be done in the EQW. You would enter X + Y2

X= Y Y =1
. If you expand

this you get 2 , the result of substituting X = Y in X + Y2 and then
substituting Y = 1 in the expression which has been the result of the
first substitution.

Now go to the EQW again and enter X n() +1 , move the cursor to

the place holder for the substitution and try to finish the expression,
entering X(n) = 1, so that you get X n() +1

X n()=1
. When you try to enter

the parentheses of X(n) = 1, the HP49G doesn't even allow you to do
that! This syntax is not allowed and suppressed by the build-in syntax
checker. But hey! We have ->LST and ->ALG. Enter the valid
expression X n() +1

X =1
. Press [->LST] to get the list

'X + Y^2' 'X' 1 3h |{ } . Now we are going to put X n() at
position 2 in the list. Enter 2 , then X n() and press put. The list now

is: 'X + Y^2' 'X n()' 1 3h |{ } . Press ->ALG. Now you see

X n() +1
X n()=1

, which says that the HP49G doesn't allow you to enter

such a thing directly but it can display it correctly. What about using it?
Press [EVAL] and you get 1+1, the right result! If you use [EXPAND]
on X n() +1

X n()=1
 you get the completely expanded expression, that is a

nice 2 .

Let's try this with a series. We want to enter A n()
A(n)= n2

n =0

∞

∑ . Enter

A n()
n =0

∞

∑ . Press ->LST to get the list n 0 ∞ A n() Σ{ }. Now we

must put the "illegal" expression A n()
A(n) =n2 where A n() is in the list,

at position 4. Enter 4 and then A n()
A =n2 . Press ->LST to get the list

'A n()' 'A' n 2 ^ 3h |{ } . Enter 2 , then A n() and press

[PUT]. Now use ->ALG to get A n()
A n()=n 2 . Press [PUT] and then

Sequences, series and limits with the HP49G - Part 5

5-26

[->ALG] again to get the "illegal" sum A n()
A(n)= n2

n =0

∞

∑ . It can be

displayed! Can it be used? Press [ENTER] to make a copy and then
press [arrow down] and you see that taken in the EQW! Change it to

A n()
A(n)= n2

n =0

5

∑ , press [ENTER] and [EVAL] to get 55 , the right

result. Should I start singing the same old song again? I mean the top
of the HP49G-pops, "why can't I enter that directly in the EQW?.
Why the adventurous input with ->LST, ->ALG?" Let's go further.

Drop the number 55 , change the copy of A n()
A(n)= n2

n =0

∞

∑ to

A n()
A(n)= n2

n =0

N

∑ and expand. YOu get the result
2∗ N3 + 3∗N4 + N

6

which is also correct.

Now we use the recurrence P n() =
P n()

2
P 0() = 1{ }








 and try to

somehow write the series P n()
n =0

∞

∑ . Unfortunately there is good and

bad news. The good news is that we can write P n()
P n()=

P n−1()
2 P 0()= 1n =0

∞

∑

using ->LST and ->ALG more than once. The bad news is that
evaluating or expanding this, doesn't do the right thing. So we must
look for another way to denote such series. Since we used lists to
denote recurrence sequences, let's do that also for such series. The
program ΣCONVERGES? can then check the type of argument. If it
finds a list, then it will assume a recurrent series and try to use the
program RCR->ANL to turn the summand to its analytic closed form.
We use the notion Σ recurrence initialConditions{ }{ }{ } .

Σ is the series which has as summand the general recurrence sequence

member like for example P n()
n =0

∞

∑ . The inner list

recurrence initialConditions{ }{ } is exactly the same like what we
used for denoting recurrence sequences, like for example

P n() =
P n −1()

2
P 0() = 1{ }








. The whole thing in this example is

then P n()
n =0

∞

∑ P n() =
P n −1()

2
P 0() = 1{ }
















.

We add code at the start of ΣCONVERGES? that checks if the
argument is a list and tries to find the analytic closed form in this case.

<<
IF @IF we have a recurrence series

DUP TYPE 5 ==
THEN

OBJ-> DROP
RCR->ANL @Try to find the analytic closed form
HEAD SWAP @And re-construct the sum
->LST 4 ROT
PUT

END
PUSH DUP OBJ-> @Rest of code exactly like it was

 ...

We test our example. Enter P n()
n =0

∞

∑ P n() =
P n −1()

2
P 0() = 1{ }
















and press [ΣCONVERGES?]. After deepest thoughts the HP49G
returns 2 on stack level 2 and 1 on stack level 1. The series converges

to 2 . If you enter P n() =
P n −1()

2
P 0() = 1{ }








 and use the program

Sequences, series and limits with the HP49G - Part 5

5-27

RCR->ANL, then the result is 1∗
1
2







n

n 0 +∞{ }








. That shows

that the series was the recurrence form of the geometric series

1∗
1
2







n

n =0

∞

∑ , which converges to 2 . (Look also at the geometric

series, page 5-8 of this marathon.) It works!

Another example: Enter a n()
n =0

∞

∑ a n() = a n −1() +n a 0() = 0{ }{ }







and press [ΣCONVERGES?]. The HP49G returns +∞ and 0 to tell
you that the series doesn't converge. Indeed the analytic closed form

of the series is
n2 +n

2n =0

∞

∑ which goes to +∞ .

Another example which also gives us some additional insight about the
complex phenomenon called "Modes" om the HP49G. In real
rigourous mode enter the recurrence series:

P n()
n =0

∞

∑ P n() =
P n −1() +P n − 2()

3
P 0() = 0 P 1() = 1{ }
















Press [ENTER] twice as we are going to need the same thing again
later. Now, press [ΣCONVERGES?] and wait for a loong time until

the HP49G returns the result
13 + 4 ∗ 13

13
 on stack level 2 and 1 on

stack level 1. Hurrah! We have all possible reasons to celebrate, except
that the result is... wrong!!!. Let's follow what happened. Drop the 1
and press [arrow right] to swap stack levels 1 and 2. Press [OBJ->]
and drop the 2 from stack level 1. What you have now on stack level
1 is a recurrence sequence:

P n() =
P n −1() + P n − 2()

3
P 0() = 0 P 1() = 1{ }








The program ΣCONVERGES? used first RCR->ANL to convert this
sequence to its closed analytic form. So press [RCR->ANL]. The
result is:

− 3 ∗ 13()
13

∗ −
−1+ 13

6



 




n

+
3 ∗ 13

13
∗

1+ 13
6



 




n

n 0 ∞{ }








which is OK. That means, our series can be written as:

− 3∗ 13()
13

∗ −
−1+ 13

6



 




n

+
3∗ 13

13
∗

1+ 13
6



 




n

n =0

∞

∑ .

Press [OBJ->], [DROP2] to put the expression for the summand,
− 3 ∗ 13()

13
∗ −

−1+ 13
6



 




n

+
3∗ 13

13
∗

1+ 13
6



 




n

, on stack level

1. Press [SWAP], [->LST], enter a 4 , press [ROT], [PUT], [->ALG]
to get the series on the stack. Press [DUP] to make a copy of this
series. Switch to real rigourous mode and expand, to get the wrong

result
13 + 4 ∗ 13

13
. (The current VX has been changed to n , so use

STOVX to restore your VX. Also, n has been added to
REALASSUME, so if you don't want it there, use the command
UNASSUME.) Switch to complex rigourous mode, swap and expand
again. This time you get the result 3 which is correct. (The current VX
has been re-changed to n , and n has been added to REALASSUME
again.)

What is the reason for this shitty behaviour? Well, switch back to real

mode and enter the expression −
−1+ 13

6



 




n

. Press [ENTER] to

copy it to stack level 2. Now, enter the list n 1{ } and press [|]. The

Sequences, series and limits with the HP49G - Part 5

5-28

result is
e

1∗LN −1+ 13()

e1∗LN 6() . Press [TEXPAND] and you get
−1+ 13

6
. That

is, the HP49G has found out that −
−1+ 13

6



 




1

=
−1+ 13

6
 !!!

Ouch! Swap and switch to complex mode. Enter again n 1{ } and

press [|]. Now you have the result e
1∗LN −

−1+ 13
6












. Pressing

[TEXPAND] you get −
−1+ 13

6
, the correct result. Switch to real

rigourous mode again. Enter X and press [LN]. You get LN X() . See

what happened in our example? The expression −
−1+ 13

6



 




n

,

which appears in the series, has been converted to
e

n∗LN −1+ 13()

en∗LN6() . This

is equivalent to e
n∗LN −1+ 13()−n∗LN6()

, and the last expression is

equivalent to e
n∗LN

−1+ 13
6












. That shows us that the HP49G in real

rigourous mode, wanted to use the absolute value of −
−1+ 13

6
 as

argument for the function LN. So it constructed e
n∗LN

−1+ 13
6












 which is

equal to
−1+ 13

6



 




n

, which in this case was the completely wrong

thing. No further comments ;-)

What can we do to avoid this? Well, we could switch to complex mode
before we try to use the command EXPAND with the series

− 3∗ 13()
13

∗ −
−1+ 13

6



 




n

+
3∗ 13

13
∗

1+ 13
6



 




n

n =0

∞

∑ . We can also

add a couple of bytes to the program ΣCONVERGES?.

.......
-> series ivar lo hi
sumnd assmlst vx @Store in locals
<<

IF
"Trying built-in

methods..." 1 DISP
-103 SF
series EXPAND @Try expanding
-103 CF
vx STOVX
......

Let's hope that these changes of the program will not cause other
problems. Drop all objects until the remaining copy of the series

P n()
n =0

∞

∑ P n() =
P n −1() +P n − 2()

3
P 0() = 0 P 1() = 1{ }
















comes to stack level 1. Press ΣCONVERGES? and wait until you get
the results 3 and 1. It works. But who knows what other unexpected
problems this changes of the program might cause.

As a last example let's look at the series
1

n ∗ n− 1()n =0

∞

∑ . We might think

that this series diverges because for n = 0 and n = 1 the expression
1

n∗ n −1() goes to infinity. But as we will see in this examples, infinity

can be a source of quite unexpected surprises. Enter the series, press
[ΣCONVERGES?] and after some seconds you get a −1 on stack level
2 and a 1 on stack level 1, which means "yes, the series converges to -
1". How can that be? Well, since we know that the series converges,

Sequences, series and limits with the HP49G - Part 5

5-29

we can group summands in parentheses as we wish. We group the
first two summands:

1
n ∗ n− 1()n =0

∞

∑ =
1

n∗ n −1()
n= 0

+
1

n∗ n −1()
n =1









 +

1
n∗ n −1()n= 2

∞

∑

We keep in mind that for every summand with index n the next
summand will have the index n+1. So we can write for the first two
summands:

1
n∗ n −1()

n= 0

+
1

n∗ n −1()
n=1

=

1
n∗ n −1() +

1
n +1() ∗ n +1() −1()

n= 0

=

2
n2 −1n= 0

= −2

Enter
1

n∗ n −1() , press [ENTER] to make a

copy, enter n = n +1 and press [SUBST].

Press [+] and [EXPAND] to get
2

n2 −1
.

This expression is the sum of the first two
summands for n = 0 . That means, enter
n = 0 and press [EXPAND] to see that the
sum of the first two summands is −2 .

Enter the rest of the series,
1

n ∗ n− 1()n =2

∞

∑ ,

and press [ΣCONVERGES?]. The result is
1 (the limit) and 1. That means that the
series converges to −2 +1= −1.
Unexpected perhaps, but correct.

Let's take a look again at our programs and how they depend on each
other. It is crowded around the programs SPCASES and RCR->ANL.
Looks like they are the heart of the building, doesn't it? Notice also
that ΣCONVERGES? uses other programs. Actually this program can
be made much better. (It is intentionally written that way, so that the
interested user might thing how to make it better ;-)) For example,
many of the programs that it calls, call SPCASES themselves. Look if
it is really necessary to do that. Also notice that ΣCONVERGES? calls
CONVERGES? many times. Is that really necessary? Can we avoid
that?

Sequences, series and limits with the HP49G - Part 5

5-30

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

SEQMONTY

N∆SEQ

SOLARSEQ

∆rN

S->UD USDEFSEQcreatesORDARSEQ

SOLGESEQ

CONVERGES?TRANSER

ΣCONVERGES?

PARTSUMSEQ

We move on to plotting series. Actually when we say that we plot a
series, we don't mean that we plot the series itself. This would mean
to plot just a single point, the limit of the series, and this only if it
exists. What we rather mean when we speak about plotting a series of

the form summandn()
n= start

∞

∑ , is that we plot the points

start, summandn()
n =start

start

∑

 


, start +1, summandn()

n= start

start+1

∑

 


,

start + 2, summandn()
n= start

start+ 2

∑

 


, and so on. We plot the partial sums

summandn()
n= start

N

∑ , for N = start +1,start + 2,start + 3,L . This can

be easily done on the HP49G using the plot type function. Let's have

an example. We plot the series
1
nn=1

∞

∑ . Press first simultaneously

[red-shift] and [F4]. Select plot type "Function". In the input field

"EQ:", enter the partial sum
1
nn=1

N

∑ . Enter N as independent variable.

This means that we actually plot the expression F N() =
1
nn=1

N

∑ as a

function of N. Enter 1 for both horizontal and vertical axes ticks, and
uncheck the option _option "_Pixels". Now press simultaneously [red-
shift] and [F2]. Enter "H-View:" from 0 to 20 , "V-View:" from −2
to 8 , enter 1 for "Indep Low:" and 20 from "High:", enter 1 for
"Step:" and uncheck the option "_Pixels". Now press the menu keys
[ERASE] and [DRAW] and watch how the HP49G plots the series.
When the plot is ready you can start tracing it using the menu keys
[TRACE] and [(X,Y)]. Perhaps you have already noticed that the

HP49G gets more and more slowly while it plots
1
nn=1

N

∑ for higher

and higher values of N. This is not hard to understand. The first point

has the coordinates
X = 1 and

Y =
1
nn= 1

1

∑ . The

Y-coordinate is
calculated quite
fast, as the
HP49G has to find
1
1

 . The second

point has the

coordinates X = 2 and Y =
1
nn= 1

2

∑ . The calculation of the Y-

coordinate takes now a little more time, as the HP49G has to find
1
1

+
1
2

 . When we are at X = 20 the HP49G has to calculate the

sum

1
1

+
1
2

+L+
1
20

, which of course needs a considerable

amount of time. The same happens when tracing. The HP49G feels
not very responsive when we trace for higher values of the X-
coordinate. Notice also how the plot indicates that this series doesn't
converge. You can try to plot for higher values of the X-coordinates.
The overall looking of the plot remains the same. The sequence of
plotted points doesn't get "flat".

Another example? OK, graphics is always fun. Let's do
−1()n +1

nn=1

∞

∑ .

Enter
−1()n +1

nn=1

N

∑ as the expression to be plotted and .1 as vertical tick

distance. "H-View:" from 0 to 10 , "V-View:" from −.2 to 1.2 ,
"Low:" and "High:" are 1 and 10 respectively. Press [ERASE],
[DRAW]. Notice how the plot indicates that we have convergence. As
N gets higher and higher, the partial sums points come nearer and

Sequences, series and limits with the HP49G - Part 5

5-31

nearer to LN2() which is the limit of this series as we already found
out. It will be interesting to put another series on the same plot, the

series to which
−1()n +1

nn=1

∞

∑ has been transformed, when the program

ΣCONVERGES? has performed the Leibniz test of convergence.
Return to the stack,

enter
−1()n +1

nn=1

∞

∑ and

press [TRANSER].
When the program
finishes, press
[BACKSPACE] to
drop the retuned 2
(number of special
cases) and then enter
3 GET to get the third
element of the
returned list. This is
the analytic closed

form of the transformed sequence. It returns the same results like
−1()n +1

nn=1

N

∑ , but only when N = 2,4,6L and also for N → ∞ . We

already have seen the reasons for this. Now you have

Psi
N
2

− −1
2





 − Psi

N
2

+ 1




 + Psi − −1

2




 −Psi 1()


 


2

 on stack level 1.

Enter STEQ, and then DRAW. Press [arrow left] to go to the plotting
environment. Oh no, don't search for coloured lines and for
annotations. I only put them there for focusing the two series. The
points connected with the blue lines belong to the original series. Their

partial sums were
−1()n +1

nn=1

N

∑ . Those points that are connected with the

green lines are the points of the transformed series and they have the

partial sums that TRANSER found:

Psi
N
2

−
−1
2





 − Psi

N
2

+ 1




 + Psi −

−1
2





 − Psi 1()


 


2 . This partial sum belongs

to the transformed
series that
TRANSER also
found:

1
4 ∗ n2 + 6∗n + 2n =0

∞

∑ .

