Sequences, series and limits
with the HP49G

(and with the HP48)

By Nick Karagiaouroglou

The programs that come with this document are changed several times according to the descriptions in the document. As only the newest versions of the programs are supplied
each time a new part of the marathon is posted, you might not get the errors that earlier versions gave. Also, some of the programs of the first parts are no more necessary and
thus are not part of the zip archive. The functionality of such programsisimplemented in other programs, so that you have no functionality loss. However the code of old
programs which were replaced and the code of old versions of programs which were updated is described in the document for study purposes.

Before you start working you should set your flags.
Enter the list { #A003008D8103F0h #0h #190101402000028h #0h } and press STOF



Sequences, series and limits with the HP49G - Part

Hi all out therel

After along fantastic vacation thisis the start of the sequences, series
& limits marathon, which promises to bring us more insight about the
capabilities of the HP49G. | tried to collect many ideas during a long
trek with Trabakoulas and for the very very first timein my life | made
a to do list, so that | don't forget anything. Note that the programs
written at the start of this document are not the same programs that
come aong with the document. The programs in the files for the
HP49G are given at the end. Through the document we are going to
change the programs and see how they get better (though not perfect).

We are going to examine thoroughly the powers (and flaws) of the
HP49G regarding sequences, series & limits. What we do here will
help us when examining limits and derivatives and integrals.

Let's bring in our minds some very elementary things, that will help us
understand what a condensation point is. First we need to remember
what a point set is. For the time being it suffices to accept that such a
set is given, when we can prove for any point of some space, if this
point is member of the set or not. Notice that "space”" and "point” both
don't need to be the space in which we live and its points. We could
take as space for example all integers, and prove if some given integer
(the point) is member of some given set or not.

Such a set, for which we can prove what are its members, is bounded,
when anumber exists that is bigger than the distance between any two
points of the set. Often we measure the distance of such points by
means of their coordinates. It suffices to consider such point setson a
straight line, on which we bring the coordinates of points. We can use
more than one coordinates if necessary, that is when our set has more
than one dimensions. For some one-dimensiona set, if we denote the
coordinates of two pointswith x; and x, , then the distance of the two

pointsisgiven by [x; - x]-

Can we prove if an one-dimensiona set is bounded with the HP49G?
Let's see. We should check if the biggest possible distance |x; - x,|

between the points with coordinates x; and X, isafinite number. for

: . . . 1
example, we consider the set of points P, with coordinates oL n

going from 1 to +¥ . In this case we see that the point P, with x, =11is
the biggest possible while the smallest possible is the point 0 as n
approaches infinity. So the biggest possible distance between the
points of the set is1 and hence the set is bounded. But how should the
HP49G know what the biggest and what the smallest possible points

1 .
are? We can't of course evaluate - for any possible value of n. And
we also can't assume that the biggest coordinate is for n=0 and the

smallest for n® ¥ . Consider for example . Here the

L
(n- 2)° +3
biggest possible coordinate is ;2; for n=3 and thesmallest O for

n = 0. But there is hope on the horizon. We have the command
TABVAR which can help us. First of all let's see what it does. It takes
aunivariate function of the current variable VX and returns a variation

1 :
table. Enter for example X2 and press TABVAR. (The command is

well hidden in menu [SYMB] [NXT].) Theresults are the

function itself on stack level 3, alist that containstwo sub listsin stack
level 2 and a GROB on stack level 1 that contains a graphical
representation of the variation table along with the function and itsfirst
and second derivatives. If you press the key [arrow-down] you can
take a look at this GROB. On its lower part it contains the variation

&c¥ - 2 - +¥ X
table, an array which looks like g o — y o gu-lfwe

é a
L take a look at the function plot then we see
\\ what the variation table means. Starting at

X =-¥ thefunction hasthevalue 0. Then
we have a minus sign and an arrow
5 downwards, which tell us that the function
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falls when we walk from X =-¥ to X =2. At X =2 thefunction
goes to infinity. And then when we go from X =2 to X = +¥ the
function falls again from infinity to O.Press[CANCEL] and
[BACKSPACE] to get rid of the GROB. Now you have the variation
table as a list on stack level 1. This list can be used to find possible
extremal absolute values of afunction. But there are also some things

1 .
to be aware of. Our set ﬁ was discrete, n could bel2,3, and so on.

.1 . .
In the function X thevariable X can take any value, like 3.5 or - 1.8

. That means, when an extremal value is found by TABVAR, this
doesn't have to be also the extremal value of coordinates of the set.

X
>—— . TABVAR returns

(X- 202 +3

For example consider

&y - J7 0+ J7 - +¢ XU
é u
a1 - -2+ 2+ Fo
e 6 6 u

We see that for X =+/7 thefunction goes through a maximum
2+.J7 : -
J7 and for X = - /7 thefunction goes through a minimum

6
247
6

.Butin

S L n can only have only integer values
(n_ 2)2 + 3 y y eg d
s0it can't be \/7 or - /7 . That means, if we use TABVAR for such a
purpose in a program, we must check if the returned values for X are
integers and if they are not, then we check what the members of the set
are, that have integer coordinates adjacent to those returned. In this

example we have X = J7 » 2.65 which means that we take n = 2

and n=3 andfind thevalues% and g as potential extremal values of

_n__
(n- 2)° +3
coordinates and corresponding values that are not part of the set.

TABVAR hasreturned - ¥ , - /7 , \/7 and +¥ as x-coordinates, but
our set has n going from 1 to +¥ . So we must throw away - ¥ and

. Another thing that we must do is to filter out those

-\[7 andthe corresponding val ues of . And we must

X
(X-2)°+3
also throw away al symbols like +, -, and- that TABVAR returns
in order to show what happens between the x-coordinates. Additional
work that must be done is to exchange n (or whatever isused as
index) with the current variable VX when TABVAR is used and make
the backwards substitution if needed later. That's because TABVAR
works only with VX (which often is X). (You see here the misery of
having commands that want a special variable in order to work.) And
there is yet another thing that we must be aware of. Suppose you want

. 1 . 1 .
to examine the set — for n=12,3---. Using TABVAR on X will

n
&¥ - 0 - + Xy 1
return thevariation table a — 4. Theset — with
g 0 ¥ 0 F 3 n

n=12,3--- hasamaximumvaluea n = 1. But thisisn't included in
the variation table, because TABV AR examines ;1 from - ¥ to +¥

and in this interval nothing specia happens at X =1. So we should
add our start and end coordinates in the list that is returned by
TABVAR. When we have al specia points, we can find the maximum
and the minimum and then the absolute value of their difference.
Comparing that with +¥ we can find if the set is bounded or not. Let's
make afirst version of such a program. We denote a set with alist of
the form:

{memberGeneraIForm{variablestart end}}
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1 DOLI ST @oordi nate, nenber.
For example the set - for n=12,3--- would be denoted as " . - .
n Filtering out +,-, -
N . 1 D SP @how nmessage
11 U
1= {n 1 +¥}' 1
I n [v) << @hrow away all elenents
_ _ _ I F @n even positions
The program should take such aset asalist and return a 1 if the set is NSUB 2 MOD NOT @.e. those with + -, -
bounded or a0 if not. It should also return the bounds themselves as a THEN
list. DROP
END
<< >>
OBJ- > DROP ' DOSUBS
OBJ- > DROCP @xpl ode set denoted as I|ist " Addi ng | ow bound” @how nessage
EVAL SWAP @val uate eventual infinities 1 DI SP @ use |imand not sinply
EVAL SWAP _ _ _ l o Pl CK3 @VAL to avoid errors for
-> genMenb var 1o hi @tore in local variables RCLVX o = Iim @=+%¥ and simlar cases.
<<” o ) 2 ->LIST 1 ->LIST +@\dd pair to list of variation
Calc. variation table " Addi ng hi gh bound" @how nessage
1 DsP @how nessage 1 DISP @ane again for max. n
genMenb var RCLVX = @ubstitute with VX and hi Pl CK3
SUBST RCLVX hi = 1lim
| FERR @f error occurs when we 2 ->LIST 1 ->LIST +@\dd pair to list of variation
TABVAR @al cul ate the variation table "Transf or ni ng non-
TH:E’;' integer to integer” 1 DISP @how nessage
1
ERRN #DE65h == @f we the function is const. <<
THEN _ _ | F @f coordinate is al gebraic
lo hi 2 ->LIST @kke list {lo hi} DUP HEAD DUPDUP @ut not +¥ or -¥
OVER DUP 2 ->LIST @nd {genMenb genMenb} TYPE 9 ==
2 ->LIST 0. SWAP ABS ¥ 1
ELSE AND
? DUP 2 ->LIST @lse make list {? ?} THEN @hen add coordi nates of
0. NI P ->NUM DUP @dj acent integers and
END FLOOR R->I DUP @orrespondi ng nenbers
ELSE var SWAP =
DROP @x op returned GROB genMenb SWAP
BJ- > @ransformthe variation table SUBST EXPAND
<< 2 ->LIST >> @o alist of lists with pairs 2 ->LIST
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SWAP CEI L
R->I DUP
var SWAP =
genMenb SWAP
SUBST EXPAND
2 ->LIST
ELSE
DROP
END
>>
DOSUBS
"Filtering out < min"
1 DI SP
1
<< @hrow away coordi nates < nnmin
| F @nd correspondi ng nenbers
DUP HEAD | 0 <
THEN
DROP
END
>>
DOSUBS
"Filtering out > nax"
1 DI SP
1
<< @hrow away coordi nates > nnin
| F @nd correspondi ng nenbers
DUP HEAD hi >
THEN
DROP
END
>>
DOSUBS
1 @hrow away coordi nates
<< @vut hol d nmenbers
2 GET
>> DOSUBS
"Sear ching mn"

@kssage

@kssage

@kssage

1 DI SP @i nd m ni mum nenber
DUP
<<
M N EXPAND
>>
STREAM
SWAP
" Sear chi ng max" @kssage
1 DI SP @i nd nmaxi mum nmenber
DUP
<<
MAX EXPAND
>>
STREAM
DUP2 2 ->LIST @uild up list with mn.
UNROT @nd max. nenber
- ABS ¥ < @conpare abs. diff. with *
END

>>
>>

STOre the program in 'BOUNDSL'. (Or just use the programs which
come with this document.) Before testing it let's explain some of its
not so obvious parts. You certainly noticed that at the start of the
program we EV AL uate the starting and ending coordinates. Why do
we need that? Well, the answer has to do with infinity as it is
implemented on the HP49G. Remember that we enter the coordinates
inalist. When we enter infinity in alist, then the resulting object does
not contain something that can be used in algebraic objects. To seethat

better, enter {¥}, press[HEAD] to get the first element of thelist on
the stack. Theinfinity that now stands on stack level 1, cannot be used
in algebraics. For example press [X] [SWAP] and then [=]. This
should create the equation X =¥ , should it? But instead of thisyou
get a "Bad Argument Type Error". Enter again {¥}, and press

[HEAD]. Press [DUP] to make a copy on stack level 2. Now press
[TYPE]. Theresult is 14., the object type of a built-in CAS-command.
Commands are not allowed in algebraic objects, at least not using
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"standard” methods. DROP the 14. from stack level 1, and press
EVAL. Now you have +¥ and if you press[TY PE], you get a9., the
object type of algebraic objects. Such objects can be used to build up
other algebraics. When you start typing alist, then you can see that the
announciator PRG lights up on the top right of the screen. What you
enter now, will not be EVALuated but only written as a command in
thelist. It isthe EV Aluation of the command * that putsthe algebraic
infinity on the stack. When you simply press
[blue-shift] and then [O] all this happens

{1 o 3 4} automatically, that is the command ¥ gets
EVAluated first and the result, the algebraic
¢ ¢ infinity, is put on the stack.
In the program we use often the command
<<+ >>

STREAM. This command takes a list and some
program from the stack, that uses two
¢ arguments. It then applies the program to the
first two elements of the list and replaces the

{3 3 4 used elements with the result. This program is
applied then to the new two first elements of the

¢ ¢ list, that is, the result of the first run and the
third element of the original list. The processis

<<+ >> repeated until al elements are consumed and a

singleresult isreturned. If for example we enter
¢ thelist {1 2 3 4}, thenthe program << +

>> and we press [STREAM], then the process
shown on at the left takes place.

STREAM in action

{6 4}
¢ ¢ Note that for the sum of al list elements it is
easier to use the command SLIST and for the
<< +>> product it iseasier to use PLIST. STREAM can
be used for more complicated things than simple
¢ addition of multiplication.
10 The last thing to explain is why we do not

simply use << MAX >> and << MIN >> when
we find the biggest and smallest members of the

set. Thisis because sometimes the algebraic result MAX(a,b) would be
returned unevaluated. So we EV Aluate to make sure that an evaluated
result is returned.

- N
Let's test the program. Enter {15 {n 1 ¥}§ and press

[BOUNDSI]. In about 9,5 seconds the HP49G returns {0 1} and 1.
The 1 means that the set is bounded, and its bounds are 0 and 1.

] 2

i
Enter .— {n -¥ ¥}y andpress|[BOUNDSI]. The
1(n- 27 +3 b

results { 0 1—76E and 1 arereturned in about 31 seconds.

Now another example of a set that isn't bounded. Enter

|n-3
1

A

e
{3 +¥} and O (for aset that isn't bounded) in 19 seconds.

{no ¥}[\; and press [BOUNDSL] to get the results

But the program isn't succ&ssful in al cases. For example it will not
work for the set {e {n -¥ ¥}},whichisbounded. The

reason is that TABVAR protests with "Not reducible to a rational
expression”, though the HP49G has all necessary things to make a

)

variation table of the corresponding function e

If you use TABVAR with SIN(X) then you get the variation table:

€y 2 -p+0 - Py v 0 4+ P p-0 ? +¥ XU
é 2 2 G
é? 2 0o - -1- 0 - 170 ?2 2 F U
é 0
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It shows that TABV AR has found what happens between - p and p..

It also shows that TABVAR can't tell you what happens outside this
interval. (Or does this result mean "repeat what found between - p and
p endlessly?') Anyway, at least we know for sure what happens

between - p and p . If you enter theset {SIN(n) {n 0 ¥}} and

press [BOUNDS1] then at the moment when the program triesto find
the limit of SIN(X) for X = +¥ , you first get the error "Bounded var
error”. At this point you must press [OK] to continue the calculation
and get another error "SERIES remainder is O(1) at order 3". Press
again [OK] to continue. These two errors that occur are somewhat
unusual in the sense that they can't be caught with an IFERR THEN
ELSE END clause! They are some kind of warnings which are
displayed to you, so that you know what happened, but otherwise
don't necessarily stop the calculation. The result of this operation is a
?, which on the HP49G means an undefined result. When the program
BOUNDS ends, it returns {? ?} and ?totell you that it can't
determine if the set is bounded. Now, if we knew what the question
marks in the variation table want to tell us, if we knew what the
warnings want to tell us, then perhaps we could face such cases and
handle them appropriately. But while the makers of the CAS keep
silent we must just accept that we can't use the whole power of the
HP49G, because the makers feel more comfortable answering one
guestion at atime and telling us the truth only when we ask.

Let's go on with sets. An one-dimensional set is bounded when an
upper bound K and alower bound k can be given, such that for the
coordinate x; of an arbitrary point of the set the relation holds:

k £ x, £ K. Any number greater than K is also an upper bound of the
set, and any number lessthan k is also alower bound of the set.

For example all points between 0 and 1 on your ruler are such a
(continuous) bounded set. Note that bounds are not limits (while limits
are bounds).

Let's now take a look at condensation points. Consider a set with

. . . 1 . . .
points P, having the coordinates ﬁ ,withn=12,3,---. Thissetis

bounded. The upper bound is G = 1 while the lower boundis g =0.
This set is bounded but endless, it has infinite number of members but
they all fit between O and 1. (So | can't be amember of this set since
my physical dimensions don't allow me to fit in such a small interval.
;-)) If we chop thisinterval in two equal parts, then at the left part we
have again an infinite number of these points.

1/5 14 13 1/2
e —o—=
0

[ )

If we cut the left part again in two equal parts, then again the left part
has an infinite number of points. We can go on forever dividing each
new left part into two equal subparts. The left part will always have an

@

infinite number of points. Each of these parts, isan interval that begins
k

with 0 and has alength of g%g after k chopsand it contains an

infinite number of points of our set. By means of these nested intervals
we just catch the condensation point of our set. Its name implies its
meaning. In any arbitrary small neighbourhood of the condensation
point, a neighbourhood given by an arbitrary small positive number e,
there is an infinite number of points of the set. That means, go as near
to the condensation point as you like (without reaching it), you will
il find an infinite number of members of the considered set, lying
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between you and the condensation point itself. (Condensation points
are also not limits, we'll see the difference some pages later.) In this
example we a so see that though O is acondensation point, it does not
belong to our set.

Let's have an additional example. Consider the set M with pointsP,

with a coordinate x,, given by (- 1) * N*3 where n= 12,3,--. The

2*n’

set isinfinite, it has an endless number of e ements, but it is bounded.

It has an upper bound G ::51 and alower bound g = - 2, asthe

following table implies. (This is not a prove. We use it only for
guessing.)

n|l1 2 3 4 5 6 7 8 9 10
5 7 4 3 5 11 2 13
x'2 =2 1 - .= = .2 = .2 =
4 8 5 4 7 16 3 20

How could the HP49G help us here? If we enter the set

R Ch+ .
{‘(- 1) g*: h 1 ¥}\§and press BOUNDS, then the HP49G
errors out with "Parameters not allowed" when it tries to find the

" . . x, X+3
variation table of the corresponding function (- 1) * 27" Now the

guestion is where the HP49G sees parameters. Thisisasingle variable
function with no parameters at all. Even if we assume X 3 1 firgt, the
same error happens again. What can we do to handle such cases?
Well, we consider the factor (- 1)", which alternates between -1 and 1
if n isinteger going from 1to +¥ . The lower bound is assumed to be
-2 for n=1. If al of the negative members prove to be greater than or
egual to - 2, then we are half the way through. In real mode enter n
and then UNASSUME (to start with a"clean" n). Enter n31 and then

+
ASSUME. Enter - 1* 2* 2 3 -2 and EXPAND. We use -1 instead of

(- 2)" because we check if all negative coordinates are greater that or

equal to - 2. Theresultis1, which showsthat the inequality

(102
2*n

and UNASSUME again. Now, the upper bound is assumed to be 451

for n=2. If al of the positive members proveto be lessthan or equal to
g , then we won. Enter n3 2 and then ASSUME. Enter 1* n+3 g3

£ -

2*n 4

and press EXPAND. The result is again 1. But isthat the proof? Not
exactly. We just found that one lower bound in -2 and one upper

3 -2 istruefor any n3 1 that turns(- 1) to - 1. Enter n

bound is g . We don't know if there is some lower bound greater than

- 2 and we also don't know if there is some upper bound less than ;;), .

If we could prove this, then we could say that these are the bounds of
the set. But wait! Couldn't we use the program BOUNDS separately

n + .
for each possible outcome of (- 1) * g*: , that is for the sets

n+3

> {n 1 ¥}g

L, N+3
2*n

+ N
-1 and 1* n+3 ? Let'stry. Enter i 1*
2*n I

and press BOUNDS. The results are i 2 Elg and 1. Oh nice! we

. j,.n+
just got the lower bound - 2. Now enter {11* > r31

{n 1 ¥}§'§I and

press BOUNDS. The results are i 2 Elg and 1. Oh no! Whereis

n+3

T {n 1 ¥}§

is"aternating". Because of this, it hasa"positive peak" at n=2 . But

g ? Do, you see what happened (?). The set i 1*
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n+3 U j..n+3
1 ¥ dj1*
2*n {n }\p/an % 2*n

are "smooth". Because of this the "peak” at n=2 disappears. The
picture below demonstrates this.

the two sets i 1*

Largest member
n+3
of (-1)"*
2*n
is no special point for
the continuous function

Smallest member

N3
of (-1) >
0

10

If you remember, we wrote code in the program BOUNDS1 that adds
the starting and ending coordinates and members of the set to the
variation table. Now, the second time we used the set

% *2:2’ {n 1 ¥}g,theprogramadded{1 2} for n=1 (dtart),

n,N+3
2*n

while the original set | () {1 ¥}§ hasitsfirst (and

biggest) positive member for n= 2. Thismember is i—i . Use DROP2

{n 1 ¥}§’§I to get rid of the two last results, enter {11*

n+3
2*n

h 2 ¥}§ and

. 11 )
press BOUNDS again. Now you get the results %15 gg and 1.
Hurrah! Let's put al that in a program. We must:

1) Find any possible outcome of such aternating factorslike (- 1)"

2) Build up partial cases of the set for each of the possible
outcomings.

3) Find what the value of n is for the first element of each partial
case.

4) Use BOUNDSfor each partia case.

5) Get the smallest of the smallest and the greatest of the greatest

bounds.

For the sub task (1), we can use the following procedure. We
transform the whole general member from an algebraic object to alist
using ->LST. Then, we check each object for being a * (the power
function). If it isn't we just evaluate. But if it is, we check to see if the
exponent depends linearly on the coordinate, and if the baseis 1 or -1.
If these conditions aren't true, then we simply evaluate. If the
conditions are true, we find all possible outcomes and build up lists
with replacement patterns that will be used to build up all specia sub
Cases.

For the sub task (2), we can use - MATCH to build al possible sub
cases of the set.

For the sub task (3), we can use the following: When we found all
possible outcomings of the alternating factor, we found also the
corresponding values of n. If we hold these values we can use them
pair wise for each specia sub case, when we use BOUNDS later.

Let's make code for all these things. After the program listing we'll see
it'sworkings more detailed in every part using an example.
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<< STO+
OBJ- > DROP END
OBJ- > DROP @xpl ode set denoted as |ist END
EVAL SWAP @val uate eventual infinities EVAL @val uate the conmand
EVAL SWAP {} {} >> DOSUBS @o to all objects of 'gmnlst'
PUSH @ave current flags HEAD ' genMenb' STO @tore eval. gnst in genMenb
-> genMenb var o hi @tore in |local variables -103 SF @ to conpl ex node
explist spclist "Solving for m
<<
"Checking alternating " 1 DI SP @\not her nessage
exponents" 1 DI SP @kssage I F
genMenb ->LST @urn algebraic to RPL |ist. explist SIZE @f explist contains anything
-> gnl st @tore in local variable THEN
<< explist 1 @\not her DOSUBS
gm st 1 @e' ||l use DOSUBS (again ;-)) <<
<< DUPDUP var DUP @ubstitute var=var+min
| F @f the current command is * 'm + = SUBST = @l ternating factor.
{*"} OVER PCS var | o = SUBST @ubstitute var=lo
THEN @ hen DUP 2 DI SP @i splay what will be sol ved
I F ‘m SOLVE @ol ve for m
OVER var @f the exponent is linear EQ > NI P EXPAND @t right hand side of sol.
LININ @n coordinate I F @f the result was nme? which
4 Pl CK @nd the base is DUP ? SAME @reans that the base was 1,
1 == @ither 1 THEN @hen drop it and put a 1 on
5 PICK @r -1 DROP 1 @t ack.
-1 == END
oR DUP 0
I F @Convert result if it is alg. -> expr evexpr @tore in locals
DUP TYPE @o a value of 0O i ntval
== @or FALSE (Wiy can we <<
THEN @lo that?) VHI LE
DROP 0 evexpr TYPE @Wile the eval. expression
END 28 1 @s no integer
AND REPEAT @ epeat putting increnenting
THEN @\ | conditions net, so expr 'nl' @al ues of nl in expr,
3 DUPN EVAL "intval' INCR @xpandi ng expr for this val ue
DUP 3 DISP @i splay what was found. = DUP 3 DISP @f nl
"explist' SWAP @dd it to |ocal explist SUBST EXPAND @nd putting the result in
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"evexpr' STO @vexpr >> DOSUBS
END @uild up list containing | 2 ->LIST 1 ->LIST @Add the correspondi ng
| o DUP evexpr + @xpr |ow and upper val ues @ ow val ue
1- "replist' SWAP STO+ @Add to list of replace.
3 ->LIST 1 ->LIST NEXT
"spclist' SWAP @dd to specials Iist replist
STO+ >>
>> 1
>> <<
DOSUBS "Repl aci ng, case " NSUB
END + 1 DSP @kssage
I F -> repcase
spclist SIZE @f spclist contains sonething <<
THEN genMenb 1 repcase
"Building Iist of HEAD SI ZE @o for all elenents
speci al repl acenents FOR | @n repcase
" repcase HEAD @i splay the list for
1 DI SP @kssage | GET DUP 2 DI SP @he match and do a match
spclist 1 ~ MATCH DROP
<< HEAD >> DOSUBS @et heads of spclist elenents NEXT
{} var repcase 2 GET @kke a set with matched
-> exprlist replist @tore in locals hi 3 ->LIST @l ternating factors.
<< 2 ->LIST
lo spclist 1 S>>
<< 3 CGET >> DOSUBS @zet 3rd. elem of spclist >> DOSUBS
@l enent s ELSE @f spclist is enpty
s genMenb var 1o hi @uil d up original set
DUP SIZE 1 > @f resulting list has nore 3 ->LIST 2 ->LIST @nd wap it inalist.
THEN @han 1 el enments, then END
<< LCM >> STREAM @i nd LCM of el enents >> POP @estore flags
ELSE o>
HEAD @l se take first (and only)
END @l enent . STOre this in SPCASES. We're going to use the code in a bigger
FOR1 _ _ program later on. Now the explanations.
exprlist 1 @mbke list with elenents
<< @nd expressions with - waso\ N+2
DUP var | = SUBST @ich they will be Suppose we have the set (( 0 +(-1) )*—,With
2 ->LIST EXPAND @t ched. 3*n
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n=12,3---+¥ . Weenter thisset asalist, that is

(G R e R GRS

Thefirst part of the program

OBJ- > DROP

OBJ- > DROP

EVAL SWAP

EVAL SWAP {} {}
PUSH

-> genMenb var | o hi
explist spcli st

explodes the list that represents the set and evaluates the start and end
value of n. It also enterstwo empty lists that we need later for

accumulating such factors like (- 1)" and the special sub expressions

that we are going to replace. It also uses the command PUSH,which
stores all current flags and the current working directory in the list
ENVSTACK in CASDIR. We do that because we are going to change
settings later in the program and we should restore the user's settings
when the program finishes. Then the part

"Checki ng alternating
exponents" 1 DI SP

genMenb ->LST

-> gnl st

displays amessage and convertsthe algebraic object that representsthe
general member of the set to a sequence of RPL objects enclosed in a
list. We do that because we want to check each object for being a” and
act accordingly if it is. At this point the stack containsthe list:

{1 -

Notice that the - at the second place in the list is not the operator for
subtraction but rather the negation NEG. Thislist is stored in the local

N1 A s ]

variable gmlist. Then we have:

gmst 1
<<

>> DOSUBS

The part between << and >> is what will be applied to each object of
thelist. First we check if the object is the power function .

| F
{"} OVER PCS
THEN

If itis, then we do:

I F

That is we check if the variable, the index of the set is only linearly
present in the exponent. We do that because if the exponent isn't linear
in the variable of the set, then, well then it can be hard to determine
how many different values the term can have. For example (- )" with
n?-3%n
n=12,--- canbeeither 1 or - 1. But for (- )73 it gets harder or
even impossible to say how many different values this can have.
(Infinite? Are there any other exponents that do the same? And what
about periodic functions? We will see later on ;-)))

We also check if the base is 1 or - 1, because for other values it
1-11
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doesn't make big sense to start checking how many and what

a3y

by

outcomes the sub expression may have. Consider for example 825 "

Then comesthe part:

I F
DUP TYPE

Why do we determine if the result of the comparisons of the base with
1 and - 1isof type 9 (algebraic)? Well, consider the case where the
base contains some formal variable (variable with no value). Then the
comparisonswith 1 and - 1 would return base ==1 and base
because the base couldn't be evaluated in order to be compared with
the two numbers. The following OR would return
base ==1 OR base ==-1. Thiscan't be used for the THEN-
part of the IF-THEN-END clause. If you for example try the code
..IF X 1 == THEN "OK' END.. andthereisnothing storedin
variable X, then the HP49G will say to you: "THEN Error: Undefined
Name" meaning that it can't determine if X ==1 because it doesn't
know what the value of X is. If we get an algebraic asresult of the

comparisons and the following OR, we can be sure that the base was (

neither 1 nor - 1, so we DROP thisresult and put O on the stack. If
the result was not an algebraic, then we keep it. At this point there can
be two possible results, al for "Yes, thebasewas 1 or - 1" or a0 for
"No, the base is something else". We AND this result with the result
regarding linear dependency of the exponent on the set index.

THEN
3 DUPN EVAL
DUP 3 DI SP
"explist’
STO+
END
END

SWAP

If all conditions were met, then we make a copy of the three objectsin
stack levels 1,2 and three using the command DUPN. These are:

3: theBase

2:  theExponent

1. theFunction”

Thenwe EVAL and we get the Object theBase "*®**°"*" on stack level
1, which we DUPlicate and display on line 3 of the screen, so that the
user says "Hurrah, we found something to work with". We then put
the 'explist’ on the stack, SWAP and use STO+ to add the found

agebraics (- 1) and (- 1)"°" to explist. After that we:

EVAL
>> DOSUBS

so that the partial RPL sequence gets transformed to the corresponding
algebraic object, which will be used by the next pass of DOSUBS

e\/entua“y add|ng another ObJeCt of the form ]_IinearFunctionOfr or

- 7)o and return another algebraic object, and so on until the
whole RPL sequence has been completely examined.

The next thing that we do is:

HEAD ' genMenb’ STO

and you might ask yourself why we store the completely evaluated
RPL sequence in 'genMemb’, since it looks the same like what we
already have stored there. Well, the reason for doing that is that we

1-12
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will use this later on as argument for ~ MATCH and sometimes this
commands shows an unexpected behaviour. To understand this better

let's have an example. Enter SIN(X), then COS(X), then press [+],
then enter 1 and press [+] again. Y ou have now SIN(X)+ COS(X)+1
on the stack. Now enter the list {COS(X)+1 A} and use ~ MATCH
to match the pattern COS(X) +1 with A . Would you expect to get
SIN(X)+ A? 1 would! But instead of this you get the expression
SIN(X)+ COS(X)+1 and a0 on stack level 1, which tellsthat the
pattern COS(X) +1 isn't contained in SIN(X)+ COS(X)+1. Do the
same again, enter SIN(X), then COS(X), then press [+], then enter 1
and press [+]. Now press EXPAND. The algebraic
SIN(X)+ COS(X)+1 just looks the same like before. Re-enter
{cos(X)+1 A}, press ” MATCH and see: SIN(X)+ A. Strange?
What is the difference between the EXPANDed and the not
EXPANDed form of SIN(X)+ COS(X)+1? They look the same. Well,
let's take a closer look. Set flag -53. This is the flag that let's the

HP49G show all existing parentheses in algebraic objects, when they
are not shown in pretty print. Now do the same a third time, enter

SIN(X), then COS(X), then press [+], then enter 1 and press [+].
(It's getting monotonous but soon the monotony will break.) Press
[blue-shift] and then [arrow-down] to get
SIN(X)+ COS(X)+1 in the command line editor. Y ou see that the
HP49G put SIN(X)}+ COS(X) inapair of invisible parentheses, so
that thewhole object isin reality (SIN(X)+ COS(X)) +1. Y ou see now

why the firss ~ MATCH didn't work. Though the object looked like
SIN(X)+ COS(X)+1 in redlity it was (SIN(X)+ COS(X)) +1. In this
object there is no exact pattern COS(X) +1. Press[ENTER],

EXPAND and then press [blue-shift] and [arrow-down] to get the
algebraic on the command line agan. Now you see

SIN(X)+ (COS(X)+1). The HP49G liked more to have COS(X) +1

in parentheses, so the second  MATCH worked. This phenomenoniis
the reason for saving the completely evaluated RPL sequence of our

the algebraic .

general set member in ‘genMemb’ again. Since we can't know how the
user will enter some algebraic and we also can't know where the
HP49G will put parentheses, we can't be sure that using the command

- MATCH later in the program will give us dways the right results.
But we have sub expressions (- 1) and (- 1> which were made
through sequential evaluation of the corresponding commands and we
have the complete general member which was also formed by
evaluating all participating RPL objects in the same sequence. Since the
evaluation sequence was the same, the "inner form" of the resulting
objects will also be the same. And so we make sure that matching will
work.

On with our program.

-103 Sk

We set flag -103 for a switch to complex mode, because we are going
to solve equations that the HP49G can solve only in complex mode.

Then:
"Solving for m

1 D SP

wejust tell the user that the program starts solving some equations.

I F
explist SIZE

We then check if explist contains anything and if it does:
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THEN
explist 1
<<

.. procedure for each object
>>

DOSUBS
END

we apply a procedure to each ij ect o_f explist. The objects of explist
are all the objects of the form 1/ Funetonof gp (. )nearFunctionom yhap \ye

found. Let's see what this procedure does. First

DUPDUP var DUP
'mMm + = SUBST =

we make two copies of the object using DUPDUP. We then built up
theequation var = var+m. For example, if the set index was n, then
this equation will be n=n+m. (Note that because we use m, the
genera set member shouldn't contain any m.) We the use SUBST to

substitute n with n+m. For examplethe object (- 1) °* will be

transformed to (- 2)™™"** . Then we use = again to form the equation

(-1 =(-1)"™"*" Next we do:
var | o = SUBST

that is we substitute var with the starting value of var. With a starting
vaue of 1for n the above equation now would be:

(- "% = (-)™™3*2 Y ou see now what we want. If we solve this
for m, then it islike getting the answer to the question, "For what

value of the exponent does (- 1)***"*" equal to (- 2)**"*"**?" Or "How
many values exist for n, which cover al possible outcomes of

(- 17", when n startsat, say 1, and goes on to infinity?".

On with the program:

DUP 2 DI SP
'm SOLVE

We show a copy of the equation to be solved to the user and solve it
for m. Then

EQ > NI P EXPAND

we split the solution (m = something) to itsleft and right hand side

and throw away the left hand side and expand the right hand side.
Then

| F

DUP ? SAME
THEN

DROP 1
END

we check if the solution was a ? (undefined) which means that we

solved something like 1" = 1™ with base being equal to 1. This
equation hasinfinite number of solutions, that is m can be any integer.
So we drop the ? and put a 1 on stack. If the solution wasn't ?, then
we keep it.

DUP O

We make a copy of thisand put a 0O on the stack, which will be used
as a counting variable. Now,

-> expr evexpr intva

we storein local variables and
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VWHI LE
evexpr TYPE
28 1

REPEAT

keep doing while evexpr (evauated expression) is not integer. At this
point we must look at the expressions of the form 1" or

(- 7)"earTneenO™  Eor example we have detected the existence of
1342 _ (_ 1)(1+m)*3+2

. Thisresult iswhat the HP49G returns, as it

*

(- 17" wesolve (- 1)
2*nl

for m and find the

solution m =

wants to tell us that any quotient of the form nd will satisfy the

equation, n1 being also an integer. (Notice that nl isreturned as a part
of the result, so your initial general set member also shouldn't contain

2 4
nl.) Now, that meansthat m can be§ or 3 or 2 and so on. But we

also want m to be integer itself, because we started with a general set

member that contained (- 1) °*, and n was also integer, so the whole
exponent has to be integer.

REPEAT
expr 'nl'
"intval' I NCR
= DUP 3 DI SP
SUBST EXPAND
"evexpr' STO
END

For this reason we start putting integer valuesin nl (starting at the start
index of the set, and continue until we detect an integer. Notice that

also that we can use STO or INCR for local variables just like we do
for global variables. After the WHILE-REPEAT-END loop we have:

| o DUP evexpr +
1 -

3 ->LIST
"spclist'’
STO+

SWAP

We calculate the start and end of the index range of var, that coversall

possible outcomes of objects like (- 1)"°™. Wethen makealist

consisting of the object, the starting and the found ending index. This
list is added to 'spclist’ so that we can use these data later. We wrap
the list of three elements in another list, because adding a list like

{a b c} toalistlike{otherContents} would simply put the
elements of the first list in the second, resulting
{otherContents a b c} and thiswould require additional work
later because we losetheinformationthat a, b and ¢ belong together.
But adding a list like {{a b c}} willresultin

{otherContents {a b c}} which preservestheinformation that
a, b and c belong together.

in

Now we do
I F
spclist SIZE
THEN

which checksis spclist contains something and if it does

"Building Iist of
speci al repl acenents

INCR is handy for this purpose, as it not only increments 'intval’ but -

also leaves acopy of the incremented value on stack, which we use for
creating the equation that is used as one argument of SUBST. Notice

1 DI SP
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we start making a list that contains what we need to  MATCH the
genera set member with any possible outcome that it can have.

spclist 1
<< HEAD >> DOSUBS
{}

We make a new list consisting of the first elements of each sub list of
spclist, in our case (- 1) and (- )" and put also an empty list on
the stack.

-> exprlist replist

We store them in local variables and start the local variables procedure.

lo spclist 1
<< 3 GET >> DOSUBS

We calculate the start and end values of aFOR-NEXT loop that comes
alittle bit later on. The starting value is in the local variable'lo', it is
the starting index of the set. For the end value we must work a bit
more. First we make a list of al third elements of the sub lists of
spclist. These are the found values for the possible outcomes of

(- 1" and (- )" *™. For thefirst algebraic we have a 2 and for the
second another 2. That meansthat (- 1)"* will take all possible values

if we only calculate it for n=1and n= - 1. Samefor (- 2" >, So
now we havealist {2 2} on the stack.

| F

DUP SIZE 1 >
THEN

<< LCM >> STREAM
ELSE

HEAD
END

Now, if the list contains more than one elements then we must
somehow find all possible combinations of results. Thisis achieved by
STREAMing LCM, thefunction that returnsthe least common multiple
of two integers, over the elementsin the above list. If for example we
had the two objects (- 1)°" and (- 1)" thenthelistwouldbe {1 2} .
So we would have 2 possible combinations:

n (97" (Y
11 1
2 1 1

because the third would aready be identical to the first. If the list
contains only one element then this is already what we want to have.
Having the start and end for the loop we do:

FOR |

exprlist 1
<<

DUP var | = SUBST EXPAND
2 ->LIST
>> DOSUBS
| 2 ->LIST 1 ->LIST
"replist' SWAP STO+

NEXT

We apply a DOSUBS procedure to each element of exprlist. This
procedure DUPIicates the element and substitutes all valuesfor n, in
ourcase n=1and n= 2. Thenit makesalist out of the two objects.

In our case when DOSUBS is ready on the first pass of the FOR-

NEXT loop we have the list {{( 1) ]} {( 1) ]}} which

Weusetomakethelist{{{(-1)'”2 ]} {(-1)”*3+2 ]}} ]},WhiCh

contains the argumentsfor ~ MATCH and the corresponding value of
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n. The second pass gives {{{( 1) ]} {( 1) ]}} 2} .Both Fo'felpcase HEAD
lists are added to the local variable 'replist’. When ready we I GET DUP 2 DI SP

~ MATCH DRCP

replist NEXT
return replist to the stack. Each passtakes the Ith element of thefirst element of repcase, displays
1 acopy of it onthe screen and  MATCHes. The flag on stack level 1is
dropped.
After that we put a 1 on the stack that is going to be used by the next var repcase 2 GET
DOSUBS. The next DOSUBS procedure starts with hi 3 ->LIST
2 ->LIST

"Repl aci ng, case " NSUB
+ 1 DISP . _
Then we make alist out of the  MATCHed genera set member, the set

which shows m es counting the replacements that are made index and the start and end values. When done we have on the stack:

-> repcase ii( 1+- 1) v %l
|
we store each element of replist, in our case the first list _
{{{(_ 1)n+2 _]} {(_ 1)n*3+2 _]}} ]},andthesecondllst Next partIS
n+2 n*3+2 . genMenb var o hi
{{{( 1) ]} {(1) ]}} 2} in the local repcase. 3 -SLIST 2 ->LI ST
genMenmb 1 repcase which runs if the list spclist was empty. It simply reconstructs the
HEAD S| ZE original set and putsitinalist.

We put the general set member on the stack and then we do a FOR-
NEXT loop as many times as there are elementsin the first sub list of Attheendweuse

the abovellists, in our case two times. —-—

to restore the user's settings.
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Now we have the two possible outcomes  of STREAM
n+1 n*3+2\ n+2 . . . . 2 ->LIST
((' ) +(- 1) ) 3%n dong with theright variable starting and flaglst 1 + @\ put an additional 1 in the |ist
‘ << AND >> @1 agl st so that STREAM ng wor ks even
ending values. STREAM @f there was only one 1 or 0 in the
R n+2 N >> @i st
Let's test it. Enter i(( e (- 77) o {n 1 ¥}§and >>
press SPCASES. Theresult is returned in 30 seconds: Store this in BOUNDS and test it. Enter again
] n+ n* 3+ n+2 U
0 G4 i l i i((l) "+(-1) 32)* — {n 1 ¥}\EandpressBOUNDS.In
Ha+-0)*—= {n 1 +}y (- 1+1) —< {n 2w}y | 3*n
11 3*n % | E%

X 45
about 67 seconds you get the results }l -2 §g and al.

i - 3*n-2 .n- 2 i . ) ..
Enter{(-l) (-97F 3 {n 1 ¥}%andpressSPCASES. Enter{l(-l)“*g 2 {n o ¥}g Press BOUNDS to get the results

% 2
The result is returned in 70 seconds an is a big list containing al . 1 } "
possible outcomes. iﬂ +¥§’éI and 0 in 63 seconds.

We can use BOUNDSL and SPCASES in another program to find

bounds of such sets. We move on now to condensation points. These thingies can be
<< erroneously taken for limits, but they aren't. If we consider again
SPCASES {} {} n+ n*3+ n+2 .
-> setcases extrm st flagl st ((' 1) 1"'(' 1) ’ 2)*ﬁ withn=12,3,--- then we seethe

<<

difference. When n growsto +¥ the set members alternate between
1 setcases S| ZE

n+2 n+2 : 2 2
FOR | - 2% and 2* . The first approaches - =, the second —=.
setcases | GET 3*n 3*n ' 3 _ 3
BOUNDS1 ' flaglst' SWAP STO+ But we see also the similarities. If we consider alone the first possible
“extrm st' SWAP STO+ . 342\, N+ . n+2
exrms outcome of (( )+ (-0 2)* is- 2% , then we
NEXT 3*n
extrn st n+2 2
<< M N >> seethat lim- 2* = - —. If we consider the second we see that
STREAM n® +¥ 3*n 3
extrn st
<< MAX >>
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. n+2 2 . . : {~} OVER PCS
I(:)rEéZ* T :E.Sotheldeaarlsesto use the same technique as we THEN
did for BOUNDS. Find al possible outcomes and then use the 'F

command lim to find condensation points. The next program does this. OVER var LININ

It is very similar to the already programmed things. It searches for 4 P 1 .
special sub expressions that lead to more than one possible outcomes 5 P -1 == (R
and it finds a separate set for each one of these possible outcomes. 'F L
Then it useslim to find the limit of each possible outcome, whichisa DUP TYPE 9 ==
condensation point for the original set. Because of the similarity we THEN
don't comment the program. But here we make an additional DROP 0
improvement (which you can use to improve the code in SPCASES. mg
Consider for example L. cos(n*p) wheren=12,3---. The THEN

n 3 DUPN EVAL
periodic factor COS[h*p) canbe- 1, 0 or 1, that iswe have again DUP 3 DI SP

1 1 1 "explist’' SWAP STO+

three possible outcomes for H*COS(n* p) which are: - =0, —.n END
the next program code is added to handle such periodic functions like E\N/z_
COS, SIN or TAN, that "branch" the original set to afinite number of os
cases. We also added code that filters out eventually duplicates of DOSUBS

condensation points. The additional code isbold will be explained after

the program listing. Checki ng periodics

containing " var + 1 DI SP
OBJ-> DROP ->LST 1
<<

<<
PUSH

I F
OBJ-> DROP CBJ-> DRCP
COs SIN TA
SWAP EVAL SWAP EVAL {O\/ER PCS DUEI}
{} {} {} ROLWX THEN
-> genMenb var | ow high explist perlist spclist xvar I F
<< _ OVER LNAVE
Checki ng exponents =
containing " var + 1 DISP —
DUP TYPE 29 ==
genl\/ter‘rb ->LST THEN
-> genMenbl st AXL
<<
END
genMenbl st 1 var POS
== - THEN
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OVER EVAL DUP
3 DISP
"perlist’ SWAP STO+
ELSE
DROP
END
END
EVAL
>>
DOSUBS
HEAD ' genMenb' STO
>>
-103 SF
"Solving for nm' 1 DISP
I F
explist SIZE
THEN
explist 1
<<
DUPDUP var DUP 'mi + =
SUBST = var | ow = SUBST DUP 2
DISP 'mi SOLVE EQ > NI P EXPAND
DUP 0
-> expr evexpr intva
<<
VWHI LE
evexpr TYPE 28 1
REPEAT
expr 'nl' 'intval' INCR = DUP
3 DI SP SUBST EXPAND ' evexpr' STO
END
low DUP evexpr + 1 - 3 ->LIST 1 ->LIST
"spclist' SWAP STO+
>>
>>
DOSUBS
END
I F

perlist SIZE

THEN
"Solving for m' 1 DISP
perlist 1
<<
DUP OBJ-> DROP2 DUP var |ow = SUBST
‘mop
I F

4 PICK OBJ->

UNROT DROP2

{COS SI N} SWAP POS
THEN

2 *
END
+ = DUP 2 DI SP var SOLVE
EQ-> NI P EXPAND DUP 0
-> expr evexpr intva

<<
WHI LE
evexpr TYPE 28 1
REPEAT
expr 'm ‘'"intval' | NCR = DUP
3 DI SP SUBST EXPAND 'evexpr'
END
| ow DUP evexpr + 2 - 3 ->LIST
1 ->LIST "spclist' SWAP STO+
>>
>>
DOSUBS
END
I F
spclist SIZE
THEN

"Building |ist of
speci al replacenents” 1 DI SP

spclist 1

<< HEAD >> DOSUBS {}

-> exprlist replist

STO

Sequences, series and limits with the HP49G - Part
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<<
| ow spclist 1
<< 3 GET >> DOSUBS
| F
DUP SIZE 1 >
THEN
<< LCM >> STREAM
ELSE
HEAD
END
FOR |

exprlist 1
<<

DUP var | = SUBST 2 ->LIST
>>
DOSUBS
1 ->LIST '"replist' SWAP STO+
NEXT
replist
>>
1
<<
"Repl acing, case " NSUB + 1 DI SP
-> repcase
<<
genMenb 1 repcase SIZE
FOR
repcase | GET
DUP 2 DISP  MATCH DROP
NEXT
>>
>>
DOSUBS
ELSE
genMenb
END

var high EVAL =
"Finding linmts for

" OVER + 1 DI SP
i mPOP
xvar STOVX @Store previous vx, as lim can change it!
"Searching duplicates" 1 DISP
I F
DUP TYPE 5 ?
THEN
1 ->LIST
END
I F
DUP SIZE 1 >
THEN
{}
-> | st
<<
1
<<
I F
EXPAND | st OVER
POS NOT
THEN
"Ist' OVER
STO+
END
>>
DOSUBS
DROP
| st
>>
END PCP
>>

And now the explanation of the additional code. Imagine that we have
found COSZ@ & 2 and we want to know how many different values

of n exist, such that starting at n = low we get al possible outcomes
of this trigonometric expression. It is sufficient to solve
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* I * * *
n5p = OV\; Py ox m*p for n, where m isjust another integer. cosf‘;’g COSZQSpg , until COS 0 pg The outcome
Solving thisis like answeri ng the questi on: "What can n be different A1 pg a*p 0
p 0, COSe |salready equal to COS . We found that the
solution was n = low +10* m. Thevalue Iow was 1 and so we have
Look at the next picture to understand this better. n=1+10*m. Then we start subgtituting m =1,
m = 2 and so on, until n becomes an integer because
o n can't have non-integer values. In this example
3* = P m =1 resultsin n =1 which is already integer. But
p n=2,
n=3, S . an* 3 16
1 p there are cases like for example SIN\ *p+ 50
n=1, or *m +
5 for which we get the solution n = M . Here n
4*p 1% p _ 3
n=4, = n=1+10=11, becomesinteger for m = 3.

As already said we sort out eventual duplicates of the

. found condensation points. The code for this is the

n=10 10*p second block in bold in the above program. We use
’ some extra features of the HP49G to do this. One of
these features has to do with the command SORT

which sorts lists. This command can aso sort lists of

lists, provided that the first element in the sub listsis

oo TP something that can be sorted. For example if you

until n=9, .
g enter the list {{2 3 3 {1 2} {4 3}} and
And so on press SORT, the result will be

{{1 2 {2 3 4 {4 3}}.Togetthecommand

SORT on a menu press [blue-shift], [SYMB] and
then [F3].

Another nice thing that we use isthe command LNAME which returns
a vector of al variables in an algebraic on stack level 1 and the
are 10 possible outcomes for COS p O . Starting at n = 1 we have algebraic itself on stack level 2. If the algebraic contains no variables
then the command returns an empty list. (Why not empty vector?)

That is, because the cosine (and the si ne) have aperiod of 2* p , there
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And a remark about saving the variable VX and restoring it later.
Sometimes the function lim will replace your current VX with the
variable for which you find a limit. Because we are trying to make
programs that leave the user environment untouched, and because we
know that lim may change VX, werecall it using RCLV X, do our job,
and the restore it using STOV X.

And now here cometh the time of the truth. We test the program. Store
it in CONDENSPT and let's go. Enter again our old friend

! n+1 nr3+2), N+2 U
%((-1) +(-17°7) o {1 ¥}BandpressCONDENSF’T.

In about 39 seconds you get %lé %g So, the old friend isa
bounded set with bounds %l 2 g% and has the two condensation

12 20 : . :
points % 3 EB. Interesting to see thison a picture. Enter the set

again and press SPCASES. Theresult isthelist:

n+2 u1

¥

Do << HEAD >> DOSUBS to get | (- 1+- 1)*
|

ﬁ(-1+-1)

x

n+2 n+2{
1+1)*

3*n ( ) 3*n %
and then STEQ to store the two equations in EQ for plotting. Now, |
have heard many times complains about the missing capability of the
HP49G to plot only points of some sequence without curves and lines.
But the available plot types are so flexible that we can use them for
plots quite different than we do the usual way. Press [blue-shift], hold
it pressed and press [F4]. In the PLOT-SETUP screen choose plot
type Function , enter n as Indep: and uncheck the option _Connect, so
that you get only points but no lines between them. Now press [blue-
shift], hold it pressed and press [F2] to go to the PLOT WINDOW -
FUNCTION. Enter H-View from -1 to 10 and V-View from -2 to 2.
Enter 1 for Low, 10 for High, 1 for Step and uncheck the option
_Pixels. These settings will let the HP49G draw points starting at n=1
and going up to n=10 in steps of 1. Press[F6] and wait until the plot is
done. The screen now must be like the picture below, of course

without the red point. This point

doesn't belong to the plot and it

2T &
¢ appears only because we also
plotted the second case
L y=4/3
il ° 1+1)*
 y=2/3 * o e though it should be from 2 to 10.
Condensation points You see how the set
N Bounds
y=-2/3 . 5 - -
H 7
z s — y=-2
O 1 2 3 4 5 6 7 8 9 10
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1 n+l n*3+2 *n+2 U .
{((1) +(- 1) ) v {n 1 ¥}Bbehaves.AIIpomtsare

4 P : :
between - 2 and 3 There areinfinite points getting closer and closer

2 e . . 2
to 3 and infinite points getting closer and closer to - 3 as n goesto
+¥ .

Another example. Enter:

(-1 (2*n- 3)*cos P . PO :
I, e 3 79 {n 1 ¥},

; 5*n y

i

and press CONDESPT. The HP49G rattles and roles and after 65
seconds it wins the rock'n'condence dancing competition ending its
performance with:

i

* - * . * i
L 2¢cos®RE  5xcos®2 RS Hxcos®E POl
! e 219 ¢ 21 o €7 o
; 5 5 5 )
| b

The interested reader may now add such code to SPCASES and
BOUNDSLI that they also handle such trigonometric expressions. This
is already done in the programs that come with this documents, so
lucky guys you don't need to type. But - there's always a big but -
there are many shortcomings in these programs. What if the index isn't
in the exponent of 1 or - 1? Will the programs work or error? What if

the trigonometric expressions just don't branch to a finite number of

special subsets? What will happen if we have Sll\(nz*p) inour set?

How can we then prevent the programs from going insane while they
are trying to win the dancing competition? Think about that in your
gpare time and search for solutions. Study the code of the programs

BOUNDS, BOUNDS1, SPCASES, CONDENSPT and exercise
critics and new ideas. The HP49G has all needed commands to make
the programs better and more robust. And when you are ready, post
your excellent thoughts, to help Trabakoulas find the condensation
points of the cows. ;-)

One remark about debugging. When you want to debug the programs
then there is a potential problem about such commands like DOSUBS,
DOLIST and so on. Consider the following code:

When you debug this pressing SST, you reach at some point the
number 2. Pressing SST puts this number on stack level 1. Pressing
SST again puts the DOSUBS procedure << / >> on the stack. Pressing
SST again, applies << / >> to dl pairs of the list at once. If the
contains for example a0, then the DOSUBS will error but you will not
be able to find what was wrong, especialy if the list was huge and the
DOSUBS procedure complicated. So, if you want to watch how the
DOSUBS procedure is applied to the argumentsin the list, you should
edit the program and add a HALT at the very beginning of the
procedure, which then would be for example << HALT / >>. Now,
when you press SST and the procedure is applied to its arguments,
then it halts right at the start and subsequent presses of SST just
eval uate the commands contained in the procedure one by one for each
argument of the list, without running the whole thing at once. So you
can find exactly where/when the error occurs inside the DOSUBS
procedure.

L et's continue with condensation points. Bolzano and Welerstral3, two
great mathematicians have found out that:

An infinite bounded set has at least one condensation

point.
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The above could be of importance for us. Why? Because if we want to
check some set for existence of condensation points, then we could
run into troubles if lim can't find a limit. But we can check if it is
infinite and at the same time bounded. Then we know that there is at
least one condensation point. However this doesn't have to mean that
an infinite unbounded set has no condensation points. A simple

examplelikef} {n 0 ¥}¥ showsthat though the set isinfinite
In ¥

and unbounded it does have the condensation point 0. So if we find
that a set isinfinite and bounded we can immediately say that it has at
least one condensation point. If we find that it is infinite and
unbounded then we have to try to find its condensation pointsif there
are some.

How could we check if some set is infinite, that is has an infinite
number of members (points)?. Our notation of sets could make us
think: "Look if n comesfrom or goesto - ¥ or +¥ and if so, then the
set isinfinite" But this doesn't have to be always true. Consider for

example{COSn*p) {n -¥ ¥}}.Ithasonly two pointswhich

are - 1 and 1. But we can use the program SPCASES, when we have
sets containing such expressions that SPCASES can handle. If thereis
afinite number of special outcomes, then the code will hopefully find
them and replace them with expressions that are evaluable to numbers.
(If there is an infinite number of cases then the code will continue
happily to find one after the other without noticing that it has just
started a job which it can never end. This is the weak point of the
programs, but let's hope that someone out there will have an idea.)

When SPCASES finishes, it returns a list of sets that represent the
special cases. We can temporarily switch to numeric mode and
EVALuate each of these cases. The evaluation will return either an
algebraic expression or a number. If it returns an algebraic expression
which contains the index of the set, then we check if the index domain
contains at least one infinity. If it does, then we know that the set
represented by the current special case of the original set is infinite,
whileif the domain is finite then we know that the set is also finite. If
the evaluation it returns a number then the set is finite. When we

finished examining each case, then we can say that the original set is
infinite if some of the sets represented by the specia cases proved to be
infinite.

<<

PUSH
" Checki ng exi stence
of special cases" 1 DI SP
SPCASES
" Checki ng exi stence
and domain of index" 1 DISP
1
<<
LCD > @return current display as GROB
{#0h #Eh}
PICK 3
0 ->GROB @/bke GROB of the set in pretty print
REPL ->LCD @repl ace part of the display GROB
@vth the GROB of the set
OBJ- > DROP @xpl ode set

SWAP -105 SF EVAL
LNAME -105 CF NIP

@val uate in nuneric node
@ind names and switch to exact

I F

DUP TYPE 5 1 @f result isn't |ist
THEN

OBJ-> HEAD ->LI ST @he convert it to |list
END

OVER HEAD PCS
SWAP OBJ-> 4 ROLL

@ind if index is in nenber

DROP 2 SWAP - @i nd how big index domain is
¥ SAVE AND @nd conpare it to ¥
>>
DOSUBS @o to all special cases
0 + @dd a 0 in list of results
<< OR >> @o that streanmed OR al ways
STREAM @wr ks K
POP

>>
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Store that in 'ISINF?. The program takes a set from the stack and
returns a 1 if itisinfiniteor a 0 otherwise. Notice the usage of the
commands LCD->, ->GROB and ->LCD for showing messages to
Trabakoulas the impatient who wants to know if the set of sheep is
infinite. ;-) LCD-> returns what is currently displayed on screen as a
GROB on the stack. ->GROB takes something from stack level 2, and
anumber from stack level 1, and reruns a GROB of that something. If
the number on stack level 1isa 0, then the GROB isin pretty print for
algebraic objects. The command ->LCD just takes a GROB from the
stack and makesiit to the current display on the screen.

Now let's test the program. Enter {n2 {n 1 ¥}} and press
ISINF?. The cac says 1.(yes) after some seconds. Enter

{n2 {n 1 10}} and press ISINF?. Thistime the calc says 0. (no)
because the index runsonly from 1 t0 10.

2 *
And a crazier one. Enter | COS@ 3 10
1 ee 3 5 72
and press ISINF? When | tried thisthefirst time, | though that it had to
beinfinite. | expected the COS function to send the quadratic argument
to different points as n goes from 1 to infinity. But the HP49G proved
me wrong. It said that the set is finite! Let's see if that is true. Enter

2 *n
coste 3 1°
ee3 5
independent varlable of the pI ot, set H-View form 0 to 50, set V-View
from -1.3 to 1.3 and set Step to 1 unit (not pixel) so that only the
points n=1,2,... will be plotted. Also disable the option _Connect. Let
that draw and you see the unexpected. The set has a finite number of
points (10) which are repeated as n grows from 1 to infinity! So our
methods are not perfect but also not so bad at all, it seems.

{n1¥}

p and press STEQ. Set 'n' asthe

Now we can make another program, that checksif the

set has any condensation points without actually
p% 1t o .. .. .. .. .. f<”<-ld|ng them
P -> set
p3 ° ° ° <<
I F
set | SI NF?
pd — —_— —_— —_— THEN
P | F
N set BOUNDS NI P
D6 . . . THEN
1.
ELSE @n this case there m ght
p7 . - . . ? @e condensation points.
END @\ mnmust use CONDENSPT
ELSE
p8 = — — = — — = — —— = — 0. @et is finite, no condensation
pg | ry | ry | | ry | END @OI nt S
plol I I I I 1 >>
0 10 20 30 40 50 >
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Store it in HASCNDSPT?. Let's check it in combination with the other
programn CONDENSPT which calculates the condensation points.

Enter the set { (- 1" * SINaQ n"ps, _Nn-1 {n 1 ¥}¥, makea
i 3 92 3*n+1 [V)
copy of it on stack level 2 and press HASCNDSPT?. The HP49G
shakes its brain, shows messages, rattles a lot, and after about 5
minutes (!) it returns a 1, which means that the set has at least one
condensation point. Drop the 1 and press CONDENSPT. Y ou just
sent the HP49G to the next "Jump in the fire competition™, which it
accepts with enthusiasm and which it finishes in about 1 minute
bringing you the prises that it won, namely the condensation points

B,

i 3

Another exampl € Enter the crazy little set

|COS@] {n 1 ¥} again and make a copy of
5 7@ k’,

|t on stack level 2. Press HASCNDSPT?. The HP49G needs about 3
minutesto return a 0. The set has no condensation points becauseit is
finite, as we already have seen before. Now, drop the O and press
CONDENSPT. Theresult is given to you after 2.5 minutes. (Itisabig
list.) Our program finds incorrectly that the set has condensation points
though it can't have them since it is finite. The problem is that the
programn CONDENSPT doesn't check to see if the calculated special
cases really depend on the index and if the index domain in infinite.
There are two ways to correct this. Either we add such code in
CONDENSPT, or we add a check at the start of the program:

<<

I F
DUP HASCNDSPT?
I F @ f HASCNDSPT? said
DUP 1 == @ or ?
SWAP ? SAME OR
THEN @ hen put 1 on the stack

1. @o let the calculation of
ELSE @ondens. points begin.
0. @l se put 0 on the stack,
END @nd do no cal cul ation
THEN
PUSH

OBJ- > DROP OBJ-> DROP
SWAP EVAL SWAP EVAL
{} {} {} RCLWX
-> genMenb var |ow high explist perlist spclist
xvar
<<
..blah blah rest of code of HASCNDSPT?
| st
>>
END POP

ELSE
DROP
{}
END
>>

The additional code is bold in the partial listing of CONDENSPT.
Let'stake alook at the programs until now, and what they do.
SPCASES Finds a finite number of special cases of sets that
contain powers of 1 and -1 containing the index or
periodic functions with arguments that contain the
index. Returns alist in which the general member has
no more such powers and periodics but the special
outcomes instead.

BOUNDS1 Finds bounds of aset and returnsaso al, if theset is
bounded or Oif it isn't.

CONDENSPT Finds condensation points of a set.
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BOUNDS
ISINF?

Finds bounds of alist of specia cases of a set.

Returnsal for infinite setsor a O for finite sets.

points themselves always.

Notice however that these programs are not at al optimised. For
example, CONDENSPT uses HASCNDSPT? to check if there are any

condensation points and
HASCNDSPT? uses
SPCASES to find specid
case. But CONDENSPT
itself contains aso code that
finds special cases. So let's
optimise alittle bit.

The first thing that we do is
"mapping" our mathematical
knowledge to a set of
functions for the HP49G,
trying to give the functions
the roles of modules that can
call other modules or be
called from other modules.
Take alook at the picture on
the right to understand better
how the modules will be
organised. Start a the
bottom and work your way
to the top.

The first problem that we
have, is that CONDENSPT
as displayed on pages 1-19
to 1-21, contains itself the
code of SPCASES. This is

of course not very efficient and wastes memory. If we replace the code
with a call to SPCASES then we will save RAM. But if we do that,
then the code of SPCASES will run three times when we let
CONDENSPT run. Thisis because CONDENSPT should also contain
HASCNDSPT? Returns al if aset has condensation pointsor a 0 if it acal to HASCNDSPT?which in turn containsacall to BOUNDS and

doesn't without actually calculating the condensation @ call to ISINF? and these two programs call SPCASES themselves.
So let's go to the first floor, there where ISINF? and BOUNDS live,
and take alook around. Up to thefirst floor we have no problems. But

CONDENSPT lives on the top floor,
because it needs to know if the set
has condensation points, which is
what Suzan Vega, err, | mean of
course HASCNDSPT? tells. The
problem of CONDENSPT is also

explained in the text.

BOUNDS is one floor higher
because it uses the results of
SPCASES as it needs to know if
the original set "splits" to many
different sub-sets (the special
cases).

when HASCNDSPT? one floor higher calls ISINF? then ISINF? calls
SPCASES. SPCASES gives a list with all specia cases of the set.

HASCNDSPT? lives on the second floor , like

Suzan Vega, because it needs to know if
ISINF? says that the set is infinite and also
needs to know if BOUNDS says that the set
has bounds. Here we have the first problem,

like Suzan Vega. Look at the text for further

HASCNDSPT?
explanations.
BOUNDS ISINF?

SPCASES

SPCASES is at the basis of the collection of modules

because all the programs above need its results.

