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Hi everybody!

This is the first part of a (hopefully long) news-group-marathon-serial 
about the trigonometry capabilities of the HP49G and about the 
mysterious ideas that some strange guys had, a long long time ago in 
the land which I come from. I mean Pythagoras and co.

I‘ ll start with the easier things and as the triventure goes on, things 
will get more complicated. So if many of you out there find this not so 
useful now, because it is easy, then wait! Heavier things are on the 
way! Mwaahhahahahaaa!

You already know that a very important relation between the sine and 
the cosine is:

sin2(x)+ cos2(x)=1 (1)

The HP49G command for this relation is TRIG . When it finds the 
sum of the squares of the sine and the cosine, it converts it always to 1. 
From this relation we can derive:

sin2(x)=1− cos2(x) (2)

and also

cos2(x)=1− sin2(x) (3)

                                        
The command TRIG  can also do these replacements. But it does these 
replacements depending on flag -116 (Prefer SIN  or COS). When 
this flag is set, then the CAS of the HP49G prefers the sine and tries to 
put as much of it in the result, as possible. So it would do the 

replacement given with formula (3). When the flag is clear, then the 
CAS prefers the cosine and tries to put as much of it as possible in the 
results. So it would do replacement (2). A mnemonic for this 
behaviour:

Flag -116
Set -> Sin (Two Ss)
Clear- > Cos (Two Cs)

There are two commands, that are related to TRIG . They are: 
TRIGSIN  and TRIGCOS . TRIGSIN  always does replacement (3) 
and sets the flag -116. TRIGCOS  does replacement (2) and clears the 
flag -116. So after a TRIGSIN  the command TRIG  will prefer Sines 
and after a TRIGCOS  the command TRIG  will prefer Cosines.

Now, you also know that the definition of tangent is:

tan(x)=
sin(x)
cos(x)

(4)

The command for transforming tangents to the quotient of sine and 
cosine is TAN2SC (TAN  to SIN , COS). When you use it, 
transformation (4) takes place. The inverse transformation can be 
achieved with the command TRIGTAN , which would return the 

TAN X( )  if fed with 
SIN X( )
COS X( ) .

From relation (4) we derive:

tan2(x)=
sin2(x)
cos2(x)

(5)
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Now we can replace  sin2(x)  with 1− cos2(x)  on the right hand side to 
get:

tan2(x)=
1− cos2(x)

cos2(x)
     ⇔      tan2(x)=

1
cos2(x)

−1     ⇔

tan2(x)+1=
1

cos2(x)
      ⇔     cos2(x)=

1
tan2(x)+1

(6)

The command TRIGTAN  does also this transformation.

From relation (4) we can also derive:

sin2(x)=
tan2(x)

tan2(x)+1
(7)

Replace in relation (4) cos2(x)  using relation (3) and you‘ll see. The 
wonderful thing is that TRIGTAN  can do also transformation (7).

Now enough theory, let‘s have a party!

Examples:

1) Show that:

SIN X( )4 −COS X( )4 = SIN X( )2 − COS X( )2

In the EQW type:

SIN(X)4 − COS(X)4

and enter it in stack level 1. Let‘s try . The result

TAN(X)2 − 1
TAN X( )2 +1

looks nice, so let‘s work with it. We have TAN  and we want 
SIN  and COS , so let‘s use  . We get

SIN X( )
COS X( )

 
 
  

 
 

2

−1

SINX( )
COS X( )

 
 
  

 
 

2

+1

which looks uglier, but if you  this you get: 

SIN X( )2 −COS X( )2

SIN X( )2 +COS X( )2

Now, you may tend to use , to replace the denominator with 
1, but this would also replace either the square of the sine or the 
square of the cosine on the numerator. So take this expression in 
the EQW, select the denominator and then press , so that the 
command acts only upon the denominator. Put this now back on 
the stack. Press  to get rid of the 1 in the denominator and 
you are the trigo-king of the day.
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2) Show that:

SIN X( )4 −COS X( )4 = − 2 ⋅COS X( )2 −1( ) = 2 ⋅SIN X( )2 −1

Type:

SIN X( )4 −COS X( )4

in the EQW and put it on stack. We want first to transform this 
expression to another, which contains only COS , so let‘s try 

. Here you are! Now, press  to get the 
expression that contains only SIN . Done!

3) Show that:

SIN X( ) − COS X( )( )2
= 1− 2 ⋅ SINX( )⋅ COS X( )

Enter

SIN X( ) − COS X( )( )2

on stack level 1 and press  to DUPlicate it. (You‘ll see later 
why the DUPlication.) Let‘s  this, to see what comes out. 
You get:

SIN X( )2 − 2 ⋅SIN X( ) ∗COS X( ) + COS X( )2

This contains the square of the sine plus the square of the cosine, 
so use  to get them converted to 1. Voila!

But wait! Was the  really necessary? Press the key  to 
drop stack level 1 and try  directly. Wow! It works :-)

4) Show that:

SIN X( ) + COS X( )( )2
+ SINX( ) − COS X( )( )2

= 2

Yes, you know what I am going to say. Enter

SIN X( ) + COS X( )( )2
+ SINX( ) − COS X( )( )2

blah, blah, right? Good. Now because in example 3 we saw that 
 is clever, let‘s use it again. Press . Did you? What do 

you have? A nice round 2 . :-)

5) Show that:

SIN X( )2 ⋅COS Y( )2 − COS X( )2 ⋅ SIN Y( )2 = SINX( )2 − SIN X( )2

We want a result that only contains SIN , so let‘s try . 
Nice, isn‘t it? Oh yes, it is. ;-)

6) Show that:

COS X( )2 ⋅ COS Y( )2 − SINX( )2 ⋅ SIN Y( )2 =

COS X( )2 + COS Y( )2 −1

Since we saw that  worked so well in the last example, 
and we want a result that only has COS, let‘s try the cousin of 

, , that tries to put as much cosine as possible in 
the result. (I guess that‘s why  is the co(u)sin(e) of 

. ;-) ) OK, press , and see the marvel. :-)
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7) Show that:

COS X( )2

TAN X( )2 =
1

TAN X( )2 −COS X( )2

This is a bit tougher, but don‘t worry. We‘ll get it soft! Go to the 
EQW and type:

COS X( )2

TAN X( )2

Don‘t enter it to the stack, we‘ll stay in the EQW for a while, since 
the surroundings are so picturesque there. As you know, from the 
relation:

TAN X( ) =
SINX( )

COS X( )

we can derive

1
TAN X( ) =

COS X( )
SINX( )

Since we want to have 
1

TAN X( )2  in the result, we could try to put 

SIN  in the denominator of our expression so that perhaps the 
cosine in the numerator and the sine in the denominator give:

COS X( )2

TAN X( )2

Select the denominator and apply  to it. Now press 

  to put the whole expression on the stack and  it. 
You get a ratio with a big numerator and a denominator that only 
has SIN X( )2

. The first expression in the numerator is:

COS X( )2 ⋅ SINX( )2

so this part would give the −COS X( )2
 . Use   to fully 

distribute the division over the sum of the numerator. Fine. Now 
perhaps you think that you only have to use , to convert 
COS X( )2

SIN X( )2  to 
1

TAN X( )2 . But if you apply  to the whole 

expression, then the part −COS X( )2
 will also be converted to an 

expression that contains TAN X( ) . So take the expression in the 
EQW again, and shoot some pictures of that beautiful place, while 

you select 
COS X( )2

SIN X( )2  and press . Press  to return 

to the dusty place of the stack again and here you are! A present 
from the EQW smiles at you in the middle of the dirty suburban 
stack.

8) Show that:

TAN X( ) + TAN Y( ) = TAN X( ) ⋅ TAN Y( )⋅
1

TAN X( ) +
1

TAN Y( )
 
 
  

 
 

This is even tougher. (To me at least.) I only managed to tame it 
using the peaceful contemplative place of the EQW and , 

, . If someone finds an easier way, then please, 
please, post it. Then I‘ll take your solution to my cousin 
Pythagoras and tell him that he was wrong, telling me that the 
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only way to do that, is to use the EQW and some manually done 
transformations. And who knows, perhaps after some thousands 
of years, people will talk about the great mathematician and great 
HP49Gician Vincentoras or Time2Pawgoras.

Let‘s go. Enter the left hand side on the stack. Don‘t ask me why I 
did that, say just for a try, but using  is a good start. So 
use it, now! Did that? OK. Now  this to get everything in 
only one ratio. The stack contains now:

COS Y( )⋅ SINX( ) − COS X( )⋅ SIN Y( )
COS Y( ) ⋅COS X( )

The denominator of the beast contains COS Y( )⋅ COS X( ) , which 
is a good start if we want to get TAN X( ) ⋅ TAN Y( ) . So, perhaps 
something good happens, if we multiply the numerator by 
SIN X( )⋅ SIN Y( ) . But if we do that, then we must also multiply 
the denominator by SIN X( )⋅ SIN Y( ) . Take the expression to the 
EQW. Select the numerator, press  and type SIN X( ) , press  
again and type SIN Y( ) . Now select the product SIN X( )⋅ SIN Y( )  
that you just have entered and  it. Select the denominator 
and press  again. Press . The EQW contains now:

COS Y( ) ⋅SIN X( ) −COS X( )⋅ SIN Y( )( )⋅ SIN X( )⋅ SIN Y( )
COS Y( ) ⋅COS X( ) ⋅SIN X( ) ⋅SIN Y( )

Now we can take the part COS Y( )⋅ COS X( )  of the denominator 
away and put it in a new denominator of the part SIN X( )⋅ SIN Y( )  
of the numerator. In the denominator select COS Y( )⋅ COS X( )  

and press . Press  once to get rid of the placeholder left 
by the  operation. Now go to the numerator and select again 
the part SIN X( )⋅ SIN Y( )  that you have entered a couple of years 
ago. Press  and then . You should have now:

COS Y( ) ⋅SIN X( ) −COS X( )⋅ SIN Y( )( )⋅
SIN X( ) ⋅SIN Y( )

COS Y( )⋅COS X( )
SIN X( ) ⋅SIN Y( )

Select the whole sub-expression:

SIN X( ) ⋅SIN Y( )
COS Y( )⋅ COS X( )

and press . Now the expression in the EQW is:

COS Y( ) ⋅SIN X( ) −COS X( )⋅ SIN Y( )( )⋅ TAN Y( )⋅ TAN X( )
SIN X( ) ⋅SIN Y( )

We have a part of the solution, the part TAN Y( )⋅ TAN X( )  . While 

this part is selected,  it. Press  once to get rid of the place 
holder again. Select the whole remaining expression, press  and 
then  to put the sub-expression back. The EQW contains 
now:

COS Y( ) ⋅SIN X( ) −COS X( )⋅ SIN Y( )( )
SINX( )⋅ SIN Y( ) ⋅ TAN Y( )⋅ TAN X( )

Now select the ratio:

COS Y( ) ⋅SIN X( ) −COS X( )⋅ SIN Y( )( )
SINX( )⋅ SIN Y( )

and press . The ratio is split in two smaller ratios:

COS X( )
SINX( ) −

COS Y( )
SIN Y( )

 
 
  

 
 ⋅ TAN Y( )⋅ TAN X( )
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Select the expression 
COS X( )
SIN X( )  and do a  to it. Select the 

expression 
COS Y( )
SIN Y( )  and do  again. Now you can press 

 to put the whole expression back on the stack again, or 
stay in the EQW and examine what happens if you apply each and 
every command of the HP49G to the expression.

What? You want more? OK, take this for today and try to solve them 
alone.

1
COS X( )2 +

1
SINX( )2 =

1
SIN X( )2 ⋅ COS X( )2

SIN X( ) + COS X( )( )2
− SINX( ) − COS X( )( )2

=

4 ⋅SIN X( ) ⋅COS X( )

1+ TAN X( )2 =
1

COS X( )2

1+
1

TAN X( )2 =
1

SIN X( )2

1
TAN X( )2 ⋅ COS X( )2 =

1
TAN X( )2 − COS X( )2

Don‘t miss the next part of the marathon, where we‘ll be talking about 
the solutions other beasts, other trigonometric relations and relations of 
Scotland to Greece, or in other words, ... you will see ;-)

Pythagorian greetings,
Nick.
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Hi trig-freaks!

Welcome to our second part of the marathon. A big big „thanks a lot“ 
goes to Thomas Rast for correcting my errata of the first part. You 
perhaps think that I start with the errata because it is better to correct 
them before telling more. Well, yes this is one reason. But there is 
another reason which has to do with monsters. „Errata“ resembles the 
greek word „terata“ which means „monsters“. Keep on reading to find 
out what monsters have to do with out marathon. :-)

In the last part we had much fun using the commands TRIG , 
TRIGSIN , TRIGCOS , TAN2SC, and TRIGTAN . There are a lot 
more trigonometric commands but let‘s first do an excursion to a place 
where there are no similar commands. Our marathonial journey doesn‘t 
introduce new built-in trig commands of the 49G today, but we‘ll see 
how we can make our own!

You remember that:

cos2(x)=1− sin2(x) (3)

which give us a possibility to express the cosine as a function of the 
sine:

cos(x) = s1⋅ 1− sin2(x) (8)

where s1 is an arbitrary sign of +  or −  .

There is no command for this on the 49G . Of course you could first 
enter COS X( ) , square it, use the command TRIGSIN  and then take 
the square root. But this would be cumbersome and also dangerous in 
expressions with many sines and arbitrary signs of the sines. (Signs of 
sines... how poetical ;-) What can we do about it?

Well, it seems that if we could somehow substitute s1⋅ 1−SIN X( )2
 

for COS X( ) , we would have what we want. Let‘s try it with a small 
program:

<<
   'COS(X)=s1* (1-SIN(X)^2)'  
   SUBST
>>

Store this in C → S , enter COS X( )  and press the soft key . It 
takes half a century but at the end we have what we wanted. But wait! 
What happens if we have COS Y( )  instead of COS X( ) ? Will the 

cosine of Y  also be substituted with s1⋅ 1−SIN Y( )2
? Let‘s try it: 

Enter COS Y( )  and press . Again after half a century you can see 
that you waited for nothing. No substitution took place, because the 
substitution rule was made for X , not for Y . We need a way for doing 
this for arbitrary names or even expressions like COS a + b( ) . So 
SUBST doesn‘t fit our needs. Another disadvantage of SUBST for 
this purpose is, that not only sub-expressions of the form 
COS(something)  will be substituted. Try the following: Enter: 

COS X( )
SIN X( )

and press . While the 49G is working (close to a century), you 
may think that you will get:

s1⋅ 1−SIN X( )2

SIN X( )

But you don‘t get this result. You get an ugly thing with many sub-
expressions and wonder how could this ever be calculated. The reason 
is the way that SUBST works in this case. It seems that it first solves:
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COS X( ) = s1⋅ 1− SIN X( )2

for X  and then uses the found solution to substitute not every 
occurrence of COS X( ) , but every occurrence of X  with the found 
solution.