You see that both
series converge to
the same limit and
that they have the
same partial sum for
 N = 2,4,6L .

Speaking about
partial sums, if the
HP49G can find an analytic closed expression for the partial sum of a
sequence, then we can plot the partial sum instead of the series itself,

to speed up plotting and tracing. For example consider the series n
n=1

∞

∑ .

If you enter n
n=1

∞

∑ and press [EXPAND], then the HP49G returns

N2 +N
2

. You can use this expression instead of n
n=1

N

∑ to plot the series.

If you plot it you get exactly the same plot like for the series. Don't
confuse this with the previous example. In this example the Nth partial
sum is valid for any value of N. In the previous example we first
transformed the original series to another series, whose partial sum is
the same like that of the original series for some distinct cases and for
N → ∞ . We did that in order to help the HP49G find if the series
converges because it couldn't do anything with the original series. The
advantage is now that the plot is much faster. Also, if you trace this

Sequences, series and limits with the HP49G - Part 5

5-32

plot you will find that the HP49G is much more responsive now, as it
doesn't have to calculate sums for every plotted point that is traces. So
whenever you have to
plot a series

summandn()
n= start

∞

∑ ,

enter first its partial

sum summandn()
n= start

N

∑ ,

and try to find its
analytic closed form. If
you succeed, plot this
instead of

summandn()
n= start

N

∑ to

speed things up.

Sometimes the series itself will not be plotted. Consider the series
1

n ∗ n− 1()n =0

∞

∑ . If you try to plot this, the HP49G will not draw a single

point. Why? Well, when the HP49G plots, it numerically evaluates the
expression to plot for values between the plot parameters "High:" and

"Low:". For example, when it plots the tenth point of
1

n ∗ n− 1()n =0

N

∑ , it

tries to numerically find out hat the value of
1

n ∗ n− 1()n =0

10

∑ is. If you

enter
1

n ∗ n− 1()n =0

10

∑ and press [->NUM], then the HP49G errors out

because a division by 0 occurs for n = 0 . But as we have seen the
value of this this series exists for any n ≥ 1. We can only plot this
series if we find its partial sum as an analytic expression. Enter

1
n ∗ n− 1()n =0

N

∑ and

expand. The result is

−
N +1

N
, which can be

plotted like any other
function of N. Only
when N = 0 the series
is −∞ , that is only
this point can't be
plotted.

Plotting series can also be helpful for the investigation of the behaviour
of series regarding their convergence. We use the example

e
SIN

2∗n∗π
6




 




 

n2
n=1

∞

∑ for which the program ΣCONVERGES? can't find if it

converges. Enter
e

SIN
2∗n∗π

6




 




 

n2
n=1

N

∑ and then STEQ to store that as the

current expression to be plotted. Let it plot and you can see that it looks
like converging to about 3.3. Having "guessed" that the series
converges we can
go further and find
exactly what it
converges to.
Because we
assume that the
series converges,
we can group its
summands in
parentheses as we
wish. So we enter
the series

Sequences, series and limits with the HP49G - Part 5

5-33

e
SIN

2∗n∗π
6




 




 

n2
n=1

∞

∑ and press [TRANSER]. After several seconds the

program returns the huge list on stack level 2 and 6 on stack level 1.

Drop the 6 , press [OBJ->] and drop the element count. Now you have

the huge expression

−
6∗ e

3
2 ∗PSI

N
6

− −1
2

,1




 +L

216 ∗ e
3

2

 on stack level 1.

This is the expression that converges to the same limit like the original
series when N → ∞ . Press [arrow right] to swap stack levels 2 and 1.
Stack level one now contains the huge series

839808∗ n10 +L() ∗ e
3

2










2

+L

15116544∗n12 +L() ∗e
3

2n =0

∞

∑ . This series converges to the

same (assumed) limit like the original series. Press [ΣCONVERGES?]
and wait some seconds. The program returns the limit:

on stack level 2 and 1 on stack level 1. The series converges. Drop the
1 and press [ENTER] to make a copy of the limit. Press [->NUM].
The result is 3,37503588204, quite near that value which we
observed by looking at the plot of the series. So there is very strong

evidence that the original series
e

SIN
2∗n∗π

6




 




 

n2
n=1

∞

∑

converges.

Some of the examples of series that we had so far,
contained expressions like for example −1()n or

SIN
n∗π

2




 . The HP49G can't deal with such series out of the box,

and that's why we used SPCASES, to just replace such expressions
with all their possible outcomes. For example the HP49G can't deal

with
−1()n +1

nn=1

∞

∑ , but calling SPCASES from ΣCONVERGES? we can

find that the series converges. It should be mentioned however that for
some series the time consuming procedures of SPCASES can be

avoided. Consider for example the series −1()n

n =0

∞

∑ . This series doesn't

converge. But the HP49G can find an expression for its Nth partial

sum. Enter −1()n

n =0

N

∑ and expand. The HP49G returns −
e i∗N +i()∗π −1

2
.

Let's have another example. We consider

SIN
n∗π

3




 n =0

∞

∑ . This series also doesn't converge.

But the HP49G can find an expression for for its Nth
partial sum, if we use complex exponentials instead of

Sequences, series and limits with the HP49G - Part 5

5-34

e
SIN

2∗n∗π
6


 


 

n2
n=1

∞

∑
839808∗ n10 +L() ∗ e

3
2




 




 

2

+L

15116544∗n12 +L() ∗e
3

2n= 0

∞

∑ −
6 ∗e

3
2 ∗ PSI

N
6

−
−1
2

,1






 +L

216 ∗e
3

2






 












 







6 ∗e
3

2 ∗PSI − −1
2

,1






 + 6 ∗PSI − −2

3
,1







 + 6 ∗ e

3

2



 




 

2

∗PSI − −1
3

,1






 + 6 ∗PSI − −5

6
,1







 + 6 ∗ e

3

2



 




 

2

∗PSI − −1
6

,1






 + π2 ∗e

3

2

216 ∗e
3

2

trigonometric functions. Enter SIN
n∗π

3




 n =0

N

∑ and press [EXPLN].

The HP49G answers with

− i∗ e
i∗

n∗π
3




 




2







 + i

2∗ e
i∗n∗π

3n =0

N

∑ . If you expand now

the HP49G will return the same sum. But press [LIN] to linearize the

exponentials. The result is −
i
2

∗ e
−i∗n∗π

3
+2∗ i∗n∗π

3 +
i
2

∗ e
− i∗n∗π

3




 




 

n =0

N

∑ .

Expanding this you get the Nth partial sum of the series,

−

−i+ 2() ∗ e
i∗N+ i()∗π

3










2

− 2 ∗ 3 ∗e
i∗N +i()∗π

3 + i + 3

4∗ e
i∗N+ i()∗π

3

. Now we return

to trigonometric functions. Switch to real mode, press [ENTER] to
make a copy, and press [RE] to get the real part of the expression.
Press [TCOLLECT] and [EXPAND] to get the result

−
SIN

N +1() ∗π
3



 


+ 3 ∗ COS

N+1() ∗π
3



 


− 3

2
. Swap and press

[IM], [TCOLLECT], [EXPAND] to get 0 , which shows that for the
Nth partial sum of the sequence we have the relation:

SIN
n∗π

3




 n =0

N

∑ = −
SIN

N +1()∗π
3



 


+ 3 ∗COS

N +1()∗π
3



 


− 3

2
.

This technique of using EXPLN to turn trigonometrics and powers to
complex exponentials, then find the partial sum, and then return to the
real domain and find the real and imaginary parts, can be used in quite
a few cases. But there are also many many cases, in which it will not
work.

Regarding alternating series that converge, like
−1()n +1

nn=1

∞

∑ , we can ask

if the series of the absolute values of the summands also converges. If

it does, then the series converges absolutely. The series
−1()n +1

nn=1

∞

∑

for example, converges but not absolutely, since the series

−1()n+1

nn=1

∞

∑ =
1
nn=1

∞

∑ diverges to +∞ . Now that we have

ΣCONVERGES? it is easy to make a program that checks series for
absolute convergence.

<<
IF @IF we have a recurrence series

DUP TYPE 5 ==
THEN

OBJ-> DROP
RCR->ANL @Try to find the analytic closed form
HEAD SWAP @And re-construct the sum
->LST 4 ROT
PUT

END
PUSH { HOME CASDIR REALASSUME } RCL
OVER OBJ-> 4 DROPN
SWAP UNASSUME SWAP ≥ ASSUME DROP
OVER ->LST 4 OVER 4 GET ABS EXPAND PUT ->ALG
{ HOME CASDIR } EVAL SWAP 'REALASSUME' STO
POP
SWAP ΣCONVERGES?
ROT ΣCONVERGES?
ROT AND
>>

>>

Store that in ΣABSCONVERGES? Let's make some examples again.

Sequences, series and limits with the HP49G - Part 5

5-35

Enter
−1()n +1

nn=1

∞

∑ and run ΣABSCONVERGES? After 3.5 minutes in

agony the HP49G returns on stack level 3 the list

−1()n +1

nn=1

∞

∑ 1
4 ∗n2 + 6 ∗n + 2n= 0

∞

∑

Psi
N
2

−
−1
2





 − Psi

N
2

+ 1




 + Psi −

−1
2





 −Psi 1()


 


2

2





 









 





, on stack

level 2 +∞ , and on stack level 1 a 0 . The series is not an absolutely
converging one. Its convergence behaviour results in the list on stack
level 3, while the convergence behaviour of the series of the absolute
value results in +∞ .

Enter
−1()n +1

n2
n=1

∞

∑ and run ΣABSCONVERGES? again. After 4.5

minutes the results are, on stack level 3 the list
−1()n +1

n2
n=1

∞

∑ 4 ∗n + 3
16∗n4 + 48∗ n3 + 52∗n2 + 24 ∗n + 4n = 0

∞

∑

−
6 ∗PSI

N
2

− −1
2

,1




 − 6 ∗PSI

N
2

+ 1,1




 + 6 ∗PSI − −1

2
,1





 − π2


 


24

2





 










 






, on stack

level 2
π 2

6
 and on stack level 1 a 1. This series converges absolutely.

Press [ROT], [2], [GET] and then [ΣCONVERGES?], to find that the

limit of the first series is
6∗PSI − −1

2
,1





 − π2

24
. The two limits are not

the same but that doesn't matter. They both converge and that's

enough for calling
−1()n +1

n2
n=1

∞

∑ absolutely convergent.

We stay at the series

−1()n +1

nn=1

∞

∑ = 1−
1
2

+
1
3

−
1
4

+L −L to examine

another important property of series. This series converges, as we
have already seen, to LN2() . Now we consider the series

1+

1
3

−
1
2

+
1
5

+
1
7

−
1
4

+ + − L which is produced from the series

−1()n +1

nn=1

∞

∑ through rearrangements of the summands. The new series

can be written as
1

2∗ 2∗n() − 3
+

1
2 ∗ 2∗ n() − 1

−
1

2∗n()n=1

∞

∑ . What

does this expression converge to? You might think that since we only
rearranged summands and since addition is commutative, the new
series has to converge to LN2() too. But this is not true. The program
ΣCONVERGES? can't find even if this series converges at all. But still
we can use the (dangerous) method of "plugging the numbers".
Remember the advantages of the Nth partial sum? OK, enter

1
2∗ 2∗n() − 3

+
1

2 ∗ 2∗ n() − 1
−

1
2∗n()n=1

N

∑ and press [EXPAND].

After some seconds the HP49G returns the result

Psi N +1− 1
4





 +Psi N+ 1− 3

4




 −

Psi 1− 1
4





 +Psi 1− 3

4




 + 2∗Psi N +1() − 2∗Psi 1()


 


4

.

Enter N = 1E100 and press [SUBST], [EXPAND] to get
1.03972077075 . Press [ENTER] to make a copy of the result. If
you now use XQ to convert the result to something "more algebraic",

you get
25469
24496

. Doesn't look like a candidate for a limit, so let's try

something different. Drop the ratio and think about the limit of the

Sequences, series and limits with the HP49G - Part 5

5-36

original series, that was LN2() . Should we suspect that this LN2() is a
factor of the limit of the rearranged series?
Let's see. Enter 2. and press [LN]. Press [/].
Aha! The result is 1.49999999987 which

can be converted to
3
2

 with XQ and which

shows that the rearranged series converges to
3
2

∗ LN2() . In fact you could achieve any

limit or no limit at all by just doing the
proper rearrangement. Such series, the
convergence of which depend on
rearrangements are conditionally convergent
series, and their convergence behaviour
offers pathologically beautiful examples of
convergence investigations. Series can be
either absolutely or conditionally convergent
but not both.

That was it for this part. We'll continue in the
sixth and last part with limits and some other
properties of functions, like for example how
we can find if some function is continuous at
some point. Let's hope that no ancient greek
sophist will puzzle us with unnecessary
problems and that no ancient arab game
inventor will drive us bankrupt ;-) As always
I include the table of our program collection
so far.

1
n

∗GREETINGS n()
n=1

∞

∑ ,

Nick.

Sequences, series and limits with the HP49G - Part 5

5-37

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

SEQMONTY

N∆SEQ

SOLARSEQ

∆rN

S->UD USDEFSEQcreatesORDARSEQ

SOLGESEQ

CONVERGES?TRANSER

ΣCONVERGES?

PARTSUMSEQ

ΣABSCONVERGES?

Hi again!

After a long and sometimes exhausting journey, we come to the 6th
and last route of this marathon, in which we'll take a look at limits of
functions. This will be of great help for the next marathon, the calculus
marathon, which I think, is one of the most interesting for many
people.

Let's start with a crossover to physics, and
consider some time dependent function, like for
example the function that describes the one-
dimensional motion of a body. The model that we
use when we talk about such functions in the
classical physics approximation is the very basic

idea of continuity. The x-coordinate of the
body is a continuous function
of time, which itself is also continuous. That

means, very easily but also very unprecisely
spoken, that if you take a loupe and

consider the ideally drawn motion
graph, you will always get a
curve, and not some
discrete sequence of
points, no matter how

strongly you zoom in. Notice that this is
something that we assume without any
experimental proof, since nobody on this world can
really take measurements of the x-coordinate of some
body for all times. (Does this remind you of some
basic property of real numbers?) Now, the first
question is, how can we put this meaning in precise
words? First, remember what we have seen already,
when we were considering condensation points of
discrete sequences, and try to imagine two continuous sequences of
points, of which one represents time, and the other represents the x-
coordinate in space. If some condensation point of the first sequence
corresponds to some condensation point of the second, we talk about a

limit of the function. The x-coordinate is in a tiny neighbourhood of
the limit, when the independent variable t is in a tiny neighbourhood
of some condensation point. (The condensation points don't have to be

themselves members of the two continuous sequences.) If this limit
about which we talk is equal to the function value at this point, then the
function is continuous at this point. The continuous model of motion
demands this to be valid at any point of the considered motion.
Many of the usual functions are indeed continuous, but investigation
exactly the cases in which this isn't true, is what will give us some
more insight.

We see that the meaning of continuity has to do with limits. And this is
reason enough to take a closer look at limits and the capabilities of the
HP49G when working with limits. In general, when we say that some
function y = f x() has the limit G when the independent variable x

approaches a , we mean that the quantity f x() − G approaches 0 ,
when x approaches a . Let's put this in precise math language. We
consider some function y = f x() and the quantity f x() − G . We take
an arbitrary small positive quantity ε f 0 and compare this to the

Sequences, series and limits with the HP49G - Part 6

6-1

t

x

t

x
t approaches t0

quantity f x() − G while x approaches a . If the inequality

 f x() − G p ε holds for any x for which the inequality

 0 p x − a p δ ε() holds, then the function y = f x() has the limit G
when the independent variable approaches the value a . We denote that
with lim

x→ a
f x() = G. The quantity δ ε() is not some known function, but

it depends on the choice of the tiny quantity ε . The above can also be
understood as the search for some tiny neighbourhood of x = a ,
inside of which the function y = f x() creates values of y which all are
inside a tiny neighbourhood of G. For example, consider the function
y = x2 at the point x = 0 . The limit G of this function, when x
approaches 0 , is equal to 0 . If we demand that the quantity

 f x() − G p ε , with ε = 1E − 6 , then we have to satisfy the inequality

 x
2 − 0 p 1E −6 for some distinct values of x . Do such values exist?

Yes, they exist and they all satisfy the inequality x − a p δ ε() , which
in this particular case translates to x − 0 p 1E − 3 , or x p 1E − 3 . If
we choose x to be "at most" 1E − 3 away from x = a = 0 , then we
satisfy the demand that y is "at most" 1E −6 away from y = G = 0 .

The HP49G has extended capabilities for finding limits of functions.