ISINF? is one floor higher
because it uses the results
of SPCASES as it needs to
know if the original set
"splits” to many different
sub-sets (the special
cases).
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Then HASCNDSPT? calls BOUNDS which aso calls SPCASES and
so the same code runs again. We can see that this second run of
BOUNDS is not necessary when the programs are called from
HASCNDSPT?. But the programs BOUNDS and ISINF? should
work also as stand alone programs, which means that each of them
must call SPCASES then. We are in adilemma, it seems. Should both
programs BOUNDS and I SINF? contain acall to SPCASES or not? If
we only could tell for example BOUNDS "call SPCASES only when
you are called by HASCNDSPT? but otherwise not.” Well, how about
passing some variable value from HASCNDSPT? to BOUNDS and
letting BOUNDS determine if it should call SPCASES by checking
what thisvalue is? That's a possible method. Let's do that.

First of al, we don't need to modify SPCASES at all, it stays the way
itison pages 1-9 to 1-10.

Then we have ISINF? which should return only a 1 oraQ ifitis
directly executed by the user, but in caseit iscalled by Suzan Vega (or
by HASCNDSPT?) it should aso return the special cases found by
SPCASES, because they are needed by Suzan (or by HASCNDSPT?)
on the second floor. At this point we make a small excursion to the
mysterious local variables which are very very etherious beings,
existing like ghosts only when their procedures are running and
disappearing otherwise. Y ou know of course that the special syntax

->ab
<<
ab +
>>

createstwo local variables a, and b that exist only in the bold part of
the program lines above. Outside this region no local variables a and
b exist. Thelocd variables are also distinct from any global variable a
and b that might exist in the current path. That means that even if you
have a an b asglobasin the current path, evaluating a and b in the
bold part of the program will give you the local and not the global
variables. Another thing to be aware of when working with such
ghosts is that if some program that defines local variable calls some

other program while the
local variables exist, and
if the caled program
contains the same names,
then the variables in the
called program are not the
same like the variables in
the caller. That means that
where the locals exist is
defined when the
program that contains
them is compiled, or in
other words when you press [ENTER] after having typed the program.
The program PROG?2 in the picture above, was ENTERed and thus
compiled at some other time than the program containing the locals a
and b and so the variables a and b in PROG2 are different entities
than those in the other program. (Many different ghosts here, its like
being in Great Britain ;-)) This makes us a bit sorrow because we
would liketo definealocal variablein HASCNDSPT ? that can be used
in ISINF? or in BOUNDS. But to our biggest possible happiness,
there are local
variables that do
exactly this, they
exis adso in *
programs that are

compiled to some
other time than the

These a and b are not
thoseaand b

N

ab+
>>

<< ->ab
<<
ab +
PROG2———»
>>
>>

These <-a and <-b are the same like
those <-a and <-b

N

<< -> <-a <-b

compiletime of the << ca<b 4

program that - -

defined the local PROZ — | <-a<-b+
variables.  This >> >>

kind of loca =~

variable is called
"compiled local variable".

A compiled local variableisalocal variable whose name beginswith a
<- (arrow left, character 142), like for example the variables - a,
= b or = Trabakoulas. These variables exist only while programs
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run and to no other times. But they exist for all programs They exist

everywhere and yet appear in no menu, that is they are in the twilight HASCNDSPT? from the second floor, (Suzan)

zone! starts ISINF?, then <-Trabakoulas has been
. defined and so ISINF? keeps the specials
Now, we know what we should do, in order to let the programs HASCNDSPT?l returned from SPCASES.
ISINF? and BOUNDS run one way if the user presses their menu key,
and another way if they are called from HASCNDSPT? Take alook at \ < - -
. ] -Trabakoulas is defined here

the code of the new ISINF?. Notice the difference at the end of the
program \ and used here |t the user started ISINF?
<< then <-Trabakoulas doesn't

PUSH exist. So ISINF? only

" Checki ng exi stence ISINF? returns if the set is infinite or
of special cases" 1 DI SP not and drops the specials.

SPCASES But if Suzan from the

" Checki ng exi stence second floor started ISINF?

then she already had an

of index and domai n of Lo
affair with <-Trabakoulas. ;-)

I ndex In SPCASES

1 DISP DUP 1
<<
LCD-> { # Oh # 15h}
Pl CK3 0 - >GROB REPL
->LCD OBJ-> DROP SWAP
-105 SF EVAL LNAME

SPCASES returns the specials in any case

-105 CF NP
| F <- Tr abakoul as @hat means that the user
DUP TYPE 5 1 THEN @tarted the programand so nip
THEN NI P @ he special cases.
OBJ- > HEAD ELSE @l se
->LI ST DROP @r op poor <-Trabakoul as
END END POP
OVER HEAD PGS >>
SWAP OBJ-> 4 ROLL
DROP2 SWAP - ¥ SAME The picture above shows the situation. The same technique we use in
AND BOUNDS. If = Trabakoulas exists, then we don't call SPCASES.
>> DOSUBS 0 + But if not, then we do call BOUNDS. The code of BOUNDS is now:
<< OR >> STREAM
| FERR @f <-Trabakoul as doesn't exi st

1-30



Sequences, series and limits with the HP49G - Part

<< ? DUP 2 ->LIST 0.
PUSH END
| FERR @f <-Trabakoul as doesn't exist then END DROP OBJ- >
<-Trabakoul as @he user started BOUNDS. That neans << 2 ->LIST >> DOLI ST
THEN @al | SPCASES "Filtering out +,-,]|v,|""
SPCASES 1 DSP1
ELSE @ut if he does exist then <<
DROP2 @lrop two objects I F
END NSUB 2 MOD NOT
{} {} -> setcases extrm st flagl st THEN
<< DROP
1 setcases SIZE END
FOR | >> DOSUBS
set cases | "Adding low' 1 DISP o PICK3 RCLVX |0 =
GET OBJ-> DROP OBJ-> [im2 ->LIST 1 ->LIST +
DROP EVAL SWAP EVAL "Adding high" 1 DISP hi ROT RCLVX hi =1lim
SWAP -> set var |o hi 2 ->LIST 1 ->LIST +
<< "Transform ng non-
"Buil ding var. table of integer to integer " var + 1 DISP 1
<<
" I F
1 DISP LCD-> { # Oh # 7h } DUP HEAD DUPDUP TYPE 9 == SWAP
set 0 ->GROB ABS ¥ ' AND
REPL ->LCD set var THEN
RCLVX = SUBST NI P ->NUM DUP FLOOR R->I
| FERR DUP var SWAP = set SWAP SUBST EXPAND 2
TABVAR ->LI ST SWAP CEIL R->|
THEN DUP var SWAP = set
CASE SWAP SUBST EXPAND 2 ->LI ST
ERRN # DE65h == ELSE
THEN DROP
lo hi 2 ->LIST OVER DUP 2 END
->LIST 2 ->LIST O >> DOSUBS
END "Filtering out " RCLVX + "<" + var + "mn
ERRN # DE25h == "+ 1DSP1
THEN <<
-105 SF EVAL XQ TABVAR I F
END DUP HEAD lo <

1-31



Sequences, series and limits with the HP49G - Part

- Trabakoulas isused hereto decideif the user or HASCNDSPT?
was the the one that started BOUNDS. If HASCNDSPT? started
BOUNDSthen = Trabakoulas exists and so BOUNDS doesn't call
SPCASES, because SPCASES has already been called by ISINF?
before. Note also that the code of the previousy made program
BOUNDSI is now included in BOUNDS and BOUNDSI is not

THEN DROP
END
>> DOSUBS
"Filtering out
"+ 1 DSP1
<<
I F

RCLVX + ">" + var + "max

DUP HEAD hi >

THEN
DROP
END
>> DOSUBS 1

<< 2 GET >> DOSUBS

"Searching mn."
<< M N EXPAND >>
STREAM SWAP
"Sear chi ng max."
1 DI SP
<< MAX EXPAND >>
STREAM DUP2
2 ->LI ST UNROT -
ABS
¥ <
>> ' flagl st’
SWAP STO+ 'extrnl st'
SWAP STO+
NEXT
extrm st
<< M N >> STREAM
extrm st
<< MAX >> STREAM 2
->LI ST
flaglst 1 +
<< AND >> STREAM
>> PCP
>>

1 D SP DUP

necessary any more.

The program HASCNDSPT? includes code, that defines the compiled
local variable —= Trabakoulas, so that BOUNDS and ISINF? can
distinguish between the user or HASCNDSPT? as callers:

IHASCNDSPT?I

/ N\

HASCNDSPT? from the second floor, (Suzan)
starts ISINF?, the <-Trabakoulas has been
defined and so ISINF? keeps the specials
returned from SPCASES.

<-Trabakoulas is defined here

If the user started BOUNDS then
<-Trabakoulas doesn't exist. So
BOUNDS calls SPCASES. But if
HASCNDSPT? from the second
floor started BOUNDS, then
<-Trabakoulas exists, which
means that BOUNDS has already
done its work when it was called
by ISINF? and so it isn't called
once again.

¥

\ and used here

If the user started ISINF?
then <-Trabakoulas doesn't

BOUNDS I I

ISINF?

exist. So ISINF? only
returns if the set is infinite or

N/

not and drops the specials.
But if Suzan from the
second floor started ISINF?
then she already had an

SPCASES

affair with <-Trabakoulas. ;-)

SPCASES returns the specials in any case
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<< put on the stack. Why? Because when the program is started by the
PUSH 1 -> set <-Trabakoul as user it should only return al (yes) or 0 (no) as answer to the question
<< if there are condensation points. But when CONDENSPT calls the
| F program then HASCNDSPT? returns the special cases which are used
set I SINF? @SINF? sees now <-Trabakoul as defined further from CONDENSPT. On the next page we have the code of
THEN CONDENSPT:
| FERR
<-Suzan @f <-Suzan doesn't exist, then the
THEN @he user has started the program so
DUP @make copy of stack level 1
ELSE @l se
DROP  @irop poor
DUPDUP @- Suzan CONDENSPT defines <-Suzan for
END HASCNDSPT?. CONDENSPT
| F
BOUNDS @OUNDS sees <-Suzan is defined here

Nl P @x- Tr abakoul as

THEN @efi ned and used here

1. HASCNDSPT? from the second floor, (Suzan)
ELSE starts ISINF?, the <-Trabakoulas has been
? defined and so ISINF? keeps the specials
END v returned from SPCASES. The program also
ELSE uses <-Suzan to determine if it was started by
DROP 0. I HASCNDS pT?I the user or by CONDESPT in order to put the
END appropriate arguments on the stack
>> POP / \ <-Trabakoulas is defined here
>>
If the user started BOUNDS then / \ and used here ¢ e yser started ISINF?
As you can see HASCNDSPT? < Trabakoulas doesn't exist. So then <-Trabakoulas doesn't
cals - Trabakoulas into BOUNDS calls SPCASES. But if exist. So ISINF? only
existence and so when the HASCNDSPT? from the second BOUNDS ISINF? returns if the set is infinite or
program cals ISINF? and floor started BOUNDS, then not and drops the specials.
BOUNDS these called programs <-TrabarI:ouIas exists,r:/vhicrﬂ . \ / But if ililzan from tge
; ; means that BOUNDS has already second floor started ISINF?
will act accordi ngly' done its work when it was called then she already had an
by ISINF? and so it isn't called affair with <-Trabakoulas. ;-)
HASC_:NDSPT? uses a new local once again. SPCASES
compiled variable = Suzan, to
determine what arguments will be SPCASES returns the specials in any case
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<< PUSH 1 -> <-Suzan
<<

DUP HASCNDSPT? DUP 1.

THEN
1.
ELSE
0.
END
THEN
SWAP OBJ-> DROP NIP
OBJ-> DROP NI P EVAL
RCLVX -> var high xvar
<< 1
<< HEAD >> DOSUBS
var high EVAL =
"Finding limts for

OVER + "

+ 1 DISP |Iimxvar
STOVX " Sear chi ng
duplicates" 1 DI SP
I F
DUP TYPE 5 ?
THEN
1 ->LIST
END
I F
DUP SIZE 1 >
THEN
{1}
-> | st
<< 1
<<
I F
EXPAND | st

OVER POS NOT

THEN
"I st' OVER STO+
END
DROP | st
>>
END
>>
ELSE
CONDENSPT defines <-Suzan for CONDENSPT
HASCNDSPT?. <-Suzan is defined here
and used here
HASCNDSPT? from the second floor, (Suzan)
starts ISINF?, the <-Trabakoulas has been v
defined and so ISINF? keeps the specials
returned from SPCASES. The program also
uses <-Suzan to determine if it was started by I HASCNDS I:)T?I

the user or by CONDESPT in order to put the
appropriate arguments on the stack

/ N\

<-Trabakoulas is defined here

If the user started BOUNDS then
<-Trabakoulas doesn't exist. So

4

BOUNDS calls SPCASES. But if
HASCNDSPT? from the second

BOUNDS I I

\ and used here

If the user started ISINF?
then <-Trabakoulas doesn't

floor started BOUNDS, then
<-Trabakoulas exists, which
means that BOUNDS has already
done its work when it was called
by ISINF? and so it isn't called
once again.

ISINF?

exist. So ISINF? only
returns if the set is infinite or

N

SPCASES

not and drops the specials.
But if Suzan from the
second floor started ISINF?
then she already had an
affair with <-Trabakoulas. ;-)

SPCASES returns the specials in any case
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DROP { } 1] .. -1,2*n-3 U u
END ittt {n 1 ¥}}§ |
>> POP i n :
” bojr 203 o ¥}g :
Now the complete situation of Trabakoulasflirting Suzan lookslikein j 2 4n i
the picture on the bottom of the right column on the previous page. i b o 2°Nn-3 u |
Quiteideal stuff for amathematical soap opera;-) T {n 3 ¥}E§ i
i ,
We make another program that answers the question if a point set 1 " -1,2"n-3 N4y U ?/
converges with a 1 (yes) or 0 (no). The mathematics behind this i % 2 4*n { }% |
program say that if such a set has one and only one condensation . . i
point, then it converges and its condensation point isits limit. T 11 1 -1,2*n-3 {n 5 ¥} Uy
o i | > an %.I.
| F T o |
CONDENSPT S| ZE 1 == i e 2203 {n 6 ¥y
THEN t | 4*n b b
1.
ELSE 2*n* P
0. These are the special casesto which the factor (- 1)"* COS . ————
END e 3 @
>> splits the set. (They are all given twice. Perhaps add code to filter out
unnecessary copies?)

Store it in CONVERGES? Ready for a test. Examine the point set

3 *n*pa 2%n- ISINF?  returns 1 for yes. Indeed if you plot
i(-])“*COSaéZ n*pg,2*n-3
|

&*n*py,2*n-3

n 1 ¥ v with all programs.
b

€ 3 @ 4*n (-1)"* COS. for n=1,2,3,... you see that the set
€ 3 ©@ 4*n
s o . 1 1 1 1
SPCASES returns: has an infinite number of points that approach Sor-sorzor-

as n goes higher and higher. The picture on the top of the left column
on the next page demonstrates this.
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Of course the programs are way not perfect. It will crash in some

cases, or even return wrong results in other cases. But | hope you
0.6°7 condensation point 1/2  had a good overview over some of the capabilities of the HP49G
which are good when it comes to creating new things.

0,5
0.471 . This was a very very difficult birth but now that we're through |
0.3+ condensation point 1/4  think it was worth it. Next time we will continue with sequences

FE— rE— . and we'll see how our programs can help and what the HP49G
0.2 | .« ° offers for working with them. And of course we will see where the

affair of Suzan and Trabakoulas ends ;-)

0,11 . :
All points contained between the bounds -1/2 and 1/2
0 . Infinite unbounded yet condensed greetings,
-0,1 1|, Nick.
-0,2 1 ) e . . . ..
-0.3 71 condensation point -1/4
0,41 .
0,5 \J —
06 condensation point -1/2
"o 4 8 12 16 20 24

So1 1 _
BOUNDS returnsi E E\B and a1 because the set is bounded.
HASCNDSPT?returnsal (yes).

CONDENSPT returns %l % Elg,thefour condensation

points of the set.

And findly CONVERGES returns 0. becausethe set has 4
condensation points.
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Hi again and may the (con)sequences of your decision to buy the
HP49G always lead your way.

In the second part of SESELIMA (SEquences, SEries and LImits
MArathon, sounds quite swiss, amost Sesseli Matt, what Thomas?)
we will extend the romance story of Trabakoulas and Suzan of the
second floor to sequences. And see what the (con)sequences of the
romance were. (Nick, you are repeating yourself! ;-))

What has been said and done until now about point sets are reasonably
extendable for sets of numbers and number sequences. We only need
to switch from the points to the coordinates. Any number sequence is
then also a set of numbers. But from any given number set we can
build up many different sequences, for example through choosing a
special sequence in which the numbers will be ordered. The resulting
ordering of numbersis then characterised by a number symbol, which
is often an index.

We can then repeat the same sayings of part 1 of this marathon for
number sequences.

1) A finite sequence has a finite number of elements (numbers),
an infinite has an infinite numbers.

2) A sequence is bounded, if an upper bound K and alower
bound k exist such that for each number a of this sequence
kf£afK.

A positive number K can then be given such that for the
absolute values Ja| of the numbers of the sequence: ja] £K .

3) If we denote the whole sequence with (an) and a particular

member of the sequence a,, (with theindex n for n" eement)
then we can formulate the definition of a condensation point as
follows: A number A isacondensation point of the sequence

(a,) if for an arbitrary positive number e theinequality holds:

la, - Al £ e for an infinite number of indices n of the
sequence.

n+3
"% has the two
n

2*

For example, the sequence a,=(-1)
condensation points| ¢= 51 and| =- 51 because in an arbitrary close

neighbourhood of 51 and of - % we can fineinfinite numbers a,, of

the sequence.

A second example: The sequence given by:

142, 243, 342, 1+, 243, 3+2, 143,
2 2 2 3 3 3 4
2+}, 3+1‘l...

4 4

has the three condensation points 1, 2 and 3. Therulefor building up

the sequence is a, =n- 3* FLOOR?' 12+ 1

2 + FLOORZ 10
€ 30

with n=12,3,4,---. Thefunction FLOOR isin the third page of the
menu MATH/REAL. It takes areal number or integer from the stack
and returns the biggest integer that is less than or equal to the
argument. Thisis one of the functions that are not very logical in their
behaviour. If the result of some operation is an integer, then one would
also expect the result to by of type integer, that is 28. But no, the result
isan integer with type O (real number) that is with decimal point. And
to make things even funnier, if you give FLOOR an integer number
then suddenly the result is of type integer. Sometimes one way,
sometimes the other way around. So that you aways have to think
about many things that can go wrong when you program and to waste
time on things that wouldn't be necessary if care had been taken when
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the HP49G was designed right from the start. But let's move on.

4) Any infinite and bounded sequence has at least one
condensation point. (That was Bolzano and Welerstral)
5) A sequence (a,) converges against thelimit a, when almost

all numbers of the sequence are in an arbitrary close e-
neighbourhood of the limit. That means. Y ou can choose e to
be as small (but positive) as you like. Then an index N that
depends on your choice of e can always be given, such that all
sequence members a,, withindex n> N are between a - e
and a+e.

This means the same as that the sequence (a,) has one and

only one condensation point, which then is the limit of the
sequence.

We denote thiswith Ig@n; a, =a.
n

The difference to the condensation points is that beginning
with some index n not only infinite numbers a,, but all
numbers a,, must bein the arbitrary close e-neighbourhood of
a. (Rcobo thiswas for you ;-))

The opposite is also valid: One sequence with exactly one
condensation point converges always.

The programs that we have up to now, work also with sequences
because we have on the HP49G no distinction whatsoever between
sets and sequences. Actually it would be better to keep the notation

{generaIMember {indexVar low high}} for sequences, as sets
can be much much more general. But the sequences are also more
general than the above notation implies. So perhaps we should take a
closer look at the construction plans of sequences. First of all, any
sequentially ordered set of numbers is a number sequence. For

example the set a,=7, a, =3, a,=13 isafinite number

sequence. The set of even numbers a, =2, a, =4, a;=4,---is
one infinite number sequence, that is each member hasits next.

A sequence (a, ) isgiven, if each natural number 1,2,3, -+~ can be

mapped to exactly one number a,,, which isthen called the nth member
of the sequence.

The recipe for building up the members is often analytic. For example

the sequence a, = % describes al members with an analytic formula

Such sequences are covered good by our notation. The above sequence

forexamplewouldbedenotedasi% {n 1 ¥}Eué

But there are also non analytic sequences. Let's first take a sequence
that is non-analytic in the sense of the HP49G CAS. The sequence
from the last page a, = n- 3*FLOOR§B- 1g+ 1 ——

32 24 FLOORZ =0

is such an example. The HP49G doesn't know the derivative of
FLOOR and so this sequenceis non analytic for it. We can denote this
sequence as

I u

i 1 L i
in- 3*FLOOR =0+ 5 (01 ¥y bu

i 32 y+FLoOR®E - ;

| e 39

how would our programs react when they see the function FLOOR?
Will they find on which floor Suzan lives? ;-) Let's try. Enter that
monster and store it in some cave like 'NONAN' to have it handy
whenever blood thirsty programs appear. ;-) Now try SPCASES. We
won, 1-0 for us. SPCASES did its work OK and returned the only
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special case, that isthe sequenceitself, in alist:

B (i
Il »
((n- 3*FLOORT®_10, !
&3 o
4

|

11
m T "L
bb

Try ISINF?. After some seconds in suspense the result is 1. Oh yes,
the sequence isinfinite and the score 2-0 for us.

2+FLOOR .—
€ 39

Now we go on with BOUNDS. And here the program crashes!. But it
crashes because Nick has forgotten something, so we can blame it on
him. All together now: "Think again, Nick!" Fortunately the correction
isn't hard to do. Just add the bold code in BOUNDS.

| FERR
TABVAR
THEN
CASE
ERRN # DE65h
THEN
lo hi 2
->LI ST 2
END
ERRN # DE25h
THEN
-105 SF EVAL XQ TABVAR
END
lo hi 2 ->LIST
? DUP 2 ->LIST
2 ->LI ST 0.
END

->L|I ST OVER DUP 2
->LIST O

Now we can try again. This time it is the function lim that errors out
with "Bad Argument Type". It can't deal with FLOOR. What are we

going to do? Wéll, let's try SERIES, which is more powerful in
finding limits. Bring the sequence on the stack and use HEAD to get
the head of the monster. Enter n, then RCLV X, press [=] and then

SUBST to get X - 3*FLOOR§(?'J 12* L

- (if your
2+FLOOR & 10
e 3 9
VX is X). Why do we change variables here? Press again RCLV X,
enter ¥ and then press[=] toget X = +¥ (again, if your VX is X) and
then enter the order of the expansion, for example 1. Now press
[SERIES]. The HP49G needs a couple of seconds and returns a result:

On stack level 1 you have h:%( and on stack level 2 thelist

X 5 -
i Limit: ¥ Equiv:)—'< Expans:0 Remain:;x\g. Hurrah! SERIES
|

found alimit. The rest is not very helpful but since we are interested
only for the limit, we decide to use SERIES in cases where lim fails.
Second correction to BOUNDS:
"Adding low' 1 DISP I o
Pl CK3 RCLVX
lo =
| FERR
lim
THEN
1 SERIES
DROP HEAD
END
2 ->LIST 1 ->LIST +
"Addi ng high" 1 DISP hi ROT RCLVX hi =
| FERR @se SERIES if limerrors out

@se SERIES if limerrors out

lim
THEN

1 SERIES

DROP HEAD EVAL
END
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Try again. This time BOUNDS doesn't crash but returns {? ?} and

?. It says "Dunno", so to speak. This"dunno” isthe result of using
TABVAR, whichit errorsin this case but becauseitisin an error trap,

the HP49G returns the variation table | il gg {+¥ ?}E.The
|

question mark ("dunno") in this table keeps appearing as the result of
any subsequent operation.

But wait a minute! SERIES said that the limit for X® ¥ of the
monster is ¥ . Thisiswrong! The monster has no limit because it has
three condensation points! It's good to have the code that puts the
"dunno” in the variation table, so that the result at the end is aso
"dunno", which is better than "Yes, | know the wrong result"! We use
SERIES here only as an eventual life saver that let's us proceed after
lim crashes the program and/or perhaps a better command to find limits
that lim can't find. Do you see how the sincerity of one and the
robustness of the other give a better combination? It's like real life,
man! ;-) Let's hope that SERIES won't cause any great crashes. And
what about the score? Well, hard to say who winsthistime. Leaveit at
2-0 for us. (Wewin, so we can let the score unchanged ;-))

Now we try HASCNDSPT?. Since the corrections of BOUNDS also
influence the fate of HASCNDSPT?we can be surethat if it crashes, it

crashes for other reasons. And it really does. After severa seconds

you see a"THEN Error: Bad Argument Value' and a ? on stack level
1. Let's correct that. Replace the red code

ELSE @l se @lrop poor <-Suzan
DROP DUPDUP
END
I F
BOUNDS NI P @OUNDS sees <-Trabakoul as defi ned
THEN
1
ELSE

uences, series and limits with the HP49G - Part 2

END
with the new bold code

ELSE @l se @irop poor <-Suzan
DROP DUPDUP
END
BOUNDS NI P
CASE
DUP ? SAME
THEN
END
DUP
THEN
DROP 1.
END
?
END

Now try again. It takes quite a long time but the program returns ?,
also an honest answer. Score remains 2-0?

Last check. What does CONDENSPT with the monster? It needs
several seconds until it crashes when it tries to find the limit of the
monster for n = ¥ . If we use the correction again:

"Finding limts for

" OVER + "
'+ 1 D SP
| FERR

lim
THEN

1 SERI ES DROP HEAD EVAL
END
xvar STOVX

then CONDENSPT returns the unhonest answer {:Limit: ¥} . Would it
be better to use the following correction?
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"Finding limts for

" OVER + "
'+ 1 DI SP
| FERR

lim
THEN

DROP2 2
END
xvar STOVX

| can't say. If we don't use SERIES we perhaps lose some results
which SERIES can calculate but lim can't. On the other hand using
SERIES can give wrong results. What can we do? Perhaps put a
"dunno" and the result of SERIES with its label in alist, so that we
know that SERIES was in work, so perhaps the found condensation
point is OK but perhaps also not? Be it that way. We correct
CONDENSPT:

"Finding limts for

" OVER + "
"'+ 1 DISP
| FERR

[im
THEN

1 SERI ES DROP HEAD ? 2
END
xvar STOVX

->LIST 1 ->LIST

With this correction CONDENSPT returns {{:Limit: ¥ ?}} asif to
say, "hmm, is it correct what | found?'. Now the score is 2-1 (too

much sincerity can cause damage ;-)). But we have at least a more or
lesswell behaved collection of modules.

Sequences can aso be also made recursively. The famous Fibonacci
numbers for example are such a sequence. The recipe for them is
a,=0, a,=1 a,=a,,+a,,. The HP49G allowsto define

functions that calculate members of such recursively defined

sequences. The Fibonacci sequence for example can be defined just
like its definition. Y ou just go to the EQW and type:

FIBO(n) = IFTE(n == 10,IFTE(n == 2,1FIBO(n - 1) +FIBO(n - 2)))

Then you press [ENTER] and [DEF]. The HP49G creates a user
function FIBO that has all it needs to calculate Fibonacci numbers. If
you recal it on the stack it looks like:

<<

->nNn

"I FTE(n==0, 1, | FTE(n==1, FI BQ(n- 1) +FI BO(n- 2)))"
>>

Thiswas one of the most amazing examples given in the manual of the
old HP48SX! A function that callsitself until some break conditionis
true. No loops, no explicitly saving sum results in-between, just a
clear and compact mathematical definition. By the way, this is the
second way of user function definitions. A local variable structure
including only one algebraic object directly after the definitionsof local
variables. Its general structureis:

<<
->varl [var2 [var3 [...]]]
"al gebraic that uses the |ocal variables'
>>

Thistype of user defined function takes 1 or more arguments from the
stack and returns exactly one result. It can be used in other algebraic
objects. For example you could put the function FIBO in another
algebraic object:

FIBO(3)*X? - FIBO(2)* X .
If you write the above in the EQW you can use the soft key for FIBO

from the menu VARS. When you press that key the name FIBO appear
on the EQW adready selected (inverse). You must then press
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[BACKSPACE] (delete backwards) and then start putting the function is that it can't test the type of the argument. IFTE that is
parentheses and the argument of the function. If you EXPAND the allowed in algebraicsis of course abig help, but it can be only used for

above you get X*- X. You can even use FIBO as apart of other
definitions. For example DEFine the user function:

F(X,m) =FIBO(m)* X™

ThenEVALuatingF(U? - 1.4) will return 2* (U2 - 1)°. You can enter

F(X,FIBO(5)) and EVALuateit to get X°. Let's take alook how

EVALuation takes place. If you give the function F two arguments,
the name X and one integer, say 4, then a cascade of evaluations
takes place. You are kept away from al thisinner complications. Y ou
only have your clear mathematical definition and let the HP49G do the
dirty work. In addition to putting such user functions in algebraics,
you can aso use them in RPL just like any other function. For
exampleyou could also enter X, then 4 and then press the soft key of
the function F. The result is the same.

A bit of caution is required sometimes. If you for example enter a
symbolic argument n and then press FIBO you get:

IFTE(n == 10,IFTE(n == 2,1FIBO(n- 1) + FIBO(n - 2)))

n=n

Thisislogically correct. EVALuating again you get:

teststhat are allowed in algebraics. A hypothetical algebraic definition
like for example:

& YPE(n) == 6,APPLY(FIBO,n), 6
FIBO(n) =IFTE® 2 am == 2,1FIBO(n - 1) +&5"
¢ IFTEGn ==10,IFTE¢ Eadry
e e eFIBO(n - 2) 205

is not possible because TYPE isn't alowed in algebraic objects. The
above hypothetical definition brings a couple of questions. First of al,
what is (officialy) allowed in algebraic objects? To answer this, we
must make a small excursion to the types of objects of the HP49G. As
you aready know, the HP49G has a great variety of different objects,
which are characterised by their object type. The objects that are
allowed in algebraics are of type 18. (the old "analytic functions"), of
type 14. (the new CAS-functions), of type 6. (global names) and of
type 7. (local names). Other types are not alowed. TYPE is of type
19. (command) so you can't put in in an algebraic object.

Another question that the above hypothetical definition throwsis, what
is the function APPLY?2. Well, when APPLY/(function,argument)
gets evaluated it just returns the function function to the argument
argument and returns function(argument) holding the evaluation
at this step, even if it could be further carried out. For example, enter

e % ==2,1IFTE(n- 1==10,IFTE(n == 2,1FIBO(n - 1) +FIBO(n- 2)))
IFTEGn == 10,IFTEG
g JFTE(n- 2 ==11IFTE(n == 2,1FIBO(n - 1) +FIBO(n - 2)))

5 F(X) = X* and press DEF. If you
n=n-1 +1 now evaluate F(2), you get of course
=+ 4. But if you evaluate APPLY(F,2)
9] you get F(2) though the evaluation

n=n- 2

You see what happens? The function has no way to determine if the
symbolicargument n has one of the special values 1 or 2 which break

the recurrence. Y ou could evaluate this again and again and you would
get always more complicated results. The disadvantage of such a user

could be further carried out to return 4!

So, let's return to the above "impossible® definition. In fact this
definition can be made on the HP49G, but not the algebraic way. You
have to enter it asfollows:
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<<

-> n
<<
CASE

{ 6. 7. 9.} @f the argunent is a local or
n TYPE PGS @l obal nane or al gebraic

THEN @
"APPLY(FI BO n) @ust apply FIBO
EVAL @n n and return FIBQ(n)

END
nil-== @f nis equal to 1

THEN
0 @eturn O

END
n 2 == @f nis equal to 2

THEN
1 @eturn 1

END @f nothing of the above is
n 1 FI BO @rue, then calculate
n 2 FI BO @1 BQ n- 1) +FI BQ( n- 2)
+

END

Store thisin FIBO. It is also a user function, but one with a program
as definition. If you evaluate now FIBO(5) + FIBO(4), then you get

5. But evaluating FIBO(5) + FIBO(X - 2) returns FIBO(X - 2) +3.

Evaluating thelast result simply re-returns FIBO(X - 2) + 3. So we're

just out of the endless repeating evaluation. For Mathematica users:
Does this somehow reminds you of Hold[]?;-)

Now, the question is, how do we use APPLY when we want it in
RPL? Here we must be careful alittle bit. Though almost all functions
if used in RPL syntax expect their arguments to be on the stack in the
same sequence like in algebraic syntax, APPLY behaves differently. It
expects the function to be applied on stack level 1, and arguments of

that function as a list on Most functions behave like this:
stack level 2.

And another question is,| Algebraic syntax RPL syntax
how do we use APPLY

when some function has

to be applied on more

than one arguments? | > ii arg;
Perhaps the answer is ——> L arg
clear for RPL syntax. We| F(arglarg2) F
just put a list of all

arguments on stack
level 2. For example
enter {X Y} thenF
and use APPLY to
get  F(X,Y).But

what do we do when
we want algebraic
syntax? We can't put 2
a list in an algebraic
object. The answer is
a bit frustrating.
From the command
line we enter the arguments after the function, separated with commas.
The command line contains then for example 'APPLY(F,X,Y) . When
you press [ENTER] to send this to the stack, then
'InvalidExpression appears on stack level 1. Captain Jean-Yves!

You said to me in the group that such "illegal” expressions should
not be made using ->ALG, and we should only use the "officially
supported” syntax. But, as you can see, the "officially supported"
syntax creates itself "illegal" objects! You can't expect from the
users to know when a simple "officially supported® command line
will create an 'InvalidExpressioni. It is not that | say that this

should error out with "Invalid Syntax”, not at all. The contradiction
and inconsistency of your argumentation is what | find frustrating.
Anyway, for usit is abless to know that the 'InvalidExpression can
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be evaluated. Press [EVAL] to get F(X,Y ). And to make things even
more frustrating. Up to today | just have not found any possible
method to get an algebraic object that contains APPLY () in the EQW.
Can somebody find a method?

The above recursive definition of the Fibonacci sequence has the
advantage of clarity but it also has a disadvantage. It is very slow.
Each time FIBO is evaluated with some argument n, it calculates all
members of the Fibonacci sequence form n down to 0. This doesn't
have to be. Consider for example:

<< ->n
<<
CASE

{ 6. 7. 9.} @f the argunent is a local or
n TYPE PCS @ obal name or al gebraic

THEN @
"APPLY(FI BO, n) @ust apply FIBO
EVAL @n n and return FIBQ(n)

END
nil-== @f nis equal to 1

THEN
0 @eturn O

END
n 2 == @f nis equal to 2

THEN
1 @eturn 1

END @f nothing of the above is
013n @rue, calculate FIBO
START

DUP ROT +
NEXT
NI P
END

>>
>>

This FIBO works much much faster than the other one. But the clarity
of the definition is gone!

Now that we have a faster FIBO let's calculate some Fibonacci
numbers, say the first 20. We don't have write another program and
put FIBO in a loop, because we have the command SEQ. From the
EQW enter FIBO(n). Then enter n, 1, 20, 1 and press SEQ. (The
command is in the second page of the menu PRG/LIST/PROC.) In
about 11.5 seconds you have alist of the first 29 Fibonacci numbers.
SEQ expects an
algebraic object or
program on stack
level 5, a name on
stack level 4, a
start and an end
value on levels 3
and 2 and the step
on stack level 1. It
gives the variable
of stack level 4 different values starting at start and ending at end,
stepping with the step value each time. It evaluates the algebraic or
program of stack level 5 using the values of the variable on stack level
4. The results are then wrapped in a list. The above example is
equivaent to:

| Evaluate this|

alg. or prg.A/|for all values of this|

named— — _
start «———starting at thig

end *—( and ending at this|
SteP<4—_ I steps of thig

5:
4:
3:
2
1

<<
120
FOR |
I FIBO
1
STEP
20 ->LI ST
>>

SEQ can of course also be used to get sequences of algebraic objects.
For example entering CYCLOTOMIC(n), n, 2, 10, 2 and pressing
SEQ will fiveyou alist with the first 5 even cyclotomic polynomials.
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There are also sequences, for which we still don't have any recipe, be place holder, a dummy, to just count from 1 to the number of primes
it analytic, by recurrence or whatsoever, to calculate their members. that we want. The same program also duplicates the last found prime

For example the sequence 3,1,4,15,9,2,6,5,--- isknown asthe

sequence of the digits of the decimal representation of p . Nobody can
give an analytic recipe to calculate these digits. (But we do have
algorithmic methods to do that.) Such a sequence is also the sequence
of the prime numbers. Thanksto the flexibility of the HP49G it isalso

number so that the next evaluation of NEXTPRIME finds its argument
on the stack. The 0 at the beginning of the program is for giving the
very first evaluation of NEXTPRIME something to work with.
(NEXTPRIME takes a number from the stack and returns the next
prime greater than the given number.) We could aso have written:

possible to get such non-analytic sequences. For example the program:

<<

->n | F
<< n o0 ==
0 THEN
On 0
START END
NEXTPRI VE NEXTPRI VE DUP
DUP >>
NEXT no
DROP n ->LIST 4 ROLL 1 -
>> 1 SEQ

REVLI ST TAI L REVLI ST
+
>>

>>

will take a number n from the stack and give you thefirst n prime
numbers in a list. But can you think about how we can do that using . o
SEQ? Take alook at the following program: Inthiscase it isthe program used by SEQ that puts the O on the stack,
when SEQ runsthe first pass.
<<

0 We see: Though the HP49G has many many quirks, when it comes to

<< NEXTPRI ME DUP >> flexibility thereis no other calc on this earth that comes even closeto it.

n 1 The lonesome king of flexibility is the HP49G. This is the most
5 ROLL important thing for a calculator with a CAS. To be flexible enough so
1 SEQ that we, the users, can formulate our problems. In other words, how

REVLI ST TAIL REVLI ST should we describe the word "red" to somebody who has no idea what
+ acolour is? ("Somebody" could stand for Tl thistime ;-))
>>
As you can see we have more than enough power in our hands, to
The program << NEXTPRIME DUP >> used by SEQ has no create finite parts of non analytic sequences. But thisis only a part of
appearance of the variable n in it. This variable isin this case only a the story. The non analytic sequences can't be handled at all by our

2-9



Sequences, series and limits with the HP49G - Part 2

programs. Of course we could denote a the Fibonacci sequence as
or as

{FIBO(n) =IFTE(n £ 2,n- 1LFIBO(n- ) +FIBO(n- 2)) {n 1 ¥}}

{FIBO(n) =IFTE(n ==10JFTE(n ==2,1FIBO(n- ) +FIBO(-2))) {n 1 ¥}}

3) = A(2) +1=2+1=3
4) = A(3) +1=3+1=4

but what's the use of it? Our programs can't do much with it. They can
only work with analytic sequences. There could be two principal ways
to handle also such non analytic sequences. One would be a module
that can find an analytic expression out of the recurrence by recursively
solving for the general member form a,, and working with the
anaytic form instead. The other would be some algorithm that can
work directly with the recurrence and for example find if the sequence
isinfinite, has bounds and so on.

Perhaps you don't believe me now, but it is possible in principle to
convert recurrencesto analytic closed forms. | for myself am still quite
astonished about it. But this doesn't change anything to proven facts.
The question is where to begin when explaining such astonishing
things. Hmmm, | see Trabakoulas smiling with his well known smile
that he aways put on, when something is so tricky. He says, "My
son, start at the beginning!”. And so | do.

Y ou perhaps have the impression that all maths about sequences are
just counting alittle bit, adding a little bit, making sums and the like.
But as always, when we search better, we find more things, beautiful
things, extraordinary mysterious things.

Let's take the simple sequence A(n) = A(n - 1) +1, with A(0) =0 and
n=0,12,3,---, which isdefined by recurrence. It says that you start
at the first member, whichis A(0) = 0. Then, to find A(1) you simply
add 1 tothe previous member. So you have

A(1) =A(0)+1=0+1=1. And soit goeson.

Did you aready notice that the members are the positive integers
themselves? What does this mean? |s the whole set of the natural
numbers a recursively defined sequence? One could interpret this fact
exactly this way. Or even say that the recipe for constructing these
numbersisto just start at 0, adding 1 to the just passed number every
time.

Did you aso notice something else? Instead of the definition
A(n) =A(n- 1) +1, with A(0) =0 and n=0,1,2,3,---, we can simply
write A(n) =n with n=0,12,3,---. Thisis an analytic closed form.
It has a tremendous advantage, that existsin any analytic closed form.
When you have such aform, you are able to know anything that there
is to know about something. (That's why these forms are Nick's
favourites. ;-))

What we actually did with this sequence, is that we mapped positive
integers onto themselves. So the two definitions A(n) = A(n- 1) +1,

with A(0)=0and | gqexn

n=0,12,3,--- on 1 2 3

one hand, and | I I I >
A(n) =n with

n=0,12,3,-- onthe* * * *

other, are equivalent. : : : : -
They both construct 0 1 5 3

the positive integers Member A{n)
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out of the positive integers. Big deal, you may say, but wait 'cause
you ain't seen nothing yet!

Before we go further, a small visit from the future. The differential
equations marathon hasn't taken place yet, but for those already
familiar with differential equations, did you notice how the definition

A(n) = A(n- 1)+1, with A(0)=0 and n=0,12,3,---, resembles a
diffeq? No? Thenlook: A(n)=A(n-12)+1 U A(n)- A(n- 1) =1.
The left hand side of the equation is now the discrete analogon of athe

dA(n)

differential quotient - Instead of an infinite small changein

A(n) you have afinite change, adifference. The equation
A(n)- A(n- 1) =1 isthe discrete version of dg_f]n) =1. Thelaterisa

differential equation whose solution is A(n) =n+C, and C isthe

integration constant, which varies from case to case according to some
initial or boundary conditions. The similarities are even more. If we

interpret the second part of the recurrence A(0) = 0 asaninitia or
boundary condition, then we can find the particular solution of the
differential equation: A(0)=0 b 0+C=0 b C=0.Andso:
A(n)=n+Cq
C=0

exactly like the closed analytic form of the recurrence. Of course both
things aren't exactly the same. For example A(n) and n are

continuous in the case of the differential equation, but discrete in the
case of the sequence. On the one side we have a function and its
variable, on the other side we have a sequence and its index.

P A(nN)=n+0 P A(n)=n,whichlooks

Let's get back to the present. We make another easy example,
B(m) =B(m- 1) +2, with B(0) =0 and m = 0,12,3,---. Its analytic
closed form is B(m) = 2* m with m = 0,12,3,---. You see again the
advantage of the analytic closed form? Y ou don't really have to carry
the additions. For example if some teacher (who wants to punish you)

tells you that you must find B(1234567890123456789], then you
could of course sit a couple of years at your desk and carry out
12345678901234567890 additions. Or you could buy an HP49G and
let the program run:

<<
0 SWAP 1 SWAP
START
2 +
END
>>

It takes any number n from the stack and returnsthe " member of
the sequence, so also the 12345678901234567890th member. This is
SCATA. What, you don't know what SCATA is? That is Super
CalculatorsAgainst Teacher's Authority." ;-) But then you would just
cause a psychic problem of the HP49G. And in the year 2010 you will
say, "Poor little HP49G calculates since a decade! ™

Even better it would be to program:

<<
2 *
>>

which does exactly the same as above in a time which will give the
punishing teacher a heart attack. This is MATH. Oh no, no not
mathematics, but M athematics Against Teacher's Hedth’ ;-)

It is also interesting to see what this sequence does, what it maps the
positive integers onto. Turn page to take alook at the construction of
the even numbers.

! Just ask a Greek it means in greek language ;-)
% Interesting to know that the word mathematics in greek language, gave its root
"math" to the verb mathaino, "To learn".
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Index n

For the last example split 2*D(k- 1) to
D(k- 1) +D(k - 1) and then find the difference

—4N
-0

~— .

D(k)- D(k - 1).)

| know what you think now. What is with more

0

|

|
+ ]

| 1

0 1 2 3 4 5

Member A(n)

complex recurrences? For example, let's suppose

you know that P(j) = P(j- 1)- :_3*1'2 - ;r’*j+_1,

8 6 3

Applying the recipe B(m)=B(m- 1)+2, with B(0) =0 and

m =0,12,3,---, or equivaently torturing our teacher with

B(m) = 2* m with m = 0,12,3, -+, isthe same like making the even
numbers.

Now, can you say what the recipe for the odd numbersis? Right, it is
c() =c(I- 1) +2, but now with C(0) =1 and m =0,12,3,---, orin
its analytic closed form C() = 2*1+1 with m = 0,12,3,---. Perhaps
unexpected but after some thought understandable. The recurrence
recipe for constructing the odd numbers is the same like the recipe for
constructing the even numbers. Only theinitial condition changes, that
iswe start at O for even numbers but at 1 for odd numbers. Later we
do the same for both. Just add 2 and go on until infinity. (or until the
teacher surrenders ;-))

Next example: D(k) = 2* D(k - 1), with D(0) =1and k = 0,12,3,---.
This sequence just creates our beloved numbers 1, 2, 4, 8, 16, 32, 64,
128,... and so on. It's analytic closed form is D(k) = 2" with

k =0,12,3,---. ( Computer basics come from mathematics? It seems
to be thisway! )

A note for the eager inpatient people who can't wait until the
differential equations marathon: Try to find the corresponding
differential equations for the above examples. Try to solve them using
the given initial conditions. Do you find any interesting things? (Hint:

with P(0) =0 and j=0,12,3,---. What are then
the numbers P(j) ? What does P(1000) look like? Did the teacher win
after dl? Are welost?

But here cometh the HP49G our hero and life saver, the intellectual
child of the Professor and the Captain, the one and only. (Butter them
up, so that they have grace and give us the HPS000GX in future :-)).
One of its not so widely know functions is the rarely used SIGMA.
What this function does, will amaze you now! It takes a difference,
like for example the above A(n)- A(n- 1) (which was 1) and the a
variable (theindex) and returnsthe general analytic closed form of the
sequence. Don't believe it? Then enter a 1, then 'n’, and then press
SIGMA. (It is on the second page of menu CALC/DERIV). What do
you see? Yes, n theanalytic closed formof A(n)- A(n- 1) =1.
Second example was B(m) - B(m- 1) =2. Soenter 2, 'm' and press
SIGMA again. Result is 2* m, the analytic closed form of the even
numbers. Now | hear the rebellion boiling. "For the odd numbers we
have also C() - C(I- 1) = 2, but entering 2, then | and pressing
SIGMA gives us 2* |, the even numbers!" Y es, yes, my rebels, but
don't forget the boundaries. You remember of course the integration
variable which varies from case to case according to the
initial/boundary condition? The point is that SIGMA returns the
solution without consideration of boundaries. (How could it, when we
don't give it any?) So when you get a solution from SIGMA, you just
add a constant, say C to it. For example, add C to the solution 2* [.
Now you have 2* |+ C. Press DUP to make a copy on stack level 2.
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Now, we know that the initial condition, the start so to speak, is at
C(0) = 1. That means, when theindex | is 0, then C() is 1. So, enter
| =0 and press SUBST. Now you have 2* 0 + C. Thisisthe member
C(0), which is equal to 1 according to our initial condition. Enter a1
and press [=] to make the equation 2* 0+ C =1. Enter C and press
SOLVE to get C =1. Now, SUBSTitute this in the equation on stack
level 2. You have now 2* I+ 1, the odd numbers, which come out

when the recurrence C() = C(I- 1) +2, m=0,12,3,--- hastheinitia
condition C(0) = 1. (For the even numbers we would find C = 0 and
so the solution given by SIGMA doesn't change.)

Actuadlly SIGMA wants the difference F(n+1)- F(n) and not

F(n)- F(n- ). This makes no difference, when such differences
don't depend on the index n but it does make difference when they

do. Let's try P(j)=P(j-1)- 1_;*]2 - 5—63*J+§1,With P(0) =0 and

j=0,22,3,---. Wemake first the definition by recurrence. Go to the
EQW and enter:

PRCR()) =|FTE§== 0,0,PRCR(j- 1) - g*f - -2* j+§1g

Then press ENTER to put this on the stack and press DEF. The
HP49G creates the user defined function PRCR which you can find in
the menu VAR. Let's try some points. Enter 'PRCR(n)", 'n’, 0, 5, 1
and press SEQ. The calculation takes a moment and returns the first 6
numbers of this sequence wrapped in a list
10 -89 87 -3 755”. Now for the analytic
1" 8 24 4 4 240

g* i- g*j+§1 (thisis the difference
P(j+1)- P(j)). Enter j (theindex) and press SIGMA. Theresult is

definition. Enter -

] 6*j°+11%j?- 33*]
48

we must be a little bit careful.

* ;3 * 12 _ * i

P(j+1):-6 j°+11* | - 33*j
48

definition on the HP49G. The left hand side must contain a function
with one or more names of variables separated with commas. This

doesn't mean that we can't calculate things like P(j+1), P(j- k) or

. Now, we must apply theinitia condition but
This result is meant as

+ C.Wecan't make such a

0 "
even P%‘ ng. It is only the definition that wouldn't work that way.
n=0
Because we can't define such a function on the HP49G, we simply
shift the initial condition. The recursive definition contains the initial

condition as the part IFTE(j==0,0,---). We see that for j= 0 the

function will return 0. The index of the analytic expression is ahead of
the index in the recurrence by 1. Itisnot P(j) but P(j +1) instead. That
means that we must apply theinitial condition P(1) = 0 when we make

the analytic definition. All clear? OK! First enter 'C' and press[+] to
add the constant. Now press ENTER to duplicate. Enter O and press

. -1 .
[=] . Now, enter 'C' and SOLVE. TheresultisC = 3 SUBSTItute

this to the expression on stack level 2. Press EXPAND to get
6*j°+11*j*- 33*j+16
48
1 for the initial condition, we must also do that for the expression
itself, or else the results will be shifted. We must add 1 to j inthe
expression. Enter j=j+1 and SUBSTitute. Notethat j=j+1isan
impossible mathematical equation, it doesn't have solutions. But doing
thisin this case we simply mean, find al occurrences of j and replace
by j+1. Now press EXPAND. The result should be
6*j3 + 29*j2 +7*
48

analytic form. Press ENTER to make a copy and then enter 'n’, O, 5,
1. Press SEQ. In a few seconds the HP49G returns
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i -7 -89 -37 -73 -755(
10 —

" 8 24 4 4 24P
for the recurrence. That means that starting at the number P(0) = 0,

, the same list of numbers like

counting j from 1 to infinity and adding always - g* f- g*j+:—31 to
the previous number, is exactly the same like counting j from Oto
* 3 * 2 * i

6* ] +228J +7 J.DROP

the list of numbers and using the aready available copy of
* i3 4 * 2 L7k * i3 4 * 2 L7

(ST AT e pany () = - S F2T AT

48 48
Now, enter 1000 and calculate P(1000) using the new function

251208625

infinity and plugging the value of jin -

PANL. The result -

teacher to a maniac running with hands up, shouting at the people:
"Teachers and directors against MATH!!!". ;-) If you remember |
already said that the recurrence has some kind of elegance not present
inloops. But asyou can seethereiseven more elegance in the analytic
closed form. If we can find such a form (though not always possible)
we should work with it. Not to speak about other considerations, like
for example bounds, condensation points and limits. For example

1

n

comes instantly and turnsthe

consider the sequence S)=SM - 1)+=,with n=12,3,--- and

S(@) =1. Canyou say if it hasalimit for n® +¥ ?Youwould

perhaps say that it seems to have one, because we add something that
aways gets smaler and smaller and so we expect the overall
accumulation to be finite. But let's ook at the analytic side of things.

1.Enter E and then n.
n

2. Press SIGMA. The result isPsi(n), aspecia function built-in in the
CAS of the small wonder.
3.Enter 'C’, press[+] and [ENTER].

4. Enter a1, press[=].

5.Enter n=2 (start index shifted by 1) and press SUBST.

6.SOLVE for C. Resultis: C = - (Psi(2) - 1)

7.SUBSTItute.

8. Enter n=n+1 and SUBSTIitute again. The result isthe analytic
closed form of the recurrence: Psi(n +1) - (Psi(2) - 1).

Now let's see if it has a limit for n® +¥ . Enter n= +¥ and press

lim. You get +¥ which clearly shows that adding 1+ 51 + % + %{ +eee
will grow above dl finite quantities.

What about S(n) =S - 1)+n—12,with n=12.3,---and S{l) =17?

Doesthishasalimit forn® +¥ or not? We could tend to say "No, it
doesn't” because of the previous example. But if you follow the
instructions of the previous example, you find the analytic closed form:

-PS(n+2,1)+PSI2,1) +1, PSI being another specia built-in

2
function. If you now take the limit for n® +¥ you find % .

SIGMA will also handle other functions,
Py
exponentials. If you enter e ©
6

like for example

, then n and press SIGMA, you will

get € -— . And what about trigonometrics? Well, if you enter
ef-1

* .
SIN?(Sp - 1; and n and press SIGMA, then you get

.
-10,n.
7 g

we said at the old times of the trigonometry and the complex marathon?
The HP49G seems to like complex exponentials much more than
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trigonometric functions. We jumped to complex hyper space, got the
solution, and jumped back to real normal space Let's try it also here.

a*p .6

If you still have the result SIGMAE%IN -1, ng on stack, then

press OBJ->. Thisis one of the most versatile commands, since it can
take just about anything and explode it to its components. In this case
an*p

it returns SINéT - 12 and n to levels4 and 3. These were the

arguments for SIGMA before it was blown to pieces. On stack level 2
you have a 2, the number of arguments of SIGMA. And on level one
you have the function itself, SIGMA. Press DROP2 to get rid of the 2
and of SIGMA. Now, because we are going to work in complex
mode, we should make the assumption first, that n isrea. Sowe

avoid complicated results containing RE(n) and/or IM(n) later. Press

UNASSUME to erase all assumptions about n, so that we make a

clean start. UNASSUME leaves its argument on the stack, so press
DUP and ADDTOREAL. Now the HP49G assumes that n isreal.

(We already have seen in the complex numbers marathon under which
circumstances such assumptions are used.) Press SWAP to get the
trigonometric function on stack level 1. (Instead of SWAP you can
also press the key [arrow right].) Now press EXPLN. This is our
jump to complex hyper space. It converts the trigonometric functions

.rkn*p—ﬁ 1
e & -

..N*p- 6
e ¢
_ 2%i
SWAP to get the flying n to the ground and press SSIGMA. After
some seconds you get the huge result:

to complex exponentials. The result is: . Press

i*n* p- 6* i

Faren)-iva) e T oneind3
2 - i*n*p- 6*i
2*e °©

2%

Now we can calculate the real and imaginary part of this monster.

(Thisisour jump back to real normal space.) DUPlicate that and press
RE. RE returns the real part of some complex quantity, taking all
assumptions into consideration. IM returns the imaginary part and as
you have guessed also uses the assumptions that you have previously
made. The HP49G says now:

c:osaEp n- 66,

——or (-2- V3)+- 1+ SN 20

6 @

3

(.2+\/‘)*cosaEp 2 66 1*2*5|NaEp 2 68

SQECOST N 664 50, go8+g TN - 68
&% 5 o g % PN 6w

2

We get an even bigger monster. But soon we gonna put it on a diet.
Press TCOLLECT and then EXPAND to get the final answer for the

S|N§L6'62+(2 +J3)* Cos?q%'esg
real part: >

Press SWAP to get the previously made copy of the expression

i*n*p- 6*i

((+2+)-i*J3)*e (1= 25)+i* 3
2 i*n*p- 6*i
2*e

on stack level 1.

2%

Now press M, and then TCOLLECT to get afat round 0. So the jump
to hyper space was successful. (Watch out for low flying assumptions
when you are there ;-)) That means that the general analytic closed

form of Sp)=Sh - )+SIN 6p 10 with n=12,3,--- isequal
to:
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SINERN- 6‘5+(2+\/§)*cos*?Ep n- 66
& 6 o & 6 O

2

This was a simple recurrence but it is the analytic form that allows us
to say how the sequence behaves. We can first create the analytic

closed form for some initia conditions, say S(0) = 0. Then we can

find our special cases, eventually bounds or condensation points. We
couldn't do that with the recurrence.

Now, imagine what happens with even more complicated recurrences.
They are too hard to handle in that form but when an analytic closed
form comes, many many things get clear. Use SIGMA® for such
things, and don't listen to the voices that having null understanding of
the underlying MATHematics still continue to flood the group with
stupid opinions, like "They changed things that worked just to put a
few more functions on the calc that nobody needs.” Such statements
you can PURGE immediately.

The opposite of finding the analytic expression for a recurrence, would
be to find the recurrence out of an analytic expression But that's easy.

You just enter your analytic closed form, for example n°, DUPlicate
it, enter n=n+1 and SUBST. Then you SWAP and press[-] and
EXPAND. Theresult 2* n+1 meansP(n +1) =P(n) +2*n +1.

Now, we said that SIGMA only works when the difference
F(n+1)- F(n) doesn't depend on F itself. For example it doesn't
work with the recurrence FIBO(n) =FIBO(n- 1) +FIBO(n- 2),
where n goesfrom 1 to infinity and where FIBO(1) =0 and
FIBO(2) = 1. In this case, if we calculate the difference

FIBO(n) - FIBO(n - 1), then we seethat it is equal to FIBO(n - 2),

® There is also SIGMAX on the third page of the menu CALC/DERIV. It is analogous

to SOLVEVX. It only needs the expression for the difference F(X+D- F(X) on
stack level 1 and does the same like SIGMA for the current VX (which often is X).

that is, it is equal to something that depends on FIBO itself. But that
doesn't mean that there are not ways to find an analytic closed form
even for such sequences. In fact, we can program the HP49G to do
that. This is the program that we do a few pages later. But first a bit
more theory. Hold your hats on, we go with great velocity! Teachers,
the performance of the MATH-virus has just began!

Because we aready are familiar to the Fibonacci sequence, let's stay
with it. We use it as an example for a general method, which will help
us in many cases to find such analytic closed forms. We have used
recurrences, which in general say that we must do something with past
members of the sequences, in order to find the future members. The
legacy of the past dictates the future, recurrences must have studied
history ;-) Now, what we do to past members is often add them
together multiplied perhaps with some factor. When we add many
things together, hmm, reminds us of infinite sums in some way,
doesnt it? So let's consider such a sum, an easy one

¥
B(X) = b, +b,*X +b, * X? +-..= § b, * X" . Mathematicians tend to

n=0

play very often. (That's why we don't have many of them in Greece,
now that games are banned ;-)) What games can be arranged with such
athing like the above sum? We can look if it converges to something
when we keep on adding and adding. We can check if it converges no
matter what X is, or if it converges only for some particular range of
values for X . Or we can forget the convergence for amoment and ook
at thecoefficients b,,. What happens if they change? Are there any sets
of such coefficients, any specia recipes of how construct them? And
what happens when we construct them according to some particular
recipe.

Consider for example our beloved sequence of RAM capacities, that is,
the sequence 1,2,4,8,16,32,64, ---. What if we plug these numbersin
the positions of the dots b, inthesum?We have then

¥
1+2* X+4* X2 +8* X3 +16* X* +... = § 2"* X". Now, it turns

n=0
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out that for X <1 the sum convergesto Againaclosed

1- 2* X'
analytic expression for something infinite! Now you remember of
course that the same sequence 1,2,4,8,16,32,64, --- isalso defined as

the recurrenceD(k) = 2* D(k - 1), with D(0) =1and k = 0,12,3,---.

So this recurrence seems to have to so something with 2 %" (We

forget here totally if it converges or not. We focus solely on the
coefficients b,, .) Imagine that you knew right for the start such an

expression, like 7%’ but for some other sequence. "Great!", you

say, "so what?'. Well, look what happens when you expand

1- 2* X
, then X =0 and then
2*X

the highest power that you want to have in the series, say 8. Now
press SERIES. Theresultis

to aseries around X = 0. Enter first

i Limit:1 Equiv:l u
|
T Expans:16*h* +8*h®+4*h* +2* h+1 Remain:h%

on stack level 2 and h= X on stack level 1. Press SUBST to
substitute h = X in al algebraic objects of the list. Now press enter 3
and press GET to get the series from the list. The seriesis tagged with
the string "Expans’. You can remove such tags with the command
DTAG. Now you should have the series alone on stack level 1.
16* X* +8* X® +4* X% +2* X +1. Do you see? Of course you do!
The coefficients of X arethe sequence D(k) =2 *D(k - 1), with

D(0) =1and k = 0,12,3,--. So what astrange thing isthis? Y ou

have a function, namely which doesn't ook so

1
- 1- 2 * X , . -
extraordinary at all, and when you expand it to a power series around
0, it generates the numbers of the recursion D(k) = 2* D(k - 1), with

D(0) =1and k = 0,12,3,---, as coefficients of the powers of the

series. This is why n 1 X Is called the generating function of

D(k) =2*D(k - 1), with D(0) =1and k = 0,12,3,---. Wow! If we
had a way to guess the right generating function, | tell you man, we
have the whole infinite recurrence in one single analytic closed form.

Let's trick around a bit with Fibonacci. We want to have B(X) the

generating function of the Fibonacci sequence. That means, we want to
have:

¥
B(X)=F, +F,* X +F, * X> +F,* X* +...blahblah= g F, * X".

n=0

The F, are our known Fibonacci numbers. (Those with which the
teacher can still punish you, by telling you to calculate F 5000 - -)) The
recurrence definition of the Fibonacci numbersisF, =F _, +F, _,. So

let's substitute this in  the sum above. We get:
¥ ¥

BX)=aF,*X"=a (F.,+F,_,)* X". Now, because we know that
n=0 n=0

F, = 0 and F, = 1, we can take the first two numbers out of the sum
and start summing a n=2.Sowehaveanew sum:

¥ ¥
BX)=F+F* X+ (F,,+F,,)* X" =X+ (F,,+F,,)* X",
n=2 n=2

We distribute the multiplication (Fn_l+Fn,2)* X" and so we get
¥
B(X)= X+ aF,_,*X"+F,_,*X". Now, we know that

n=2
¥ ¥ ¥
601 a+b= é a+é b. We apply this and so we get:
n=2 n=2 n=2

¥
B(X)= X+aF,

n=2

¥
FX"+Q F,_,* X". Now let'slook at the first sum

n=2
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a bit closer. If the power of X werenot n but n- 1, then the sum
¥
would be: é F._.* X"*. Do you notice something? The sum would

n=2
then beitself B(X), the generating function. If we would write out this
sum we would get F,* X+F,* X* +F, * X* +-.-blahblaf, whichis
indeed the generating function since F, = 0. Now, because al termsin
¥
thesum & F,_* X" =F,* X2 +F, * X® +F, * X* +..-blahblal share
n=2
a common the common factor X, we can factor X out and get:
¥
A F, . * X' =F*X?+F,* X° +F,* X* +---blahblah=
n=2
¥
X*(F* X'+ F,* X* +F, * X +-.-blahblah) = X* § F_, * X"*
n=2
¥
In the expression X* g F, ,* X" * we can change indices and say

n=2
n- 1=j, where j isanew index going from 1 to ¥ . So we get

¥ ¥ ¥ )
aF, X' =X*QF, *X"'=X* qF*Xx =x*B(X). If we
=2 n=2 =1

substitute thisin our last state of the generating function, then we get:

¥
B(X)= X+ X*B(X)+Q F_,* X" It starts |ooking like happiness.
n=2
Using the same arguments like for the first sum, we can also convert
¥

¥
the second sum @ F, ,* X" to X**Q F * X*, which isequal to
n=2 k=0

X?*B(X) . Our equation now, looks like
B(X) = X+ X*B(X) + X* * B(X). Enter this equation and then B(X).

Press SOLVE and you get B(X) = - . Thismy dear math

X2+ X-1

sides of the equation. Enter X = 0 and then 10. Press SERIES. When
the calc is done, press SUBST and then 3 GET and DTAG. You have
the magnificent series.

89* X" +55* X +34* X° +21* X% + ... +3* X + 2 X° + X + X
Ho! The coefficients are the Fibonacci numbers! The generating

function B(X) = - hasjust generated them!

X2+ X-1
Another example without explanations. Let's do that for the RAM
chips recurrence, D(k) =2*D(k - 1), with D(0) =1 and
k=0,12,3, .