The following example also shows this. Enter:

SIN X( ) + COS X( )

then enter:

SIN X( ) =
1
Y

and then press . The result is not:

1
Y

+ COS X( )

but:

1
Y

+ COS ASIN
1
Y

 
 

 
 

 
 
  

 

This shows that the X  in COS X( )  has been replaced by the solution 

X = ASIN
1
Y

 
 

 
  of the equation SIN X( ) =

1
Y

 .

Here comes one of the secret weapons of the HP49G, one of the most 
neglected commands, one of my favourites. :-) It is the command 
MATCH in its two variations ↑ MATCH  and ↓ MATCH . This 
command searches patterns and replaces them, with no further 
algebraic work. It takes an expression from stack level 2 and a list from 

stack level 1. The list contains two items. The first is the expression 
that must be replaced and the second is the expression with which the 
first expression must be replaced. To see it in work, enter COS X( ) , 
then enter the list:

COS X( ) s1⋅ 1− SINX( )2{ }
and then press . Very quickly you get the desired result and 

a 1 on stack level 1, which shows that a replacement happened. You 
would see a 0  there if no replacement were possible. This is an 
indicator which you can use in your programs, to make decisions what 
should happen next, if a replacement took place or if it didn‘t. But what 
can we do if we don‘t have COS X( )  but, say, COS a + b( )  instead? 
Can we somehow tell the HP49G that the name of the argument of 
COS doesn‘t matter? Oh yes, we can. Instead of using the list:

COS X( ) s1⋅ 1− SINX( )2{ }
we use the list:

COS &a( ) s1⋅ 1− SIN&a( )2{ }
The ampersand before the name a  makes this to a special argument. It 
is not only COS &a( )  that will be replaced, but also COS X( ) , 
COS Y( )  or even COS a + b( ) . Any pattern of the form:

COS something( )

will be replaced by the pattern:

s1⋅ 1−SIN something( )2
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So this is exactly what we need. Note also that this substitution 
introduces a new variable s1 (the sign) which was not in the original 
expression. This variable doesn‘t belong to any replacements that use 
the ampersand, but we can freely mix up the two types. To see how 

powerful this command is, use  with the algebraic object 

SIN(&A + &B)  and the list:

SIN(&A + &B) COS(&B)⋅ SIN(&A) +SIN(&B)⋅ COS(&A){ }

Here we have two variables for pattern replacement. There is no limit 
to the number of such „general“ variable names. So let us make a small 
program for the replacement of COS something( )  with 

s1⋅ 1−SIN something( )2
. Enter:

<<
    { 'COS(&X)'  's1* (1-SIN(&X)^2)' }
   ↑ MATCH  DROP
>>

and STOre this in ↑ C → S . Note again that &X  is only a place holder 
for any argument of COS . Let‘s try it. Enter COS x2 − a( )  and press 

. Fine!

Now, in the equation:

tan x( ) =
sin x( )
cos x( )

we can replace cos x( )  with s1⋅ 1− sin x( )2
 and we have:

tan(x)=
sin(x)

s1* 1− sin2(x)
(9)

so that we can also express TAN  as a function of SIN . Let‘s make a 
new program for this replacement. Enter:

<<
   { 'TAN(&X)'  'SIN(&X)/(s1* (1-SIN(&X)^2))'  }
   ↑MATCH  DROP
>>

and STOre this in ↑ T → S . Note also that this time the argument &X  
appears in two places in the replacement. Nice, isn‘t it? Let‘s give it a 
try. Enter COS X( ) ⋅ TAN X( ) , press  and then press 

 to replace both COS  and TAN  with functions of SIN .

But the pattern matching and replacing commands have even more 
power. Consider for example the following replacement list:

{ &A +&B    SAB  }

which would replace a sum of two arbitrary arguments with the 
variable SAB . If you apply this replacement to the expression:

SIN(a+ b) + SIN(c + d)

then it is not clear what should be replaced. Did you mean the 
arguments A + B  and C +D  of the two sines, or did you mean the 
whole expression, SIN(a+ b) + SIN(c + d), which is also a sum of 
two things? Well, MATCH in its two variations allows any of these 
cases.

↑ MATCH  starts searching from the innermost sub-expressions. In 
the example above it would return SIN(SAB) + SIN(SAB). The 
opposite does ↓ MATCH . It starts at the outermost sub-expressions. 
In the example above it returns SAB .

And what can we do if we want that all occurrences of a pattern at any 
level in the algebraic object, are to be replaced with some other pattern? 
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Well, there comes the indicator for a successful matching, that the 
pattern matching commands also return. Consider the following:

<<
   DO 
    { replacementList }
    ↑MATCH
   UNTIL NOT
   END
>>

Every time ↑ MATCH  runs it returns a 1 or a 0 . When a replacement 
takes places a 1 is returned, which NOT makes to a 0 , so that the loop 
runs again. But when no replacement takes place, that means that we 
can‘t do anything more. ↑ MATCH  then returns 0 , which NOT turns 
to 1 that terminates the loop. All possible replacements of the type 
given by {replacementList} are done and afterwards the program 
ends. Perfect!

Now, if I tell you that the pattern matching commands have even more 
power, you‘ll say that I am crazy. But they do. (And I am indeed 
crazy! ) Let‘s find it out using an example. Enter:

COS X( )4 − COS X( )2

and press . Press  to expand this. The result contains 
many occurrences of s1 which is the arbitrary sign. All occurrences are 
raised to an even power so they should be replaced by a 1. But the 
HP49 doesn‘t know that s1 is 1 or −1, and so it can‘t replace all 

s1evenPower
 with a 1. We could of course make a replacement program 

for this, but then we could‘t use it for the cases when s1 is raised to an 
odd power. So what can we do? There cometh pattern matching again. 
The replacement list can contain also 3 items. The first two are the 
items that we already know. The third is a condition. If it evaluates to 
true, then the replacement will be done. If it evaluates to false, then no 

replacement will be done. We must check if s1 is raised to an even 
power, so the object:

FP
power

2
 
 
  

 
 ==0.

could be the condition. Note that we use here not the normal sign for 
equals, "= ", but the test function "is equal to?" which on the 49G is 
"== ". Note also that we must write the zero in the condition as 0.  
(real) and not 0  (integer) because it doesn‘t work with 0  as integer. 
(Though it should, because testing 0.==0 evaluates to true, but that‘s 
another story.)

Enter the program:

<<
    {  's1^&n' 1 'FP(&n/2)==0.'  }
   ↑ MATCH  DROP
>>

and STOre this in s1even → 1. Now with the last expression (the one 
with many s1 occurrences) on stack level 1, press  and 

. Nice!

Note also that we used s1 and not &somevar  in the replacement, 
because we don‘t want everything raised to some even power to be 
replaced by a 1. This limits us to the use of s1 as a sign variable, but if 
we use this convention throughout all other replacements, then 
everything will work fine.

If you have time you could also make such replacement programs for 
the following relations.

sin(x) = s1⋅ 1− cos2(x) (10)
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tan(x) =
s1⋅ 1− cos2(x)

cos(x)
(11)

cos(x) =
1

s1⋅ 1+ tan2(x)
(12)

sin(x) =
tan(x)

s1⋅ 1+ tan2(x)
(13)

 
and a replacement program that turns s1oddPower  to −1 when s1 is −1 
and to 1 otherwise.

The very interested user could also wrap all these replacement 
commands to a new library, so that they are available from 
everywhere. (Though John H. Meyers will say: „Put it in the HOME 
directory“ where they are also available from everywhere.) Well, do as 
you like. All ways are open.

It‘s time now to tell the story about the monsters and the relation of 
Scotland to Greece. You all know about Nessy at Loch Ness, don‘t 
you? Well, there is a lake at Marathon in Greece, and at the early 80's, 
Nessy decided to have give extraordinary concerts at the lake of 
Marathon, where it was much warmer than in cold Scotland. All head 
bangers went there and had a good time. The first to see Nessy was the 
witness Charalambos Trabakoulas, a shepherd, who was interviewed 
after Nessy‘s first appearance:

TV-Man holding the microphone directly at Charalambos‘ mouth: Mr. 
Trabakoulas, tell us what you saw!

Charalambos: My son, I was over there with the sheep, when 
I, from eye to eye, directly, with my eyes, I saw the 
monster!
TV-Man: Did you see the whole monster?

Charalambos: Oh no, only the head, my son, take that thing 
away (the microphone) and put it where you know. (What does 
he mean here? )

TV-Man: You mean, you saw the monster as it came out of 
the water of the lake?

Charalambos: Oh, no! It had already drunk the whole lake!

Which is the reason why there is not much water in Athens in summer, 
and the people don‘t have anything better to do, than finding 
trigonometric relations!

End for today. Next time we‘ll learn about some new commands. And 
have some exercises. And have fun. And... talk about the adventures 
of Charalambos with the extraterrestrials.

Always yours,
greetings from me and Charalambos.
(And of course the sheep... Meeeeehhh Beeeep, Meeeeehhhh, 
Beeeep!)
Nick.
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Hi everybody!

Continuing the marathon with the third part, I see that there is stuff left 
having to do with substitutions and programming, which only 
indirectly relates to trigonometry. I think that it would be a pity, not to 
mention this stuff, so let's start where we ended last time: At the 
possibilities for replacements and general manipulations of algebraics. 
It may seem that we lost the path of the trig marathon, but what we see 
here will be very valuable for later, when we make our way though the 
jungle of trigonometry. We will return in part 4 to the main route of the 
trigonometric marathon.

First of all, thanks to VPN for pointing out that making a program for 
replacement of s1oddPower  with a −1 would be incorrect when s1 
represents a 1.

So we must find a way to distinguish the cases where s1= 1 from the 
cases where s1= −1. One possible solution would be to take advantage 
of the fact that the command IFTE  is actually a function which can be 
included in algebraics. So we could substitute s1 raised to some odd 
power with IFTE s1== 1,1,−1( ) . The replacement list should also had a 
third item that checks if the power is odd, like for example 

FP
&n
2

 
 
  

 
 ≠0. 

The replacement program would look like:

<< 
    { 's1^&n' 'IFTE(s1==1,1,-1) 'FP(&n/2)≠ 0.' }
    ↑MATCH  DROP
>>

If you store this in ↑ s1odd →  you can use it together with the 
program s1even → 1 in another program that replaces s1 raised to 
even and to odd powers. This program could be something like:

<<
    ↑s1even→1
    EXPAND
    ↑s1odd→
    EXPAND
>>

Now, for small expressions the programs are nice but for bigger 
expressions that also contain many odd powers of s1, you can quickly 
come to very ugly looking results with many IFTE , which don't 
contribute to the overall readability of the expression. Another problem 
is that the replacement programs will match anything of the form s1n  
but not a single s1 that isn't raised to some power. (Remember? No 
algebraic replacement, just patterns.) We could of course check the 
whole algebraic for existence of s1 not raised to any power, but that 
would be cumbersome. In other words, I am too lazy to do that. ;-)

But let's think again (as VPN says) about this problem. The main 
advantage of the pattern matsching commands is that is can find and 
replace patterns. Now, we made the convention that s1 is always the 
name of the arbitrary sign, so we don't need to look for patterns. The 
command SUBST seems to fit better here, as the code

's1=1' SUBST

or

's1=-1'  SUBST

would substitute every occurrence of s1 with 1 or −1 respectively, 
even when s1 is not raised to any power at all. But the problem is that 
we can't do both substitutions with only one SUBST. Remember, 
when the HP49G wants to tell us that there are more than one possible 
results, it packs them in a list. Imitating this behaviour we can write a 
program like:
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<<
    DUP
   's1=-1' SUBST EXPAND
    SWAP
   's1=1' SUBST EXPAND
    2 →LIST
>>

which makes both substitutions and returns the two results in a list. We 
see here, that the choice of the right tool can make life easier. Since the 
49G has so many commands, it is sometimes not easy to decide which 
one should be used. But using some method for a long time often 
shows the disadvantages and suggests another method to be used.

Continuing about replacements: As Máximo Castañeda Riloba has 
pointed out, the replacement of the pattern COS &X( )  with 

s1∗ 1− SINX( )2
 will work for an expression that only contains one 

occurrence of the pattern COS &X( ) . When we have an expression 
with multiple occurrences of COS &X( ) , as in COS X( ) +COS 2 ⋅X( )  
then each of the COS  patterns should be replaced in a way that each 
sign is independent from the other, because one sign can be 1 or −1, 
no matter what the other sign is. Putting simply s1 for every replaced 
pattern makes them both the same. If we only somehow could use a 
numbering system that distinguishes the signs and writes, say, s1 for 
the first and s2  for the second, and so on. MATCH can't do that1 , 
because one pattern is replaced by one pattern with no numbering or 
other distinguishing capabilities. Neither SUBST nor | (where) can be 
used for this purpose. But this doesn't mean that it isn't possible. ( A 
well known phrase when using the HP49G ;-) )

We need to write a program that not only checks occurrences of
COS  (or other trigs) but also keeps track of the value of some iterator 
variable, which then can be used to make the signs s1, s2 , and so on.
1 Well, take a look at the second part of the Basic Calculus Marathon, to see how 

pattern matching can be used for this purpose.

A fantastic property of the HP49G is that functions (like COS) are 
also objects, which can be used not only to perform calculations but 
also for other purposes. For example enter the list COS{ }  and then 
use the command HEAD, which extracts the first element of a list. A 
naked COS  function sits now on stack level 1. It can be used as 
argument for tests and other things.

Another command made available to the users on the HP49G is the 
command → LST  (Menu 256, second page). This beauty takes an 
algebraic object, translates it to the RPN command sequence that 
corresponds to the algebraic, and returns this sequence as a list. Enter 
for example COS X( ) − 1( ) ⋅SIN X( ) , and press → LST . The result is 
the list representation of the algebraic object:

X COS 1 − 2 X ∗ SIN ∗{ }

The opposite is the command → ALG  (Menu 256, second page) 
which would take this list and build up the original algebraic object.

Having this two things in combination allows as to turn an algebraic to 
a list, check for occurrences of COS  (or any other command/function) 
keeping track ot the number of the occurrences and replace each 
occurrence with something that contains a numbered arbitrary sign. For 

a replacement of COS  with s1∗ 1− SINX( )2
 where sn  is the 

numbered arbitrary sign, enter the program:

<< →LST
  1
  <<
    IF DUP { COS } HEAD SAME
    THEN DROP { SIN SQ NEG 1 + SQRT } "s" NSUB R→I + 
         S~N  { * }  +  +  OBJ→  DROP
    END
  >>
  DOSUBS →ALG
>>
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and STOre it in C → S . This program simply checks each object in the 
list that → LST  created. If the object is the function COS , it 
constructs the list:

SIN SQ NEG 1 + sn ∗{ }
and then explodes it dropping the item count of the list. The program 
may look like one that uses a local variable procedure but it isn't. The 
inner program is placed on the stack at run time and is used as an 
argument to the command DOSUBS.