We start with simple examples and proceed to more complex ones. So
let's try to find lim

x→ 0
x2 . Go to the EQW and press [blue-shift], [4] to

get the menu CALCULUS. Press the menu key [LIMIT] and then the
menu key [lim]. The unfinished expression lim ,() appears. The

cursor blinks over the first argument of the function lim. Enter X2 and
press [arrow-right]. Enter X = 0 , to supply the part x → 0 . Press
[ENTER]. Now you have lim

X →0
X2 on stack level 1, the "pretty print"

version of lim X2 ,X = 0() . Press [EXPAND]. The HP49G returns 0 ,

the limit of X2 for X → 0 . Press [red-shift], [HIST] to undo the last
result and get the previous stack. We're going to see something strange
(again;-)). Press [arrow-down] to bring the expression lim

X →0
X2 into the

EQW. First thing to notice: now the pretty printed expression appears
in the EQW, while previously we had lim X2 ,X = 0() . You can select
and edit all parts of the pretty printed form. But if you select the whole
expression and press [red-shift], [VAR] to copy it, then suddenly the

EQW contains... (X = 0
X 2

) , a rather unusual expression. If you

now press [ENTER] you will see the expression lim
X2

X = 0 on stack

level 1, which is lim
X →0

X2 with its arguments interchanged. Press

[arrow-down] again to bring the expression lim
X2

X = 0 into the EQW.

Press [red-shift],[VAR] to copy it again, and notice that the selected

expression changes again to (X2 X→0
) . Press [ENTER] and you

will see the expression lim
X →0

X2 on stack level 1. The second exchange

of arguments has brought us back the original form. The moral of the
story is that you should avoid copying the whole expression for a
limit, or find out how this curiosity of exchanged arguments could be
used for some purposes.

Sequences, series and limits with the HP49G - Part 6

6-2

G
G+ε

G-ε

aa-δ(ε) a+δ(ε)

The function lim can of course be used also in stack syntax. Enter
1
X

,

then X = a and then enter LIMIT to get the result
1
a

. The function lim

was introduced with the last ROM version as a pretty printed
alternative of the function LIMIT, which is in all previous ROM
versions. LIMIT is still in the current ROM version, but you won't
find it in the command catalogue. If you want to use it with the current
ROM version, you have to type it in. If you go to the EQW, type
LIMIT and then press [arrow-right] to start entering the arguments,
then the expression is converted automatically to lim() , the template

of the new pretty printed version. If you try entering
'LIMIT X2,X = 0()' from the command line, then the command line
parser will mark the equals sign and complain about invalid syntax.
Entering 'lim X2,X = 0()' brings the same error again. So if you have
entered some expression with limits in the EQW, you just can't use the
last command recovery to re-enter it from the command line. You have
to re-enter the expression from the EQW. What a mystery!

Let's examine that a bit further. Go to the EQW and enter lim
X →0

X2 .

Press [ENTER] to put that on the stack, and press [ENTER] two times
to make two copies of the expression. Press [->LST] to turn the
algebraic object to its list RPL equivalent. The result of this operation

is X 2 lim
X→0

^(){ } . Either this is much to high mathematics for me, or

the pretty print version is totally..., well, let's say "unusual" ;-). Press
[OBJ->] to explode the list. On stack level 3 you can see now the
object Invalid Expression. The list item count on stack level 1 is
7., which shows that there were invisible items in the list (and also in
the algebraic object). Stack level 2 is occupied by an object which
doesn't show up. If you drop the 7. and press [TYPE], you get 18.
the object type of analytic functions, like SIN, COS and so on. Drop
all objects until lim

X →0
X2 is on stack level 1 again. Press [->LST] and

then [->ALG] to transform the algebraic object to a list and then back
to algebraic. You get lim

X →0
X2 , as it should be. But if you press

[COMP->] and then [->ALG], then you will get the very mysterious
result ' Invalid Expression' which shows again that pretty print
has totally messed up the inner structure of the function LIMIT. It will
work and find the right limits, but you have to be veeeery careful if
you use programs that explode and re-build expressions that contain
the function lim.

After the obligatory cry out, let's take a look at the strength of lim. We
start with easier examples and proceed to more complicated things.

Enter
X2 − 4
X − 2

, then X = 2 , and then press [lim]. The HP49G returns

the result 4 , the limit of
X2 − 4
X − 2

 for X → 2 . The HP49G knows how

to find limits in cases where the function itself is undefined, like in the
above example. The mathematic part of lim is very well done.

From the EQW enter lima X,X = 0() and expand. The HP49G returns

the result 1.

Enter lim 1+
1
X







X

,X = ∞



 


 and expand. Again, after some seconds

you get the result e .

Enter lim 1+ X()
1
X ,X = 0





 and expand. You get the limit e after some

seconds.

Enter lim
LN1+ X()

X
,X = 0



 


 and expand. The result is 1.

Sequences, series and limits with the HP49G - Part 6

6-3

Enter lim
SIN X()

X
,X = 0



 


 and expand to get the limit, 1.

In many cases it is important to know if the independent variable
approaches some value from the left or from the right. Consider for

example the function e
− 1

X . If you plot it then you can see that if x

approaches 0 from the left, that is if it comes from values less than 0 ,

then e
− 1

X goes up to +∞ . But if x approaches 0 from the right, that is

if it comes from values greater than 0 , then e
− 1

X goes to 0 . If you go

to the EQW, enter lim e
− 1

X ,X = 0


 


 and expand, then the HP49G

errors out with "Unsigned inf". In such cases it can help to specify the
direction from which the limit is approached. In this case, if we want
to specify that X approaches 0 from the left, then we enter X = 0 − 0
for the value that X is going to. if we want to specify that X
approaches 0 from the right, then we enter X = 0 + 0 . Here we

encounter yet another strange thing. Go to the EQW, enter

lim e
− 1

X ,X = 0 −0


 


 and press [ENTER] to put the expression on

stack level 1. Now you see lim
X →0− 0

e
− 1

X . Expanding this we get... the

error "Unsigned inf" again. But if we use stack syntax, that is entering

e
− 1

X , then X = 0 − 0 and pressing [lim], we get +∞ ! Go figure out
why the algebraic syntax fails, while stack syntax works. Let's try the

opposite direction. Enter lim e
− 1

X ,X = 0 + 0


 


 and expand. Again the

HP49G errors out. But entering e
− 1

X , then X = 0 + 0 and pressing
[lim] we get the result +:0 , which means that the limit is 0 and that it
is approached from positive values. So it seems that the "pretty print"
of the command lim is, let's say, not very recommendable. ;-)

Let's consider another example, the

function tan x() . If x approaches
π
2

from the left, that is if it comes from

values less than
π
2

, then tan x() goes

up to +∞ . But if x approaches
π
2

 from

the right, that is if it comes from values

greater than
π
2

, then tan x() goes down

to −∞ . First we try without specifying
a direction from which x approaches
π
2

. Go to the EQW and enter

Sequences, series and limits with the HP49G - Part 6

6-4

π
2

lim TAN X(),X =
π
2





 . Press [EXPAND] to get ∞ , an unsigned

infinity, an infinity without sign. Now let's try to specify the direction
from which we approach the limit. If we want to specify that X

approaches
π
2

 from the left, then we enter lim TAN X(),X =
π
2

−0




 .

Expanding the last expression we get again ∞ and not +∞ , which
shows that in this particular case the command lim has a shortcoming.

Same for the other direction. We specify that X approaches
π
2

 from

the right, that is we enter lim TAN X(),X =
π
2

+0




 , and we expand.

But though we specified the direction from where we approach
π
2

, we

get ∞ and not −∞ . Specifying the direction from which we approach
the limit, doesn't work in this case. Even using the stack syntax of lim
wouldn't help. But we can use the command SERIES instead, which
is more powerful (and in general slower) when finding limits. Enter

TAN X() , X =
π
2

− 0 , and 1, the order of the series expansion of

TAN X() for X →
π
2

 coming from the left. Press [SERIES]. The

HP49G returns a list at stack level 2 and h =
π
2

− X at stack level 1.

Press [SUBST] to substitute
π
2

− X for h in all expressions of the list,

and then press [HEAD] to get the first element of the list, the limit of

of TAN X() for X →
π
2

 coming from the left. The result is

Limit: +∞() . Let's try the same for X →
π
2

 coming from the right.

Enter TAN X() , X =
π
2

+0 , and 1. Enter SERIES SUBST HEAD to

get the result Limit: −∞() . We see two things here. First thing, we can
specify one sided limits. Second thing, the command SERIES seems
to be more powerful than the command lim. If lim fails, don't give up
but try again using SERIES.

We continue with some additional examples of finding limits with the
HP49G.

Enter lim
LN X()
X −1

,X = 1


 


 and expand. The HP49G returns 1.

Enter lim
X3

2 ∗eX − X2 − 2∗ X − 2
,X = 0



 


 and expand. The HP49G

finds the limit, 3 .

Enter lim
COS X() −1

X2 ,X = 0


 


 and expand to get the result

−1
2

.

Enter lim
SIN 2∗ X()
COS X()2 ,X =

π
2




 


 and expand to get ∞ . In this example

we must specify from which direction X approaches
π
2

. But trying to

expand lim
SIN 2∗ X()
COS X()2 ,X =

π
2

+ 0



 


 or lim

SIN 2∗ X()
COS X()2 ,X =

π
2

− 0



 




still returns ∞ , the unsigned infinity. So we try to find the one sided

limits using SERIES. Enter
SIN2 ∗ X()
COS X()2 , X =

π
2

− 0 , 1, and then

SERIES SUBST HEAD. Now you have the result Limit: +∞() which

Sequences, series and limits with the HP49G - Part 6

6-5

is correct for X approaching
π
2

 from the left. For the right sided limit

enter
SIN2 ∗ X()
COS X()2 , X =

π
2

+0 , 1, and then SERIES SUBST HEAD to

get Limit: −∞() .

Enter lim 1− X() ∗LN X −1(),X = 1+ 0() and expand. The HP49G
errors out with "Unable to find sign". Again the pretty print version
has problems in algebraic syntax. Enter 1− X()∗LN X −1() , then
X = 1+ 0 and press [lim]. Now the result is +:0 .

Enter lim
TAN 3∗ X()

TAN X() ,X =
π
2



 


 and expand. The HP49G needs some

seconds to return the limit,
1
3

.

Enter lim
X4

eX ,X = ∞


 


 and expand. The HP49G errors out with "Non

algebraic in expression". Using stack syntax, that is entering
X4

eX , then

X = ∞ and pressing [lim], returns the limit, +:0 .

Enter lim
LN X()

Xn ,X = ∞


 


 and expand. The HP49G needs several

seconds to error out with "Unsigned inf error". Entering
LN X()

Xn , then

X = ∞ and pressing [lim],doesn't do any better in this case. So we try

SERIES. Enter
LN X()

Xn , then X = ∞ and then 1. Press [SERIES] and

let the HP49G do the work, until it errors out with "Unsigned inf
error" again. What can we do? Well, let's try to assume something for

n . Enter n ≥ 0 ASSUME. If you now enter lim
LN X()

Xn ,X = ∞


 


 and

expand, the HP49G errors with "Non algebraic in expression". If you

enter
LN X()

Xn , then X = ∞ and press [lim], the HP49G needs several

seconds to return the limit, +:0 . Enter n UNASSUME n ≤ 0

ASSUME and then enter
LN X()

Xn , then X = ∞ and press [lim] to try to

find the limit for n ≤ 0 . The HP49G returns +∞ .

Enter lim X ∗ATAN
1
X





 ,X = ∞



 


 and expand. The HP49G returns 1.

Enter lim
1

SIN X() −
1

X + X2 ,X = 0


 


 and expand to get 1.

Enter lim XX ,X = 0 + 0() and expand. The HP49G errors out with

"Unable to find sign". But if you enter XX , then X = 0 + 0 , and press
[lim], the HP49G returns the limit 1.

Enter lim XX ,X = ∞() and expand to get 1.

From the above examples we see: If lim in algebraic "pretty print"
syntax doesn't work, then try lim with stack syntax. If this still doesn't
work, then try SERIES. And if it still doesn't work, then try to make
assumptions for additional variables that appear in the expression for
which you want to find the limit.

What about piece wise defined functions? Can the HP49G find limits
of such expressions? Let's see. First experiment, enter

 IFTE X p 0,1,0() , then X = 0 , and press [lim]. The HP49G returns 0
, which is wrong! It should return 1. Let's try the one sided limit.

Sequences, series and limits with the HP49G - Part 6

6-6

Enter IFTE X p 0,1,0() , then X = 0 − 0 , and press [lim]. You get 0 ,
the wrong result again. In the following table we have a summary of
all cases where the HP49G finds wrong limits of a piece wise defined
function. The top row contains the functions that were used. The left
column contains the value that X approaches. The second row

contains a mini graph of the used function. The red cells are the cases
where the HP49G returns the wrong limit. As we can see the HP49G
rather returns the value of the function at the considered point but not
the limit of the function. When it finds the correct limit, it does so
because of the false reason. Especially for the cases where no
direction was specified, like the limit for X = 0 in the above table, the
HP49G should return something that tells you that a direction is
needed, or error out. So you shouldn't try to find such limits by
simply using the piece wise defined function. Let's try to make a
program that enhances the built-in lim for such cases in which we want
to find the limit of a piece wise defined function at the point of the
"jump". Our program could first check to see if the function contains
IFTE. If it doesn't then we simply use SERIES to find the limit. We
don't use lim, because SERIES is more powerful. For example, the

command lim finds both limits of
1
X

 for X = 0 + 0 and for X = 0 − 0

to be ∞ , while SERIES finds +∞ for X = 0 + 0 and −∞ for
X = 0 − 0 . If IFTE is in the function, we check again if a one sided
limit was specified. If no direction was specified, then we return a ?,
which signals us that a direction is needed. If a direction was specified
from which X approaches a , then we turn X = a ± 0 to

X = a ±1E − 499 , and substitute this in the function that contains
IFTE. This causes the condition to be evaluated to 1 for true or 0 for
false, but fortunately doesn't do anything else, so that we can MATCH
X for 0 ±1E − 499 and EVAL to get the right part of the piece wise
defined function and find its limit using the command SERIES. This of

course limits the usefulness of
our program for finding limits of
functions that don't contain
1E − 499 , but I think that this
limitation is not very bad, since
such functions are not likely to
be used.

<<
PUSH RCLVX
-> func xeq vx
<<

IF @If IFTE is in the function
func ->LST
{ IFTE } HEAD POS

THEN @then
IF

xeq ->LST @If the right or left
3 5 SUB @limit is wanted
DUP {0 + =} SAME
SWAP {0 - =} SAME
OR

THEN
func xeq ->LST @Built up X=a± 1E-499
3 1E-499 PUT ->ALG
SUBST @Substitute X=a± 1E-499
POP PUSH @POP and PUSH (to avoid

@mode changes)

Sequences, series and limits with the HP49G - Part 6

6-7

X=0 0 1 1 1 0 0

X=0-0 0 1 1 1 0 0

X=0+0 0 1 1 1 0 0

1 1 1 1 1 1

 IFTE X p0,1,0() IFTE X ≤0,1,0() IFTE X ==0,1,0() IFTE X ≥0,1,0() IFTE X f0,1,0() IFTE X ≠0,1,0()

xeq ->LST TAIL @prepare list for match
1 3 SUB
2 1E-499 PUT
->ALG
xeq ->LST HEAD
2 ->LIST

↑MATCH DROP @Match a± 1E-499 to X
EVAL @Find limit of the right part
xeq 2 SERIES @of the definition using SERIES
SUBST HEAD
EXPAND

ELSE @If no direction was specified
? @return ?

END
ELSE @else (no IFTE in function)
func xeq 2 SERIES @just find the limit
SUBST HEAD EXPAND @using SERIES

END
vx STOVX @Restore VX

>>
POP @Restore settings

>>

This is the program is LIM from the programs that come along with
this document. Let's check it. We use first exactly the same piece wise
defined functions like that in the table on the previous page. The
results are summarised on the table below. As we can see the program
returns the correct limits. We do some additional tests. Enter

IFTE X p 0,0,

SIN(X)
X





 , X = 0 + 0 and press [LIM] to get 1, the

correct limit. Enter

IFTE X p 0,

SIN(X)
X

,e
− 1

X


 


 , X = 0 − 0 and press

[LIM] to get 1, the correct limit again. Enter

IFTE X p 0,

SIN(X)
X

,e
− 1

X


 


 , X = 0 + 0 and press [LIM] to get +:0 ,

which again is correct.