¥ ¥
B(X)=a D(k)*X*=1* X" +§ 2*D(k - )* X* =

=0 k=1

K x

¥
1+2* § D(k - * X* =1+2* X* § D(k)* X* =1+2* X*B(X)
k=1 k=1
We havefound that B(X) =1+ 2* X * B(X) . Solving this for B(X) we
find B(X) = = ,
1- 2* X
with D(0) =1 and k =0,12,3,---. The series expansion of
B(X) =

the generating function of D(k) = 2 * D(k - 1),

o7 % at thepoint X =0 givesusthe series

1+2* X+4* X2 +8* X* +16* X* +---, whose coefficientsare the
numbers of the sequence D(k) =2*D(k - 1), with D(0) =1 and
k=0,12,3,---.

We have a mechanical (=implementable as an algorithm) method to
turn such sequences to something easier to handle with. Now, if we

freaks is the generating function of the Fibonacci numbers. (And the aso had a method to find how these numbers, the coefficients of the

start of all teacher's nightmares ;-)) Press EQ-> to separate the two

series expansion of the generating function, depend on n
2-18
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(symboalically, not numerically) we would be able to calculate really
big Fibonacci or whatever numbers in seconds. The method shown
here for finding the generating function will be programmed some
pages later. (Yes, it is possible to program this method on the HP49G,
but be patient, the student's revenge will come later ;-)) Unfortunately
the HP49G can't give you the coefficients of a series expansion, if you
do that pure symbolically. If you enter F(X), X =0 and 4, and press
SERIES, then it complains "Operator not implemented (SERIES)".
(Thisis another error that you can't catch in error traps, it just escapes
from the trap and pops up in front of your eyes.) So we can't use
generic SERIES expansion for finding an analytic closed form for the
coefficients. For this reason we will use here the approach of the
characteristic polynomial which is also possible to program on the
HP49G. Nonetheless we will make a program for calculating the
generating function, even if we don't use it now for getting the analytic
closed form of a series. We do that for two reasons. First to
demonstrate how the rich command set of the HP49G can be used for
very "unusual” things. Second because it is possible that someone of
the guys out there programs a generic series expansion, which then
can be applied on the generating function and give us the symbolic
dependance of the coefficients on the sequence index n. For now,
let's see how the method of the characteristic polynomial works. Again
we take the example of the Fibonacci numbers. We give here mainly
the "mechanical” part. If someone wants more mathematical proof,
then any good mathematics book about sequences and series will give
more information.

The method starts letting the nth Fibonacci number FIBO(n) bea

characteristic polynomial r". Then, we plug these characteristic
polynomials in the definition of the Fibonacci numbers:

i’r— ) -1+.5 . 1+J/50
: 2 2 )
Now, the general solution of FIBO(n) =r" isany linear combination
of theroots. That means:

VB0 oo B E0

2 €2 o

It starts looking very bad for teachers. If we now find what C1 and

C2 are, then we catch them by surprise. We can find what these C1
and C2 areif weusetheinitial conditions FIBO(0) = 0 and

FIBO() =1. For n=0 we have:

SOLVE returns the solutions list:

FIBO(n) = Cl*%

3@.+\/_0

FIBO(n) =FIBO(n- ) +FIBO(n- 2) b r" =r™*

+r"?p r’-r-1=0

We solve the last equation r* - r - 1= 0 for r. The HP49G can solve
this symbolically. (Of course it can, it is a quadratic equation in r.)

+
FIBO(0)=0 b 01*9- 1450 +C2+ G20 S gp
2 o e 2 o
C1+C2=0
For n=1 we have:
FIBO(J) = 1b Cl*(}- 1458 +c2*aq+‘/_9: 1p
2 g [}
T S e S L G
2 2
The system of equations:
C1+C2=0
C1*- '1;‘/?’ +<:2*1+2‘E3 =1

isalinear equationssystemin C1, C2. Thecommand LINSOLVE is
exactly what we need for solving such systems. We enter the vector of
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equations,

+C2* =1=1,,
2 3

then the vector of the variables to solve for, [C1 C2], and then use

LINSOLVE. The command returns among other information that we

5, 50
5 54
Substituting these solutions in the analytic closed form of the
Fibonacci numbers, we get

J_ ae 1+\/§o £*8Q+\/§'_c_')n
5 2 o9 5 e 2 o

e -1+ + u
éC1+C2:0 C1*- 12\/5 L+V5 _

don't need here, the vector of solutions:

é
Cl=
&

FIBO(n) =

You don't believe that the Fibonacci numbers can be calculated with
this formula, using square roots and other things that are not likely to
return integer results? Don't worry, | can't believe that too! We enter

5. -1+JBg J5 @+J5g
5 e 2 9 5 e 2 o
Now the function FIBO is ready for use. Come on FIBO, give us

some Fibonaccis. Enter a 0 and press the menu key of FIBO in the
menu VAR. After 2 very suspended seconds we have the result

-5 \/_

—— + — which we EXPAND to get O, thefirst Fibonacci number.

FIBO(n) =

and press DEF.

5
Next one please. Enter 1, press FIBO. You get the result,
V5, -1+J6 J5,1+/J5

5 2 5 '

second Fibonacci number. The final EXPAND is a bit too much to
pressit after every run of FIBO. Werecall FIBO on the stack and add
EXPAND at the end of the program:
<<

->

"o 0B/ 5% (- ((-1+6B)/2)) An+CB/ 5% ((1+CB) / 2) An'

EXPAND
>>

We store that in FIBO and go ahead. Enter 2, press FIBO. Result is 1,
OK. Enter 3, press FIBO to get 2. 4 FIBO is 3, 5 FIBO is 5 and so
on. Now for the big ones. Enter 20, press FIBO. Y ou get 6765. If you
want to accelerate the calculation switch to numeric mode. You lose
accuracy and you can the right results only up to 999999999999. 30
FIBO gives 832040. 40 FIBO gives 102334155. 50 FIBO gives
12586269025. In numeric mode it works very very fast, in exact mode
it is not so fast. And for big big FIBOS which can't be calculated in
numeric mode it isvery slow. So it seemsthat after all we haveto use

<< ->n
<<
CASE
{ 6. 7. 9.} @f the argunment is a local or
n TYPE PGS @l obal nane or al gebraic
THEN @
"APPLY(FIBO n) @ust apply FIBO
EVAL @n n and return FI BQ(n)
END
nilkég @f nis equal to 1
THEN
0 @eturn O
END
012n @f nothing of the above is
START @rue, calculate FIBO
DUP ROT +
NEXT
Nl P
END

>>
>>

It is faster than the analytic version because it takes so long to

_\/— _1+\/—0000 \/— a_'-\/—OlOOO
5 2 g 5 é 2 g

It looks for us like one single command, namely EXPAND the
monster. But the HP49G must fire up an algorithm to expand this
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thing. And the algorithm itself must do many many things when
expanding such beasts. The program with the START-NEXT loop
needs 10 seconds to return the right result (huge integer with 209
digits). The analytic version..., well | didn't time it because | lost my
patience. So did the teachers win, after all? No! We won a wonderful
insight in the secret life of sequences. And we will see that we also
win ways to get information about sequences that seem impossible to
handle. Before we go on with the programs, one last remark about the
Fibonaccis. They seem to be so easy to understand, because their
construction recipe is so easy. But would you ever imagine that they
have to do with geometry? Did you notice what the analytic closed
form of them contains? No? Look again! Oh, what a marvel! The
+
1 2‘/§ And alsoits

golden section, the divine proportion! F =

1- J5

v
counter part F = — I The Fibonacci numbers, constructed out of
the divine proportion! Their analytic closed form is equivalent to:

unga

FIBO(n) = % * gzn -F ;. This insight alone was worth the long
excursion, wasn't it? Now, just sit and wonder if Fibonacci knew
what he was initiating when he discovered his numbers. And a
0
2
existent at the moment of the discovery of the Fibonacci numbers?
Weas it then existent but not discovered? If the definition of the
Fibonaccis exists, then this formula also exists but we don't know that
it exists until we find it? Or does it come into existence at the very
moment of itsown discovery? Think of it, when you have time. But if
you tend to say that the formula existed when the Fibonaccis were
discovered, then ask yourself: Did the Fibonaccis exist from the
moment on, when the integers were discovered? Fascinating!

un
philosophical question: Was this relation FIBO(n) = % * gz“ -F

Enough philosophy for the moment. Let's get on the dirtier part of the
job, coding. First of all we must think about our notation of
sequences. We used lists that have the form

{memberGeneraIForm{indexstart end}} to represent sequences.

If possible we should generalise this notation to include recurrences.
We add the following variation of this representation:

{recurrenceEquation{initiaICondition$} . Now, our sequences

can be of two forms, the one that we had until now and in addition the
new form for recurrences. For example, for the Fibonacci sequence we
would write:

{FIBO(n) =FIBO(n- 1) +FIBO(n- 2) {FIBO(0)=0 FIBO() =1}
The sequence of the RAM chip numbers would be denoted as:
{D(n) =2*D(n- 1) {D(0) = ]}} . Our programs should then check to

see what kind of sequence they
have to do with and act
accordingly. If you remember
the whole group of programs
that we made until now was
structured like the picture at the
right shows. All of the
programs base on SPCASES. If
we use this structure further, we
only need to change SPCASES,
or any program  below
SPCASES, so that the kind of
sequence is checked. In case of
recurrence, we try to find an
analytic closed form, then
construct an equivalent analytic
sequence of the first kind, and
replace the recurrence with this
equivalent form. The programs
above SPCASES will only see
what SPCASES shows them, namely the possible special cases of a
normal analytic sequence, with which they can do something. The
check for the kind of the sequence can be made very thorough by
checking for exampleif thefirst element of the sequencelist containsa
"=" and if all elements of the sub list also contain also a"=". But we
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restrict ourselves to check if the first element of the sequence list
contains a"=", in which case we assume a recurrence. The interested
reader could make additional checks and let the program error out

"civilised" without leaving the stack totally messed up.

We start giving the code of some smaller auxiliary programs that we
can use also for other purposes. We will need them later for the bigger
programs. The HP49G can't distribute the symbolic sum over two or
more terms in the summand. We can't transform for example

+¥ +¥ +¥

a a,+b, to a a, +a b, . And we need this capability for a

n=0 n=0 n=0

program that would cal culate generating functions. We could also find
such a capability useful for other algebraic manipulations in future
marathons. So, let's program it. The strategy is to convert the whole
summand to a sum of terms and then match all patterns of the form

86H %H %H 86H
a&A+&Bto g &A+ Q &B andof theform g - & A to
&N=&L &N=&L &N=&L &N=&L

&H
- é &A until nothing changes anymore. ( We will see later why we
&N =&L
need the second transformation.) The next program implements this

strategy.

<< ->LST 1 @onvert to a list for sub-
<< @equent DOSUBS
I F @f current elenent is &
{ & } OVER PCS
THEN @hen apply FDISTRIB to the

SWAP FDI STRI B SWAP@unmand and convert it to a

END @um of terns
>>
DOSUBS @o to each list el enent
->ALG @Re-convert to algebraic
WHI LE @ATCH unti|l nothing changes

{ "& (&/=&L, &H, &A+&B)"
"4 (&V=&L, &H, &A) +& (&V=&L, &H, &B)"' }
" MATCH

REPEAT
END
VH LE
{ "& (&/=&L, &H, - &A)"
'-& (&V=&L, &H, &A) ' }
" MATCH
REPEAT

END
>>

@MATCH until not hing changes

We storethisin FDISTR& . Perhaps you have aready asked yourself,
why we don't need to match also the patterns that eventually have the
form 4 (&V=&L,&H,&A-&B)' to corresponding patterns that have
the form '4 (&V=&L,&H,&A)-4 (&V=&L,&H,&B)'}. Thisis
because of two reasons that in this case combine wonderful to let usdo
what we want. First: When ->L ST is applied on an algebraic object
that contains a sum, then the whole summand is returned as a single
object. For example, if you apply ->LST to 'X+& (n=0,10,n"2-1)'
then the returned list is{ X n 010 'n"2-1' & +} ratherthan{ X n0
10 n271- & +}.Second: If thesummand is some factored
expression, then FDISTRIB will convert it to a sum, that contains
termscombined all with +. That means than for example 'a* (x-c)' will
be converted to 'a*x+-(a*c)' rather than 'a*x-a*c'. So we can be sure
that the only match needed is matching & (&V=&L,&H,&A+&B)'to
'a (&V=&L,&H,&A)+a (&V=&L,&H,&B)'. The Professor knew
exactly what he did when he made the CAS. (Sure he did, that's why
he is the Professor! ;-)) The second match is needed for having only
positive terms in the sums, because the programs later will love this

property.

As aways, test FDISTR& now. Enter the sum
u-3

a (SIN(X)- COS(index* X))* e Press FDISTRA to get
index=1
U-3

U-3
a SINX)* el = 3 cos(index* X) * ™ P |t works.
index=1 index=1

If someone of you out there finds an example in which FDISTRIB

we
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behaves differently, please please post it. The whole program and the
next programs are based on this property.

The next small auxiliary program that we need, is a program that
returns all terms of an algebraic expression.

<< EQ > - FDISTRIB 1
->LIST { } -> sums terns
<<

@onvert a=b to a-b
@nd store in locals
@hile the list suns is

WHI LE @ot enpty, repeat
sunms SIZE 0 >
REPEAT @how sonme nessage to
"Sums: " sunms SIZE + " @rvrabakoul as
"+ "Ternms: " + ternms SIZE +
1 DI SP suns @et head of suns
HEAD sunms TAIL 'suns' @tore the rest in suns
STO - > obj @tore head in |ocal obj
<< |IF @f obj is real, integer
{ 0. 6. 28. } obj @r nane
TYPE PCS
THEN @hen add it in terns
terns obj +
"ternms' STO
ELSE @l se
obj OBJ-> @xpl ode it
I F @f the obj was two argunents
{ +} SWAP @wold together with a "+"
PGS
THEN @hen add both argunents in
DROP sums  @uns
ROT +
SWAP +
"sunms' STO
ELSE @l se add obj in terns
DROPN t erns
obj +
"terns' STO
END

END
>>
END terns
>>
>>

@eturn terns

We store thisin ->TERMS. It is good to see how this program works,
so let's make a flow diagram (next page). The program first turns
equations to differences using EQ->. If EQ-> has an argument that
wasn't an eguation, then it returns the argument and a 0, which if
subtracted from the argument doesn't change anything at all. So we
make sure that it will work for equations and expressions. The whole
expression is put in alist 'sums and an empty list is put in ‘terms The
program keeps on exploding the first element of sums, and if it sees
that the object just being exploded was itself a sum, it just adds the
arguments of + to the end of the list 'sums, because they could be
themselves sums. If the exploded expression wasn't a sum, then it
adds it to 'terms. In every pass the expression that is exploded is also
removed from the first position of ‘'sums. The additional check if the
expression isreal, integer or nameis done, because applying OBJ-> to
such an object would error with "Bad Argument Type'. Since we
know, that if we have a real number or integer or name this was a
term, we add them also to 'terms. When all expressions of 'sums
have been processed, then we are ready and returns the list terms. The
FDISTRIB at the start of the program again makes sure that we have
only arguments hold together with a+. (Likein FDISTRa )

And now for the test. Enter some equation, like for example
" * (SIN(X) - X*(COS(X)+3)) =P(X)* (X +3* X?). Press now
the soft key ->TERMS. You get as result alist containing all terms of
the equation {SIN(X) *e* - (X* P(X)) -(3*x*e*)} . Keepin
mind however that the terms are not in the same order as in the
equation.

And now the main programs. We make a program that takes a list
representing a sequence and finds the type of the sequence. As said
before, we have two main types of sequences. First, the analytic
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Convert any algebraic to a standard sequences {memberGeneraIForm{indexstart end}} . Wegive

form (s“ml.Of terms). Store itin 'sums’, store such sequences the type 1. If the program finds such a sequence, it
an empty listin terms. returns the sequence unchanged and a 1. Then we have the recurrence

¢ sequences {recurrenceEquation{initialCondition#} . We have two
variagtions of these sequences. The first is of type
{P(n+1) = someSumOfPreviousMembers {initialCondition$} .
Does \ The expression "someSumOfPreviousMembers' denotes expressions
0es sums
contain
anything?

NO like for example P(n- 1)+P(n- 2) or

P(n- 2)

Store its first element in 3*P(n- 1)+2*P(n- 2)- P(n- 3) but not P(n- 1)+P(n_-3) . Such

obj'. Store rest in 'sums sequences we will handle using the method of characteristic
polynomials. We give such sequences the type 2. When the program
finds such a sequence, it returns a list of the form
{terms factors initConditions index anda2."Terms' denotes
the terms P(n), P(n- 1), and so on, that appear in the sequence.
"Factors' are the factors with which these terms are multiplied.
"InitConditions" isthelist of initial conditionsand "var" istheindex of
the sequence. (Why we do that? We will see in a few minutes.) The
second variation of recurrences is of the type
{P(n+1) =P(n) + someFunctionOfThelndex {initialConditiong} .
Add itto terms’, as itis a The term "someFunctionOf Thelndex" denotes something that doesn't
term contains any sequence member. This type of recurrence sequence will
| we will handle using SIGMA. We give such sequences the type 3. If

¢ the program finds such a sequence, it returns a list

‘ YES {terms factors initConditions index matches} anda3on
l_NLL _— the stack. The additional element "matches’ isalist that indicates with
i a 1l which termsin "terms' are members of the sequence, like P(n),

P(n- 1) and so on, and with a0 which are not. The codeis on the next

Add both summands page.
to 'sums'

is 'obj' real,
integer or
name?

NO

Explode it

Add it to
‘terms'

A 4

Done
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<<
-> seq @tore in local variable
<<
"Checki ng sequence type" @kssage in a bottle
1 D SP
I F @f the first element
"Anal ytic closed fornf @f the sub list in the
2 DI SP @equence is a name (the
seq 2 GET HEAD @equence i ndex)
TYPE 6 ==
THEN @hen just return the
seq 1 @equence and a 1
ELSE @| se we must nmake some
"Extracting terns" @one checks
2 DISP

seq HEAD - >TERMS
DUP HEAD OBJ-> NP

Mot SWAP +
"(&N)' " + OBJ->

{ } NOVAL seq
2 CGET -> terns var
segpatt nmtch factors
bcond
<<
CASE
"Recurrence 1"
2 DI SP
terns 1
<< segpatt 1
2 ->LIST
" MATCH ' mtch'
SWAP STO+
EXPAND
>> DOSUBS
ntch
<< AND

@eturn all terns
@et first term and use

@o construct the pattern
@(&N), P being the nane
@f sequence nenbers
@tore in local variables
@l | that we need to

@pr oceed.

@n case

@mt ch any occurrence of
@ype P(&N) with a 1. If
@e had a match, then any

@ermof the form
@actor*P(&N) will be
@muatched to factor*1

@t ream AND over the
@rat ches fl ags

>> STREAM
SWAP DUP @t ore matched factors in
"factors’ @ocal 'factors’
STO
1 @ind the positions of
<< LNAME NI P @l ternms which do not
| F DUP @ontain the seq. index
TYPE 5 1
THEN AXL END var POS NOT
>> DOSUBS
1+ @\dd a 1 in the list of
<< AND @ositions and stream
>> STREAM @\ND
AND @f we had only P(&N) and
@o ot her expressions
@vth the seq. index
THEN @hen return the approp.
terns @ist and a 2.
factors bcond
var 4
->LI ST 2
END @n case
"Recurrence 2"2 DI SP
ntch @Return mat ches |i st
factors @nd factors |ist
2 @check if we have only
<< LNAME NI P @actors of P(&N) not
| F DUP @ont ai ni ng the seq. index
TYPE 5 1 @r other factors
THEN AXL
END
| F SWAP
THEN var POS NOT
ELSE DROP 1
END
>> DCOLI ST
1+ @\dd 1 to the result |ist
<< AND @tream AND over the result |ist
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>> STREAM
mch & LI ST @heck if only two terns
2 == AND @mat ch pattern P(&N)
factors ntch
2 @zet the factors of
<< @(&N)
| F NOT
THEN DROP
END
>> DOLI ST @check if factor of first
DUP HEAD @(&N) is 1 and of second
1 == SWAP 2 @s -1 (Dff. of two seq.
GET -1 == AND @renber s
AND
THEN @f conditions OK then
terns factors @eturn approp. list and
bcond var @a 3
ntch 5 ->LIST 3
END @&l se return sequence and
seq O @ 0 (we don't handle
such
END @equences)
>>
END

>>
>>

Store in SEQTY PE. Now the obligatory test of SEQTY PE. Enter the
n®- 3
3*n’
SEQTY PE. Almost immediately you get the sequence unchanged and a
1. The program recognised that as an analytic type sequence. Enter
{P()=P(-1)+P(n-2) {P(0)=0 P()=1} andpress

SEQTY PE. The program shows some messages and returns the list
{P(0) -P(n-) -P(n-2)} {1 -1 -3 {P(0)=0 P@)=} n}

with the summands of the recurrence, their factors theinitial conditions

analytic type sequence i (-1 * {no ¥}§ and press
i

':':’P(n) -P(n-1) - 3 Zg ‘{‘1 -1

I n {1 1 0}

and the index variable. It dso returns a 2 because thisis a recurrence of
first type. (Which we handle with the method of characteristic
polynomials later on.)

i u
Enter the sequence i P(n) =P(n- 1)+ P(0) :O}g and press
i

o |
(n+1°
SEQTY PE. The program returns the list
3
n>+2*n +1¥

{P(0) =0} ;
= |
il (n+1) y
i
b
with the summands of the recurrence, their factors (or the summand
itself in case it is not of the form P(&N)), theinitial conditions, the
index variable and a list that indicates which of the summands are of
the form and P(&N). It also gives a3 because it recognised the list as
recurrence of type 2, which we will handle later on with SIGMA. If
you enter some other sequence, like for example
{P(n) =P(n-1)+P(n-2)*n {P(0)=0 P(1)= ]}} which we don't
handle (yet), then the program returns the sequence unchanged and a
0.

The results of SEQTYPE are needed by the next program that we
make, RCR->ANL. It takes a sequence and if it is arecurrence (of the
types that we handle) it converts it to an analytic closed form. | think
you see now what we aim at. We want to convert recurrences to
analytic closed forms, in order to let them examined by the other
programs that we have already from the first part. This has also the
advantage that we don't need to change the programs from the first
part, except for minor modifications.

Note: The program that comes along with this document is named
RCR2ANL. After you transferred it to your HP49G, you must rename
it to RCR->ANL.
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Let'stake alook at the code of RCR->ANL now.

<<
PUSH @ave user's settings
{ -114 -128 -123 } @ Di spl ay powers
CF @n ascend. order,

@l | ow compl . vars
@l | ow node swi tch
{ -103 -109 -120 } @ eal node,

SF @um factorize
@i | ent
-> seq @tore in |ocal
<<
seq SEQTYPE @i nd seq. type
CASE @n case of seq.
DUP 2 == @ype 2
THEN
DROP OBJ- > @xpl ode i st
DROP{ } { } @tore in locals
-> terns

factors bcond

var uc ninit
<<
"Creating @i sp. nessage
characteristic

pol ynom al "
1 DI SP
terns factors
/ @ivide terns by their factors
EXPAND @nd expand
1
<< @xtract index out of
{ "&(&N)' &N} @f the form'&F(&N)"
~ MATCH DROP
>> DOSUBS
var bcond 1
<< @xtract start val ues of
EQ > DROP @ndex frominitial

{ "&(&N)' &N } @ boundary) conditions

" MATCH DROP
>> DOSUBS
DUP 'ninit' STO @t ore these indices
¥ + @dd ¥ to the list of
<< M N @nitial indices (why?)
>> STREAM = @nd find the small est
SUBST EXPAND @ubstitute the snall est
DUP * + @ubtract snal |l est index
<< M N
>> STREAM -
XQ RCLVX @Construct X*i ndex for
SWAP A @very index
factors SWAP * @ultiply each power of X
0 + @ith its factor. Add O
& LI ST @o the list (why?). Find
@um of list.
"Sol ving" 1 @kssage in a bottle.
Dl SP
FROOTS AXL 1 @Jse FROOTS to find roots
<< @f we have a root
| F @ultiplicity
NSUB 2
MOD NOT
THEN
I F @which is greater than 1
DUP 1 >
THEN @ hen
1 SWAP @epeat it the appr.
1 - @nount of tines
START
DUP
NEXT
ELSE @l se drop root nultiplicity
DROP
END
END
>> DOSUBS
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var * @Rai se root to the power n
"Multiplying roots with

unknown coefficients

condi ti ons"

for

1 DI SP @kssage again
1
<< @onstruct coeffs. Cl, C2,...
uc "C'
NSUB R- >I
+ OBJ-> +
‘uc' STO
>> DOSUBS uc
SWAP * 0 + @ultiply then with roots”™n
a LI ST DUP @ind sum of Cn*X*n
"Substituting initial @kssage
1 D SP
var ninit = @substitute init. conds.
SUBST
bcond 1 @cr eat e equations P(n)=initCond
<< EQ> NIP
>> DOSUBS =

"Solving linear system @skssage

uc ->STR + 1 DISP

AXL @ol ve |inear system for
uc AXL LI NSOLVE @1, 2 ...
"Substituting solutions”

1 DI SP @kssage

UNROT DROP2 (@dubstitute Cl, C2 back

AXL 1

<< SUBST
>> DOSUBS
-105 CF
var ninit
¥ +

<< MN

>> STREAM

@Bet agai n exact node

@ind snmallest init. index

¥
3 ->LIST @reate analytic seq. as
2 ->LIST @he other programs want them
>>
END
DUP 3 == @equence of type 3
THEN
DROP OBJ- >
DROP { }
-> terns @tore in locals
factors bcond var
ntch ninit
<<

"Determ ning anal ytic

cl osed fornt

1 DI SP @kssage
var bcond
HEAD @et first init. cond.
EQ > DROCP @rake equation n=snal |l est| ndex
{ "&F(&N)"' &N }
~ MATCH DROP =
"ninit" STO
terns
ntch 2
<< @f we have a termof the form
I F @(n) then drop it.
THEN DROP
END
>> DOLI ST
0
+ & LI ST NEG @\dd all terns not of the form
@(N
I F @f sumtrig. function appears
DUP ->LST
DUP { SIN}
HEAD PCS
OVER { CCS }
HEAD PCS
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OR SWAP { TAN }

HEAD PGS OR
THEN
var
UNASSUME
DROP ninit
EQ> 1 + >=
ASSUVE DROP
EXPLN 1 SF
END
var S| GVA

@ hen,

@rake assunpti ons

@nd convert to conpl ex
@xponential. Also set flag 1
@s an indicator for later.

@Jtse SIGVA to find P(n+l)-P(n)

"Substituting initial

condi tions”
1 D SP
"C + DUP
bcond HEAD
EQ> NP =
ninit 'o0=1" +

SUBST

'C SOLVE

SUBST

var DUP 1 + =

SUBST EXPAND

LIN

I F
1 FS?

THEN
DUP RE
-103 CF
EXPAND
TCOLLECT
EXPAND
SVWAP
-103 SF IM
-103 CF
EXPAND
TCOLLECT

@kssage

@ubstitute init. conds.

@\dd equations n=start and
@=1 to get n=start+1

@ol ve for C and
@ubstitute back
@ubstitute n=n+1

@.i neari ze
@f trigs were involved

@ind real part

@xpand in real node to avoid
@onplicated forns

@col | ect trigononetrics

@o the sane again for the
@ magi nary part.

EXPAND i * + @Construct real +i *i magi nary
END @mke anal ytic sequence as the

ni nit @t her prograns want it.
EQ > -105 CF ¥
3 ->LIST
2 ->LIST
>>
END
DUP @equence of type 0?
THEN
DROP POP @t op here! W don't handle that (yet)
"Can't deal with this
ki nd of sequences"
DOERR
END
DROP @&l se drop type
END
>> POP @restore user's settings
>>

Before we test the program, a couple of words about LINSOLVE,
about FROOTS and about adding equations. LINSOLVE will take a
vector of linear equations from stack level 2, and a vector of unknowns
from stack level 1, and will return the vector of solutions for the
unknowns aong with other information. For example, entering
[2*X-Y =1 'X+Y =3]and['X" "Y'] and then pressing

4 Su

LINSOLVE will return the vector of solutions eX = 5 Y = 5 _on
e 0

stack level 1, and other information on levels 2 and 3 ( which we will
describe more detailed in some future marathon).

FROOTS solves polynomials of the current VX but it doesn't return a
list of solutions of theform {X =soll ..}.Instead of thisit returns a

vector of roots and multiplicities. When it is not only important to
know the roots but also their multiplicities (like in our case here), it is
better to use this command. For example, using SOLVEX to solve
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X®-5*X*+8*X- 4 will return {X =1 X =2}, which doesn't
tell us which root is double. The polynomia could be
(X-2)*(X-D*(X-2)or (X-1*(X-2)*(X- 2). But FROOTS
will return[1 1. 2 2], whichtellsusthat thefirst root 1isasingle
root (1.) while the other root 2 is a double root (2.). That means that
the polynomial is (X - 1)* (X - 2)* (X - 2).

Perhaps you noticed that we add a strange equation 0 =1 tothe
eguation n = startindex . Thisisonly an abbreviation for adding
nothing (0) to the left hand side and 1 to the right hand side. The
HP49G can also add equations with the normal command +. If two
eguations are added, then the sides of the equations are added
separately to each other, and we (ab)use this to make for example
n=2 out of n= 1. If an equation an an expression are added

together, then the expression is added to both sides of the equation.
Forexample X =3, 5, +will return X +5 = 8.

A

* 2
[ n
RCR->ANL. Since this is aready analytic, the program returns it
unchanged almost immediately.

N 2 _ .
And now for the tests, Enter | (- 1)" * r; 3 {no ¥}§ and press

Enter our old friend, the Fibonacci sequence

{p(n) =P(n-)+P(n-2) {P(0)=0 P()= ]}}

and press RCR->ANL again. After some 23.5 seconds you get the
analytic closed form of the Fibonacci sequence:

]_ ® . N N U
i Jg*(;_ 1+‘/§9 +£*§a+‘/§9 {n 0 ¥}y
i 5 e 2 O 5 e 2 o b

Hurrah! Notice however: You must enter such sequences in exactly
this form. The member with the biggest index alone in the left hand
side and therest in the right hand side of the recurrence, and theinitial
conditions in ascending order of the index variable.

Now another recurrence of the second Enter

type.

i 3 1]

iP(n) =P(n- 1)+ P(0) = Oty and press RCR->ANL.
T() ( )(nﬂ)z{() }E

About 22 seconds later you get the awated answer
i 6*PSI(n+1+11)- (p?- 6 a

f - ( ) (p ) {n 0 ¥l}y.

i 2 b

And one with trigonometric functions. Enter the sequence
X . By

{P(n) =P(n- 1)+ cos?'—;g {P(0) = o}i and press RCR->ANL.
|

After looong 106 seconds the HP49G says.

i n-1)*po (i

I -1 |
i {n 0 ¥}y
: i
i b
We now move on to the next program, the program that finds
generating functions for the same types of recurrences that REC->ANL
also handles. We don't use generating functions for anything now, but

because they are so useful we should make a program that can find
them. (And who knows what we'll do in future ;-))

2*COS%
e

First of al, hereis the commented code of GENFUNC.
<<
DUP SEQTYPE NI P
IF

@i nd sequence type

@f it is of type 2

seq bcond var
<<

@t ore sequence, init conds,
@nd index variable in |ocals
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"S(itVvar=0, ¥, COEFF(itVar)*X"itVar)'
"Inserting sequence in

" OVER + 1 DI SP @kssage
" COEFF(itVvar)'
seq EQ > DROP
2 ->LIST - MATCH @vhatch P(n) in series
DROP
"Replacing itVar with
"var + "
"+ 1 DSP @kssage
"itvar' var 2 ->LIST @mtch index var. in
- MATCH DROP @eries
1 bcond
Sl ZE
FOR |
"Extracting boundary @kssage
condition " bcond I GET + "
"+ 1 DI SP
bcond | CGET EQ > @xtract known initial
NP *'X 1 1 - R> ~ @enbers of the series
* SWAP ->LST DUPDUP @ut of the sum
{ S } HEAD PCS 3 -
GET 1
+ OVER { S } HEAD PCS
3 - SWAP PUT ->ALG +
NEXT
"Inserting recurrence
in" OVER + "
"+ 1 DSP @\nd anot her nessage

seq EQ > 2 ->LIST @hatch P(n) with its recurrence

- MATCH DROP @lefinition in the series
"Distributing S over +

"1 DSP
FDI STRS
"Extracting series

@et anot her nessage
@Jse FDISTRIBS to distribute S

" 1 DI SP @et anot her nessage
DUP ->LST 1 @urn to list
<< @urn to list of suns and ot her
I F @ erns
{ S} OVER
PGS
THEN
5 ->LIST
->ALG
END
>> DOSUBS
1
<< @ol d the sums, throw away rest
I F
DUP TYPE 9
THEN
DROP
END
>> DOSUBS
"Extracting comon
factors" 1 DI SP
DUP 1
<< @reate list of common factors
{} O0-> @f the summands in the sum
confact conPower @hese factors can be
<< @xtracted out of the sum
DUP OBJ- >
DROP2 4 ROLLD 3 DRCPN
FACTORS
"Raising factors to
powers" 1 DISP 1
<< @Rai se to appropriate powers
I F
NSUB 2
MOD NOT
THEN
R- >I
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AN

"Extracting common @xtract conmon

END power @owers of X
>> DOSUBS conPower + " of X' + @ut of series
"Checking if factors 1 DSP1
i ndependent of " var + 1 DISP 1 <<
<< @\dd to Iist of common factors I F
IF @nly if independent of index { "Xr&N &N} ~ MATCH
LNANVE @ari abl e THEN
I'F conPower - EXPAND X
bup SWAP ~ conmFact SWAP +
TYPE 5 * "confact’ STO X
THEN comPower *
AXL END
END var >> DOSUBS
PGS NOT "Creating new summand
THEN
confact SWAP + " 1 DISP
‘confact’ STO CASE @f no common powers of X
END DUP { } SAME @he return a 1
>> DOSUBS THEN
"Getting index of @set common powers of X 1
series" 1 DI SP END
seq EQ > DROP DUP SIZE 1 == @f only one comon power
var &N = SUBST &N THEN @hen get that power
2 ->LIST HEAD
->rl END @l se multiply comon
<1 PLIST @ower s
<< END
I'F "Inserting new summand
bUP " 1 DISP
ri~ MATCH SWAP OBJ-> ROT @nsert new summands in
THEN DROP 6 ROLL UNROT @eries
' conPower' STO SWAP 1 + ->LIST ->ALG
ELSE "Multiplying with @wultiply sunms with
DROP common factors" 1 DI SP @heir extracted conmmon
END confact @ actors
>> DOSUBS CASE
>> DUP { } SAME
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THEN
1
END
DUP SIZE 1 ==
THEN
HEAD
END
PLIST
END *
>>
>> DOSUBS
"Substituting new
series
' 1 DI SP
2 @ubstitute old with new
<< 2 ->LIST @eries

"~ MATCH DROP
>> DOLI ST
"Substituting
generating function
' 1 DI SP @ut G- where the suns are
{ ' S(&N=&L, &U, &F( &n) *X"&n)' GF }
~ MATCH DROP
"Sol ving for
generating function
' 1 DI SP
GF = GF SOLVE
>>
ELSE @\ don't deal with other sequences
"Can't deal with this
ki nd of sequences"
DOERR
END
>>

@ol ve for G-

The program will only deal with recurrences of the Fibonacci type. Of
course interested readers will add their code for other types of
recurrences.) We test the program giving it the Fibonacci sequence.

Enter {P(n)=Pn-)+P(n-2) {P(0)=0 P(1)=1} and press
GENFUNC. The HP49G needs about 30 seconds to return

GF =- , the generating function of the Fibonacci sequence.

XZ+X-1
: Fin-1 +F(n- 2) }J
Enter now iF(n)= —32 > {[F(0)=0 F(1)=2}yand
; -
|
press GENFUNC again. In 36 seconds you see that the generating
16* X

8*X*+X-16"

function of this seriesis GF = -

By the way, one of the example problems in the manuals of the T192
(oh yes, | read them - how else could | say that the HP49G is better?)
is of the type: We start with, say 100 trees. Each spring we cut 1/3 of
the available trees and we plant another 50. How much trees we have
after 10 vyears? The recurrence for this sequence is
(T()=T(-1)- T(”T) +50 {T(0)= 100}% which is the same

A

with {T(n) = %nl) +50 {T(0)= 100}% . Our programs don't
|

handle such recurrences. But perhaps the following thoughts on the
next page will wake your appetite for additional code ;-)
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¥
T(n)* X" =100+ § T(n)*X" =

n=1

‘ £ 2+ T(n- 1
+50_% X" =100+ § Jgn—)*xn +50% X" =

n=1

Qox

GF(X) =

0

*T(n-1)

3

n

¥
100+ 3

=1

D

>

¥ ¥
1oo+§*é T(h- )*X"+50* § X" =

n=1 n=1

2 ¥ ¥
100+§*X*§_T(n- 1)* X" +50%§ X" =
n=1 n=1

2

¥ ¥
100+§*X*éT(n)*X“+50*é X" =

n=0 =1

100 +E
3

¥ I
*x*GF(X)+5o*§§ X" 12

n=0

2

¥
50+§*X*GF(X)+50*éX”

n=0
3¢
Now, if we only new what to fo with the sum 50* g X" whichisn't
n=0
turned in some expression containing the generating function. But
¥

clever guys as we are, we notice that é X" isthe series expansion of
n=0

series at X =0 returns the following series:
100 + 350, X + 1150, N 3650*)(3 N 11350*X4 . If
3 9 27 81

¥

. N 1 -

replacing é_ X" with X% was OK, then the coefficients must be
n=0 -

members of the sequence.

We test our assumption. We enter the following small program:

<< DUP

->n

<< 2 n* 3/ 50 + EXPAND >>
>>

and store it in TISEQ. (Or something elseif you think that the HP49G
could be angry about that name and stop servicing ;-)) Now, we enter
100 (the starting number of trees). Pressing TISEQ (or whatever you
called the program) leaves 100 and 350/3 on the stack. Another press
and you have 100, 350/3 and 1150/9. It seems to be OK that we

¥
replaced é X" with its counterpart ﬁ . Can you add code to

n=0 -
GENFUNC, so that it returns the generating functions of recurrences
o thetype {T() =a*T(n- )+b {T(0) =c}}, wherea, b and c
are constants (independent of the
index variable n)? And would it
be possible to let RCR->ANL

1 _ . . also tak f this t i RCR->ANL GENFUNC
—— at X = 0. Can we put that in the above equations instead of SO lake care of this type o
1- X sequences? +

¥ ¥

n : N 1

a x ?Let'stry that. If we replaceé X" with ﬁ,then we get Now that we are at last ready ScoTvoe
n=0 5 ”:Ol with the new programs let's take

E(X) =50 + Z* X* GE(X) +50* Solving f E(X) ai alook, how they depend on each
G ( ) >0 3 GF() +50 1- X Solving for G ( )QIV% other. We are going to put the

150* X- 300 . 150* X - 300 programs of part 1 on this

us GF(X) = - P X’ - 5*X43 Expanding - 2 %2 5* x+3 & fundament. Those programs of >TERMS FDISTRS

pat 1 havent changed
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significantly. There are a bounds exist.
few minor changes and
corrections but the whole Recall it again. Press HASCNDSPT? It takes 7.5 secondsto seea 1
remains the same. So we on the stack, which means that condensation points exist.
don't give their listings CONDENSPT
again here. The whole + You know what I'm going to say, recall it again and press
group of programs looks CONDENSPT. In 20 seconds you get the list {0} with the only
pi(g);vr\{t like the picture at the condensation point of the sequence.
Let's test them with some Last test with this sequence, recall it and press CONVERGES?. You
’ ' in2 1f [ .
sequences. We start with wait again 20 seconds and you get a 1 for a converging sequence
sequence that is aready in N | I
its analytic closed from: ow we test one morle comp |cate§IEEl sequencrt]—:' k;ut till inan analytlc
closed form. Enter [(- 1" * TANZ PO« "2 1 o ¥}¥ and
Enter: I €3 8 n %
ii {n 0 ¥}u test again with all programs of part 1. You find for example that the
' 1-J3
in+l B bounds are 'E 2*\/_ k/) and that the sequence has one
th : RCR->ANL GENFUNC _ I _
\?tacr)ir aeblee ﬁ%ﬁnsge IVCSO Qg condensation point {0} . (That means; it converges.) Note that the
going to use it more than * programs need often about 5 minutes or more to complete, so be
once. patient until they finish (or crash ;-))
SEQTYPE
Now, recall it back to the The real fun is when we use recurrences. Enter the recurrence
stack and press SPCASES. ¢ {P()=P(M-1+2*P(n- 2) {P(0)=0 P()=1},storeitin
In about 2.5 seconds the some variable and use the program RCR->ANL to turn it to the
same sequence is returned, ->TERMS FDISTRS 11 1, )
wrapped in a list, because analytic closed form f =* 2"+ =+ (- 1) {n 0 +¥}y, for which
it doesn't branch to other 13 3 %
sequences. is aready much easier to say if it converges or if it has condensation
) points with only taking a look at it. Recall the recurrence and use
Recall the sequence again and press ISINF?. In 4.5 seconds the _ _ _ o X
HP49G returnsa 1, and so it says, "Y es, the sequenceisinfinite". GENFUNC to find that its generating function is - X 1

Recall it again, press BOUNDS. In 5.5 seconds the HPA9G returns Recall it again and use ISINF? to see that thisis an infinite sequence.
thelist {0 2}, the bounds of the sequence, and a1, toindicate that ~ JNfortunately BOUNDS returns {? 7} and ? to denote that it cant
find if the sequence is bounded. We can "see" easily that it isn't
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bounded but the program can't "see" that. This has to do with the fact
that TABVAR doesn't find that 51* 2" + _—31* (- 2" growsto infinity

when n® +¥ . Here we have room for improvement (which will be
implemented on the next part of this marathon ;-)).

And a last example with the other recurrence type. Store

iP(n) =P(n- 1)+ COS?—Bpg {P(0) = O}g to some variable. Then
|

recall it and run RCR->ANL. The  result IS
12*COS((n- 1)*p)-1 v _

i > {n o +¥}E;. BOUNDS finds the

|

bounds to be i ?3 %i’g‘ Check what the other programs say.

Of course the programs introduced here are not jewels of the
programming art. They have their quirks, they are slow and they will
crash sometimes. But it is nowhere intended here to make a second
CAS. The marathons are only made to show how much possibilities
hide inside this small machine. Especially when the numerous built-in
commands are used in combination, one can achieve aimost anything.
(Weused LINSOLVE and TABVAR for completely different reasons
than those which these commands are often used for.) And another
reason for the marathons to show that a CAS should better be a system
of tools that enables us to program our tools, with which we program
other tools, and so on. It shouldn't be a fixed system, that provides a
lot of functions but makes it difficult to make new ones according to
our needs.

It is late at night and my eyes approach their condensation point.
(Sleep.) So let's end this part with the description of what comesin the
next part. We are going to give the answer to the question of the
example sequence in the manuals of the Tl, we are going to examine
the monotony behaviour of sequences and also take a closer look to
some sequences that appear quite often. We are also going to take a

closer look to some particularly nice sequences and check what the
HP49G provides to help us work with them. Then we are going to
examine some of theimportant rules about sequences, like for example
limits of sums, differences, products and quotients of sequences and
the like.

Converging to sleeping state | send you the nth member of the
greetings-sequence, which | expect you to convert to its analytic closed
form ;-)

Nick.
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Good morning everybody!

After a looong sleep of about one and a half weeks faaar faar away
from home, | return to Mathlands fully recovered and with a fat cold
that | caught who knows where. | tell you, my nose was one of those
super strange manifolds that don't fit in any other space except their
own! It is a very big advantage of Mathlands that you never catch a
cold no matter how long you wak on the paths of the marathon
adventures. (Eventually occurring psychic diseases are completely
different problems ;-))

We had a special appearance of the Tl in the last episode of this
marathon, where we looked closer a the sequence

%T(n) =T(n-1)- Th-1, 5 {T(0) :1oo}§ which the T1 can

plot out of the box, while the HP49G can't do much with it, even
equipped with our programs. Of course thisis unacceptable and so we
are going to teach the HP49G to wipe this hubris out of the world. ;-)
If we could expand RCR->ANL so that it returns an analytic closed
form of the above sequence, then we would have done afirst step in
the right direction. So let'slook at this sequence a bit closer again. We

can rewrite it as;iT(n) = :—23 *T(h-1+50 {T(0)= 100}%. Now we

see that it can be expresssd more generaly
{T(n) =b*T(n- )+c {T(0)= a}} , a, b and ¢ being arbitrary
constants. We try to get the generating function of the beast:

as

¥ ¥
GF(X)= @ T()*X"=a+g T(n)*X" =
n=0 n=1
$ 3
a+a (b*T(-D+c)* X" =a+a@ b*T(n- )*X" +c*X" =
n=1 n=1
¥ ¥

a+b*q T(n- D*X"+c*q X" =

n=1 n=1

¥ ¥
a+b*X*q T(n- P*X"t+c* § X" =
n=1 n=1

¥ ¥
a+b*X*§ T)* X" +c* § X" =

n=0 n=1

a+b*x*GF(X)+c*§ X" - 12:

=0

¥
a+b*X*GF(X)+c*Q X"- ¢ =

n=0

a- c+b*X* GF(X)+ cr 1
1- X

means

. 1
Which that GF(X)=a- c+b*X*GF(X)+c*1 X
SOLVEing thisequation for GF(X) on the HP49G we obtain:

(a- c)*X-a
b*X*- (b+1)* X+1

GF(X) = -

Now, let's expand the right hand side to a series about X =0 and try
to "guess' the general dependence of the coefficientson a, b and c.
(a-c)*X-a
b*X*- (b+1)* X +1
remains on stack level 1. Enter X =0 and 5 and then press SERIES.
After a few seconds the HP49G returns a list on stack level 2 and

h = X on stack level 1. Press SUBST and then 3 GET to extract the

series expansion from the list. Press DTAG to remove the label
"Expans' from the series. Now you have on stack level 1.

Press EQ-> and NIP so that the expression -

(bs*a+c*b4 +c*b® +c*b’ +c*b+c)*X+...
+(b*a+c)*X+a
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Now comes the difficult part of "guessing" how the coefficients of the
powers X" depend on a, b and ¢ . We observe that all coefficients
are the sum of two expressions. The first is b"* a. The second is

1l
c* é b’. So each summand of the the series expansion can be written
j=0
2 51§
as: ¢b"*a+c* g b'~*X". Fortunately the HP49G can calculate the
e

j=0

] IO

n:1 1l
symbolic sum g b'. If you enter & b’ and press EXPAND, the

j=0 j=0
bl'-1

. Now we now that the coefficients of the

lo" - 1

powers X" areb"*a+c* 1 And since these coefficients are

HP49G answers:

themselves the members of th(-a sequence, we have the analytic closed

form T(n)=b"*a+c* %11 So RCR->ANL can be extended to

also handle with ) recurrences of the type
{T(n) =b*T(n- )+c {T(0)= a}} .| leave this as an exercise for
the interested reader, saying only that the SEQTY PE has to recognise

this type of the sequence and RCR->ANL has to convert it to its
analytic closed form.

We move on now to another property of sequences, the monotony. A
sequence is monotonically increasing iff any of its members is greater
than its predecessor, which meansthat a, > a,_,. It ismonotonic non
decreasingif a, ® a,_,. A sequenceis monotonic decreasing iff any of
its members is less than its predecessor, which meansthat a, < a, ;.
It isonly monotonic nonincreasing if a, £ a,,_,.

How could we make a program which tests the monotony of a given
sequence? Well, generally speaking, it looks like such a program

should have to do with EXPANDInNg the inequalities like the above
a,®a,,, a,£a,,andsoon.If theresultis1, then theinequality is
true. If itisO then it isfalse. But we must do a bit of additional work.

First of all we must do the above for each specia case that SPCASES
returns. If we deal for example with the sequence %l% {n 1 ¥}g

then SPCASES returns i i % {n 1 ¥ }gﬁ which contains only one
|
case, so the method of the above paragraph can be applied directly. But

if we have to do with‘{l(- P03 m g ¥}g,thenSPCASES
: 1l ., n+3 0 j,,Nn+3 (g
will return - 1* > {n 1 ¥}% %1* 2 {n 2 ¥}¥%’

that is two cases of which one rises and the other falls. We could be
inclined to do the following: Apply the method of the previous
paragraph to each case and then we follow the schema:

M ethod that doesn't always wor k

If for each special case: Then the sequence

a,>a, Monotonic increasing
a,®a,, Monotonic non decreasing
a,£a,, Monotonic non increasing
a,=<a, Monotonic decreasing

But this will not always work. We can understand this better if we
follow a ssimple hypothetical example. Let's suppose that we have a

sequence that has the following recipe: a, = % if nisodd, and

1 ., . :
a, = CrT if n iseven, and with n=12,3,--- Thefact that we can't
easily find an analytic closed form for this sequence is not important
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here, as we only need the reason why the above algorithm wouldn't
1

2*n

always work. Each special case, a, = % forodd n,and a, =

for even n, ismonotonic decreasing if taken aone for itself. But both
special cases taken together form a new sequence which neither
increases nor decreases. So we must think of a different method.

0,91
0,81
0,7 1
0,6 1
0,5
0,4
0,3
0,21 .

0,11 . ¢ .

Notice how the differences of the specia case behave and you're on
the right way. We have a, - 8, <0, a,- a, >0, a, - a, <0, and
so on. That means, instead of checking each specia case for itself, we
must check the difference of each pair of "adjacent" special cases.
These differences are the quantities which must be al positive, if the
sequence is non decreasing or negative if the sequence is non
increasing.

Last but not least, we must make the appropriate assumptions because
many (most?) of the inequalities that appear, can only be solved if the
HP49G knows some assumption about the index variable. Consider

| 1 .
forexamplethesmplesequence}la {n 1 ¥}§.To|etaprogram

decide if it increases or decreases, we must first check if %> ni+l

holds. Let's try that. Enter 'n' and use UNASSUME to remove any
: : . 1 1
assumptions about n. In the equation writer type ] >~ 0 and

press ENTER. Press now EXPAND. The result is the inequality
itself, as the HP49G can't decide if it holds or not. And it does the
right thing, because the inequality holds only for n<-1or n>0.
We didn't specify what n is, so the HP49G tells us that under such
conditions no answer can be given. But now let's tell the confused
machinethat n startsat 1 and goesto infinity. Enter n3 1 and press
ASSUME. DROP and EXPAND. Oops, nothing happens! The
HP49G can till not answer. The HP49G seems to be only able to
solve inequalities containing £ or 3, but not < or >. (And that
means even more additional work, grrrrrr!!) But now, enter

1 1 .
o n+13 0 and press EXPAND. Ahal The HP49G says 1, which
means that the inequality holds. If you now enter 'n', press
UNASSUME, DROP, then -- 3 0 and then
n n+l

EXPAND, then you get again the inequality as result. That means: It
seems to be better to use the range of the index variable to make the
appropriate assumptions, and then expand the inequalities
a,,-a 30andora,,-a, £0,butnot a,, - a,> 0 or
a,,; - a, <0.But then we can only find if the sequence non
increasing or non decreasing. How could we find if it increases or
decreases monotonically? Well, one way to do that is to just solve
a.,, - a, =0 for n. For example we have already seen that for the

re-enter

sequencei% {n 1 ¥}g theinequality holds: % 30.1f we

n+1

try to solve % ni+1 =0 for n, then the HP49G returns an empty
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list, asit wants to tell us that there is no solution. That means that the shows some other behaviour.

1 1 .
"equals’ in o n_+13 0 isnever true, and so we know that

% - ni+1 > 0 holds, which means that the sequence not only falls, but

it also falls monotonically.

The following program implements these idess. It takes a sequence as
input and returns its monotony behaviour, coded as in the following
table.

Sequence Result
Monatonic increasing 2
Non decreasing for sure and perhaps 2.1
monotonic increasing

Non decreasing 1
Constant 0
Non increasing -1
Non increasing for sure and perhaps ?:-1
monotonic decreasing

Monotonic decreasing -2
Nothing of the above 3
Can't determine monotony behaviour ?

Note that the two last rows in the above table are different results. The .

last row tells us when the HP49G can't find what happens, for
example because it can't solve some inequality. The row before the last
tells us that the sequence is not ascending and not descending but

of speci al

PUSH SPCASES

"Determ ne differences
cases" 1 DI SP
DUP HEAD OBJ-> DROP OBJ- >
DROP UNROT 5 PICK SIZE R->I
+ ROT 3 ->LIST 2 ->LIST 1
->LI ST +

1

<< OBJ-> DROP SWAP OVER
HEAD DUP NSUB 1 - R->I +
= SUBST SWAP 2 ->LI ST >>

DOSUBS
DUP HEAD 2 GET ->
i nitcond
<< 1
<< HEAD >>
DOSUBS DLI ST
EXPAND
1

<< initcond 2 ->LIST
>>

DCOSUBS

>>

1

<< OBJ-> DROP OBJ-> DROP
-> seq var | o hi
<< var UNASSUME |o 3

ASSUME DROP -103 CF
" Checki ng An>=An+1
1 DISP seq 0 £ EXPAND
" Checki ng An<=An+1
1 DISP seq 0 2 EXPAND
" Checki ng An=An+1
1 DISP seq 0 = var
| FERR
ZERCS

@i nd speci al cases

@\dd difference of |ast
@peci al case minus first
@pecial case with the
@ppropriate indices.
@WwWhy do we have to do
@that?)

@o to each special case
@ubstitute n=n in first
@pecial case, n=n+l in
@econd, and so on

@t index range of first
@peci al case, store |ocal

@t each special case
@i fference of spc. cases

@o to each difference

@Convert it to spc. case
@vith initial condition
@f the first spc. case

@o to each spc. case

@mke assunption

@xpand inequalities

@ry to solve An=An+1
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THEN
DROP2 { NOVAL }

ELSE
{} + @mbke sure we have a list

END @f sol utions

CASE
" Checki ng uneval uat ed

i nequalities" 1 DISP PICK3 @n case the HP49G didn't

TYPE 9. == PI CK3 @xpand the inequalities
TYPE 9. == AND

THEN
3 DROPN O O / @eturn ?

END

" Checki ng const ant
" 1 DISP PICK3 PI CK3 AND OVER @n case the solution
00/ POCS OR @f An=An+1 returned ?
THEN
3 DROPN O
END
" Checki ng nonot ony
"1 DSPDUP{} SAME @n case no solution of An=An+l
THEN
I F @f An>An+1
Pl CK3
THEN
3 DRCPN -2
nonot oni cal |y
ELSE
3 DROPN 2
nonot oni cal |y
END
END
DUP NOVAL POS @n case the HP49G coul dn't

@ have a "constant" seq.

@hen it decr eases

@l se it i ncr eases

THEN @ind if An=An+l1 has sol utions
| F @f An>An+1 return 3
Pl CK3
THEN
3 DROPN -3

ELSE
3 DROPN 3 @l se return -3
END
END
DUP NOVAL PCs NOT @rase the HP49G found
THEN @ol uti ons of An=An+l
I F @f An>An+1
Pl CK3
THEN
3 DROPN -1 @hen non increasing
ELSE
3 DROPN 1 @l se non decreasing
END
END
END
var UNASSUVE DROP  @Renpve assunptions
>>
>>
DOSUBS - > nl st @tore results locally
<<
CASE

" Checki ng unsol ved

inequalities" 1 DISP nist @\ny ? appeared?
00/ PCs
THEN
00/ @Return ?
END
" Checki ng nonot oni c
increasing” 1 DISP mst 1 @ 2?
<< 2 == >> DOSUBS 1 +
<< AND >> STREAM @ ncreasi ng nonotoni cally
THEN
2
END

"Checki ng eventually @Il 3?
nmonot oni ¢ i ncreasi ng"

1 DISP mst 1

<< 3 == >> DOSUBS 1 +
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<< AND >> STREAM

THEN

7?2001

END

" Checki ng non

THEN

1

END

1 DI SP m st

@ncr.

eventual Iy nonot.

1 @ 1?
<< 1 == >> DOSUBS 1 +
<< AND >> STREAM

@\on decr easi ng

" Checki ng const ant

1 DSP nmst 1

<< 0 == >> DOSUBS 1 +
<< AND >> STREAM

THEN

0

END

" Checki ng non

1 DI SP ni st

@hen

1

<< -1 == >> DOSUBS 1 +
<< AND >> STREAM

THEN

-1

END

@l 07
"constant"”
@l -1?

Then non i ncreasi ng

"Checki ng eventual ly

nonot oni ¢ decreasing” 1 DISP nmst 1

<< -3 == >> DOSUBS 1 +
<< AND >> STREAM

2?0 -1

END

@ecr easi ng

" Checki ng nonot oni c

decreasing” 1 DI SP mi st

1

<< -2 == >> DOSUBS 1 +
<< AND >> STREAM

THEN

-2

@hen nonot .

@1 -37?

eventual Iy nonot.

@1 -27?

decreasi ng

END 3
END
>>
POP
>> CONDENSPT

Store this in +
SEQMONTY
(or use the
program  that
comes aong
with this
document). |
think that there
is not much to
explain  here,
except that we
use the fact that
the HP49G will
return a ? for
an equations or
inequality that +
has an infinite

number of
solutions, like

for  example *

RCR->ANL GENFUNC

SEQTYPE

n=n.

->TERMS

Before we test FDISTRS
the program,
let's update the
building of programs for sequences. It starts looking like modern art,

doesn't it?;-)

Now let's test it. We start with something easy. Enter the sequence
1 }
i?\ {n 1 ¥}\E and press SEQMONTY . In about 17 seconds you
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get a- 2 for amonotonic decreasing sequence.

oy

Enter the sequence i
i

.
{n 1 ¥}I\’;andpressSEQMONTY.The

HP49G needs 61.5 seconds to return a 3, which means that this
sequence is neither monotonic increasing or decreasing nor non
increasing or non decreasing.

] 3*n+l

2 *n+2
about 20 seconds the program returns a 2 for amonotonic increasing
sequence.

Enter |

{no ¥}g and press SEQMONTY again. In

We move on to Fibonacci. Enter the recurrence sequence
{F()=F(- )+F(n- 2) {F(0)=0 F(1)=2}} and press

SEQMONTY. The HP49G goes al the way from the 5th floor of the
building down to earth and up again while it flashes its messages to
you in about 3 minutes (!) and it returns ?:1to show you that this
sequence is for sure non decreasing and perhaps also monotonic
increasing. In fact it is only non decreasing, but the HP49G converted
the recurrence to its analytic closed form:

_ &- ..n ..n
F(n)= \/5*9_ 1+‘/§Q +£*§.+\/§Q
5 e 2 9 5 e 2 o9
Then it tried to solve:
V5L -1+ +J55 J5,. 8+ J55 _
5 e 2 O 5 e 2 @
_‘/g*éa 1+\/§Qn+1 E éﬁ_ 59n+1
5 e 2 O 5 e 2 o

It couldn't find some solution of the above equation for n and so it
said: Master, | can't solve that but perhaps some solution exists, so |
tell you that if such a solution exists, the sequence is non decreasing.
But if none exists, then it is monotonic increasing. Hence the question
mark in front of the returned 1.

Try other examples and don't forget to blame it on me when the
program crashes ;-)

One of the sequences that occur quite often is the arithmetic sequence.
Its analytic closed formis (in our notation): {a0 +n*d {n 0 ¥}}

and its recurrence {a(n) =a(n-1)+d {a(0) = aO}} . Itsinteresting

to see if RCR->ANL can handle this. Enter the recurrence and press
RCR->ANL to see that it does and it returns the sequence
{a0+n*d {n 0 ¥}}.Theconstant d isthe difference between

each pair of adjacent members. This sequence is called arithmetic
sequence, because any member of the sequence is the arithmetic mean

H H H . — a'n—l + an+1 H
of its previous and its next member: a, = T.Thlsalso
defines arecurrence. Solving for a,,,, wegeta,,, =2*a,- a,,. Can

we feed RCR->ANL with this recurrence? Let's try. We must change
index because RCR->ANL expects the member with the single index
n without anything else on the |eft hand side of the recurrence equation
and al members with smaller indices on the right hand side. So we

enter {a(n) =2*a(n-1)- a(n- 2) {a(0)=a0 a())=a0 +d}}.
Pressing RCR->ANL returns { c2*0"+c2*0" {n © +¥}}

which is... wrong! Panic spreads and Nick runs to save his life. But
while running he is till thinking about the problem, such an
psychomath he is ;-). Suddenly he changes direction and runs back
shouting "I know why it failed!". And he proceeds with his
explanations, which nonetheless can't excuse him.

Therecurrence a(n) = 2* a(n- 1)- a(n- 2) isfirst transformed by the
program to the characteristic polynomial X*- 2* X +1 which has the
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solutions X =1, X =1. Then the genera linear combination

C1*1"+C2* I' isformed and the program tries to solve the linear
System:

crr1’+c2*1°=a0
Cr*1'+Cc2*1r=a0+d

for C1and C2, which of coursefails! LINSOLVE returnsin this case
[C1: -C2 1= O] . The"solution" 1= 0 shows that we run into

troubles, which are caused by the two roots X =1, X =1 of the
polynomial.

The method of the characteristic polynomial doesn't work in this case.
And since it is always better to return no results instead of the wrong
results, we can just use the "impossible solution” 1= 0 to detect that
something went wrong. In genera we have to just check if all
solutions contained in the returned vector are "possible” or not. But
before we do that we must examine what "equals’ means for the
HP49G.

First of all the HP49G has three "equals'. The first is the normal =
which we use in equations, and plays a different role according to how
we manipulate the equation. If we solve some equation for a variable,
then the sign = playsthe role of a proposition. The commands of the
HP49G that solve equations consider the sign = as a proposition. That
means, they search to find for what values of the variable to solve for
the equation holds. The opposite happens for equations used for
SUBSTItutions. SUBST consider the equation on stack level 1 to be
an identity. That means, an equation which holds aways.

Then we have the command ==. Thisisan "equals" that resembles a
boolean operation. It simply tries to evaluate left and right hand sides
and check if both sides are equals. This command can return a 1 for
"yes', a 0 for"no", or the symbolic expression
leftHandSide==rightHandSide if no complete evaluation is
possible. The command == can also return 1if noevauationis

necessary. For example using == with the two arguments X +Y and
Y + X, will return equals even if no values are stored in variables X
and Y.

The third "equals’ isthe command SAME. Thisis a"stronger equals’
than ==, because it checks if two given objects are completely
identical, not in their mathematic sense, but in their "computera”
sense. For example using SAME for X +Y and Y + X will return O,
because the two expressions are not identical for the HP49G. (The
HP49G represents them using different bit patterns.)

The progran RCR->ANL can be corrected now, to return
{? {n 0 +¥}} instead of wrong results, when the vector returned

by LINSOLVE contains "impossible" things. We simply replace each
= in the vector of solutions to ==, we expand, and if the result is 0,
then we useit further. Wereplaceit withal, if itis1 or if it isof type
9 (symbolic expression), because then there will be (hopefully) some
valuefor C1, C2 etc. that satisfies the equation. The corrected codeis:

uc AXL LI NSOLVE
" Checki ng sol utions”
1 DISP DUP AXL 1
<< { ' &A=&B
DROP EXPAND
I F
DUP TYPE 9 ==
OVER 1
THEN DRCP 1
END
>>
DOSUBS
1+
<< AND >> STREAM
I F
THEN
"Substituting sol utions"

==&B' }  MATCH
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1 DI SP UNROT DROP2

AXL 1

<< SUBST >> DOSUBS
ELSE

4 DROPN O 0 /
END

The program that comes along with this document contains the
corrected code, so you don't need to type anything. Perhaps you
didn't even notice this problem, if you already have installed the
programs at the start of this part.