DOSUBS needs a list at stack level 3, the number of arguments that 
the program on level 1 needs, and a program on level 1. It applies this 
program to each group of n arguments of the list in level 3, n  being the 
number of arguments in stack level 2. The result of the program 
replaces each group of n  arguments in the list. NSUB returns the 
number of the current group of items used as arguments for the 
program on level 1, as a real number. R → I  transforms this real to an 
integer and adding this integer to the string "s"  returns the numbered 
arbitrary sign as a string, which the command S ~ N  then transforms 
to a name.

To try it, enter:

COS X( ) +SIN X( ) + COS X( )2

and press . You get:

−SIN X( )2 +1∗s2 + SIN X( ) + −SIN X( )2 +1∗s7 
 

 
 

2

where s2  and s7  are two distinct arbitrary signs.

You could now be impressed of the ease with which such things are 
achievable with the HP49G, but there are things even more 

impressing. Consider for example the algebraic object:

COS X( ) ∗SIN X( )dX
0

π

∫

Applying C → S  to this returns the same object unchanged. Why? If 
you re-enter the algebraic and apply the command → LST  to it, the 
result is:

0 π COS X( ) ⋅SIN X( ) X ∫{ }
Checking if each item is the same as COS  doesn't work here because 
the integrant is not transformed into an elementary command sequence 
that includes COS  at some point. Some of the functions that can be in 
algebraics behave this way, when we apply → LST . One of these 

functions is the function ∫ . So we could of course think, that we 

must first find all that functions and do something special if we 
encounter them. But what if such functions are nested? How many 
passes should we explicitly program to catch all of those functions?

Fortunately we don't need to do that. Recall that C → S  splits an 
algebraic to its elements, checks each element for a COS  function and
if it is, it replaces this element. Exactly the same procedure can be used 
for the case, when one of the elements of the list is itself an algebraic 
object. Since algebraic objects and built-in functions have different 
types (9 and 18 respectively), we can do:

<<
  →LST
  1
  << 
    IF DUP TYPE 9. ==
    THEN C→S
    END

Trigonometry with the HP49G - Part 3

3-3

Program continues on next page



    IF 
      DUP { COS } HEAD SAME
    THEN
      DROP { SIN SQ NEG 1 + } "s" NSUB

R→I + S~N  { * } + + OBJ→ DROP
    END
  >>
  DOSUBS
  →ALG
>>

STOre this in C → S . Note that the program uses itself recursively (!) 
to split any number of nested algebraics and replace each occurrence of 
COS . To test it, enter for example:

COS X( )⋅ SINY( )dXdY
0

π

∫
0

π

∫

Then press . Isn't that nice? (It is a recursion, so Nick must find 
it beautiful.)

Finishing for today, there is a problem left, that arises because we use 
numbered arbitrary signs. How could one write a program, that checks 
for any arbitrary sign, like s1, s2  and so on, and then builds up a list 
with algebraics in all possible combinations of all arbitrary signs?

That's all for today. Take care and keep on HP49Ging.
'Till next time, recursive greetings,
Nick.
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Hi everybody!

In the last two parts of the trigonometry marathon we made a long trip 
through the replacements jungle. Then came Christmas any the New 
Year, when Nick was drinking Ouzo with Trabakoulas, thinking about 
trigonometry and monsters.

Trabakoulas also said that he had an experience with aliens, who came 
to his house carrying their HP calcs in their heads. I told him that this 
must have been VPN, but he insisted that they were aliens. They were 
eager to show him how much trigonometry can be done with the 
HP49G and they told him to tell me about this lessons. The poor guy 
now has a big headache applying trigonometry to find positions of his 
sheep.

Now let‘s return to our main path and examine other trigonometry 
commands that the HP49G provides. This time we will talk about 
trigonometric functions of sums of two or more angles. Perhaps you 
already know about relations like:

cos(x + y)= cos(x)∗cos(y)− sin(x)∗ sin(y)

sin(x + y)= sin(x)∗ cos(y)+ cos(x)∗ sin(y)

tan(x + y)=
tan(x)+ tan(y)

1− tan(x)∗ tan(y)

Can the HP49G do these things? As you may have guessed, yes! The 
command TEXPAND  takes the left hand side of these relations and 
returns the right hand side. Try it. TEXPAND  can also transform 
differences of angles. Enter for example SIN X − Y( )  and press 

. You get:

SIN X( )⋅ COS Y( ) − COS X( )⋅ SIN Y( )

The command TEXPAND  can also be used to show such things like 
SIN X + π( ) = SINX( ) . Enter SIN X + π( ) , press  and then 

 to get the final result.

But what about the opposite way? What if you have, say, 
COS X( ) ⋅COS Y( ) − SIN X( )⋅ SIN Y( )  and want to transform this to 
COS X + Y( ) ? Well, then you use the command TCOLLECT . Just 
try it. Enter COS X( ) ⋅COS Y( ) − SIN X( )⋅ SIN Y( ) , press  
and enjoy.

There is also the command TLIN , which takes products of 
trigonometric functions and tries to convert them into expressions with 
linear trigonometric terms.

Now let‘s have some fun! Take the ouzo bottle out, and help 
Trabakoulas find his sheep.

1) Simplify the expression:

SIN
π
3

+ a
 
 

 
 + SIN

π
3

− a
 
 

 
 

This is easy. After you entered the expression press  and 
then . The result is:

3 ⋅COS a( )
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2) Simplify the expression:

SIN X − Y( ) ⋅COS X + Y( ) − COS X − Y( )⋅ SIN X + Y( )

Looks like we should use TEXPAND and hope that many sub-
expressions cancel out. Let‘s try it.  and then 
returns:

− 2 ⋅COS Y( )⋅ SINY( )⋅ SINX( )2 + 2 ⋅COS Y( )⋅ COS X( )2 ⋅SIN X( )( )
Not very satisfying. But we can  common factors and 
we get:

− SIN X( )2 +COS X( )2( ) ⋅COS Y( )⋅ SINY( )⋅ 2( )
Now we can use , to turn SIN X( )2 +COS X( )2

 to 1. The 
result is now:

− 2 ∗COS Y( )∗ SIN Y( )( )
Now we have a product of trigonometric expressions. Let‘s try 

 to see if it can converted to a linear trigonometric function. 
Press  and you get −1⋅ SIN2 ⋅Y( ) .  this and you have 
−SIN 2 ⋅ Y( )

But there is another easier way. Re-enter the expression 
SIN X − Y( ) ⋅COS X + Y( ) − COS X − Y( )⋅ SIN X + Y( )  and press 

. Voila! (  does exactly the same in this case. Try 
it!)

3) Turn SIN X + Y + Z( )  to a sum of products of trigonometric 
functions.

Enter SIN X + Y + Z( )  and press . (It works with an 
arbitrary number of angles in the sum.) Use  to 
completely distribute ×  over +  and you get:

COS Y( )⋅ SINX( )⋅COS Z( ) + SIN Y( ) ⋅COS X( )⋅ COS Z( ) +
COS Y( )⋅ COS X( )⋅ SINZ( ) − SIN Y( ) ⋅SIN X( ) ⋅SIN Z( )

(This could be also called, „Turn SIN X + Y + Z( )  to something 
that is much more complicated“)

4) Express 
1

TAN X + Y( )  as a function of TAN X( )  and TAN Y( )

Enter 
1

TAN X + Y( )  and press . You get:

−
TAN Y( ) ⋅ TAN X( ) −1
TAN X( ) + TAN Y( )
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5) Show that:

SIN X + Y( )2 + SINX − Y( )2 =

2 ⋅ SIN X( )2 ⋅COS Y( )2 + 2 ⋅SIN Y( )2 ⋅ COS X( )2

Just enter the left hand side and use  and then .

6) Show that:

SIN X + Y( ) ⋅SIN X − Y( ) =

SIN X( )2 −SIN Y( )2 = COS Y( )2 − COS X( )2

Enter SIN X + Y( ) ⋅SIN X − Y( ) , press  and then 
 to get:

COS Y( )2 ∗ SIN X( )2 −COS X( )2 ⋅SIN Y( )2

Now we have squares of SIN  and COS . We can use  to 
turn squares of COS  to squares of SIN . Press  to get:

SIN X( )2 −SIN Y( )2

If you press  you will get:

− COS X( )2 − COS Y( )2( ) .

7) Show that:

2 ⋅SIN X + Y( )
COS X + Y( ) + COS X − Y( ) = TAN X( ) + TAN Y( )

Enter the left hand side of the equation. Press  and then 
 to obtain:

COS Y( )⋅ SINX( ) + COS X( ) ⋅SIN Y( )
COS Y( ) ⋅COS X( )

Use  to distribute /  over the +  and you have:

SIN X( )
COS X( ) +

SINY( )
COS Y( )

Now use  to obtain TAN X( ) + TAN Y( ) .

8) Show that:

COS X( ) +COS
2 ⋅π

3
+ X

 
 

 
 + COS

4 ⋅π
3

+ X
 
 

 
 = 0

 and then  gives you the 0 .
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9) Show that:

COS X( )2 + COS
2 ⋅π

3
+ x

 
 

 
 

2

+ COS
4 ⋅π

3
− x

 
 

 
 

2

is a constant.

Enter the left hand side, press , then  to get:

3 ⋅ SINX( )2+3∗ COS X( )2

2

Then use  to obtain 
3
2

.

10) Show that:

TAN
π
4

− X
 
 

 
 =

SIN X( ) − COS X( )
SIN X( ) + COS X( )

Enter TAN
π
4

− X
 
 

 
  and press   to convert the TAN  to a 

quotient of SIN  and COS . Then use  and  to 
obtain the final result.

11) And now a messy one. Show that:

COS X + Y( )2 + COS Y( )2 − 2 ⋅COS X + Y( ) ⋅COS X( ) ⋅COS Y( )
SIN X + Y( )2 + SIN Y( )2 − 2⋅ SINX + Y( ) ⋅COS X( ) ⋅COS Y( )

= 1

Enter the big left hand side. Let‘s try  and then . 
We get an expression with many squares of SIN  and COS . We 
hope that replacing squares of SIN  through squares of COS  will 
cancel out many sub-expressions, so we use . And the 
answer is: 1

Alternatively we can apply  to the big left hand side. 
This returns a sum of quotients, which we can  to obtain 
the final answer 1. ( TCOLLECT needs some seconds to make its 
job, so be patient and let it finish.)

Another way is to use  to the big left hand side. This also 
returns a sum of quotients, which we can  to obtain the 1. 
(TLIN also needs some seconds to make its job, so again be 
patient until it finishes.)

Let‘s stop for today, as ouzo starts influencing me very strongly. Here 
are some more things, which you could try to solve alone. (After you 
have survived the ouzo influence, of course ;-) )

1) Show that:

COS X + Y( ) ⋅COS X − Y( ) = COS X( )2 − SINY( )2 =

COS Y( )2 − SIN X( )2
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2) Show that:

SIN X − Y( )
SIN X( )⋅ SIN Y( ) =

1
TAN Y( ) −

1
TAN X( )

3) Show that:

COS X + Y( )2 + COS Y( )2 − 2 ⋅ COS X+ Y( ) ⋅COS X( )⋅ COS Y( ) = SIN X( )2

4) Show that the expression:

COS X( )2 − 2 ⋅ COS X( )⋅ COS A( ) ⋅COS A − X( ) + COS A − X( )2

doesn‘t depend on X .

Just for completeness! Greetings,
Nick.
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Hi everybody!

We have seen so far how much power the trigonometric commands of 
the HP49G provide, but what we have seen isn't even half the 
available power! Actually Trabakoulas said: "The real power of the 
HP49G is that it helped me find my sheep, which I was searching a 
little far away from here, when I saw the aliens. Inform HP that a 
sheep-finder application for the calc would be a real nice thing, and 
also that alien trigonometry is identical to ours."

The marathon will continue today with trigonometric functions of 
products and some additional techniques for working with the 
trigonometric commands of the HP49G.

Let's take a look to the some formulas of trigonometry, which you may
already know.

sin(x)=2 ∗ sin
x
2

 
 
  

 
 ∗ cos

x
2

 
 
  

 
 (14)

cos(x)= cos2 x
2

 
 
  

 
 − sin2 x

2
 
 
  

 
 (15)

tan(x)=
2 ∗ tan

x
2

 
 
  

 
 

1− tan2 x
2

 
 
  

 
 

(16)

How could we do the first one? Well, notice that on the right hand side 
we have trigonometric functions with an argument that is the half of the 
argument of the trigonometric functions on the left hand side. In such 
cases it is often a good start, to use HALFTAN and then TAN2SC.

So here we go again. Enter SIN X( )  and press . You get a 

ratio with TAN  functions of 
X
2

. Turn the TAN  functions to SIN  and 

COS  of the same argument using . Press  to make 
things a little bit clearer. The denominator of the resulting ratio is the 
sum of the squares of COS  and SIN , so press   to turn it to 1 and 
get rid of the denominator.

The same way can be used to achieve (15). Enter COS X( )  and press 
, , . If you now press  to make a 1 out 

of the denominator, then you'll get:

− 2 ∗SIN X( )2 −1( )
This is equivalent to:

COS
X
2

 
 

 
 

2

− SIN
X
2

 
 

 
 

2

Obviously TRIG  acts also upon the numerator in this case. So instead 
of pressing , press  , to get the ratio in the EQW, then select 
the denominator and then press , so that the command acts upon 
the denominator only. Now press  and  to get the 
desired result.

Let's continue to the third formula. You're lucky! Press  and 
you're done.

The opposite direction is also possible. Enter for example the right 
hand side of (15) and  press  or . The result is 

COS 2 ⋅
X
2

 
 

 
  which can be EXPAND ed to give COS X( ) .
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Now enter right hand side of (16) and  press  or . 
Nothing happens except for some reordering. Notice however that we 

have an expression with TAN  functions of 
X
2

, the half of X , and we 

want an expression that only contains trigonometric functions of X . 
The command TAN2SC2  seems appropriate here, since it takes 
trigonometric functions of the half argument and returns trigonometric 
functions of the argument itself. So let's use it and hope that it does 
good in this case. Press . (Be careful because TAN2SC and 
TAN2SC2  show up identically on the menu keys. TAN2SC2  is the 
third menu key from the left in the second page of the trigonometry 
menu 122.) Now press  and you're done.

Let's take a look to some additional examples now.

1) Show that:

SIN3 ⋅X( ) = 3 ⋅ SINX( ) − 4 ⋅SIN X( )3

Enter SIN(3⋅ X) , which is the same as SIN(x + 2 ⋅ X) , an 
expression of the form SIN(A + B) . So we expect that 
TEXPAND  could help us here. Press  and you get:

SIN X( )⋅ 4 ⋅ COS X( )2 −1( ) .

We want to have only SIN  on the right hand side, so press 
 and voila!

(TCOLLECT  or TLIN  applied on SIN X( )⋅ 4 ⋅ COS X( )2 −1( )  

give you SIN3 ⋅X( ) , the expression you started with.)

2) Show that:

COS 3 ⋅ x( ) = 4 ⋅COS X( )3 − 3 ⋅ COS X( )

Enter COS 3 ⋅ X( )  and press .