The program can be made better. For example it runs the same or
nearly the same code more than once. The portions of code which are
similar or even identical could be run only once. Another thing to make
better would be to return both the left and the right limit in case no
direction is specified. And another thing for improvement is that the
program will work only for an argument on stack level 1, that has the
form X = a , or X = a + 0 , or X = a − 0 , where a is a single term.
For example if this argument is X = 1+ a + 0 , that is if we want the
limit for X → 1+ a the program will not work properly.

We return to continuous functions. Using limits we can make a
definition of continuity that is allows us to implement a program that
tests if some function is continuous at a given point. If a function f x()
is defined at x = ξ and also defined in the neighbourhood of x = ξ ,
then we can say that it is continuous at x = ξ , if lim

x→ξ
f x() = f ξ() . This

means for our program that it has
to calculate lim

x→ξ
f x() and f ξ() and

then check if the two quantities
are equal to each other. Since we
might have some piece wise
defined function, we use the
program LIM and not the built-in
function lim, so that we are also
able to find if some piece wise

Sequences, series and limits with the HP49G - Part 6

6-8

X=0 ? ? ? ? ? ?

X=0-0 1 1 0 0 0 1

X=0+0 0 0 0 1 1 1

1 1 1 1 1 1

 IFTE X p0,1,0() IFTE X ≤0,1,0() IFTE X ==0,1,0() IFTE X ≥0,1,0() IFTE X f0,1,0() IFTE X ≠0,1,0()

defined function is continuous at some point or not. The program
should take a function and an equation of the form x = ξ and return a
1 if the function is continuous at ξ or a 0 otherwise.

<<
PUSH RCLVX
-> func xeq vx
<<

func

xeq EQ-> {0 +} + @Construct x = ξ +0
->ALG =
LIM @Find limit
func

xeq EQ-> {0 -} + @Construct x = ξ−0
->ALG =
LIM @Find limit
IF @If one or both limits aren't
DUP2 2 ->LIST @defined
? POS

THEN @then return 0 (discont.)
DROP2 0

ELSE @but if the limits are defined

func xeq SUBST @Find f ξ()
EXPAND
-> rlim llim fval
<<

CASE
∞ ∞ NEG @If both limits are ∞ and/or
2 ->LIST @−∞ then we have a pole
rlim POS @and so...
∞ ∞ NEG
2 ->LIST
llim POS
AND

THEN @...return -1
-1

END

fval ? @If function is undefined
SAME @but left and right limits
rlim llim @exist and are equal to
== AND @each other

THEN @then we have a removable
0 xeq EQ-> @discontinuity. Build up
== rlim @replacement function
func IFTE
2 ->LIST

END
llim rlim @If both limits and the function
== rlim @value are equal, then
fval == @continuous
AND fval
? SAME
NOT AND

THEN
1

END
0 @Else discontinuous

END
>>

END
vx STOVX @Restore VX

>>
POP @Restore settings

>>

This is the program ISCONT? that comes
along with this document. Let's test it. Enter
X2 , X = 0 and press [ISCONT?] to check the
function X2 for continuity at X = 0 . The result
is 1, which tells you that X2 is continuous at
X =0 .

Enter 1− COS X()2
, X = π , and press

Sequences, series and limits with the HP49G - Part 6

6-9

[ISCONT?]. Again the result is 1, the function
is continuous at X = π .

Enter
1
X

, X = 0 , and press [ISCONT?]. The

result is −1, which means that the function is
discontinuous and has a pole at X = 0 .

Let's test the program with piece wise defined
functions. Enter IFTE X p 0,1,0() , X =0 and press
[ISCONT?]. The HP49G returns 0 , the function is
discontinuous at X = 0 .

Enter

IFTE X p 0,

SIN(X)
X

,e
− 1

X


 


 , X =0 and

press [ISCONT?]. The HP49G returns 0
because the function is discontinuous at
X = 0 .

Enter SIN
1
X





 , X =0 and press

[ISCONT?]. The HP49G flashes a
message "Bounded var error" and
displays a menu with "OK" (key [F6]).
Press the menu key [OK]. The same message flashes once more.
Press the menu key [OK] again. The result is 0 . We have the same
message like when we want to get the limit of SIN X() for X → ∞ .
The function oscillates between −1 and 1, it is bounded between these
two values but doesn't approach some special value.

Enter X ∗ SIN
1
X





 , X = 0 and press [ISCONT?]. The result is

0 IFTE X == 0,0,X ∗SIN
1
X









 










. This means that the function is

discontinuous at X = 0 , but we have to do with a removable

discontinuity. The function

IFTE X == 0,0,X ∗SIN
1
X









 


 is

a replacement function which
retains all properties of

X ∗ SIN
1
X





 but is continuous at

X = 0 .

For better understanding of the removable discontinuity consider the

function
X2 − 2 ∗X + 2

X −1
. This function isn't defined at X = 1. Enter

X2 − 2 ∗X + 2
X −1

, then X = 1 and press [SUBST] and [EXPAND] to get

a ? , which shows that the function isn't defined at this point. But both

the right and the left limits are −1 at X = 1. Enter
X2 − 2 ∗X + 2

X −1
, then

X = 1+ 0 (for the right limit) and press [lim] to get −1. Enter again
X2 − 2 ∗X + 2

X −1
, then X = 1− 0 (for the left limit) and press [lim] to get

−1 again. Since the original function isn't defined and thus
discontinuous at
X = 1, and
since both limits
are −1 at the
same point, we
can change the
definition of the
function, so that
it is equal to the
limit −1 at
X = 1 and
retains its
definition at all

Sequences, series and limits with the HP49G - Part 6

6-10

1

other points. This is exactly what the program ISCONT? does in such

cases. Enter
X2 − 2 ∗X + 2

X −1
, then X = 1 and press [ISCONT?]. The

result is the list 0 IFTE X == 1, −1,
X2 − 2∗ X + 2

X −1



 










, which tells

you that the function is discontinuous at X = 1, but the discontinuity is
removable through the replacement function

IFTE X == 1, −1,
X2 − 2 ∗ X + 2

X −1



 


.

Perhaps you remember that in the trigonometry marathon we calculated

the sum SINn ∗ X()
n =0

N

∑ and that we found the result

SIN X ∗N+ X() − SIN X ∗N() + SIN X()()
2∗ COS X() − 2

. The question there was,

what is going on when for example X = 2∗π . The sum is a finite

quantity but the quantity
SIN X ∗N+ X() − SIN X ∗N() + SIN X()()

2∗ COS X() − 2
 has

the denominator 2∗ COS X() − 2 , which is 0 when X = 2∗π . In the
trigonometry marathon we have taken the limit of the expression
SIN X ∗N+ X() − SIN X ∗N() + SIN X()()

2∗ COS X() − 2
 for X = 2∗π and N = 5

and we found it to be equal to 0 . Here we can go a bit further to
understand better what is going on. Enter
SIN X ∗N+ X() − SIN X ∗N() + SIN X()()

2∗ COS X() − 2
, and then N = 5 . Press

[SUBST] and enter X = 2∗π . Press [ISCONT?]. The HP49G needs
several seconds to return:

0 IFTE X == 2∗π,0,
SIN X ∗N+ X() − SIN X ∗N() + SIN X()()

2∗ COS X() − 2




 












.

The function is discontinuous at X = 2∗π , but the discontinuity is
removable and the function becomes continuous if we replace it with:

IFTE X == 2 ∗π,0,
SIN X ∗N + X() − SIN X ∗N() + SINX()()

2 ∗COS X() − 2




 


 .

Exactly the same way we can always replace such functions with
removable discontinuities by functions that are continuous at the
considered points and retain the original definition of the function in all
other points. We will meet such functions again at the differential
equations marathon.

A more difficult problem is to find out if a function is continuous in
some given interval of values of the independent variable. This would
require to find out if f x() − f ξ() p ε for x −ξ p δ ε() for all values of

ξ that are in the interval, where and δ ε() are arbitrary small positive

quantities. For example, if we wanted to check if f X() = X2 is
continuous for X taking values from −1 to 1, we would have to solve

inequalities of the form

X +δ ε()()2
−ξ 2 p ε , which the HP49G can't

solve. So we are going to fake it. (Shame on us! ;-))

You of course have noticed that ratios play a major role when it comes
to discontinuities. Most (all?) of the time discontinuities appear because
some denominator is equal to 0 . And so we make a program that takes
some function and tries to find if roots of the denominator exist in the
interval in which we examine the continuity of the function.

<<
RCLVX { } { }
-> func inter vx rat disc
<<

PUSH 1 CF
func TAN2SC @Turn TAN to SIN/COS

Sequences, series and limits with the HP49G - Part 6

6-11

EXPAND
IF @If the result of EXPAND
DUP TYPE 9 ≠ @isn't algebraic

THEN
1 ->ALG @then turn it ti algebraic

END
->LST @Turn alg. to list
1 @Do to all objects in list
<<
IF @If object is / then

{ /) OVER POS @evaluate and add ratio to
THEN @local variable 'rat'

EVAL DUP
'rat' STO+

ELSE @else simply evaluate
EVAL

END
>> DOSUBS DROP
IF @If list rat isn't empty
rat { } ≠

THEN
rat 1 @Take denominator of each
<< @ratio

FXND NIP
>> DOSUBS
inter HEAD SOLVE @Find roots of each denom.
1
<< @Set flag 1 if roots

IF @were found
DUP { } ≠

THEN
1 SF

>> DOSUBS
IF @If roots were found

1 FS?
THEN

1
<<

IF @If roots were returned in
DUP TYPE 5 == @a list then explode it.

THEN
OBJ-> DROP

END
>> DOSUBS
1
<< @Test if solutions are in

EQ-> NIP DUP @interval.
inter 2 GET ≥
OVER inter 3
GET ≤ AND
IF @If test can't be evaluated

DUP TYPE 9 == @because of variables like
THEN @'n1' in the solution

NIP @then return uneval. test
'disc' STO+ @add result to list 'disc'

ELSE @else
IF @if root not in interval

NOT
THEN @then drop it.

DROP
ELSE @else

'disc' STO+ @add result to list 'disc'
END

END
>> DOSUBS

ELSE @If no roots were found
DROP @drop empty list of roots.

END
END
disc vx STOVX
POP

>>
>>

This is the program INTERCONT? that comes along with this
document. It takes a function and a list from the stack. The list contains

Sequences, series and limits with the HP49G - Part 6

6-12

the independent variable and the low and high values that defined the
interval in which we want to check the function.

Enter for example X2 and X −1 1{ } and press [INTERCONT?].
The HP49G returns an empty list which means that the program didn't
find any discontinuities in the specified interval.

Enter
SIN X()

X
, X −π π{ } and press [INTERCONT?]. The

HP49G returns 0{ } which means that the program found one
discontinuity at X = 0 . (You can use this value to further examine the
discontinuity using the program ISCONT?.)

Enter
1

SIN X() , X −π π{ } and press [INTERCONT?]. Now the

HP49G needs a bit longer and it returns a list that looks different:

2 ∗π∗ n1≥ −π AND 2∗π∗ n1≤ π
− 2 ∗π∗ n1−π() ≥ −π AND − 2 ∗π∗ n1−π() ≤ π









We take a closer look at the first expression in the list. The values for
X that possibly result in a discontinuity of the function are of the form
2∗π∗ n1, where n1 is some integer. All values of n1 that satisfy
2∗π∗ n1≥ −π AND 2∗π∗ n1≤ π lead to in values of X that

result in discontinuities of
1

SIN X() in the interval from −π to π . The

HP49G can't solve the inequalities for n1 and so we have to find out
these values ourselves. From the first inequality we have:

2∗π∗ n1≥ −π ⇒ 2∗ n1≥ −1 ⇒ n1≥ −
1
2

At the same time the second inequality must be satisfied too and so:

2∗π∗ n1≤ π ⇒ 2∗n1≤ 1 ⇒ n1≤
1
2

That means that n1 must satisfy n1≥ −
1
2

AND n1≤
1
2

 and at the

same time must be integer. So the only possible value of n1 is 0 , and
the corresponding value for X is X = 2∗π∗ n1= 2∗π∗ 0 = 0 . That

means that
1

SIN X() has a discontinuity at X = 0 .

The second element of the returned list of possible discontinuity
points, − 2 ∗π∗ n1−π() ≥ −π AND − 2 ∗π∗ n1−π() ≤ π , can be
examined the same way.

The program will not find some removable discontinuities, like for

example the discontinuity for X = 1 of the function
X2 − 2 ∗X + 2

X −1
.

This is because we expand the function and doing this the HP49G
turns it to X − 2 .

In the program we use the command TAN2SC to turn any occurrence
of TAN to SIN/COS, so that we can handle it like the other ratios.

The command FXND, that we also use in the program, takes an
expression and returns its numerator and denominator separately. If the
expression doesn't have a denominator, that is is the denominator is 1,
then a 1 is returned as denominator.

One purpose that the program INRECONT? can be used for is of
course to find if some function is continuous in a specified interval.
Another purpose is to enhance the capabilities of the HP49G when it
evaluates inequalities. It may sound strange, but remember that
mathematics is a land with many, many connections between its parts.
Let's start with an example. Remove all assumptions for Z , enter
e− Z ∗SIN Z() ≥ 0 and expand. The result is the unevaluated
expression, because the HP49G can't determine if it is true or false.

Sequences, series and limits with the HP49G - Part 6

6-13

Actually this is correct since we didn't tell it what values Z can have.
So let's do that. Enter Z ≥ 0 and use ASSUME, then press [DROP],
then enter Z ≤ π and ASSUME and DROP again. Now the HP49G
knows that 0 ≤ Z ≤ π . Having Z in this interval, the expression
e− Z ∗SIN Z() is nonnegative, and so expanding e− Z ∗SIN Z() ≥ 0
should return 1 now. But it doesn't. The HP49G still can't figure out
that e− Z ∗SIN Z() is greater than or equal to 0 . But here we can use
another way. A function that is continuous in a specified interval and
positive at some point of this interval, is positive over the whole
interval. Similarly, a function that is continuous in a specified interval
and negative at some point of this interval, is negative over the whole
interval. For our example that means:

1) Find the sign of the function e− Z ∗SIN Z() in an arbitrary point
Z0 between 0 and π .

2) Find if the function e− Z ∗SIN Z() is continuous from Z = 0 to
Z = π . If it isn't continuous, then we can't say anything about
e− Z ∗SIN Z() ≥ 0 . But if it is...

3) Check if e− Z ∗SIN Z() has roots between Z = 0 and Z = π . If it

does, then e− Z ∗SIN Z() ≥ 0 we again can't say if

e− Z ∗SIN Z() ≥ 0 is true or false. But if it doesn't then

e− Z ∗SIN Z() has the sign that we found in step 1 over the whole

interval. That means, we can evaluate SIGN e−Z0 ∗SIN Z0()() ≥ 0

instead of the original e− Z ∗SIN Z() ≥ 0 .

These are the basic operations of the following program, EVACOMP,
that takes an inequality from stack level 2 and a list from stack level 1,
that contains the independent variable and the low and high values that
define the interval. It returns 1 if the inequality holds in the interval, or
0 if it doesn't.

<<
PUSH
SWAP OBJ-> NIP @Transform lhs≥rhs to lhs-rhs≥0
UNROT - 0 ROT @and lhs≤rhs to lhs-rhs≤0 and
EVAL @evaluate inequality.
SWAP OBJ-> @Evaluate low and high of
DROP EVAL SWAP @interval. (Why?)
EVAl SWAP 3
->LIST
{ HOME CASDIR REALASSUME }
RCL RCLVX 0
-> cmpexpr inter assmlst vx hs
<<

inter OBJ-> DROP @Remove all assumptions for
ROT UNASSUME @independend variable.
DUP 4 ROLL ≥ @Assume indep≥low
ASSUME DROP
SWAP ≤ ASSUME @Assume indep≤high
DROP
cmpexpr OBJ-> @Find sign of lhs-rhs at
3 DROPN @(low+high)/2
inter OBJ-> DROP @(centre of interval).
+ 2 / = SUBST
EXPAND ->NUM SIGN
IF @If sign ≠ 0.
DUP

THEN @then...
'hs' STO
cmpexpr OBJ-> @Find eventual discontinuities
3 DROPN inter @of lhs-rhs in interval
INTERCONT?
IF @If no discontinuities found

{ } SAME
THEN @then

cmpexpr OBJ-> @Try to find root of lhs-rhs
3 DROPN @in interval starting at
inter OBJ-> @(low+high)/2
DROP SWAP

Sequences, series and limits with the HP49G - Part 6

6-14

->NUM SWAP ->NUM
DUP2 + 2. /
3 ->LIST
IFERR @If error occurs during

ROOT @searching for root
inter HEAD
PURGE

THEN @then assume that no root
cmpexpr @exists in interval and
OBJ-> NIP @evaluate sign≤0 or sign≥0
hs 3 UNPICK
EVAl

ELSE @else if root was found
IF @check if it is in interval.