Enter {a(n) =2*a(n-1)- a(n- 2) {a(0)=a0 a())=a0 +d}}
and press RCR->ANL again. Theresultis {? {n 0 +¥}}, which
the HP49G usesto tell you that it can't solve this problem. If you enter
{F()=F(- D+F(n- 2) {F(0)=0 F(1)=2}} and usethe
corrected RCR->ANL again, then you get the result:

.5, @
i §-
5 &

A

-1+J58  J5_ @+J58

;
0 +¥ly
2 o 5 ¥y

e 2 @ p

which shows that the program still remembers what to do when the
method of the characteristic polynomial works :-)

WEell, if RCR->ANL can't help then perhaps the program GENFUNC
can help us. We could find the generating function of the arithmetic

sequence {a(n) =2*a(n- 1)- a(n- 2) {a(0) =a0 a(1) =a0 +d}},
then expand it to a series around X = 0 and then try to "guess' the
analytic closed form of the coefficients. We enter the sequence

{a(n) =2*a(n-1)- a(n- 2) {a(0)=a0 a(1)= a0+d}} and
(X +1)* a0 +d* X
X% 2% X +1

press GENFUNC to get the result GF = . 1f you

(X +2)* a0 +d* X

to aseries around
X2 -2*X+1

expand the right hand side

X =0 you get:
a0+(3*a0+d)* X+ (5*a0+2*d)* X*+(7*a0 +3* d)* X° +...

which is.. again wrong!!! Instead of this it should be
a0 +(a0+d)* X+ (a0 +2*d)* X*+ (a0 +3*d)* X°> +---. Again,
Nick must run for hislife ;-)

Let's follow what the program GENFUNC did but this time the
mathematic way.
3
First it constructsthe sum @ a(n)* X" . Since we know that the initial
n=0
conditions are a(0) = a0 and a(1) = a0 +d, we can extract these
¥
summands from the sum and get a0 +(a0+d)* X+8 a(n)* X".
n=2
This is also carried out correctly by the program. Then the program
plugs the recurrence definition a(n) = 2* a(n- 1) - a(n- 2) inthe sum
¥
and yields a0 +(a0+d)*X+8 (2*a(n- 1)- a(n- 2))* X". OK.
n=2
Then the program uses FDISTRS to convert the sum and to yield
¥ ¥
a0 +(a0+d)*X+8q 2*a(n- )*X"- § a(n- 2)* X" whichis

n=2 n=2
also carried out correctly. After this the program gets all sub
expressions that are summations and returns the list
N ¥ ¥ I
{4 27ah-)*X" §aln-2)* X”i which it will use for
| n=2 n=2

extracting common factors and powers of X. By doing thisthelistis
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N ¥ ¥ .e
converted to  [2*X* & aln- )* X" X°*§ afn- 2)*X”‘2§
| n=2 n=2
which is also OK. Then the new summations are substituted in the
original expression giving us the result:

¥ ¥
a0+ (@0+d)*X+2*X*q 2*an-1)*X" - X’ *§ a(n- 2)*X"?
n=2 n=2

which is also correct. But then the program is too naive. It smply and
erroneously MATCHed any sum with the generating function GF,

giving the result a0 + (a0 + d) * X+ 2* X * GF - X**GF . From this
¥
time on everything went wrong. The sum & 2* a(n- 1)* X™* can't

n=2

bejust replaced by GF because:

which means that it has to be replaced by GF - a0. And that means
that Nick hasto type again. Grrrrrr!!

The corrected program first determines how the sum, like for example
¥

a 2*a(n- 1)* X™* can be converted to asum in which the

n=2

coefficient and the power of X areonly n and not n- 1 or any other
expression. It just "re-numbers’ the coefficients and powers by putting
adifferent starting value for the index n in the sum. So it constructs

¥
a 2* a(n)* X". Then it checks to see what initial members must be
n=1

subtracted from the sum if the sum has to be written as

¥
a 2*a(n)* X" andit finds that

n=0

=a2*a(n)*Xx"=gq 2*a(n)* X" -a0 =GF- a0 "

¥ ¥
a 2*an)* X" =Q 2*a(n)* X" - a0. Thissum s put back to the
n=1 n=0

original expression and then the replacement by GF can be carried out
because now we have the right sum. The second sum is treated the
same way .

The old code was:

"Substituting new

series
"1 DI SP
2 @ubstitute old with new
<< 2 ->LIST @eries
~ MATCH DROP
>> DOLI ST

"Substituting
generating function
1 DISP @ut G- where the suns are
{ " S(&N=&L, &U, &F( &n) *X~&n)' GF }
~ MATCH DROP
"Sol ving for
generating function
"1 DISP
G- = GF SOLVE

@ol ve for GF

This codeis replaced by:

DUP 4 ROLLD 2 @mbke a copy of new sums
<< 2 ->LIST  MATCH DROP >>

DOLI ST SWAP

"Series index change,
init. cond. insertion
"1 DSP

1

<<
{ ' S(&N=&L, &U, &S) *&F' @t sum wi thout factors
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' S(&N=&L, &U, &S)" }

" MATCH DROP
DUPDUP
{ ' S(&N=&L, &U, &F* &X1&O)

" MATCH DROP SWAP OBJ- >

&0 }

DROP2
-> pow ind lol upl sum @tore power of X, index
<< ind O upl @ upper, |ower sum
sum pow i nd 2 @um i ndi ces and sunmand
->LI ST
- MATCH DROP
{ S} + ++ +\->ALG @hbke sumwi th | ow=0
bcond 1
<< EQ > SWAP
OBJ- > DROP2
I F @f init. cond. has index
pow @ower than start of sum
ind lol =
SUBST
EXPAND <
THEN - @hen subtract
ELSE @l se drop
DROP
END
>>
DOSUBS @O to each init cond
2 ->LIST
>>
>> DOSUBS @o to each sum
"Substituting new
series
"1 DSP1

<< MATCH DROP >> DOSUBS
"Substituting

generating function

" 1 DISP { ' S(&N=0, &U, &F( &n)* X" &n)'

" MATCH DROP

G-}

"Sol ving for
generating function
"1 DSP GF = GF SOLVE

Again the program that comes with this document is already corrected,
S0 you might not see the above erroneous result.

We test the program again. Enter the arithmetic sequence
{a(n)=2*a(n- 1)- a(n- 2) {a(0)=a0 a()=a0+d}} and
(X-1)*a0- d* X
X2 - 2*¥ X +1
to aseriesaround X = 0 returns a0 +(a0+ d) * X+ (a0 +2* d)* X* +-.-.

The program till works with the recurrences it already handled
correctly. For example you still get the generating function

GF:-ZL
X°+X-1

press GENFUNC to get GF = -

, which expanded

for the Fibonacci recurrence.

So the simpl e arithmetic sequence with itstwo recurrence forms hel ped
us find errors in the programs (and put Nick's life in danger ;-)). But
with the help of the HP49G Nick survived and can continue the
Marathon. | tell you, mathematics can be really dangerous ;-)

Now that the dangers seem to be far away, let's continue on the
arithmetic sequence. If for a given arithmetic sequence we have three
of the four variables of its analytic closed form a, = a, +n* d, then
we can solve for the remaining variable. for example, if we know that
a, =10, a, =0 and d = 2, then we can solve for n and find

n_an-aO ~10-0
d 2
and n=2 then we can solvefor d and find d =a”;]a0 =132' 1=6.

We can make a program that takes a,,, a,, n, and d from the stack
and solves for the first unknown parameter:

=5. Similarly if we know that a, =13, a, =1
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<<

->an a0 nd @tore in |local variable

"an=a0+n*d' @efining procedure

DUP LNAME @Return vector of nanes

I F
DUP TYPE 5 == @f no names present

THEN
DROP2 COLLECT @check if sequence is possible
NOT EVAL

ELSE @l se solve for first variable
1 GET SOLVE @n nanes vector
2 ->LIST

END

>>

Store thisin SOLARSEQ (or just get the program that comes with this
document). The program works the following way:

First, all arguments are stored in local variables. The defining
procedure of these local variables is the part ' an=a0+n*d' . These
variables exist only within this algebraic object but not afterwards.
Y ou remember of course that one type of alocal variables procedure
definitionis:

<<
-> argl arg2 ...
"al gebrai coj ect’
>>

@tore in |ocal variable
@efining procedure

wherethe ' al gebrai cbj ect' contains ar gl and/or ar g2 €tc. This
object is evaluated using the input values of the local variables. Now,
there can be additional commands/functions after the algebraic object,
but these can't use the input values of the local variables anymore, as
the defining procedure has already been finished. We use this kind of
local variables structure only to automatically evaluate the equation
"an=a0+n*d' and work with the evaluated equation afterwards.

After thisthe program checksto seeif there are namesin the evaluated

equation. For example the user many have entered 10, 0, n and 2. In
this case the program solves the equation' 10=0+n*2' for the variable

n and returnsthelist {10 =n*2 n =5} which containsthe

evaluated equation and its solution for n. If the program finds no
names, then it uses the evaluated equation to check if the equation
holds or not. For example. if the user enters 10, 0, 3, 2 thenthe
program will return O becausetherethe equation' an=a0+n*d'
doesn't hold for the given values. But if the user enters 10, 0, 2, 5
then the program returns 1, because these values satisfy the equation
*an=a0+n*d' . Thisis one way to solve equations with many variables
automatically for that variable for which no numeric value has been
provided, without using the built-in numeric solver.

We continue with the arithmetic sequence. One recurrence definition of
this sequence was {a(n) =an-1)+d {a0) = aO}} . This already
shows that the difference between adjacent pointsis constant and equal
to d. We can aso demonstrate this on the HP49G. We enter the

analytic closed form a0 +n*d, and thenenter n, 0, 9, 1. Thenwe
use the command SEQ to create the sequence

{a0 a0+d a0+2*d a0+9* d}. Now we can use the

command DLIST to find a list containing the differences a, - a,,
a, - a, -, a4 - ag, that isthefirst differences of the elementsin the
lis. If we EXPAND then we get {d d d d}, which
demonstrates (but doesn't prove at all) that all differences are the same.

We can generalise and also consider the differences of the differences,
then the differences of the differences of the differences, and so on.
We name such differences, first differences, second differences and so

on. If we encounter some sequence whose nth differences areall equal
to each other, then we say that the sequence if an nth order arithmetic
sequence. Consider for example the sequence {n3 {no ¥}} ts

first few members and differences D', D* and D® are summarised in
the table on the next page.
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n 0 1 2 3 4 5 6
n’ 0 1 8 27 64 125 216
D' 1 7 19 37 61 01

D 6 12 18 24 30

D’ 6 6 6 6

We can see that the third differences are all the same, so the sequence
n {n o ¥}} isathird order arithmetic sequence.

Y ou can find the 3d differences on the HP49G. Enter n®, n, 0, 10,
1. Then press SEQ. Now, if you press three times DLIST, then you
get a list containing only sixes, which demonstrates that

{n‘°’ {no ¥}} is an arithmetic sequence of third order.

At this point we make a small excursion to the future calculus
marathon and we notice the resemblance of the behaviour of the

differences and differences of differences etc. of n® withthe
derivativesof n® with respect to n. The third derivative of n® isalso a

3 n3 ﬂZ r]2
constant: (n3 ) =3 ﬂ(r12 ) =3*2* %:) = 6. Thedifferences are
the discrete analoga of the derivatives. End of excursion, back to the
main path.

Asyou might have guessed, the next thing that we do is a program that
finds the nth differences of a given sequence at a certain point. For
example we consider again the sequence {n3 {no ¥}} . Let's say

that we want the 2nd difference. This is not enough information
because as we can see on the following table, the second difference
depends on the members that are subtracted from each other, or in
other words the index n. We seethat it isnot so easy to say which

difference belongs to a specific point. For example, which is the

second difference of the point (n+1)°? To avoid confusion we can
make the convention shown with arrows on the table, according to

which the point (n+1)° corresponds to the 21d difference 6* n+12.

n n n+1 n+2 n+3
n (n+1)° (n+2)’ (n+3)°
D' 3*n? +3*n +1 3 1’ +9*n+7 3*n? +15%n +19

b 6* n+6 6* n+12

Now we can also specify the point of which we want to have the 2nd
or any other difference.

Theprograminitsfirst implementation will only try to find differences
if the sequenceisinitsanalytic closed form, or if it can be converted to
such aform. If such a conversion is not possible, it will smply return
?:? to denote that the differences can't be found because no analytic
closed form can be found. The program also will check if the
difference that we want to have doesn't depend on the index n, or in
other words, if it remains the same no matter which point we specified.
If thisisthe case, then it will return the result as =D, where D isthe
found difference. The result will then be tagged with = to denote that
the difference is the same everywhere. If the difference does depend on
n, then the result will be returned as n:D, where n isthe specified
point. And if Nick'sistoo stupid to explain what he means by all this,
then don't worry, you'll understand as soon as the first examples will
be calculated. ;-)

How are we going to prove, if some difference doesn't depend on the
specified point n? Good question as we can't sit and calculate if the
difference remains the same for all possible values of n. But, thereis
something in mathematicsthat carries the name perfect induction. And
thisis what we will use here. It sounds like: Prove that something is
valid for some n. If you then can prove that it also holdsfor n+ 1 then
you win because then it holds for any n. The question of courseis
then, how can we now for what n this"something" ( namely, if the
wanted difference doesn't depend on n ) holds? We need that n, or
else we can't find n+ 1. The answer to the question is, do wereally
need aspecial valuefor n? Perhapsit is better to give an example here.
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We have already seen per demonstration that the third differences of ~ THEN

{n3 {no ¥}} areall 6. (It was no proof, but now we will proveit DROP 1 SF @rop sequence, set flag 1
. . . . ELSE @l se
with the HP49G.) If we want to prove that with perfect induction, then I E @f it returns a list with ?
we must prove first that for some arbitrary n the statement istrue. We DUP 2 POS
need at least four points because we want the 3rd differences. If we THEN
start at some arbitrary n, then the next 3indicesare n+1, n+2 and DROP 1 SF @rop result, set flag 1
n+ 3. The corresponding members of {n3 {n 0 ¥}} arethen n’, ELSE

5 5 5 _ . . NI P @l se drop sequence
(n+1°, (n+2)” and (n+3)°. Letsmake alist with these points. END

3 . END

Enter (n+m)>, m, 0, 3 and 1. Now press SEQ to get the list of > ord pt seq @tore in locals
points: <<
{n3 n3+3*n2 +3*n+1 n3+6*n2+12*n+8 n3+9*n2+27*n+27} |F1 e @f flag 1is clear

THEN @hen we determne the nth

Press DLIST and then EXPAND to get the list of the first differences "Deternining " ord +

{3*m+3*n+1 3*n* +9*n+7 3*n’ +15*n+19}. Again
DLIST and EXPAND to get the list of the second differences difference for n=nt + @ifferences for n=mand n=ml

% % 1 DI SP seq OBJ-> @ubstitute n=n+m and nmake a
{_6 n+6 6 n+_12} Finally anotherDLIIST and EXPAND will DRCP OBJ-5 DROPZ  @equence for mestart to
give you a 6, which as you can see doesn't depend on n. Now we UNROT DUP 'mi +  @reor der +1
want to to do the same for n+ 1. Following the same procedure we = SUBST 'm ROT
enter (n+1+m)’, m, 0, 3, 1 and press SEQ. Then doing DLIST DUP ord + 1 SEQ
and EXPAND three times, we also get another 6, which shows that éTgéER SIZE 1 - @l cul ate differences, expand
the3 result is the &a_me for n+1. That means, the third dlfferenceqf DLIST EXPAND  @se TEXPAND to expand trigs
{n {n o ¥}} is constant for any other n and so the sequenceisa TEXPAND EXPAND
third order arithmetic sequence. NEXT
HEAD DUP Get nth difference, nmake a copy
Now, let's look at the listing of the program NDSEQ which takes a "Determning " Same again for n=m+l
sequence, the order of the difference and an index and does all the ord + "
above. difference for n=m+l" +
1 DI SP seq OBJ->
<< DROP OBJ-> DROP2 UNROT
PUSH 1 CF ROT DUP DUP 'ml + 1 + = SUBST
| FERR @f RCR->ANL errors out 'm ROT DUP ord + 1
RCR- >ANL SEQ 1 OVER SIZE 1 -

3-14



Sequences, series and limits with the HP49G - Part 3

START
DLI ST EXPAND TEXPAND
EXPAND
NEXT
HEAD == @oth differences the sane?
I F
DUP TYPE 9 == @f a==b results in synbolic
THEN
DROP 0 @lrop it and return O
END
I F @f test returned 1
THEN
"=" - >TAG @ag with "="
ELSE @l se
DROP @e calculate nth diff.
"Determining " @t specified point
ord + "
difference for n=" +
pt + 1 DISP @ane net hod as above for
seq OBJ-> DROP @=pt to n=pt+ord

OBJ-> 3 DROPN pt
DUP ord + 1 SEQ 1 OVER SIZE 1 -
START

DLI ST EXPAND

TEXPAND EXPAND

NEXT
HEAD pt ->STR ->TAG
END
ELSE
2 @f flag 1 was set return ?:°?
->TAG
END
>> PCP

>>

What's next after a program? Right, testing. Let's use the the sequence
{n3 {no ¥}} . Enter it and then enter 3 and O to find the third

difference at 0. Press NDSEQ and wait about 23 seconds to get =6 .
The program have found that this sequence is a third order arithmetic
sequence. Its third differences are all the same and equal to 6. Now,

enter {n3 {no ¥}},thena3 and a0 to find the second

difference at 0. The program returns 0:6 after 18 seconds. That means
that the second difference it 6 at the point O, but at other points you
will get other differences.

Try with Fibonacci. Enter {F() =F(n- 1) +F(n- 2) {F(0)=0 F@)=2}},
alandaO forthefirst difference at 0. Press NDSEQ. The program
uses RCR->ANL to turn this sequence to its analytic closed form and
then proceeds to calculating. After about three minutes (!) you get 0:1.

Last example. Enter inZ*SIN§4*n+J)*£2)2 {n o ¥}§ 2,1
|

and press NDSEQ. In 57 seconds the HP49G returns
=:(2* COS(2*n*p)). Now, as Veli-Pekka says, if the HP49G
offered some way to make assumptions about variables being integers,
it would be possible to get the result =:0. But without that, you just
stay at COS(2*n*p). Cest lavie :~(

Our collection of programs has grown again. Take alook at it on the
next page. NDSEQ uses the program RCR->ANL. We also see that
SOLARSEQ hovers alone over the whole building. (That's why it is a
solar program. It islonesome at thetop ;)

Now that we have NDSEQ, we think about having a program that
finds if some given sequence is an arithmetic sequence of some order.

That is, we give it asequence and it triesto find out if there is some nth
difference that doesn't depend on the index of the sequence. Thisisa
more difficult task. The program can of course build a limited number
of differences, but it can't know how far to proceed. If we just build
differences one after the other, then we may reach some point where al
differences are the same. But we also may never reach such apoint. So
we can't proceed that way. We reconsider the sequence and its
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SOLARSEQ
CONDENSPT
RCR->ANL GENFUNC
SEQTYPE
->TERMS FDISTRS

differences in general. Suppose we have some segquence a,, and we
deriveitsmembers a,, a,, a,, a,, and so on. Then we calculate the
differences a, - a,, a, - a,, a, - a,, and soon. Then we find the

differences of the differences,

that is the expressions

a, - a - (al' ao):az' 2*a, +a,,
asz - a, - (az'al):as' 2% a, +a,

and so on. We collect some of them on the table (next page), to get a
better overview of them. Now, you of course can at once see how the

coefficients of the members behave in the rth difference at the nth
point. If you don't then it doesn't matter, as you presumably haven't
seen a Pascal triangle yet. What is this Pascal triangle? That's very
easy. It is shown on the next-next page. Each number on this triangle
is the sum of the two numbers to the left and two the right above it.
The numbersthat are at the left or the right edge, are smply "the sum"
of only one number above them. For example, if we start counting

rows and members at O, then the 2nd number at the 4t row is 1+3=4.
Of course it would be atedious task to calculate the, say, 30th number

in the 60t row but fortunately there isan analytic closed form for this.

If we denote the row number with r and the position of the number in

the row with n (starting at 0), then the corresponding Pascal's number
!

is equal to m . Now you can see that these numbers appear

also in the differences of the previous table. For example, the third
difference at the second point was a, - 3*a,+3*a, - a,. The

coefficients of the members of the sequencein thisdifferenceare 1, -3,
3 and 1. They are the same like the Pascal's numbers 1, 3, 3, 1 at the
third row of the triangle, except for the sign. That means that we can

use the formula of Pascal's numbers for our general rth difference. We
can take care of the signs by just multiplying each Pascal's number
with (- 1), where n isthe position of the number in arow. The

coefficient of the nfh sequence member in the rth difference at the N™

!
point of the sequence isthen (- 1)" * m . The whole difference

is the sum of products of such coefficients with the corresponding
sequence members. Now we must find which are these corresponding
members. We try first an example for, say the third difference at the
second point. The sum will have the genera form
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< Point =
'A 0 1 2 3 4 5
j\ /\ /\/\/\a-/
\Ha{ S e N
N N

3 a, -3*a, +3*a, - a, a,-3a;+3"a, - q a;, -3*a,+3"a; - a,

AW SN

a,-4*a,+6*a, -4*a, +a, a; -4*a,+6*a, -4*a, +a,

N

-5*a, +10* a, - 10*a, +5* a, - a,

s [[f2t 2 N
(@) D

Third difference at
second point.

7 n ! . . . . = = = th i th i i
acy *—nl*(rr n)*a?, in which we must plug the right quantities N 2’rr 3 andn rIO,lZ,B.Ther differencet the ™ point s
n=0 . - — o} 1\« . % .. .
where the question marks appear. From the table of differenceswe see O\ QO( D n*(r - n)! 8;.n-n - THISIS Something that can help us

that this differenceis a; - 3*a, +3*a, - a, . So, theindex of a,  to calculate any difference of any sequence at any point. Let's first
goes from 2 to 5. That is, the index it has to be r+N- n,where define a function based on the above formula Enter
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use DrN the HP49G still needs 10.5 seconds.

Pascal's Triangle

° N\
/\/\

Py
N

0 1 2 3

Member

NN N
NN N

Not much better. Enter 'DrN' and press
VISIT. Change the program to:

<<
->r N
"S(n=0.,r,(-1.)"n*r!/(n!*(r-
n)!)*a(r+N-n))"'

>>

Noticethedecima pointinn=0. andin
(-1.)”n . PressENTER. The new version

is now stored in DrN. Enter 4 and 1 and

press DrN. Now you get the same result in
3.8 seconds which is much better. Now we
make the ugly result a bit better looking. Edit
the program again and add XQ as the last
command.

<<
->r N

4 "S(n=0.,r,(-1.)"n*r!/(nt*(r-
n)!)*a(r+N-n))' XQ

>>

a (-9

n=0

DrN(r,N) = *a(r+N- n) and press DEF. Now

rl
ni*(r - n)
let's find the 4th difference at the 1 point of the some sequence a(n).
Enter 4 and 1 and press DrN. The HP49G needs over 11 seconds (!)
to caculate the result a(5.) - 4* a(4.)+6*a(3.)- 4*a(2) +a(1.).
First thing to complain about is the long time it needs. Second thing is
that we supply integers and get results containing reals asindices. And
third thing is that it switches from real to complex mode. Let's try to
make the time needed a bit shorter. We enter 4. and 1 because we
know that calculations with real numbers are faster in sums. If we now

Now the program needs about 10 seconds to

giveyou the 4th difference at the 1% point of the sequence a(n). Grrrr!
What we gained through usage of reals we lose again through making
the result looking better. As a last resource, enter 4. and 1 and try

again. Fortunately now the HP49G needed only 4.2 seconds and

returned the result a(5)- 4* a(4)+6* a(3) - 4* a(2)+a(l). Not a
speed record, but better than 10 seconds.

Now that we have DrN we can calculate the rth difference of any
sequence at the Nth point. Of course the program DrN itself only
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calculates such adifference for a generic sequence whose membersare
denoted by a(index) whereindex iscalculated by the S function and
can a so contain the symbolic argument N. If we store some procedure
for calculating the membersin variable a then, when DrN is evaluated
the procedurein a will also be evaluated, letting DrN cal culate not the
difference of the generic sequence, but the difference of the particular
sequence a. For example, consider the sequence a, = n® with

n=0,12,---. A smple program to calculate some member of this
sequence would be:

<<
-> 'ph3
>>

If we storethisin a then entering 2., 1 and pressing DrN returns 12,
the second difference at the first point. Entering 2., 2. and pressing

DrN returns 12, the second difference at the second point. But if we

enter for example 2. and N, press DrN and EXPAND, then we get
6* N+ 6, the second difference at point N. The result clearly shows
how the second difference behaves as a function of the point N. If we
enter 3. and N, press DrN and EXPAND, then theresult is 6. It does
no more depends on N, the point at which we take the differences.
And so it is the same, constant, for all points. This shows us that the
sequence a, = n° with n=0,12,--- isan arithmetic sequence of third
order.

The next ideaisto try to find a particular integer value for r, so that

the sum ér_ ( J)"*;!* a(r +N - n) isindependent of N for
o ni*(r- n) h

some particular sequence stored in a. If we solve this, then this

particular value of r isthe order of the sequence and the sequenceisan

arithmetic sequence of order r.

To solve this we must make (again) an excursion at the land of the

Summoids and their customs. This is a sometimes fascinating,

sometimes confusing, but always interesting land. We are going to

explore if/fhow the HP49G solves such problems. Suppose for
N

example that you want to solve é n =10 for N. That means you want
n=0
to find how much n you must add, to receive theresult 10 . Can the

N
HPA49G solve this? Let's experiment. Enter é n =10, then N and the

n=0
press SOLVE. Rattle, rattleand result: {N =4 N = -5} . The solution

N =4 isplausiblebut N = -5?How was this result obtained? Well,

we must take a look at the workings of the CAS. The CAS has

detected a symbolic sum with integer arguments. When such athingis

detected, the CAS first tries to solve the sum, to turn it to its analytic
N

closed form. Thistime it was possible to do so. If you enter é n and
) nol\:lo
whichisthesamelike g n for
n=0
any N. Then thisexpression is put in the equation and the CAS tries
2

N
press EXPAND, then you get

now to solve N =10, aquadratic equation in N, which hasthe

above solutions. That's where N = -5 comes from. But because we
know that summing startsat n =0, we know that N3 0. If we make
N

this assumption before we solve é n =10, then we get only the
n=0

solution N =4 . This could be used to also solve our problem. But

there are difficulties. First of al, let's define precisely what we would

like to solve. We already said that we want to find such an r so that

9 n 4 o, .
- ——————*alr +N - n) isindependent of N for our
20( ]) n!*(r B n) ( ) ep
particular sequence. We jump now from our excursion to the future
marathon of calculus. When some expression isindependent of
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some variable, then mathematically that means that the derivative of
expression with respect to that variable equals O, or writtenin
_Yexpression

math language: _ = 0. Jump back to our excursion path.
fvariable
For us, this means that we want to solve
Q n
-1l *——=*alr+N-n
ﬂf’}o( ) ni*(r - n) ( )

=0 for r. And hereiswhere the

N
problems start. First of al the sum itself is too difficult to be aways
solvable by the CAS of the HP49G. Remember that a(r + N- n) can

be anything. In the above example with the sequence a, =n°,
n=0,12,---, wewould have to solve the equation

°r n 4 * _ 3
ﬂna;o(- Y ni*(r - n) r+N-n)

TN
has problems to solve this analytically. We must find another way.

= 0. Hopeless. Even Mathematica

Well, if analytic solving doesn't work, what about numeric? Can we
use numeric solvers for such problems at all? Again the experiment
N

will tell us more. We enter é n =10. (notice the decimal pointsfor
n=0.

faster numeric evauation), then N, the variable to solve for, and then a

guess value for the solution, say 0. Now we use the command ROQOT,

which is the programmable analogon of the numeric solver. Quite fast

N
the HP49G answers... 4.27272727302! Huh? Re-enter § n=10.,

n=0.

N, but now enter for the guessvalue 1 and again ROOT. Solution:...
4.53474750039 . Huh2? What is wrong here? Why not just 4? And

why different solutions according to what guess value we use? Well,
the reasons are buried in the way thefunction S works and in the way
the command ROOT works.

The function S will start evaluation the summand for n = start and

building the sum. For each next value of n it checksfirstif n>End
and if not, it evaluates the summand for the next value of n. When n
is greater than end, the sum is returned. For example, the above sum

4.27273727302
with end value 4.27272727302is Qn =10. becausethe

n=0.
function iterates n startingat O up to 4. The number
4.27272727302 isaready greater than 4, so the function stops at

4.53474750039

n= 4. Samefor 601 n = 10. or any other ending value between

n=0.
4 and 4.99999999999.

Now on to ROOT. This command takes the equation that we want to
solve, variates (systematically) the value of the variable to solve for,

and evaluates the equation until leftHandSide=rightHandSide or

until expression= 0. Asit (systematically) variates N in our
example, it doesn't know that it has to be integer, so it uses also real
values. Eventually it reaches N = 4.something which evaluatesthe
equation to 10 =10 and so it returns the found solution. The exact
value of the solution depends on where ROOT started searching, that
means, our guess value. The value of the solution is also stored in N,
or whatever the name of the variable is that we wanted to solve for.
So, when we solve such equations we must take the integer part of the
solution using the function IP. (Enter 'N' and PURGE to get rid of the
stored value now, if you like. Also 'N' UNASSUME DROP to get rid
of the assumptions for N that we aready made. BTW, ROOT doesn't
care about assumptions.)

It seems that ROOT could be used to solve our problem, but... there's
aways a "but", isn't there? ROOT can only find solutions for
problems with only one unknown. If there are additional variables
without values in an equation, ROOT will error out with "Undefined
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‘Hér. (-1~ m

n=0

a(r+N- n)

Name". Our problem, =0, must

be solved for r, but it also contains N which must be symbolic if we
want to solve it for arbitrary N. Only the solution for r will turn the
left hand side to something that doesn't contain N but we must find
that valuefirst. Here comes avery very useful property of ROOT (and
the numeric solver). ROOT can aso solve... programs. Perhaps this
sounds a bit strange now, but if we think a bit further then it seemsto
be a very natural thing. We consider a simple equation like
3* X - 2=0.What doesit say? One way to interpret it isto think of it
as a sequence of commands. We could understand it as: "Multiply X
by 3, subtract 2 and check it the result equals 0." Now it sounds like
a program, doesn't it? So instead of entering 3* X - 2 =0 when we
want to solve this equation, we could just as well enter the program:

<<
3 X* 2 -
>>

If you enter this, then you can enter X, aguessvaue 0 and use
ROOT to find a solution. Don't forget that the solution is returned on
the stack and stored in X, so you might want to PURGE variable X
to avoid eventual complications with the CAS later.

us this means that

n!*(r.- n)!* afr+N-n)

N
that does exactly the same. But the advantage is that in a program we
can check for example if some name appears that has no value, so that
in this case we return some value different from O which lets ROOT
continue searching without erroring. But first things first. Before we
make such a program, we need another program that takes a sequence

from the stack and creates the user defined function a(r + N- n), in

For

1a (-1
n=0

instead of solving the equation

=0, we can solve some program

order to be able to construct the sum later. Because it is rather likely
that the name a will be used by the user for storing something else, we
change the name a to something more unlikely. Say, USDEFSEQ?

OK, first we must change thisin DrN. Edit this program to:

<<
->r1r N
" S(n=0.,

>>

r,(-1.)~n*r!/(nl*(r-n)!)*USDEFSEQ r +N-n) )"

Now the program S->UD that makes a user defined program out of a
sequence:

<<
PUSH 1 CF DUP
| FERR
REC- >ANL
THEN
DROP 1 SF
ELSE
| F
DUP ? POS
THEN
DROP 1 SF
ELSE
NI P
END
END
I F
1 FC?
THEN
OBJ-> DROP OBJ->
3 DROPN 1 ->LIST
" USDEFSEQ APPLY
SWAP = DEFI NE
ELSE
POP "Can't find analytic
cl osed fornt DOCERR
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END
PCP
>>

Store this program in S~>UD or use the program that comes with this
document. Now enter the sequence {n3 {no ¥}} and press the
soft key for S->UD. The program generated a new program:

<<
->nNn
>>

‘A3

and stored it in USDEFSEQ. If you now enter 3 and press
USDEFSEQ you get 27. If you enter n and press USDEFSEQ then

you get n’. You can useit for calculating arbitrary member of the
sequence.

Now we can go on, trying to solve our problem using ROOT with a
program. One way to solve this problem is to make a program that
uses r, the order of the difference, the symbolic argument N, an

arbitrary point of the sequence, and passes these arguments to DrN to

build up the rth difference at the Nth point of the sequence. The
program then hasto take the derivativefor N , expand and check if the
resulting expression contains the variable N. If it does, then it can
return something different than 0. to let ROOT know that the search
for a solution for the variable r hasto be continued. If the expanded
derivative doesn't contain N anymore, then we have a solution.

<<

S->UD @rr eat e USDEFSEQ
<< @rogramto solve with ROOT
r 'N DrN @ind difference, differentiate for N

"N d EXPAND @nd expand

LNAMVE NI P @Return vector of variables

I F @f it isn't an enpty list
DUP {} #

THEN @hen transformit to a |ist
AXL
END
I F @f the list contains N
"N PCS
THEN @hen return a 1.
1.
ELSE @l se return a 0.
0.
END
>>
"r' 1. @ariable to solve for and guess val ue
ROOT

>>

Store that in ORDARSEQ. Let's give it a try. We happily enter the
sequence {n3 {n o ¥}} and press the soft key for ORDARSEQ.

After some moments the HP49G returns... an error! The name 'N'is
on the stack and the error message says "Undefined Name". What
happened here? To understand that we must have a closer look to the
way ROOT works. It is true that it will evaluate (run) a program
repeatedly for different values of the variable to solve for, in our case
variabler. Itisaso truethat it looks at the result of the program to
decide what to do next, which means that the program has to return a
numeric value. The program that we supply (red part of the code) does
return anumeric value in any case, provided someone plugs anumeric
value for r, which ROOT does. Then why the error? Thereisan
additional requirement for ROOT to do its job. All names that
somehow participate in order to calculate the result must contain
numeric values! While ROOT lets the red code run one step after the
other, it eventually reaches 'N'. Thisthing is a name, ROOT says, and
tries to replace it with a value. But as no value is associated with this
name, ROOT ceases and shows an error message. So we have a
problem. (Asif there weren't already enough ;-))

So we must find away to somehow hide 'N' from the sight of ROOT.
Perhaps we can "construct” it? Instead of writing explicitly 'N"in the
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program, we could use "'N" OBJ->. The program then contains no
name 'N'. We change ORDARSEQ and replace al occurrences of 'N'

with "N" OBJ>. We enter {n° {n 0 ¥}}, pressORDARSEQ

and get the same error again. We can use "N" S~N or anything else
that produces the name 'N'. The error remains the same. (Good to
know that some things never change ;-)). To understand better what
happens here, let's experiment alittle bit.

Experiment 1:
<< 'N DROP R>>"'R 1. ROOT
Enter thisand you get the solution 0.

Experiment 2:

<<'N 1+ DROP R>>'R 1. ROOT

The only change to the first experiment is that we add 1 to 'N'. Enter
this and you get the error again.

That shows us: ROOT constantly checks anything (?) that has to do
with mathematic operations, even simple additions, while it evaluates
the program that we gave it to solve. It doesn't only parse the program
to see if there are names that have no values. If some name somehow
participates in math operations, then it is a suspect and it will be
proved for numeric contents. ROOT does this work thoroughly but in
this case it is just this thoroughly working that brings us troubles.
Sometimes perfection isn't agood thing! Unfortunately!

So the excursion to ROOT was a one way path? Must get back and
search some other way? As Trabakoulas says, "the hard thing in treks
is not to reach the finish. The hard thing is to realise that one has to
turn back to the start". But let's experiment a bit more before we
search other ways. Our problem seems to be the involved mathematic
operations like additions, exponentiations and so on. Now, we ask:
Are there no mathematic operations at all, whose operands ROOT
wouldn't check for numeric contents? A possible candidate group of
operations that ROOT doesn't care if they return a numeric value or
not, could be the group of operations that isn't made for the purpose of
returning a numeric result. For example we consider our well known

EXPAND. This command isn't there for giving numeric results,
though of course it will do so, if we give it an expression that contains
only numbers. So let's try to use ROOT with a test program that
contains EXPAND.

Experiment 3:

<< "(NF(N-2) - N'2+2*N#3) *R-2' EXPAND >> 'R 1. ROOT

The expanded algebraic expression is 3*R - 2, so it doesn't contain
thevariable N. If ROOT doesn't check EXPAND for numeric values,
then it should find the solution .666666666667 , which it does!

Hurrah! With new hope in our souls we till try to find a solution to
our problem. What if we avoid anything that is checked by ROOT for

returning numeric values? Is there any way to construct the rth
difference at the Nth point of the sequence without any usage of such
"checked" operations? Let's take alook at the rth difference again:

g N, r N )
:’;}O(J) —n!*(r-n)! a(r +N - n)

We could use a loop instead of the function S.Andwe could
construct anything that is made by using additions exponentiations and
so on, by using.... strings!!! Consider for example the result of

S
18 " *N
n=0 for r =2 whichis 2° +2' + 2°. Thefollowing program

returns exactly the same result, but without using any mathematic
operation with N as operand.

<<

has a val ue
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*N+" +  @vbke string "27 *N+"
+ @\dd strings. No math operation!
NEXT
"0t o+ @or appropriate closing.
oBJ- > @ransformto alg. object.
"N 9 @erivation isn't checked for numresult
EXPAND @\Nei ther i s checked EXPAND
>>
g
fTar*N
If you run this, you get the same result like with —~=——  but

without using any command that causes ROOT to say that some name
is undefined (without numeric value). We adopt this method for our
headache problem and write a program for solving the equation:

9 n, o i
ﬂeo(- 1) ) afr+N- n)

=0

N
It takes a sequence and a guess value of r and tries to find a solution.
If our sequence is an arithmetic sequence of higher order, then it will
return the order r.

<<
PUSH 1 CF
SWAP DUP
| FERR @f seq. can't be nade analytic
RCR- >ANL
THEN
DROP 1 SF @rop and set flag 1
ELSE @&l se
| F @f result contains ?
DUP ? PGS
THEN
DROP 1 SF @irop is, set flag 1
ELSE
NI P @l se drop orig. sequence
END

END
I F @f flag 1 is clear (everything is OK)
1 FC?
THEN @ hen proceed
OBJ-> DROP OBJ-> 3 DRCPN
-> guess seq i ndx @ocal s for guess, seq., index
<<
<< @Here starts the programthat ROOT
e @vll solve nunerically.
0O r O RND @oop start and end.
FOR |
-1 @mt h. operations K because
r O R\D ! @l | variabl es have val ues and
* @ is given val ues by ROOT.
r ORNDI - !
*
B R @low we start making the string
seq i ndx
r O RND + @tring version of r+N-n
"EN-TO+ @ddition with N would
I+ "+ @ause troubles.
oBJ- > @tring to al gebraic.
2 ->LIST @mt ch each appearance of n in
TI\/ATCH @he sequence with r+N-n
DROP EXPAND @xpand t he sequence nenber
->STR @urn it to a string
2 OVER SIZE @t rid of the quotes
1 - SUB
)t o+ + +
4+
NEXT
"0t o+ @correct closing of alg.
OBJ- > EXPAND @ransformto alg., expand
->STR "N' "N' @ransformexpanded alg. to
SREPL NI P @tring and check how many N s
r 1 DI SP @how us current value of r
DUP 2 DI SP @nd val ue of expression
>>
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'r' guess ROOT | P @ake integer part of solution
>>
ELSE @n case of error show a nessage
POP "Can't find analytic
cl osed form' DCERR
END
POP
>>

The red code in the above program is the program that is passed to
ROOT. Notice the usage of 0 RND to round the current value of r to
the next integer. We do that because ROOT putsreal vauesin r. Also
notice that we don't even use the function § for finding the derivative
with respect to N. Instead of this we search the string for the
character N and use the number of occurrences as a measure of how
far away ROQOT is from a solution. That means that your sequence
shouldn't contain any N, not only as a variable but also as
character in any variable name. The same for character r.Last
thing to notice: The built in numeric solvers are able to show the
current values of the variable to solve for if you press akey during the
solution process is running. ROOT doesn't have this ability. But still,
we can DISPlay the values of the variable to solve for and anything
else, asROOT repeatedly evaluates the program for different values of
the variable to solve for. Thecoder 1 DI SP DUP 2 DI SPinthe
program that is passed to ROOT, does exactly this. It DISPlays the
current value of r on thefirst line of the display. Then it makes a copy
of the result of each evaluation and DISPlaysit on the second line, so
that we can follow the process and eventualy interrupt it if it starts
going to the false direction.

Store the program in ORDARSEQ. ( Or as always use the program
that comes along with this document. ) Let's test this unusual thing.

Enter the sequence {n3 {no ¥}} and aguessvalue 1. Press

ORDARSEQ. In 53 seconds the result 3. is returned. The sequence
was an arithmetic sequence of third order. Another example. Enter

{n*+3*n® {n 0 ¥}} and1. PressORDARSEQ. The HP49G

rattlesfor seconds and after solving that rather non-standard procedure
with string, it proudly returns 4. As already mentioned, ROOT aso
stores the found solution in the variable to solve for, so you have a
new variable in the directory where you worked. If don't want to have
it, then do 'r' PURGE, or add 'r' PURGE at the end of the program,
just before the very last POP command.

The other two programs that we already make, S->UD and Dr N aren't
used by the new ORDARSEQ. Nonetheless you can keep them asthey
are useful themselves.

The first moral of the story: Unusual problems (might) need unusual
solutions. What we consider useless at the first sight, might prove to
be exactly what we need to solve twisted problems in twisted ways,
when the standard ways don't work. (Anyway, what is "standard"?)

The second moral of the story: Don't be afraid to go twisted ways.
Mathematics doesn't seem to work always as we might "expect"”.
Don't let your mind be wrapped in "normality” and don't forget to ask
what might seem nonsense. The description of the numeric solution of

9 n, It ]
ﬂn%o 9 ni*(r - n)! afr+N-n)

N
way not the only possibility. Search more twisted paths! A whole
world waits to be discovered. It's math. Let's get crazy! (As if we
weren't already ;-))

= 0 using ROOT and stringsis

The obligatory look to the structure of programs that we have so far
(next page). RCR->ANL gets more important every minute.

We move on to another sequence that appears quite often in
mathematics but also in "rea" life, the geometric sequence. Theratio of

two adjacent members of the geometric sequence is constant. The
analytic closed definition of this sequenceis:

a,=a,*q",withn=0,12,--- and g = constant.
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Some properties of this sequence are easy to see right
from the start. For example, if |g| =1 then the sequence
ismonotonically increasing or decreasing, depending on
the sign of . Let'sseeif SEQMONTY can figure this

SOLARSEQ

out. We do good if we first make the right assumptions. CONDENSPT
Since SEQMONTY does this for the index n, we only
need to make the assumptions for q. The assumption +

gl =1 can't be made directly. If you enter |g| > 1 and

then ASSUME, the HP49G says "Bad Argument

Vaue', which shows that the type of argument is OK,

but the particular argument can't be used. We have to

make this assumption in steps. First enter 'q" and

UNASSUME to remove any existing assumptionsfor g.

Then enter g 3 1 and ASSUME. After that enter g £1

and ASSUME again. (If you take alook at the variable

REALASSUME HOME/CASDIR you will see that it creates

containsq£-1 AND q32 1. Thoughthisislogically

impossible’ , let'stry to useit. Enter the geometric
sequence {aO* q {n o0 ¥}} . Notice that we write

a(0) as a0, asymbolic constant. We don't write a(0) +
to be compatible with our conventions of notion of the
analytic closed form of sequences. Trabakoulas heard the SEQTYPE
word "compatible" spoken by a Greek and smiles ;-)

Because a0 isalso symbolic, we must assume *
something about it to. Let's suppose first that a0 3 0.
Remove any existing assumptions for a0 and then ->TERMS FDISTRS
ASSUME a0 3 0. Press SEQMONTY. In 35 seconds

the HP49G returns - 2 for amonotonically decreasing

sequence. Which clearly shows that only the part q £ 1 of the existing

RCR->ANL GENFUNC

Enter {aO* q {n 0 ¥}} and press SEQMONTY again. Now the

assumptiong£1  AND q® 1wasused. That means, if wewant  req)it js 2 for amonotonicaly increasing sequence. Try other
to check the monotony of this sequence, we must check the particular  combinations of assumptions, like for example a0 £ 0 ASSUME and
cases done. Remove the assumptions for g, and ASSUME q3 1. 3 0 ASSUME, and so on.

*ltshould be g£-1 OR @31 for logical validity.
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Of course if you have a geometric sequence with known values of a0
and q, then you don't need to make any assumptions. Remove the

. 11, ., §
assumptions for a0 and q, enter }15 *2" {n 0 ¥}y and press

SEQMONTY. The result 2 shows that the program correctly found a
monotonically increasing sequence.

If |g] <1, then the geometric sequence is bounded. What does
BOUNDS say in the genera case of the sequence? Let's see. Enter
g£1, ASSUME, g2 -1, ASSUME. Now REALASSUME contains

theassumptiong£1 AND g3 -1, whichislogically OK. (There
are values of q that smultaneoudly satisfy g £1 and g 3 - 1.) Now,
enter the general form of the sequence {aO* q {n 0 ¥}} and

press BOUNDS. The HP49G returns {? ?} and ?, an answer that

means "I don't know". This result comes because we used TABVAR
in the program, a command that only works with monovariate

functions, while a0* q" containsthree variables. Remove the

| g 0
assumptions for g, enter { 3* gg {n 0 ¥}yandpress
|
BOUNDS. The HP49G returns again {? ?} and ?. The reason for
ad(jx

thefailureisthat TABVAR can't find the variation table of 3* éEz )
X

B0 nd then press TABVAR, then the HP49G

If you enter 3* —
€29

errors "Parameters not alowed" Go figure out where it sees
parameters here! (The programs above BOUNDS rely on what
BOUNDS finds, so they will also return question marks.)

The recurrence form of the geometric sequenceis a, = a, , * g, with
a, =a0 and n=0,12,---. That means, in our notation we can enter

the geometric sequence as {a(n) =a(n-19*q {a(0) :ao}} - Will
our programs find the analytic closed form out of the recurrence? Let's
see. Enter {a(n) =a(n- 9)*q {a(0) =a0}} and pressRCR->ANL.
The result is {aO* q {n o0 ¥}} . Wow, it worked! Now, let's
find the generating function of the geometric sequence. We enter
{a(n) =a(n-29*q {a(0) :aO}} and press GENFUNC. The
a0
q* X -1

the left hand side. Enter X =0 and 5. Press SERIES and then
SUBST, 3 GET, DTAG. The result of these operations is

q°*a0*X°+q' *a0* X* +.--+q*a0*X + a0, which shows that

HP49G returns GF = -

. Press EQ-> and NIP to get rid of

Was correct.
q*X-1

As you might aready imagine, the geometric sequence is called so
because each member is the geometric mean of its neighbours:
a, =a,,*a, . Thiscan be also used to make another recurrence

definition of the geometric sequence. If we solve for a,,,, wefind:
2 2

,or by definingm=n+1:a_= qni So the geometric

m-2
be written as

n+l?

a,,, =

n+1

%quencen_l can
‘I _ 2
{a(n) = a(n-1)
i a(n- 2)

have two initial conditions, which is the same like number of the
different sequence members on the right hand side of the recurrence

Aln) = a(n- 1)°
) a(n- 2)

react when they take as argument this recurrence? Again, we test. Enter

aso the  recurrence

u
{a(0)=a0 a(1) =a0* g}y. Notice that we now

. How do our programs RCR->ANL and GENFUNC
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I aln-1°
ia(n) = an-1
0 a(n- 2)
GENFUNC. After some seconds the HP49G strikes. "Not reducible
to a rational expression™ . Something went wrong here. And it was

the program SEQTY PE that determines the type of the sequence. Let's
take a look at the happenings. The program finds out that this is a

{a(0)=a0 a()=a0* q}g and press

2
recurrence. It uses ->TERMS to find the terms of a(n) = % :
i _ 120
The program ->TERMS correctly returns ja(n) - aln- 1) ¥ . Then
i a(n - 2)?;
the SEQTYPE checks if the recurrence is of the type

a(n) = c1* a(k) +c2 *a() . It does this by matching the terms with
a(&N) and at this point we already have the problem. Both terms do

a(n- 1)’
a(n- 2)

of the sequence but in non-linear manner, and these case are not
covered by GENFUNC. We must make additional checks to prove if
the members are contained linearly in the terms. Weimmediately think

a(n- 1)
a(n- 2)
example a(n - 1) and press LININ, then you get the error "Bad

argument type". We must go another way. We use the fact that when
these checks take place, the HP49G has already found the terms of the
sequence and so we know that the expressions that represent the terms
are not themselves terms. That means that if more than one members
of the sequence are contained in aterm, they will be operands of some
non-linear operation. So we have only to check if more than one
members appear in aterm. In the language of string, we must check if

contain patterns of theform a(&N), but - contains members

of LININ, but... again a "but". If you enter - and then for

® The errors described here are those which are generated by the old version of the
programs. If you already have installed the new ones, you won't get these errors.
But we still analyse the code of the old programs for demonstrating how the errors
are produced.

the substring "a(" appears more than once. Of course we can't smply
write "a(" because we can't be sure that the sequence definition will

aways name the sequence member a(n). Perhaps the sequenceis
named Karagiaouroglou(n) or even worse things. (Isthere anything

worse than that? ;-)) So we must construct the string out of the data of
the recurrence definition. We add the (red) code:

"Recurrence 1"

2 DI SP

terns 1 @mt ch any occurrence of

<< seqpatt 1 @ype P(&N) with a 1. If
2 ->LIST @we had a match, then any
" MATCH 'ntch’ @ermof the form
SWAP STO+ @actor*P(&N) will be
EXPAND @rat ched to factor*1

>> DOSUBS

nt ch @5t ream AND over the

<< AND @rat ches fl ags

>> STREAM

SWAP DUP @tore matched factors in

'factors' @ocal 'factors'

STO

1 @ind the positions of

<< LNAME NI P @l | terms which do not
| F DUP @ontain the seq. index
TYPE 5 1
THEN AXL END var PGS NOT

>> DOSUBS

1+ @dd a 1 in the list of

<< AND @ositions and stream

>> STREAM @\ND

AND

terns 1 @i nd num of occurrences

<< @f pattern "a(" in terns
->STR seqpat t
seqpatt 2 3

SUB DUP SREPL
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NP 1 =
>> DOSUBS 1 +
<< AND >> STREAM

AND @f we had only P(&N) and

Now SEQTY PE successfully finds that thisis not atype 1 recurrence,
but it erroneoudly finds that it is a type 2 recurrence. So we must add
some checking again.

<< LNAME NI P @actors of P(&N) not

| F DUP @ont ai ni ng t he seq.
i ndex

TYPE 5 1 @r other factors

THEN AXL

END

| F SWAP

THEN var POS NOT

ELSE DRCP 1

END
>> DOLI ST
1+ @\dd 1 to the result I|ist
<< AND @tream AND over the result

list

>> STREAM
mch & LI ST @heck if only two terns
2 == AND @mat ch pattern P(&N)
factors ntch
2 @zt the factors of
<< @(&N

| F NOT

THEN DRCP

END
>> DOLI ST @check if factor of first
DUP HEAD @(&N) is 1 and of second
1 == SWAP 2 @s -1 (Dff. of two seq.
CET -1 == AND @renber s

AND
terns 1
<<

@i nd num of occur.
@f pattern "a("
->STR seqgpat t
seqpatt 2 3
SUB DUP SREPL
NP 1 =
>> DOSUBS 1 +
<< AND >> STREAM
AND

We make exactly the same additional check, namely if the pattern "a("
appears more than once in the terms.

The corrected version of SEQTY PE recognises that this is a type of
recurrence with which it doesn't deal and so programs that rely on this
program behave themselves better. If you now enter the same sequence

ian :a(n-1)2
D )

GENFUNC, the program will error with "Can't deal with this kind of
sequences'. The same does now RCR->ANL.

{a(0)=a0 a(1)=a0* q}g and press

Next thing we do is a program similar to SOLARSEQ), that takes the
four arguments from the stack, an, a0, n, and g and solvesfor the
first name that it finds.

<<
->an a0 n q @tore in local variable
"an=a0*g”"n' @efining procedure
DUP LNAME @Return vector of nanes
I F
DUP TYPE 5 == @f no nanes present
THEN
DROP2 COLLECT @check if possible
NOT EVAL
ELSE @l se solve for first variable
1 GET SOLVE @n nanes vector
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2 ->LIST
END
>>

We name this SOLGESEQ (in analogy to SOLARSEQ). Try some
examples for different combinations of an, a0, n, and q. Note that
the program will eventually return solutionsthat areimpossibleif n is
supposed to be integer. Y ou must decide for yourself if the solutions
are correct for your problem or not.

Let's now take a look again at the program CONVERGES? The
program uses CONDENSPT to find out if a given sequence converges
or not by smply counting the condensation points. Actually the
HP49G has a built-in command that can be used for this purpose. It is
the well known command lim (LIMIT). When for example the index n

1 1
of the sequence - goesto +¥ , we can enter o then n= +¥ and

. : i 1.
press [lim] to obtain O, the limit of the sequence. For - it doesn't
matter if n isrea or integer. For big integer or real values of n the

.1 : :
expression - approaches 0. But with other sequences, like for

example(-Tl) we get troubles. If you enter ﬂ , N=+¥ and press

[lim] the HP49G answers with the error "Mode switch not allowed
here". You see what happens. Having no way to specify that n has
only integer values, thereisthe possibility that n takesreal valuesasit

approaches infinity. The expression (- )" will bein general complex if
n isreal and so the HP49G wants to switch to complex mode. And
that is not alowed when we use lim. (Why?) The feature

INTEGERASSUME is the most important missing thing of the
HP49G.

But we can help ourselves using SPCASES. This program will turn

CY 2

n n

Applying lim to each of these outcomes we get in both cases the result
0, which shows that the sequence % convergesto 0. We change
CONVERGES? so that it works this way. First find all possible
outcomes, then apply lim to each of them. If al limits are the same and

also not infinities or undefined, then the sequence converges. The new
codeis:

-1 . :
and P the two possible outcomes when n isreal.

<< PUSH RCLVX -> vX @tore current vx

<< SPCASES @i nd special cases
"Limt of special case" @#kssage
1 DSP 1
<< NSUB " of " + @wkssage # of current special

ENDSUB + 2 DI SP@ase
OBJ-> DROP OBJ-> DROP NP =

IFERR Iim @f limerrors then return ?
THEN DROP2 ?
END

>> DOSUBS @lo to each special case

"Checking infinities
& undefined results”

1 DI SP

IF DUP ? POS @f sone result is ? then
THEN ? @eturn ?

ELSE

IF DUP ¥ PCS @f we have infinities
OVER ¥ NEG PGS OR

THEN O @hen return O

ELSE
IF DUP SIZE 1 == @f only 1 Iimt
THEN 1 @hen return 1
ELSE @l se conpare linits

"Conparing results
"1 DISP DUP 2

3-30



Sequences, series and limits with the HP49G - Part 3

<< == @est limts equality i 1 )
>> DOSUBS 1 enter the sequence {la(n) =a(n-1) = a(1) = Og and press
+
<< AND CONVERGES? again, then the results are {+¥} and 0, because the
>> STREAM seguence doesn't converge.
END
END If you taketimeto look at the overall interdependence of the programs,
END vx STOVX @restore vx (we do that because Yyou see that SPCASES is a rather useful program for all the others
>> POP @i m someti mes changes vx over it. And this shows how badly an INTEGERASSUME feature is
>> needed for the CAS of the HP49G. The only purpose of SPCASES is
Now we test. Though lim errors when we give it CONDENSPT SOLGESEQ SOLARSEQ
-1 .
(T) , the program CONVERGES? does its work +
. 1(-1) U
fine. Enter j( n) {n 1 ¥}y andpress
|
CONVERGES?. In some seconds you get the
results, the list {0 0} and al. Thelist contains
. . -1
the limits od the two possible outcomes of %
when n isaninteger from O to +¥ . The 1 tells creates
you that the sequence does converge. It converges
to O thelimit that is contained in the list. Another
example: Enter {la(n)=a(n- 1)+n—12 a(l) :0\2. RCR->ANL | | GENFUNC
Press CONVERGES?. The program calls +
SPCASES which in turn calls RCR->ANL to
convert the sequence to its analytic closed form. SEQTYPE
Then SPCASES finds that there is only one
possible outcome and CONVERGES? uses lim to ¢
2 -
find that the sequence converges to P 6. If you
->TERMS FDISTRS
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to find what possible outcomes some expression have when its index
isinteger.

Though having lim is aready enough for many convergence
investigations, we might sometimes want to use the convergence
criterion of Cauchy. Mr Cauchy has found out that if the absolute
value of the difference of two subsequent members of some sequence
approaches 0 as the index approaches infinity, then the sequence
converges. The HP49G can be used for this. (The interested reader
should try to make a program that does what we are going to do now
manually.)

, . : (-7 U .
Let's consider again the sequence | *— {n 1 ¥}gforwh|chl|m
|

can't find the limit for n® +¥ . Enter % and press [ENTER] to
DUPlikate the expression. Enter n=n+1 and press SUBST. Now

(-9 (G .

you have —— on stack level 2 and W.Wewant tofind if
n n+l

(-Tl) - % goesto 0 as n goesfrom 1 to +¥ . Because the

index starts at 1 we should help the HP49G by making the right
assumptions. Enter 'n' then UNASSUME DROP. (We start with no
assumptions for n.) Then enter n3 1, ASSUME and DROP again.
Now the HP49G "knows' that n isgreater than or equal to 1. Press
thekey [-] and then [ABS]. The HP49G rattles a little bit and returns

n n+1

"expanded" result.) Before we give this to lim, we can simplify it.
Press EXPAND. The HP49G switches to complex mode (another
result of the inability to assume integer values for variables), and

the result . (Why did it rattle? Thisis not avery

\/SII\(n* p)2 +COogn* p)2 *|2*n +J|*|n2 +n|
SQ(n2 + n)
to real mode and press TRIG. (Remember the trigonometry marathon?)

*

2*n+1
After a few seconds the HP49G returns o
which we can use with lim. Enter n = +¥ to specify where the index

returns . Switch back

. Thisis something

goes to. Press [lim] to get 0. That shows us that
_1\" _ n+l ‘I 1y U

lim (G 0 which meansthat i 9 {n 1 ¥}y

ne+¥ N n+1 7N E

converges. Note that the Cauchy criterion doesn't give us the limit
itself, but only the fact that the sequence converges. It only saysthat if

lim la, - a,,] =0, then a, converges. Enter now 'n', UNASSUME

and DROP to get rid of the assumption for n.

We have used assumptions many times in this marathon. While the
HP49G provides ways to make new assumptions and get rid of
assumptions programmatically, there is no built-in command that
returns the current assumptions for some variable. So we program this
functionality, which may prove useful for other programs.

<<

PUSH 1 CF -> var
<<

@t ore variable in | ocal

{ HOME CASDI R REALASSUME } RCL @Rrecal |l REALASSUVE
1
<<
I F
LNAME AXL @f variable isn't in
var POS NOT @ssunption
THEN @hen drop assunption
DROP
ELSE @l se set flag 1
1 SF
END
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>> DOSUBS @o to each assunption
I F @f flag 1 is clear
1 FC?
THEN @hen return an enpty |ist
{}
ELSE @l se return the first
HEAD @and only) elenent of the list
END PCP

>>
>>

Store this in RCLASSM. The program takes a
name and returns the current assumptions for this
name or an empty list if no assumptions exist for

this name. Note that RCL can be used with aname CASDIR
to recall the contents of the variable that is in the I
current path, or with alist that represents a path to REALASSUME

avariable.

Note also that while you are for example in a

directory cdled MYDIR1.2, which is a

subdirectory of MYDIR1, which itself is a

subdirectory of HOME, you can access any

variable that is somewhere in the path { HOME

MYDIR1 MYDIR1.2 }. That means that any

variable that isin HOME or in MYDIR1 will be

evaluated exactly the same way as if it were in

MY DIR1.2. A program that runsin MY DIR1.2 and needsto call some
program in MYDIRL1 has only to contain the unquoted name of the
program in MY DIR1. Similarly, if you store avalue in variable A in
directory MYDIR1 and some program in MY DIR1.2 needs the value,
you simply include the unquoted variable A intheprogramin
directory MYDIR1.2.

But an object stored in a variable that doesn't reside somewhere in the
current path, can't be accessed that way. One possible way to access
such objectsisto put their path on the stack and use RCL. The path to
anobject isalist. Thislist contains al the directories in order starting

with HOME and ending with the directory where the object residesand
the name of the object itself. For example, the variable
REALASSUME isin CASDIR and CASDIR isin HOME. If you need
REALASSUME from, say MYDIR1.2, you put { HOME CASDIR
REALASSUME } onthe stack use RCL. Notethat if the needed object
is itself a program that must run, then you must use EVAL after
recalling it. RCL will only put the object on the stack, no matter what
type of object itis. The subsequent EVAL will runtherecalled object if
it isaprogram. The command PATH will return the current path.

HOME
MYDIR1
MYDIR1.1 MYDIR1.2 Current path here:

{HOME MYDIR1 MYDIR1.2}

Any variable in HOME, MYDIR1, MYDIR1.2 is
accessible from MYDIR1.2

But you can recall REALASSUME from CASDIR
by using the list (HOME CASDIR
REALASSUME} with RCL. Doing this you
remain in MYDIR1.2 .

Some additional comments on sequences. The recipe used for finding
the members of sequences can be just about anything. Consider for
example the following algorithm: Start at a certain integer. To find the
next member of the sequence, add the product of all nonzero digits of
the integer to the integer itself. For example, let's start at 1.

Member Product of nonzero digits integer+product
1 1 2
2 2 4
4 4 8
8 8 16
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16 6 22
22 4 26

26 12 38

A program that takes a number of this sequence and calcul ates the next:
<< DUP {}

WH LE SWAP MANT DUP 0 1!

REPEAT DUP | P ROT + SWAP FP SWAP
END

DROP 1 + PLIST

>>

The function MANT returns the mantissa of a number. The function
PLIST returns the product of all objects in alist. In the program we
add 1 to the list of digits because if the number has only 1 digit, the
function PLIST will error as it wants at least two objects in the list.
Since multiplication of anything with 1 doesn't change anything
adding 1 to thelist is cheap way to avoid errors.

If you store this program in PRODSEQ, you can just enter a number,
(the initial condition) and calculate subsequent members of the
sequence by pressing the soft key for PRODSEQ a couple of times.

Using the function SEQ you can also find several members at once.
Enter the program

<<
<< DUP PRODSEQ >>
'n" 1 91 SEQ +
>>

Storeit in SEQPRODSEQ. It takes anumber astheinitial member and
calculates the first 10 members of this sequence. For example enter 1.
and press SEQPRODSEQ. Try some other initial values.

The strange thing about this sequenceis, that no matter where you start

sooner or later you end up with the same sequence of numbers. For
example the initial number 1. creates the sequence:

{1. 2. 4. 8. 16. 22. 26. 38. 62. 74. --}

Of course starting at any member of the above sequence, that is 2, 4,
8, and so on, will produce the same numbers. But start at 3. Enter 3.
and press SEQPRODSEQ. Theresultis:

{3. 6. 12. 14. 18. 26. 38. 62. 74. 102. --}

As you can see, from 26 on we have again the same members. Some
initial numbers need more time some less but they all finaly do the
same. Strange isn't it?

At the end of part 2, | said that in part 3 we are going to see how
sequences can be plotted on the HP49G. | think that part 3 is already
big enough and that plotting sequences deserves its own part, so let's
leave that for the next part.

Ending this part, | want to thank all people out there again and
especialy Bill Storey and captain Adolph (AKA TimeToPaws) for

sending me their corrections for the trigonometry and this marathon.
Thanks you very much guys, that keeps me going :-)

{Greetings(n) = Greetinggdn - 1)"" {Greetings(l) = g|g>l}}
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Hi again!