3) Show that:

COS X( ) + SIN X( )( )2
= 1+ SIN2 ⋅ X( )

This is also easy. Just enter the left hand side and press 
. The HP49G starts getting bored, so give it something 

to crunch a bit more.

4) Show that:

1+ TAN X( ) + TAN 2 ⋅ X( ) =
1

COS 2 ⋅ X( )

Enter the left hand side of the equation. In this case we want to get 
an expression with COS  of 2 ⋅ X . So turning TAN X( )  to some 
trigonometric function of 2 ⋅ X  sounds reasonable. Pressing 

 while the expression is on the stack is not good because 
then TAN(2 ⋅X)  is turned to a function of 4 ⋅X . So take the 
expression to the EQW, select TAN X( )  and then press . 
Still in the EQW select TAN(2 ⋅X)  and press . Press 

 to return to the stack. Press  to turn the 

expression to 
1

COS 2 ⋅ X( ) .
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5) Show that:

TAN
π
4

− X
 
 

 
 

2

=
1− SIN 2 ⋅ X( )
1+ SIN 2 ⋅ X( )

The argument of TAN  on the left hand side is of the general form 
A −B , so TEXPAND  seems appropriate as a start. Press 

 and you get a new function with TAN  functions of X . 
Because the result involves SIN  functions of 2 ⋅ X , try . 
This leaves a function with SIN  and COS  functions of 2 ⋅ X . 
Now press  to get the desired result.

6) Show that:

SIN2 ⋅X( )
1+ COS 2 ⋅ X( ) ⋅

COS X( )
1+ SINX( ) = TAN

X
2

 
 

 
 

In this case we have 2 ⋅ X  and x  as arguments for SIN  and COS  

on the left hand side and we want 
X
2

 as argument for TAN  on the 

right hand side. We must use HALFTAN twice for the first factor 
of the left hand side and once for the second factor of the left hand 
side. To do this we take the left hand side to the EQW, select the 
first factor and press . The resulting expression looks a 
bit complicated, but press  and you get TAN X( ) . While 
TAN X( )  is still selected, press  again. Now select the 
second factor and press . Press  to take the big 

expression on the stack. This expression contains only 
X
2

 as 

argument for the TAN  functions. Press  and you have 
what you wanted.

7) Show that:

TAN
π
4

+ X
 
 

 
 − TAN

π
4

− X
 
 

 
 = 2 ⋅ TAN(2 ⋅X)

Because we again have sums as arguments for TAN  functions on 
the left hand side, press . Then  the result to 
make it a little more readable. Now, we want to have 2 ⋅ X  as 
argument for TAN  in the final result, so let's try  and 
then , which gives exactly what we wanted to have.

8) Show that:

SIN(2 ⋅X)2 − 4 ⋅ SIN(X)2

SIN(2⋅ X)2 + 4 ⋅ SIN(X)2 − 4
= TAN X( )4

It should be clear by now that the arguments 2 ⋅ X  of SIN  
functions on the left hand side should be converted to X  first. So 
take the left hand side on the EQW, select SIN(2⋅ X)2  on the 
numerator and press . Then select SIN(2⋅ X)2  on the 
denominator and press again . Press  to go to the 
stack and then press .
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9) Find to what TAN X( )  has to be equal, if the following equation 
has to be satisfied:

4 ⋅SIN 2 ⋅ X( ) + 3 ⋅COS 2 ⋅ X( ) = 3

First enter the equation and then press  to convert all 
trigonometric functions to TAN  functions of the half angle, that is 
of X . Then enter TAN X( )  and press . (Don't worry about 
the denominator, as it never is 0 when X  is real.)

10) What values must l and m  have, if the equation

1
SIN X( ) =

l

TAN
X
2

 
 

 
 

+
m

TAN X( )

must be satisfied for any value of X ?

Let's first convert TAN
X
2

 
 

 
  to trigonometric functions of X . Get 

the whole equation to the EQW, select 
l

TAN
X
2

 
 

 
 

 on the right 

hand side and press , which also converts TAN  to SIN  

and COS  functions. Select 
m

TAN X( )  and press . Now, 

select the whole right hand side and press .

If you have:

(l+ m)⋅ COS X( ) + l
SINX( )

you are on the right path. With this expression selected, press 
. Now you have the equation:

1
SIN X( ) =

(l+ m) ⋅COS X( )
SIN X( ) +

l
SIN X( )

The expression 
(l+ m)⋅ COS X( ) + l

SINX( )  on the right hand side must 

vanish, because otherwise the right hand side can't be equal to the 
left hand side for every X  value. That means that it must be:

l+ m = 0 ⇔ m = −l

So the equation turns to:

1
SIN X( ) =

l
SIN X( )

which clearly shows that:

l =1 and m = −1.

That's all for now, stay tuned for the next parts.
Greetings,
Nick.
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Hi everybody!

First of all many thanks to Thomas Rast for posting a correction to an 
error in the last part. Also many thanks to G. Illias for suggesting to 
make side notes, if appropriate, to show how such things can be done 
with the HP48.

If anything has became clear until now, then this must be the fact that 
there are many too many relations between trigonometric functions, 
and no general rule for working with all of them. Knowledge of math 
is important, but getting used to the way that the commands work is 
also important. As you use your HP49G more and more, you start 
„knowing in advance“ what the result of some function or command 
will look like, and you develop a kind of built-in instinct, which helps 
you to find out, which way you should follow to solve some problem. 
As Trabakoulas, the father soul of all shepherds says: „Here on the 
Trigomounts, my son, there is no such thing like a compass that 
always brings you to your destination. Go with care and ratio and 
don‘t be afraid to stop and return to your starting point, when you see 
that some way gets difficult with time.“

In this 6th part of the trigonometry marathon we are going to do some 
stuff for which the HP49G doesn‘t provide built-in commands. But we 
will see that nonetheless the HP49G can handle such cases. If I 
remember well, there has been a discussion here, about such 
conversions like:

sin(x) + sin(y) = 2 ⋅sin
x + y

2
 
 

 
 ⋅cos

x − y
2

 
 

 
 (17)

I didn‘t find any single command on the HP49G, which does this 
conversion from the left to the right. We have to use several commands 
in combination. Let‘s enter SIN X( ) + SIN Y( ) . Note that the result that 
we want to have contains only trigonometric functions of the half of 
the sum of X  and Y . So we hope that we can start with HALFTAN, 

which converts trigonometric functions to TAN  functions of the half 

angle. Press . Now the arguments are all 
X
2

 and 
Y
2

 but we 

have TAN  instead of SIN  and COS  functions. Let‘s turn TAN  to 
SIN  and COS  functions. Press . The resulting expression 
looks a bit of weird. Through repeated attempts and not through 
„knowing in advance“ I found that a good way to go is the following: 
Press  to factor the expression. (Takes some time, so be 
patient.) Take the resulting expression in the EQW and switch to mini 
font to see more of the expression. The numerator is:

COS
Y
2

 
 

 
 

⋅ SIN
X
2

 
 

 
 

+COS
X
2

 
 

 
 

⋅SIN
Y
2

 
 

 
 

 
 
  

 
⋅ SIN

Y
2

 
 

 
 

⋅SIN
X
2

 
 

 
 

+COS
X
2

 
 

 
 

⋅ COS
Y
2

 
 

 
 

 
 
  

 
⋅ 2

The denominator is:

SIN
X
2

 
 

 
 

2

+ COS
X
2

 
 

 
 

2 

 
  

 
 ⋅ SIN

Y
2

 
 

 
 

2

+ COS
Y
2

 
 

 
 

2 

 
  

 
 

Select the first sub-expression of the numerator:

COS
Y
2

 
 

 
 ⋅ SIN

X
2

 
 

 
 +COS

X
2

 
 

 
 ⋅SIN

Y
2

 
 

 
 

 
 
  

 

and press . This converts the sub-expression to:

SIN
X + Y

2
 
 

 
 

Looks like we are on the right way. Select the second sub-expression 
of the numerator:
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SIN
Y
2

 
 

 
 ⋅SIN

X
2

 
 

 
 + COS

X
2

 
 

 
 ⋅COS

Y
2

 
 

 
 

 
 
  

 

and press  again. Fine, we have:

COS
X − Y

2
 
 

 
 

Select the whole denominator:

sin2 x
2

 
 
  

 
 + cos2 x

2
 
 
  

 
 

 
 
 

 
 
 ∗ sin2 y

2
 
 
  

 
 + cos2 y

2
 
 
  

 
 

 
 
 

 
 
 

and press  again. This returns a nice round 1. Press  
and then   to get rid of this 1 in the denominator. Voila!

The summary of what we have done: HALFTAN, TAN2SC, 
COLLECT , TCOLLECT  applied to the first and second sub-
expression of the numerator, TCOLLECT  applied to the denominator 
and EXPAND .

You can use the same method also for:

sin(x)− sin(y)=2∗sin
x − y

2
 
 
  

 
 ∗cos

x + y
2

 
 
  

 
 (18)

cos(x)+ cos(y)= −2∗ cos
x + y

2
 
 
  

 
 ∗cos

x − y
2

 
 
  

 
 (19)

cos(x)− cos(y)=2∗ sin
x + y

2
 
 
  

 
 ∗sin

x − y
2

 
 
  

 
 (20)

A similar transformation is:

sin(x)− sin(y)
sin(x)+ sin(y)

=
tan

x − y
2

 
 
  

 
 

tan
x + y

2
 
 
  

 
 

(21)

Apply the method used to show (17) separately on the numerator and 
the denominator.  Take the left hand side in the EQW, select the 
numerator, apply the above method, then select the denominator and 
apply the method again. Then you get:

SIN
X − Y

2
 
 

 
 ⋅ COS

X + Y
2

 
 

 
 

COS
X − Y

2
 
 

 
 ⋅ SIN

X + Y
2

 
 

 
 

Press  to put this expression on the stack. Use  to 
convert SIN  and COS  to TAN  functions of the same argument, and 
you‘re ready.

But now the question is: „Do I have to do all this every time I want to 
do such a conversion?“ Well, no! It would be cumbersome and not so 
easy, because we applied some trigonometric functions separately on 
parts of our expressions. If we wanted to do exactly the same 
programmatically, then we would have to use commands that split our 
expressions, check what the sub-expressions are and what the 
functions are that combine the sub-expressions, check arguments, and 
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so on. Because we don‘t want to write a new CAS on top of the 
existing CAS, we choose an easier way: MATCH (Again, ;-) )

For example, we can use MATCH with the list:

SIN(&A) + SIN(&B) 2 ⋅ SIN
&A + &B

2
 
 

 
 ⋅COS

&A − &B
2

 
 

 
 

 
 
 

 
 
 

for the conversion (17). But then we have 2 problems:

1) How can we be sure that this would work, also for not factored 
expressions, like for example SIN X( )2 −SIN Y( )2

?

2) How can we repeatedly match, until all matching has been done?

The answer to the first question seems to be to use COLLECT , so that 
the necessary factoring for the following MATCH is achieved. I don‘t 
know if this works perfectly, but I didn‘t have any case where it didn‘t 
up to now.

The answer to the second question is, to use MATCH in a loop, until 
nothing more can be matched. The following (not so) small program 
does this for the conversions (17), (18), (19) and (20):

<<
   COLLECT

   WHILE
    { 'SIN(&A)+SIN(&B)' '2*SIN((&A+&B)/2)*COS((&A-
&B)/2)' }
    ↓ MATCH
   REPEAT
   END

   WHILE
    { 'SIN(&A)-SIN(&B)' '2*SIN((&A-
&B)/2)*COS((&A*&B)/2)' }
    ↓ MATCH

   REPEAT
   END

   WHILE
   { 'COS(&A)+COS(&B)' '2*COS((&A+&B)/2)*COS((&A-&B)/2)'
   }
    ↓ MATCH
   REPEAT
   END

   WHILE
    { 'COS(&A)-COS(&B)' '2*SIN((&A+&B)/2)*SIN((&A-
&B)/2)' }
    ↓ MATCH
   REPEAT
   END
>>

You can add more WHILE − REPEAT − END loops for other similar 
conversions if you like. The loop uses the 1 or 0  returned by 
↓ MATCH , to check if it some matching has been done or not. If 
something matched, it repeats. If nothing matched it exits. There also a 
funny thing in this loop. Remember that the general form of such loops 
is:

WHILE
   test-clause
REPEAT
   body
END

But in this case we have done something like:

WHILE
   body-and-test-clause
REPEAT
END

The actions to be repeated is also where the test-clause resides, 
between the WHILE  and the REPEAT  statement, because 
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↓ MATCH  returns both the results of the work and a true (1) or false 
(0 ). Nice demonstration of the flexibility of the HP49G, isn‘t it? 
Somehow it reminds me of C, where such „compacting“ of test-clauses 
and work in a single line are also possible.

Let‘s now move on to:

tan(x) + tan(y) =
sin(x + y)

cos(x)∗ cos(y)

Enter the left hand side, TAN(X) + TAN(Y) , and press , to 
convert TAN  to SIN  and COS  functions that appear on the right hand 
side. Press  and you get:

COS Y( )⋅ SINX( ) + COS X( ) ⋅SIN Y( )
COS X( )⋅ COS Y( )

The denominator already looks like what we want. Press  to get the 
expression in the EQW, select the numerator and press . 
Voila!

And now for some examples:

1) Turn SIN X( )2 −SIN Y( )2
 to a product of trigonometric functions 

of 
X
2

 and 
Y
2

.

The method described above works here. We first  to 
turn the expression to:

SIN X( ) − SIN Y( )( ) ⋅ SIN X( ) + SIN Y( )( )

Then we use separately for SIN X( ) − SIN Y( )  and 
SIN X( ) + SIN Y( ) :

a) 
b) 
c) 
d)  applied to the first and second sub-expression of
    the numerator
e)  applied to the denominator and .

Or we just use the program from above.

2) Turn

SINX( )2 − SIN Y( )2

COS X( ) + COS Y( )( )2

to a product of trigonometric functions of 
X
2

 and 
Y
2

.

We first  to turn the expression to:

SIN X( ) − SIN Y( )( ) ⋅ SIN X( ) + SIN Y( )( )
COS X( ) + COS Y( )( )2

Then we use the above method separately for SIN X( ) − SIN Y( )  
and SIN X( ) + SIN Y( )  on the numerator and for the denominator 

COS X( ) + COS Y( )( )2
d. At the end we also use  and we 

get:

TAN
X + Y

2
 
 

 
 ⋅ TAN

X − Y
2

 
 

 
 

Or we just use the program from above, followed by a .
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3) Show that:

COS(2 ⋅ A) − COS(4 ⋅A)
COS(4 ⋅ A) + COS(2 ⋅A)

= TAN(A) ⋅ TAN(3⋅ A)

Again, enter the lest hand side and press ,  and 
 on the whole expression. Then  each factor 

of the numerator and the denominator separately. Then apply 
 on the whole expression. Or use the program and then 
.

4) Convert the expression:

1+ SIN X( ) + COS X( ) + SINX( )⋅ COS X( )

to a product.