DUP inter @If in interval...
2 GET >
SWAP inter
3 GET >
AND

THEN @then return ? (dunno)
?

ELSE @else if root out of interval
cmpexpr @Return result of
OBJ-> NIP @sign≤0 or sign≥0
hs 3
UNPICK
EVAL

END
END

ELSE @else if discontinuities found
? @return ? (dunno).

END
ELSE @else if sign=0 then we have
DROP ? @root in interval, so return ?

END @(dunno again).
vx STOVX
{ HONE CASDIR }
EVAL assmlst

'REALASSUME' STO
>>
POP

>>

Let's test the program with some
inequalities that the HP49G
can't evaluate out of the box.
Enter the inequality
e− Z ∗SIN Z() ≥ 0 , then the
interval Z 0 π{ } and then
press [EVACOMP]. The
HP49G returns 1, that is the
inequality holds in the specified
interval.

Let's see what happens with
the same inequality in the
interval from Z = −π to Z = 0 .
Enter e− Z ∗SIN Z() ≥ 0 ,
Z −π 0{ } and press

[EVACOMP]. Now the
HP49G returns 0 , because the
inequality doesn't hold in the
specified interval.

This program is a rather dangerous experiment. It relies blindly on the
hope that if a root exists in the specified interval, then ROOT will find
it if we feed it with a guess value that lies inside the interval. ROOT is
the programmable analogon of the numeric equation solver. It takes
three arguments: The equation to be solved at stack level 3, the variable
to solve for at stack level 2, and the guess (starting) value at stack level
1. This guess vale can have 3 formats. Either it is a single real number
that represents our guess. Or it is a list with two real numbers, which
specify an interval inside of which we expect (or want to find) a
solution. Or it is a list with three real numbers, the first two

Sequences, series and limits with the HP49G - Part 6

6-15

0,4

0,3

0,2

0,1

0
32,521,510,50

0

-2

-4

-6

-8

-10
0-1,57-3,14

representing the interval in which we search the root, the third
representing the guess value inside that interval. Though giving ROOT
a list with three real numbers allows some control of the root that it
finds, we can't control it rigourously. Exactly this makes the program
dangerous. The fact that ROOt doesn't find a root in the specified
interval doesn't mean that there are really no roots in that interval (and
thus that the sign of the function is the same with the sign at
low + high

2
). It rather means that ROOT just found a root outside the

interval and nothing more. So the program should be used with
caution and perhaps in combination with a graph of the function.

We move on to rules for rearrangements of limits. If lim
x→ a

f x() = F and

lim
x→ a

g x() = G then:

lim
x→ a

f x() ± g x()() = lim
x→a

f x() ± lim
x→a

g x()

lim
x→ a

f x() ∗g x()() = lim
x→a

f x() ∗ lim
x→a

g x()

lim
x→ a

f x()
g x()



 


 =

lim
x→a

f x()
lim
x→a

g x() in case lim
x→ a

g x() = G ≠ 0

The HP49G has no built-in commands for converting limits according
to these rules. So we write the program LIMEXPAND that applies
them.

<<
DUP OBJ-> 3 DROPN @Full distribution of *,/ over
FDISTRIB @over +,-.
SWAP ->LST SIZE 3 - @Convert lim(f(x),x=a) to
DUP 3 + SUB + ->ALG @lim(fdistrib(f(x)),x=a)
WHILE @While matching

{ 'lim(&A+&B,&C)' 'lim(&A,&C)+lim(&B,&C)'}

↓MATCH SWAP
{ 'lim(&A*&B,&C)' 'lim(&A,&C)*lim(&B,&C)'}

↓MATCH ROT OR
SWAP
{ 'lim(-&A,&C)' '-lim(&A,&C)'}

↓MATCH ROT OR
REPEAT
END @Until no match occurs
->TERMS @Split to summands
1
<<

IF @If limit of ratio
DUP
{ '-lim(&A/&B,&C)' '&B)'}

↓MATCH SWAP
{ 'lim(&A/&B,&C)' '&B)'}

↓MATCH ROT OR
THEN @then take denominator
OVER @and find its limit.
{ '-lim(&A/&B,&C)' '&C)'}

↓MATCH DROP
{ 'lim(&A/&B,&C)' '&C)'}

↓MATCH DROP
lim 0 ≠
SWAP DUP
{ 'lim(&A/&B,&C)' 'lim(&A,&C)/lim(&B,&C)'}

↓MATCH DROP ROT
IF @If limit was expression

DUP TYPE 9 ==
THEN @then construct

UNROT SWAP @IFTE(limit≠ 0,lim(A)/lim(B),
IFTE @ limit(A/B))

ELSE
IF @else if it wasn't expression
THEN @then if it is ≠ 0

NIP @then lim(A)/lim(B)

Sequences, series and limits with the HP49G - Part 6

6-16

ELSE @else if it is = 0
DROP @then lim(A/B)

END
END

ELSE @else if no limit of ratio
DROP @drop expression

END
>> DOSUBS
0 + ΣLIST @Build-up sum of limits

>>

Let's see the program in action. Enter lim
x→π

SIN X() ∗ COS(X) − X()()

and press [LIMEXPAND]. You get the expanded form:

lim
x→π

COS X()() ∗ lim
x→π

SIN X()() − lim
x→π

X() ∗ lim
x→π

SIN X()()

Enter lim
x→ 0

X2 −1
X −1



 


 and press [LIMEXPAND]. The limit of the

denominator X −1 for X → 0 is not 0 and so you get the expanded

form
lim
x→ 0

X2()
lim
x→ 0

X −1() −
lim
x→0

1()
lim
x→0

X −1() .

But if you enter lim
x→1

X2 −1
X −1



 


 and press [LIMEXPAND] then the

HP49G finds out that the limit of the denominator X −1 for X → 1 is

equal to 0 and so you get the expanded form lim
x→ 0

X2

X − 1



 


− lim

x→0

1
X −1







.
Notice however that though the HP49G will find the correct limit of

lim
x→ 0

X2

X − 1
−

1
X − 1



 


 which is 2 , it will not find the correct limit when

you expand the form lim
x→ 0

X2

X − 1



 


− lim

x→0

1
X −1





 .

How can the program be changed, so that it also expands the
denominators according to the rules on the previous page?

And now for something completely different, as Monty Trabythons
says. Let's try to visualise how ε and δ ε() relate to each other for a
given function f x() at a given point ξ . As we already have seen, if a
function f x() is defined at x = ξ and if it is also also defined in the
neighbourhood of x = ξ , then we can say that it is continuous at
x = ξ , if lim

x→ξ
f x() = f ξ() . This is equivalent to the following: If for an

arbitrary tiny ε > 0 we can find a corresponding δ ε() > 0 , such that

f x() − f ξ() < ε for all values of x that satisfy x −ξ < δ ε() , then the

function f x() is continuous at the point x = ξ . This sentence sounds
much more complicated than it is. (Trying not to be misunderstood
mathematics statements often sound ununderstandable ;-)). We can
take away much of the "mystery" of the above statement, if we
visualise it.

What the above
statement says is
best seen in a
picture. We have a
function f x() and its

value f ξ() at the
point x = ξ . Now,
we take a range of
values of f x() around f ξ() , from f ξ() − ε to f ξ() + ε . These two
values are the values of f x() at some points near x = ξ . So we have

f x1() = f ξ() −ε and f x2() = f ξ() +ε . The maximum of the absolute

Sequences, series and limits with the HP49G - Part 6

6-17

ξ

f ξ()
f ξ() + ε

f ξ() − ε

ξ −δ ξ +δ

value of the difference of f ξ() and f x() = f ξ() −ε on the one hand, and

f ξ() and f x() = f ξ() +ε on the other hand, is ε . This is what the

formula f x() − f ξ() < ε says. Now, we search for a band of values of

the independent variable x , such that f x() − f ξ() < ε is satisfied.

These values of x are around x = ξ . The maximum difference
between ξ and these values is δ ε() , a tiny positive δ , that depends

somehow on the value of ε . That is what formula x −ξ < δ ε() says.
If such a δ ε() exists, then the function is continuous at x = ξ . In other
words, we search for an interval of values of x , such that the values
of f x() stay within f ξ() − ε and f ξ() + ε .

We make a program that takes a
continuous function at x = ξ ,
its independent variable, the
point ξ and the tiny positive ε
from the stack, and draws the
function along with a box,
which has the width 2∗δ ε() and

the height 2∗ε , and which is centred at the point ξ , f ξ()() . Then,
using tracing we can move the graphics cursor along the function and
as long as we stay in the box, we can view the coordinates, which
satisfy x −ξ < δ ε() and f x() − f ξ() < ε .

<<

->NUM SWAP ->NUM SWAP @Turn ε and ξ to numbers.
-> func var point ε δ
<<

PUSH
#131d #64d PDIM @Make PICT 131× 64 pixels
FUNCTION @Set plot type function
var INDEP @Set independent variable
func STEQ @Store function in EQ

"Solving for δ "
1 DISP @Display message.

func DUP @Build-up f x() − f ξ() . Using ABS
var point = @with algebraics that contain
SUBST ->NUM @numeric values, sets approx.
- ABS POP @mode, so we restore modes.

ε = @Build-up f x() − f ξ() = ε.
var point ε + @We will try to find δ in the
var point ε - @interval from ξ −ε to ξ +ε .
point 3 ->LIST @We use ε as help for guessing
ROOT @a starting value of δ .
var PURGE @Purge created variable.
point - ABS @Store abs. value of difference

'δ ' STO @between solution and ξ .
"Determining X-range"
1 DISP @Display message.
point δ 1.5 * - @Set horiz. view range such that
point δ 1.5 * + @the plot has width 3*δ .
XRNG
"Autoscaling Y-range"
1 DISP @Display message.
AUTO @Autoscale.
var PURGE @Purge var. created by AUTO.
PPAR 1 2 SUB @Get lower left and upper right

@coordinates of the plot.
∆LIST HEAD IM @Find height in user coord.
.046875 * @Enlarge the height of the plot
ε MAX @either 3 pixels, or ε user
DUP NEG SWAP @units, whichever is bigger.
2 ->LIST PPAR @.046875 is the result of 3/64,
1 2 SUB IM ADD @the ratio of 3 pixels to the
OBJ-> DROP YRNG @corresp. user units.
ERASE DRAX DRAW @Draw function with axes.
point point δ - @Calculate coords. of box
point δ + @corners and box centre.
func var point =

Sequences, series and limits with the HP49G - Part 6

6-18

ε

δ ε()
ε

δ ε()

SUBST ->NUM
DUPDUP ε -
SWAP ε +
-> x ly ux y ly uy
<<
lx ly R->C @Draw the box.
ux uy R->C
BOX
lx y R->C @Draw lines in box.
ux y R->C
LINE
x ly R->C
x uy R->C
LINE
PICT @Calculate coordinates of low
lx ly y + 2 / @"ε" in the PICT.
R->C C->PX
{ #4d #3d } -
"ε" 1 ->GROB @Make "ε" to GROB using mini
REPL @font, and put it in PICT.
PICT @Calculate coordinates of high
lx uy y + 2 / @"ε" in the PICT.
R->C C->PX
{ #4d #3d } -
"ε" 1 ->GROB @Make "ε" to GROB using mini
REPL @font, and put it in PICT.
PICT @Calculate coordinates of left
lx x + 2 / ly @"δ " in the PICT.
R->C C->PX
{ #0d #2d } ADD
"δ " 1 ->GROB @Make "δ " to GROB using mini
REPL @font, and put it in PICT.
PICT @Calculate coordinates of right
ux x + 2 / ly @"δ " in the PICT.
R->C C->PX
{ #0d #2d } ADD
"δ " 1 ->GROB @Make "δ " to GROB using mini
REPL @font, and put it in PICT.

PICTURE @Activate plotting environment.
func "function" @Return labelled results.
->TAG
x "point" ->TAG
δ "δ " ->TAG
ε "ε" ->TAG

>>
>>

>>

This is the program δεGRAPH that comes along with this document.
Let's try it. Enter the function SIN X() , the independent variable X ,

the point
π
2

 where we want to test for continuity , and .00001 as the

tiny positive ε . Press
[δεGRAPH]. After
some seconds the
HP49G draws the
picture on the right.
Press the menu key
[TRACE] to trace the
function and then the
menu key [(X,Y)] to display cursor coordinates. Move the cursor
along the function by pressing [arrow-left] or [arrow-right]. As long as
you the cursor remains in the box, the inequalities x −ξ < δ ε() and

f x() − f ξ() < ε are both satisfied. Press [ON] to leave the plotting
environment. The program quits and you have the results on the stack.
You see that if SIN X() is allowed to vary from
SIN1.5707963268() + 0.0001 to SIN1.5707963268() − 0.0001,

then X must vary between 1.5707963268+ 0.00447213974 and
1.5707963268− 0.00447213974 . Try with different input data and
look at the results. One thing to be aware of: Don't enter values for ε
that are smaller than 1E −11 . The program will crash. Nothing else
will happen, but you garbage will be left on the stack. This comes

Sequences, series and limits with the HP49G - Part 6

6-19

because the HP49G can handle
numbers within 1E − 499 of 0
but only within 1E −11 of 1.

If you enter for example

SIN X() , X ,
π
2

 and 1E −12,

then the HP49G will plot the picture on the left and then crash. The
crash comes because the Y -coordinate in pixels of the first "ε " can't
be calculated correctly. The strange "stair" is the function SIN X()
drawn with an accuracy that exceeds the available accuracy of the
HP49G. The highest step is at Y = 1, the middle step is at
Y = .999999999999 , and the lowest step is at
Y = .999999999998 . For the HP49G there is no number between 1
and .999999999999 and no number between .999999999999
and .999999999998 . If you enter 1, 1E −12 and then press [+],
then the result will be 1 and not 1.000000000001 because this result
exceeds the available 12 digits with which the HP49G expresses
numbers. As you can see, the smallest difference between the vales of
Y in plots is 1E −12. The HP49G can't "see" differences of Y values
that are even smaller, and thus the "quantised" stairy plot.
(Nonetheless the plot can still be traced!)

Anyway, what exactly are precision and accuracy? Are there any
definitions for these things? And how does the HP49G do numeric
calculations? What is its precision and accuracy? Let's take a closer
look.

When doing numeric calculations we have to be aware of the fact that
precision loss may occur. (We are talking here about what numbers the
HP49G shows us out of the box, and not about how it carries out its
numeric operations internally.) The numeric precision of the result will
eventually be lower than the precision of the operands that we carry
operations with. Consider for example the operation (in RPL syntax)
1. 1.E12. + which on the HP49G results in 1. . This result is only

an approximation of the correct result, 1.000000000001. This
correct result can't be expressed with the available 12 digits that the
HP49G uses to represent real numbers. Or consider the operation
(RPL again) 1. 3. / 3. ∗ , which results in .333333333333
instead of 1. . Such problems are probably the strongest reasons for
designing the HP49G in such a way that it tries (more or less) to carry
operations as exact as possible and only give numeric results when you
tell it to do so. It's "standard" mode is exact, which makes exact
calculations easier. Of course you can turn approximate mode on and
use it like you would use its ancestor, the HP48, but this doesn't seem
to be the way the HP49G was thought to do its work. It rather seems
that the "standard" method should be to carry on all operations in exact
mode, getting exact intermediate results, and at the end, to use ->NUM
or XNUM to get the "numbers". The second example of above, carried
out with exact numbers (integers) would be 1 3 / 3 ∗ , which

results in
1
3

∗ 3 . If you use ->NUM on this result you will still get

.333333333333 and not 1. But if you first expand the expression
1
3

∗ 3 and then use ->NUM, then the result is 1. . The first example is a

bit more complicated to be calculated exactly, but it is possible.
Consider the operation 1. 1.E12. ∗ R->I 1.E − 12 1.E12. ∗

R->I + 1E12 R->I /, which results in
1000000000001
1000000000000

. If you

use ->NUM here, you get again 1. instead of the correct result,
1.000000000001, so you may think what was the use of the exact
calculation. In this case we didn't win anything because the precision
loss was less than the 12 digits that the HP49G uses. But in more
complicated calculations the precision loss may become bigger and our
results worse.

The same problems occur when we carry out symbolic operations with
symbolic arguments. Consider the classical example π SIN , which
returns a fat 0 , while π ->NUM SIN returns
−2.06761537357E −13 , a result very close to but not exactly 0. So

Sequences, series and limits with the HP49G - Part 6

6-20

the first moral of the story is that we should carry out all operations
exact, and at the end, when we want the "damned numbers", we just
use ->NUM, or XNUM, or we switch to numeric mode (by pressing
at the same time [red-shift] and [ENTER]) and pressing [EVAL].