Since we mess up with sequences it would be interesting to take a
closer look to the sequence of corrections of programs. Yes, you
guessed right, there is yet another small correction to our programs.
Suspicion comes that this sequence never converges ;-)

Anyway, it isonly a couple of additional bytes that sometimes can be
very  helpful. Consider for example the sequence

1In_r(]n) {n 1 ¥}§ If you give it to BOUNDS, then the result is
|

{? 2} and 2. Why? Because SPCASES rebuilds the sequence and
11 In(|n

returns i (—”) {n
it n

the subsequent operations, since an absolute value isinvolved, and no

assumptions are made for n. You can check this by removing al
assumptions for n, then entering n and pressing [LN]. If flag-119is

clear, that is, if you have rigourous mode on, then you get In(). But
now, enter n3 1, ASSUME, and enter n and press[LN] again. Now
you have In[n). (Remove the assumptions for n again.)

1 ¥} gy This makes things more difficult for
b

We add code that makes these assumptions and removes them when
the programs are ready. We only need additional code for the
programs SPCASES and BOUNDS. The additional code (in red) is
the same for both programs and is listed in the following paragraphs.

SPCASES:

-> gennmenb var o hi explist perlist spclist
<<
"Maki ng assunptions"
var UNASSUME DROP
IFlo @ # oo NEG # AND
THEN var lo % ASSUME 2 DI SP

1 DI SP

END

IF hi == # == NEG # AND
THEN var hi = ASSUME 2 DI SP
END

"Checki ng powers of 1
and -1 containing "

ELSE gennenb var lo hi 3
2 ->LIST 1 ->LIST

->LI ST

END
var UNASSUMVE DROP
>> PCP
>>

BOUNDS:

-> set var |l o hi

<<
"Maki ng assunptions”
var UNASSUVE DROP
IFlo e« # == NEG # AND
THEN var lo = ASSUME 2 DI SP

1 DI SP

END

IF hi == # o= NEG # AND
THEN var hi = ASSUME 2 DI SP
END

"Buil ding var. table of

<< MAX EXPAND >> STREAM DUP2 2
UNROT - ABS ¥ <
var UNASSUME DRCP

>> 'flaglst' SWAP STO+

->LI ST
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[ . o
Now BOUNDS returns i 0 %B)i and 1 if you give it the sequence
|

PN o 1w
so you only need to transfer them to your HP49G.

. Of course the programs are as always updated,

Now that we have done the work let's go for fun. We are going to plot
sequences with one and with two indices with the HP49G. Hold your
breath, some fascinating things are coming. Trabakoulas lights up his
cigar (no Havana, it's Greekana, the worst smelling cigars since
Archimedes ;-), Nick lights his pipe and here we go.

First, let's do a simple analytic closed form sequence. Let's plot the
1 LNn)
1 n
BOUNDS returned the right results. The HP49G has no special
plot type for sequences. But since we can tell the HP49G exactly
which points of a function to plot, and to plot them without

connecting them with lines, we are able to use the plot type
FUNCTION for plot of analytic closed form sequences.

{n 1 ¥}¥ sothat wecan visually check if

sequence

Press [BLUE-SHIFT], hold the button pressed and press [F4]. The
input screen PLOT SETUP appears, and the input field "Type:" is
highlighted. If this input field doesn't contain "Function”, then do
the following: Press the menu key "CHOOS" ([F2]). A pop-up
menu with alist of al available plot types appears. Use the arrow
keys to go to the plot type "Function”. Press [ENTER]. Now use
the arrow keys to go to the input field "EQ:". Here we must input

LNn)

the expression that we want to plot. Press [EQW] and type X

points themselves. Now go to the fields "H-Tick" and enter 1. Go to
theinput field "V-Tick" and enter 0.1. Uncheck the option"_Pixels" as
the units of the tick marks are not pixels.

Press [BLUE-SHIFT], hold the button pressed and press [F2]. The
input screen PLOT WINDOW - FUNCTION appears. Enter "H-View"
from -1. to 20. and "V-View" from -0.1 to 0.4. Now we have
specified which range of coordinates will be shown in the plot. We
must also specify which points will be plotted. Go to input field "Indep

Low:" and enter 1. Thefirst valuethat n in m will takeis 1. Enter

n
18. in the field "High". The last value of n will be 18. Enter 1. in the
input field "Step" and uncheck the option "Pixels'. Now we have
specified that n will go from 1. to 18 in step of 1 unit and not 1 pixel.

Press the menu key [ERASE] and then the menu key [DRAW]. ([F4]
and [F5]). Thefinished plot looks like:

Press [ENTER] to put the expression in the input field "EQ:". Go
to the input field "Indep:". Enter 'n'. Thisisthe independent

variable. Go to the option field "_Connect”. Use the menu key
labelled"OCHK" or the key "+/-" to uncheck this option. We don't
want the connecting lines between the plot points but just the plot
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You can press the menu key [TRACE] ([F3]) to trace the plot. But
tracing will not only be done for the plotted points but for all points of

LNn)

column of pixelsin the plot environment. Nonethel ess you can use the
keys [ARROW-LEFT] and [ARROW-RIGHT] to move the cursor to
any plotted point. Y ou can also press the key [+/-] that toggles normal
and inverse cursor. When the cursor is inverse, then its pixels appear
white if they are over a plot point. If you press the menu key [(X,Y)]
([F2]) or the key [+] once, then a pair of coordinates appears at the
bottom of the screen, to let you know what the exact coordinates of the
cursor are. Pressing the menu key [(X,Y)] ([F2]) or the key [+] or any
menu key again, takes the coordinates away and redisplays the menu
labels. If you press the menu key [TRACE] ([F3]) again, then tracing
is deactivated and you can move the cursor free anywhere on the plot.

the continuous function , asif you had a plot point on every

Press [ON] to leave the plot. Let's do another one. Press [BLUE-
SHIFT], hold the button pressed and press [F4] to go to the input
)" *(+2)+2* (n-
screen PLOT SETUP again. Enter -2 (”3*7;])+f (-3
field "EQ:". Press [BLUE-SHIFT], hold the button pressed and press
[F2] to go to the input screen PLOT WINDOW - FUNCTION again.
Enter ahorizontal view from O to 10 and a vertical view from-.6 to 1.
Enter 1 in
. '"Indep
- Low:" and
10 in
. "High:"
Press
[ERASE]
. and then
[DRAW] to
. seethe plot.

inthe

-1

"OK, but
. what can we
do when we

have recurrences?' | hear you asking. Well, we can do much! In fact
we can plot recurrences in a dozen ways, some of which will be
described in the following paragraphs, just to wake your appetite.

First of al, here is another benefit of the program RCR->ANL. If itis
ableto convert arecurrenceto itsanalytic closed form, then we can use
thisanalytic closed form to plot the recurrence. Remember Fibonacci?
Hal Of course you do. Let's plot that. Enter the famous recurrence

{F(n)—F(n )+F(n-2) {F0)=0 F(l)-]}} and use the
progran RCR->ANL to convert it to its analytlc closed form:
‘; J5 B 1+\/_o \/5 8@.+J§0 n
~ 5 e 2 o9 5 e 2 o

function HEAD to get the first expression of the list on the stack:

0 +¥}y Use the
1

& + + ..n
‘/_*9- 1 \/_o E*fgﬂ—ﬁg . Enter STEQ to storeit in EQ.
5 e 2 @ 5 e 2

Go to the screen PLOT SETUP and enter 10 in "V-Tick:". Go to the
input screen PLOT WINDOW - FUNCTION and enter -10 to 100 as
vertical view range, and O to 10 as low and high values of the
independent

variable n. _
Press

[ERASE]

a n d 7
[DRAW] to
see the plot.

Another
recurrence?
OK, let's
go!  Enter
the sequence

—n
la
=
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B Po _Y
R {F(0) _o}%. Press RCR->ANR. The

&6

%F(n) =F(n- 1)+ SIN

program returns;

I (V2 +Jé)*cosz%*ATAN(2+\f)+(”+4)*p3+2+\/§
e 9

<\ =

I
[
i
: i
I {n o +¥}|0
after awhile, so be patient. Enter HEAD. Though this expression can
be simplified (usng TEXPAND and EXPAND), you can directly
STEQto storeit in EQ. Go to the input screen PLOT SETUP and enter
0.5 for "V-Tick:". Go to the input screen PLOT WINDOW -
FUNCTION and enter O to 20 for "H-View:", -1to 5 for "V-View:""
and "High:". Press[ERASE] and [DRAW] to see the plot.

Now, | hear already the next question: "OK, when RCR-ANL can
convert the recurrence to the corresponding analytic closed form, then
we can plot. But what if RCR->ANL isn't successful? Can we plot
then?".

Listening to this question Trabakoulas has that particular kind of smile
that means only one thing: You bet we can! (No, this was not the

influence of Greekana cigars;-)) Actualy it isexactly this case, which
lets our minds go rattle rattle again and makes us explore the not so
standard graphs.

Let's have an example of a recurrence that can't be plotted as an
algebraic object but as a program. We consider the sequence

iT(n) = %nl) +50 {T(0)= 100}%. How could we plot that?
i

We start with the "do all yourself method". We make a program that
calculates all pairs of x-y-coordinates and turns all corresponding
pixels on. Consider for example:

<<
ERASE
{#0 #0} PVIEW
DRAX
100 -> TO @tore initial value of 100 in TO
<<
1. 15. @\ plot for n=1 to n=15
FOR n
n @ut current n (indep. var.) on stack
I F @f n=1
nil ==
THEN @hen put TO on stack
TO
ELSE @l se "cook" T(n)
2. 3./ TO * 50 +
END
DUP ' TO' STO @tore a copy on T(n) in TO
@to use it for the next n)
R->C PI XON @onvert to conplex and turn
@ he correspondi ng pi xel on.
NEXT
>>
7 FREEZE
>>
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While you are typing this program, you notice that we calcul ate:

2. 3./ T0 *

Since we only need numeric results we could just multiply TO by
.666666666667. But on the other hand it is really cumbersome to enter
this number by hand, while entering 2. 3. / is easier. But the
HP49G has the capability of replacing 2. 3. / with .666666666667
while we are typing/editing the program, that is on the fly! While you
edit, use the arrow keys to move the cursor until it is over the entered
2. Now press[RED-SHIFT] and then [APPS] set the beginning of the
marked text. Use again the arrow keys to put the cursor just after the
entered/ . Then press [RED-SHIFT] and then [MODE] to set the end
of the marked text. Thewholepart2. 3. / isnow highlighted. Press
the key [TOOL], then press twice [NXT]. The menu key on the left
([F1]) is now labelled "EXEC". Press it and see how the entered 2.

3. [/ getsreplaced by the number .666666666667, which is the result
of the operation. EXEC is an editing help. It will try to execute
whatever instructions in a program are marked and will replace them
with their result. Store this program in RECPLOT 1.

Before you run it, we must setup the plot parameters. Press
simultaneously [BLUE-SHIFT] and [F4] to go to the input screen
PLOT SETUP. Herewe only need to set "H-Tick:" to 1 and "V-Tick:"
to 25. We aso uncheck the option "_Pixels'. Press simultaneously
[BLUE-SHIFT] and [F2] to go to the input screen PLOT WINDOW -
FUNCTION. Enter "H-View:" from 0 to 15 and "V-View:" from -50
to 300. Press [ENTER] to accept the settings. Now let RECPLOT1
run. The produced plot looks like on the next picture. The program
that we used to do this plot doesn't really use the built-in plot types but
rather some of the general graphics commands of the HP49G. The
command ERASE, just clears the current plot picture. DRAX draws a
pair of aces. The command PVIEW shows the current plot picture with
the coordinates (specified at stack level 1) at the upper left corner of the
screen. These coordinates can be of two types. Either alist with two
binary integers or acomplex number. The list with two binary integers
represents pixel coordinates. If we start counting the pixels of a
graphics object from its upper left corner starting at #0 horizontally and

verticaly, proceeding

downwards and to the right,

then we get the pixe

coordinates of any pixd of the

graphics object. This type of

g nnm R EE coordinates is absolute. On

. the other hand, when we
setup the view range of some
plot, we have another set of
coordinates, the user
coordinates. These are given

as complex numbers. If we
denote the view range with X, to X .. horizontally and Y, ;, to Y,

vertically, then the upper left corner of the graphics object is
(X Y ) the upper right corneris(x Y )andsoon. The

min? "max /)’ max ? 'max
commands for transforming one type of coordinates to the other type
are P->C and C->P.

Our program does nothing more than cal cul ating the coordinates of the
pixels to be turned on, and turning them on with PIXON. (There is
also the command PIXOFF which turns pixels off.) When it finishes,
it uses the command FREEZE to let the plot persist. (Otherwise the
HP49G would show the normal stack display again at the end of the
program.) FREEZE takes a real number or integer as argument. To
understand how FREEZE works, you must know that the display is
divided in three areas. Staring at the top, the first is the status area
where the HP49G displays information about settings. The second is
the stack area, the area where inputs and outputs are shown. The third
is the menu area, which shows the labels of the current menu. Each of
these areas has a corresponding number. The status area has the
number 1, the stack area has the number 2 and the menu area has the
number 3. FREEZE uses these numbers to "freeze" what us shown in
some particular area after a program has been run. For example, if you
want to let the status area persist after a program has finished, you
must include 1 FREEZE in your program. For combinations of areas
you can use the sum of these numbers. If you for example want to
hold the status and stack area"frozen" after the end of a program, then
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you must include 3 FREEZE in
the program, because the sum
of the numbers for the status
and the stack area is 1+2=3.
The retain the whole display
you use the sum of all areas,
that is7.

Status area 1

Stack area 2

Menu area 4

When you press any key after the program has finished and the display
is "frozen", then the current display is restored. (In our case the
normal stack display.) You can press key [ARROW-LEFT] to go to
the plot environment again. You can turn on the display of cursor
coordinates by pressing [F2] or [+] and you can move the cursor
around using the arrow keys. But that's al. No tracing can be done in
this case, because we didn't store the equation to be plotted in EQ. We
did al ourselves, no built-in plot was used. That is one disadvantage
of the "do it al yourself" method. The other is, especialy for a
recurrence, that we can't change the initial conditions so easily. We
must edit the program and change the appropriate line for example to:
200 -> TO

to see what happens when we start with 200. Also, if we want to keep
the already plotted sequence and superimpose it with the new, we must
remove the command ERA SE from the program. And we must do that
again and again for any new initial value. As experimenting with
different initial values of recurrences can be very interesting, you can
imaginethat doing all ourselvesisabit cumbersome. The advantage of
this method however, is that you can draw just about anything. If you
can calculate the coordinates of the pixelsto be turned on, then you can
always use this method.

Having the first disadvantage in mind, the impossibility of using the
tracing functions of the HP49G, we search for another way to plot
[T(h) = 271, 50 {T(0)= 100}%. We must somehow put

|

the "cooking recipe" for the members of this sequence into EQ and let

the HP49G plot it. For this purpose it is of great help to understand
how the HP49G does function plots.

You remember what happened as we examined if there is a way to

9 n, It
ﬂna:.O (- l) m a(r + N - n) .
=0 using ROOT?We

N
solved a program instead of the above expression. Well, the same can
be done when plotting. When the HP49G plots a function it starts
evaluating the object in the system reserved variable EQ for different
values of the independent variable. These different values start at the
value which we input in "Indep Low:" and end at the value which we
input in "High:". In case we didn't enter anything in these input fields,
the values of horizontal and vertical view range are used. The HP49G
steps from the lower to the upper value in steps of the value that we
enter in "Step:". If we don't enter anything there, then a default of
"every second pixel of the screen” is used. The value of the
independent variable is "kept in mind" while it is used to evaluate the
object in EQ. The two corresponding values, independent variable
value and object evaluation value, build together a pair of x-y-
coordinates that correspond to a certain pixel on the screen. This pixel
is turned on and the HP49G continues with the next value of the
independent variable. That means, that anything that returns one real
number at stack level 1 when it isevaluated, can be used for afunction
plot. Programs, not all programs but those which behave thisway, can
be used for plotting. We consider the sequence

iT(n) _2*Th-3 +50 {T(0)= 100}2. How can we make a
|

solve

program that evaluates to exactly the same numbers like the sequence?
Wl take alook at:

<<

I F @f n£o
ni £

THEN @hen put 100 on stack
100.
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ELSE @l se "cook" T(n)
2. * 3./ 50+
END
DUP @vwbke a copy of current T(n) for the

>> @ext eval uation

Store thisin EQ (STEQ). Press [RED-SHIFT], then [BACKSPACE]
to clear the entire stack!! That's important!!. Let's setup the plot
parameters. Press simultaneously [BLUE-SHIFT] and [F4] to go to
the input screen PLOT SETUP. Choose plot type "Function”. Set
"Indep:" to 'n', then "H-Tick:" to 1 and "V-Tick:" to 25. Uncheck the
option "_Pixels". Press simultaneously [BLUE-SHIFT] and [F2] to
go to the input screen PLOT WINDOW - FUNCTION. Enter "H-
View:" from O to 15 and "V-View:" from -50 to 300. Enter 1 for
"Indep Low:", 15 for "High:" and 1 for "Step:". Uncheck the option
" Pixels'. Now press [ERASE] and then [DRAW]. Voilal Theplotis
done in glory. Now, before pressing [TRACE], move the cursor
horizontally leftwards until it is at one pixel to the left of the first
plotted point. The vertical position of the cursor doesn't matter.
(We will soon see why.) Press [TRACE]. If you press the key
[ARROW-RIGHT] now, you can see that the cursor doesn't follow
the plotted points! It goes higher much quicker than the sequence and
arrives at thefinal value of about 150 much earlier. Why isthat? Well,
many questions, so the answer is a bit long but worth it. First of all,
the program that we used to plot the sequence, is evaluated by the
HP49G. The current value of the independent variable n, is checked if
less than or equal to 1. In this case the number 100 is put on the stack.
If greater then it is first multiplied by 2... and here we have the
problem. When you press [TRACE] the x-current coordinate of the
cursor is used as the value of the independent variable. If you start at
some coordinate greater than 1, then the following part of the program
is evaluated:

ELSE @l se "cook" T(n)
2. * 3./ 50+

END

DUP

You see that the EL SE-part of the IF-THEN-ELSE clause multiplies
the number on stack level 1 with 2. But there is no number on stack
level 1. (Or if there is one, it remained there from other calculations
and the plot will be wrong. That's why you had to clear the whole
stack at the beginning.) So if you start tracing while the cursor is at
some x-coordinate greater than 1, you will get an error "Too few
arguments’. If you start at 1 (or a bit smaller), then the number 100
will be put on the stack and the DUP command at the end of the
program make a copy of the value for calculation of the next point, so
that tracing works. (You can think of tracing like pixel-for-pixel
evauation of the object stored in EQ.) The second mysterious
phenomenon, namely the faster ascending of the cursor, hasto do with
our definition of the object in EQ. Notice that the independent variable
is only used for just comparing its value with 1. It is not used for
calculating the next y-coordinate value. It is more or less a dummy
which allows usto just put an initial value on the stack, avaluethat is
used as a hook for the rest of the calculations and tracing. When you
press the key [ARROW-RIGHT] to trace further to the right, the
program is evaluated again using as value for the independent variable
the current x-coordinate of the cursor. When the x-coordinate becomes
atiny little bit greater than 1, then the procedure is used: "multiply by
2, divide by 3, add 50" for calculating the y-coordinate. Each time you
go one pixel to theright, this procedure is used again. So you have the
y-coordinates growing for each pixel and not for every next integer
value of n. We should correct this unusual behaviour in order to be
able to do better tracing. One way to do that would be use a procedure
that applies the procedure "multiply by 2, divide by 3, add 50" n-1
times, n being the integer part of the current x-coordinates of the
cursor. take alook at the following program:

<<

100 @ut 100 (initial value) on the stack
I F @f n>1
n2 3
THEN @hen "cook" T(n) with 100 as the
1nlIP @nitial value
START
2. * 3. /] 50+
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NEXT
END
>>

Store this in EQ and plot it with the same settings like the previous
plot. And now the great moment of truth arrives. Press [TRACE] and
trace freely back and forth.

The only thing that remains is to have an easy way to define many
different initial values. Of course we could edit the program stored in
EQ each time we want another initial value. But it would bejust boring
to leave the plotting environment, edit the program, draw again and so
on. There must be an easier way. And guess what? There is. We can
define different initial values by just using the graphics cursor, that is
without having to leave the graphics environment! First edit the above
program and change it to:

<<

TO0 @ut TO (initial value) on the stack
I'F @f n-1
n2 3
THEN @hen "cook" T(n) with 100 as the
1nlIP @nitial value
START
2. * 3./ 50. +
NEXT
END

>>

Re-STOrethat in EQ. Next enter the following program:

<<

DEPTH ->LI ST @mbke a list out of the stack objects

-> stack @tore it locally
<<
ERASE DRAX
DO
Pl CTURE @\ctivate the graphics environnment
I F

DEPTH @f then user has pressed [ ENTER]
THEN
M @hen store the inmaginary part of

'"TO STO @he coordinates in TO,
DRAW 0 @lraw, return O.
ELSE @l se restore stack,
st ack
oBJ->
DROP
1.
END
UNTI L
END
>>
>>

return 1

Store this program in RECINTERACT. The command PICTURE
activates the plotting environment and all its comfort and the program
that contained it just stays halted at this point. When you press [ON]
the subsequent commands of the program are executed.

Run the program RECINTERACT with the same plot settings like
before. First thing you see is an empty graphics screen. Press the key
[+] to see the cursor coordinates and move the cursor using the arrow
keys to an y-coordinate of about 233. (The x-coordinate doesn't
matter.) Press [ENTER] to let the sequence be drawn again with the
new initial value. When the plotting is done, move to some other y-
coordinate, press [ENTER] and then [ON] to see another sequence.
Play around as long as you wish. If you want to exit the program,
don't press [ENTER] but only [ON] after a plot has finished.

Pressing [ENTER] after the plot has finished and while in the plot
environment, just puts the current cursor coordinates as a complex
number on stack level 1. This complex number will be used by the
program to get its imaginary part (y-coordinate) and use it as the new
initial value. When you press [ON] you leave the plotting environment.
This will let the program continue, draw the sequence for the new
initial value, and stay at the plotting environment again. Notice that
when a new initial value is entered by pressing [ENTER] in the
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plotting environment, the program detects this by checking if the stack
is empty or not. We can use this technique because we make a list of
all stack objectsand storeit inthelocal variable "stack™" before we start
doing anything else. That is, when the graphs are drawn, we can
assume that there is nothing else on the stack, except (eventually)
coordinates entered by the user. If the stack contains something we
draw again and also return a0. which isused by the DO-UNTIL-END
LOOP to decide that the user might want another plot. If you don't
enter any additional initial values, that isif you don't press [ENTER]
but only [ON], then the
program detects that there is
nothing on the stack and exits,
putting first the original stack
objects back on the stack and a
1. which is used to exit the DO-
UNTIL-END loop. You can see
the plot for three different initial
values on the picture on the
right. (This was Rcobo's
HP49G, equipped with colour l 5 l

display ;-)) 1

Another method? OK, we proceed to the more hidden features. Do you
know STORE? No, not the command STO, | mean the function
STORE. Yes, itisafunction and it is alowed in algebraic objects! In
stack syntax it takes any object from stack level 2 and a name from
stack level 1. It stores the evaluated object in the name and returns the
result of the evaluation to stack level 1. In algebraic syntax you write:
STORE(object,name). Go on and enter STORE(X- 1Y) inthe

EQW. Put that on the stack, press EVAL. Now you have a new
variable Y which contains X +1, and the content X +1 itself ison

stack level 1. Which is exactly what we need to formulate plottable
algebraic expression for recurrences that can't be transformed to

anaytic closed forms. Let's consider the recurrence
] 2*T(n- 1) i .

(T(h) = — 50 {T(0)= 100}[v) once more. (This can be

|

transformed to an analytic closed form, but let's use it anyway.) In its

first incarnation let the corresponding algebraic  be
STOREZQ 0, 5o,Tog. Enter that, and STEQ to put it in EQ.

Store the initial value of 100 in TO. Still with the same plot settings,
0 +50, storestheresult in TO

: . 2
try to plot it. It smply evaluates

and puts the same result in stack level 1. Since the function plotting
software evaluates the object in EQ repeatedly, we would expect it to
draw the same sequence again. But it doesn't! Instead of thisit plots al
points at the y-coordinate of about 116.67 which is the numeric result

of thefirst evaluation of the algebraic 2" T0 +50. (To seethat, store

100in TO again, recal EQ and press[EVAL], [->NUM].) So the plot
looks like the picture on the right. Why is that? Well, | am not sure
about that, but through experimentation | believe that the explanationis
the following. Have you ever noticed that there is a more or less
observable delay between the key press [DRAW] and the real start of
the drawing? Y ou get asmall (or big) pause and then the plot goes on
faster than what you might have thought when the pause occurred. The
guestion has been often asked in the news group, "what does the
calculator dointhistime?' | believe that one of the thingsthat are done
in this time is the complete numeric evaluation of the function, except
of the independent variable, which takes different values later on,
when the HP49G actualy plots. Our function,

*
STORE(;:‘aéz T0
a al. It is first numericaly T
evaluated to 116.67, since TO
already contained 100. It is this
evaluated form that is used later |
to plot the points of the sequence. " = o= o= o= o= o= o= = ou
Since this is a plain simple real, |
nothing changes while n takes
the values 1,2,... and so on. So, | |
the only y-coordinate is this |
number, 116.67. We need a

+ 50,T02, doesn't contain the independent variable
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mechanism that prevents this evaluation. And guess what? We haveit!

* 7

Change the current EQ to QUOTEE%TORE? 0
re-store it in EQ. [ERASE] and [DRAW] again. Thisworks! Store 50
in TO and [DRAW]. The combination QUOTE/STORE does miracles
here. If you want to the function itself to contain the initial value, then
go to the EQW and enter the function to be plotted as:

& & a2 * T0
IFTEgn < 2,STORE(50,T0),QUOTE (STORE,

+50,70% and
@

+50,TP%

257]
This automatically stores the initial value of 50 in TO and returns 50
for n=1 (and al valuesof n lessthan 2). But for n3 2 it calculates
the next point out of the current point.

Using the same method, we can write for the Fibonacci sequence:

PURGE @Additional code

But what can we do if we use STORE in an algebraic? Well, there is
also the function UNASSIGN. This function takes a variable name
from the stack, it returns the uneval uated contents of the variable on the
stack and purges the variable. It also alowed in algebraic objects
(hurrah!) whereit has the syntax: UNASSIGNname) . So if we want

to get rid of TO after, say the tenth point of

iT(n) ~2:T0- 1) +50 {T(0)= 100}2 has been plotted, we could
i

IFTE(n <1,STORE(0.,F0,),IFTE (n <2.,STORE(l,F]),QUOTE(STORE(FO+ STORE(FJ,FO),FJ))))

change the equation so that it uses
UNASSIGN to purge the variable TO
that isn't needed anymore. | have tried

Set "V-View:" from
-10 to 60, "Indep .
Low:" to O, "High:"
tol0and stepto1l T
(user units). Let it T
plot! Slow, but it .
doesits work. .

So we have yet I I T 1 1 1 1 1 1 1
another method to
plot sequences given as recurrences. What a blessing in disguise this
STORE was! And still we can do a little better. You have aready
noticed that the last couple of methods leave an additional variable in
the current directory when the plot is done. Of course we can manually
purge it, but we can also let the HP49G do that automatically when it
finishes the plot. For the plotting programs given so far, it seemsto be
easier. We simply add PURGE at the end. For example the end of the
program RECINTERACT can be changed to:

to do that, with QUOTE and without
QUOTE, but no use. Thevariable TO still remained there after the plot
was done. So perhaps some of the people out there could experiment
and tell uswhat to do. Anyway, we aready have seen that STORE and
UNASSIGN are not useless at al. They allow us to do something that
has been thought impossible. Trabakoulas looks at the horizon and
thinks of all the other hidden things waiting to be found.

While he wonders we till insist to find yet another way to get rid of
the variables that hold the initial values after the plot is done. What
about local variables? They are removed after some program has done
its work, so they seem to fit. The code of RECINTERACT can be
changed to:

<<
DEPTH - >LI ST @mke a list out of the stack objects
0. @nd enter a 0.
-> stack <-TO @tore locally,
@ocal variabl e.

<-TO is a conpiled

<<

4-10



Seqguences, series and limits with the HP49G - Part 4

ERASE DRAX
DO
Pl CTURE @\ctivate the graphics environnment
I F
DEPTH @f then user has pressed [ ENTER]
THEN
M @hen store the i magi nary part
'<-TO STO @f the coordinates in <-TO,
DRAW 0 @lraw, return O.
ELSE @&l se restore stack, return 1
st ack
oBJ- >
DROP
1
END
UNTI L
END

>>
>>

At the same time we change the program in EQ to:

<<

<-TO @ut <-TO (initial value) on the stack
I F @f n>1
n2 3
THEN @hen "cook" T(n) with 100 as the
1nlIP @nitial value
START
2. * 3./ 50. +
NEXT
END

>>

When RECINTERACT finishes now, there is no global variable TO
left in the current directory, because we never used one. (Why does
the local variable have to be a compiled local variable? Why not an
ordinary local variable?)

Perhaps you wonder if storing the following program in EQ would
work:

<<
. 666666666667 * 50. +

DuP
>>

@cal cul ate
@opy for next eval uation

Store that in EQ and enter 50., the initial value required to plot it. Set
"Indep:" to 'n', "H-Tick:" to 1 and "V-Tick:" to 25, "H-View:" from O

to 15 and "V-View:" from -50 to 300, "Indep Low:" to 1, "High:" to
15 and "Step:" to 1. If you ERASE and DRAW, then you see that it
also works. But the initial value of 50. isn't on the plot. We must make
the program better so that if we plot the first point, the value of the
initial value will be used.

<<

I F
n2 3 @f we don't plot the
THEN first point, then
. 666666666667 * 50. + @cal cul ate
END
DUP @opy for next evaluation

>>

Store this in EQ, enter 50. and re-ERASE, re-DRAW. This time the
initial valueis plotted too. (The value left on the stack after the plot is
ready, is the copy created when DUP is executed for the last time by
the program in EQ. Since nobody usesit any more, it stays al alone on
the stack, poor number.)

Using the last program in EQ, we can change RECINTERACTIVE a
little bit, so that we can use many different initial valuesinteractively.

<<
DEPTH - >LI ST

-> stack
<<

@mke a list out of the stack objects
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ERASE DRAX
DO
Pl CTURE @\ctivate the graphics environnment
I F
DEPTH @f then user has pressed [ ENTER]
THEN
M @ut the init. value on the stack
DRAW DROP @xr aw and drop the poor nunber.
0 @Return 0.
ELSE @&l se restore stack, return 1
st ack
oBJ- >
DROP
1.
END
UNTI L
END

>>
>>

This works just like before and lives no poor numbers on the stack
when we finish plotting.

Until now we have used many different ways to plot sequences, but
the plot type was always FUNCTION. Actually there is another plot
type which can be used to plot sequences. This plot type is " Scatter"
and it wasinitially thought for statistical plots, but we can useit to plot
any sequence of points. First of all let's look at the description of the
plot type and the usage of the plot parameters.

The HP49G uses areserved variable named SDAT to hold the data that
are used for statistics. This is a matrix with the variable data in
columns. To do a scatter plot we must first choose the plot type
SCATTER. Obvioudly this can be done interactively in the PLOT-
SETUP screen by choosing "Scatter” as the plot type.
Programmatically the same can be done with the command SCATTER.
Because SDAT can have any number of columns (that is, any number
of variables) we must also specify which of the columns will be used

as the horizontal variable and which will be used as the vertica
variable. Onthe PLOT SETUP screen this can be done by entering the
number of the column in the input fields "Cols:". If for example the
data in the first column must be plotted against the data in the second
column, we just enter 1 and 2 in these fields. The commands for doing
the same in programs are XCOL, YCOL and COLS. XCOL and
Y COL both take a number n from the stack and assign the role of the

X- or y-variable to the

corresponding column of the vary ... varn

matrix in SDAT. COLS takes both 4 3
u

numbers from stack level 2 (x) Obs.1 gvalfjelvl Va“'Jelan

and 1 (y) and uses them to assign g D
the roles of both the x- and y- Obs.n 4 4
variables to the corresponding n alue,, value, b
columns of the matrix. Notice that

these settings can be aso made from other inform screens. For
example, if you press [RED-SHIFT] and then [5] you are presented a
pop-up menu. If you choose "3. Fit data..." from this menu, then you
are presented the FIT DATA screen where you can set the x- and y-
column. If you want to put the commands for statistics in programs
and you prefer menu hunting than typing them yourself, then you can
enter 96.01 and then MENU. Y ou are then taken to the old fashioned
main menu for statistics, which contains other menus with commands
like XCOL, YCOL and so on.

Now, the parameters that affect the scatter (and any other statistics
type) plot, are kept in another system reserved variable named SPAR.
Thisvariableisalist:

{ x-col y-cal intercept dope modd }

For the time being it is of interest for us to know that the first two
parameters in SPAR are the numbers specifying the x- and y-column.
(Wewill take a closer look to the other parametersin future.)

Of course the settings that affect the lookings of the plot are stored as

parameters in PPAR. (Look also at the complex numbers marathon.)
PPARisasoalist:
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{ (xmin,ymin) (xmax,ymax) indep res axes ptype depend }
The meaning of these parameters for the scatter plot is:
(xmin,ymin): A complex number which specifies the lower left
corner of the display range. The value used as default
is (-6.5,-3.1). The programmable command for this
parameter is PMIN.

(xmax,ymax): A complex number which specifies the upper right
corner of the display range. The value used as default
is (6.5,3.1). The programmable command for this
parameter isPMAX.

A name specifying the independent variable. Default
is X. Programmable command: INDEP.

indep:

res. not used with this plot type.

A list that has one or more of the following elements
in order. A complex number specifying the
coordinates of intersection of the axes, a list that
specifies the tick marks of the axes and two strings
that are used as labels for the X- and the Y-axes.
Programmable commands for these parameters are:
AXES, ATICK. AXES takes as argument either a
complex number with the intersection coordinates of
the axes or alist containing al the axes parameters.
ATICK takes as parameters either a number
specifying the tick marks annotation distance in user
units for both axes, or a list with two numbers for
separate tick marks settings for the x- and y-axes, or
abinary integer specifying the tick marks annotation
distance in pixels for both axes, or a list with two
binary integers for separate tick marks settings for the
X- and y-axes in pixels.

ptype: The command name SCATTER.

depnd: Name specifying dependent variable. Programmable

command: DEPND.

Now that we know about the parameters for the plot, let's plot the

1%

simple sequence i
|
first create the data to be plotted. Enter n, press[ENTER] to make a
copy, then enter 1, 15, 1. Press SEQ to generate thelist
{1 2 15} . These are going to be our x-column data. The
command SEQ took an expression (in this case simply n) from stack
level 5, the variable n from stack level 4, and the start, end and step
values from stack levels 3, 2 and 1 respectively. It evaluated the
expression n for different values of the variable n starting at 1 and

"
{n 1 ¥}F\’;usingascattertypeplot.We

ending at 15 using a step of 1. Enter now (Tl) n, 1, 15, 1 and use

: ] 1

SEQ agalntogetthellstf- 1 3
|

y-column data. We must convert these lists to a matrix and store the

matrix in SDAT. This is an easy task with the HP49G. Enter 2 and
- 1 - 14
15} i 1 W

2 o

lists to the matrix

-_1u_ These are going to be the
15

]
press->LIST to createthelist ({1 2
|

and use AXL to convet the list of

el 2 150
a1 1 - 1. Now, the data are not in columns but in rows, so
e 2 150
we must transpose the matrix. Enter TRAN to get the transposed
él -110
é2 =u
matrix: é. 2 0. (The command TRAN isin the second page of
§s 1
é 150
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menu MATRICES/OPER).

Now use the command

STOS to store the data in

SDAT. Go to the PLOT

WINDOW - SCATTER " .

screen and set H-View . &
form 0 to 15 and V-View - "
from -1.1 to 1. ERASE

and DRAW to see the plot.

Now, this was a rather
simple plot, but how do we .
produce the data for, say

the recurrence

%T(n): 2*T(n- 1)

+50 {T(0)= 100}§?Well, oneway isto use

again SEQ, but a little bit... crazier. First of al let's do the x-column
data. Enter n, n, 1, 15, 1 and press SEQ to get the list

{1 2 15} . That was easy. For the y-column data we don't have
an analytic closed form to use as expression on stack level 5. But SEQ
accepts also programs instead of algebraic expressions. Enter first
100, theinitia value of the sequence. Then, enter the program:

<<

DuP

. 666666666667 * 50.
>>

@copy for next evaluation
+ @cal cul ate sequence nenber

This program works on a copy of the number on stack level 1, and
creates the next member of the sequence. Enter now n or any other
name. (This name doesn't appear in the program, so in this case we
useit as a place holder, adummy for the command SEQ, which varies
n in the specified range of values, and then evaluates the program for
each current value of n. Since the program doesn't contain n, the
evaluation isn't affected by this value and only does what the program
says.) Enter 1, 14, 1 and press SEQ. The results are 100. in stack

level 2 and the list {116.6667 149.82887391§ on stack level

1. Press
include the initial
vaue in the list.
Now 2 ->LIST,
AXL, TRAN and T
STOS. Set V-View

(] to T

from 0 to 300 and
ERASE DRAW | _ =
again.

So we have yet
another way to plot | | |
sequences. There is

really awealth of different methodsto plot even recurrences, for which
perhaps one might think that they can't be plotted at all using the
HP49G. Again we see very clearly that a flexible set of available
commands allows to do much more than simply having for example a
rich predefined but inflexible set of plot types.

Enough of one dimensional sequences but not enough of plotting
sequences. We extend our experiments to two dimensions now. We
are going to plot two dimensional sequences. Some of them give us
such interesting plots that we can hardly believe what we see. First of
al, let's describe briefly what is meant by a "two-dimensional”
sequence. Consider for example the two  sequences

()

i {n 1 ¥}§and%%l {n 1 ¥}Eu§ simultaneously and
i

QI
done with this pair, like for example plotting them one over the other
against n, or plotting them asapair of coordinates and so on. We start
with something similar to what we had in the complex numbers
marathon. We plot two sequences against n like we did for the real and
imaginary part of a complex quantity. To make an example, let's take
the two sequences from above. Since they both start at n = 1 and go to

think of the members

asapair. Many things can be
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I _ n
n= +¥ , we can plot them together. Enter thelist i ( :) -
|

which contains both general members of the sequences. Press STEQ.
Many plot types can plot more than one expressions simultaneously
when we put all expressionsin alist and store thislist in EQ. We are
going to use again the plot type "Function” which behaves this way.
Go to the PLOT SETUP screen, set "Type:" to Function, "Indep:" to
n, check the option "_Simoult", uncheck the option "_Connect”, set
"H-Tick:" to 1, "V-Tick:" to 0.1 and uncheck the option "_Pixels'.
Now, go to the PLOT WINDOW - FUNCTION screen and set "H-
View:" from 0. to 15., "V-View:" from -1.2 to 1.1, "Indep Low:" to
1, "Step:" to 1 and uncheck the option"_Pixels'. ERASE and DRAW.
The resulting plot contains both sequences. Nice, but you may already
see the problem. If both sequences contain members near to each other
then it will be hard to tell the one sequence from the other. If we
connect the points (like in real function plots) then it gets a little bit
better, but we lose the looks of the sequence and we can't see the
actual points very well. One possible way to see which points belong
to which sequence is to use the built-in capabilities of the HP49G in
graphics. While you are in the plot environment, press the menu key
[FCN] ([F4]). Press [NXT] to go to the second page of the menu.
Press [+] to display the cursor coordinates and use the arrow keys to
move the cursor to X=3. Press again [+] (or any menu key) to display
the menu again and the
press the menu key
[NXEQ] ([F4]). The
cursor moves to the
upper chain of points and
the sequence '(n-1)/n' to

n-1U

which  these  points . . .
belong is displayed at the | ——
bottom of the screen. - vt

Press again [+] (or any
menu key) to display the
menu and press agan
[NXEQ]. Now the cursor
goes down to the

sequence '(-1)*n/n" and the sequence itself is displayed on the bottom
of the screen. So we can see "where we are” at any time. Press any
menu key to re-display the menu and then the menu key [PICT] ([F6])
to return to the plot environment. Press the menu key [TRACE] to start
tracing. Unfortunately using the keys[ARROW-LEFT] and [ARROW-

&)

RIGHT] while you trace the sequence has the undesired side

n
effect of temporarily displaying the message "undefined" on the top of

)

the screen, making the trace slow. This is because isonly rea

for integer values of n. Thereisawork around however. Press the
menu key [(X,Y)] ([F2]) or [+] to display the cursor coordinates at the
bottom of the screen. Now the message isn't displayed anymore, but
instead of this the coordinate of Y remains "empty" for any n having
non-integer values. Y ou may also notice that the cursor doesn't "jump”
on every point, but only to the points for n=3., n=6., n=9.,
n=12. and n=15. . Why isthat? Well, the horizonta coordinate of
the cursor is calculated according to the current x X . and the

number of pixels available horizontally in the PICT, which is 131.

With our current settings there is simply no pixel having horizontal

coordinate 1, or 2 and so on. But there are pixels having horizontal

coordinate 3, or 6 and so on. These are "jumped on" by the cursor
(Y (Y

because the results aratiaret etc. are real numbers. Now, you

perhaps ask, how it comes that the other points were plotted? Well,
for the plot the HP49G knew that it has to start at n =1 and go to
n=15 instepsof 1. It calculated all pairs of user coordinates and
then converted them to the pixels that are next to the calculated user
coordinates. And this because we unchecked the option "_Pixels"
when we set up the step to 1. (If you check this option, then ERASE
and DRAW, you can see that almost no point of the sequence %
is plotted. The HP49G then finds first the horizontal coordinates of
the pixelsthemsel ves, which under the current settingsfor x X

max ! min
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)

n
nothing is plotted.) Now let's change train and trace the other
sequence. While in trace mode press [ARROW-UP] or [ARROW-
DOWN]. While the keys [ARROW-LEFT] and [ARROW-RIGHT]
move the cursor along some plotted curve while in trace mode, the
keys[ARROW-UP] and [ARROW-DOWN] can be used to jump from
one plotted curve to the other. The cursor goes up to the sequence
nTl, whichisawaysrea fornt 0. Whilein PICT (evenwhenin
trace mode) you can press [BLUE-SHIFT] and then [ARROW-
DOWN] to temporarily display the current expression on the top of the
screen. This is an additional help to let you see which expression is
currently traced.

isnot rea and so

are almost never integer. So the expression

Let's do Enter the list

| COS@]

another  example  now.

“n . A*n
3*n 16, pg SIN@
5 79 @ ee 2 6

B r
8ra *p 0?; and press
STEQ. With the same
settings as  above
ERASE and DRAW.
On the resulting plot it
iIs now really hard to
keep the overview of
the points of one
sequence. As you can
. see, even if we had
colours it would be
. hard to tell the

behaviours of both

sequences from each
other. The points of these sequences are too near to each other, they
mix up in the plot, making it almost impossible to somehow follow the
one or the other with a smple look. So we must somehow separate
them but at the same time keep them on one plot if we want to compare
them visualy. We do the same thing like in the complex numbers

marathon. We are
going to plot them one
at the top half the other
a the bottom half of
. . the screen.  Enter
RCEQ to recall the list
stored in EQ. Use the
command OBJ> to

1 .- . . explode it and DROP
4. ' . m to get rid of the
+ . element count. Store
the expression
Z4x 1o, 0. . .
SIN§%+ 6n_ §;*p§|n'TEMP' aswe are going to use it later.

16

2
Now use STEQ to store COSQE— + 3°n
ee 3 5 72

*pgin EQ. Wewill
plot this sequence at

the upper half of the T . . .
screen, sO we must +
set "V-View" from - . . |
4 to 1 to reserve .

space for the second . . . =

plot. To avoid too
many ticks on the
vertical axes, we set T
"V-Tick" to 5 . +
Now, ERASE and 4
DRAW to get the
first half of the plot.

Now recal TEMP
and press STEQ to
2 4% 16, 0. : .
store SIN(??1 L2020 pQ in EQ. We want this expression to be
ee?2 6 89 o

plotted under the first in the free space of the plot. So we set "V-
View:" from -1to 4. Press DRAW (this time without ERASE) to plot
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the second
. * expression. The plot
now contains both
sequences but
separated from each
other, so that we can
see more clearly what
is the one sequence
and what is the other.
We can add a
dividing line between
the two sequences for
better separation.
While in the plot
environment press [RED-SHIFT] and then [ARROW-LEFT]. This
moves the cursor to the | eft of the display. Press the menu key [EDIT]
([F5]) to go to the menu with interactive commands for editing
graphics. Press [* ] (multiplication key). This putsamark at the
current position of the cursor. This mark is one of the two points that
are necessary for drawing lines, circles and boxes. Press [RED-
SHIFT] and then [ARROW-RIGHT] to move the cursor to the right.
Now press the menu key [LINE] ([F3]) to draw a line between the
mark and the current cursor position. The plot is now finished.
(Except of course if you want to try your artistic capabilities by
drawing boxes, circles and lines ;-)) We have now both sequences
plotted against n. But we could aso plot the one against the other.
And as you can guess we do it, or else why should Nick say that? ;-)

4*n_ 1
6 89

16 & .
o*pg against

2
Plotting the expression SIN%?%+

3*n 16, 0. . , ,

- = ~ isessentidly a parametric plot, with the
5 79 pz yap P
parameter n. The HP49G offers this plot type out of the box. The
variable EQ contains then an algebraic expression or program that
evaluates to acomplex number. Thereal part is used as the horizontal
coordinate while the imaginary part is used as the vertical coordinate.

2
COS?E\— +
ee 3

That means that we must storein EQ the expression:

* .. . 2 *
3*n 10*p9+i*SIN§?]L+4 n
5 79 @ ee?2 6

16, O

89 pz

2
COS?E\— +
ee 3

Do that, and then go to the PLOT SETUP screen and set "Type:" to
Parametric. Set also "H-Tick:" and "V-Tick" to 0.2 . In the PLOT
WINDOW - PARAMETRIC screen set "H-View:" from -2 to 2 and
"V-View:" from -1to 1. Since the dimensions of the PICT are 131x64
pixels, the width of the plot is twice its height. So the above settings
for the horizontal and vertical view range preserve the aspect ratio. Set
"Indep Low:" to 1 and "High:" to 50. Also set "Step:" to 1. Now
ERASE and DRAW. Y ou can see that the plot isinteresting because it
is... boring! Actually we would expect that many more different points

would be plotted because the expression
2 * ' . 2 * . .
costin 437N 16,00, g\ 470 16,0
ee3 5 79 4] ee?2 6 89 a9

plotted for 50 different values of n. But we have only about 30 plotted
points. If you want, you can set "High:" to, say 100, so that the
expression is evaluated and plotted for 100 different values of n. This
will not change anything. (Except for the time that you spend waiting
for the HP49G to finish " - = .

the plot ;-)) The same = -

points are plotted over and
over again. The sequences
have a finite number of
points which are repeated T
periodicaly!  This s i I '
perhaps interesting but it is " + " .

nothing compared to what . .
we are going to see now.
Fasten your sit belts, the
excursion to the depths of
the universe is about to -
begin. (Trabakoulas says that we shouldn't forget our towels ;-))
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We are going to plot the recurrence:

DRAW 0.

i ®

(X(n-1)+0.7 Y(n-1))’

ELSE
stack OBJ->

iY()=Y(-1)+0.7 gx(n -1)+0.7*Y(n-1)-

f 25

DROP 1.

6 ;
+ {Y(0)=va}y
o} b END

against therecurrence{X(n) =X(n- 9 +0.7*Y(n- 1) {X(O) = XO}} .
First we write a program that uses the global variable P, a complex
number (X(n- 2),Y(n- 1)), to caculate the next point (X(n),Y (n)).
(We will see where the value in P comes from in aminute.) We use

the fact that X(n- 1)+0.7* Y(n - 1) appears more than once. We

calculate this quantity only once and then we use stack commands to
make copies of it which are used to compl ete the calculation.

<<
PRE.7PIM* +
P IMOVER DUP 3. 7
25. | - .7 * +
R->C DUP ' P STO

@al cul ate next X
@al cul ate next Y

@tore a copy in P for the next
@al cul ati on.
>>

Store that in EQ. Now, we use the same technique like in program
RECINTERACT, to supply initial values for P interactively, that
means out of the current coordinates of the graphics cursor.

<<
DEPTH ->LI ST
-> stack
<<
ERASE DRAX
DO
Pl CTURE
I F
DEPTH
THEN
P STO

UNTI L
END
>>
>>

Store the program in REC2DINTRCT. Set parametric plot type,
independent variable to n (or any other name - it is again adummy),
horizontal and vertical tick to 1 user unit, no connect, horizontal view
from -8 to 8, vertical view from -4 to 4, independent variable low to 1,
high to 500 and step to 1 user unit.

The check listisOK and we areready for launch. Let REC2DINTRCT
run. The first thing you see is the plot environment and only the axes
are plotted. The program has just executed the command PICTURE
and, as aready mentioned, halts there until you leave the plot
environment. While you are there you can move the cursor using the
arrow keys, press [+] to show the cursor coordinates, and in general
do anything that you can do when you manually enter the environment.
Now, press [+] to see the coordinates and use [ARROW-LEFT] to
move the cursor to X=5, Y=0 (or as near to these coordinates as
possible). Press the key [ENTER]. This puts the coordinates of the
cursor on the stack as a complex number. It is exactly this complex
number that is used as the initial value of the recurrences. Press [ON]
to leave the plot environment and let the HP49G draw 500 points

starting at the just entered point (5,0). The sand clock appears and the

HP49G seems to work but no much happens. (While the plotting is
going on you can press [ON] to stop it, if you are not patient. This
doesn't stop the whole program but only the plotting process.) When
the HP49G is ready, be it because it plotted all 500 points or because
you interrupted the plot, it shows again the plot environment. Press [+]
to see the cursor coordinates, move the cursor to X=4, Y=0 (or as near
to this point as possible), press [ENTER] and then [ON]. Look! Some
kind of loop materialises on the screen in front of your eyes. Let it
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form nearly completely. Again, while the points are plotted you can
press [ON] to jump to the plotting environment. Now that we know

that starting at (5,0) almost doesn't plot anything and starting at (4,0)
plots a loop, we wonder what might happen if we start at (4.5,0).
Move the cursor there, and again press [ENTER] and then [ON]
Another loop! It seems like we are orbiting around (5,0) if we start
somewhere in the neighbourhood of (5,0). But if we start at (5,0) we
stay there. Move to (3.5,0), press [ENTER] and then [ON]. Another
orbit! Repeat starting at (3,0). Wow! What isthis? A chain-like orbit
forms. Actually it is an orbit that consists of... orbits! Repeat starting
at (2,0). Watch the new orbit asit is being plotted. It startslike a

"wavy" loop but after it has almost completely formed, the plotted
points go to the left, keep moving for a while around a region which
remains white, and then build-up something like space dust around the
white region on the left and the "elliptical galaxy” on the right. We

continue constructing the universe. Repeat starting at (1.5,0) and at
(1.6,0). The cosmic dust is getting denser. And are there new sub-
galaxies forming at the outskirts of the "wavy boundary of the elliptic
galaxy"? Go to the point (2.34,- 1.71) and press again [ENTER] and
[ON]. It really seems that the sub-galaxies exist. But let's move to the
left, to the white region of the universe. Go to (- 5,0) and draw
another iteration. It looks as if (- 5,0) were apoint from where you
can't escape. Initial points (- 4.5,0) and (- 4,0) form orbits. (- 3.5,0)
forms an orbit but very slowly. (- 3,0) asomehow wavy orbit. But
(- 2.5,0) creates sub-galaxies at the boundary of the left galaxy.

Wow, we have another galaxy on the left! Starting at (- 2,0) putsa
halo around the left galaxy and its sub-galaxies. And starting at
(- 1.5,0) makes cosmic dust even denser. Y ou might have noticed that
there are smaller white regions at the outskirts of the left galaxy. Go to
(- 1.6,-5.71E - 1) and press [ENTER] and [ON]. Are these sub-sub-
gaaxiesthat form in the small white regions?

We aready reach the limits of resolution of the HP49G screen at this
scale. If the HP49G had better resolution we Would seethls

But 131" 64 pixels are too few to see such details from such a

distance. We must move nearer to the interesting part. If you want to
keep this picture of the universe, just press [STO]. Doing this in the
plot environment just puts a copy of the graph on stack level 1, which
you can later store in some variable. But now, as Trabakoulas saysin
such cases: Zoom in, zoom in! Press the key [+] to see the cursor

coordinates and move the cursor to (9.85E - 1,1.84). Press again [+]

to see the menu again. Press the menu key [ZOOM)] ([F1]), and then
the menu key [BOXZ] ([F2]). Press the key [+] to see the cursor

coordinates again and move the cursor to (3.2,-6.98E - 1). Press [+]

to switch to menu display and press the menu key [ZOOM] ([F6]).
Thiswill draw the horizontal axis and start the last iteration that we did

again. Press [ON] to interrupt it. Go to (3,0) and again [ENTER],
[ON]. You get a part of an orbit of the right galaxy. Start at (2.5,0).
Now you see sub-galaxies forming. Let them form well. Then go to
(2.57,6.72E - 1) and let plot. A new wavy orbit formsjust at the

outskirts of the sub-galaxies. Start at (2.59,6.72E - 1). A new orbit
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seems to want to form between the sub-galaxies and the outskirts of
the right galaxy. Start at (2.38,6.32E - 1) to get an orbit at the

outskirts of the sub-galaxies, and at (2.26,6.32E - 1) to get new sub-

sub-galaxies! Go to (2.69,1.2) and (2.64,1.16) and let plot. The

inner world of the first sub-galaxies is formed. Start at
(2.19,6.32E - 1) and (2.1775,6.32E - 1). Again white wholes at the
outskirts of the sub-sub-galaxies? Will they contain sub-sub-sub-
galaxies? Let's see. Start at (2.14,9.14E - 1). Yes, it looks like new

sub-sub-sub-galaxies! Does it ever end? Start at (2.08,5.92E - 1),
(2.02,5.92E - 1), (1.97,5.92E - 1) to decorate this part of the

universe with glittering dust. Start at (1.75,4.71E - 1) and let plot.
What? New galaxies in the middle of the cosmic void? And they
somehow seem to be... triangles! Y ou might be inspired enough to
continue the construction of the universe, adding details and further
zooming in to explore interesting regions. But the more you zoom in
the more points you need to let the structures form well. And as the
poor HP49G is not a CRAY you must be very very patient. On the
next page you see what our zoomed part looks like and also some
deeper zooms which are almost impossible on the HP49G. Isn't that
wonderful? Two simple coupled recurrences construct a whole
universe! And Trabakoulas wonders why in some zoom scalesit looks
likeif the universe were... wooden! ;-)

And what happensif we change the recipe alittle bit? Let's change the
recurrencefor Y to:

Change EQ to:

<<
PRE.7PIM* +
P IM OVER DUP 3.
25. / - .5 * +
R->C DUP ' P STO

@al cul ate next X
n @al cul ate next Y
@tore a copy in P for the next

@al cul ati on.
>>

set the horizontal view range from -10 to 10 and the vertical from -5to
5. Also set independent variable high to 2000. We need such a high
number because some of the structures need many plotted points to
form well. For the beginning try with starting values like (0,1), (0,2),
(0,3), (0,3.5) and (0,4). Remember that you can adways press [ON]
while the HP49G is plotting to interrupt the plot and continue with the
next initial point. When you're done with the above initia points try
(5,0), (4.5,0), (3,0), and so on until (1,0). When someinitial point
leaves some region more or less white, try starting somewhere inside
that region. Quite often you get smaller structures that form in such
regions. Zoom in interesting regions and look what new structures
appear. The new recipe might be only just a bit different from the old,
but the differencesin the overall ook of the plot are big. On the second
next page you have again some pictures ot the recurrences.

On the following pages we have some more universes and other
strange products of such sequences. Storing the corresponding
programs in EQ and running REC2DINTRCT you

& (X(n-2)+0.7Y(n- 1))’

;Y(n) =Y(n-1) +o.5*g><(n -1)+0.7Y(n- 1) -

i
i 25

can explore them on the HP49G. (Until the
batteries are dead, ;-)) Let it be said here that the
following plots are made on a Mac and not on the
HP49G. The plots on the HP49G will be less

-

2 {Y(0) :YO}-'

o=

perfect.
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ﬂ-'h.

"her wooden univeyse
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Sequences.

X(n) = X(n- 1) +0.0% Y(n-1)** SIN(3* X(n- 1)) {X(0) = xo}}

iY(n)=Y(n-1)+0.7% ;((n-l) +0.7%Y(n-1)- X(n-1) +o;505r ¥(n-1) % {Y(0) =Yo}§

1 -ﬁ;_ﬂ"l"""f“
:.';!_IH-L‘ '-l.]i

4-23



Seqguences, series and limits with the HP49G - Part 4

Sequences.
{X(n) =x(n- 9 +0.02 Y(n-1)* {X(0) = xa}}

'.Y(n) =Y (n-1)+0.0F §<(n ~1)+0.0% Y(n-1)- (X(n-9 +0éC;9*Y(n -1)’

i
.I.
t

0 f
+ {Y(0) = yoly
£ | }ty)

e "ﬂj“\:f}*;\ )ﬂ %;‘;m A e e

Branches and roots
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Sequences.

{X(n) =x(n- 9 +0.02*Y(n- 2" {X(0) = x0}}
:’Y(n) =Y(n- 1)+o.02*zex(n- 1)+0.07* Y(n- 1)- X(n- 1)+O;52*Y(n' ]))SE*SIN(?;*X(n- ) {Y(0) =Y}y
0 e ) b
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Sequences.

{X(n) =x(n- 1 +0.03* Y(n-)** X(n-)* SINX(n- 1)) {X(0) = X0}

}'Y(n) =Y(n- 1) +0.01* ;(n - 1)+0.01* Y(n- 1)- X(n- 1)+O£55* ¥(n- D)sg*cos(y X(n- 1)) {Y(0)= Yo}g
0 e a b

Accelerator coils
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Sequences.
{X(n) =x(n- 9+0.07* Y(n- 1" * SIN3* X(n- 1)) {X(0) = xa}}
by ()= Y(r-1)+0.07 §((n 1407 ¥(n-1)-

s that a bikini? :-)

Mirrored women
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Sequences.
{X(n) = x(n- 9 +0.7* Y (n - 1) +0.000% SIN2* X(n-1)) {X(0) = x0}}
& (X(n-2)+0.7 Y (n-12))°9

Y(n)=Y(n-1)+0.7 gx(n -1)+0.7 Y(n-1)- = £+0.00% SIN3*X(n-1)) {Y(0)=YO0}

2 — —

T

o
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Wow! That was a journey to fascinating words! Perhaps you have Air exchange
already noticed that it was also a first look to chaos, which will be
subject of a future marathon. Trabakoulas sits again and thinks about
spiral distributions of goats and how they can be used in order to send

them all to the centre point, the core ;-) Beside such highly scientific Temperature meter Heater
shepherd applications we have also other opportunities to apply what

we have seen. @

Takefor example Nick and his vegetable. Once he asked himself "why Vegetable

do we have some vegetable in winter only, while some other vegetable s

comes only in summer?*. He asked his wife this highly philosophical
guestion and expected some kind of international conspiration that for
some secret reason forbids spring onions to be sold in winter. But he
was quite amazed to hear that different plants grow at different times
and that one couldn't expect to see ripe bananas growing on the Alps
in the middle of winter. Disappointed from the unexpected simplicity
of the answer (what? no conspiracy?), he decided to construct a small
vegetable house isolated from its surroundings with only one air
exchange window. The inner atmospheric conditions, like
temperature, humidity and so on, should be controlled by the HP49G.
He planned first the temperature control. The HP49G is connected to a
data link, model Rcobo-Deluxe. This device receives temperature
readings from a temperature meter in the vegetable house every 10
seconds, and sends them to the HP49G. On the HP49G a program is
running which compares the received temperature with a value that
Nick has entered, 20°C. If the temperature inside the vegetable house
is less than 20°C then the HP49G sends the command "Heat" to the
link, which then, intelligent as it is, sends the command to the heater. Data-Link
The heater starts heating for a second and then stops heating, giving

enough timefor the air inside the house to be homogenised, so that the ¥

next temperature reading really measures the temperature of the whole
house and not only at the spatial coordinates of the temperature meter.
If the temperature is over 20°C, then the HP49G doesn't send any L
command and the air exchange does the cooling. So he thought that he HP49G
could establish a constant temperature in the vegetable house, so that iy
he could grow and sell swiss bananas in winter and greek spring ===
onions in summer. Trabakoulas doubt that this was going to be that
easy, but Nick nonetheless wanted to try it. The results were not at all

4-29



Seqguences, series and limits with the HP49G - Part 4

convincing. The bananas look rather like french fries and the spring
onions were stinking so strongly that one could only get in the
vegetable house wearing a diving mask with agua lung. What went
wrong?

We simulate the above situation on the HP49G with a program.

<<
{#0d #0d} PVI EW
DRAX
{0. 0. 0. 0. O.
0. 0. 0. 0. 0.} @i st of past tenp.
-1. @counter (tinme)
-> gCurrent qTarget Dgh t @tore in locals
<<

@how us the current PICT

changes

DO
' Dgh’
I F @f current tenmp. |ess
gqCurrent qgTarget. < @arget tenp.
THEN
.4 @eturn tenp. change because of heater
ELSE
0. @l se no heating.
END
STO+ @\dd to list of past tenp. changes
gCurrent .2 - @enp. lowering air exchange
Dgh HEAD + @Add tenp. raise frombefore 10 sec.
"gCurrent' STO
Dgh TAIL

"Dgh' STO (@Btore rest of past tenp. changes.

"t' I NCR @ncrenment tinme

gCurrent R->C PI XON @urn correspond. pixel on.
UNTI L

t 130 == @ntil we plot at t=131 seconds
END
Pl CTURE @ go to the plot environnment

>>
>>

This simulation bases on the fact that the heat needs 10 seconds to be
distributed homogeneously in the house by air circulation. That is,
when the heater heats now, the temperature meter will read the
increased temperature because of this heating after 10 seconds. The
heater gives the amount of heat to the air in the house, that is enough
for a temperature raise of 0.4°C. At the same time, if we heat or not,
the air exchange with the outside is always present and lowers the
temperature of the house at the rate of 0.2°C per second. (It's cold out
there ;-))

Store the program in 'NICKOVEG1' and set up a horizontal plot view
range from O to 130 and a vertical view from 10 to 25. Because the
PICT is 131 pixels wide, setting H-View from 0 to 131 (or any other
range that contains 131 user units) actually makes 1 pixel equal to one
user unit. The PICT isn't restricted to 131" 64 pixels. It can be much
bigger. The portion that you see at atime however is aways 131" 64
pixels. We are going to see how we can change the dimensions of
PICT inthe next part of this marathon.

Thelist bgh plays the

Oldest Newest i
temperature temperature '[grlr? gr;thjehlgﬁg (éfs
;:han%e is taken change go here duepto heating'" \?Ve
romngre aways take the first
\ (oldest) change and
add it to the current
{o. 2 0} temperature and at the
<+ same time we add the
Changes shift to newest temperature
the left (past) change at the end of

every time the thelist.

program plots 1
pixel. The program needs
the current
temperature and the target temperature, so enter 15. and 20., ERASE
and run NICKOVEGLI. The program starts plotting temperature against
time. When it finishes the plot, it switches to the plot environment, to

let us examine how the temperature changed from 0. to 130 seconds.
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We see that the first

8 seconds the
temperature  falls?H9"C]
until it reaches 3.8°C
13.1°C. Then it;g ec-
rises until it reaches
219°C a 51
seconds. And from

this time on it
oscillates between 13-1°C——
21.9°C and 18.1°C

every 19 seconds. 8s 51s  70s

The poor vegetable never knew what kind of climate that was. ;-)

/NN

—19s—

One reason for the bad controlling of temperature is that the heat used
to make the house warmer is too much when the current temperature
approaches the target temperature, because the thermometer reading
lags 10 seconds. So perhaps we could improve the circumstances
under the vegetable has to grow, if we take a better heater that doesn't
always give a fixed amount of heat. For example we could take the

model TH1 by TRABA-HEAT® which releases an amount of heat that
can be adjusted, so that it that causes a temperature change of
gtarget - gcurrent

10

The program for the simulation must now be dlightly changed:

I F @f current tenmp. less
gqCurrent qgTarget. < @arget tenp.