Enter the expression. Press ,  and . 
After this you have:

SIN
X
2

 
 

 
 + COS

X
2

 
 

 
 

 
 
  

 

2

⋅COS
X
2

 
 

 
 

2

⋅ 2

SIN
X
2

 
 

 
 

2

+COS
X
2

 
 

 
 

2 

 
  

 
 

2

Get the expression in the EQW and apply  on the 
denominator, to replace it with a 1. Now select the sub-
expression:

SIN
X
2

 
 

 
 + COS

X
2

 
 

 
 

of the numerator and press . Press  and then 
 to get:

COS
X
2

 
 

 
 

2

⋅cos
x
2

−
π
4

 
 

 
 ⋅ 4

In the last example the step  did another trigonometric 
transformation:

a ⋅sin(x) + b ⋅ cos(x) = a2 + b2 ⋅ cos x + arctan
b
a

 
 

 
 −

π
2

 
 
  

 

If you enter the left hand side and press  then you get that. 
But this works only in real mode. In complex mode pressing 
TCOLLECT doesn‘t do anything. Also, if a  and b  are expressions 
with trigonometric functions themselves, then you get different results, 
depending on what exactly a  and b  look like.  So if you want this type 
of conversion to be performed independently of what a  and b  look 
like, you should write a small program (perhaps using MATCH ;-) ) to 
always get the desired result.

That‘s all for today. Of course if some genius out there finds a 
better/faster method, then please tell us, so that we don‘t raise the 
consumation of coffee to unbelievable degrees, waiting for the HP49G 
to finish some calculation. Having said that and after all complaining 
about the slowness of the HP49G, how much time would such things 
take, if we were supposed to do them by hand?

Greetings,
Nick.
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Hi everybody!

We are at the seventh part of our trigo marathon already, if I didn‘t 
make any mistakes with counting. In this seventh part we‘ll take a look 
at the inverse functions of sin , cos  and tan . We‘ll also take a look at 
Trabakoulas‘ time travel.

You of course know that trigonometric functions are periodic. They 
behave like doing after a while what they already have done. For 
example the sin  function keeps repeating itself, as it oscillates between 
1 and −1.

The distance between two x -coordinates which SIN X( )  sends to the 
same y -coordinate is the period of the function. (Actually this is not 

quite correct, but it suffices for now.) For SIN X( )  the period is 2 ⋅π . 
If we express this algebraically, then we have:

SIN X + 2 ⋅π( ) = SINX( )

You can do this on your HP49G: Enter SIN X + 2 ⋅π( )  , then press 
 and . The result is SIN X( ) . Or enter SIN X + 4 ⋅π( )  

and press  and . Same result!

The period of COS X( )  is also 2 ⋅π . That means, if you have some 
quantity and take its cosine, then adding 2 ⋅π  to this quantity and 
taking the cosine, returns the same number.

The period of TAN X( )  is π .
Now, why is all this important? 
Imagine that you have for example 
SIN X( )  and you want the quantity X . 
There are more than one X  which have 
the known sine. In fact there is an 
infinite number of such X .

This was what Trabakoulas found 
difficult to understand. The aliens told 
him all about periods and the like and 
he applied this to time coordinate. He 
found that if he starts at t0  assuming a 

sin ω∗ t0 + t( )( )  function with 
frequency ω  for his picture of the 

world, then when t =
2∗n1∗π

ω
 has 

passed by, he actually has reached the 
point where he started, though he never 
went backwards in time. But this 
contradicts his observation of steadily 
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getting older. ;-)

The functions that return an angle when fed a value of a trigonometric 
function of that angle are the inverse trigonometric functions. The 
inverse function to SIN X( )  is on the HP49G ASIN X( ) . It finds an 
angle, or arc, which has a given sine. If you solve an equation like:

SIN X( ) = a

for X , then the HP49G answers with:

x = − 2∗ n1−1( )∗π( ) + ASIN(a) x =2∗n1∗π + ASIN(a){ }
Both solutions contain an arbitrary integer n1. The infinite number of 
values that this integer can have, shows that there is also an infinite 
number of angles x , that have the given sine a. It would be nice if we 
could show that the found solutions really have the sine a . So press 

 while the solutions list is on stack level 1. Now you have:

SIN X( ) = SIN − 2∗n1−1( )∗π( ) + ASIN(a)( )
SIN X( ) = SIN 2∗n1∗ π + ASIN(a)( )

 
 
 

 
 
 

Both right hand sides can be TEXPANDed, so press . Now 
press , and then  to explode the solutions list. On stack 
level 1 you have:

SIN X( ) = − a 2 −1( ) ⋅ SIN2 ⋅n1⋅π( ) + a ⋅ COS 2 ⋅n1⋅π( )

Here comes again VPN‘s idea and wish for INTEGERASSUME. The 
HP49G returns solutions that contain some arbitrary integer, but 
afterwards it doesn‘t know what variables are assumed to be integers. 
If we had this, then the above formula would simplify to a because 
SIN2 ⋅n1⋅π( ) = 0  and COS 2 ⋅n1⋅π( ) = 1 when n1 is integer. The 

same is true for the other solution. We can of course make a program 
that replaces SIN2 ⋅n1⋅π( )  with 0  and COS 2 ⋅n1⋅π( )  with 1, but 
having such a feature like INTEGERASSUME would be better.

Anyway, the other inverse trigonometric functions are ACOS  and 
ATAN . There are also commands that convert between them. These 
are:

ACOS2S - convert arccos(x)  to 
π
2

− arcsin(x)

ASIN2C - convert arcsin(x)  to 
π
2

− arccos(x)

ASIN2T  - convert arcsin(x)  to arctan
x

1− x2

 

 
 

 

 
 

ATAN2S  - convert arctan(x)  to arcsin
x

1− x2

 

 
 

 

 
 

For example, if you have ATAN X( )  and want to convert to ACOS , 
then you press  and then . The result is:

π
2

− ACOS
X

X2 +1

 
 
  

 
 

The HP49G has some automatic simplifications when it deals with 
inverse trigonometric functions. For example, enter ASIN X( )  and then 

press . The result is − X2 −1( ) . Try also other combinations. 

Enter an inverse trigonometric function (ASIN , ACOS , ATAN) and 
then press the key of a trigonometric function ( , , ) in any 
combination you like. Look how the HP49G gets rid of the inverse 
trigonometric functions, returning expressions with no trigonometric 
functions at all.
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Let‘s do some examples:

1) Show that ASIN X( ) + ACOS X( )  is a constant.

Enter the expression and press  and then , to get 
π
2

.

2) Show that SIN ACOS X( )( ) + COS ASIN X( )( ) = 1− X2

Enter the left hand side and press , . Or enter 
the left hand side and press .

3) Show that the expression

SIN ATAN X( ) + ATAN
1
X

 
 

 
 

 
 
  

 

can be used as a kind of definition of the function SIGN.

Enter the expression and press . Then press . 

The result is 
X
X

 which can be thought as a definition for SIGN. 

(What happens at X = 0?)

4) Given an angle a , find all angles that have a sine equal to 
−SIN a( ) .

The equation SIN(X) = −SIN(a)  must be solved for X . So enter 
the equation, enter X  and then press .

Example (4) shows where we are going to go in the next part. Yes, 
you guessed right: Trigonometric equations and their solutions! So if 
you like, send me any trigonometric equation that you find 
hard/impossible to solve with the HP49G, and I‘ll try to solve them 
and take them in the next part.

Greetings,
Nick.
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Hi everybody!

In the previous parts of the trigonometry marathon we learned many 
things about the trigonometric and some algebraic capabilities of the 
HP49G. Things that will be very useful for what we are going to do in 
this part: Solve trigonometric equations.

First of all, let it be said, there is no general method that will solve 
all trigonometric equations. But there are some groups of 
trigonometric equations. Any equation that belong to such a group can 
be solved using the same method. Of course the method for solving an 
equation that belongs to one group will be different from the method 
for solving an equation that belongs to another group.

But we can make a program, that checks to which group such an 
equation belongs, and then acts accordingly. The general requirements 
for this program will be:

• Recognise the group that such an equation belongs to, no matter 
how the equation is written.

• Let as much as possible be done by the built in CAS.

• When an equation doesn‘t belong to the groups that we examine 
here, pass it to the built in SOLVE.

The commented code that represents the thoughts/ideas here, is at the 
end of this part. It is written solely in UserRPL. You can download it 
from www.hpcalc.org or enter yourself it in your HP49G.

So let‘s start!

Group 1.
A very easy kind of trigonometric equation is:

a ∗ trigFunction(x)= b

where trig function can be SIN , COS  or TAN . As you might have 
expected the HP49G can solve such equations right out of the box.

Example:

Solve the equation COS(X) =
2
3

 for X

Simply enter the equation, enter X  and then press .

The result is:

X = − 2∗ n1∗π + ACOS
2
3

 
 
  

 
 

 
 
 

 
 
 X = 2∗n1∗ π + ACOS

2
3

 
 
  

 
 

 
 
 

 
 
 

So for this group, we don‘t need to program anything. :-)

Group 2.
trigFunction f x( )( ) = trigFunctiong x( )( )
where trigfunction can be again SIN, COS or TAN  (but the same for 
both sides of the equation) and f(x)  and g(x) are two distinct functions 
of x . Let‘s try to solve such an equation:

Enter:

SIN 3∗X +
π
4

 
 
  

 
 = SIN 2 ∗ X −

π
3

 
 
  

 
 

then enter X  and if you are brave enough then press . The 
HP49G needs an eternity to return some result. Actually I never was 
patient enough to let it finish this calculation. So perhaps it can solve 
such equations, but the time that it needs to do so is not acceptable. It is 
a bit strange that the HP49G can solve much more difficult looking 
equations easily, and at the same time it seems to hang with such easy 
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things.

So let‘s help it. Press ON to interrupt the calculation, if you were brave 
enough to start it. The equation:

SIN 3∗X +
π
4

 
 
  

 
 = SIN 2 ∗ X −

π
3

 
 
  

 
 

tells us, that X  is such that the arcs of:

3∗ X +
π
4

and of:

2∗ X −
π
3

have equal sines. Remember the property of arc sine in part 7? There 
are infinite arcs whose sines are equal to:

SIN 3∗X +
π
4

 
 
  

 
 

They are:

  L , −4∗π +3∗ X +
π
4

, −2 ∗ π + 3∗ X +
π
4

, 3∗ X +
π
4

, 

2∗π +3∗ X +
π
4

, 4 ∗ π + 3∗ X +
π
4

,   L

and also

  L , 5∗π +3∗ X +
π
4

, 3∗π +3∗ X +
π
4

, π −3∗ X +
π
4

,

−π−3∗ X +
π
4

, −3∗ π + 3∗ X +
π
4

,   L

The two sets of solutions are represented by:

2∗ k1 ∗ π + 3∗ X +
π
4

and by:

− 2 ∗k1 −1( ) ∗π( ) −3∗ X +
π
4

-

where k1  is an arbitrary integer. The last 2 formulae are all arcs whose 
sines are equal to the sines of:

3∗ X +
π
4

The same way all arcs whose sines are equal to the sines of:

2∗ X −
π
3

are given through:

2∗ l1 ∗ π + 2∗ X −
π
3

and:

− 2 ∗ l1 −1( ) ∗π( ) − 2∗ X −
π
3

where l1 is another arbitrary integer.
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Now, we want to find X  such that:

SIN 3∗X +
π
4

 
 
  

 
 = SIN 2 ∗ X −

π
3

 
 
  

 
 

which means that the arcs having these sines must also be equal. That 
leads us to 4 equations:

1)  2∗ k1 ∗ π + 3∗ X +
π
4

= 2 ∗ l1 ∗ π + 2 ∗X −
π
3

2)  − 2 ∗k1 −1( ) ∗π( ) −3∗ X +
π
4

= − 2 ∗ l1 −1( ) ∗π( ) − 2∗ X −
π
3

3)  2∗ k1 ∗ π + 3∗ X +
π
4

= − 2∗ l1 −1( ) ∗π( ) − 2 ∗X −
π
3

4)  − 2 ∗k1 −1( ) ∗π( ) −3∗ X +
π
4

= 2 ∗ l1 ∗ π + 2 ∗X −
π
3

From the first, we derive:

2∗ k1 ∗ π + 3∗ X + π
4

= 2 ∗ l1 ∗ π + 2 ∗X − π
3

⇔

3∗ X +
π
4

= 2∗ l1 ∗ π − 2 ∗k1 ∗ π + 2 ∗X −
π
3

⇔

3∗ X +
π
4

= 2∗ l1 − k1( )∗ π + 2 ∗ X −
π
3

Because l1 and k1  are integers, l1 − k1  is also an integer, which we can 

give the name n1. So we have:

3∗ X +
π
4

= 2∗n1 ∗ π + 2 ∗X −
π
3

We turned the trigonometric equation to an equation without any 
trigonometric functions, which the HP49G can easily solve.

The second equation gives us the same set of solutions as the first one.

From the third equation we derive:

2∗ k1 ∗ π + 3∗ X + π
4

= − 2∗ l1 −1( ) ∗π( ) − 2 ∗X − π
3

⇔

3∗ X +
π
4

= −2∗ k1∗π − 2∗ l1 −1( ) ∗π( ) − 2 ∗X −
π
3

⇔

3∗ X +
π
4

= − 2∗ k1 + l1( ) −1( )∗π( ) − 2 ∗ X −
π
3

Because k1  and l1 are integers, k1 + l1  is also an integer, which we can 
give the name m1. So we have:

3∗ X +
π
4

= − 2∗m1 −1( )∗π( ) − 2 ∗ X −
π
3

The last equation can be simplified a little bit further if we consider m1, 
which is an integer ...,-3, -2, -1, 0, 1, 2, 3, ...

The quantity − 2 ∗m1 −1( ) ∗π( )  is then:

  L , 7∗π , 5∗π , 3∗π , π , −π , −3∗π , −5∗π ,   L

That means, the quantity − 2 ∗m1 −1( ) ∗π( )  is π  multiplied by an odd 

Trigonometry with the HP49G - Part 8

8-3



integer. This can be also represented by 2∗ n1 +1( ) ∗π .

So the last equation turns to:

3∗ X +
π
4

= 2 ∗n1 +1( ) ∗ π − 2 ∗X −
π
3

That means, that if we could check that the equation belongs to the 
group SIN(A)= SIN(B), we could replace it with the two equations 
A = 2∗ n1 ∗ π + B  and A = 2∗ n1 +1( ) ∗ π − B  and solve these two new 
equations for X , instead of the original equation.

How can we check that an equation belongs to the group 
SIN(A)= SIN(B)? We could for example MATCH SIN(A)= SIN(B) 
with A = 2∗ n1 ∗ π + B , check the flag that MATCH returns and act 
accordingly. But consider an equation of the form SIN(A)= −SIN(B). 
This also belongs to the same group because −SIN(B)= SIN( −B)  and 
so the equation becomes SIN(A)= SIN( −B) . If we use MATCH to 
replace SIN(A)= SIN(B), then cases like SIN(A)= −SIN(B), or
−SIN(A)= SIN(B), or −SIN(A)= −SIN(B), and also 
SIN(A)+SIN(B)= 0  and so on will not be MATCHed. Furthermore 
when the equation to solve is not factored but contains 
SIN(A)− SIN(B) as a factor, then we of course can‘t make a MATCH.