Let's now get a closer look to the definitions of precision and
accuracy. Suppose that you have to do with a number x , which is not
known exactly but only with an error of (positive) ε . The number will
then be somewhere between x −ε and x +ε . Does this ε has to do
something with the HP49G? Suppose that you have a number, say
1.23456 of which you know that it has an error of .01. Then the
number "is meant to be" is somewhere between the numbers 1.22456

and 1.24456. The precision is defined as −LOG
ε
x





 . So the

precision of the above number is −LOG
.01

1.2345




 = 2.09151220163 .

The accuracy is defined as −LOG ε() , which for the above number is
−LOG .01() = 2. . The following table contains some examples of
numbers, errors, precisions and accuracies. (The small "e" denotes the
"E" of HP49G numbers, so 1e−12 means 1E −12.)

We take a look at the last example on the table. We have the number,
1.23456 and know that it has an error of 1E −12. The number is
somewhere between 1.23456−1E − 12 and 1.23456+1E − 12. But
for the HP49G all numbers between 1.23456−1E − 12 and
1.23456+1E − 12 are the same. Enter 1.23456, 1E −12, and press
[+] or [-]. You get 1.23456 in both cases. You get something

different than 1.23456, only when the magnitude of the second
operand is greater than 5E− 12. It seems that ε depends on the
number that we have to do with. There is a minimal value for ε which
makes the quantities x −ε and x +ε to be distinguishable from each
other and from x . If ε is less than this minimal value, then no
distinction is possible for the HP49G. We try to find out what this
minimal ε is. A real number on the HP49G can be represented using at
most 12 digits (for us, normal users). If we add some positive ε to a
number x , then the result will be different than x , when ε is at least
so big that it "changes something" at the last (right most) digit of the
number x . Since the number x can have up to 12 digits, up to 12
different powers of 10 are present in the number. For example in the
number 12345.5678901 the powers 5,4,K0,−1, −2,L− 7 of 10 are
present, as you see by writing the number in its representation with
powers of 10 :

 1∗105 + 2∗104 +K5∗100 + 5∗10−1 + 2∗10−2,L+1∗10−7

The difference between 5 , the highest power of 10 in the number, and
12 , the number of digits, is 5 −12 = −7 , which is equal to the lowest
power of 10 in the number. In case the number x doesn't have 12
digits (like for example 12345.567), think it in the 12 digits
approximation of the HP49G, that is as 12345.5670000. The
number ε that added to 12345.5678901 returns something different
than 12345.5678901, must then be at least about 1E −7 , which has
an exponent of −7 (base 10). Actually, ε can be at least
5.00000000001E − 8 , which has the next lower exponent of 10 and
a mantissa of 5.00000000001, which is the next possible number
bigger than 5 on the HP49G. The exponent of 12345.5678901 can
be found by using the command XPON (on the second page of menu
MTH/REAL). So the exponent of ε is equal to XPON x() − 12. And ε

itself is equal to 5.00000000001∗ALOG XPON x() −12() . For
example in the case of the number 12345.5678901 of above, we
have:

Sequences, series and limits with the HP49G - Part 6

6-21

x ε Precision Accuracy

3,14 0,001 3,4969296481 3

0,0076 0,00033 1,3622996524 3,4814860601

100 0,002 4,6989700043 2,6989700043

6,023e+23 10000000000 13,779812863 -10

1,23456 1e-12 12,091512202 12

ε = 5.00000000001∗ ALOG XPON12345,678901() −12() =

5.00000000001E − 8

Any positive ε less than 5.00000000001E − 8 added to
12345.5678901 will produce the same number, 12345.5678901,
on the HP49G. The above way to calculate ε will work only for
XPON x() − 12 ≥ −499 , that is for XPON x() ≥ −487 . If the
exponent of x is even smaller, then XPON x() − 12 p −499 . For
example with x = 1E − 499 we have XPON x() − 12 = −511, and
ALOG −511() = 0 , that is we would calculate

ε = 5.00000000001∗0 = 0 , which is wrong, since we can add
ε = 1E − 499 to x = 1E − 499 and get the result 2E− 499 . So we
refine our calculation of ε . If the number has an exponent of less than
−487 , we simply return 1E − 499 . Else we use the above formula for
ε . But there is still a problem. Since the greatest possible number that
the HP49G can express, is 9.99999999999E499 there is no
positive ε that we can add to that number and still get something
different than 9.99999999999E499. The biggest number for which
the formula for ε works is (for the HP49G) 9.99999999998E499.
Above this number there is no ε that we can use. So we make the last
refinement. If the number that we have is 9.99999999998E499,
then we return ? , else if the number has an exponent of less than
−487 , we return 1E − 499 , else we use the above formula for ε . We
make a user defined function that does all the above. Go to the EQW
and type in:

Press [ENTER], then [blue-shift], [2] to DEFine the function that
calculates the smallest possible value for ε that can be added to the
number x and return a result different than x . Let's try some
examples. The results are on the table on the right. You just enter the
number x and press the menu key [ε] in the variables menu.

x ε
3.14 5.00000000001E-12
1.E78 5.00000000001E66

100. 5.00000000001E10

Now that we have ε we can use it to define the greatest possible
precision of given number on the HP49G. Go to the EQW again and

type in: PRCSN x() = −LOG
ε x()

x



 


. Press [ENTER] to put the

equation on stack level 1 and DEFine the function. The function uses
the already defined function ε . It calls ε and passes the argument x to
it. Similarly we can define a function for the greatest possible accuracy
of a given number. In the EQW type in ACRCY x() = −LOG ε x()()
and then define the function. We make a small table with results of all
three functions for some numbers.

x ε PRCSN x() ACRCY x()
3.14 5.00000000001E-12 11.7979596437 11.3010299957
1.E78 5.00000000001E66 11.3010299957 -66.6989700043

100. 5.00000000001E10 11.3010299957 9.30102999566
4.57E15 5000.00000001 11.9609461957 -3.69897000434
9.34E-20 5.00000000001E-32 12.2713768719 31.3010299957

We see that though precision remains almost constant at about 12 ,
accuracy varies very strongly and can even become negative! A
negative accuracy may sound bad, but it doesn't have to be bad at all.
Look at its definition to understand why.

We come now to some stuff about limits that has been asked quite
often in the group. Can the HP49G get limits of more than one
variables? If it does, then how can tell it to do so?

The good news is that the HP49G can handle such limits. But you

Sequences, series and limits with the HP49G - Part 6

6-22

ε x() = IFTE x >9.99999999998E499,?,IFTE XPON x() < −487.,1E −499,5.00000000001∗ALOG XPON x() −12.()()()

have to provide some additional information. Let's start with an

example. We take a function of 2 variables,
SIN X − Y()

X
. What is the

limit of this function when X → 0 and at the same time Y → 0? Well,
this is not enough information for finding the limit. We also need
something else, namely how the variable Y approaches 0 ,
compared to how variable X approaches 0 . Let's suppose that
Y = X , that means variable Y goes to 0 exactly the way variable X
goes to 0 . The limit of the function is then...0 ! That might sound
strange since we know that lim

X −> 0
SINX()() = 1. But it is true. Go to the

EQW and enter lim lim
SIN X − Y()

X
,Y = X



 


,X = 0



 


 . Press

[ENTER] to put the expression as lim
X −> 0

lim
Y−>X

SIN X − Y()
X



 




 


 on stack

level 1. Expand to get 0 . Perhaps we should do a plot to understand
this better. First we do a Fast3D surface plot of the function
SIN X − Y()

X
, just to get an idea of how the surface looks. Press and

hold down [blue-shift], and press [F4]. Release both keys and you
come at the "PLOT SETUP" screen. Choose plot type "Fast3D". Go
to the input field "EQ:". Press [EQW] to go to the equation writer for
easy formula typing. Type in:
SIN X − Y()

X
. Press [ENTER] to put

the function in the input field "EQ:".
Enter 'X ' for independent and 'Y '
for dependent variable. Now, press
and hold down [blue-shift], and
press [F2]. Release both keys and
you come at the "PLOT WINDOW -
FAST3D" screen. Enter −1 to 1 for
"X-Left:" and "X-right:", −1 to 1
for "Y-near:" and "Y-Far:" and −4

to 4 for "Z-Low:" and "Z-High:".
Enter 10 for both steps of the
independent and the dependent
variable. Press the menu key
[ERASE] and then the menu key
[DRAW]. The HP49G draws the
plot which is not very
understandable at the first look.
But you can use the arrow keys,
the key [TOOL] and the key
[NXT] to

rotate the plot and you can use
the keys [+] and [-] to zoom
in and out. Rotate and zoom
in and out until you find some
orientation and viewing
distance that let you
understand the plot better.
When you see the plot almost
like on the picture on the left,
then the orientation of the
axes and the function itself in
space is as annotated in the
picture below. At X = 0
extraordinary things happen.
As you may have noticed, we have some kind of gap here. The
function seems to jump from −∞ to +∞ and vice versa. Actually it

does, but the limit of the function
SIN X − Y()

X
 when X → 0 , depends

on how Y alters with altering X . In our case, we had the limit

lim
X −> 0

lim
Y−>X

SIN X − Y()
X



 




 


 , which implies that Y = X . Let's follow the

surface along the line that is defines by Y = X . That means that we

choose a path that lies on the surface
SIN X − Y()

X
, and which in

addition has always the property that the coordinate Y is equal to the

Sequences, series and limits with the HP49G - Part 6

6-23

x

y
z

function
goes up

function
goes down

function
goes down

function
goes up

coordinate X , which is exactly what the equation Y = X says.
The picture above demonstrates this. (Unfortunately the picture
was not made with the HP49G. But who can say what the future
might bring. Making the substitution the future = Rcobo in the
last sentence, we derive the sentence: who knows what Rcobo
might bring ;-)) As you can see, walking on the (blue) surface
along the path Y = X (thick line in yellow box) towards X = 0 ,
let's us stay on the same Z-value, namely 0 , no matter how
close to X = 0 .

Since we now know that all values of
SIN X − Y()

X
 along Y = X

are equal to 0 , we can also plot the same function together with
the plane Z =0 and take a look at the curve on the cut of the two
surfaces. This is what the picture below shows. The light blue
plane is the surface of Z = 0 . The cut with the surface
SIN X − Y()

X
 is the thick straight line, which for X → 0 remains

at the height Z = 0 . Note that the plots on this page are only a
demonstration and by no means a rigid proof of the fact that

lim
X −> 0

lim
Y−>X

SIN X − Y()
X



 




 


 = 0 . They are only a help for

Sequences, series and limits with the HP49G - Part 6

6-24

 Going to X =0
 along Y =0
 on the surface
SINX −Y()

X

Z =0

Surface cut

understanding how the both function and the limit behave.

Now, there are many other (infinite) ways in which Y can dependent
on X . What happens for example when Y = 2 ∗X ? Can we find

lim
X −> 0

lim
Y−>2∗X

SIN X − Y()
X



 




 


 ? You of course guessed that we can. We

enter lim lim
SIN X − Y()

X
,Y = 2∗ X



 


,X = 0



 


 , we press [EXPAND],

and soon we get −1. Now, I guess that you want to see that on o plot
again, right? So here you are, the same plots as on the previous page,
but this time for Y =2∗X and. As we can see, all points on the thick

black curve are at Z = −1. The curve only looks like a straight line that
cuts the surface along Y = 2 ∗X at Z = −1, but we'll soon see that

this is not true. And as we can also see, in both limits of
SIN X − Y()

X

both variables X and Y approach 0 . The first is taken for X → 0 ,
and Y → X , which means that also Y → 0 . The second is taken for
X → 0 , and Y → 2∗ X , which means that also Y → 0 . Nonetheless
he first limit was found to be 0 , while the second was −1, which
shows that in such limits not only the value is important, which X and

Y go to, but also how Y depends on X . The expression

lim
X −> 0

lim
Y −>0

Z X,Y()()() , without the information about how Y depends on

X , is in the most cases not sufficient for limit calculation.

Curves (which don't have to be straight lines) on surfaces Z X,Y() ,
that satisfy Z X,Y() = constant , are named with the help of a
composed word that has two parts. The first part is equi- (or aqui-), or
iso10 -. The second part depends on what the surface represents. If for
example we plotted the potential, then the curves are named
"isopotential", or equipotential, and so on. There is a special kind of
plot, the contour plot, that draws such curves for given constant values

of Z X,Y() . (If you remember page 2-23 of the complex
numbers marathon, then the picture at the lower part of the
right column was the aqui-height contour plot of Mt-Pilatus.)

Of course the HP49G can do contour plots. But they are often
not of good quality. Let's do such a plot for the function
SIN X − Y()

X
. Press and hold down [blue-shift], and press

[F4]. Release both keys and you come at the "PLOT SETUP"
screen. Choose plot type "Ps-Contour". Go to the input field

"EQ:" and enter
SIN X − Y()

X
. Enter 'X ' for independent and

' Y ' for dependent variable. Press and hold down [blue-shift],
and press [F2]. Release both keys and you come at the "PLOT
WINDOW - PS-CONTOUR" screen. Enter −2 to 2 for "X-Left:" and
"X-right:" and −1 to 1 for "Y-near:". Enter 10 for both steps of the
independent and the dependent variable. Press the menu key [ERASE]
and then the menu key [DRAW]. The HP49G starts drawing small line
segments that are parts of the contour curves (aqui-whatever curves). It
needs a loooong time (almost 6.5 minutes) to finish the plot and it
doesn't draw the curves as a whole, but chopped in small segments,
like the picture on the next page. (This picture is still much better than
10 From the greek word "Ison" for "equal". The character "i" is pronounced like the

"ee" in the word "tree".

Sequences, series and limits with the HP49G - Part 6

6-25

what the calculator
draws!) When the
plot is ready you
can trace it. Press
the menu key
[TRACE] and then
the menu key
[(X,Y)]. The
cursor goes to the
upper left line
segment and on
the lower part of
the display you see "INPUT: {-1.8 .9}". These are the values of X
and Y . If you press [F2], then you see "OUTPUT: .237433266797".
This is the value of Z at this point. Press [F2] once again to remove
display of coordinates and then once more to show the values of X
and Y again. Lets find a curve that belongs to an approximately
constant value of Z. Using the arrow keys go to the top of the screen,
at third line segment starting from the left. Display the value of Z, it is
about .95. Press [arrow-down] once. The Z value is now about .99,
approximately the same. Press [arrow-down] once again. The Z value
is again about 1., again approximately the same. Another press of
[arrow-down] moves to a line segment with Z =.96. Now press
[arrow-down] and then [arrow-right] to come to Z =1.07. You may
already have the impression that the curve with Z ≈1. goes like an "S"
from the upper left part to the centre of the screen. The rest of this
curve continues from the centre to the lower right part of the screen.
The same way you can find (approximately) the contours with Z =0
and Z = −1, of the previous pages. But what kind of curve is the
contour with Z =1? It is definitely not a straight line, but what kind of
curve does it represent? Well, to find that we can simply solve the

equation
SIN X − Y()

X
= 1 for the variable Y . Enter the equation, enter

Y and press [ZEROS] (second page of menu S.SLV). The result is the
list of solutions

2∗ n1−1() ∗ π + X + ASIN X() − 2 ∗n1∗ π − X − ASIN X()()(){ } . We

have two solutions, or better two families of solutions, which both are
functions of X and depend also on the arbitrary integer n1. It seems
that there are either many curves that belong to each family, or that
each integer value of n1 constructs a different segment of one curve. If
we plot these functions for several different integer values of n1, we
can see what the curve is, that represents the cut between

Z =
SIN X − Y()

X
 and Z = 1. With the list of solutions on stack level 1,

enter STEQ to store the list in EQ. We will plot first for n1=−1, so
enter −1 'n1' STO . Press and hold down [blue-shift], and press [F4]
to go to the "PLOT SETUP" screen. Choose the plot type "Function".
Leave 'X ' as independent variable. Press and hold down [blue-shift],
and press [F2] to
go to the "PLOT
WINDOW -
F U N C T I O N "
screen. Enter −2
to 2 for "H-Vew:"
and and −1 to 1
for "V-View:".
Enter 1 for "Step:"
of the independent
variable and check
the option _Pixels.
Press the menu
key [ERASE] and
then the menu key
[DRAW]. The
HP49G doesn't
plot anything.
Let's change the
value of n1 to 0 .
Exit the plotter and
enter 0 . Press
[blue-shift] and

Sequences, series and limits with the HP49G - Part 6

6-26

− 2∗n1∗π− X −ASINX()()()
with n1=0

2∗n1−1()∗ π + X+ ASINX()
with n1=0

2∗n1−1()∗ π + X+ ASINX()
with n1=1

then the menu key [n1] in the variables menu, to store 0 in n1. Enter
DRAW. Now the HP49G draws two curves. Store 1 in n1 and
DRAW again. The plot now looks like the "S"-curve that we suspected
at the contour plot. As we can see, the whole curve is not a function
but a relation. Each segment of the curve forms a function that depends
on X and contains also the parameter n1.