THEN
gTarget qgCurrent - @eturn tenp. change
10. / @ecause of heat

ELSE
0. @l se no heating.

END

The changed code is in red. Store this in NICKOVEG2, enter again
15. and 20.
and run it
Now the 20°C

behaviour is /\

quite different.

T h e L
temperature N

falsto 13.1°C

at 8s but then
rises up to .
20°C at 29s. 31
Then it
oscillates but

the oscillations

get weaker and weaker and from about 108s on it remains constant at
18.1°C. Better than before because the temperature remains constant
after some time, but still not very good because we wanted 20°C and
we stabilise temperature at 18.1°C. What would happen if we provide a
target temperature of 22°C? Enter 15. and 22. and run NICKOVEG2
again. Yeah! Now, after all oscillations the temperature stays at 20°C.
So we can adjust atarget temperature of 22°C wherewewant 20°C. Or
improve the system once more.

18.1°C

:

8s

29 108s

Another weakness of the whole system isthat the heat simply needsto
much time to be uniformly distributed around. We must somehow
accelerate that. What about a ventilator? Let'sinstall model KAROT-1

from Karagiaouroglou Rotors® and see what happens. The heat needs
now 5. seconds for uniform distribution, so we change NICKOVEG2:

DRAX
{0. 0. 0. 0. 0} @i st of past tenp. changes
-1 @ounter (tinme)

making the history of temperature changes shorter. Store the new
program in NICKOVEGS3. Enter 15. 20. and run the new program.
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Now the results are better hope that the con-sequences of travelling to wooden universes were
considering that constant not very dramatic and that you don't decide to become a vegetable
18.3°C /\ temperature is achieved farmer ;-)
18.1°C much faster and with
amost no oscillations. Vegi-Greetings,
But agan we reach Nick.
18.1°C and not 20°C. So
we adjust again a target
temperature of 22°C and
see what happens. Enter
T again 15. and 22. and run
4

14°C

s 23 28s NICKOVEGS again.

That was it! After 32s we
reach 20°C. Theoretically
at least. The used model 20-5°C
for smulation is too naive 20°C
for accurate predictions,
and | tell you the function

VegetableGrowtHq) can
be very demanding ;-) Not
to speak about all the other

variables that ae 14C “
important, like humidity
and the like. And not to 4s 23 32s

speak about perturbations

like for example Nick who forgot to shut the door of the vegetable
house in the middle of winter, or the goats of Trabakoulas that ate up
anything eatable in the house ;-)

That's why Nick thought again and decided not to become a vegetable
farmer but an HP49G enthusiast instead. At least the HP49G never
complained " Sequence Error: Too Low Temperature”, though rumour
has that the JY A wanted to include thisfeature ;-)

End of this part. Next time we'll continue this marathon with series
and we'll see what the HP49G provides for working with them. |

4-32



Sequences, series and limits with the HP49G - Part

Zeno the sophist was a rather seldom kind of human being. He liked
thoughts that produce contradiction. And he liked being the enfant
terrible of the deic establishment of ancient Greece. One day, he was
sitting with his friend Trabakon® the shepherd at the sea side tavern
drinking his ouzo, he found the situation quite boring. No problems
what so ever, everything peaceful and quite. But the Trabakon noticed
that a few tables away, Herakles the Hero the son of Zeus the God
was sitting and enjoying a good meal. Trabakon told Zeno about the
12 heroic missions of Heracles and that was it! Zeno had just found a
new victim. Smiling with singing voice he approached Herakles.

"Ahey! Son of Zeus, godly Herakles, a good appetite | wish you."
"Join me, oh wise Zeno, the man who brings us headaches!"

"I wish | could, oh Heracles, but studies | must do’. But before | go, a
tiny thing that | must ask,

mission is more difficult than all the others taken together."
"Wise man, explain to me."

" Suppose the turtle runs 12 times more slowly than you, oh Heracles.
Then, at the time you have just run to the point where she started,

covering the starting distance to her, sheis already exactly %2 of the
same distance ahead.”

"Y es, oh wise man, but then I'll reach her!"

"Not even then, oh Herakles! Because while you are covering that
%2 of the starting distance, she again runs %2 of %2 of the same
distance.”

?nr;ssigirs?" of the 12 YN HeRALLES We sent him to the 2LV
THe SOPHIST THe HerRG pest hero schools. THE GO D

"Go ahead and ask wise (aster th

man, and I'll be glad to s g L A e run taster than a

answer." Gt #raNET turtle!!!

"Can you the strongest of
the Greeks run faster . '

than Mara the turtle, if it \’:A Y
starts 1 stadion ahead of e

you?' N, : Y
"Wise man, of course | | |F;_'- ]
can, and | am going to -l AT IR
provethat by just doing." | | %)

o et

"Be careful, oh Herakles, = -,
be careful | tell you. This g T

® Ancestor of Trabakoulas
7 Zeno spoke RPL sometimes -

AR A

THE, TURTLg
r R

5-1



Sequences, series and limits with the HP49G - Part

"Yes, but then...."

Herakles stopped and stood up. He understood the problem. Hereally
put Mara one stadion ahead and started running, but the experiment
didn't worked because Mara had better things to do than running 12
times more slowly than Herakles. The implications of this event were
enormous. Herakles went to his angry father, Zeus the God and told
him about the story. Zeus asked in agony:

"And what did you find out experimentally my son?"
"Errhh, I mean.... Marawouldn't run.., you know..."

"We sent you to the best hero schools, oh stupid, and you just neither
know, nor you can find out?

"Sir, 1..."

"Shut up! The punishment terrible will be®. Y ou will never be a God,
you stay half a God for ever."

"Because | didn't run faster, Sir?"

"Of course not, you stupid! But rather because instead of sitting at the
tavern, eating Souvlaki and Tzatziki and drinking ouzo, you preferred
to let Zeno make afool out of you!" Saying this Zeus blinked with the
eyes, as he aways did when he wanted to say that in reality the
punishment was no punishment at al. Herakles didn't get that
immediately but he did understand after some years, when he
compared again his life with the life of Gods. Night after night at the
sea side tavern, enjoying terrific meals and the presence of the most
beautiful girls, instead of the monotonous nectar and ambrosia of the
Gods. Being afool has also advantages sometimes ;-)

Despite the big life that Herakles makes, let's try to prove Zeno
wrong. We do it using ssimple physics first, and later we'll examine it
also using series maths. Let the speed of Marabe v. If Heraclesruns

® Zeus also spoke RPL sometimes

12 times faster than Mara, then hisspeed is 12* v. Let's farther put the
point O of the x-coordinate at the starting point of Heracles. Mara starts

t=0

]
-

L &
[ 'Y >
x=0 x=I
at x =1, | being in this particular case the length of 1 antique greek

stadion about 185m. At t =0 we have the situation as demonstrated on
the above picture taken with a Trabon X 1000 camera. Now, Zeno fires
a signal and watches both athletes running. To his embarrassment
Herakles dies reach Mara. Let's denote the time when Herakles reaches
Marawith t;. At any time t the x-coordinate of Marais |+ v* t. At the
time t,, that is when they meet, her x-coordinateis I+ v* t,. Zeno
enters this on his HP49G. The x-coordinate of Herakles at any timeis
12* v* t. When they meet his x-coordinateis 12* v* t,. Zeno enters
this expression on his HP49G again. Because they meet both x-
coordinates must be equal. Zeno presses [=] and gets the equation
[+v*t =12*v*t. Now heenters t, and he presses [SOLVE]. His

HP49G returns t, = 1

TIvR Thisisthe time when Herakles reaches
Mara. Zeno enters again the x-coordinate of Mara at the time t, which

. I
Is I+ v*t. Hepresses[OVER] to get acopy of t, = T v at stack

*

level 1 and then [SUBST], [EXPAND)]. The result is il l,thex-

coordinate of Marawhen Heracles reaches her. Very nervous, Zeno re-
enters 12* v* t,, the x-coordinate of Heracles at t,. He presses

[ARROW-UP] to go to the interactive stack, and then presses again
twice [ARROW-UP] to go to stack level 3. Then he presses the menu
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I

key [ECHQ] ([F1]) to take t, = o

he presses [ENTER] to leave the interactive stack. Now his command
line contains 't, =1/(11* v)'. He presses [ENTER], [SUBST],

*

. 12*| .
[EXPAND] and getsthe x-coordinate of Heracles 11 athetimet,.
The same x-coordinate as Mara's! Zeno turns red, he fumes, throws

y in the command line, and then

]
-

-1.?;!7;-};'_;.-'

o

x=0 12+
11

X

his HP49G to the ground and decides to become a vegetable farmer
without HP49G. ;-) The moral of the story: Never mess up with a
greek Hero when he sits at the tavern ;-)

But why did Zeno such a mistake? What was his error? Well, if we
consider the expression that gives the x-coordinate of Mara, as he
considered it, we have:

| - 2 | | |
g =1+ —+ 22412 4ol b — b — b — 4.z
12 12 12 12 122 123

with | the length of one stadion. The expression in the parenthesisisa

series for which Zeno believed that it can grow above any limit. This
made him think that Heracles and Mara will meet at x = +¥ |, that is

never. He thought that adding 1o

give a number that grows and grows above any finite number. But
adding something an infinite number of timesand infinity itself aretwo
different pairs of shoes in this case. As we know today, the sum

1 1 1 &
1+ :

—_—t— 4 — +...=
12 12% 128 na;olZ”

with n going from O to +¥ will

12 , .
convergesto T Let'sseeif the

+¥ 1 ]
HP49G knows that. Enter é T and press [EXPAND]. Vailal You

n=0
12 _ . : o . ,
get T This sum is but an example of an infinite series (or briefly
+¥
series). In general we writefor aseries: a, +a, +a, +--- = a a, .
n=0

The statements that we have for sequences are very useful when we
examine series. Beginning with a series, we can construct the sequence

0
of its partial sums. We construct_all finite sums, s, :éan,
P n=0
Partial sums sequence of a series 601 a, 4 é
n=0 s;=ada,, s, =ad a,,
n=0 n=0
9 and so on and we get a
Sy =a, = aa, SBQUENCe S;,S;,S,, - I.ff
n=o this sequence of partial
—a 4a = o sums converges, that is
S158 +&, = a a, iff it has alimit, then the
“05 series aso converges
S.—a.+a +a, = a and has the same limit.
2o na='0 " Let's take for example
+¥
y Zeno's series Q o
SiZ@rararoetac=aa, We construct  the
n=0
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sequence of partial sums. It is easy to write some certain members of
this sequence, but what does the genera Nth member looks like? We

N
can use the HP49G to find that. In real mode enter é

and press
n=0 12n P

12* 12NV 12
11* 12N

. That is, if we use the notation that we used until now

[EXPAND]. The HP49G says:
12%12V - 1

11* 12"
for sequences, we can enter the partial sums sequence of Zeno's series
1d 1 0 j12*12V-1 Ul
as [A - {N 0 +¥}l"or:'—N {N o +¥}U.The
18,12 T b
HP49G can find the limit of this sequence in both forms. Enter
N
é —1n , then N = +¥ | and then press[lim]. After some seconds the
n=0

. EXPAND again to

12*12V - 1
11* 12"
N = +¥ and then press[lim]. Againtheresultis i—i Notice that when

HP49G returns % For the other form, enter , then

+¥

Partial sums sequence of Zeno's series a -
n=0

s, =l & —

’ n012"

s, =1+ 1 a =

12 12"

S —1+—:L +i = 5 1

t12 122 neo 12"

_ ¥ 1 12vaM-a
Sy=apta,ta, te-tay = 2012“ - 112N

finding the limit using the second form, the HP49G switches the
current VX to N. Soif your VX is something else, use STOV X to
reset it to what you had before finding the limit. The HP49G is able to
find many limits of series out of the box. That means, we don't need to
program much. Hurrah! ;-)

Let's have another example. We take 1 1
a square and divide it in two equal = -
parts. Then we divide the right half 2 4
in two equal parts, again the right
half i two equal parts and so on. The
picture on the right suggests that the
sum of all parts has to be 1. This
sum is an infinite sum, a series, of
1 1 1 & 1
—_—t - =4 ...= —_

8 e 2
Let's see if it converges. Enter
+¥

a 2—1 and press [EXPAND]. The

Ol =
ol e

the form

n=1
result is 1. Again, let'sfind the

general member of the partial sums sequence of this series. Enter
N N

1 , 2°-1
a > and expand twice. The result x
n=1

isthe genera member of

_ i2M-1
the partial sums sequence | 2N
I

{N 1 +¥}§. Of course, since

the HP49G can find the limit of this series, it isn't necessary to find the
general member the partial sum sequence and then find its limit for
n® +¥ .Butit might be useful for other casesto have a program that
takes such a series and returnsiits partial sum sequence.

<<
->LST -> seql st
<<
seql st
3'N PUT

@urn to RPL List

@replace ¥ with N
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->ALG EXPAND EXPAND @urn to alg.
"N
seqglst 2 3 SUB
+
1 ->LIST +
>>
>>

and expand
@t sub list with | ow and high

@urn to sequence

. . 1
Store the program in PARTSUM SEQ. Enter the previous series é >

n=1

N
and run PARTSUMSEQ. The result is | 2 {N 1 +¥}§
1

partial sums sequence in our notation. Notice that the original series
must not contain N in the summand expression.

Perhapsiit is interesting for you to know that even in the 18t century
the was not total clarity about series. For example the limit of the series

¥

a(-y
n=0

written as (1- 1)+ (1- 2 +(1- 2)---, or 1 if the series were written as

1- (1- 9 - (1- 1)- ---. But if we use the partial sums sequence,

S, =1,5,=0,s,=1,5s;, =0, ---, weseethat it doesn't converge.

The series has thus no limit, it also does not converge. What does

¥
PARTSUMSEQ doif wegiveit theseries § (- 1" ? Enter it and press

n=0
i e( N+ p
PARTSUMSEQ. The program returns { - ————
|

n

1- 1+1-1+1-1...= wastaken to be O if the serieswere

{n 0 +¥}B

and the HP49G switches to complex mode The expression
(i*N+iJp _
- GT Iswhat the HP49G says when it wants to tell usthat it

found an expression which can be O or 1. Indeed if in the above
expression we substitute N =0 and expand, we get al. If we

substitute N =1 and expand we get a 0. Can the HP49G find if the
¥ ¥
series g (- 1)" convergesor not? Let's see. Enter § (- 1) and press

n=0 n=0

EXPAND. Be prepared for some unusual things. After some seconds
you get the message "Bounded var error" and you can continue by
pressing the menu key [OK] ([F6]). If you press [OK] then you get
another message, "SERIES remainder is O(1) at order 3". Again press
the men key [OK] to continue. The HP49G rattles some seconds and
then presents you another "Bounded var error”. Press again [OK].
Heavens! Another "SERIES remainder is O(1) at order 3" and another
key press of the menu key [OK]. And the result is...?. This can have
two different meanings. Either the HP49G found that the series has no
limitoritdidn't find anything any wantsto say "Dunno!". Notice that
the Hp49G has switched to complex mode and that it set n asthe
current VX. Use STOVX to set your VX again. But the changes go
further. The HP49G has added the assumption that n isreal to thelist
REALASSUME. Enter 'n' and use the program RCASSM from part 3
of this marathon to see that. If you don't want to have that assumption,
enter 'n’ and use the function UNASSUME to removeit.

We can use the program CONVERGES? and the partial sums sequence
¥

to get an answer to the question of convergence of é ( ])" Enter this

series and use PARTSUM SEQ to get again the partlal sums sequence

i (i(*N+iyp -1

i- © {N 0 +¥} . Now, you remember that the

|

program SPCASES will find the special cases to which the expression

for the genera member of the sequence branches. But we didn't

program any recognition of patterns like e”""? and so SPCASES will
(i*N+i)p

e -1

do nothing with this sequence. We must first convert - to

Press [DUP], [HEAD] and then
CcOS(p* (N+1))+i* SIN(p* (N +1))- 1
> .

trigonometric  expressions.

[SINCOS]. The result is -
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Enter a 1 and press [SWAP], [PUT]. Now the partial sums sequence
is converted to:

cos(p* (N+1)+i* SIN(p* (N +1))- 1
2

| u
i- {N 0 +¥}y
T b
Run the program CONVERGES? and in some seconds you get {1 0}

on stack level 2 and O on stack level 1. The O saysthat the partial
sums sequence and thus the series itself doesn't converge. The list at
stack level 2 contains the values of the limits of the two "branches" of

the sequence, those two values that in the 18th century were said to be
¥
the limits of the series & (- 1) depending on how it was written. The

n=0
progran  CONVERGES? has given the HP49G has historical
knowledge. ;-)

One of the simplest series that one can examine is the arithmetic series
+¥

a a, +n* d, which results from the members of the arithmetic
n=0
sequence {a, +n*d {n 0 +¥}}.The seriesof course does not

converge, since the members of the arithmetic sequence grow and
+¥

grow above any finite number. Enter é a0 +n* d and expand. The
n=0
result is +¥ , the series goesto infinity. But we can also examine the
N
behaviour of thefinite arithmetic series a, +n*d. Itisnot known

n=0
for sure if the following really happened, but it is nonetheless worth
telling it. When Gauss was 9 years old, his teacher Bittner gave the
class the exercise to add all numbers from 1 to 100. He had hardly
returned to his desk when the small Carl Friedrich Gauss (Kalle Fritz,
as we would say today) put his arithmetic slate on Buttner's desk, and
said: "Dar licht se"° . The teacher smiled but he was quite surprised

®"There it lies"

when he collected all the arithmetic slates from the other children and
saw that on Gauss one there was only the correct result, 5050. No
additions, no cal culations what so ever! How did Kalle Fritz calcul ated

100 lOO

theresultofa1+n*1 a1+(n 1)*1= ansofast’PDldhehave

an HP49G? WeII, such people don't need that, though we can of
course ask, what they would be able to do if they did have an HP49G.
Gauss did the following:

1 + 2 + 3 + cee + 50 +
100 + 9 + 98 + .- + b1 D
101 + 100 + 1012 + -~ 4+ 101

50 pairs.
Each pair sums to 101
50*101=5050

N~ _

His teacher, Buttner, recognised that small Kalle Fritz should learn
much more than what was taught in that class and so he brought him
from Hamburg a special book, Remers Arithmetica. Gauss idea can
be applied to any finite arithmetic series.

Does our small HP49G knows about finite arithmetic series? Let'stry.

N
Enter é a0 +n* d and expand. After some seconds the HP49G
n=0
(2* N+2)*a0+d*N*+d*N
2
99 100

Gauss, enter é 1+n*1or é_ n and expand to get the result 5050. If

n=0 n=1
N-1 100

you enter é l+n*1or é n for getting the sum of all integersfrom 1

n=0 n=1

answers with . For the special case of
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up to N, you get the result

N*(N+1)
2

2

N Press[COLLECT] to get

, which says exactly what Gauss found for N =100 . We

A\ : :
haveE pairs, of which each pair sumsto N+1.

We can also use thisfact to solve problems like the following:

1)

2)

N
Solve é n =5050 for N.

n=1
N
Enter é n = 5050, enter N, press SOLVE. Theresult is
n=1
{N=100 N=-101}.You get two solutions because the

2

HP49G first finds the result for the sum, which is N" +N

2

, and

+N )
= 5050 for N. This

returns the above two solutions and you have to keep the right
one. If you want the HP49G to automaticaly filter out the
solution N = - 101, then enter N3 1 and then ASSUME, before
solving the problem. The HP49G then will return only the first
solution, N=100.

then solves the quadratic equation

N N
A finite arithmetic series § a, =8 a, +(n- 1)* d has a,=3,
n=1 n=1

a, =43 andd =5. Find N, and the sum of the series.

First we calculate for what value of N the summand of the form
a,+(N- 1)*d equals43. Enter al+(N- 1)*d = 43, al=3
and press [SUBST]. Then enter d =5 and press[SUBST]

3)

again. Now, enter N and press[SOLVE]. TheresultisN=9,
9

which means that we have the finite seriesis & a, +(n- 1)*d.

n=1
N
Enter & al+(n- 1)*d, N=9 and press [SUBST]. This will

n=2
not only do the substitution but also calculate the sum. The result
is: 9* al+36* d. Enter again al= 3 and press [SUBST], then
enter d =5 and press [SUBST] again. Expand to get 207, the
sum of the finite series.

N
For a finite arithmetic series Q a, +(n- 1)*d we know that
n=1

d=12, a, =60 and that itssum is equal to 180. Calculate N
and a,.

N
Enter @ al+(n- 1)*d=180 and thend =12 and press

n=1

[SUBST]. The HP49G calculates the sum and returns
N*al+6*N° - 6*N =180. Enter al and press [SOLVE] to

6*N*- 6*N- 180
get al=- N
al+(N- 1)* d, press[OVER] and then [SUBST] to substitute
for al. Enter d =12 and substitute again. Enter 60, the value
of the Nth summand, and press [=]. Now you have the equation

* N2 _ * N| -

(&N 6N N- 180 +(N - 2)* 12 = 60 which can be solved
for N. Enter N and press[SOLVE]. You get two solutionsin a

lis: {N=6 N =5}.Both arevalid and we will soon see why.

Now press [ARROW-LEFT] to swap stack levels 1 and 2 and
then press [OVER] to get a copy of the solutions list on stack
level 1. Press [SUBST] to make the two substitutions N = 6 and

S5-7

. Now enter the Nth summand,
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N =5 and then press[EXPAND]. Theresult isthe list
{a1=0 al=12}. Theresultstell usthat there are two series

6
are solutions to our problem. The firstis § 0+ (n- 1)*12 and

n=1

5
thesecondis Q 12+ (n- 1)*12.

n=1
The problem can also be solved using another way. Enter
N
a al+(n- 1)*d=180, d =12 and press [SUBST] to get

n=1

N*al+6*N’ - 6*N =180. Now, enter al+(N- 1)* d =60,
d =12 and [SUBST] to get a1+ (N- 1)*12 = 60. Enter 2 and
press [->LIST] to get alist containing the two equations. Press
[AXL] to convert the list to a vector. Now you have a vector
with the two equations:

[N*a1+6*N*- 6*N=180 al+(N- 1)*12 = 60|

Enter the vector of unknowns, [N ail]. Press[GBASIS]. The

command GBASIS takes a vector of simultaneous polynomial
eguations and a vector with the unknowns contained in the
polynomials. It returns a vector of equations which can be used
to find solutions. In our casetheresult is:

[12*N+a1- 72 af- 12*a1]

The second equation, al’ - 12*al= 0, containsonly one
unknown, al. Press[OBJ>] and [DROP] to explode the
vector. Enter al and press[SOLVE]. Theresult isthelist
{a1=0 al=12}. Press]ARROW-UP] to go to the interactive
stack. Press [ARROW-UP] once more to go to stack level 2,
and then press the menu key [ROLL] ([F5]) to roll the contents
of stack level 2 to stack level 1, effectively swapping the two

stack levels. Press the menu key [PICK] ([F4]) to put a copy of
the contents of stack level 2 on stack level 1. Press[ON] to leave
the interactive stack. Now press [SUBST] to substitute the two
solutions for alintheequation 12* N+al- 72. Enter N and

press [SOLVE] to get the solutions {N=6 N =5} .

The results of GBASIS can always be used to find first solutions
for one unknown, substitute these solutions in the previous
equation, find solutions for the next unknown, and so on,
subsequently substituting and solving for all unknowns.

The next series that we examine is the finite geometric series

N
a a,*q". First of all, let's see if the HP49G can tell us what the sum

n=0
N
of the seriesis. Enter 501 a0* " and expand. The HP49G needs some
n=0
a0* g™ - a0
g-1
assumptions for gq?Enter g 3 0 and use ASSUME to make this

seconds to return . What would happen if we giveit

N
assumption about q. Enter again é_ a,*q" and expand. Thistime the
n=0

(N+2) _

result is 20" q a0

, which means that the assumption was taken

into consideration. Remove the current assumption by entering g
N

UNASSUME. Enter q £ 0 ASSUME. Enter again 8 a, *q" and
n=0
* q(N+1) % e('r*N+i)*p - a0

expand. Theresult is now - and the HP49G

q+1

has switched to complex mode. Remember that the expression el™*®
is HP49G's way to say "either 1 or -1". You can demonstrate this.
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Press [ARROW-DOWN] to get the result in the EQW and select the 2)

sub-expression ™" | Press [RED-SHIFT] and then [VAR] to copy
the sub-expression. leave the EQW by pressing [ON]. Now, press
[RED-SHIFT] and then [NXT] to paste the sub-expression on the
command line. Press [ENTER] to put it on stack level 1. Now, enter

N 0 3 1 and press[SEQ] to make asequence of e™ " for N=0 to
N=3.Theresultisthelist{-1 1 -1 1}.

N N N

For q :1theseriesis£°1 a,*1' = é a, = é a,+n*0=a,* (N+1),
n=0 n=0 n=0

that isasimple arithmetic serieswith d = 0.

Remove now al assumptionsfor q, by entering g UNASSUME.

Using the fact that the HP49G "knows" about finite geometric series,
we can solve problems like the following:

N
1) A finite geometric seri%é a0*q" hasa, =2, q=5 andits

n=0
sumis 976562. Caculate N.

N
In real mode enter é, a0* " =976562 and q = 5. Press

n=0
0]
[SUBST]. The HP49G returns = = 976562,

4
If you don't like the exponential form, enter EXP2POW to
a0* 509 - a0

* e(N+1)*|_N{5) - a0

=976562. Enter a0 =2

% =(N+1) _

and press [SUBST] again to get
N and press[SOLVE] toget N=8.

convert the result to

=976562. Enter

The arab historian Jaqubi reports: The Sheikh of Persia was
very pleased by the game of chess, that he wanted to do the
inventor of the game, Sessa Ebn Daher, any favour. Sessa Ebn
was apparently much cleverer than the Sheikh. He answered that
he wanted to have the amount of corn that results, if someone
puts one grain of corn on the first square of the checkerboard,
two on the next, four on the next next, and so on continuing
always with twice the number of the previous square. The
unlucky Sheikh accepted, but... he could never do Sessa that
favour. Find out why.

Since the chessboard has 64 sguares the total number of grains
63

would have been § 1* 2" which expanded on the HP49G

n=0
returns 2* - 1. If we assume that the whole earth isasingle
corn field that with the approximate surfaceof 5.1E10 ha, that

it produces 40 _ %*tyr and each dt has 2E6 grains, then the

whole earth produces the amount of:

dt . ope 98N _, oge1g 978N

5.FE10_ha*40_
ha* yr dt yr

That means that we can harvest the amount of
(264 - 1) *1_grain
grain
yr
thisgivesus about 4.5 _yr! Themora of the story: Arab game
inventors are much much cleverer than greek sophists. ;-)

(264 - 1) *1_grainin . Pressing ->NUM

4.08E18_

5-9



Sequences, series and limits with the HP49G - Part

After thefl nite geometric serieswetake alook at theinfinite geometric

series a a,*q", or just geometric series for brevity. We have already
n=0

seen that the Nth member of the partial sums sequence of this seriesis
3 . _ a0* ™) 20
aa*q ld

=0

g <1 then it converges. If |g| = 1 then it doesn't converge. Let's see

. Thefate of the seriesdependson q. If

¥
what the HP49G saysfor a,*q" inthecase |g| <1. We can't make

n=0
this assumption in this form. Instead of this, enter g UNASSUME,
g £1 ASSUME, q3 -1 ASSUME. Now thelist REALASSUME in

¥
-1.Enter & a,*q" and

n=0

CASDIR contains q£1 AND q3

expand. The HP49G returns - qi which is correct. For the case
o] =21 we must consider thecases q 3 1 and q £ - 1 separately. Enter

¥

g UNASSUME g 3 1 ASSUME. Now, enter é a,*q" and expand
n=0

again. The result now is +¥ whichisalso correct. Enter g

¥
UNASSUME q £ - 1 ASSUME. Enter § a, *q" and expand another

n=0
time. Now it takes much longer to get an answer. At the end after
much rattling the HP49G says ?. When q £ - 1 the summands a, * g
will aternative from positive to negative and vice versa, with aways
bigger absolute values. So the series doesn't converge asit will switch
its sign from + to - with every new added member. Notice that the
HP49G has switched VX to n. So use X (or what your VX is)
STOVX to restore your current VX. Notice also that the HP49G has
switched to complex mode, so you might want to restore real mode
now. Last thing to do, enter g UNASSUME to get rid of the
assumptionsfor q.

One of the practical applications of the geometric seriesis presumably
part of XQ and ->Q. Consider for example the periodica decimal

25 25
number .2525---. This can be represented as — + ———+---. The
100 10000
latter isthe geometric serieswith a, -2 and q -1 . That is, the
100 100
$ 2 16
number .2525.- g 2.2lo . Aswe aready found
12100 €1009
25
. 2
out, the series converges to - a - %OO :—5.Enter
g-1 ) 99
100

§ 25 @&ly'
=100 €1009
the key [->NUM] you get the original number .2525.--

and expand to get the result % . If you now press

Another example. Suppose that you have six lines passing through

point O and having all an angle of g to each other. From point PO of

one of the lines we draw one line segment orthogonal to the next line
until point P1. From there we draw a line segment orthogonal to the
next line until P2. And so on. What is the length of the "spiral"~.

For the length 10 of first segment we have: [0 = a* SINZEL;; The
length of the segment OP1 is a * COSZEES. Thus for the length of 11
we have [1=a* COSE‘%JG* SIN?%G. The length of OP2 is

a*COS 20 o0 - 5+ cos&po Thus for the length of 12
€6 ego €69
5-10
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.2 .
0 0 S
we have 2= a* COSEEE+ *S|N§’—°+.Theinfinitewm Al isa
69 69 n=0
geometric serieswith 10 = a* SIN?EE(j and g = COS?EEﬁ. The series
€69a €69

) ¥ ' N v 3
isQ a* sm?i’o*cos?q'io . Because - 1£ q=COS R0 = B
a 69 &6 o e68 2

¥ . N
the series must converge. Enter 601 a* SIN\—I O COS?EBO and press
o €69 €69

[EXPAND] to get the length of the spiral, (2 +\/§)* a.
We already see that the build-in & is quite powerful and can find the

sum of many series. But there are also series for which & returnsa
guestion mark. Examples:

¥

1 :
é ﬁ The series doesn't converge. The result
n=1

should be +¥ .

g (-9 :
a . The series converges.
n=1
, cosZirR . Po
3 € 2 49
a - Doesn't converge, goesto +¥ .
n=1
¥ 1 n
é ﬁ =0 Doesn't converge, goesto +¥ .
€ ng
s LN(n
é_ 2& ) Converges.
n=1

P1

o | T

The series converges. If you try to expand

this the HP49G says "Operator
implemented (SERIES)" and returnsa ?.

>

I

-
>

not

First of all we need some criterion that lets us distinguish between
series that we should further examine for convergence, and series for
which we can say that they don't converge and so no further checking
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is necessary. An easy implementable criterion would be:

¥

convergence of a series é a, it isnecessary (but
n=1

the sequence a, of the summands

For

inconclusive) that
convergesto O.

¥

The above means that if we find for some series § a,, that thelimit
n=1

Iima > 0 or that the limit doesn't exist, then we can saythat the

series diverges. If we find that Ilma =0 thentheserlesa a, can

converge but it doesn't have to, and so we must further exam ne it.
Thiscriterion (or convergence t&st) isuseful becauseit letsusfilter out
all series for which no further testing is necessary, diminishing thus
the amount of work that the HP49G has to do. Take for example the

) ¥ 1..”
series é ?[- ﬁg . If you expand that then you get ? as the resullt.
n=1

The built-in functionality of S is not enough even for saying if the

series converges or not. But we can examine a?[ F\ . Entering that

. . 1 1
and then n= ¥ and pressing [lim], returnsg. Becauseg >0 we
know that the series diverges and that no further tests are necessary.

g (_ :I)n+l
Another example, let's consider T
n=1

. If you expand this, you

n+1
geta ?. Enter % n=¥ and press[lim]. The HP49G returns...

"lim Error: Mode switch not allowed here". So we have a problem.
But hey! We have the program CONVERGES?. Let's try that. Enter

i n+1
the sequence S 12 {n 1 ¥}?§ and press CONVERGES? The
)

result after some secondsisthelist {0 0} onstack level 2anda 1 on

(-

n
special cases, each of them having the limit O when n® ¥ . For us

¥ _ n+l

this means that we have to further examine the series é &
n=1

if it converges or not. It also means that we should rather use the

program CONVERGES? and not the built-in lim. A program for

enhancing the built-in in capabilities of the HP49G regarding series,

would in generd:

stack level 1 which says that

does converge. It branches to two

to see

¥
1) Takeaseries a a, from the stack.
n=1
2) Check if expanding returns aresult different than 2.
2) If it does, then we're done.
3) If the result is ?,then check convergence of the sequence

{a, {n 1 ¥}} usingtheprogran CONVERGES?

If CONVERGES? finds that the sequence {a, {n 1 ¥}}

convergesto 0O, or if it can't find if the sequence converges, then
do further tests.
{n 1 ¥}}

5) If CONVERGES finds that the sequence {an
converges to a limit different than O, or that it diverges, then we

¥
are done and the series é a, diverges.
n=1

Perhaps you ask yourself now, why we don't use the partial sums

sequence. If this sequence converges to some limit, then the series

itself convergesto the samelimit. But the problem isthat if the HP49G
¥

can't do anything with the series é a,, thenitislikely that it will not

n=1
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be able to do much with

I n=1
N

sum 8 a,, to someanalytic closed form asafunction of N, but then it

n=1
will not be able to find if limit of this analytic closed form exists for
N ® ¥ . Our program in construction for enhancing the built-in S is:

<<
PUSH
DUP OBJ- > DROP2
{ HOVE CASDI R
REALASSUME } RCL
RCLVX
-> series ivar lo hi
sumd assm st vx
<<
I F
"Trying built-in
nmet hods..." 1 DI SP
seri es EXPAND
-103 CF

DUP seri es SAME
NOT
OVER ? SAME NOT
AND
THEN
I F
DUP ABS ¥
SAVE
THEN
0
ELSE
1

N N ..
151 a, {N 1 ¥}§.Sometimesitwillbeabletotransformthefinite

@ave flags and current dir.
@xpl ode series

@Recal | current assunptions
@recal | current VX

@tore in locals

@ry expandi ng

@onet i nes expandi ng a series
@ill switch to conpl ex node,
@o re-switsh to real node.
@f result is not the series
@tself and not ?

@hen if result is +/-*

@hen return O (di vergence)

@l se return 1 (convergence)

the partial sums sequence

END
ELSE
DROP
"Testing sumuands

sequence -> 0" 1 DI SP

>>

sumd ivar lo hi @onstruct sunmands sequence
3 ->LIST 2 LIST

CONVERCES? @Jse CONVERCES?
I F
? DUP SAME @f CONVERGES? can't handle this
ROT HEAD XQ @r if it finds that sequence
0 SAVE ROT @onverges to 0
AND OR
THEN
CASE
...Convergence test 1
THEN
...Result 1
END
... Convergence test 2
THEN
...Result 2
END

...Further tests
series ? @f all tests failed, return
the series and a ?

END
ELSE @l se (summands seq. diverges or
series 0 @t doesn't converge to 0) return
END @eries and 0 (for no convergence)
END
vx STOVX @ ean up and restore everything

{ HOME CASDIR } EVAL
assm st ' REALASSUME'
STO

>>

PCP
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The codeinlight grey isthe place where further convergence testswill
be made. The command DISPXY issimilar to DISP, except that it can
display at any screen coordinates using any fond. It takes the object to
display from stack level 3, alist with the pixel coordinates from stack
level 2 and 0,1,2,3 (the font size) from stack level 1, and displays the
object starting at the specified coordinates of the screen and using the
specified font size. Notice that when the object to be displayed is a
GROB (GRaphics OBject), then the command will not display the
GROB itself but the description of the GROB, which reads
Graphic n m and meansa GROB withsizen™ m. If you
want to display some GROB on the screen, then take a look at the
programs of the previous parts of this marathon.

Now, what convergence tests can we use on the HP49G? What criteria
are easily implementable? We have for exampletheration test (Cauchy
or d'Alembert ratio test) which we can use. It says:

a+l

—ntl

¥
. o . .
The series Q a, converges if I!@rg
n an

n=1

<1, it diverges if

a'n +1

an

an +1

an

lim =1 is non-conclusive.
n® ¥

>=1. The case lim
n® ¥

Thisis very easy to implement and we can again use CONVERGES?
in order to be able to handle more expressions than these that the
HP49G handles out of the box. We have to first construct the

an +1

i
sequence |

| n
use the returned results. So, the light grey part in the above program
becomes:

.
{n 1 ¥}g,then give thisto CONVERGES? and

CASE

"Assuming" 1 DI SP @onstruct assunpt.
" ivar UNASSUME + @nd make assunpt.
"3+ o+ "' 4+

criterion”

1

THEN

DUP {#50h #0h} 2
DI SPXY OBJ- >
ASSUVE DRCP
"Testing ratio
DI SP
sutmd DUP i var DUP
1 + = SUBST SWAP
/| EXPAND
-103 CF
ABS EXPAND i var
lo hi 3 ->LIST
2 ->LI ST CONVERGES?
DUP2 -> 1| r
<<
CASE
r ? SAME
THEN
0
END
r 0 ==
THEN
0
END
r 1 ==
| HEAD 1
== AND
THEN
0
END
1
END
>>

SAME

@ui | d up sequence
@\BS( An+1/ An)
@rake assunptions

@nd test if seq.
@onver ges

@f CONVERGES? can't
@i nd an answer
@hen return O

@f seq. diverges
@eturn O

@f sequence
@onverges to 1
@hen return O

@l se return 1

@f we have a 1 on stack

IF @f sequence converges

THEN
HEAD
I F
1 £

@o limt less than 1
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THEN @hen return series and 1 (for
series 1 @onver gence)
ELSE @l se return series and 0 (for
series 0 @li ver gence)
END
ELSE @l se series doesn't converge
DROP @eturn series and 0 (for

series 0 @i vergence)
END
END DROP2
. Convergence test 2
THEN
.Result 2
END
.Further tests
series ? @f all tests failed,
the series and a ?

return

END

At this point some strange properties of the HP49G should be

: 1 ,
explained. Enter E,then 1, and then press[£]. Theresultisal,

1. 1
clearly because 5 islessthan 1. Yes, but now re-enter > and 1 and

press [<]. Theresultis... §1< 1! Press[EXPAND], press
[COLLECT], do anything you want. The darn thing won't return 1,
though 51 islessthan 1. The only thing that makes the HP49G give us

aresult, isto press[->NUM]. Then we get a 1 . For me thisis arather
strange behaviour, but, as Trabakoulas says, "It is, asit is'. Accepting
that we must find ways out of the troubles. Oh, | didn't sy what the

i
trouble is? Well, say if the sequence aa

{n 1 ¥}g converges,
T

n

a,.
we must find if I|m !l < 1. But the comparison < doesn't seem to

a,
work as we would expect. That's why the above code tests first if the

limit of o for n® ¥ isequa to 1 using thefunction ==. If it

n

an +1

£1istrue, is

isn't, then using the function £ and finding that I!@rg

the same like finding that I|m 3 I < 1istrue, because we already

an +1

have filtered out the possible case IE@m =1.

¥an

ila
The code of above tests if the sequence i[—— 1 {n 1 ¥ }t;
7

converges using the program CONVERGES? If a questlon mark is
returned on stack level 1, or if al isreturned on stack level 1 and alist

containing only 1sisreturned on stack level 2, or if it isfound that the

sequence diverges, then the code proceeds with the next convergence
test (which we didn't programmed yet). But if a1 is returned on stack
level 1, and alist containing something different than only 1s on stack
level 2, then the code compares the contents of the list against 1, to say
if the sequence converges or not.

We move on to the second convergence test. We use the root test
which says:

The series aa converges if Ilm,/ <1 it diverges if

n=1

Iim\n/ a,| = 1. The case Iim#an =1. isnon-conclusive.
n® ¥ n® ¥
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The code for thistest is aimost the same with the code of the previous ¥ (. 7)™ 1 1 1 o
test, except for the construction of the sequence {f{/|?n| {n 1 ¥}} ng' ltssummands are 1, - - 203 4 Therr signsare
that we give to CONVERGES?. So, to save paper and the trees, we dternating +, -, +, -, --- andthusthe name"aternating
take alook only at the part that is different. sequence. The test says.
@nd of first test ] ) 3 )
END DROP2 The alternating series Q a, converges if the sequence of
"Assuming" 1 DI SP truct t. n=1 . :
o sum ng %;22 Hjﬁe Zf,i:rem the absolute values of the summands is a monotonically
“Testing root @uild up decreasing sequence with the limit 0.
iterion" 1 DI SP ROOT( n, ABS( A : . . . . . .
criterion surmd ABS & (n (An)) Thistest isonly for this particular kind of series, but we will see later
-103 CF on some interesting implications that it brings. We can implement this
EXPAND test, using CONVERGES? and SEQMONTY, the program that returns
i var XROOT the monotony behaviour of a sequence. We also use SPCASES to
EXPAND find out how many special cases there are, and check if we have an
ivar 1o hi @tc |ike above even number of them, to make sure that alternating behaviour is
..... possible. (What would be if we have an odd number of special cases?
@nd of second test Canweusethlstegthen?)
END DROP2 _
 _Further tests Previous tests
series ? @f all tests failed, return ENDDRO_DZ . )
the series and a ? "Testing Leibniz @ui | d up sequence
END criterion" 1 DI SP @\n
sumd ivar | o hi
You may have noticed that at some points we switch to rea mode 3 ->LIST 2 ->LI ST _
using -103 CF. Why that?'Well, some operations, like ABS, have the SPCASES @ind sp. cases
nasty habit to switch to complex mode. This can make things more IF @f even number
complicated than they need to be because then many operations will DUP SI ZE 2 MCD @f special cases
ignore the assumptions that we have made for n. So weinsert the NOT
instruction -103 CF to make sure that we are in real mode and so the THEN
assumptions are taken into consideration. This can play a significant 1 @ to each sp. cas
role when expanding absolute values and roots. < _ o _
"Fi ndi ng sign @ind its sign
Let's add athird convergence test, the test of Leibniz for serieswithan * NSUB + " of " + ENDSUB + 1 DI SP
adternating sequence of summands. Such a series is for example %z DROPZ
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SWAP UNASSUME
' SWAP +
"3 4+ SWAP +
"+ OBI->
ASSUME DROP
SI GN EXPAND
>> DOSUBS
DUP " Checki ng sign
1 DSP 1 << TYPE >>
DOSUBS
9 POS NOT @\o al g.
"Checking alternating
1 DISP SWAP 2 << NEG == >> @check each sign
DOSUBS 1 + @s neg. of next
<< AND >> STREAM AND
" Checki ng ABS(sumand)
sequence -> 0" 1 DI SP
" ivar UNASSUME
+ "3" + o+ """ +
OBJ- > ASSUME DROP @ui | d up sequence
sumd ABS -103 CF @\BS( An)
EXPAND i var | o hi
3 ->LIST 2 ->LI ST DUP SEQVONTY
-2 SAME SWAP CONVERGES? SWAP
HEAD XQ 0 SAME AND

@i nd object types
result types" @f results of SIGN
obj ects

si gns"

AND AND
ELSE @xdd nunber of sp. cases
DROP 0
END
THEN @ei bniz true, series converges
series 1
END
series ? (@\o test true, series mght

END @onverge or not

@\ | tests done

This is the program SCONVERGES? that comes with this document.

that we have so far. The programs SPCASES, RCR->ANL,
SEQMONTY, and BOUNDS are modified. They also save the current
assumptions and restore them when they finish. You should transfer
the new versions to your HP49G, or else the examples below might
not work.

And now for the tests. First we give it some series that the HP49G can
¥
deal with out of the box. Enter é n and press [SCONVERGES?] In

n=1
about 4 seconds the HP49G returns +¥ on stack level 2and a0 on
stack level 1, to say that this series diverges to positive infinity. Enter

¥

601 n_12 and press [SCONVERGES?]. Again in about 4 seconds the
n=1
2

P

5 on stack level 2 and a1 on stack level 1. This

2
means that the series converges to % .

HP49G returns

And now some series for which the HP49G can't even find if they

¥ _ n+l
converge. Enter the alternating series é & and press DUP to

n=1
make a copy on stack level 2. Press first [EXPAND]. The HP49G
needs about 5 seconds to return ? (for "l don't know") and switch to
complex mode. Switch back to real mode, DROP the question mark
and press [SCONVERGES?]. This time, after 180 seconds, the
HP49G returns the series itself on stack level 2 and a 1 on stack level
1. This means that the series does converge, but we don't know what
it converges to. Well, at least we know that it converges. We will see
later, if and how it is possible to find also what the series converges to.

¥
1 . . . .
Enter é 2”*_\/?1 . Thisis aseries which the HP49G can't deal with
n=1

out of the box. Press [SCONVERGES?]. After 63 seconds the

Before we test it, some words on modifications of the other programs HP49G returns the series back on stack level 2 and 1 on stack level 1.
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Again, we know that the series does converge but we don't know
what it converges to.

, cos%i=P PO
o e 2 49
Enter

, press [SCONVERGES?]. Thistime, after

n=1
10 minutes (!) the HP49G says that it can't find if this series
converges or not. Well, we can't alwayswin.

¥ 1 N
Enter é ?[- ﬁg and press [SCONVERGES?]. (If you EXPAND
n=1
this the HP49G returns ?.) The HP49G returns the series at stack
level 2and a 0 at stack level 1, that is, it says that the series diverges
after 101 seconds.

Enter a '\21( ) , another series that the HP49G can't deal with out of

the box. Press [SCONVERGES?]. The HP49G needs about 3.5
minutes to find that the series does converge, returning the series on
stack level 2 and a1 on stack level 1.

nl
Enter a (n ) Expanding this you would get a ? quite quickly,

though this seriesis the same like é n_ll , for which the HP49G can
n=1

find that it divergesto +¥ out of the box. But pressing [EXPAND]

¥

: 1

with é 1 on stack level 1 aso changesthe current VX to n. If
n=1

Ve th . ¢ n
ou give the series 8 ——=
Yoo A0
seconds you get +¥ on stack level 2, a 0 (for divergence) on stack
level 1, and the current VX remains the same.

to [SCONVERGES?, then after 3.2

s Nl
Last example: Enter é o and press [SCONVERGES?]. After some

n=1
seconds the HP49G flashes the message "Operator not implemented
(SERIES)" and presents you a menu with [OK] ([F6]) for continuing.
Press [OK] and wait until you get the message "SERIES remainder is
O(2) at order 3". Press again the menu key [OK]. After along timethe
message "Operator not implemented (SERIES)" again. Press again
[OK]. After this adventurous story, the HP49G returns the series on
stack level 2 and a ? on stack level 1. Thistime it was work for
nothing, but we already have so many examples where the program
did itsjob OK.

Of course there are many more convergence tests that you can add to
SCONVERGES? for further expanding its capabilities. As we already
have noticed, it is possible with a little programming work to give the
HPA49G more power.

We now move on to some rules that may be helpful for working with
series on the HP49G. Thefirst of themiis:

The convergence behaviour and the limit of a convergent

series don't change if the summands are grouped in
parentheses in some arbitrary way.
£ (-9 1.1 1
Forexample,theconvergentseriesé 9 =] — = e
n 2 3 4
o, & 1o,

remains convergent if we write it as @1 -+ or

€ 2@ e3 4@
L 15 e 15
&2 30 &4 Sﬂ
summands in parentheses. That means, if we already have checked
that the series converges, we can start grouping the summands in
many different ways. The limit of the sequence remains the same.
How can this be useful for us? Well, let's consider the grouping

- --- or in any other way, grouping the
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1o, 1o, ¥

- ---. Since we know that the series

& 2@ e3 4(/) < n
1p a1
converges, we know that we can use - =9 + 20, ..
& 2o &3 4z
1 1 1 . . .
instead of 1- 5 +§ "7 Foem e in any of our considerations. Now,

lo od 1o

we could of course consider the groups a?[ - and so on,

& 20’ €3 42

1 1
as summands of a series. That is, we consider the series a el

But we must be careful because we can't use the same |ndex values.
250 (_ ])n+1
n

For example enter and press[->NUM]. Theresult is

a

n=1
1 1 :
. Now enter é T and press [->NUM] again to get
n=1
909090 --. Obviously something is going wrong. We can see what is
going wrong if we consider the first sum, which is

.645634--

& (-9 1.1 1.1 1,1 1.1 1 .

a——=1--+=---+=- =+=- —+=- — andcompareit

ey N 2 3 45 6 7 8 9 10

to the second sum:

£1 1 1 1 1 1 1 1 1 1
—_ — === - =4 - i = - — —_——_—=] —

N N+l 2 2 3 9 10 10 11 11

. 1
They are not the same because except for the first summand 1 =1 and

the last —— = 1 each value of n constructs the same summands

10111
n| 1 2 3

1 1
What we need is to somehow transform the series a S ina
n=1

¥ n+l
way that each summand of the original series a ( 2 appears only

once with the right sign. Let's look again at the grouping that we
10 66. 10

e1 2!3 &3’ 42‘
members. We want these two members to appear both only once for a
single value of n. Of each two membersin agroup thefirst has

chose: - ---. Each group consists of two

if we start

always an odd denominator, that isit has the form T 1

at n=0 instead of n = 1. The second has the form > 1 > if we

) 1 1 .
start at n =0. That means, we can write the summand = + — in the

n n+l
. 1 1 1 .
series é - - as - , provided that we start at
n n+l 2*n+1 2*n+2
3 1 1 .
n =0. And so the series becomes now: a . This

neo 2% n+l 2*n+2

¥ _ n+1
seriesisthe same like é (% except that it creates two summands

n=1
with every single value of n. We could say that "it grows twice as

fast".
e
Y ou could test this, by entering for example a I

n=1

Thenentera 1 ! and
_02*n+1 2*n+2

press [->NUM] again to get the same result, .645634---. Notice

, then pressing

[->NUM] to get .645634--

twice, once with
positive and once
with negative sign 1 1
as shown in the

table.

NI
1
Wl =
Wl
1
N

that the first sum goesfrom n=1to n= 10, whilethe second goes
from n=0 ton= 4. Thisis because, as aready said, the second
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sum (and also the series) creates two summands of the first seriesby a
singlevaueof n.

n 1 2 3 4
§ 0" 11 12
ne1 N 1 2 3 4
§_1 1 |11 11
n=0 2*n+1 2*n +2 1 2 3 4
1 . .
If we expand the summand - in the series
2*n+l 2*n+2
3 1 1 .
a , then we get > and the series
neo 2% n+l 2*n 2’ 4*n“+6*n+2
1

becomesthena
i d*n’ +6*n+2

. The convergence and the limit of

¥ _ n+l

this seriesis exactly the same like those of é % because the new
n=1

series was created through grouping and "renumbering” of the

summands. But the second series has two big advantages. The first

advantage is that the HP49G can work much better with the second

N

series. Enter a

n=1
general member of the partial sums sequence looks like. Result is,
nadal The HP49G has only switched to complex mode. But enter

N
O

,,8;04*n2 +6*Nn+2

n+l
( 2 and press [EXPAND], to try to find what the

and press [EXPAND] again. Ahal Now you get

- _10- PS|(1)

Psighl +1- 520 Bsi(N +1+1)+Psi
22 o

the result .In

2

order to get the Nth member of the partial sums sequence of the

E‘.l

Y O O 1
original series @ ——, you haveto enter a
1 N O4*n +6*n+2

press [EXPAND] because of the altered "numbermg" The result is

psiy . 10 &N +10+ PSI 16 Psi(l)b
20 & ~e2 29

then . Thisisthe

2

c,)\] (_ ])n+1 ¥

n+1
partial sum Q -—— of the series 21— ( !
n=1 n n=1 n

N=2,4,6,8,---. Thefound function just can't reproduce the partial
sums of with an odd number of summands, because the sum from

s

but only for

for each

which it was derived creates two summands of g
100
singlevalueof n. To check this, enter a

n=1 n
( ])n+1 ]
- and press [->NUM].
You get .688172--- in about 2.3 seconds. Now, enter the function

with N =100, that is
Psica® - 10 BsiZ02+104psi 220 psiy)®
€2 208 é&°¢7 20

, and press

2
again [->NUM] to get the same result in 0.9 seconds! Do the same
lOl

with N =101, that is, enter a

n=1
.698073 --. Enter the function with N =101, that is

n+1
S 2 and press [->NUM]. You get
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;ﬁ-’sﬁam + 10 + Psnae 210 PS|(])

2
again [->NUM]. The result is now .688221--! So the expression

with the Psi functionsis only good for even N. But nonethelessit is
¥

perfectly right to useit instead of a

n=1

(%)

, and press

n+1
( :2 ,thatisfor N® ¥ .

For even bigger values of N than those that we already used, the time

N _ n+1
difference between calculation of é %
n=1

on the one hand and

@’si{aEEI

) =
: + 10+ Psics
2@ & é2 B e

210 psi(a)?
20
on the other hand,

2
will be huge because the expression with the sum needs much more
time to complete. For example with N =1000 it takes 19 seconds to
calculate the sum, but only 0.9 seconds to calculate with the

expression for the Nth member of the partial sums sequence. And here
comes the second advantage of the new created series. If you want to

g (_ ])n+1
n

approximately calculate the limit of the series

n=1
) é\l (_ ])n+1
somepartlal sum g ————

n=1
to wait a loooong time. The series converges very, very slowly. On

by entering

, Where N isabig number, then you have

1 . : .
the HP49G each summand - will contribute to the partial sum a

significant amount, an amount that is enough to cause a change in the
calculated approximation. For example, let's say that we take

10000 (_ q\n+1

5o
10000

that is within the 12 digits approximation of the HP49G. To calculate

. Thelast summand, -

isequal to - .0001, avalue

the best possible approximation using 12 digits, you should enter
1.E12. ( q\n*1
é (—) and press [->NUM]. Imagine how long you would have
n=1
towait. (And how big the power generator for the HP49G must be;- ))

psifi2 10 gLz —= +10+psic: = 16 Ps(l)

e 2 290 e Se 2 29
2

and pressing [->NUM] you get the result .69314718055 againin
0.9 seconds. By the way, if you apply XQ on .69314718055, you
get asresult LN2). Quite silly way to find alimit, | know, but in this
case it works.

But using

feE’sFEN 10+PSI
2% & €2 o

2
the stack, enter N =¥ , and press [lim], the HP49G says " Operator
not implemented (SERIES)", returns a ?, and sets N as the current
VX. So it seems that we don't have any aternative for calculating the

=0- psi(1

If still you have on

¥ _ n+1
limit of (G .
n=1 N
This kind of transformation of a series to another can be used aso for
, cos® N*pPo

e 3 @

other series. Consider for example é . The HP49G
n=1

can't do much with it. But using SPCASES we can find that
* 1y x ue _
COS?Qﬁo can be 1 :
e 3 o 2
converges, only if we can do that, then we can group the summands,
so that anew seriesis generated, that convergesto the same limit. This
series does converge, even if the HP49G can't find that. Following the
same steps we find this new series to be
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1 1
g "3 5 1 g 9*n+5
ni)3*n+1 3*n+2  3°n+3 Zo 54*n®+108*n?+66*n+12
] cos"ﬁ*” PO
TheNth partial sum of a 3 can be found by entering
n=1
N.
3% *n+ . :
a- 3 9 25 and expanding. Theresultis:
no 54*n°+108*n°+66*n+12
psiN . 226, pgie | 16
€3 39 e3 39

@*Psi@+lo +psi® 226, pgi® 210 Z*PSI(])O
e e3 e [}

30 e 30

6

The HP49G can't find the limit of this expression for N® ¥ , but at

least we have afast formulafor plugging some big value for N and see
what happens, instead of waiting for results of summations. (For what
values of N can the above expression with Psi functions be used?)

Y ou now may wonder why and how we find the new values between

which the index varies. How and why did we find that the last sum

N1

9*n+5

- -1,
54*n®+108*n?+66* n+12

goesfromn=0ton= N
n=0 3
a&*n*pg

3

COS

2}
?Thatis

where N stands for the Nth partial sum a -
n=1

not hard to see. Let's try to find that out considering the series
, cos®n"pe

o e 3 9
a :
=3 n

>

The expression COS 3 27 n7po Wlth n=3,4,5,6,7,8--- can actualy
be only COSae 3 IOo—lforn 3, COSaéz : pg %for
* *
n=4,and COSaéz 2 p;—-%forn 5. For n=6 wehave
again 1, and the other values keep repeating themselves. That means
1 1 1 1
that our series is actually: —1+—2+ 2+1+ 2 +—2 4. This
3 4 5 6 7 8

series does converge, even if the HP49G can't find that, so we accept
its convergence as given. Because it does converge we can group all
summandsfor n=3 ton=5,thenfor n=6 ton=8,andsoon in

® 1o lee 1 1o
parentheses: ¢l, 2, 2:,¢l, 2, 2., . Now, each
¢3 4 5+ ¢6 7 8=+
e g e a
group, written as a single summand of a series, will give us the series:
1 1
3 1 "2 "2 :
a + . We can seethat if we want
03*n+3 3*n+3+1 3*n+3+2
1 1
1 "3 -3
for example the first group to be equal to 3 72 2 | the second
R
1 2 2 : :
5 +7 +—= | then we must replace in the first summand of the

group n by nSpc* n+ nStart, in the second summand of the group
n by nSpc*n +nStart+1 and in the third summand of the group n
by nSpc*n+nStart+2, where nSpc isthe number of distinct

2*n* 2*N*p g

specia outcomes of COS o , and nStart the starting value of
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n inthe original series. When we do this replacement, the new series  Origina partial sum:

will start at n =0 aways. In the new seriesthe ending value of n is a&*n*py
still * . But not in the partial sum. Let's say that the original partia 5 Cosé_3 a
sum in the above example goesup to n= N, N being somearbitrary a =
S 2 2+ 4 2+ 5
N é 17} * QA% * *E*pNn o
integer. That means, we have the partid sum § - s 2 COS, 3 pg COS, 3 pg COS, Tpg
n=3 + + =
Since the new partial sum generates three summands of the origina n n n
sum with only one single value of n, itsending value must be 1 1
different. Thelast replacement for n in the group of summandswillbe ¢ -7 -
in general nSpc*n+nStart+nSpc- 1. If wewant the last 3 + —42 +—52 :2—10
expression to be equal to N, then we have to solve the equation
nSpc*n+nStart+nSpc- 1=N for n. Thisgivesus: The transformed partial sum:
N +1- nStart . . . 5-5 1 1
= ——— - 1. Soif theorigina partial sum goesupto N, the —- - = - =
nSpc é 1 . 2 2
: N+1- nStart ~,3*n+3 3*n+3+1 3*n+3+2
new grouped partial sum has to go up to ——— - 1.Inthe ™
nSpc 1 1
* 0 -~ -z
 COSTFPY A e 22
above example the original Nth partial sum is a - . n=03*N+3 "3 n+3+l 3ne3+2
n=3 1 1 1 1
The corresponding new grouped partidl sum has to be 1 5 "5 1 "3 "3 13
N-5 1 1 + + =T 4L 4_& -
31 - - 3*0+3 3*0+3+1 3*0+3+2 3 4 5 210
2 2 :
a + , or if we expand the _ _
03*N+3 "3 n+3+1 3*n+3+2’ In general the values of N, for which the partial sum of the
E . transformed series will be equal to the partia sum of the origina
summand: a 9 n+13 Thisisthesameas Sies e N=nSpc*n+nStart+nSpc- 1, where nSpc isthe
0 54*n® +216*n” +282*n +120 number of special cases, n some arbitrary integer and nStart the

the original partial sum but only for N=5, N=8, and soon, thatis ~starting value of n in the original series.

only for values of N that correspond to integer number of groups of ) i _
summandsin the original partial sum. (And for N® ¥ .) Intheabove All these things are good and nice, but what can we do with them?
example, for N = 5 we get the first group of summands, for N = 8 the x\/e”* as we already found out some pages ago, it has advantages to
sum of the first and the second, and so on. To see an example with KNOW some analytic closed form of a partial sum, even if the HPA9G
N=5: can't find what happens when N® ¥ . (For example, Kalle Fritz
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100 <<

could immediately find the sum é n = 5050 because he found the PUSH
=0 N (N+ D) DUP OBJ-> DROP2
o * +
analytic closed form of itspartial sum g n = — ) I{?C:I_l_|8>\éE CASDIR REALASSUME } RCL
n=0

-> sumvar lo hi exp assm st vx
It is easy to make a small program that takes a series and returnsthe <<

transformed seriesalong with its Nth partial sum, if possible to find it. gx_p;LYng |2°_ ::_l ST %ggz;;ggt part. sum
The program should aso return the number of special cases because it SPCASES DUP S| ZE @ind special cases
could be important for some other program that calsit. R >l

-> spcl st nspc
<<

| F @f nore than 1 speci al
nspc 1. > @ases

THEN @hen transform series
sum

"Converting to sum of
special cases" 1 DISP
spclst 1
<<
OBJ- > DROP OBJ-> DROP2
OVER nspc * + = SUBST
>>
DOSUBS SLI ST EXPAND var 0 ¥ 3 ->LIST
SWP +{ S} +DUP'N 1 +1lo- nspc/ 1-
EXPAND PUT SWAP ->ALG SWAP ->ALG
ELSE @l se return series
sum DUPDUP - >LST
3 'N PUT ->ALG
END
"Finding Nth parti al
sum sequence" 1 DI SP EXPAND
3 ->LI ST nspc
>> vx STOVX { HOVE CASDIR } EVAL
assm st ' REALASSUME' STO
>> POP
>>
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, cosh2 . PO

. . 3 € 2 49

Store that in TRANSER and let's test it. Enter "
n=1
and press [TRANSER]. The program returnsthe list
i R a
i y COsir b B0 i
:I:Ql n’ |
J'a¥ 2048* 2 *n° + 6400* JJ2 * n* +7808* J2*n® +4640* \[2 *n*+1348* /2 *n +155 *.\[2 {
: . 32768*n° +163840* N’ + 348160* n° + 409600* n°+ 290944* n* +127360* 0" + 33440* n’ +4800* n+288 ?’
T * * a\l _1 0 &* * a\l _4 0 &* * m _1 o w* * a\l 0 * * _1 o * * _3 O * * _1 O * 220
:::6 J2 PSIéZ- E,18- gs J2 PSIéZ-T,lg- gG 2 PSIéZ- 7,13- 36 J? PSIéZ+:ng+6 J? PSI?—E,lg-g% J2 PS? T,lg-g:é J2 Psge- Z,lg- J2*p 2@;}
f 192 b
on stack level 2 and the number of special cases 4 on stack level 1. end it returnsthelist
Seemsto work. Notice that the original sum must not contain the name
N, asit is used to find the Nth partial sum. I e 1 0
. i A L

Now that we have TRANSER, we can use it in SCONVERGES?. 1 n=1 n=0 I
Whenwete;stthelfeibnizcriterionyvegancaIITRANSERFoFransform iP A -1 2N B4 ps® -1 psi(10 y
the alternating series and at least give its NN partial sum if it can't be i PSlgs = 557 &PSlas 1, PSly =0 si( )z i
found what it converges to. We add a couple of bytes in f 2}')
SCONVERGES? 2

THEN @i bni z true,
series TRANSER + 1
END

seri es converges

Now SCONVERGES? will use the Leibniz criterion of convergence,
and if it finds that the alternating series converges, it will return a list

containing the origina series, the transformed series, its Nth partial

sum and the number of special cases. Enter for example é -
n=1
and press [SCONVERGES?]. The program rattles and rolls and at the

on stack level 2 and a 1 on stack level 1. We could use the Nth partial
sum along with N = ¥ to find its limit, but unfortunately the HP49G
seems to be allergic against this partial sum. It says "Operator not
implemented (SERIES)" and returnsa ?. It also leaves N asthe current
VX, so if you did this, use STOVX to set your VX again. But there
are many cases where the HP49G can find the limit of the partial sum
for N® ¥, and that'swhy we includeit in the output list.