What can we do? An easy solution is to first find all factors of the 
equation, build an equation with each factor equal to 0 and build a list 
with all these equations.

If our factoring part of the program also finds a -1 
and−SIN(A)+ SIN(B) as factors of − SIN(A)−SIN(B)( ) , then the 
possible variations of such equations are:

SIN(A)− SIN(B)= 0
SIN(A)+SIN(B)= 0

The built-in command FACTORS  does this, but we will not use it 
here because it factors too much for our purposes. You‘ll see later on 
why it doesn‘t exactly fit here. The built in command COLLECT  does 
factoring that better suits our needs, but it doesn‘t return a list of all 
factors. But we can use COLLECT  and a little bit programming to get 
all factors from COLLECT  not in an algebraic object but in a list. The 
code that does this is commented at the end of this part of the 
marathon. It takes an algebraic object and returns the factors that 
COLLECT  finds in a list. Note that it simply rejects any denominator 
from a factor, which can be dangerous if the denominator is 0  for the 
solutions of the numerator. 

If an equation contains factors of the form SIN(A)− SIN(B) or 
SIN(A)+SIN(B), the code will also return the corresponding equations 
in a list. The two forms of course can‘t be MATCHed both at once. 
But we can make an additional pre-check and convert one possible 
forms of an equation to the other form, and then replace it with the list:

A = 2∗ n1 ∗ π + B A = 2 ∗n1 +1( ) ∗ π − B{ }
which can be solved easily. So we choose SIN(A)− SIN(B)= 0  to 
represent both possible forms of such equations and need to make an 
additional check that converts SIN(A)+SIN(B)= 0  to 
SIN(A)− SIN( −B)= 0 .

But there is an additional thing, to take care of. Suppose that we want 
to solve for X . The equation can in general contain factors that don‘t 
depend on X , like for example 2, var1− var2  and so on. These factors 
will later lead to equations like 2 = 0  or var1− var2 = 0 , which can't 
be solved for X . We must filter out such factors. This is done with a 
subsequent procedure which filters out all factors that don't depend on 
the variable for which we want to solve.

Exactly the same way, we can include code in the program, that solves 
equations like COS(A)= COS(B). With the same considerations as 
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above, we can replace equations of the form COS(A)+ COS(B)= 0  
with COS(A)− COS(B −π )= 0  because COS(B)= −COS(B −π ) , 
then replace the created equation of the form COS(A)− COS(B)= 0  
with:

A = 2∗ n1 ∗ π + B A = 2 ∗n1 ∗ π − B{ } .

For TAN(A)= TAN(B) we can replace equations of the form 
TAN(A)+ TAN(B)= 0  with TAN(A)− TAN(− B)= 0  because 
TAN(A)= −TAN( −B) , then replace the so created equation of the 
form TAN(A)− TAN(B)= 0  with A = n1∗π +B .

We are at the end of the second group. Let‘s move on to the third 
group.

Group 3.
This group contains equations of the form

trigFunction1f x( )( ) = trigFunction2 g x( )( )
where trigFunction1, trigFunction2  are two different trigonometric 
functions and f(x) , g(x) are two different terms that contain the 
variable to solve for. Examples would be:

COS(X − π) = SIN 2 ⋅ X +
π
3

 
 

 
 , TAN(X) = SIN

X
2

+π
 
 

 
 

and so on.

For equations that only contain SIN  and COS  but no TAN , it is 
easier. Take for example COS(A)= SIN(B). Since it is:

SIN(B)= COS B −
π
2

 
 
  

 
 

we can replace SIN(B) with COS B −
π
2

 
 
  

 
  and then use the code that 

we already have written for the cases COS(A)− COS(B)=0. For 
example an equation of the form SIN(A)+COS(B)= 0  will be 
MATCHed to:

COS A −
π
2

 
 
  

 
 + COS(B)= 0

through the extra code. The resulting equation

COS A −
π
2

 
 
  

 
 + COS(B)= 0

will be MATCHed to:

COS A −
π
2

 
 
  

 
 − COS(B −π )= 0

through the subsequent MATCH for which we already wrote the code. 
And the equation:

COS A −
π
2

 
 
  

 
 − COS(B −π )= 0

will be MATCHed to the equation list:

A −
π
2

= 2∗n1 ∗ π + B −π A −
π
2

= 2∗ n1∗π − B − π( ) 
 
 

 
 
 
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also with code which is already written.

In the same group we have also equations that contain TAN , like 
SIN(A)= TAN(B). For such equations, I didn‘t find a general 
programmable method (yet). It seems that the way to solve them, if 
there is a way, varies to much from case to case.

Group 4.
Let‘s move on to the fourth group. This group has trigonometric 
equations that are algebraic in a trigonometric function. An example 
would be: a ⋅SIN X( )2 +b ⋅SIN X( ) + c = 0 . If we substitute Y  for 

SIN X( )  , then the equation becomes a ∗ Y2 + b∗ Y + c = 0 , which we 
can solve for Y . Then we have the two solutions of the quadratic 
equation Y = solution1 and Y = solution2 . We make the back-
substitution Y = SIN X( )  we then we have SIN X( ) = solution1 and 
SIN X( ) = solution2 , which can be solved easily. The HP49G can 
solve such equations without help. And because the original equation 
with the variable to solve for is passed to SOLVE , when none of the 
previous MATCHes did anything, we don‘t need to program 
additional code for such cases. Almost every algebraic expression with 
trigonometric functions that can be factored, can be solved this way.

Group 5.
The fifth group contains equations of the form 
f sin(x),cos(x),tan(x)( ) = 0 . A general way to work with such 
equations is to convert every trigonometric function that appears in the 

equation to a function of TAN
X
2

 
 

 
  with the command HALFTAN. So 

we will have an equation where only terms with TAN
X
2

 
 

 
 . This can 

then be solved by the HP49G through factorisation. Many of the 

resulting equations contain big powers of TAN
X
2

 
 

 
  and so can‘t be 

factored analytically. But if you have set the flag -109 for numerical 
factorisation, then the HP49G returns numerical solutions.

The nice thing is that the HP49G does solve such equations without 
help, when the arguments of SIN , COS  and TAN , are all simply X . 
The not so nice thing is that the HP49G gets more and more problems 
when the arguments are the same for all trigonometric functions, but 
they are more complicated than simply X . For example it solves 
SIN X( ) + COS X( ) + TAN X( )  but SIN X + 1( ) + COSX +1( ) + TAN X +1( ) 
causes much more problems.

So we need to program additional code which checks to see if there are 
at least two different trigonometric functions, and if the arguments of 
them are all the same, then substitutes, say Y  for this argument, 

transforms all trigonometric functions to TAN
X
2

 
 
  

 
 -functions, solves 

for Y , then substitutes back Y = argument  and then solves for X .

Group 6.
The sixth group contains equations of the form 
a ⋅sin2(x) + b ⋅cos2(x) + c ⋅ sin(x) ⋅cos(x) + d = 0 . The HP49G often 
runs into troubles, when trying to solve such equations. It seems that 
often the factorisation of such equations results in factors which are 
difficult to solve for the CAS. That‘s why we didn‘t use FACTORS  
at the start. The equation could be factored in such a way, that neither 
the form of the equation can be easily recognised, nor the resulting 
equations of the form factor = 0  can be solved. First the idea for 
recognising such a form. Use FDISTRIB  to remove all groupings of 
terms. Then MATCH COS(X)2 , SIN(X)2  and COS(X) ⋅ SIN(X) to 0. 
EXPAND ing will then return an equation of the form d = 0 . Check to 
see if d  depends on the variable to solve for. If not, then we have an 
equation that belongs to group 6.
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Now how to transform it to something easy to solve: Subtract d = 0  
from the equation and then add d ⋅ SIN(X)2 +COS(X)2( )  to the left 

hand side. Since SIN(X)2 + COS(X)2 =1 we have added and subtracted 
d , so the equation remains the same. But now it is in the form:

a ⋅sin2(x) + b ⋅cos2(x) + c ⋅ sin(x) ⋅cos(x) + d ⋅ sin2(x)+ cos2(x)( ) = 0

or

a + d( )⋅ sin2(x) + b + d( )⋅ cos2(x) + c ⋅sin(x) ⋅ cos(x) = 0

that means in the general form:

A ⋅ X1
2 +B ⋅ X2

2 + C ⋅ X1 ⋅X2 = 0

where A = a + d , B = b + d , C = c , X1 = sin(x)  and X2 = cos(x) .

Equations of the form A ⋅ X1
2 +B ⋅ X2

2 + C ⋅ X1 ⋅X2 = 0  can always be 
factored to:

2⋅ A ⋅ X1+ C ⋅ X2 + X2 ⋅ − 4 ⋅B ⋅ A − C2( )( ) ⋅ 2⋅ A ⋅ X1 + C ⋅X 2 − X2 ⋅ − 4 ⋅B ⋅ A − C2( )( )
4 ⋅ A

(Try it yourself).

The factored form of such equations can be easily solved by the CAS. 
If we consider that X1 = sin(x) , X2 = cos(x)  then we can divide by 
cos(x)  and get and equation of the form a ∗ tan(x)+ b = 0  for every 
factor. (Caution! we must check if the solutions are such that also 
cos(x)= 0 )

So we use FACTORS  to find the two factors, divide each factor by 

cos(x)  and then use TRIGTAN  to change 
sin(x)
cos(x)

 to tan(x) . We 

have now two equations with only one occurrence of tan(x) , which 
can both be solved by the built-in CAS.

Before we go to the program that does all this, some things must be 
said. First of all, the program is far from being perfect, if there is such 
a thing like a perfect program. I tried to make it as general as possible, 
but there will be always cases, where it doesn‘t give solutions, or 
where it even crashes. We could add for example code for argument 
checking, or code for solving additional cases, or code for fixing bugs, 
which can appear when some equation behaves in such a way, that it 
leads to errors. Also we could add code for checking the behaviour of 
solutions, when some denominators are simply thrown away. And 
many many other things.

And at the end, after so much blah blah, here it is. TRISOL, the 
program for solving trigonometric equations. (No, it is not TRIstan 
and ISOLde, it is TRIgonometric SOLve ;-) )

%%HP: T(3)A(R)F(.);
\<< OVER

@Make a list with the
@COLLECTed equation

"Finding factors
" 1
DISP COLLECT 1 \->LIST

@Put this list in local variable factors
@Next routine returns all factors that
@the previous COLLECT found in a list.

\-> factors
  \<< 20 SF          @Set flag 20
    WHILE 20 FS?     @While flag 20 is set
    REPEAT 20 CF     @repeat
                     @clear flag 20
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factors 1            @Put factors list
                     @and a 1 on the stack
                     @DOSUBS procedure starts here
      \<< \-> fact   @store current factor in
                     @local variable fact
        \<<
          IF fact    @if current factor is alg
TYPE 9 ==
          THEN       @then
            CASE fact    @case factor is a product
OBJ\-> { * } SWAP POS
              THEN
DROP 20 SF               @then drop the argument 
                         @count. Set flag 20
              END
DROPN fact OBJ\->        @drop as many objects as
                         @the argument count
{ NEG} SWAP POS          @case the factor is negated
              THEN       @then drop argument count
DROP -1 20 SF            @return -1 and set flag 20
              END
DROPN fact OBJ\-> { / }  @drop as many objects as
                         @the argument count
SWAP POS                 @case factor is a quotient
              THEN
DROP2 20 SF              @drop argument count and
              END        @denominator. Set flag 20
DROPN fact
            END          @default case: drop as many
                         @objects as the argument count.
                         @return current factor
          ELSE fact @else current factor is 
                    @name or number. Simply return it
          END
        \>>
      \>> DOSUBS         @DOSUBS procedure ends here
'factors' STO    @Store factors list in local factors
    END factors          @End of WHILE-REPEAT loop
  \>> NOVAL NOVAL RCLF   @Return factors list and
                         @two NOVAL and the current
                         @flags. The NOVALs are the
                         @initial contents of the

                         @locals subs and subvar
                         @which we will use later on.

@Store arguments in local variables.
@ eq:     The unchanged equation.
@ var:    The variable to solve for
@ feq:    List with all factors
@ subs:   Variable will be used if
@         substitutions must be done
@ subvar: Name of the substitution variable
@ flags:  The user flags

\-> eq var feq subs
subvar flags
  \<<

@The factors that do not depend on
@the variable to solve for will
@be filtered out from feq

"Filtering factors
"
1 DISP feq 1     @Put feq and a 1 on the stack
                 @DOSUBS procedure starts here

    \<< NSUB R\->I 2 DISP   @display current
                            @factor count
      IF DUP TYPE 9 \=/     @If current factor
OVER TYPE 6 \=/ AND         @is not algebraic
                            @and not name
      THEN DROP             @then drop it
      ELSE                  @else
        IF LNAME DUP          @if it doesn‘t
{ } SAME                      @contain any names
        THEN DROP2            @then drop it
        ELSE                  @else
          IF AXL var            @if it doesn‘t
POS NOT                         @contain the
                                @variable to
                                @solve for
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          THEN DROP             @then drop it
          ELSE 0 =              @else
                                @else build up
                                @the equation
                                @factor=0
          END
        END
      END
    \>>       @DOSUBS procedure ends here
DOSUBS 'feq'       @Store the resulting
STO                @list of factors in 
                   @local variable feq

feq 1      @return filtered factors list and 1

               @DOSUBS procedure starts here
    \<<

               @MATCH each factor to a standard
               @form that will be used with MATCH
               @later.