Let's take a look at
the same contour in
three dimensions.
The second picture
is especially for
seeing how the
curve of the cut of
Z = 1 with

Z =
SIN X − Y()

X

forms.

We already have
examined the case
Z = −1 and we saw
that it is almost a
straight line at the
vicinity of X = 0 ,
Y = 0 . Now, we
just make the view
range larger and we
take a closer look at
this case. Make a

contour plot first. Let X go
from −10 to 10 , and Y from
−5 to 5 . Adjust the number
of steps to 20 in horizontal
and 10 in vertical direction.
When after a looong time the
HP49G is ready, the plot
looks like a very chopped
and ziggy-zaggy version of
the picture above. If the
resolution were better, then
you could find through
tracing that the contours that
belong to Z = −1 are not
straight lines. You can see
these contours on the picture
at the bottom of this column.

Of course we can't change the physical resolution of the screen, but
we can do something else to make the quality of the contour plot
better. We can plot exactly the region of interest and specify a big
number of steps in x- and
y-direction. Go to the
PLOT WINDOW - PS
CONTOUR screen and set
X go from −1.5 to 1.5 ,

and Y from −3.5 to 3.5 .
Adjust the number of steps
to 30 in horizontal and 15
in vertical direction. Before
you draw let's take a look at
yet another unexpected
thing. Press the menu key
[OK] to leave the screen and
return to the stack. Press
[VAR] to go to the variables
menu and press [NXT] until

Sequences, series and limits with the HP49G - Part 6

6-27

you see VPAR in the menu. Press the corresponding soft menu key to
put the variable on the stack. Now press arrow down to edit it. Go to
the last two numbers of the list which are the number of steps in x- and
y-direction. You see what happened? While the number of steps in y-
direction was correctly set to what we entered (15), the number of
steps in x direction is not 30 but 20! The graphic user interface thought
that 20 steps in x-direction are enough, and silently ignored that we
entered 30 and used 20 instead, without finding it necessary to inform
us. This is of course not so good. ;-) So change the second last
number to 30, press enter to put the edited list on the stack and then
press [blue-shift] and the menu key [VPAR] to store the edited list in
VPAR. Now, don't use any graphics setup screen for the plot but
simply press or enter DRAX and DRAW and go for a coffee while the
HP49G is plotting. As we have 30x15=450 line segments to plot, each
of which must first be
calculated, it takes a
long time until the plot
is finished. When it is
ready you can find
through tracing that the
contour for Z = −1 is
approximately the thick
red line on the picture
to the right. Despite the
big number of line
segments the plot is still
not very satisfactory. It
is better than before but
still it lets you only
imagine what the
contour curves look like, and that only on some parts of the plot, while
on other parts the curves are nearly unrecognisable.

Until now we have examined limits of functions Z X,Y() , in which Y
behaves in such a way, that Z remains the same over the path that is
defined by X and Y . This doesn't have to be this way. For example

the limit of
SIN X − Y()

X
 for X → 0 , Y → 0 and Y = X2 will not give

an aqui-height curve of the surface. We will examine such case a later
on, but for now we try to find a way to draw the aqui-height curves a
bit better. Yes, we are going to enhance the contour plots on the
HP49G.

Let's stay at
SIN X − Y()

X
. Suppose that we want to draw the contour

at Z = −1. That means, we must somehow turn on all pixels that
correspond to coordinates X,Y() , for which the equation holds:
SIN X − Y()

X
= −1. This equations can be understood as an implicit

definition of Y , which can be made explicit by simply

solving for Y . Enter
SIN X − Y()

X
= −1 and Y , and press

[SOLVE]. The result is the solutions list:

Y = − 2 ∗n1∗ π − X + ASIN X()()()
Y = 2 ∗n1− 1() ∗ π + X − ASIN X()









. As we already have

seen, we can plot these two curves for some different
integer values of n1, and get the curves that we want to see.
Exactly this will be what a program should do, that draws

contour plots. We give it the equation Z =
SIN X − Y()

X
 and

a list of Z values, for which we want to see the contours.

Then the program puts all Z values in Z =
SIN X − Y()

X
,

solves for Y (or X) and draws the resulting functions. An additional
problem is that the solutions may contain additional variables, like n1,
which don't appear in the original function. In this case it should ask
the user to supply values for such variables. A very interesting
problem that appears here is that we may have more than one additional
variables, and the user cam supply several values for each of them.

Sequences, series and limits with the HP49G - Part 6

6-28

The program must then construct all possible combinations of values
for these variables. We will see in a few moments a very unorthodox
way to do that. So, here is the program listing - we will describe the
program after the listing.

<<
PUSH
"CONTOUR PLOT" @Title for INFORM
{ @Start input fields definit.

{ "Z(X,Y):" @Input field Z(X,Y)
"Enter two variables function"
9.}

{} @Empty field
{ "Var. X:" @Input field X-variable
"Enter X-variable"
6.}

{ "X-Range:" @Input field X-range
"Enter X-variable range"
5.}

{ "Var. Y:" @Input field Y-variable
"Enter Y-variable"
6.}

{ "Y-Range:" @Input field Y-range
"Enter Y-variable range"
5.}

{ "Var. Z:" @Input field Z-variable
"Enter Z-variable"
6.}

{ "Contours:" @Input Z-contours
"Enter Z-contours"
5.}

} @End input fields definit.
{ 2. 0.} @INFORM Format
{} @Default inputs
{} @Reset inputs
IF @If user pressed OK
THEN

IF @If inputs missing

DUP NOVAL POS
THEN
"Missing Data" DOERR @Abort

ELSE @Else (no missing inputs)
OBJ-> DROP {}
-> func xvar xrng
yvar yrng zvar zcnt
newvars
<<

IF @If the first elem. of
zcnt HEAD TYPE @contour values list is
2. == @a string

THEN @then the user wants
"Calculating Z-values

of contours…" 1 DISP @n contours from zmin to
zcnt 3 GETI UNROT @to zmax. Calculate them.
GET DUP2 - NEG
zcnt 2 GET 1 - /
-> zmin zmax step
<<

{} zmin zmax
FOR I

I + step
STEP

>>
'zcnt' STO

END
xrng 1 @Convert evtl. algebraics
<< ->NUM >> @to numbers for all
DOSUBS @appropriate inputs
'xrng' STO
yrng 1
<< ->NUM >>
DOSUBS
'yrng' STO
zcnt 1
<< ->NUM >>
DOSUBS

Sequences, series and limits with the HP49G - Part 6

6-29

'zcnt' STO
IF @If user entered f(x,y)

func LNAME AXL @convert to z=f(x,y)
zvar POS NOT

THEN
zvar =

END
'func' STO
CASE @In case

1 CF @Prepare plotting env.
"Solving for " @adjusting all parameters
yvar + " @according to inputs

" + 1 DISP xvar INDEP
yvar DEPND
xrng OBJ-> DROP
DUP2 XRNG XVOL
yrng OBJ-> DROP
DUP2 YRNG YVOL
func yvar
IFERR @If solving z(x,y) for y

ZEROS @errors out
THEN @then indicate failure

DROP 1 SF @through setting flag 1
END
1 FC?C @If flag 1 clear? clear

THEN @Do nothing!!!
END @In case solving for y

yrng OBJ-> DROP @failed (flag 1 was set)
DUP2 XRNG XVOL @adjust plotting paramet.
xrng OBJ-> DROP @and try to solve for x.
DUP2 YRNG YVOL
yvar INDEP xvar
DEPND "Solving for "
xvar + "

" + 1 DISP yvar
IFERR

ZEROS
THEN

DROP 1 SF @Set flag 1 (solving failed)
END
1 FC?C @If flag 1 clear? and clear.

THEN @Do nothing!!!
END
1 SF @Both cases failed, set flag

END @1 (for no solution)
IF @If flag 1 set (sol. error)

1 FS?
OVER {} SAME @or empty sol. list
OR

THEN @then error out
"No symbolic solution.

Numeric not implem." DOERR
ELSE

DUP STEQ @Else store sols. in EQ
"Filtering variables…"
1 DISP @Find additional variables
IF @If sol. wasn't list

DUP TYPE 5 ≠
THEN @then convert it to list

1 ->LIST
END
1 @Start of outer DOSUBS proc.
<<

LNAME AXL DUP
1 OVER xvar POS
1 - SUB SWAP DUP
xvar POS 1 +
OVER SIZE SUB +
DUP 1 OVER yvar
POS 1 - SUB SWAP
DUP yvar POS 1 +
OVER SIZE SUB +
DUP 1 OVER zvar
POS 1 - SUB SWAP
DUP zvar POS 1 +
OVER SIZE SUB +

Sequences, series and limits with the HP49G - Part 6

6-30

IF
DUP {} ≠

THEN
1
<< @Start of inner DOSUBS

IF @proc
newvars
OVER POS

THEN
DROP

ELSE
newvars
+
'newvars'
STO

END
>> @End of inner DOSUBS proc
DOSUBS

ELSE
DROP

END
>> @End of outer DOSUBS proc
DOSUBS
DROP

END
IF @If we have additional vars

newvars {} ≠
THEN @Prepare and show informat.

CLLCD LCD-> @screen about new variables.
{#0d #0d}
"Solutions contain new variables.

You must specify their values in
the next input form. If you don't
enter any, then {0} will be used.

Press OK to continue."
1 ->GROB REPL
->LCD

{{}{}{}{}{}{"OK" CONT}}
TMENU 3 FREEZE @Menu with "OK" to continue
HALT @Wait for user response
"NEW VARIABLES" @Title for INFORM
newvars 1 @Construct input field
<< @specification for each

":" OVER SWAP @new variable.
+ "Enter values for "
ROT + 5 3 ->LIST

>>
DOSUBS
newvars SIZE 4 / @Construct format spec.
IP 1 + 1 2 ->LIST
{} {} INFORM
IF @If user pressed [OK]
THEN

1 @If values list wasn't
<< @input, then use {0.}

IF
DUP NOVAL
SAME

THEN
DROP {0.}

END
>>
DOSUBS

ELSE @Else (user pressed [CANCL])
{} 1 newvars
SIZE
START @Use {0.} for each new var.

{{0.}} +
NEXT

END
1 @Convert user input to num.
<< -NUM >>
DOSUBS @Store list
newvars SWAP 2 @{{newvars}{values}} in
->LIST 'newvars'@newvars

Sequences, series and limits with the HP49G - Part 6

6-31

STO
END
FUNCTION #0d RES @Setup, and show PICT
{#0d #0d} PVIEW
DRAX LABEL
zcnt 1
<< @Do for each contour

zvar STO @Store in global Z-var
IF

newvars {} ≠ @If we have new variables
THEN

newvars OBJ->
DROP
->nvars nvals @Store in locals
<< @Do for each new variable

"<< " @Start constructing prog.
1 nvars SIZE
FOR N

"1 " + nvals
N GET ->STR
+ " SIZE FOR I

"
+
IF

N 1 ==
THEN

"{} -> vals
<< "

+
END
" vals " +
nvals N GET
->STR +
" I GET + "
+
IF

N nvars SIZE
≠

THEN
" -> vals

<< "
+

ELSE
nvars ->STR
+
" STO DRAW "
+

END
NEXT
1 nvars SIZE
FOR N

IF
N nvars SIZE
≠

THEN
" NEXT >> "
+

ELSE
" >> NEXT >> "
+

END
NEXT @Convert string prog. to
OBJ-> EVAL @program and run it.

>>
ELSE @else (no new vars)

DRAW @simply draw
END
IF @If we have new variables

newvars {} ≠
THEN @Then take var. names

HEAD
END
zvar + PURGE @Purge Z-var and new vars.

>>
DOSUBS
RCEQ func EQ->

Sequences, series and limits with the HP49G - Part 6

6-32

IF @get function out of
DUP TYPE 6 == @z=f(x,y) or f(x,y)=z

THEN
DROP

ELSE
NIP

END
STEQ 10 NUMX @Prepare for built-in
10 NUMY PCONTOUR @contour plot
PICTURE

>>
END

END
-1 MENU POP @Restore last menu and flags

>>

This is the program CONTOURPLOT that comes along with this
document. I know that you are eager to test it but
let's describe some programming techniques used in
the program first.

First of all the program put the arguments for
INFORM on the stack. So, let's see how this
command works. It takes 5 parameters from the
stack and shows an input screen. From stack level 5
the command takes the overall label, a string, which
appears at the top of the of the input screen. From
stack level 4 the command takes the definitions of the
input fields. This is a list which consists of sub lists,
one sub list for each field. The first element of each
sub list is a string, which appears in front of the
corresponding input field. The second element is a
string which appears as a help for the user at the
bottom of the screen, when the corresponding input
field is selected. The rest of the elements are object
types of the valid objects for the corresponding input
field. For example, the input field "A:" of the screen
at the top right of this page will accept only real

numbers. The object types of the valid object types must be real
numbers, that is with decimal point. An empty list specifies an empty
input field that can be used for formatting the screen. From stack level
3 the command takes the formatting parameter which is also a list. It

Sequences, series and limits with the HP49G - Part 6

6-33

Screen Title

Overall title
"Screen title"

A:

Enter value for A

B: C:

Input fields definitions:
{
 {"A:" "Enter value for A" 0.}
 {}
 {"B:" "Enter value for B" 0. 1.}
 {"C:" "Enter value for C" 0.}
 }

Screen Title

A:

Enter value for A

B: C:

Input fields definitions:
{
 {"A:" "Enter value for A" 0.}
 {}
 {"B:" "Enter value for B" 0. 1.}
 {"C:" "Enter value for C" 0.}
 }

Empty input field. The previous input
field "A:" covers the space of the empty field.

{ 2. 0. }

Two rows of fields.

Formatting parameter

No space between label and field

contains two real numbers the first of which specifies in how many
rows the input fields will be shown. The second specifies how much
space will be left free between the label of the input field and the field
itself. The next parameter is a list containing the inputs that appear in
the fields when we reset the screen. When the input screen appears,
the menu line contains a menu with three items. "EDIT" lets you edit
the object in the selected input
field in the command line.
"CANCL" cancels the dialogue
and returns a 0 on stack level 1.
This can be also done by
pressing the key [ON]. "OK"
exits the dialogue. It returns all
inputs in a list on stack level 2
and a 1 on stack level 1. This can
be also done by pressing the key
[ENTER]. If some input field is
empty when you press the menu
key [OK] (or the key [ENTER])
then the list with the inputs will
contain a NOVAL for the input
field without input. As you can
see, the command provides all
necessary output for
distinguishing between
"CANCEL" or "OK", and for
finding out which inputs were
left empty by the user. If you
press the key [NXT] then the
second page of the menu
appears. The first item,
"RESET", lets you reset the
selected or all input fields to their
reset objects which you provided
as a list on stack level 2. It shows
a popup menu which allows to select between resetting the selected or
all input fields. The next and last parameter is a list that contains the
default inputs for the fields. These appear when the screen is initially

shown. The second menu item, "CALC", allows you to temporarily
leave the input screen and go to the stack. But this stack is not the same
like that which you worked until the input screen appeared. This is a
new separate stack, which only
contains the object of the selected
input field at the time when you
pressed "CALC". On the top of
the screen the title of the input
screen is still shown. Also the
help string that normally is
shown at the bottom of the
screen, now is shown under the
title, so that you still now what
the calculator expects you to enter. If you press the menu key
[CANCL], then this separate stack is abandoned and you return to the
input screen without changing the object of the selected field. But if
you press [OK] then the object at stack level 1 replaces the object of the
selected input field. Pressing the menu key [STS] changes the header
of the stack display to the normal header, that is information about the
current path and other indicators
are displayed. If you press some
key that activates another menu
while you are in the separate
stack, then the header changes
and displays again the title of the
input screen and directly under
the title it displays a message,
which tells you how to return to
the menu of the input screen. That
means, press [blue-shift] and then [ON] to get the menu that allows
you to return to the input screen. In the separate version of the stack
you can do anything that can be done in the normal stack, that is
calculations, run programs etc. If while in the input screen you press
the key [HIST], then you land at the well known interactive stack,
which contains anything that was on the stack before the input field
was shown. You can move up and down using the keys [arrow-up]
and [arrow-down], and copy any object to the command line of the
input screen by pressing the menu key [ECHO]. You can leave history

Sequences, series and limits with the HP49G - Part 6

6-34

Screen Title

A:

Enter value for A

B: C:

EDIT CANCL OK

Screen Title

A:

Enter value for A

B: C:

RESET CANCL OK CALC TYPES

Screen Title

A:

Enter value for A

B: C:

RESET CANCL OK CALC TYPES

Reset value
Reset all

Screen Title
Enter value for A

 STS CANCL OK

1:
2:
3:
4:
5:

3.456789

Screen Title
Press [CONT] for menu

1:
2:
3:
4:
5:

3.456789
Some other menu

by pressing either [ON] or [ENTER]. Finally the menu key [TYPES]
of the input screen, displays a message box that contains all valid
object types for the selected input field.