Now we face another inconvenient question. The whole time we are
talking about series whose summand is in some analytic closed form.
But what about recurrences? Imagine for example that you want to find
what happens if you add all Fibonacci numbers. It's easy to say "hey,
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thisjust can converge since the sequence itself diverges." Granted, but
what about, say, the members of the sequence

i 3 u

iP(n) =P(n- 1)+ —— {P(0) =0ty ?If we have the series

T() (n- 1) EER {P(0) }f;

3 3
P hereP(n)=P(n- 1)+ —

8 P(r) whereP(1) =P~ )+ -

n=0,12,3,---, will it converge or not? And isit possible to construct

such sums on the HP49G? | s there any notation that we can use?

and P(0) = 0 and

Let's see. We dstat using the simple recurrence sequence
{A(n) =A(n- )+1 {A(0)=0}}. Initsanalytic closed form this
sequenceis {n {n 0 ¥}}.That meansthat if we somehow find

¥
how to write @ A(n) on the HP49G, then this must be the same with

n=0

¥
the series é_ n. Thefirst candidate that we check isthe function |

n=0
(where). As an example, go to the EQW and enter X*- X|X:2.
Expanding this, you get 2, theresult of X*- X for X = 2. The stack
usage is a bit more flexible as it allows more than one substitutions to
be made at once. For example enter X +Y?. Now enter the list
{x 2 Y 1 andpress[]. (Thisis[red-shift], then [TOOL].) The
result is 1+ 27, that isthe expression X +Y? with X =1and Y = 2.
Enter X +Y? againandthen{X Y Y 1}.Now, if you press|][]
again, you might think that this would substitute first X =Y resulting

inY +Y?,andthen Y =1 resultingin 1+ 1°. But theresult is Y +1°,
which shows that this function makes the substitutions isolated from

each other. To get the result 1+ 1%, you should first enter the list
{X Y}, use| thenenter {Y 1} and then use|again. The same can

be done in the EQW. Y ou would enter X + Y2|X=Y|y—1' If you expand

this you get 2, the result of substituting X = Y in X +Y? and then
substituting Y =1 in the expression which has been the result of the
first substitution.

Now go to the EQW again and enter X(n)+1,, move the cursor to
the place holder for the substitution and try to finish the expression,
entering X(n) = 1, so that you get X(n) +1, - When you try to enter

the parentheses of X(n) =1, the HP49G doesn't even allow you to do
that! This syntax is not allowed and suppressed by the build-in syntax
checker. But hey! We have ->LST and ->ALG. Enter the valid

expression  X(n)+1 _ . Press[->LST] to get the list

{'X+Y~2'" 'X* 1R3h [}. Now we aregoing to put X(n) at
position 2 in the list. Enter 2, then X(n) and press put. The list now
is. {'X+Y72' 'X(n) 1%3h [}.Press->ALG. Now you see
X(n)+1, ., which says that the HP49G doesn't allow you to enter

such athing directly but it can display it correctly. What about using it?
Press[EVAL] and you get 1+1, theright result! If you use [EXPAND]

on X(n) +]|X(n):1 you get the completely expanded expression, that isa
nice2.

¥
Let's try this with a series. We want to enter g A(n)|
n=0

¥
A A(n). Press->LSTtogetthelist{n 0 ¥ A(n) S}.Nowwe
n=0

must put the "illegal" expression A(n)|

Amy=n? * ENLEF

ooy e Where A(n) isin thelist,
at position 4. Enter 4 and then A(n)|A:nz . Press->L ST to get the list
{'A(n) 'A" n 2 ~F3h [}.Enter 2, then A(n) and press
[PUT]. Now use ->ALG to get A(n)|A(n):n2 . Press [PUT] and then

5-26



Sequences, series and limits with the HP49G - Part

[->ALG] again to get the "illegal" sum a A(n )|A() .1t can be

displayed! Can it be used? Press [ENTER] to make a copy and then
press [arrow down] and you see that taken in the EQW! Change it to

a A(n )|A() ., press [ENTER] and [EVAL] to get 55, the right

result Should | start singing the same old song again? | mean the top
of the HP49G-pops, "why can't | enter that directly in the EQW?.
Why the adventurous input with ->LST, ->ALG?" Let's go further.

A(n)=n2 to

¥
Drop the number 55, change the copy of & A(n)|
n=0

+3*N*+N
6

2* N°

N
a A(n)],,,-: and expand. Y Ou get the result
n=0

which is also correct,

Now we use the recurrence {P(n) = Pn) {P(0)

I 5 ]}% and try to

¥
somehow write the series & P(n). Unfortunately there is good and
n=0

¥
bad news. The good news is that we can write § P(M)fp 22

n=0 2 lpp)=1
using ->LST and ->ALG more than once. The bad news is that
evaluating or expanding this, doesn't do the right thing. So we must
look for another way to denote such series. Since we used lists to
denote recurrence sequences, let's do that also for such series. The
program SCONVERGES? can then check the type of argument. If it
finds a list, then it will assume a recurrent series and try to use the

program RCR->ANL to turn the summand to its analytic closed form.
We use the notion {S {recurrence {initiaICondition$}} :

S isthe series which has as summand the general recurrence sequence

¥
member like for example @ P(n). Theinner list
=0

{recurrence {initialCondition%} is exactly the same like what we

used for denoting recurrence sequences, like for example
{P(n) = P(nTl) {P(0) = ]}E The whole thing in this exampleis
|
[ i P(n- 1) (il
hen P(n) [P(n)= P(0) =1 vy.
%:'::10()%() 5 {()]}R%

We add code at the start of SCONVERGES? that checks if the
argument isalist and triesto find the analytic closed form in this case.

<<

I F @F we have a recurrence series
DUP TYPE 5 ==

THEN
OBJ- > DRCP
RCR- >ANL
HEAD SWAP
->LST 4 ROT
PUT

END

PUSH DUP OBJ- >

@ry to find the analytic closed form
@\nd re-construct the sum

@rest of code exactly like it was

We test our example. Entﬂég: P(n) %P(n) = P(nz- : {P(©) :]}\ZZ

and press [SCONVERGES?]. After deepest thoughts the HP49G
returns 2 on stack level 2 and 1 on stack level 1. The series converges

P(n2- 1) P(0)

to 2. If you enter {P(n) = = ]}g and use the program
|
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1wy U
RCR->ANL, then theresultis {1* .= {n 0 +¥}y. That shows
|

that the series was the recurrence form of the geometric series
oy

*
8_.01 &20
series, page 5-8 of this marathon.) It works!

, which convergesto 2. (Look also at the geometric

NI
Another example: Enter | & a(n) {a(n) =a(n- )+n {a(0)=
I n=0

0
I
and press [SCONVERGES?]. The HP49G returns +¥ and O totell

you that the series doesn't converge. Indeed the analytic closed form
2

. ..dn*+n
of the seriesis é which goesto +¥ .

n=0

Another example which also gives us some additional insight about the
complex phenomenon caled "Modes' om the HP49G. In red
rigourous mode enter the recurrence series.

P(n- )+P(n- 2)

1 ¥
a P(n) 3

|
1
I n=0

P = {PO)=

- j}ig
Press [ENTER] twice as we are going to need the same thing again
later. Now, press [SCONVERGES?] and wait for aloong time until

*
the HP49G returns the result M

stack level 1. Hurrah! We have all possible reasonsto celebrate, except
that the result is... wrong!!!. Let's follow what happened. Drop the 1
and press [arrow right] to swap stack levels 1 and 2. Press [OBJ->]
and drop the 2 from stack level 1. What you have now on stack level
1 isarecurrence sequence:

= ]}g

‘:}P(n) _ P(n- 1)J;P(n- 2) (P(0) =

on stack level 2 and 1 on

The program SCONVERGES? used first RCR->ANL to convert this
sequence to its closed analytic form. So press [RCR->ANL]. The
result is:

\;_(3*5)*8?_1+JEQ”+3*JE*95_+J1_BQH {no >.4}l?I
; 183 ¢ 6 @8 13 & 6 g i;

which is OK. That means, our series can be written as:

-(3*\/E)*gt§--1+\/1_30 3* /13, @+J13¢8
13 & 6 13 é 6 o’

a

n=0

Press [OBJ->], [DROP2] to put the expression for the summand,
-(3*V13) ®-1+/130' 3* /i3, @+/i36

13 76 o713 & 6 o
1. Press [SWARP], [->LST], enter a 4, press [ROT], [PUT], [->ALG]

to get the series on the stack. Press [DUP] to make a copy of this
series. Switch to real rigourous mode and expand, to get the wrong

+ *
esult % . (The current VX has been changed to n, so use
STOVX to restore your VX. Also, n hasbeenaddedto
REALASSUME, so if you don't want it there, use the command
UNASSUME.) Switch to complex rigourous mode, swap and expand
again. Thistimeyou get theresult 3 which is correct. (The current VX
has been re-changed to n, and n has been added to REALASSUME

again.)
What is the reason for this shitty behaviour? Well, switch back to real

, on stack level

e -
mode and enter the expression g- 1 6‘/_0 Press[ENTER] to

copy it to stack level 2. Now, enter the list {n 1} and press[[]. The
5-28



Sequences, series and limits with the HP49G - Part

1 LN(- 1+/13)

resultis . Press[TEXPAND] and you get

is, the HP49G has found out that 9- 1+6\/_; = 1+6‘/E 1

Ouch! Swap and switch to complex mode Enter again {n 1} and
x® 1+JI30
1* LNé .
%, Pressing

-1+
2113 GJE .Th

el ()

press [[].

[TEXPAND] you get -

Now you have the result e

-1+/13
6

, the correct result. Switch to real

rigourous mode again. Enter X and press[LN]. You get LN(|X|). See

what happened in our example? The expression g- 1+6\/_;

n*LN(- 1+/13)

which appears in the series, has been converted to . This

o LNE)

n*LN(- 1+ J/T3)- n*LNG )

is equivdent to e , and the last expressionis
Mg%g
?. That shows us that the HP49G in real

equivaent to e

rigourous mode, wanted to use the absolute value of -

-1+/13
6

&1+/130
N*LNg——1
argument for the function LN. So it constructed e e 2 whichis

1J_o

equal to 9 , which in this case was the completely wrong
thing. No further comments ;-)

What can we do to avoid this? Well, we could switch to complex mode
before we try to use the command EXPAND with the series

g-(B*\/ﬁ)*g -1+J13¢ | 3* VI3, @+J/130
7 13 & 6 o 13 € 6 o
add a couple of bytesto the programn SCONVERGES?.

.Wecan also

-> series ivar 1o hi
sutmd  assml st vx
<<
| F
"Trying built-in
met hods..." 1 DI SP
-103 SF
seri es EXPAND
-103 CF
vx STOVX

@tore in |locals

@ry expandi ng

Let's hope that these changes of the program will not cause other
problems. Drop all objects until the remaining copy of the series
] & ] P(n- )+P(n- 2 udl
O O ORI R
| n=0 | 3 %

comes to stack level 1. Press SCONVERGES? and wait until you get

as theresults 3 and 1. It works. But who knows what other unexpected

problems this changes of the program might cause.

¥
Asalast examplelet'slook at the series é ﬁ . We might think

n=0 n
that this series diverges because for n=0 and n = 1 the expression

1
n*(n- 1)
can be a source of quite unexpected surprises. Enter the series, press
[SCONVERGES?] and after some secondsyou get a- 1 on stack level
2 and a1 on stack level 1, which means "yes, the series convergesto -
1". How can that be? Well, since we know that the series converges,
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we can group summands in parentheses as we wish. We group the Let'stake alook again at our programs and how they depend on each

first two summands: other. It is crowded around the programs SPCASES and RCR->ANL.
¥ 1 ® 1 1 o & 1 Looks like they are the heart of the building, doesn't it? Notice also
a =C + 1+ —— that SCONVERGES? uses other programs. Actually this program can
ron*(n-1  én*(n-1) o N* (n-1) @ n=2N¥ (n- 1) be made much better. (It is intentionally written that way, so that the

interested user might thing how to make it better ;-)) For example,
We k in mind that for every summand with index n thenext Mmany of the programsthat it cals, call SPCASES themselves. Look if
wmm?a?}% will have theindex n -2/1. So we can write for thefirst two 1t iSTeally necessary to do that. Also notice that SCONVERGES?calls
summands: CONVERGES? many times. Is that really necessary? Can we avoid

that?
1 1
+ =
n*(n-1|_, n*(n-1) SOLGESEQ SOLARSEQ CONDENSPT
1 N 1 _ PARTSUMSEQ +
*(n-1) (+)*((h+)-1)]
n n=0
22 ]J =-2
n" - o
1
Enter ———, press[ENTER] to make a
n*(n- 1)
copy, enter n=n+1 and press [SUBST]. creates
Press [+] and [EXPAND] to get et
This expression is the sum of the first two RCR.SANL GENFUNG
summands for n= 0. That means, enter
n= 0 and press [EXPAND] to see that the +
sum of the first two summands is - 2.
¥
Enter the rest of the series, é ;, SEoTYRE
nzzn*(n' ])
and press [SCONVERGES?]. Theresultis *
1 (thelimit) and 1. That means that the
series  converges to  -2+1=-1, = TERMS FDISTRS

Unexpected perhaps, but correct.
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We move on to plotting series. Actually when we say that we plot a
series, we don't mean that we plot the series itself. This would mean
to plot just a single point, the limit of the series, and this only if it
exists. What we rather mean when we speak about plotting a series of

¥
the form Q& summandn), isthat we plot the points

n=start
start start+1

g?start asumman({n) @tartﬂ, asummanc(n),

n=start n=start

start+2
a summanc(n) and so on. We plot the partial sums

n=start

e?start +2,
e

N
a summandn), for N = start +1start +2,start + 3,---. This can

n=start

be easily done on the HP49G usi ng the plot type function. Let's have
an example. We plot the series a \/ﬁ Pressfirst ssmultaneously

[red-shift] and [F4]. Select pIot type 'Function”. In the input field

"EQ:", enter the partial sum a JF] Enter N asindependent variable.

This means that we actually plot the expression F(N) = ‘/_ asa
function of N. Enter 1 for both horizontal and vertical axestmks and
uncheck the option _option"_Pixels'. Now presssmultaneously [red-
shift] and [F2]. Enter "H-View:" from O to 20, "V-View:" from - 2
to 8, enter 1 for "Indep Low:" and 20 from "High:", enter 1 for
"Step:" and uncheck the option "_Pixels'. Now preﬁ the menu keys
[ERASE] and [DRAW] and watch how the HP49G plots the series.
When the plot is ready you can start tracing it using the menu keys
[TRACE] and [(X,Y)]. Perhaps you have already notlced that the

HP49G gets more and more slowly while it plots a \/_ for higher
and higher values of N. Thisisnot hard to understand The first point

has the coordinates __

X =1and 4 e
g 1 + -t
Y = a — . The 4 . " "
n=1 n . " "
Y-coordinate is | -
calculated quite | .
fast, a the | "
HP49G hasto find | | | | |
1 I I I I 1
il . The second T
point has the

coordinates X =2 andY = a T The calculation of the Y -

coordi nate takes now a IittIe more time, as the HP49G has to find

! .Whenweareat X =20 the HP49G hasto calculate the
ﬁ J‘
1
sum —+— +...+ —=, which of course needs a considerable
J 2 J20

amount of time. The same happens when tracing. The HP49G feels
not very responsive when we trace for higher values of the X-
coordinate. Notice also how the plot indicates that this series doesn't
converge. You can try to plot for higher values of the X-coordinates.
The overall looking of the plot remains the same. The sequence of
plotted points doesn't get "flat".

Another example? OK, graphics is aways fun. Let'sdo

N
n

§ (9
)7

n=1

Enter a
n=1

distance. "H-View:" from 0O to 10, "V-View:" from - .2 to 12,

"Low:" and "High:" are 1and 10 respectively. Press [ERASE],

[DRAW]. Notice how the plot indicates that we have convergence. As

N gets higher and higher, the partial sums points come nearer and
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nearer to LN(2) which isthe limit of this series as we already found
out. It will be interesting to put another series on the same plot, the
¥ _ n+l
series to which é %
n=1
SCONVERGES? has performed the Leibniz test of convergence.
Return to the stack,

¥ (_ ])n+1
n

has been transformed, when the program

enter Q and

n=1

. press [TRANSER].
. When the program

* finishes, press
. [BACKSPACE] to
drop the retuned 2
(number of specid
cases) and then enter
3 GET to get the third
element of the
returned list. This is
the analytic closed
form of the transformed sequence. It returns the same results like

N (L n+l
e 2 , but only when N =2,4,6--- and also for N® ¥ . We

n=1
adready have seen the reasons for this. Now you have

psit . 210 BN, 0.4 psi® 210 pgi()
€2 20 e €2 O € 20
on stack level 1.

2
Enter STEQ, and then DRAW. Press [arrow |eft] to go to the plotting
environment. Oh no, dont search for coloured lines and for
annotations. | only put them there for focusing the two series. The
points connected with the blue lines belong to the original series. Their
N _ n+l
partial sumswere é_ &
n=1
green lines are the points of the transformed series and they have the

. Those points that are connected with the

partial sums that TRANSER found:
aN -1p aN 5 _®-lyg _ .0
PSis5 * 5 g ?Sléﬁ + 1;+ PSis = o PSI(l)ﬂ

2 . This partial sum belongs
to the transformed

series that
TRANSER also
found:

& 1

a

o d* 1 +6*n+2°
You see that both
series converge to
the same limit and
that they have the
same partial sum for
N=2,4,6---. ——t——

— Transformmed
— Original

Speaking about ™
partial sums, if the

HPA49G can find an analytic closed expression for the partial sum of a
sequence, then we can plot the partial sum instead of the series itsalf,

¥
to speed up plotting and tracing. For example consider the series é n.
n=1

¥
If you enter 601 n and press [EXPAND], then the HP49G returns
n=1

N? +N

N
. You can use this expression instead of é_ n to plot the series.

n=1
If you plot it you get exactly the same plot like for the series. Don't

confuse this with the previous example. In this example the Nt partial
sum is valid for any value of N. Inthe previous example we first
transformed the original series to another series, whose partial sum is
the same like that of the original series for some distinct cases and for
N® ¥ .Wedidthat in order to help the HP49G find if the series
converges because it couldn't do anything with the original series. The
advantage is now that the plot is much faster. Also, if you trace this
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plot you will find that the HP49G is much more responsive now, as it

doesn't have to calculate sums for every plotted point that istraces. So

whenever you have to

plot a series —
¥

a summandn), +
n=start

enter first its partid T
N

sum Q summandn), ] .
n=start .
and try to find its |
analytic closed form. If L .

you succeed, plot this .
instead of

Y 1
a summandn) to
n=start

speed things up.

Sometimes the series itself will not be plotted. Consider the series

¥
o

2 1
n=oN* (n - ])
point. Why?Well, when the HP49G plots, it numerically evaluatesthe
expression to plot for values between the plot parameters "High:" and
: . J 1 :
"Low:". For example, when it plots the tenth point of m it
n=0 -

. If you try to plot this, the HP49G will not draw asingle

10
tries to numerically find out hat the value of é_ " is. If you

(n-9)

n=0n

1
——— and press [->NUM], then the HP49G errors out
~n*(n- 1
because a division by 0 occurs for n= 0. But as we have seen the
value of this this series exists for any n3 1. We can only plot this
series if we find its partial sum as an analytic expression. Enter

n=0n*(n' ]) T
expand. The result is

N+1 .
- T,Whlch can be T

plotted like any other | .
function of N. Only 4 .

when N=0 theseries  +
Is -, thatisonly +
this point can't be .2 + =
plotted.

Plotting series can a so be hel pful for theinvestigation of the behaviour
of series regarding their convergence. We use the example

a&2*n*p O
¥ SlNS 5 E
é c = for which the program SCONVERGES? can't find if it
n=1
E2*n*p O
N eSINS 6 p#

converges. Enter 601 — and then STEQ to store that as the
n=1

current expression to be plotted. Let it plot and you can see that it looks
like converging to about 3.3. Having "guessed” that the series
converges we can

go further and find 4 _
exactly what it
converges to.
Because we T .
assume that the
series  converges,
we can group its
summands in
parentheses as we <+
wish. So we enter
the series
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on stack level 2 and 1 on stack level 1. The series converges. Drop the

aepxn p0
3 e o 1 and press [ENTER] to make a copy of the limit. Press [->NUM].
n8:.1 n’ and press [TRANSER]. After several secondsthe The result is 3,3750358820¢, quite near that value which we
program returns the huge list on stack level 2 and 6 on stack level 1. Observed by looking at the plot of the series. So there is very gaog‘g
l { evidence that th a é¥smg”
ae{o Ve ) U evidence e origina series Q ———
! SINZZIR O (839808"c ne +. ) 2 T 6*8?3 * PS|EE_\I _ __1194__._,', n=1 n
fge ©° 3 ge o €6 27g 1| converges.
a —7—> a - 7 Y
fos 0 "0 (15116544 0" +..)xe” 216* 2 !
| |
t
b Some of the examples of series that we had so far,
Drop the 6, press [OBJ->] and drop the element count. Now you have ™ p contained expressons like for example ( 1) or
3 i 0] \ . .
6*eZ * PSIg i -?1’1g+ e S o . The HP49G can't deal with such series out of the box,
the huge expression - 7 on stack level 1. and that's why we used SPCASES, to just replace such expressions
216%e? with al their possible outcomes. For example the HP49G can't deal

Thisisthe expression that converges to the same limit like the original

serieswhen N® ¥ . Press[arrow right] to swap stack levels 2 and 1.

Stack level one now contains the huge  series
2By

(839808* n®* +.-)*ge 7 = +...
e o

. This series convergesto the

Qox

n

" (15116544%n2 +..)*e?
same (assumed) limit like the original series. Press[SCONVERGES?]
and wait some seconds. The program returns the limit:

B 16 26 EYEIE ENElg

6e? *PSE —1—+6*PSI8 —1+6*ge2

¥
with §
n=1
find that the series converges. It should be mentioned however that for
some series the time consuming procedures of SPCASES can be
¥

n+l
% , but calling SPCASES from SCONVERGES? we can

avoided. Consider for examplethe series & (- )" . This series doesn't
n=0
converge. But the HP49G can find an expression for its Nth partial
N ([(*N+)p _ 1
sum. Enter & (- 1)" and expand. The HP49G returns - © :

n=0

*PS§—1+6*PSE _1"+6*ge2 *PSIg —1+p2*e2

Lets have another example. We consider
p
10 ; aSIN NP6 Thlsserlesalsodoeﬁntconverge
n=0

But the HP49G can find an expression for for its Nth

E
216%e?

partial sum, if we use complex exponentialsinstead of
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an*
trigonometric functions. Enter a SIN PO

n=0 3

& ae.u’

-gl*Qe 0
e 4]

and press [EXPLN].

6
++i
a

The HP49G answers with a

n=0

. If you expand now

n*

o

i*
2*e
the HP49G will return the same sum. But press [LIN] to linearize the

N i LN L r*—pg
is a__*e 3 3+_*e 3ﬂ

n=0 2
Expanding this you get the Nth partial sum of the series,

el P*N+i)* i*N+iJ*p
(|+J_) 3 +-2*J§* 3 +i+3
%]
- N . Now we return
4*e 3
to trigonometric functions. Switch to real mode, press [ENTER] to
make a copy, and press [RE] to get the real part of the expression.
Press [TCOLLECT] and [EXPAND] to get the result

AT e
S|N§—3u;+\/§* COS?—BMZ- J3

2
[IM], [TCOLLECT], [EXPAND] to get 0, which showsthat for the

Nth partial sum of the sequence we have the reation:
SINENFYTPO, 3w cosBN YR 5
a SINEEH pPo _ e 3 (%] e 3 4]

e 3o 2

This technique of using EXPLN to turn trigonometrics and powers to
complex exponentials, then find the partial sum, and then return to the
real domain and find the real and imaginary parts, can be used in quite
afew cases. But there are a'so many many cases, in which it will not
work.

o

exponentials. The result

. Swap and press

Regarding alternating seriesthat converge, like g , We can ask

ég (_ ])n +1

n=1 n

if the series of the absolute values of the summands also converges. If
¥ _ n+l

it does, then the series converges absolutely. The series é %
n=1

for example, converges but not absolutely, since the series

0™ 41

a——|=ar-=

n=tf N n=1

SCONVERGES? it is easy to make a program that checks series for

absolute convergence.

divergesto +¥ . Now that we have

<<

I F @F we have a recurrence series
DUP TYPE 5 ==

THEN
OBJ- > DROP
RCR- >ANL
HEAD SWAP
->LST 4 ROT
PUT

END

PUSH { HOVE CASDI R REALASSUME } RCL

OVER OBJ-> 4 DRCPN

SWAP UNASSUME SWAP 3 ASSUVE DROP

OVER ->LST 4 OVER 4 GET ABS EXPAND PUT ->ALG

{ HOVE CASDI R } EVAL SWAP ' REALASSUME' STO

POP

SWAP SCONVERGES?

ROT SCONVERGES?

ROT AND

>>

>>

@ry to find the analytic closed form
@nd re-construct the sum

Store that in SABSCONVERGES? L et's make some examples again.
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¥

n+1
& and run SABSCONVERGES? After 3.5 minutesin

Enter é .
n=1
agony the HP49G returns on stack level 3 the list
‘I ég (_ ])n+1 ég 1 U
i _ 1 -y, onstack
psi 1o gy N, 1°+ Psicc 0. psi()° -
1" 7e2 20 €& €2 e 20 2} 2_'_
f 2 b

level 2 +¥ , and on stack level 1 a 0. The seriesis not an absolutely
converging one. Its convergence behaviour results in the list on stack
level 3, while the convergence behaviour of the series of the absolute
valueresultsin +¥ .

¥

n+l
( r? and run SABSCONVERGES? again. After 4.5

Enter a
n=1
minutes the results ae, on sack leved 3 the list
T () g 4*n+3 a
18y~ A fgrTiagrn +52° 7 124 n ¥4 i
i n 'y on stack
. 6*PS|aN;-—11° %*PSIGH—\'+11°+6*PS|8? =¥\ pzo i
l €2 2 e 2 o
“_ 2
i 24 b

level 2 F; and on stack level 1a 1. This series converges absolutely.
Press [ROT], [2], [GET] and then [SCONVERGES?], to find that the

6*PSIZ 10 p?
limit of thefirst seriesis >4 . Thetwo limits are not

the same but that doesn't matter. They both converge and that's

¥ ( ])n+l
enoughforcalllnga "

n=1

absolutely convergent.

¥ n+1
, - 1 1 1 .
Westayattheserlesé&:l- +—-—+-..- ... toexamine
o1 N 2 3 4

another important property of series. This series converges, as we
have already seen, to LN2).Now we consider the series

1 1 1 1 1
1+ =- =4+ =+=- = ++- ...

3 2 5 7 4
¥_n+1
5 (9

=1 n

which is produced from the series

through rearrangements of the summands. The new series

o}

1 1 1
can be written as a What

+ - :
2% (2*n)-3 2*(2*n)- 1 (2*n)
does this expression converge to? Y ou might think that since we only
rearranged summands and since addition is commutative, the new
series has to converge to LN2) too. But thisis not true. The program

SCONVERGES? can't find even if this series converges at all. But till
we can use the (dangerous) method of "plugging the numbers"

Remember the advantages of the Nth partial sum? OK, enter
J 1 1

+ - and press [EXPAND].
A2 3 2@ n)-1 (2rn) FOPes ]

1 2%
After some seconds the HP49G

PsioN +1- 15 +PsioN+ 1- 36
e 49 e 49

gﬁ’si?[- 0 Psf?[

4
Enter N=1E100 and press[SUBST], [EXPAND] to get

1.03972077075. Press[ENTER] to make a copy of the result. If
you now use XQ to convert the result to something "more algebraic”,

returns the result

0+ 2*Psi(N +1)- 2*Psi(1)°

25469
you get 52296 Doesn't look like a candidate for alimit, so let'stry

something different. Drop the ratio and think about the limit of the
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original series, that was LN2). Should we suspect that this LN2) isa

factor of the limit of the rearranged series?
Let's see. Enter 2. and press [LN]. Press|[/].

Aha The result is 1.49999999987 which

can be converted to g with XQ and which

shows that the rearranged series convergesto

:—;* LN?2). In fact you could achieve any

l[imit or no limit at all by just doing the
proper rearrangement. Such series, the
convergence of which depend on
rearrangementsare conditionally convergent
series, and their convergence behaviour
offers pathologically beautiful examples of
convergence investigations. Series can be
either absolutely or conditionally convergent
but not both.

That wasit for this part. We'll continuein the
sixth and last part with limits and some other
properties of functions, like for example how
we can find if some function is continuous at
some point. Let's hope that no ancient greek
sophist will puzzle us with unnecessary
problems and that no ancient arab game
inventor will drive us bankrupt ;-) As aways
| include the table of our program collection
so far.

¥
4 1+GRreeTINGS(),
n=1

Nick.

creates

SABSCONVERGES? SOLGESEQIISOLARSEQ CONDENSPT
* PARTSUMSEQ +
RCR->ANL GENFUNC

v

SEQTYPE

v

->TERMS FDISTRS
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Hi again!

After along and sometimes exhausting journey, we come to the 6th
and last route of this marathon, in which welll take alook at limits of
functions. Thiswill be of great help for the next marathon, the calculus
marathon, which | think, is one of the most interesting for many
people.

Let's start with a crossover to physics, and
consider some time dependent function, like for
example the function that describes the one-
dimensional motion of abody. The model that we /
use when we talk about such functions in the
classical physics approximation is the very basic

idea of continuity. The x-coordinate of the t

-~ body is a continuous function
% of time, which itself is aso continuous. That

X

means, very easily but also very unprecisely

spoken, that if you take a loupe and
consider theideally drawn motion
graph, you will always get a

curve, and not some
discrete  sequence  of
points, no matter how

in. Notice that this is
assume  without any
nobody on this world can
the x-coordinate of some
this remind you of some
numbers?) Now, the first
this meaning in precise

strongly you zoom
something that we
experimental proof, since
really take measurements of
body for all times. (Does
basic property of red
question is, how canwe put =1

words? First, remember what we have seen aready,
when we  were considering condensation  points  of
discrete sequences, and try to imagine two continuous sequences of
points, of which one represents time, and the other represents the x-
coordinate in space. If some condensation point of the first sequence
corresponds to some condensation point of the second, we talk about a

limit of the function. The x-coordinate is in a tiny neighbourhood of
the limit, when the independent variable t isin atiny neighbourhood
of some condensation point. (The condensation points don't have to be

A

-

¥ approaches X

t approaches tg

themselves members of the two continuous sequences.) If this limit
about which wetalk isequal to the function value at this point, then the
function is continuous at this point. The continuous model of motion
demands this to be valid at any point of the considered motion.
Many of the usual functions are indeed continuous, but investigation
exactly the cases in which this isn't true, is what will give us some
more insight.

We see that the meaning of continuity hasto do with limits. And thisis
reason enough to take a closer look at limits and the capabilities of the
HP49G when working with limits. In general, when we say that some

function y = f(x) hasthelimit G when the independent variable x
approaches a, we mean that the quantity [f(x) - G approachesO0,
when x approaches a. Let's put thisin precise math language. We
consider some function y = f(x) and the quantity [f(x)- G|. We take
an arbitrary small positive quantity e~ 0 and comparethisto the
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a-d(e) a a+d(e)
quantity [f(x)- G while x approachesa. If the inequality
li(x) - § < e holdsfor any x for which the inequality
0 <|x- a] < d(e) holds, then the function y = f(x) hasthelimit G
when theindependent variable approachesthe value a. We denote that
with lim f(x) = G. The quantity d(e) is not some known function, but
it depends on the choice of the tiny quantity e. The above can also be
understood as the search for some tiny neighbourhood of x =a,
inside of which the function y = f(x) createsvaluesof y which dl are
inside atiny neighbourhood of G. For example, consider the function
y = xZ at thepoint x = 0. Thelimit G of this function, when x
approaches 0, isequal to 0. If we demand that the quantity
i(x)- § < e, with e = IE - 6, then we have to satisfy the inequality
[X* - 0| <1E - 6 for somedistinct values of x . Do such values exist?
Yes, they exist and they all satisfy the inequality |x - a| < d(e), which
in this particular case trandatesto |[x- O] < 1E- 3, 0r |[{ <IE- 3. If

we choose x to be"at most" IE - 3 away from x =a =0, thenwe
satisfy the demand that y is"at most" IE - 6 away fromy =G =0.

The HP49G has extended capabilities for finding limits of functions.

We start with simple examples and proceed to more complex ones. So
let's try to find Ii(grg) x* . Go to the EQW and press [blue-shift], [4] to

get the menu CALCULUS. Press the menu key [LIMIT] and then the
menu key [lim]. The unfinished expression lim( , ) appears. The

cursor blinks over the first argument of the function lim. Enter X? and
press [arrow-right]. Enter X =0, to supply thepart x ® 0. Press

[ENTER]. Now you have il(gg) X* on stack level 1, the "pretty print"

version of lim(X?,X = 0). Press[EXPAND]. The HP49G returns 0,

the limit of X* for X ® 0. Press [red-shift], [HIST] to undo the last
result and get the previous stack. We're going to see something strange

(again;-)). Press [arrow-down] to bring the expression lim X? into the
EQW. First thing to notice: now the pretty printed expression appears
in the EQW, while previously we had lim(X* X = 0). You can select

and edit all parts of the pretty printed form. But if you select the whole
expression and press [red-shizft], [VAR] to copy it, then suddenly the
EQW contains... (X=0
now press [ENTER] you will see the expression IixrpX =0 on stack

), arather unusual expression. If you

level 1, which is lim X with its arguments interchanged. Press
[arrow-down] again to bring the expression IinZnX = 0 into the EQW.
Press [red-shift],[VAR] to copy it again, and notice that the selected

®0
expression changes again to (X ). Press[ENTER] and you

will see the expression ilg(]) X’ on stack level 1. The second exchange

of arguments has brought us back the original form. The moral of the
story is that you should avoid copying the whole expression for a
limit, or find out how this curiosity of exchanged arguments could be
used for some purposes.
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L . 1
The function lim can of course be used also in stack syntax. Enter X

1 L
then X = a and then enter LIMIT to get theresult —. The function lim
a

was introduced with the last ROM version as a pretty printed
aternative of the function LIMIT, which is in al previous ROM
versions. LIMIT is dtill in the current ROM version, but you won't
find it in the command catalogue. If you want to use it with the current
ROM version, you have to type it in. If you go to the EQW, type
LIMIT and then press [arrow-right] to start entering the arguments,

then the expression is converted automatically to Iir:(l) , the template

of the new pretty printed version. If you try entering
'LIMIT(XZ,X = O)‘ from the command line, then the command line
parser will mark the equals sign and complain about invalid syntax.
Entering 'Iim(Xz,X = 0)' brings the same error again. So if you have
entered some expression with limitsin the EQW, you just can't use the

last command recovery to re-enter it from the command line. Y ou have
to re-enter the expression from the EQW. What a mystery!

Let's examine that a bit further. Go to the EQW and enter )ll(l;?) X2,

Press[ENTER] to put that on the stack, and press[ENTER] two times
to make two copies of the expression. Press [->LST] to turn the
algebraic object to its list RPL equivalent. The result of this operation

is {X 2 lim (")} . Either thisis much to high mathematics for me, or

the pretty print version istotally..., well, let's say "unusual™ ;-). Press
[OBJ->] to explode the list. On stack level 3 you can see now the
objectm Invalid Expression. Thelist item count on stack level 1is
7., which shows that there were invisible itemsin thelist (and also in
the algebraic object). Stack level 2 is occupied by an object which
doesn't show up. If you drop the 7. and press[TY PE], you get 18.
the object type of analytic functions, like SIN, COS and so on. Drop

all objects until )I(iggxz ison stack level 1 again. Press[->LST] and

then [->ALG] to transform the algebraic object to a list and then back
to algebraic. You get )I(lgg X?, asit should be. But if you press

[COMP->] and then [->ALG], then you will get the very mysterious
result m'mInvalid Expression’ which shows again that pretty print
has totally messed up the inner structure of the function LIMIT. It will
work and find the right limits, but you have to be veeeery careful if
you use programs that explode and re-build expressions that contain
the function lim.

After the obligatory cry out, let's take alook at the strength of lim. We

start with easier examples and proceed to more complicated things.
2

Enter

> then X = 2, and then press [lim]. The HP49G returns

2

theresult 4, the limit of

> for X® 2. The HP49G knows how

to find limitsin cases Where-thefunction itself isundefined, likein the
above example. The mathematic part of lim isvery well done.

From the EQW enter Iin(aX,X = O) and expand. The HP49G returns
theresult 1.

. 16" 0 .
Enter limG.1+=° , X = ¥~ and expand. Again, after some seconds
e X2 2

you get theresult e.

1 ..
Enter Iim§1+ X)% X = Og and expand. Y ou get the limit e after some

seconds.

: N1+ X 0 :
Enter Ilmgf% X = 0; and expand. Theresultis 1.
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. IN(X 0 .
Enter hmgs%,x = O; and expand to get the limit, 1.

In many cases it is important to know if the independent variable
approaches some value from the left or from the right. Consider for

2
example the function e *. If you plot it then you can see that if x

approaches O from the left, that isif it comes from valueslessthan O,
then e_i goesup to +¥ . But if x approachesO from theright, that is
if it comes from values greater than 0, then e_i1 goesto O. If you go
to the EQW, enter Iimga%_é,x = Og and expand, then the HP49G

errors out with "Unsigned inf". In such cases it can help to specify the
direction from which the limit is approached. In this case, if we want
to specify that X approaches O from theleft, thenweenter X =0- 0
for the value that X isgoing to. if we want to specify that X
approaches 0 from theright, thenweenter X =0+0. Herewe

encounter yet another strange thing. Go to the EQW, enter

I|m9e XX =0- 0 and press [ENTER] to put the expression on

1

stack level 1. Now you see XI@i)rg_loe_?. Expanding this we get... the
error "Unsigned inf" again. But if we use stack syntax, that is entering
1

e X, then X =0- 0 and pressing [lim], we get +¥ ! Go figure out
why the algebraic syntax fails, while stack syntax works. Let's try the

g1 5
opposite direction. Enter Iimge XX =0+ Og and expand. Again the

1
HP49G errors out. But entering e *, then X =0+ 0 and pressing
[lim] we get the result +:0, which means that the limit is O and that it
Is approached from positive values. So it seems that the "pretty print"
of the command lim s, let's say, not very recommendable. ;-)

Let's consider another example, the

function tan(x). If x approachesg

from the left, that is if it comes from

P

values less than 5 then tan(x) goes

up to +¥ . But if x approachesg from

theright, that isif it comes from values

P

greater than 5 then tan(x) goes down

to - # . First we try without specifying
a direction from which x approaches

g . Go to the EQW and enter
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. Press[EXPAND] to get # , an unsigned

lim TAN(X).X =

infinity, an infinity without sign. Now let'stry to specify the direction
from which we approach the limit. If we want to specify that X

_Po
29

approach%g from the left, then we enter Iimzel'AN(X),X = g 0

Expanding the last expression we get again * and not +¥ ,WhICh
shows that in this particular case the command lim has a shortcoming.

Same for the other direction. We specify that X approachesg from

p

the right, that is we enter IimzerAN(X),X =3 +Og, and we expand.

But though we specified the direction from where we approach g we

get ¥ and not - ¥ . Specifying the direction from which we approach

the limit, doesn't work in this case. Even using the stack syntax of lim
wouldn't help. But we can use the command SERIES instead, which
is more powerful (and in general slower) when finding limits. Enter
TAN(X), X =2

X = rs 0, and 1, the order of the series expansion of

TAN(X) for X ® LZ) coming from the left. Press [SERIES]. The

P

HP49G returns a list at stack level 2 and h = E - X at stack level 1.

Press[SUBST] to substitute g - X for hiinall expressions of thelist,

and then press [HEAD] to get the first element of the list, the limit of

P

of TAN(X) for X ® 5 coming from the left. The result is

P

Limit: (+¥) . Let'stry the samefor X ® 5 coming from the right.

Enter TAN(X), X =§ +0, and 1. Enter SERIES SUBST HEAD to

get theresult Limit: (- ¥) . We see two things here. First thing, we can

specify one sided limits. Second thing, the command SERIES seems
to be more powerful than the command lim. If lim fails, don't give up
but try again using SERIES.

We continue with some additional examples of finding limits with the
HP49G.

Enter Iim?xN—(? X = 1; and expand. The HP49G returns 1.

x3
ef-XP-2%X-2
findsthe limit, 3.

Enter Iim? X = 0° and expand. The HP49G
e2* 2

1

Enter ”mgtos% X = O; and expand to get the result El

* 0
Enter IlmgglN(—zx) X= b2 and expand to get * . In thisexample
€ COS(X ) 20
we must specify from which direction X approaches g . But trying to
* * 0
expand Ilméa%”\l(—zx) X= b +0— or “mgSIN(_ZX) X= b. 0+
e COS(X ) 2 e COS(X ) 2 9

still returns * , the unsigned |nf|n|ty. So we try to find the one sided

SIN2*X) '\ _P_ 5 1 andthen
COS(X)* " 2
SERIES SUBST HEAD. Now you have the result Limit: (+¥) which

limits using SERIES. Enter
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iscorrect for X approachlng P from the left. For the right sided limit
*
enter M , x =L 40, 1, and then SERIES SUBST HEAD to
COS(X) 2
get Limit: (- ¥).

Enter lim((1- X)*LN(X - 1) X =1+0) and expand. The HP49G
errors out with "Unable to find sign". Again the pretty print version
has problems in algebraic syntax. Enter (1- X)*LN(X - 1), then
X =1+0 and press[lim]. Now theresultis +0.

Enter nm‘?M X = Sy and expand. The HP49G needs some
e TAN(X) 29

o1
seconds to return the limit, 5 )

4 ..
Enter IimgaLX X = ¥g and expand. The HP49G errors out with "Non
e

4

algebraic in expression”. Using stack syntax, that is entering :—X , then

X =¥ and pressing [lim], returnsthe limit, +:0.

Enter IlmeeL X ¥ and expand. The HP49G needs severd

LI:(I(nX) , then
X =¥ and pressing [lim],doesn't do any better in this case. So we try

SERIES. Enter LN(X) ,then X =¥ andthenl. Press[SERIES] and

let the HP49G do the work, until it errors out with "Unsigned inf
error" again. What can we do? Well, let's try to assume something for

seconds to error out with "Unsigned inf error”. Entering

n. Enter n3 0 ASSUME. If you now enter Ilma' X ¥ and

expand, the HP49G errors with "Non algebralc in expresson". If you
enter %(nx) , then X =¥ and press[lim], the HP49G needs severd
seconds to return the limit, +0.Enter n UNASSUME n£ 0
ASSUME and then enter L’;I(X)
find thelimit for n £ 0. The HP49G returns +¥ .

then X =¥ and press[lim] totry to

Enter Ilma( * ATANae)l(g,X = ¥; and expand. The HP49G returns 1.
e 1 0

Enter lim& - =, X =0~ and expand to get 1.
eSIN(X) X+X 2

Enter Iim(XX X =0+ 0) and expand. The HP49G errors out with

"Unableto find sign". But if you enter X*, then X =0+0, and press

[lim], the HP49G returns the limit 1.
Enter Iim(W X = ¥) and expand to get 1.

From the above examples we see: If lim in algebraic "pretty print"
syntax doesn't work, then try lim with stack syntax. If this still doesn't
work, then try SERIES. And if it still doesn't work, then try to make
assumptions for additional variables that appear in the expression for
which you want to find the limit.

What about piece wise defined functions? Can the HP49G find limits
of such expressions? Let's see. First experiment, enter

IFTE(X < 0,10), then X = 0, and press [lim]. The HP49G returns 0
, which is wrong! It should return 1. Let'stry the one sided limit.
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Enter IFTE(X <0,1,0), then X =0- 0, and press [lim]. You get O,
the wrong result again. In the following table we have a summary of |FTE. This causes the condition to be evaluated to 1 for true or O for
all cases where the HP49G finds wrong limits of a piece wise defined false, but fortunately doesn't do anything else, so that we can MATCH

function. The top row contains the functions that were used. The left
column contains the value that X approaches. The second row

X =az=lE - 499, and substitute this in the function that contains

X for 0+ IE- 499 and EVAL to get the right part of the piece wise
defined function and find its limit using the command SERIES. This of
course limits the usefulness of

IFTE(X <0,10) | IFTE(X £0,10) | IFTE(X ==0,10) | IFTE(X*0,0) |IFTE(X 0,10) IFTE(X*0,10) | our program for finding limits of
functions that don't contain
— 1 —_— 1 4_ 1 4 1E - 499, but | think that this
limitation is not very bad, since
! | I such functions are not likely to
X=0 0 1 1 1 0 0 be used.
X=0-0 0 1 1 1 0 0
X=0+0 0 1 1 1 0 0
contains amini graph of the used function. The red cells are the cases
where the HP49G returns the wrong limit. As we can see the HP49G
rather returns the value of the function at the considered point but not <<
the limit of the function. When it finds the correct limit, it does so =~ PUSH RCLVX

because of the false reason. Especially for the cases where no
direction was specified, likethelimit for X = 0 in the abovetable, the
HP49G should return something that tells you that a direction is
needed, or error out. So you shouldn't try to find such limits by
simply using the piece wise defined function. Let's try to make a
program that enhances the built-in lim for such cases in which we want
to find the limit of a piece wise defined function at the point of the
"jump”. Our program could first check to see if the function contains
IFTE. If it doesn't then we simply use SERIES to find the limit. We
don't use lim, because SERIES is more powerful. For example, the

command lim finds both limits of % for X =0+0andfor X=0-0

to be *,while SERIESfinds +¥ for X =0+0 and - ¥ for

X =0- 0. If IFTEisin the function, we check again if aone sided
limit was specified. If no direction was specified, then we return a ?,
which signals us that adirection is needed. If adirection was specified
from which X approachesa, thenweturn X =a+0 to

-> func xeq vx
<<

| F @f IFTE is in the function
func ->LST
{ IFTE } HEAD PCS
THEN @ hen
I F
xeq ->LST @f the right or left
3 5 SUB @imt is wanted
DUP {0 + =} SAME
SWAP {0 - =} SAME
R
THEN

func xeq ->LST

3 1E-499 PUT ->ALG
SUBST

POP PUSH

@ui It up X=az*1E-499

@ubstitute X=at1E-499
@OP and PUSH (to avoid
@mode changes)
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xeq ->LST TAIL
1 3 SUB

2 1E-499 PUT
->ALG

xeq - >LST HEAD
2 ->LIST

- MATCH DROP
EVAL
xeq 2 SERI ES
SUBST HEAD
EXPAND

ELSE @f no direction was specified
? @eturn ?

END

ELSE @l se (no | FTE in function)
func xeq 2 SERIES @ust find the limt
SUBST HEAD EXPAND @isi ng SERI ES

@repare list for nmatch

@mtch ax1E-499 to X
@ind limt of the right part
@f the definition using SERI ES

END
vX STOVX @Restore VX
>>
POP @Restore settings

>>

This is the program is LIM from the programs that come along with
this document. Let's check it. We usefirst exactly the same piece wise
defined functions like that in the table on the previous page. The
results are summarised on the table below. Aswe can see the program
returns the correct limits. We do some additional tests. Enter

SIN(X)
o

|FTE§< <00, X =0+0 and press [LIM] to get 1, the

%9 , X=0- 0 and press

% _ l
correct limit. Enter IFTEgX <0, SII;l((X)

[LIM] to get

SINK)

1, the correctlimitagaln Enter

&
IFTEgX<O g , X=0+0 and press[LIM] to get +:0,

which again is correct.

The program can be made better. For example it runs the same or
nearly the same code more than once. The portions of code which are
similar or evenidentical could berun only once. Another thing to make
better would be to return both the left and the right limit in case no
direction is specified. And another thing for improvement is that the
program will work only for an argument on stack level 1, that has the
form X =a,or X=a+0,0r X =a- 0, where a isasingle term.
For example if this argument is X =1+a+0, that isif we want the
limit for X ® 1+ a the program will not work properly.

We return to continuous functions. Using limits we can make a
definition of continuity that is allows us to implement a program that

testsif some function is continuous at a given point. If afunction f(x)
is defined at x = x and also defined in the neighbourhood of x = x,
then we can say that it i continuous at x = x, if limf(x) = f(x). This

IFTE(X <0,10) | IFTE(X £0,10)| IFTEX ==0,10)

IFTE(X 2 0,1,0)

means for our program that it has

IFTE(X ~0,10)| IFTE(X *0,10)

—

—

L

tocalculatelimf(x) and f(x) and

then check if the two quantities
are equal to each other. Since we

might have some piece wise

X=0 ?

defined function, we use the

X=0-0

program LIM and not the built-in
function lim, so that we are also

oo |V | ———o

X=0+0

bl o | —ate

able to find if some piece wise
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defined function is continuous at some point or not. The program fval ? @f function is undefined
should take afunction and an equation of the form x = x and return a SAME  @ut left and right linits
1 if the function is continuous a x or a0 otherwise. rlimllim @xist and are equal to
== AND @ach ot her
<< THEN @hen we have a renovabl e
PUSH RCLVX (_)_xeq. EQ > @i scontinuity. Bu! Id up
"> func xeq vx == rlim @ epl acenent function
<< func | FTE
2 ->LIST
func
END
xeq EQ> {0 +} +  @onstruct X =x+0 llimrlim @f both limits and the function
->ALG = _ o ==rlim  @alue are equal, then
LI'M @ind limt fval == @ont i nuous
func AND f val
xeq EQ > {0 -} + @onstruct X =x-0 ? SAMVE
->ALG = NOT AND
LIM @ind limt THEN
I F @f one or both limts aren't 1
DUP2 2 ->LIST @lef i ned END
? PCS 0 @l se di sconti nuous
THEN @hen return 0 (discont.) END
DROP2 0O >>
ELSE @ut if the limts are defined END
func xeq SUBST  @ind f(x) vx STOVX @Restore VX
EXPAND >> .
> rlimlilim fval >>P(]D @restore settings
<<
CASE

£ ¥ NEG @f both linits are ¥ and/or This is the program ISCONT? that comes

2 ->LIST @ #% then we have a pol e alg)ng with this document. Let's test it. Enter
rlimPOS @nd so... X, X =0 and press [ISCONT?] to check the
|
1 1

¥ ¥ NEG function X° for continuity at X = 0. The result |
|2| i ;Llpgg is 1, which tells you that X? is continuous at
AND X=0.

THEN @..return -1 5
1 Enter 1- COS(X)°, X =p, and press

END f I
6-9



Sequences, series and limits with the HP49G - Part 6

[ISCONT?]. Again the result is 1, the function
iscontinuousat X =p.

1
Enter X X =0, and press[ISCONT?]. The

result is - 1, which means that the function is
discontinuous and hasapoleat X =0.

I o

Let's test the program with piece wise defined
functions. Enter IFTE(X <0,10), X =0 and press

[ISCONT?]. The HP49G returns 0, the function is
discontinuousat X =0.

100,10 oy ]
X

press [ISCONT?]. The HP496 returns 0
because the function is discontinuous at

X =0. :
Il
&10 /\ |

Enter SIN. exo’ , X=0 and press

[ISCONT?]. The HP49G flashes a
message "Bounded var error and
displays a menu with "OK" (key [F6]).

Enter IFTE(}X <0,———

Press the menu key [OK]. The same message flashes once more.

Press the menu key [OK] again. The result is 0. We have the same
message like when we want to get the limit of SIN(X) for X ® ¥ .

Thefunction oscillatesbetween - 1 and 1, it is bounded between these
two values but doesn't approach some specia value.

Enter X*SINa;LO X =0 and press[ISCONT?]. Theresultis

| i
Lo 1FTEEX == 0.0, * SN Y This means thet the function is
: & &X o)

discontinuous at X = 0, but we have to do with aremovable

discontinuity.  The  function
IFTEEX == 0,0, * SIN=0 i
e eX 90

a replacement function which
retains all  properties  of ~

X* SIN\—O but is continuous at
exa

X =0.

For better understanding of the removable discontinuity consider the

-2*X+2

function . Thisfunction isn't defined at X =1. Enter

X2-2*X+2
1 then X =1 and press [SUBST] and [EXPAND] to get

a ?, which shows that the function isn't defined at this point. But both

2 _ * +
X2
=1+0 (for theright limit) and press[lim] to get - 1. Enter again
X%-2*X+2
X-1
- 1 again. Since the original function isn't defined and thus

discontinuous at

theright and theleft limitsare - 1 at X = 1. Enter

, then X =1- 0O (for theleft limit) and press[lim] to get

X =1, and a | | i I
since both limits z
ae -latthe -0,4-

same point, we
can change the~Y.5 7
definition of the

function, so that =1 7
it isequal to the

Replacerment function

it d® 0] e it fonet
X =1and e at A=1, thakthe funckion
retains its 27T HE-2kH 42 becomes continuous.
definition at all -1

6-10



Sequences, series and limits with the HP49G - Part 6

other points. Thisis exactly what the program ISCONT? does in such
2 _ * +
X-27X+2 , then X =1 and press[ISCONT?]. The

cases. Enter

2. 2* X +260

: ] X :

result is the list {0 IFTE@( ==1-1 , which tells
: & X-1 o)

you that the function isdiscontinuous at X =1, but the discontinuity is

removable through the replacement function
X2-2*X+26

IFTE@( ==1- l—o.

e X-1 @

Perhaps you remember that in the trigonometry marathon we calculated
N
the sum & SINN* X) and that we found the result

n=0
SIN(X* N+ X) - (SIN(X*N) + SIN(X)) _
. The question there was,
2* COS(X)- 2

what is going on when for example X =2*p . Thesumisafinite

SIN(X* N+ X) - (SIN(X*N) + SIN(X)) .
2* COS(X)- 2

the denominator 2* COS(X) - 2, whichis 0 when X =2*p . Inthe

trigonometry marathon we have taken the limit of the expression

SIN(X* N+ X) - (SIN(X*N) + SIN(X))
2* COS(X)- 2

and we found it to be equal to 0. Here we can go abit further to

understand better what is going on. Enter

SIN(X* N+ X) - (SIN(X*N) + SIN(X))
,andthen N=5. Press
2* COS(X)- 2
[SUBST] and enter X =2*p . Press[ISCONT?]. The HP49G needs
several seconds to return:

quantity but the quantity

for X =2*p and N=5

i Pe) * _ * =0l
10 IFTES = 2* p0, SIN(X* N+ X) - (SIN(X*N) + SIN(X)) 6l
1 e

, 2+ COS(X)- 2 %
The function is discontinuous at X = 2* p , but the discontinuity is
removable and the function becomes continuous if we replace it with:
SIN(X*N +X) - (SIN(X*N) +SINX))o
2*COS(X)- 2 g
Exactly the same way we can aways replace such functions with
removable discontinuities by functions that are continuous at the
considered points and retain the original definition of thefunctioninal

other points. We will meet such functions again at the differentia
equations marathon.

®
IFTEGX ==2*p,0,
e

A more difficult problem is to find out if a function is continuous in
some given interval of values of the independent variable. This would

require to find out if [f(x)- f(x)| < e for [x- x| < d(e) for al values of
x that arein the interval, where and d(e) are arbitrary small positive
quantities. For example, if we wanted to check if f(X)=X*is

as continuousfor X taking valuesfrom - 1 to 1, we would have to solve

inequalities of the form |(X +d(e)’ - x2| < €, which the HP49G can't
solve. So we are going to fake it. (Shame on us! ;-))

Y ou of course have noticed that ratios play a major role when it comes
to discontinuities. Most (all?) of the time discontinuities appear because
some denominator isequal to 0. And so we make a program that takes
some function and tries to find if roots of the denominator exist in the
interval in which we examine the continuity of the function.

<<
RCLVX { } { }
-> func inter vx rat disc
<<
PUSH 1 CF

func TAN2SC @urn TAN to SI N CCS
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EXPAND
I F
DUP TYPE 9 1
THEN
1 ->ALG
END
->LST
1
<<
I F
{ /) OVER PCS
THEN
EVAL DUP
‘rat' STO+
ELSE
EVAL
END
>> DOSUBS DROP
I F
rat { } 1
THEN
rat 1
<<
FXND NI P
>> DOSUBS
i nter HEAD SOLVE
1
<<
| F
DUP { } ?
THEN
1 SF
>> DOSUBS
I F
1 FS?
THEN
1
<<

Sequences, series and limits with the HP49G - Part

@f the result of EXPAND
@sn't algebraic

@hen turn it ti algebraic
@urn alg. to list

@o to all objects in list
@f object is / then

@val uate and add ratio to
@ocal variable 'rat’

@l se sinply eval uate

@f list rat isn't enpty

@ake denoni nator of each

@atio
@ind roots of each denom

@et flag 1 if
@were found

roots

@f roots were found

I F @f roots were returned in
DUP TYPE 5 == @ |list then explode it.
THEN
OBJ- > DRCP
END
>> DOSUBS
1
<< @est if solutions are in
EQ > NI P DUP @nterval .
inter 2 GET 3
OVER inter 3
GET £ AND
I F @f test can't be eval uated
DUP TYPE 9 == @ecause of variables like
THEN @nl' in the solution
NI P @hen return uneval . test
"disc' STO+ @dd result to list 'disc
ELSE @l se
| F @f root not in interval
NOT
THEN @hen drop it.
DROP
ELSE @l se
"disc' STO+ @dd result to list 'disc
END
END
>> DOSUBS
ELSE @f no roots were found
DROP @lrop enpty list of roots.
END
END
di sc vx STOVX
PCP
>>

>>

This is the program INTERCONT? that comes along with this
document. It takes afunction and alist from the stack. The list contains
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the independent variable and the low and high values that defined the
interval in which we want to check the function.

Enter for example X* and {X -1 1} and press[INTERCONT?.

The HP49G returns an empty list which means that the program didn't
find any discontinuities in the specified interval.

SINY)

Enter ,{X -p p} andpress[INTERCONT?|. The

HP49G returns {0} which meansthat the program found one

discontinuity at X = 0. (You can usethis valueto further examine the
discontinuity using the program ISCONT?.)

Enter -p p} and press[INTERCONT?]. Now the

1
SIN(X) X

HP49G needs abit longer and it returns alist that |ooks different:

i2*p*nl3 -p AND 2*p*nlfp U
1-(2*p*nl-p)s -p AND -(2*p*ni-p)£ pp

We take a closer look at the first expression in the list. The values for
X that possibly result in a discontinuity of the function are of the form
2* p* nl1, where nlissomeinteger. All values of nl that satisfy
2*p*nl3 -p AND 2*p*nlfp leadtoinvauesof X that

_1
SIN(X)
HP49G can't solve the inequalities for n1 and so we have to find out
these values ourselves. From thefirst inequality we have:

result in discontinuities of intheinterval from - p top. The

1
nis - —

2*p*nls -p b 2*nl3 -1 P >

At the same time the second inequality must be satisfied too and so:

2*p*nlEp b 2*nlf£l b n1£§1

That means that n1 must satisfy n13 - % AND n1£% and at the

same time must be integer. So the only possible value of nl1is 0, and
the corresponding value for X is X =2*p* n1l=2*p* 0 =0. That

_L has adiscontinuity at X =0.
SIN(X)

The second element of the returned list of possible discontinuity
points, -(2*p*n1-p)3 -p AND -(2*p*ni-p)£p,canbe
examined the same way.

means that

The program will not find some removable discontinuities, like for

. o . XZ-2*X+2
example the discontinuity for X =1 of the function —— .
This is because we expand the function and doing this the HP49G
turnsitto X - 2.

In the program we use the command TAN2SC to turn any occurrence
of TAN to SIN/COS, so that we can handle it like the other ratios.

The command FXND, that we also use in the program, takes an
expression and returns its numerator and denominator separately. If the
expression doesn't have a denominator, that isis the denominator is1,
then al isreturned as denominator.

One purpose that the program INRECONT? can be used for is of
course to find if some function is continuous in a specified interval.
Another purpose is to enhance the capabilities of the HP49G when it
evauates inequalities. It may sound strange, but remember that
mathematicsis aland with many, many connections between its parts.
Let's start with an example. Remove all assumptions for Z, enter
e “*SIN(Z) 3 0 and expand. The result is the uneval uated

expression, because the HP49G can't determine if it is true or false.
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Actually thisis correct since we didn't tell it what values Z can have.
S0 let's do that. Enter Z 3 0 and use ASSUME, then press [DROP],
then enter Z £ p and ASSUME and DROP again. Now the HP49G
knows that O £ Z£ p.Having Z inthisinterval, the expression

e “*SIN(Z) is nonnegative, and so expanding e ** SIN(Z) 3 0
should return 1 now. But it doesn't. The HP49G still can't figure out
that e “* SIN(Z) is greater than or equal to 0. But here we can use
another way. A function that is continuous in a specified interval and
positive at some point of this interval, is positive over the whole
interval. Similarly, afunction that is continuous in a specified interval
and negative at some point of thisinterval, is negative over the whole
interval. For our example that means:

1) Find the sign of the function e ** SIN(Z) in an arbitrary point
Z0 between 0 and p .

2) Find if the function e “* SIN(Z) is continuous from Z = 0 to
Z =p . Ifitisn't continuous, then we can't say anything about
e “*SIN(Z) 2 0. Butifitis...

3) Checkif e “*SIN(Z) hasrootshetweenZ =0 and Z = p . If it

does, then e “*SIN(Z)3 0 weagain can't say if
e “*SIN(Z) 3 0 istrue or false. But if it doesn't then
e % *SIN(Z) hasthe sign that we found in step 1 over the whole
interval. That means, we can evaluate SIGN(e ™ * SIN(Z0)) 2 0

instead of the original e “* SIN(Z) 3 0.

These are the basic operations of the following program, EVACOMP,
that takes an inequality from stack level 2 and alist from stack level 1,
that contains the independent variable and the low and high values that
definetheinterval. It returns 1 if the inequality holdsin the interval, or
0 if it doesn't.

<<

PUSH

SWAP OBJ-> NI P
UNROT - 0 ROT
EVAL

SWAP OBJ- >
DROP EVAL SWAP
EVAI SWAP 3
->LI ST

@ransformlhs3rhs to | hs-rhs30
@nd |hsfrhs to | hs-rhs£0 and
@val uate inequality.

@tval uate | ow and hi gh of
@nterval . (Wiy?)

{ HOVE CASDI R REALASSUME }

RCL RCLVX 0O

-> cnpexpr inter assnst vx hs

<<
i nter OBJ-> DROP
ROT UNASSUVE
DUP 4 ROLL 8
ASSUME DROP
SWAP £ ASSUME
DROP
cnpexpr OBJ->
3 DROPN
i nter OBJ-> DROP
+ 2/ = SUBST
EXPAND - >NUM S| GN
I F
DUP
THEN
"hs' STO
cnpexpr OBJ->
3 DROPN inter
| NTERCONT?
I F
{ } SAME
THEN
cnpexpr OBJ->
3 DROCPN
inter OBJ->
DROP SWAP

@Renove all assunptions for
@ ndependend vari abl e.
@\ssune indep? | ow

@ssune i ndep£high
@ind sign of |Ihs-rhs at
@ ow+hi gh) /2

@centre of interval).
@f sign * 0.

@ hen. ..

@i nd eventual discontinuities
@f lhs-rhs in interval

@f no discontinuities found
@ hen
@ry to find root of |hs-rhs

@n interval starting at
@ owt+hi gh)/2
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- >NUM SWAP - >NUM

DUP2 + 2. |/
3 ->LIST
| FERR
ROOT
i nter HEAD
PURGE
THEN
cnpexpr
BJ-> NP
hs 3 UNPI CK
EVAl
ELSE
I F
DUP i nter
2 CGET >
SWAP i nt er
3 GET >
AND
THEN
?
ELSE
cnpexpr
BJ-> NP
hs 3
UNPI CK
EVAL
END
END
ELSE
?
END
ELSE
DROP ?
END
vx STOVX
{ HONE CASDIR }
EVAL assni st

@f error occurs during
@earching for root

@ hen assune that no root
@xists in interval and
@val uate signf0 or sign30

@l se if root was found
@heck if it is in interval.
@f ininterval...