"Standardizing
"
NSUB R\->I + 1 DISP

@MATCH forms with SIN and COS
@(Third group -> second group)

@MATCH sin(a)+cos(b)=0 to cos(a-Pi/2)+cos(b)=0
{ '
SIN(&A)+COS(&B)=0' '
COS(&A-\pi/2)+COS(&B)=0
' } \|vMATCH DROP

@MATCH cos(a)+sin(b)=0 to cos(a)+cos(b-Pi/2)=0
{ '
COS(&A)+SIN(&B)=0' '
COS(&A)+COS(&B-\pi/2)=0
' } \|vMATCH DROP

@MATCH sin(a)-cos(b)=0 to cos(a-Pi/2)-cos(b)=0

{ '
SIN(&A)-COS(&B)=0' '
COS(&A-\pi/2)-COS(&B)=0
' } \|vMATCH DROP

@MATCH cos(a)-sin(b)=0 to cos(a)-cos(b-Pi/2)=0
{ '
COS(&A)-SIN(&B)=0' '
COS(&A)-COS(&B-\pi/2)=0
' } \|vMATCH DROP

@MATCH forms with SIN only or COS only
@(Find form that represents all variations of
@an equation of the second group)

@MATCH sin(a)+sin(b)=0 to sin(a)-sin(-b)=0
{ '
SIN(&A)+SIN(&B)=0' '
SIN(&A)-SIN(-&B)=0' }
\|vMATCH DROP

@MATCH cos(a)+cos(b)=0 to cos(a)-cos(b-pi)=0
{ 'COS(&A
)+COS(&B)=0' 'COS(&A)
-COS(&B-\pi)=0' }
\|vMATCH DROP

@MATCH tan(a)+tan(b)=0 to tan(a)-tan(-b)=0
{ 'TAN(&A
)+TAN(&B)=0' 'TAN(&A)
-TAN(-&B)=0' } \|vMATCH
DROP

\-> eqfact           @Store current equation
                     @factor=0 in local variable

@The next local variables procedure finds
@the type of the current equation factor=0.
@If the equation belongs to any of the groups
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@that were considered in this part, then it
@puts an equivalent equation in eqfact, which
@can be solved much easier by the CAS

      \<<
"Finding type of eq
"
NSUB R\->I + 1 DISP
        CASE     @Second group of equations
eqfact           @Case sin(a)-sin(b)=0
{
'SIN(&A)-SIN(&B)=0' '
&A=2*\pi*n1+&B' }
\|vMATCH
          THEN     @then put a list with
                   @A=2*pi*n1+B and
                   @A=(2*n1+1)*pi-B
                   @in local eqfact
"Type sin(a)-sin(b)=0
"
1 DISP eqfact { 'SIN(
&A)-SIN(&B)=0' '&A=(2
*n1+1)*\pi-&B' } \|vMATCH
DROP 2 \->LIST 'eqfact'
STO
          END DROP
                     @Case cos(a)-cos(b)=0
eqfact { 'COS(&A)-COS
(&B)=0' '&A=2*\pi*n1+&B
' } \|vMATCH
          THEN     @then put a list with
                   @A=2*pi*n1+B and
                   @A=2*pi*n1-B
                   @in local eqfact

"Type cos(a)-cos(b)=0
"
1 DISP eqfact { 'COS(
&A)-COS(&B)=0' '&A=2*
\pi*n1-&B' } \|vMATCH
DROP 2 \->LIST 'eqfact'
STO

          END DROP
eqfact             @Case tan(a)-tan(b)=0
{ 'TAN(&A)-TAN
(&B)=0' '&A=\pi*n1+&B'
} \|vMATCH
          THEN     @then put
                   @A=pi*n1+B
                   @in local eqfact
"Type tan(a)-tan(b)=0
"
1 DISP 'eqfact' STO
          END DROP              
eqfact FDISTRIB      @Sixth group of equations
                   @Put the fully distributed
                   @form of eqfact in eqfact
'eqfact' STO eqfact        @Case eqfact contains
var SIN 2 ^ { 0 } +        @at least two of the
\|vMATCH SWAP var COS 2    @forms a*SIN(X)^2
^ { 0 } + \|vMATCH SWAP    @b*COS(X)^2 c*SIN(X)*COS(X)
var COS var SIN *          @and a form that does not
{ 0
} + \|vMATCH SWAP '&A'     @contain the variable to
var COS * var SIN *        @solve for
{
0 } + \|vMATCH SWAP 5
ROLLD OR 3 \->LIST
\GSLIST 2 \>= SWAP EXPAND
LNAME
          IF DUP { }
SAME
          THEN DROP 0
          ELSE AXL
var POS
          END NOT ROT
AND
          THEN              @then replace the constant
                            @term with itself
"Type asin\178x+bcos\178x+
csinxcosx"                  @multiplied with
1 DISP eqfact OVER -        @SIN(X)^2+COS(X)^2
SWAP var SIN 2 ^ var        @and factor the
COS 2 ^ + * + FACTORS       @resulting eqfact
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1
"Filtering factors,
building equations"
1 DISP

              @Another DOSUBS starts here
              @to filter out factors that
              @do not contain the variable
              @to solve for.

            \<< NSUB
R\->I 2 DISP
              IF DUP
TYPE 9 \=/ OVER TYPE 6
\=/ AND
              THEN
DROP
              ELSE
                IF
LNAME DUP { } SAME
                THEN
DROP2
                ELSE
IF AXL var POS NOT
THEN DROP
ELSE 0 =
END
                END
              END
            \>>  @DOSUBS procedure ends here
DOSUBS
1             @Next DOSUBS procedure
              @also checks to see if the
              @equation contains SIN and COS.
              @If it does, then it divides
              @by COS(X) and then applies
              @TRIGTAN to the factor.
              @It builds the equivalent
              @equations of the form
              @a*TAN(X)+b=0, which can
              @be solved easily by the CAS
            \<<

              IF DUP
\->LST DUP { SIN } HEAD
POS 1 \>= SWAP { COS }
HEAD POS 1 \>= AND
              THEN
var COS / DISTRIB
TRIGTAN
              END
            \>> DOSUBS
              @DOSUBS procedure ends here

'eqfact' STO
          END DROP @Fifth group of equations
                          @Find all arguments of
                          @trigonometric functions.
                         
eqlst trigarg             
eqfact \->LST             @Convert algebraic to list
{ } \->
eqlst trigarg
          \<< eqlst 1    @Return the list
                         @of the algebraic
                        @DOSUBS procedure starts here
            \<<
              IF DUP   @If the current object is
{ SIN COS TAN } SWAP   @SIN COS or TAN
POS
              THEN
OVER EXPAND 'trigarg'  @Then expand the previous
STO+                   @object and add it to the list
                       @trigarg
              END
EVAL                   @evaluate current object
            \>>
                       @DOSUBS procedure ends here
DOSUBS
DROP                     

trigarg eqlst
          \>> DUP { TAN      @If there are at least
} HEAD POS 1 \>= OVER
{ SIN } HEAD POS 1 \>=       @two of the functions
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ROT { COS } HEAD POS         @SIN COS TAN
1 \>= 3 \->LIST \GSLIST 2 \>=
          THEN DUP 2         @and if all arguments
            \<< SAME         @of these functions
            \>> DOSUBS       @are the same
            IF { 1 }
+ \PILIST
            THEN             @then
"Type f(sinx,cosx,tanx)
"
1 DISP eq HALFTAN            @turn all trigonometric
EXPAND FACTOR -105 CF        @functions to tan(arg/2)
OVER HEAD 2 / EXPAND
'TempSolVar' 2 \->LIST      @replace arg/2 with
\|^MATCH DROP 'eqfact'      @TempSolVar
STO 'TempSolVar' SWAP       @and store the back
HEAD 2 / EXPAND =           @substitution formula
'subs' STO var              @in local subs.
'subvar' STO
'TempSolVar' 'var'
STO
            ELSE DROP       
            END
          END DROP     @Equation belongs to
                       @none of the above groups
"CAS Type
" 1 DISP
        END eqfact     @solve
var "Solving
" NSUB
R\->I + 1 DISP SOLVE
        IF subs NOVAL  @If subs contains something
\=/                    @different than NOVAL
        THEN           @then
          IF DUP { }     @if the solutions list
\=/                      @isn‘t empty
          THEN           @then
"Back substitution,
and solution"
1 DISP subs SUBST       @perform back substitution
subvar SOLVE            @and solve for original
          END subvar    @variable

'var' STO NOVAL         @restore var, subs, subvar and
'subs' STO NOVAL        @flags to their initial values
'subvar' STO
        END flags       @restore flags
STOF
      \>>
    \>> DOSUBS          @Do for each equation of the
  \>>                   @form factor=0
\>>

If you must solve trigonometric equations, then give it a try. Next time 
we‘ll be solving some examples with it.

Boy! I‘m so tired, I see only SIN  COS  and TAN . Must go sleep 
now. (John, you got me! ;-) ) No wake up till next part, keep tuned!

Solved Greetings(x)= 0
Nick.

P.S. Dreaming of the Meta-CAS that runs on the CAS that runs on the 
OS. Zzzzzzzzzzzzzzzzz......
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Hi everybody!

In this part we are going to solve many trigonometric equations. Some 
of them really weirdos. Some of them so strange that even the CAS 
and TRISOL together can‘t figure out how they return solutions. And 
we are going to see how the story of the universe is similar to the story 
of software.

You know of course that the Big Bang theory is the widely accepted 
theory about the birth of the universe. But did you know about the Big 
Bug theory? No? Oh, this is going to be the widely accepted theory 
about the birth of the software universe. Especially for the 
trigonometry software universe, there are reasons to believe that at 
some time in the past there was a huge Bug, a singularity, which we 
call TRISOL. Our knowledge about what was before TRISOL is quite 
limited, as God (Mr. Parisse ;-) ) won‘t tell us much about the 
mysteries of the CAS. ( Cosmic Algebra Superstring ;-) )

But Big Bugs tend to evolve with time and sometimes, quite 
unexpectedly, they may contain usable code. Pattern formation out of 
the chaos, so to speak. ;-) So it happened with TRISOL. Trabakoulas 
the shepherd has edited some parts, after he came to me and told me 
that he lost some sheep because he used Big Bug TRISOL to find their 
positions. He left me in peace only after I had promised to pay for the 
lost sheep. Boy, why are these animals so expensive? ;-) But he gave 
me the re-edited and re-commented code, TRISOL the second, which 
we are going to use for solving a bunch of equations. It is at the end of 
the previous chapter, and at www.hpcalc.org together with this 
document.

After you downloaded it to your HP49G, switch to complex exact 
mode, set flag -109 for numeric factorisation, and here we go.

1) Let‘s start with an easy one. Solve 3 ⋅ 2 ⋅ COS a ∗ X +
π
3

 
 

 
 =

2
3

Enter the equation, enter X  and press . It finds the solutions:

X =
6 ∗n1 −1( ) ∗ π + 3∗ ACOS

2
9

 

 
 

 

 
 

 

 
 

 

 
 

3∗ a

and

X =
− 6∗n1 +1( )∗π +3∗ ACOS

2
9

 

 
 

 

 
 

 

 
 

 

 
 

3∗ a

in 37.6 seconds. If you solve the same equation for X  with the 
command SOLVE, you get the same solutions in 17.4 seconds. It is 
clear that TRISOL has a big overhead trying to determine what kind of 
equation this is. Let‘s follow the fate of the equation as it passes 
through the processing teeth of TRISOL. First it is COLLECTEDed 
to:

9 ⋅COS a ⋅X + π
3

 
 

 
 − 2

 
 
  

 
⋅ 2

3

Then the denominator is dropped and the numerator gets converted to 
its factors list:

9 ⋅ COS a ⋅ X +
π
3

 
 

 
 − 2 2

 
 
 

 
 
 

The factor 2  is filtered out, because it can‘t give us any solutions. 
The remaining factors are used to build a list of equations:
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9 ⋅ COS a ⋅ X +
π
3

 
 

 
 − 2 = 0

 
 
 

 
 
 

Each equation in the list (only one in this case) is checked for 
belonging to one of the special groups that TRISOL processes further. 
The checks that are done to see if it belongs to the group 
a ⋅sin2(x) + b ⋅cos2(x) + c ⋅ sin(x) ⋅cos(x) + d = 0  are negative. 

Because the equation is found to be none of the special kinds, TRISOL 
faithfully passes it to the built-in SOLVE, which does its work very 
well in this case.

2) Solve SIN 3 ⋅X +
π
4

 
 

 
 = SIN 2 ⋅X −

π
3

 
 

 
 

Using TRISOL you get the two solutions

X =
24 ⋅ π ⋅n1 − 7 ⋅π

12

and

X =
24 ⋅ π ⋅n1 −13 ⋅π

60

in 17.2 seconds.

If you use SOLVE  for this equation you get

X = 2 ⋅n1 ⋅ π − 2 ⋅ATAN
35 ⋅ 2 − 28 ⋅ 3 −1( )

64 ⋅ 3 −155( )⋅ 2 +127 ⋅ 3 − 156

 

 
 

 

 
 

in 330.9 seconds

Let‘s first see if the solutions are the same. If you apply  on the 
expression

ATAN
35⋅ 2 − 28 ⋅ 3 −1( )

64 ⋅ 3 −155( ) ⋅ 2 +127 ⋅ 3 −156

 

 
 

 

 
 

to turn it to a number, and the apply  to this number, you get 
7 ⋅π
24

. 

The EXPAND ed solution that SOLVE  returned is then:

X =
24 ⋅n1 −7( ) ⋅π

12

which is exactly the same as the first of the 2 solutions that TRISOL 
returned. If we make a sequence of such solutions entering:

X =
24 ⋅n1 −7( ) ⋅π

12
 −3  3  1 SEQ

then we get the list of solutions with n1 from −3  to 3 :

X =
−79∗π

12
X =

−55∗π
12

X =
−31∗π

12
X =

−7∗π
12

X =
17∗π

12
X =

41∗π
12

X =
65∗π

12

 

 
 

 
 

 

 
 

 
 

SUBSTituting these solutions for X  in the original equation and 
EXPAND ing the resulting equations always returns 1= 1, which 
shows that the found solutions are OK.

But what about the second solution that TRISOL found? Let‘s make a 
sequence again. Entering
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X =
24 ⋅n1 −7( ) ⋅π

12
 −3 3 1 SEQ

returns:

X =
−59∗π

60
X =

−7∗π
12

X =
−11∗π

60
X =

13∗π
60

X =
37∗π
60

X =
61∗π
60

X =
17∗π
12

 

 
 

 
 

 

 
 

 
 

First of all we see here that there are some solutions in this set, which 
are also in the first. But most of them are new. If you SUBSTitute 
these solutions in the original equation and EXPAND  then you get a 
list of equations:

  

−SIN
27∗Pi

10
 
 
  

 
 = −SIN

23∗Pi
2

 
 
  

 
 1=1

− SIN
3∗Pi
10

 
 
  

 
 = SIN

7∗Pi
2

 
 
  

 
 L 1=1

 

 
  

 
 
 

 

 
  

 
 
 

Most of them seem to be wrong, but if you apply  on the left 
and right hand side you see that they are correct solutions. You can 
also apply  to the whole equation at once. A result of 0  (or 
about 0 ) shows that the equation holds.

So TRISOL gave us solutions that the built-in SOLVE  didn‘t find! 
What does this tell us? Even when a set of solutions is found, never be 
sure that there are no more than those that you see on the screen!

Let‘s now again follow what happens to the equation when TRISOL 
starts crunching on it. First it gets COLLECT ed to:

SIN 3 ⋅X +
π
4

 
 

 
 − SIN 2 ⋅X −

π
3

 
 

 
 .

Then the list

SIN 3 ⋅X +
π
4

 
 

 
 − SIN 2 ⋅X −

π
3

 
 

 
 = 0

 
 
 

 
 
 

is made, and the contained equation is compared to certain patterns, in 
order to MATCH it with some standard form, that will be used later to 
find if the equation belongs to a special group. This step leaves the 
equation untouched. The check for special groups find out that this 
equation belongs to the group SIN(A)− SIN(B)= 0  and so transform 
the equation to the list of two equations:

3⋅ X +
π
4

= 2 ⋅π ⋅n1 + 2⋅ X −
π
3

3 ⋅X +
π
4

= 2 ⋅ n1 + 1( ) ⋅π − 2 ⋅X −
π
3

 
 

 
 

 
 
 

 
 
 

This list is then passed to SOLVE  which finds the two solutions.