Let's go on with the description of the program. After data input the
program first examines what the first object of the list is, which you
entered in the input field "Contours:". If it is a string, then the program
assumes that the user wants N contours from Z = Zmin to
Z = Zmax . That means that the list will be interpreted as
string N Zmin Zmax{ } . Not a very elegant method for

choosing this option, but what else can we do when we have no
check-field available in the built-in version of INFORM? If the first
item of the list in "Contours:" is not a string, then the program
assumes that the user wants exactly those contours, whose Z-values
are given in the list. Note the usage of the command GETI, which is
quite similar to GET, but it also automates the index incrementing
when getting elements out of a list or matrix. While the command GET
only returns the ith element of a list, the command GETI returns the ith
element at stack level 1, the index i+1 at stack level 2, and the list at
stack level 3. If the index was at the last element, then execution of
GETI wraps the index back to 1 and sets the flag -64 to indicate that
we arrived at the end of the list. The following two code snippets
return identical results applied to a list is on stack level 1:

1 OVER SIZE
FOR I

DUP I GET
SWAP

END

-64 CF
1
WHILE

-64 FC?
REPEAT

GETI UNROT
END

DROP

The program does some conversions, like for example converting
functions that were input as f X,Y() to Z = f X,Y() . Notice that not all
error checking is done. For example if you enter a list like
1 2 "2"{ } in the input field "Contours:" then the program will

crash. But you may add your own error checking code of course.

The next thing that the program does is, trying to solve Z = f X,Y() for
the variable Y (or any other name that you enter in the input field "Var.
Y:"). If it finds solutions then it proceeds, else it tries to solve
Z = f X,Y() for variable X. If it finds solutions it proceeds, else it
errors out with "No symbolic solution. Numeric not. implem.". That
means, the program tries to convert the equation to Y = g X,Z() or to
X = h Y,Z() , in order to plot it later as a function for several values of
Z. These Z-values are those given in the input field "Contours:". It is
interesting to examine how the CASE THEN END clause works, that
is used at this point. We have two things to examine when we check if
solutions were found. The one thing is to check if the returned solution
was an empty list. The other thing is to check if the HP49G errored out
while trying to solve for Y or X. The normal usage of the CASE
THEN END clause is:

CASE
Test1

THEN
Action1

END
Test2

THEN
Action2

END
..... further tests and actions

Default action
END

But we use the clause in a very different style:

Sequences, series and limits with the HP49G - Part 6

6-35

CASE
Several actions and attempt to solve for Y and set
flag 1 if appropriate (indicator for no solution)
Test flag 1

THEN
Do nothing

END
Several actions and attempt to solve for X and set
flag 1 if appropriate (indicator for no solution)
Test flag 1

THEN
Do nothing

END
Set flag 1

END

The clause is used as a kind of switch or sieve that exploits the fact that
the CASE clause will keep on checking each case until some case is
true, no matter if an action is performed after the check. We must only
provide a test (or the result of a test) for the THENs of the clause. This
is what FC?C is used for. If the two attempts for solving Z = f X,Y()
didn't work, then we have to use numeric methods. Perhaps at this
point you would like the program to simply plot a built-in contours
plot. Or use a numeric method. Or do something else. It is up to you to
decide.

The next thing the the program does is checking if the solutions
contain new additional variables, which don't appear in the original
function. This can happen when for example we use SOLVE with
trigonometric functions. Variables like n1, n2, and so on might appear
in the solutions, which would make the plot impossible, if no values
for them are specified. If the program discovers such variables, it
displays a message for information and waits for you to press the
menu key [OK]. Notice that the word "OK" of this message is written
in inverse in the program, in order to imitate the looking of the menu
key. This can be done by pressing the key [TOOLS] while editing
some object, then pressing [NXT] twice, then pressing the menu key
[Style] and selecting some style. The characters that you type after

pressing the menu key of a style, will appear in this style. Pressing the
key for the same style again just deactivates that style.

If there were new additional variables the program constructs the
arguments for an additional INFORM screen, where you can specify
values for those variables.

And then, oh! then comes another unorthodox part, which shows how
flexible this machine is. But let's see first what the problem is and why
the unorthodox solution. Suppose that you have an arbitrary number of
variables n1,n2,L , each of which may have an arbitrary number of
distinct values. How can you construct a list containing every distinct
combination of values of those variables? This is a non-trivial problem.
It can be solved using recursive programming but because we already
have seen many examples of recursive programming, we use another
method here. We let the program… construct another program
according to the number of the variables and their values and let it run
to built-up those combinations of values. The program just
concatenates strings (code snippets in blue bold in the program listing)
which form a new program. When ready, it uses OBJ-> to compile the
string and generate the runnable program, and then runs it using
EVAL. This resembles macro programming and inline include of
macro code in the SAS System.

Then the program draws the curves of the contours for all Z-values that
we specified and activates the PICT environment so that you can
observe the curves and how they behave.

When you exit the PICT environment, the program returns the found
solutions Y = g X,Z() or X = h Y,Z() , stores the original equation in
EQ and sets all parameters for plotting the corresponding built-in
contours plot. That means, in case you want it, you can superimpose a
built-in contour plot with the curves that the program plotted, by
simply entering DRAW.

Enough explanations, now we test! Enter ERASE to erase any old
plots. In the menu VAR press [CONTO] to run the program
CONTOURSPLOT. We will plot the contours of our old friend

Sequences, series and limits with the HP49G - Part 6

6-36

SIN X − Y()
Y

 for Z = 0 , Z = 1, and Z = −1. When the INFORM

screen appears, press [EQW], enter
SIN X − Y()

Y
 and press [ENTER].

The expression is put in the input field "Z(X,Y):" and the next field
"Var. X:" is selected. Enter X . Now the next field is selected. Enter
the list −1.5 1.5{ } as range for X . Then enter Y for "Var. Y:",
−3.5 3.5{ } for "Y-range:", Z for "Var. Z:" and −1 0 1{ } for

"Contours:". Press the menu key [OK]. The program shows some
messages and then the text that informs you about the existence of new
variables. At that point press the menu key [OK]. A new INFORM
screen appears, where you can enter the values for the variable n1.
Enter the list −1 0 1{ } , which means that the contours will be
drawn for n1= −1, n1= 0 , and n1= 1. Press the menu key [OK]. The
program needs some time to plot the curves of the three contours.
When ready you should see the picture below. When you finish
looking at the plot, press the menu key [CANCL]. The program puts

the solutions found
Y = − 2 ∗n1∗ π − X + ASIN X()()()
Y = 2 ∗n1− 1() ∗ π + X − ASIN X()









 on stack

level 1, prepares all necessary things for a subsequent built-in contour
plot. If you wish, you can use the command DRAW to plot that on the
already plotted curves.
On with limits of functions with two variables. We examine the limit of
SIN X − Y()

Y
 for X → 0 and Y → 0 for the case (path) Y = X2 . Go

to the EQW and enter lim lim
SIN X − Y()

X
,Y = X2


 


,X = 0



 


 . Press

[ENTER] to put that on the stack and press [EXPAND] to get a 1 as
result. Is that correct? Well, we can visualise this with Mathematica. In
the picture below we see the path that we are on when we follow the

coordinates X , Y = X2 , Z =
SIN X − Y()

X
=

SIN X − X2()
X

 (the red

thick
curve) .
It
shows
that
such
paths
don't
have to
be at a
constant
value for
Z.

If we
put the
p l a n e
Z = 1 on

the same

Sequences, series and limits with the HP49G - Part 6

6-37

Contours Z=0

Contours Z=-1

Contours Z=1

plot, then we can
see that the limit
that the HP49G
returned was
correct. So we are
able to calculate
such limits, but
what about
visualising them?
Let's see. We have
the function

Z =
SIN X − Y()

X

which we can plot
using the plot type
Fast3D or
Wireframe. We
would like to
superimpose it
with some
additional graphics
that make the stuff more understandable. So we can't use Fast3D as
this plot type doesn't allow more than one graphics to be
superimposed. We are going to use Wireframe. We will plot first
SIN X − Y()

X
. Let's do that. Go to the PLOT-SETUP screen and chose

plot type Wireframe. Enter Z =
SIN X − Y()

X
 as the function to plot and

X for independent, Y for dependent variable. Go to the PLOT
WINDOW - WIREFRAME. Set "X-Left:" to .1 (avoiding X = 0 to
prevent the plot from going off screen, "X-Right:" to 1.5 , "Y-Near:"
to −3.5 , "Y-Far:" to 3.5 , "Z-Low:" to −4 , "Z-High:" to 4 . Set the
coordinates of the point from which you observe the plot, "XE:" to −7
, "YE:" to −20 and "ZE:" to 1. Set "Step Indep:" and "Depnd:" to 10 .
Press the menu key [ERASE] and then [DRAW]. The HP49G plots
the wireframe which then looks like the picture at the top of the right of

t h i s
page.
Press

[CANCL] to exit the PICT and go to the PLOT
SETUP screen again. Now we will add the path X ,

Y = X2 , Z =
SIN X − Y()

X
=

SIN X − X2()
X

 as a three

dimensional parametric curve on the same plot. The
HP49G has no plot type for three dimensional
parametric curves. But it has parametric surface plot

type. So we will fake it. (Again, shame on us! ;-))

Chose plot type Pr-Surface. This plot type expects a list of three
expressions in EQ, which define X , Y , and Z . Enter the list

X X2 SIN X − X2()
X









 in the input field "EQ:". Leave X and Y for

independent and dependent variables. As you can already see we have
the two variables X and Y but our parametric expressions depend
only on X (curve). This is the first step of our faking. Go to the
PLOT WINDOW - PR-SURFACE screen. Press the menu key
[XXYY]. Enter for "XXLeft:" .1, for "XXRight:" 1.5 . Leave all other
fields as they are except the number of steps for "Depnd:", which you
must change to 1. (This is the second step of the faking.) Press the
menu key [DRAW] and wait until the plot is ready. The HP49G draws
an additional curve on the previous plot. You should trace this curve

Sequences, series and limits with the HP49G - Part 6

6-38

Z=1

Plane at Z=1

because it is not very visible. Press [TRACE]. A list with two input
coordinates appears on the bottom of the screen. From these two input
coordinates only the first (X) is interesting for us. (Remember? We
fake it ;-)) Press [arrow-right] and follow the graphics cursor until it
you see "INPUT: {.100000000008 " at the bottom of the screen.
Press the menu key [F2] again to show the output coordinates.
Unfortunately you can't see the value of the third coordinate

Z =
SIN X − X2()

X
, but if you press [ENTER] the HP49G puts a list

with the three output coordinates on the stack. Exit the plot, go to the
stack and press [DTAG] and then [OBJ->]. Drop the list element
count. You see that the third coordinate is .898785491972 . It is
approaches 1, and if you re-plot the Wireframe with "X-Left:" set to
.01 and the Pr-Surface with "XXLeft:" set to .01, the returned number

for Z =
SIN X − X2()

X
 will be even closer to 1 as the plot is made for

values of X that are even closer to 0 . Of course you can also plot a
three dimensional parametric curve alone in exactly the same way.
There is no need to superimpose it with some other plot. This was
done here only for demonstrating the behaviour of the limit.

Let's have another example of such a limit. Go to the EQW and enter

lim lim
SIN X − Y()

Y
,Y = X ∗ X − 1()


 


,X = 0



 


 . Put that on the stack

and press [EXPAND]. After some seconds you get −2 , the correct
limit.

As a small example of a sequence/series problem we are going to
examine... a music cassette. (Yes, I know that in modern times thus
prehistorical sound carrier should have been replaced by a DVD ;-))
We are going to calculate the length of the tape with the help of a
series. If the radius of the coiling role is R and the thickness of the
tape is d , then each time the role roles 2∗π a new layer of tape is
coiled over it, making the coiling radius a little bit thicker. The coiling
radius starts at R , after 2∗π it is R + d , after another 2∗π it is

Sequences, series and limits with the HP49G - Part 6

6-39

v

R R+d

d

R+2*d

R + 2 ∗ d , and so on. The length of the tape that coils round the role in
each rotation is respectively 2∗π∗ R , 2∗π∗ R + d() ,
2∗π∗ R + 2∗ d() , and so on. The length of the the whole tape must

be 2∗π∗ R +n∗ d()
n =0

N

∑ + L0, where N is the number of rotations that

the role has done at the end of the concert, n is the number of rotations
so far, and L0 is the length of the tape that remains uncoiled. Let's

calculate that. Enter L = 2∗π∗ R +n∗ d()
n= 0

N

∑ +L0 and press

EXPAND to get L = d∗N2 + 2 ∗R + d() ∗N + 2∗R()∗π +L0 . This is
the length of the tape.

The tape runs with a constant linear speed v , which means that we can

calculate how long it will take until it ends. Since v =
L1
te

⇒ te =
L1
v

 ,

we have te =
d∗N2 + 2∗R + d() ∗N + 2∗R()∗π

v
, where te is the

time when the tape ends, and L1 is the length of the tape without the

part L0, which remains uncoiled. Enter v =
L1
te

, then enter te and

then press [SOLVE] to get te =
L1
v

. Press [OVER] to copy the

equation of stack level 2 to stack level 1. Press [arrow down] to get the
equation to the EQW. In the EQW press [arrow down] once to select
the left hand side. Then press [backspace] to put the cursor right after
L , and press [1]. Press [arrow up] to select the left hand side, which
now is L1. Press [arrow right] to select the right hand side. Here we
must delete the term L0. Press [arrow down] to select the first term
and then [arrow right] to select the second term. Press [red-shift] and
then [backspace] to delete L0, and then again [backspace] to delete the
remaining + . Press [ENTER] to put the edited equation,
L1= d∗N2 + 2∗R + d() ∗N + 2∗R()∗π on the stack. Then press

[SUBST| to get te =
d∗N2 + 2∗R + d() ∗N + 2∗R()∗π

v
.

While the linear speed of the tape is constant, the angular frequency
changes while more and more tape coils around the role. Since

v = ω∗ R ⇒ ω =
v
R

, we have ωn =
v

R + n∗ d
. This is a quantity that

changes. It is a monotonically decreasing sequence. Here we see that
ω decreases in discrete steps, as n increases. But because d , the
thickness of the tape is so small, the sequence behaves "almost" like a
function. (Actually the model that we used is much too simple, but it
goes in the right direction for explaining why/how the angular speed of
the role decreases with time.)

Before we end this last part of the rather lengthy marathon, let's look
again at our table of programs on the next side. The new programs are
rather stand alone without much connections with the rest. But anyway
it looks like crazy, thus it must be good ;-)

This marathon has been so long and exhaustive mainly because of two
reasons. The first reason is that the HP49G doesn't have much built-in
functionality for sequence. So we had to program much. And because
a program for symbolic mathematics is a "black box" when given
without explanations, we had to explain much of the underlying
theory. The other reason is… that the HP49G doesn't have
INTEGERASSUME. We already have talked much about that, so
leave it be. ;-) But I think that it had the advantage of demonstrating
some programming techniques and also of demonstrating how self
contradicting and at the same time wonderful the HP49G is. Next time
we will continue with the long awaited Calculus Marathon. May the
force be with us.

Greetings,
Nick.

Sequences, series and limits with the HP49G - Part 6

6-40

Sequences, series and limits with the HP49G - Part 6

6-41

SPCASES

ISINF?

HASCNDSPT?

BOUNDS

CONDENSPT

FDISTRΣ

RCR->ANL

SEQTYPE

->TERMS

GENFUNC

SEQMONTY

NDSEQ

SOLARSEQ

∆rN

S->UD USDEFSEQcreatesORDARSEQ

SOLGESEQ

CONVERGES?TRANSER

ΣCONVERGES?

PARTSUMSEQ

ΣABSCONVERGES?

LIM

ISCONT?

INTERCONT?

EVACOMP

δεGRAPHεACCPRE

CONTOURPLOT

LIMEXPAND

RCASSM