@hen return ? (dunno)

@l se if root out of interva
@Return result of
@ignfO or sign30

@l se if discontinuities found
@eturn ? (dunno).

@l se if sign=0 then we have
@oot ininterval, so return ?
@ dunno agai n).

" REALASSUME' STO
>>

PCP
>>

L et's test the program with some
inequalities that the HP49G
can't evaluate out of the box.
Enter the inequality
e “*SIN(z) 2 0, then the
interval {Z 0 p} andthen
press [EVACOMP]. The
HP49G returns 1, that isthe
inequality holds in the specified
interval.

Let's see what happens with
the same inequality in the
interval fromZ =-p toZ =0.
Enter e “*SIN(z) 3 0,
{z -p 0} andpress
[EVACOMP]. Now the
HP49G returns 0, because the
inequality doesn't hold in the
specified interval.

0,4
0,371
0,2

0,1,

o
-2 -
-4+
-6+
-8+

-10
-3,14

-1,57 (0]

This program is arather dangerous experiment. It relies blindly on the
hope that if aroot existsin the specified interval, then ROOT will find
it if wefeed it with aguessvalue that liesinside the interval. ROOT is
the programmable analogon of the numeric equation solver. It takes
three arguments. The equation to be solved at stack level 3, thevariable
to solvefor at stack level 2, and the guess (starting) value at stack level
1. This guess vale can have 3 formats. Either it isasingle real number
that represents our guess. Or it is alist with two real numbers, which
specify an interval inside of which we expect (or want to find) a
solution. Or it is a list with three rea numbers, the first two
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representing the interval in which we search the root, the third ~ MATCH SWAP
representing the guess valueinside that interval . Though giving ROOT { "1inm(8A*&B, &C)' ' 1in(&A &C)*1in(&B, &0)" }
a list with three real numbers allows some control of the root that it ~ MATCH ROT R
finds, we can't controal it rigourously. Exactly this makes the program SVAP
dangerous. The fact that ROOt doesn't find a root in the specified C1in(-8A &0)" " -1im&A &Q)'}
interval doesn't mean that there are really no rootsin that interval (and v ’ ’
thus that the sign of the function is the same with the sign at MATCH ROT OR
low + high . . REPEAT _
——— ). It rather meansthat ROOT just found aroot outside the END @hntil no match occurs
. . . - >TERVS lit t d
interval and nothing more. So the program should be used with 1> @pl | © summnds
caution and perhaps in combination with a graph of the function. <<
o ) | F @f limt of ratio
We move on to rules for rearrangements of limits. If Il@gn f(x) =F and DUP
lim g(x) = G then: {"-11mMeAN &8, &0 " &B) "}
X® a ~ MATCH SWAP
) ) ] { "I'imM&A/ &B, &))" '&B)'}
lim(f(x) £ g(x)) = limf(x) + lim g(x) T MATCH ROT OR
THEN @ hen take denom nat or
: _ s : OVER @nd find its linit.
le(gr;(f(x)*g(x)) a IJ(ggf(x)* lecgg 9(x) { "-1im&A/ &B, &0)' '&C)'}
imf() ~ MATCH DRCP
_a@(x)o lImfx) . { "1im&\V&B, &C)' ' &0}
lim¢——=~ = xea incaselimg(x) =Gt 0 -
x® aég(x)g lim g(x) x®ag( ) .MA\TCH DROP
x®a limo ?
- . - . . - S\MP wp
The HP49G has no built-in commands for converting limits according { "1im&A&B, &0)" "Iin(&A &C)/1in(&B, &0 "}
to these rules. So we write the program LIMEXPAND that applies ~MATCH DROP ROT
them. I F @f limt was expression
DUP TYPE 9 ==
<< _ _ _ . THEN @hen construct
Egrs'?;i];;gDR@N gull (jl-lstrlbutlon of *,/ over UNROT SWAP @FTE(limitlo,limA/linB),
ver =+, -. | FTE limt(AB
SWAP ->LST SIZE 3 - @onvert limf(x),x=a) to ELSE @ hmt )
\%FLZ + SUB + ->ALG g’\ih_rrl(fdi s:rih_b(f(x)),x:a) = @lse if it wasn't expression
_ @i 1 e mat ching THEN @hen if it is 1 0
{ '|||'T(&A+&B,&C)' '|||'T(&A,&C)+|II'T(&B,&C)'} Nl P @henlll’T'(A)/lll’T'(B)
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ELSE @lse if it is=0
DROP @hen |in(A B)
END
END
ELSE @lse if nolimt of ratio
DROP @Ir op expression
END
>> DOSUBS
0 + SLIST @ui l d-up sumof limts

>>

Let's see the program in action. Enter Ii@gn(SlN(X)*(COS(X)- X))
X® p
and press [LIMEXPAND]. Y ou get the expanded form:

Ligg(cos(x)) * Ixi@grg(SIN(X)) - li(grg(x)* Ixi(gr‘](SIN(X))

Enter |ImE’9(

denomlnator X-1 for X® 0 isnot 0 and so you get the expanded
lim(x*)  lim(1)

X® 0 ]
1193(* )

form - -
im(x- 9

But if you enter Ilmﬁe(

HP49G finds out that thellmltof the denominator X 1for X® 1is
&l jp

ex
equal to 0 and so you get the expanded form I|m I 10

X-lﬂ

Notice however that though the HP49G will find the correct limit of

2 .
EEX - —1 whichis 2, it will not find the correct limit when
x®oeX 1 X-19

% 1 I
|Im\—0.
x®0eX - 14

you expand the form Ilmé9
ex- 10

How can the program be changed, so that it aso expands the
denominators according to the rules on the previous page?

And now for something completely different, as Monty Trabythons
says. Let's try to visualise how e and d(e) relate to each other for a

given function f(x) at agiven point x . Aswe already have seen, if a
function f(x) isdefined at x = x and if it isalso also defined in the
neighbourhood of x = x, then we can say that it is continuous at

x =x, if imf(x) = f(x). Thisis equivalent to the following: If for an
arbitrary tiny e > 0 we can find a corresponding d(e) > 0, such that

lf(x) - f(x) < e for all valuesof x that satisfy [x - x| < d(e), then the

function f(x) is continuous at the point x = x . This sentence sounds

much more complicated than it is. (Trying not to be misunderstood
mathematics statements often sound ununderstandable ;-)). We can
take away much of the "mystery" of the above statement, if we
visualise it.

What the above

statement says s | T(X)+ exg

best seen in a

picture. We have a| f(x)—>

function f(x) andits |¢(x). e [\__/]
value f(x) atthe

x-d X X +d

point x =x. Now,
we take a range of

values of f(x) around f(x), from f(x)- e to f(x) + e. These two
values are the values of f(x) at some points near x = x . So we have
=f

f(x,) = f(x) - e and f(x,) = f(x) +e . The maximum of the absolute
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value of the difference of f(x) and f(x) = f(x) - e on the one hand, and

f(x) and f(x) = f(x) +e on the other hand, is e. Thisiswhat the

formula [f(x) - f(x)| < e says. Now, we search for aband of values of

the independent variable x, such that [f(x) - f(x) < e is satisfied.
These values of x arearound x = x. The maximum difference
between x and these valuesis d(e), atiny positive d, that depends

somehow on the value of e. That iswhat formula |x - x| < d(e) says.

If such a d(e) exists, then the function is continuous at x = x.. In other
words, we search for an interval of values of x, such that the values

of f(x) stay withinf(x)- e and f(x) + e.

We make a program that takes a
continuous function at x =X,
its independent variable, the e
point X and thetiny positive e €

N d(e) d(e)

from the stack, and draws the

function aong with a box,
which has the width 2*d(e) and

the height 2*e, and which is centred at the point (x , f(x)). Then,

using tracing we can move the graphics cursor along the function and
as long as we stay in the box, we can view the coordinates, which

satisfy [x- x| < d(e) and [f(x) - f(x)| <e.

<<
->NUM SWAP ->NUM SWAP @urn € and X to numnbers.
-> func var point e d

<<
PUSH
#131d #64d PDI M @mke PICT 131" 64 pixels
FUNCTI ON @et plot type function
var | NDEP @et i ndependent variable
func STEQ @tore function in EQ

"Sol ving for d"
1 DI SP

func DUP

var point =
SUBST - >NUM
- ABS POP

e =

var point e +
var point e -
point 3 ->LIST
ROOT

var PURCE

poi nt - ABS
*d' SsTO

@i spl ay nessage.

@ui | d-up |f(x)- f(x)|. Usi ng ABS
@vth al gebraics that contain
@wuneric val ues, sets approx.
@mode, so we restore nodes.
@ui l d-up [f(x)- f(x) =e.

@e will try to find d in the
@nterval from X-€e to X+e.
@\ use € as help for guessing
@ starting value of d.

@urge created vari abl e.
@t ore abs. value of difference

@et ween sol ution and X.

"Det erm ning X-range"

1 DI SP
point d 1.

5 * -
point d 1.5 * +

XRNG

@i spl ay nessage.
@et horiz. view range such that
@he plot has width 3*d.

"Aut oscal i ng Y-range"

1 DI SP

AUTO

var PURGE
PPAR 1 2 SUB

DLI ST HEAD I M

. 046875 *

e MAX

DUP NEG SWAP

2 ->LI ST PPAR
12 SUB I M ADD
OBJ-> DROP YRNG

ERASE DRAX DRAW

point point d -
point d +

func var point =

@i spl ay nessage.

@\ut oscal e.

@urge var. created by AUTO
@=xt |ower left and upper right
@oordi nates of the plot.

@i nd height in user coord.
@nl arge the height of the plot
@ither 3 pixels, or € user
@nits, whichever is bigger.
@046875 is the result of 3/64,
@he ratio of 3 pixels to the
@orresp. user units.

@r aw function with axes.

@ral cul ate coords. of box
@orners and box centre.
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SUBST - >NUM
DUPDUP € -
SWAP e +

->x ly ux y ly uy

<<

Ix ly R>C
ux uy R->C
BOX

Ix y R>C

ux y R->C

LI NE

X ly R>C

X uy R>C

LI NE

PI CT

Ix lyy +2/
R->C C >PX

{ #4d #3d } -
"e" 1 ->GR0OB
REPL

PI CT

IXx uy y + 2/
R->C C >PX

{ #4d #3d } -
"e" 1 ->GR0OB
REPL

PI CT

Ix x +2/ ly
R->C C >PX

{ #0d #2d } ADD
"d" 1 ->GROB
REPL

PI CT

ux x + 2/ ly
R->C G >PX

{ #0d #2d } ADD
"d" 1 ->CROB
REPL

@r aw t he box.

@raw lines in box.

@cal cul ate coordi nates of | ow

@e" in the PICT.

@mbke "e€" to GROB using nni
@ont, and put it in PICT.
@cal cul at e coordi nates of high
@e" in the PICT.

@mbke "e€" to GROB using nni
@ont, and put it in PICT.

@cal cul ate coordi nates of |eft
@d" in the PICT.

@mke "d" to GROB using mni
@ont, and put it in PICT.

@cal cul ate coordi nates of right
@d" in the PICT.

@mbke "d" to GROB using mni
@ont, and put it in PICT.

Pl CTURE @\ctivate plotting environnent.
func "function" @Return | abelled results.

->TAG

X "point" ->TAG

d "d" ->TAG

e "e" ->TAG

>>
>>
>>

This is the program deGRAPH that comes along with this document.
Let's try it. Enter the function SIN(X), the independent variable X,

P

the point 5 where we want to test for continuity , and .00001 asthe

tiny positive e. Press

[deGRAPH]. After
some seconds the o
HP49G draws the

picture on the right. ] i

Press the menu key

[TRACE] to trace the

function and then the

menu key [(X,Y)] to display cursor coordinates. Move the cursor
along the function by pressing [arrow-left] or [arrow-right]. Aslong as

you the cursor remains in the box, the inequalities [x - x| < d(e) and

[f(x) - f(x) < e are both satisfied. Press[ON] to leave the plotting
environment. The program quits and you have the results on the stack.
You see that if SIN(X) isallowed tovary from
SIN{L.5707963269 +0.0001 to SIN1.5707963269 - 0.0001,
then X must vary between 1.5707963268+ 0.00447213974 and

1.5707963268- 0.00447213974. Try with different input data and
look at the results. One thing to be aware of: Don't enter values for e
that are smaller than 1IE - 11 . The program will crash. Nothing else

will happen, but you garbage will be left on the stack. This comes

6-19

A




Sequences, series and limits with the HP49G - Part 6

because the HP49G can handle
numbers within 1€ - 499 of O
but only within IE - 11 of 1.

If you enter for

examplej \;
SIN(X), X, g and IE - 12,

then the HP49G will plot the picture on the left and then crash. The
crash comes because the Y -coordinate in pixels of thefirst "e" can't
be calculated correctly. The strange "stair" is the function SIN(X)
drawn with an accuracy that exceeds the available accuracy of the
HP49G. The highest step is at Y =1, themiddlestepisat

Y =.999999999999, and the lowest step is at

Y =.999999999998. For the HP49G there is no number between 1
and .999999999999 and no number between .999999999999
and .999999999998. If you enter 1, IE - 12 and then press[+],

then theresult will be 1 and not 1.000000000001 because this result
exceeds the available 12 digits with which the HP49G expresses
numbers. Asyou can see, the smallest difference between the vales of
Y inplotsislE - 12. The HP49G can't "see" differencesof Y values
that are even smaller, and thus the "quantised" stairy plot.
(Nonetheless the plot can till be traced!)

Anyway, what exactly are precision and accuracy? Are there any
definitions for these things? And how does the HP49G do numeric
calculations? What is its precision and accuracy? Let's take a closer
look.

When doing numeric calculations we have to be aware of the fact that
precision loss may occur. (We are talking here about what numbers the
HP49G shows us out of the box, and not about how it carries out its
numeric operationsinternally.) The numeric precision of the result will
eventually be lower than the precision of the operands that we carry
operations with. Consider for example the operation (in RPL syntax)
1. 1.E12. + whichonthe HP49G resultsinl. Thisresult isonly

an approximation of the correct result, 1.000000000001. This
correct result can't be expressed with the available 12 digits that the
HP49G uses to represent real numbers. Or consider the operation

(RPL again) 1 3. / 3. *,whichresultsin.333333333333

instead of 1. Such problems are probably the strongest reasons for
designing the HP49G in such away that it tries (more or less) to carry
operations as exact as possible and only give numeric results when you
tell it to do so. It's "standard" mode is exact, which makes exact
calculations easier. Of course you can turn approximate mode on and
use it like you would use its ancestor, the HP48, but this doesn't seem
to be the way the HP49G was thought to do its work. It rather seems
that the "standard" method should be to carry on all operationsin exact
mode, getting exact intermediate results, and at the end, to use ->NUM
or XNUM to get the "numbers'. The second example of above, carried
out with exact numbers (integers) would be 1 3 / 3 *,which

results in %* 3. If you use->NUM on thisresult you will still get

.333333333333 and not 1 But if you first expand the expression
1 . . .
3 * 3 and then use ->NUM, then theresult is 1 . Thefirst exampleisa

bit more complicated to be calculated exactly, but it is possible.
Consider the operation 1. 1.E12. * R->| 1E- 12 1El12. *

R->l + IE12 R->| /,whichresultsin 1000000000001.
1000000000000

use ->NUM here, you get again 1 instead of the correct result,

1.000000000001, so you may think what was the use of the exact
calculation. In this case we didn't win anything because the precision
loss was less than the 12 digits that the HP49G uses. But in more
complicated cal cul ations the precision loss may become bigger and our
results worse.

The same problems occur when we carry out symbolic operationswith
symbolic arguments. Consider the classical example p  SIN, which
retcurns a fat 0, while p ->NUM SIN returns

-2.0676153735FE - 13 , aresult very close to but not exactly 0. So
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the first moral of the story is that we should carry out all operations
exact, and at the end, when we want the "damned numbers', we just
use ->NUM, or XNUM, or we switch to numeric mode (by pressing
at the sametime [red-shift] and [ENTER]) and pressing [EVAL].

Let's now get a closer look to the definitions of precision and
accuracy. Suppose that you have to do with anumber x, which is not
known exactly but only with an error of (positive) e. The number will
then be somewhere between x - e and x +e . Does this e hasto do
something with the HP49G? Suppose that you have a number, say
1.23456 of which you know that it has an error of .01. Then the
number "is meant to be" is somewhere between the numbers 1.22456

and 1.24456. The precisionisdefined as - LOGZEES. So the

® 0l 6_; 59151220163
€1.23459
The accuracy is defined as - LOG(e), which for the above number is

- LOG(.01) = 2.. Thefollowing table contains some examples of
numbers, errors, precisions and accuracies. (The small "€" denotes the
"E" of HP49G numbers, so le- 12 means1E - 12.)

precision of the above number is- LOG

X e Precision Accuracy
3,14 0,001| 3,4969296481 3
0,0076 0,00033| 1,3622996524| 3,4814860601
100 0,002| 4,6989700043| 2,6989700043
6,023e+23| 10000000000| 13,779812863 -10
1,23456 le-12| 12,091512202 12

We take alook at the last example on the table. We have the number,
1.23456 and know that it has an error of 1E - 12. The number is
somewhere between 1.23456- IE- 12 and 1.23456+1E - 12. But
for the HP49G al numbers between 1.23456- 1E- 12 and
1.23456+1E - 12 arethesame. Enter 1.23456, IE - 12, and press
[+] or [-]. You get 1.23456 in both cases. You get something

different than 1.23456, only when the magnitude of the second
operand is greater than 5E- 12. It seemsthat e depends on the
number that we have to do with. Thereisaminimal value for e which
makes the quantities x - e and x +e to be distinguishable from each
other and from x. If e islessthan thisminima value, then no
distinction is possible for the HP49G. We try to find out what this
minima e is. A real number on the HP49G can be represented using at
most 12 digits (for us, normal users). If we add some positive e to a
number X, then the result will be different than x, when e isat least
so hig that it "changes something" at the last (right most) digit of the
number x. Since the number x can have up to 12 digits, up to 12
different powers of 10 are present in the number. For example in the
number 12345.5678901 the powers 5,4,...0,- 1-2,---- 7 of 10 are
present, as you see by writing the number in its representation with
powersof 10:

1*10° +2*10* +...5*10° +5*10° ' +2*10°2,.-.+1* 10’

The difference between 5, the highest power of 10 in the number, and
12, the number of digits,is5- 12 = - 7, which isequal to the lowest
power of 10 inthe number. In case the number x doesn't have 12
digits (like for example 12345.567), think itinthe 12 digits
approximation of the HP49G, that is as 12345.567000C. The
number e that added to 12345.567890! returns something different
than 12345.5678901, must then be at least about 1E - 7, which has
an exponent of -7 (basel10). Actualy, e canbeat least
5.00000000001E - 8, which hasthe next lower exponent of 10 and
a mantissa of 5.00000000001, which isthe next possible number
bigger than 5 on the HP49G. The exponent of 12345.5678907 can
be found by using the command XPON (on the second page of menu
MTH/REAL). So the exponent of e isequa to XPON(x)- 12. And e

itself is equal to 5.00000000001* ALOG(XPON(x)- 12). For

example in the case of the number 12345.5678901 of above, we
have:
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e = 5.00000000001* ALOG(XPON(12345,678907 - 12) =
5.00000000001E - 8

Any positive e lessthan 5.00000000001E - 8 added to
12345.5678907 will produce the same number, 12345.567890,
on the HP49G. The above way to calculate e will work only for

XPON(x)- 123 - 499, that isfor XPON(x) 3 - 487. If the
exponent of x iseven smaller, then XPON(x)- 12 < -499. For
example with x =1E- 499 we have XPON(x)- 12 = -511, and
ALOG(-511) = 0, that iswe would calculate

e =5.00000000001*0 = 0, which iswrong, since we can add
e=1E - 499 to x =1E - 499 and get theresult 2E- 499 . So we
refine our calculation of e. If the number has an exponent of less than
- 487, we smply return 1E - 499. Else we use the above formulafor
e. But thereis still aproblem. Since the greatest possible number that
the HP49G can express, is 9.99999999999E499 thereisno
positive e that we can add to that number and still get something

different than 9.99999999999E499. The biggest number for which
the formulafor e worksis (for the HP49G) 9.99999999998E499.
Above this number there is no e that we can use. So we make the last
refinement. If the number that we have is 9.99999999998E499,
then we return ?, elseif the number has an exponent of less than

- 487, wereturn IE - 499, else we use the above formulafor e. We

make a user defined function that does all the above. Go to the EQW
and typein:

X e
3.14 5.00000000001E-12
1.E/8 5.00000000001E66
100. 5.00000000001E10

Now that we have e we can useit to define the greatest possible
precision of given number on the HP49G. Go to the EQW again and
type in: PRCSN(x) =- Loeg%x)g. Press[ENTER] to put the
equation on stack level 1 and DEFine the function. The function uses
the already defined function e. It calls e and passes the argument X to
it. Similarly we can define afunction for the greatest possible accuracy

of a given number. In the EQW type in ACRCY (x) = - LOG(&(x))

and then define the function. We make asmall table with results of all
three functions for some numbers.

X e PRCSN(x)  ACRCY(x)
3.14  5.00000000001E-12 11.7979596437 11.3010299957
1.E78  5.00000000001E66 11.3010299957 -66.6989700043
100. 5.00000000001E10  11.3010299957  9.30102999566
4.57E15 5000.00000001 11.9609461957  -3.69897000434

9.34E-20 5.00000000001E-32 12.2713768719 31.3010299957
We see that though precision remains amost constant at about 12,
accuracy varies very strongly and can even become negative! A
negative accuracy may sound bad, but it doesn't have to be bad at all.
Look at its definition to understand why.

e(x) = IFTE(x >9.99999999998E499,2,IFTE(XPON(X) < - 487., - 499,5.00000000001 ALOG(XPON(x) - 12.)))

Press [ENTER], then [blue-shift], [2] to DEFine the function that
calculates the smallest possible value for e that can be added to the
number x and return aresult different than x . Let's try some

examples. The results are on the table on the right. You just enter the

number x and press the menu key [ e] in the variables menu.

We come now to some stuff about limits that has been asked quite
often in the group. Can the HP49G get limits of more than one
variables? If it does, then how can tell it to do so?

The good news is that the HP49G can handle such limits. But you
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have to provide some additional information. Let's start with an
. . IN(X-Y .
example. We take afunction of 2 variables, L) . What isthe

limit of thisfunctionwhen X ® 0 and at thesametimeY ® 07?Well,
this is not enough information for finding the limit. We aso need
something else, namely how the variable Y approachesO,
compared to how variable X approaches 0. Let's suppose that

Y =X, that meansvariable Y goesto O exactly theway variable X
goes to 0. Thelimit of the function isthen...0! That might sound

strange since we know that XIimo(S INX)) =1. But it istrue. Go to the

® ) ) .
EQW and enter |im9imw,v =x°x =02 Press
e e X d 7]
& V) s
[ENTER] to put the expression as lim & Iim’@%\()Og on stack
X->0QY->Xe X [%7,]

level 1. Expand to get 0. Perhaps we should do a plot to understand
this better. First we do a Fast3D surface plot of the function
w , just to get an idea of how the surface looks. Press and
hold down [blue-shift], and press [F4]. Release both keys and you
come at the "PLOT SETUP" screen. Choose plot type "Fast3D". Go
to the input field "EQ:". Press [EQW] to go to the equation writer for
easy formula typing. Type in:
w. Press [ENTER] to put
thefunctionintheinput field "EQ:".
Enter ' X' for independent and 'Y
for dependent variable. Now, press
and hold down [blue-shift], and
press [F2]. Release both keys and
you come at the"PLOT WINDOW -
FAST3D" screen. Enter - 1to 1 for
"X-Left:" and "X-right:", -1to1
for "Y-near:" and "Y-Far:" and - 4

to 4 for "Z-Low:" and "Z-High:".
Enter 10 for both steps of the
independent and the dependent
variable. Press the menu key
[ERASE] and then the menu key
[DRAW]. The HP49G draws the
plot ~ which is not very
understandable at the first look.
But you can use the arrow keys,
the key [TOOL] and the key
[NXT] to

use ,z

rotate the plot and you can

the keys [+] and [-] to zoom
in and out. Rotate and zoom
in and out until you find some
orientation and  viewing
distance that let you
understand the plot better.
When you see the plot amost
like on the picture on the left,
then the orientation of the
axes and the function itself in
space is as annotated in the
picture below. At X =0
extraordinary things happen.
As you may have noticed, we have some kind of gap here. The
function seems to jump from - ¥ to +¥ andviceversa. Actudly it

SIN(X- Y)
X

on how Y aterswith altering X. In our case, we had the limit

function \Y

function
goes down

does, but the limit of the function when X ® 0, depends

-~ V)
Iim?limgw@,which impliesthat Y = X. Let'sfollow the
X->0QY->Xe X [%7]

surface along the line that is defines by Y = X. That means that we

SIN(X-Y)

choose a path that lies on the surface ,andwhichin

addition has always the property that the coordinate Y isequal to the
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Going to X =0
along Y =0
on the surface

SIN!X-Y!

X

coordinate X, which is exactly what the equation Y = X says.
The picture above demonstrates this. (Unfortunately the picture
was not made with the HP49G. But who can say what the future
might bring. Making the substitution the future = Rcobo inthe
last sentence, we derive the sentence: who knows what Rcobo
might bring ;-)) As you can see, walking on the (blue) surface
along thepath Y = X (thick linein yellow box) towards X =0,
let's us stay on the same Z-value, namely 0, no matter how
closeto X =0.

SIN(X-Y)

Since we now know that all values of aongY =X

are equal to 0, we can aso plot the same function together with
the plane Z =0 and take alook at the curve on the cut of the two
surfaces. This is what the picture below shows. The light blue
plane is the surface of Z =0. The cut with the surface
SIN(X- Y) . : . . .
————= isthethick straight line, whichfor X ® 0 remains
at the height Z = 0. Note that the plots on this page are only a
demonstration and by no means a rigid proof of the fact that

- T
im Sim E2NX= V)& _ 10 e only ahelp for
X->0@QY->Xe X [%7,]
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understanding how the both function and the limit behave.

Now, there are many other (infinite) ways in which Y can dependent
on X.What happensfor examplewhen Y =2 * X ? Can wefind

. & IN(X- Y)50
lim& lim @S(—)OQ?YOU of course guessed that we can. We
X->0@QY- >2*Xe X [%7,]

- ) " 3y
enter iGN = Y) o — a0y = o8 e press [EXPAND],
e e X d 7]

and soon we get - 1. Now, | guess that you want to see that on o plot

again, right? So here you are, the same plots as on the previous page,

but thistime for Y =2* X and. Aswe can see, al points on the thick

black curveareat Z = - 1. The curve only looks like a straight line that
cuts the surface dlong Y =2* X at Z = - 1, but we'll soon see that
thisis not true. And as we can also see, in both limits of M
both variables X and Y approach 0. Thefirstistakenfor X® O,
and Y ® X, whichmeansthatalso Y ® 0. The second is taken for
X® 0,and Y ® 2* X, whichmeansthat dlso Y ® 0. Nonetheless
he first limit was found to be 0, while the second was - 1, which
shows that in such limits not only the value isimportant, which X and

Y go to, but also how Y depends on X. The expression
)!imo(limO(Z(X,Y))), without the information about how Y depends on
X, isinthe most cases not sufficient for limit calculation.

Curves (which don't have to be straight lines) on surfaces Z(X,Y),

that satisfy Z(X,Y) = constant, are named with the help of a
composed word that has two parts. The first part is equi- (or agui-), or
is0* -. The second part depends on what the surface represents. If for
example we plotted the potential, then the curves are named
"isopotential”, or equipotential, and so on. There is a special kind of
plot, the contour plot, that draws such curvesfor given constant values

of Z(X,Y). (If you remember page 2-23 of the complex

numbers marathon, then the picture at the lower part of the
right column was the agui-height contour plot of Mt-Pilatus.)

Of course the HP49G can do contour plots. But they are often
not of good quality. Let's do such a plot for the function
SIN(X- Y) :
- Press and hold down [blue-shift], and press

[F4]. Release both keys and you come at the "PLOT SETUP"
screen. Choose plot type "Ps-Contour”. Go to the input field

SIN(X-Y)

"EQ:" and enter . Enter ' X" for independent and

"Y' for dependent variable. Press and hold down [blue-shift],
and press [F2]. Release both keys and you come at the "PLOT
WINDOW - PS-CONTOUR" screen. Enter - 2 to 2 for "X-Left:" and
"X-right:" and - 1to 1 for "Y-near:". Enter 10 for both steps of the
independent and the dependent variable. Press the menu key [ERASE]
and then the menu key [DRAW]. The HP49G starts drawing small line
segments that are parts of the contour curves (aqui-whatever curves). It
needs a loooong time (almost 6.5 minutes) to finish the plot and it
doesn't draw the curves as a whole, but chopped in small segments,
like the picture on the next page. (This pictureis still much better than
'° From the greek word "Ison" for "equal”. The character "i" is pronounced like the

"ee" in the word "tree".
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what the cal culator Iy o A
draws!) When the St |, {’Hi’fﬁi .
plot is ready you f § A '
can trace it. Press 747 | ", Al

the menu key i -
(TRACE andthen ¢ | ™ ™ fﬁw R
the menu key I RIS RS R
[(X,Y)]. tTtp]e | T g oA
cursor goes to the e

upper left line RO e ,"f"?.a'f 1 b
segment and on _.- L0 (I

the lower part of

the display you see "INPUT: {-1.8 .9}". These are the values of X
and Y. If you press[F2], then you see "OUTPUT: .237433266797".
Thisisthe value of Z at thispoint. Press [F2] once again to remove
display of coordinates and then once more to show the values of X
and Y again. Letsfind a curve that belongs to an approximately
constant value of Z. Using the arrow keys go to the top of the screen,
at third line segment starting from the left. Display thevalueof Z, itis
about .95. Press [arrow-down] once. The Z vaueisnow about .99,
approximately the same. Press [arrow-down] once again. The Z value
is again about 1, again approximately the same. Another press of
[arrow-down] moves to a line segment with Z =.96. Now press
[arrow-down] and then [arrow-right] to come to Z =107. Y ou may
aready have theimpression that the curvewith Z »1 goeslikean"S"
from the upper left part to the centre of the screen. The rest of this
curve continues from the centre to the lower right part of the screen.
The same way you can find (approximately) the contours with Z =0
and Z = - 1, of the previous pages. But what kind of curveisthe
contour with Z =1?Itisdefinitely not a straight line, but what kind of
curve does it represent? Well, to find that we can simply solve the

SIN(X- Y)
X

Y and press [ZEROS] (second page of menu S.SLV). The result isthe
list of solutions

equation =1 for thevariable Y. Enter the equation, enter

{(2*n1- 9*p+ X+ASIN(X) -(2*n1*p- (X - ASIN(X)))}. we
have two solutions, or better two families of solutions, which both are
functions of X and depend also on the arbitrary integer nl. It seems
that there are either many curves that belong to each family, or that
each integer value of n1 constructs a different segment of one curve. If

we plot these functions for several different integer values of nl, we
can see what the curve is, that represents the cut between

Z= M and Z =1. With thelist of solutions on stack level 1,

enter STEQ to store the list in EQ. We will plot first for nl=- 1, so

enter - 1 'nl' STO. Press and hold down [blue-shift], and press [F4]
to go to the "PLOT SETUP" screen. Choose the plot type "Function™.
Leave 'X' asindependent variable. Press and hold down [blue-shift],
and press [F2] to
go to the "PLOT
WINDOW -
FUNCTION"
screen. Enter -2
to 2 for "H-Vew:"
and and -1to1
for  "V-View:".
Enter 1 for "Step:"”
of the independent o
variable and check f

the option _Pixels. '
Press the menu 1
key [ERASE] and
thenthemenu key | — -
[DRAW]. The ™
HP49G  doesn't
plot anything. |
Let's change the 1 [
value of n1to 0.

(2*n1-2)* p+ X+ ASINKX)
with n1=1

- (2*nz p- (X- ASINK)))

with n1=0

EXt the platter and (21 1)* p+ X+ ASINKX)
[blue-shiff]  and with n1=0
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then the menu key [n1] in the variables menu, to store 0 in nl. Enter
DRAW. Now the HP49G draws two curves. Store 1innland
DRAW again. The plot now looks like the " S'-curve that we suspected
at the contour plot. As we can see, the whole curve is not a function
but arelation. Each segment of the curve forms a function that depends
on X and contains also the parameter nl.

Let's take a look at
the same contour in
dimensions.

three

The second picture
is especidly

seeing

how

for
the

curve of the cut of
Z =1 with

_ SIN(X-_Y)

forms.

X

We dready have
examined the case
Z =-1and we saw
that it is amost a
straight line at the
vicinity of X =0,
Y =0. Now, we

just make the view
range larger and we
takeacloser look at
this case. Make a

contour plot first. Let X go
from - 10 to 10, and Y from
-5 to 5. Adjust the number
of steps to 20 in horizontal
and 10 invertical direction.
When after alooong time the
HP49G is ready, the plot
looks like a very chopped
and ziggy-zaggy version of
the picture above. If the
resolution were better, then
you could find through
tracing that the contoursthat
belong to Z =-1 arenot
straight lines. You can see
these contours on the picture
at the bottom of this column.

i

Of course we can't change the physical resolution of the screen, but
we can do something else to make the quality of the contour plot
better. We can plot exactly the region of interest and specify a big

number of steps in x- and
y-direction. Go to the
PLOT WINDOW - PS
CONTOUR screen and set
Xgofrom-15t0l.5,
and Y from - 3.5 to 3.5.
Adjust the number of steps
to 30 inhorizontal and 15
in vertical direction. Before
you draw let's take alook at
yet another  unexpected
thing. Press the menu key
[OK] to leave the screen and
return to the stack. Press
[VAR] to go to the variables
menu and press [NXT] until

(
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you see in the menu. Press the corresponding soft menu key to
put the variable on the stack. Now press arrow down to edit it. Go to
the last two numbers of the list which are the number of stepsin x- and
y-direction. Y ou see what happened? While the number of stepsiny-
direction was correctly set to what we entered (15), the number of
stepsin x direction isnot 30 but 20! The graphic user interface thought
that 20 steps in x-direction are enough, and silently ignored that we
entered 30 and used 20 instead, without finding it necessary to inform
us. This is of course not so good. ;-) So change the second last
number to 30, press enter to put the edited list on the stack and then
press [blue-shift] and the menu key [[Z] to store the edited list in
VPAR. Now, don't use any graphics setup screen for the plot but
simply press or enter DRAX and DRAW and go for a coffee while the
HP49G is plotting. As we have 30x15=450 line segmentsto plot, each
of which must first be
caculated, it takes a
long time until the plot
is finished. When it is
reedy you can find o
through tracing that the . =~ -+~
contour for Z=-1is
approximately the thick
red line on the picture - -
to theright. Despitethe - --
big number of line 7---
segmentsthe plot isstill .-
not very satisfactory. It

is better than before but -
still it lets you only
imagine  what the
contour curves look like, and that only on some parts of the plot, while
on other parts the curves are nearly unrecognisable.

RN

!.IIII

1
s

0ot

LR |
.

..Ill\'|
LT

(Y

Until now we have examined limits of functions Z(X,Y), inwhich Y

behaves in such away, that Z remains the same over the path that is
defined by X and Y . This doesn't have to be this way. For example

SINX-Y) (0 x® 0, Y ® 0 and Y = X will not give

an aqui-height curve of the surface. We will examine such case a later
on, but for now we try to find a way to draw the aqui-height curves a

bit better. Yes, we are going to enhance the contour plots on the
HP49G.

thelimit of

a Z =- 1. That means, we must somehow turn on all pixels that

correspond to coordinates (X,Y), for which the equation holds:

SIN(X- Y)
X

. Suppose that we want to draw the contour

= -1. This equations can be understood as an implicit

definition of Y, which can be made explicit by simply
: SIN(X- Y)
solving for Y. Enter ——= =-1and Y, and press

-~ [SOLVE]. The result is the list:

1Y = -(2*n1*p- (X +ASIN(X)))U
i y . Aswe aready have
" 1Y =(2*nl- Y*p+ X- ASIN(X)p

seen, we can plot these two curves for some different
.~ Integer valuesof nl, and get the curves that we want to see.
Exactly this will be what a program should do, that draws

SIN(i Y) and
alist of Z values, for which we want to see the contours.

SIN(X- Y)

X

solves for Y (or X) and draws the resulting functions. An additional
problem isthat the solutions may contain additional variables, like nl,
which don't appear in the original function. In this case it should ask
the user to supply values for such variables. A very interesting
problem that appears here is that we may have more than one additional
variables, and the user cam supply several values for each of them.
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The program must then construct all possible combinations of values DUP NOVAL PCS
for these variables. We will see in afew moments a very unorthodox THEN
way to do that. So, here is the program listing - we will describe the "M ssing Data" DOERR @\bor t
program after the listing. ELSE @l se (no missing inputs)
OBJ-> DROCP {}
<< -> func xvar xrng
PUSH yvar yrng zvar zcnt
" CONTCQUR PLOT" @itle for | NFORM newars
{ @tart input fields definit. <<
{ "Z(X Y):" @nput field Z(XY) I F @f the first elem of
"Enter two variables function" zcnt HEAD TYPE @ontour values list is
9.} 2. == @ string
{} @npty field THEN @hen the user wants
{ "var. X" @nput field X-variable "Cal cul ating Z-val ues
"Enter X-variable" of contours." 1 DISP @ contours fromznmin to
6.} zcnt 3 GETI UNROT @o zmax. Calculate them
{ "X-Range:" @nput field X-range GET DUP2 - NEG
"Enter X-variable range" zent 2 GET 1 - /
5.} -> zmn znax step
{ "var. Y." @nput field Y-variable <<
"Enter Y-variable" {} zm n zmax
6.} FOR |
{ "Y-Range:" @nput field Y-range | + step
"Enter Y-variable range" STEP
5.} >>
{ "var. zZ." @nput field Z-variable "zcnt' STO
"Enter Z-variable" END
6.} xrng 1 @convert evtl. al gebraics
{ "Contours:" @ nput Z-contours << ->NUM >> @o nunbers for all
"Enter Z-contours" DOSUBS @ppropriate inputs
5.} 'xrng' STO
} @nd input fields definit. yrng 1
{ 2. 0.} @ NFORM For nat << ->NUM >>
{} @efault inputs DOSUBS
{} @Reset inputs "yrng' STO
| F @f user pressed K zent 1
THEN << ->NUM >>
I F @f inputs m ssing DOSUBS
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'zcent' STO
I F
func LNAME AXL
zvar POS NOT
THEN
zvar =
END
"func' STO
CASE
1 CF
"Sol ving for
yvar + "

" + 1 DI SP xvar | NDEP
yvar DEPND
xrng OBJ-> DROP
DUP2 XRNG XVCL
yrng OBJ-> DRCP
DUP2 YRNG YVCL
func yvar
| FERR

ZERCS
THEN
DROP 1 SF
END
1 FC?C
THEN
END
yrng OBJ-> DROP
DUP2 XRNG XVCL
xrng OBJ-> DROP
DUP2 YRNG YVCL
yvar | NDEP xvar

@f user entered f(x,y)
@onvert to z=f(x,y)

@n case

@repare plotting env.
@dj usting all paraneters
@ccording to i nputs

@f solving z(x,y) for vy
@rrors out

@hen indicate failure

@hrough setting flag 1

@f flag 1 clear? clear
@o not hing!!!

@n case solving for y
@ailed (flag 1 was set)
@dj ust plotting paranet.
@nd try to solve for x.

DEPND " Sol vi ng for "

Xvar +
" + 1 DI SP yvar
| FERR
ZERCS
THEN

Nureri ¢ not

DROP 1 SF @et flag 1 (solving failed)
END
1 FC?C @f flag 1 clear? and cl ear.
THEN @o nothing!!!
END
1 SF @oth cases failed, set flag
END @ (for no solution)
I F @f flag 1 set (sol. error)
1 FS?
OVER {} SAME @r enpty sol. |ist
oR
THEN @ hen error out

"No synbolic solution.
i mpl em " DOERR

ELSE
DUP STEQ @l se store sols. in EQ
"Filtering variables..
1 DI SP @i nd additional variables
I F @f sol. wasn't |ist
DUP TYPE 5 ?
THEN @hen convert it to list
1 ->LIST
END
1 @tart of outer DOSUBS proc.
<<

LNAME AXL DUP

1 OVER xvar PGS
1 - SUB SVWAP DUP
xvar POS 1 +
OVER SI ZE SUB +
DUP 1 OVER yvar
PGS 1 - SUB SWAP
DUP yvar POS 1 +
OVER SI ZE SUB +
DUP 1 OVER zvar
PGS 1 - SUB SWAP
DUP zvar POS 1 +
OVER SI ZE SUB +
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DuP {} *
THEN
1
<< @tart of inner DOSUBS
| F @r oc
newars
OVER POS
THEN
DROP
ELSE
newars
+
'newars'
STO
END
>> @nd of inner DOSUBS proc
DOSUBS
ELSE
DROP
END
>> @nd of outer DOSUBS proc
DOSUBS
DROP
END
| F @f we have additional vars
newars {} 1
THEN @°r epare and show i nfornat.
CLLCD LCD > @creen about new vari abl es.
{#0d #0d}

"Sol utions contain new vari abl es.
You nust specify their values in
the next input form If you don't
enter any, then {0} will be used.

Press m to continue."”
1 ->GROB REPL
->LCD

{({HHH{{"OK" CONT}}
TMENU 3 FREEZE @knu with "OK" to continue

HALT @wit for user response
"NEW VARI ABLES" @Title for | NFORM
newars 1 @construct input field
<< @pecification for each

":" OVER SWAP @ew vari abl e.

+ "Enter values for "

ROT + 5 3 ->LIST
>>
DOSUBS
newars SIZE 4 / @Construct format spec.
IP1+12->LIST
{} {} I'NFORM
I F @f user pressed [ ]

THEN
1 @f values list wasn't
<< @nput, then use {0.}
I F
DUP NOVAL
SAME
THEN
DROP {0.}
END
>>
DOSUBS
ELSE @&l se (user pressed [ CANCL])
{} 1 newars
S| ZE
START @Jse {0.} for each new var.
{{0.}} +
NEXT
END
1 @Convert user input to num
<< - NUM >>
DOSUBS @tore |ist

newars SWAP 2 @ {newars}{values}} in
->LI ST ' newars' @Ghewars
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<<

STO

END

FUNCTI ON #0d RES @setup, and show PICT
{#0d #0d} PVIEW

DRAX LABEL

zent 1

@o for each contour

zvar STO @tore in global Z-var
I F
newars {} * @f we have new vari abl es
THEN
newars 0OBJ->
DROP
->nvars nvals @tore in locals
<< @o for each new variable
BRI @t art constructing prog.
1 nvars SIZE
FOR N
"1 " + nvals
N GET ->STR

+ " SIZE FOR |

+
I F
N1 ==
THEN
"{} -> vals
+
END
" vals " +
nvals N GET
->STR +
"1 GET + "
+
I F

N nvars SI ZE
1

THEN

+
ELSE

-> val s

nvars ->STR

+

" STO DRAW "

+
END
NEXT

1 nvars SIZE

FOR N
I F

N nvars S| ZE

1

THEN
" NEXT >> "
+
ELSE
" >> NEXT >> "
+
END
NEXT @Convert string prog. to
OBJ-> EVAL @rogramand run it.
>>
ELSE @l se (no new vars)
DRAW @i nply draw
END
I F @f we have new vari abl es

newars {} ?
THEN
HEAD
END
zvar + PURGE
>>
DOSUBS
RCEQ func EQ >

@hen take var. nanes

@urge Z-var and new vars.
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I F @et function out of Ovedl title
DUP TYPE 6 == @=f(x,y) or f(x,y)=z "Screen title"
THEN
DROP
ELSE
NI P Input fields definitions:
END |
STEQ 10 NUMX @repare for built-in {"A:" "Enter valuefor A" 0.}
10 NUMWY PCONTOUR @ontour pl ot {} ' B C:
Pl CTURE {"B:" "Enter valuefor B" L. ..,
>> {"C:" "Enter value for C" 0.} L |Enter valuefor A
END }
END I
-1 MENU PCP @restore last menu and flags numbers. The object types of the valid object types must be real
>> numbers, that is with decimal point. An empty list specifies an empty

input field that can be used for formatting the screen. From stack level
This is the program CONTOURPLOT that comes along with this 3 the command takes the formatting parameter which is also alist. It
document. | know that you are eager to test it but
let's describe some programming techniques used in _ i o
the program first. Empty input field. The previousinput
field "A:" covers the space of the empty field.

First of all the program put the arguments for
INFORM on the stack. So, let's see how this
command works. It takes 5 parameters from the

stack and shows an input screen. From stack level 5 Input fields definitions: s e e SCTEEN Tit] €,y
the command takes the overall label, a string, which Al

appears at the top of the of the input screen. From {"A:" "Enter valuefor A" 0.} —
stack level 4 the command takes the definitions of the > {}

input fields. Thisisalist which consists of sub lists, {"B:" "Enter valuefor B" 0. 1.} /I'B/> C:

one sub list for each field. The first element of each {"C:" "Enter valuefor C" 0.}—]

sub list is a string, which appears in front of the } Enter valuefor A

corresponding input field. The second element is a
string which appears as a help for the user at the
bottom of the screen, when the corresponding input Formatting parameter
field is selected. The rest of the elements are object (2.0} .
types of the valid objects for the corresponding input ' l_,—"‘ No space between label and field
field. For example, the input field "A:" of the screen
a the top right of this page will accept only real Two rows of fields.
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contains two real numbers the first of which specifies in how many
rows the input fields will be shown. The second specifies how much
space will be left free between the label of the input field and the field
itself. The next parameter is alist containing the inputs that appear in
the fields when we reset the screen. When the input screen appears,
the menu line contains a menu with three items. "EDIT" lets you edit
the object in the selected input
field in the command line pugmgmu s s nScreen Titlemgu u s ans

"CANCL" cancels the dialogue A'_
and returns a 0 on stack level 1. !

This can be dso done by

pressing the key [ON]. "OK" | B: C:
exits the dialogue. It returns al

inputs in a list on stack level 2 |Enter valuefor A
and a1l onstack level 1. Thiscan [=py] CANCL| OK

be also done by pressing the key
[ENTER]. If some input field is
empty when you press the menu
key [OK] (or the key [ENTER])
then the list with the inputs will
contain a NOVAL for the input
field without input. As you can | B: C:
see, the command provides all
necessary output for
distinguishing between
"CANCEL" or "OK", and for
finding out which inputs were

l:l:l:l:l:l:l:l:l:l:l:l:l'

A I

Enter valuefor A

RESET|CALC|TYPEY |CANCL OK
Screen Titl

left empty by the user. If you | A:

press the key [NXT] then the
second page of the menu Resat all

appears. The first item, | B. T
"RESET", lets you reset the

selected or al input fieldsto their ([Enter value for A

reset objects which you provided RESSiN BB C VTS

asalist on stack level 2. It shows

a popup menu which allows to select between resetting the selected or
al input fields. The next and last parameter is alist that contains the
default inputs for the fields. These appear when the screen is initially

shown. The second menu item, "CALC", alows you to temporarily
leave the input screen and go to the stack. But this stack is not the same
like that which you worked until the input screen appeared. Thisis a
new separate stack, which only spw—s—w- e
contains the object of the selected piatamamea® SCreen Titl ey tymy
input field at the time when you [ENter valuefor A
pressed "CALC". On the top of
the screen the title of the input
screen is still shown. Also the
help string that normally is
shown at the bottom of the |1 3.456789
screen, now is shown under the
title, so that you still nhow what

the calculator expects you to enter. If you press the menu key
[CANCL], then this separate stack is abandoned and you return to the
input screen without changing the object of the selected field. But if
you press [OK] then the object at stack level 1 replaces the object of the
selected input field. Pressing the menu key [STS] changes the header
of the stack display to the normal header, that is information about the
current path and other indicators

are displayed. If you press some [Rgegugtyagaie SCreen Titljgugtytgmgy
key that activates another menu |Press[CONT] for menu

while you are in the separate |5:
stack, then the header changes
and displays again the title of the
input screen and directly under
the title it displays a message, |1:
which tells you how to return to
the menu of the input screen. That

means, press [blue-shift] and then [ON] to get the menu that allows
you to return to the input screen. In the separate version of the stack
you can do anything that can be done in the normal stack, that is
calculations, run programs etc. If while in the input screen you press
the key [HIST], then you land at the well known interactive stack,
which contains anything that was on the stack before the input field
was shown. You can move up and down using the keys [arrow-up]
and [arrow-down], and copy any object to the command line of the
input screen by pressing the menu key [ECHO]. Y ou can |leave history
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by pressing either [ON] or [ENTER]. Finally the menu key [TYPES]
of the input screen, displays a message box that contains all valid
object types for the selected input field.

Let's go on with the description of the program. After data input the
program first examines what the first object of the list is, which you
entered inthe input field "Contours:". If it isastring, then the program
assumes that the user wants N contoursfrom Z =Zmin to

Z = Zmax. That meansthat the list will be interpreted as

{string N Zmin Zmax} . Not avery elegant method for
choosing this option, but what else can we do when we have no
check-field available in the built-in version of INFORM? If the first
item of the list in "Contours." is not a string, then the program
assumes that the user wants exactly those contours, whose Z-values
are given in the list. Note the usage of the command GET]I, which is
quite similar to GET, but it also automates the index incrementing
when getting elements out of alist or matrix. While the command GET

only returnstheith element of alist, the command GETI returnstheith
element at stack level 1, the index i+1 at stack level 2, and the list at
stack level 3. If the index was at the last element, then execution of
GETI wraps the index back to 1 and sets the flag -64 to indicate that
we arrived at the end of the list. The following two code snippets
return identical results applied to alist is on stack level 1:

1 OVER SI ZE

FOR |
DUP | CET
SWAP

END

-64 CF

WH LE

-64 FC?
REPEAT

GETI UNROT

The program does some conversions, like for example converting
functions that were input as f(X,Y) to Z = f(X,Y ). Notice that not all
error checking is done. For example if you enter a list like
{1 2 "2} intheinput field "Contours." then the program will

crash. But you may add your own error checking code of course.

The next thing that the program doesis, trying to solve Z = f(X,Y) for

thevariable Y (or any other name that you enter in the input field "Var.
Y:"). If it finds solutions then it proceeds, else it tries to solve

Z =1(X,Y) for variable X. If it finds solutions it proceeds, else it
errors out with "No symbolic solution. Numeric not. implem.”. That
means, the program tries to convert the equationto Y = g(X,Z) or to

X =h(Y,Z), in order to plot it later asafunction for several values of
Z. These Z-values are those given in the input field "Contours.". It is
interesting to examine how the CASE THEN END clause works, that
isused at this point. We have two things to examine when we check if
solutions were found. The one thing isto check if the returned solution
was an empty list. The other thing isto check if the HP49G errored out
while trying to solve for Y or X. The normal usage of the CASE
THEN END clauseis:

CASE
Test 1
THEN
Actionl
END
Test 2
THEN
Action2
END
..... further tests and actions
Default action
END

But we use the clausein avery different style:
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CASE
Several actions and attenpt to solve for Y and set
flag 1 if appropriate (indicator for no sol ution)
Test flag 1
THEN
Do not hi ng
END
Several actions and attenpt to solve for X and set
flag 1 if appropriate (indicator for no sol ution)
Test flag 1
THEN
Do not hi ng
END
Set flag 1
END

The clause is used as akind of switch or sieve that exploits the fact that
the CASE clause will keep on checking each case until some case is
true, no matter if an action is performed after the check. We must only
provide atest (or the result of atest) for the THENS of the clause. This
iswhat FC?C is used for. If the two attempts for solving Z = f(X,Y)
didn't work, then we have to use numeric methods. Perhaps at this
point you would like the program to simply plot a built-in contours
plot. Or use a numeric method. Or do something else. It isup to you to
decide.

The next thing the the program does is checking if the solutions
contain new additional variables, which don't appear in the original
function. This can happen when for example we use SOLVE with
trigonometric functions. Variableslike nl1, n2, and so on might appear
in the solutions, which would make the plot impossible, if no values
for them are specified. If the program discovers such variables, it
displays a message for information and waits for you to press the
menu key [OK]. Notice that the word "OK" of this message is written
in inverse in the program, in order to imitate the looking of the menu
key. This can be done by pressing the key [TOOLS] while editing
some object, then pressing [NXT] twice, then pressing the menu key
[Style] and selecting some style. The characters that you type after

pressing the menu key of astyle, will appear in this style. Pressing the
key for the same style again just deactivates that style.

If there were new additional variables the program constructs the
arguments for an additional INFORM screen, where you can specify
values for those variables.

And then, oh! then comes another unorthodox part, which shows how
flexible thismachineis. But let's see first what the problem is and why
the unorthodox solution. Suppose that you have an arbitrary number of
variables nin2,---, each of which may have an arbitrary number of
distinct values. How can you construct a list containing every distinct
combination of values of those variables? Thisisanon-trivial problem.
It can be solved using recursive programming but because we already
have seen many examples of recursive programming, we use another
method here. We let the program... construct another program
according to the number of the variables and their values and let it run
to built-up those combinations of values. The program just
concatenates strings (code snippetsin blue bold in the program listing)
which form anew program. When ready, it uses OBJ-> to compile the
string and generate the runnable program, and then runs it using
EVAL. This resembles macro programming and inline include of
macro code in the SAS System.

Then the program draws the curves of the contours for al Z-values that
we specified and activates the PICT environment so that you can
observe the curves and how they behave.

When you exit the PICT environment, the program returns the found
solutions Y =g(X,Z) or X = h(Y,Z), storesthe original equation in
EQ and sets al parameters for plotting the corresponding built-in
contours plot. That means, in case you want it, you can superimpose a
built-in contour plot with the curves that the program plotted, by
simply entering DRAW.

Enough explanations, now we test! Enter ERASE to erase any old
plots. In the menu VAR press [CONTQO] to run the program
CONTOURSPLOT. We will plot the contours of our old friend

6-36



Sequences, series and limits with the HP49G - Part

SIN(X_— v) forZ=0, Z=1,and Z = - 1. When the INFORM

SIN(X- Y)
Y

screen appears, press [EQW], enter and press[ENTER].

The expression is put in the input field "Z(X,Y):" and the next field
"Var. X:" is selected. Enter X . Now the next field is selected. Enter
the list {- 1.5 1.5} asrangefor X. Thenenter Y for "Var. Y:",

{-3.5 3.5} for"Y-range:", Z for"Var.Z" and{-1 0 1} for

"Contours:". Press the menu key [OK]. The program shows some
messages and then the text that informs you about the existence of new
variables. At that point press the menu key [OK]. A new INFORM
screen appears, where you can enter the values for the variable nl.
Enter the list {-1 0 1}, which meansthat the contours will be

drawn for n1= -1, n1=0, and n1= 1. Pressthe menu key [OK]. The
program needs some time to plot the curves of the three contours.
When ready you should see the picture below. When you finish
looking at the plot, press the menu key [CANCL]. The program puts

Contours Z=-1

<

Contours Z=1

Contours Z=0

the solutions found :’Y - _(2 “ntp- (X +AS|N(X)))I,J

7Y =(2*n1- )*p+ X - ASIN(X)p
level 1, preparesall necessary things for a subsequent built-in contour
plot. If you wish, you can use the command DRAW to plot that on the

already plotted curves.
On with limits of functions with two variables. We examine the limit of

SINX- ¥) for X® 0 and Y ® O for the case (path) Y = X*. Go

on stack

. & IN(X-Y O 0
to the EQW and enter Ilm(\?llmes(—),Y =xPx = 02. Press
e e X 7] [7]

[ENTER] to put that on the stack and press [EXPAND] to get al as
result. Isthat correct? Well, we can visualise thiswith Mathematica. In
the picture below we see the path that we are on when we follow the

SIN(X- Y) _ SIN(X- X?)

coordinates X, Y =X?, Z = =

thick

(thered

constant
value for
Z.

If we
put the
plane
Z=1on
the same
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plot, then we can
see that the limit
that the HP49G
returned was
correct. So we are
able to caculate
such limits, but
what about
visualising them?
Let's see. We have
the function

. SIN(X- Y)

which we can plot
using the plot type
Fast3D or
Wireframe.  We
would like to
superimpose it
with some
additional graphics
that make the stuff more understandable. So we can't use Fast3D as
this plot type doesn't alow more than one graphics to be
superimposed. We are going to use Wireframe. We will plot first

SIN(X- Y) . Let's do that. Go to the PLOT-SETUP screen and chose
SIN(X- Y)

plot type Wireframe. Enter Z =

X for independent, Y for dependent variable. Go to the PLOT
WINDOW - WIREFRAME. Set "X-Left:" to .1 (avoiding X =0 to
prevent the plot from going off screen, "X-Right:" to 1.5, "Y-Near:"
to-3.5,"Y-Far:"to 3.5, "Z-Low:" to - 4, "Z-High:" to 4. Set the
coordinates of the point from which you observe the plot, "XE:" to - 7
,"YE:" to - 20 and "ZE:" to 1. Set "Step Indep:" and "Depnd:" to 10.
Press the menu key [ERASE] and then [DRAW]. The HP49G plots
the wireframe which then looks like the picture at the top of the right of

asthe function to plot and

this
page.
Press

Plane at Z=1

[CANCL] to exit the PICT and go to the PLOT
SETUP screen again. Now we will add the path X,

Y=X*1Z= S'N(i' Y)_ SIN(X- X’)

dimensional parametric curve on the same plot. The
HP49G has no plot type for three dimensional
parametric curves. But it has parametric surface plot
type. So we will fake it. (Again, shame on us! ;-))

Z=1 asathree

Chose plot type Pr-Surface. This plot type expects a list of three
expressions in EQ, which define X, Y, and Z. Enter thelist

i SIN(X - X?)l

iX X —(X—)y intheinput field "EQ:". Leave X and Y for
|

independent and dependent variables. Asyou can already see we have
the two variables X and Y but our parametric expressions depend
only on X (curve). Thisisthefirst step of our faking. Go to the
PLOT WINDOW - PR-SURFACE screen. Press the menu key
[XXYY]. Enter for "XXLeft:" .1, for "XXRight:" 1.5. Leave dl other
fields as they are except the number of steps for "Depnd:"”, which you
must change to 1. (Thisisthe second step of the faking.) Pressthe
menu key [DRAW] and wait until the plot isready. The HP49G draws
an additional curve on the previous plot. You should trace this curve
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because it is not very visible. Press [TRACE]. A list with two input
coordinates appears on the bottom of the screen. From these two input
coordinates only the first (X) isinteresting for us. (Remember? We

fake it ;-)) Press [arrow-right] and follow the graphics cursor until it
you see "INPUT: {.100000000008 " at the bottom of the screen.
Press the menu key [F2] again to show the output coordinates.
Unfortunately you can't see the vaue of the third coordinate

SIN(X - X?
Z= JX—) , but if you press [ENTER] the HP49G puts alist

with the three output coordinates on the stack. Exit the plot, go to the
stack and press [DTAG] and then [OBJ->]. Drop the list element

—>
%
A

count. You see that the third coordinate is .898785491972. Itis ™~ d\

approaches 1, and if you re-plot the Wireframe with "X-Left:" set to

.01 and the Pr-Surface with "X X Left:" set to .01, the returned number /—\

SIN(X - X2
for Z = JX—) will be even closer to 1 asthe plot is made for
values of X that are even closer to 0. Of course you can adso plot a

)

three dimensional parametric curve alone in exactly the same way.
There is no need to superimpose it with some other plot. This was
done here only for demonstrating the behaviour of the limit.

Let's have another example of such alimit. Go to the EQW and enter

- i . .
imGmESNCY) s (X- 9°X = 0% Put that on the stack

e e Y 7] o
and press [EXPAND]. After some seconds you get - 2, the correct
limit.
As a small example of a sequence/series problem we are going to
examine... a music cassette. (Yes, | know that in modern times thus
prehistorical sound carrier should have been replaced by a DVD ;-))
We are going to calculate the length of the tape with the help of a
series. If the radius of the coiling role is R and the thickness of the
tape is d, then each timetheroleroles 2* p anew layer of tapeis

coiled over it, making the coiling radius a little bit thicker. The coiling
radius starts at R, after 2*p itisR + d, after another 2*p itis

)
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R +2*d, and so on. The length of the tape that coils round therolein
each rotation is respectively 2*p*R, 2*p* (R+d),
2*p* (R +2* d), and so on. The length of the the whole tape must

N
be & 2*p* (R+n*d)+L0, where N isthe number of rotations that

n=0
the role has done at the end of the concert, n isthe number of rotations
so far, and LO isthelength of the tape that remains uncoiled. Let's
N

caculate that. Enter L= 2*p* (R +n*d)+LO and press

n=0
EXPAND toget L = (d*N*+(2*R+d)*N+2*R)*p +L0. Thisis
the length of the tape.

Thetape runswith aconstant linear speed v, which means that we can

calculate how long it will take until it ends. Since v = tLelp te :L—l ,

\'
(d*N*+(2*R+d)*N+2*R)*p

v
time when the tape ends, and L1 isthe length of the tape without the

we have te =

, Where te isthe

. : . L1
part LO, which remains uncoiled. Enter v = o’ then enter te and

then press [SOLVE] to get te :Lvl . Press[OVER] to copy the

equation of stack level 2 to stack level 1. Press[arrow down] to get the
equation to the EQW. In the EQW press [arrow down] once to select
the left hand side. Then press [backspace] to put the cursor right after
L, and press[1]. Press [arrow up] to select the left hand side, which
now is L1. Press[arrow right] to select the right hand side. Here we
must delete the term LO. Press [arrow down] to select the first term
and then [arrow right] to select the second term. Press [red-shift] and
then [backspace] to delete LO, and then again [backspace] to delete the
remaining +.Press[ENTER] to put the edited equation,

L1=(d*N*+(2*R+d)*N+2*R)*p onthestack. Then press

(d*N?+(2*R+d)*N+2*R)*p
v .

[SUBST|to get te =

While the linear speed of the tape is constant, the angular frequency
changes while more and more tape coils around the role. Since

V=W*RbP W:X,Wehavewn = . Thisisaquantity that
R R+n*d
changes. It is amonotonically decreasing sequence. Here we see that
w decreases in discrete steps, as n increases. But because d, the
thickness of the tape is so small, the sequence behaves "almost” like a
function. (Actually the model that we used is much too simple, but it
goesin theright direction for explaining why/how the angular speed of

the role decreases with time.)

Before we end this last part of the rather lengthy marathon, let's look
again at our table of programs on the next side. The new programs are
rather stand alone without much connections with the rest. But anyway
it looks like crazy, thus it must be good ;-)

This marathon has been so long and exhaustive mainly because of two
reasons. Thefirst reason is that the HP49G doesn't have much built-in
functionality for sequence. So we had to program much. And because
a program for symbolic mathematics is a "black box" when given
without explanations, we had to explain much of the underlying
theory. The other reason is... that the HP49G doesn't have
INTEGERASSUME. We aready have talked much about that, so
leave it be. ;-) But | think that it had the advantage of demonstrating
some programming techniques and also of demonstrating how self
contradicting and at the same time wonderful the HP49G is. Next time
we will continue with the long awaited Calculus Marathon. May the
force be with us.

Greetings,
Nick.
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ISABSCONVERGES?I ISOLGESEQISOLARSEQII CONDENSPT E

\J IPARTSUMSEQI * [conTourpLOT]

TRANSER | JCONVERGES? SEQMONTY BOUNDS DrN

! v

ORDARSEQ SPCASES-I NDSEQ S->UD creates_ | USDEFSEQ

R->ANL I GENFUNC I

ISINF?

RC

LIMEXPAND SEQTYPE

ISCONT?

LIM

EVACOMP

I->TERMS I I FDISTRS I INTERCONT?
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