Is there any other way to solve this equation? Well, yes theoretically. 
We can use TEXPAND , to get trigonometric functions that all have X  
as arguments. We then have an expression containing sines and 

cosines of X . We can turn COS X( )  and SIN X( )  to TAN  of 
X
2

 using 

HALFTAN. We can the COLLECT  to cancel some terms and factors. 

So we have an equation which only contains TAN
X
2

 
 

 
  as 

trigonometric function, but what an expression this is! If we use this 
way for the equation here we get a huge ratio of two polynomials in 

TAN
X
2

 
 

 
 . The numerator is factored in a product of a polynomial in 
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TAN
X
2

 
 

 
  of degree 2, and a polynomial in TAN

X
2

 
 

 
  of degree 4. The 

coefficients of the powers of TAN
X
2

 
 

 
  are often rather big integers. 

The HP49G can solve the polynomial of degree 2 in TAN
X
2

 
 

 
  in this 

case, and returns the first solution set that TRISOL also found. But it 

can‘t solve the polynomial of degree 4 in TAN
X
2

 
 

 
  and so it doesn‘t 

find the second set of solutions this way. It should find this set of 
solutions with numeric factorisation, because the equation to solve is a 
polynomial, the flag for numeric factorisation was set, and the equation 
has no other symbolic parameters. But it doesn‘t! So for me this is 
reason to believe that this is the reason why SOLVE  finds the first but 
not the second solution set. Internally it seems to be trying to do what 
was described above, or at least something similar.

This second equation can only be solved if you apply  to the 

coefficients of the powers of TAN
X
2

 
 

 
  and the use SOLVE , which is 

not very understandable for me, because as already said, the flag for 
numeric factorisation was set, so the HP49G should automatically do 
this.

Note that the (theoretical) method TEXPAND , HALFTAN, 
COLLECT , SOLVE  works theoretically only with integer multiples 

of X , that is X , 2 ⋅ X  and so on but not 
3 ⋅ X

2
 or 

X
3

 as arguments of 

SIN , COS , TAN . This because it is only then when TEXPAND 
returns trigonometric functions only of X  and nothing else. 

3) Solve COS 7 ⋅ X +
π
9

 
 

 
 = COS 6 ⋅ X −

4 ⋅π
45

 
 

 
 

TRISOL returns

X =
− 10 ⋅ π ⋅n1 + π( )

5
X =

90 ⋅ π ⋅n1 − π
585

 
 
 

 
 
 

in 21.1 seconds. Essentially it does the same as in example 2: It 
COLLECT s, it transforms to a standard form, it checks for special 
groups, it finds the group COS(A)− COS(B)= 0  and it builds up the 
equation list for SOLVE .

If you try to solve this with SOLVE , the it takes 438.7 seconds and 
again returns only one set of solutions, namely the set: 

X =
10 ⋅n1 −1( )⋅π

5

This set is the same like the first that TRISOL returns though it looks 
different. To see this, you can make a sequence of both sets for n1, say 
from −3  to 3  and reverse one of them.

4) Solve SIN(X) = COS 2 ⋅ X −
π
4

 
 

 
 

TRISOL returns:

X =
8 ⋅ π ⋅n1 + 3 ⋅π

4
X =

8 ⋅ π ⋅n1 + 3 ⋅π
12

 
 
 

 
 
 

in 17.9 seconds. The equation is first COLLECT ed, then its factors 
are found and returned as equations of the form factor = 0  in a list. 
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Here there is of course only one factor, and so the list is:

SIN(X)− COS 2 ⋅ X −
π
4

 
 

 
 = 0

 
 
 

 
 
 

The equation is then found to be of the general form 
SIN(A)− COS(B)= 0  and it is MATCHed to:

COS X −
π
2

 
 

 
 −COS 2 ⋅ x −

π
4

 
 

 
 = 0

Then the new equation is found to be of the form 
COS(A)− COS(B)= 0  and is MATCHed to the equation list:

X −
π
2

= 2 ⋅ π ⋅n1 + 2 ⋅ X −
π
4

X −
π
2

= 2 ⋅ π ⋅n1 − 2 ⋅X −
π
4

 
 

 
 

 
 
 

 
 
 

This equation list is passed to SOLVE .

Solving the original equation with SOLVE  returns an empty list in 
36.2 seconds, which means that you very quickly get the result, that 
there are no solutions! But the solutions that TRISOL finds are valid, 
you can try them out!

Why does SOLVE  fail that way? Try , ,  
on the equation:

SIN(X)− COS 2 ⋅ X −
π
4

 
 

 
 = 0

You get a ratio who‘s numerator is a polynomial in TAN
X
2

 
 

 
  of 

degree 4. Again the same problem as in 2 and 3, only that this time 
there is no polynomial of degree up to 2, which can be solved at any 

case. So no solution is found.

You could also try to solve this another way: Apply  and then 
 to the whole equation. You get a factored form with 

numerator:

2 ⋅ COS(X) −1( )⋅ 2 ⋅ SIN(X)+ 2 ⋅COS(X) +1( )⋅ 2

The first factor 2 ⋅COS(X) −1 should be easy to solve with SOLVE  

and the second 2 ⋅SIN(X) + 2 ⋅COS(X) + 1 also doesn‘t seem to be 
very difficult. But SOLVE  still returns an empty list! Only when you 
manually take the factors apart and SOLVE  separately 

2 ⋅COS(X) −1 and 2 ⋅SIN(X) + 2 ⋅COS(X) + 1 for X , you get 
solutions. Now, why the HP49G can‘t solve the product when each of 
the factors is an equation that it can solve? This is a question that I 
unfortunately can‘t answer up to now. Perhaps it has to do with the 
fact that the CAS doesn't use TEXPAND  in this case?

Even stranger: when you start in approximate mode, SOLVE  returns 
the solutions in 18.6 seconds. But if the factors can be solved in exact 
mode then this should not be necessary. And if automatic switch to 
approximate mode is enabled, then at least the numeric solutions 
should be found.

5) Let‘s try the factors of 4 as equations for themselves. Solve 
2 ⋅COS(X) −1

TRISOL returns the solutions in 22 seconds while SOLVE  returns the 
same solutions in 8.4 seconds. In this case again, the overhead of 
TRISOL makes the difference in time.
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6) Solve 2 ⋅SIN(X) + 2 ⋅COS(X) + 1 (second factor of 4)

TRISOL returns the solutions in 63.2 seconds. SOLVE  returns them 
in 24.4 seconds. The solutions look different but they are 
mathematically equal. TRISOL finds out that the equation belongs to 
the group f sin(x),cos(x),tan(x)( ) = 0  and so uses HALFTAN to 

build an equation g TAN
X
2

 
 

 
 

 
 
  

 
= 0 . The function g TAN

X
2

 
 

 
 

 
 
  

 
 is a 

polynomial of degree 2 in TAN
X
2

 
 

 
  and so can be easily solved by the 

HP49G.

In both examples 5 and 6 TRISOL needs about 2.6 times longer that 
SOLVE  needs to solve this.

7) Solve TAN
X
2

+
π
3

 
 

 
 =

1

TAN
X
2

 
 

 
 

TRISOL returns

X = 2 ⋅n1 ⋅ π − 2 ⋅ATAN 3 − 2( ) X = 2 ⋅n1 ⋅ π − 2 ⋅ ATAN 3 + 2( ){ }
in 39.1 seconds. SOLVE  returns exactly the same solutions in 17.9 
seconds, that is TRISOL takes about 2.2 times longer.

TRISOL COLLECT s the equation and keeps the numerator 

TAN
X
2

+
π
3

 
 

 
 ⋅ tan

x
2

 
 

 
 −1 which it passes to SOLVE .

8) Solve SIN X2 − 3 ⋅ x +1( ) = SIN 4 ⋅ X − 2( )

TRISOL returns the solutions:

X =
7 + 8 ⋅ 8 ⋅ π ⋅n1 + 37

2

X = −
−7 + 8 ⋅ 8 ⋅ π ⋅n1 + 37

2

X =
−1+ 8 ⋅ 8 ⋅ π ⋅n1 + 4 ⋅ π + 5

2

X = −
−1+ 8 ⋅ 8 ⋅ π ⋅n1 + 4 ⋅π + 5

2

in about 23.2 seconds. Again it finds that the equation is of the special 
type SIN(A)− SIN(B)= 0  and builds up a list of two equations. 
Because the argument X2 − 3 ⋅X +1 of SIN  at the left hand side is a 
quadratic in X , each of the equations of this list gives two solutions for 
a total of 4 solutions.

SOLVE  seems to gasp a lot, if you feed it with this equation. It works 
and works and works, and after 10 minutes (!) it errors „Not reducible 
to a rational expression“. If you use  you can see that the 
resulting equation also contains trigonometric terms like COS X2( )  
which take the possibility away to build up an equation of the form 

f TAN
X
2

 
 

 
 

 
 
  

 
= 0 .

Trigonometry with the HP49G - Part 9

9-6



9) Solve SIN(X + a) = COS(3⋅ X + b) for X .
Taken from examinations of the year 1934 at the Pilot School (School 
of Icarus) in Greece.

TRISOL returns in 19.6 seconds

X =
4 ⋅ π ⋅n1 − π− 2 ⋅ a − 2 ⋅ b( )( )

4
X =

4 ⋅ π ⋅n1 + π − 2 ⋅a − 2 ⋅b( )
8

 
 
 

 
 
 

It works like in example 4.

SOLVE  returns in 134.7 seconds a more complicated form of the 
solutions. (Actually much too complicated for my gusto, but it is 
correct.)

Now think how the poor guys there at the School of Icarus have solved 
this equation, without an HP in their hands. I think not the way the 
HP49G solves it. ;-)

10) Solve TAN
X + a
X − a

 
 

 
 = TAN

X +b
X −b

 
 

 
  for X .

TRISOL returns in 54.6 seconds

X =

π ⋅a + π ⋅b( ) ⋅n1 + 2 ⋅a − 2 ⋅b −

π2 ⋅a 2 − 2 ⋅π 2 ⋅b ⋅a +π 2 ⋅b2( ) ⋅n1
2 +

4 ⋅ π ⋅a2 − 4 ⋅ π ⋅b2( ) ⋅n1 + 4 ⋅a 2 − 8 ⋅ b ⋅ a + 4 ⋅ b2

 

 

 
  

 

 

 
  

2 ⋅ π ⋅n1

and

X =

π ⋅a + π ⋅b( ) ⋅n1 + 2 ⋅a − 2 ⋅b +

π2 ⋅a 2 − 2 ⋅π 2 ⋅b ⋅a +π 2 ⋅b2( ) ⋅n1
2 +

4 ⋅ π ⋅a2 − 4 ⋅ π ⋅b2( ) ⋅n1 + 4 ⋅a 2 − 8 ⋅ b ⋅ a + 4 ⋅ b2

 

 

 
  

 

 

 
  

2 ⋅ π ⋅n1

 

It finds that the equation belongs to the group TAN(A)= TAN(B) and 
builds up the equation

X + a
X − a

= π ⋅n1 +
X +b
X −b

It passes then this equation to SOLVE .

I didn‘t have the patience to let SOLVE  finish this calculation because 
after 20 minutes it was still trying to find a solution. So perhaps it does 
find it, perhaps it doesn‘t. But even if it finds a solution, it is not a 
good idea to use it for this case.

If you try to  and  this equation, then you see that 

there are TAN  functions with many different arguments, like 
X

X − A
, 

A
X − A

 and so on, so HALFTAN wouldn‘t create a polynomial in 

TAN
arg
2

 
 

 
  where arg is always the same.
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11) Solve COS 7 ⋅ X +
π
7

 
 

 
 

2

= COS 2 ⋅ π +
π
3

 
 

 
 

TRISOL returns in 38.5 seconds

X =
42 ⋅ π ⋅n1 + 46 ⋅π

147
X =

42 ⋅ π ⋅n1 − 52 ⋅π
147

X =
42 ⋅ π ⋅n1 − 31⋅π

147
X =

42 ⋅ π ⋅n1 + 25 ⋅π
147

 

 
 

  

 

 
 

  

The equation is of the form COS(A)2 = COS(B)2 . TRISOL first 
COLLECTS it to:

COS 7 ⋅X + π
7

 
 

 
 − COS 2 ⋅ π + π

3
 
 

 
 

 
 
  

 
⋅ COS 7 ⋅X + π

7
 
 

 
 + COS 2 ⋅ π+ π

3
 
 

 
 

 
 
  

 

Then it builds the equation list:

COS 7 ⋅ X+ π
7

 
 

 
 − COS 2 ⋅ π + π

3
 
 

 
 = 0 COS 7 ⋅ X + π

7
 
 

 
 + COS 2 ⋅ π + π

3
 
 

 
 = 0

 
 
 

 
 
 

The first equation in this list belongs to the special group 
COS(A)− COS(B)=0 . So TRISOL builds up the equation list

7 ⋅ X +
π
7

= 2 ⋅ π ⋅n1 + 2 ⋅ π +
π
3

7 ⋅ X +
π
7

= 2 ⋅ π ⋅n1 − 2 ⋅π +
π
3

 
 

 
 

 
 
 

 
 
 

 

and passes these equations to SOLVE . The second equation in the list 
is first MATCHed to

COS 7 ⋅ X +
π
7

 
 

 
 −COS 2 ⋅ π +

π
3

−π
 
 

 
 = 0

then recognised as one of the form COS(A)− COS(B)=0  and then 
the equation list is built up:

7 ⋅X + π
7

= 2 ⋅ π ⋅n1 + 2 ⋅ π + π
3

−π 7 ⋅X + π
7

= 2 ⋅ π ⋅n1 − 2 ⋅ π + π
3

−π 
 

 
 

 
 
 

 
 
 

which SOLVE  solves afterwards.

SOLVE  needs only 23.8 seconds and returns solutions involving 

ACOS COS 2 ⋅ π +
π
3

 
 

 
 

 
 
  

 
 which EXPAND ed is 

2 ⋅π
3

. You can 

prove that the solutions of TRISOL and SOLVE  are both 
mathematically correct.

12) Solve 4 ⋅SIN(X)2 − 3 ⋅ SIN(X)−1= 0

TRISOL first factors to SIN(X)− 1( ) ⋅ 4 ⋅SIN(X) +1( )  and then solves 
the two equations SIN(X)−1=0  and 4 ⋅SIN(X) +1= 0 . It returns the 
solutions in 34 seconds.

SOLVE  only needs 13 seconds to return the same solutions.

13) Solve 4 ⋅COS(X)2 − 2 ⋅ 2 +1( ) ⋅COS(X) + 2 = 0

TRISOL needs 45.6 seconds to return the solutions while SOLVE  
needs only 14.4 seconds for the same solutions.
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14) Solve 4 ⋅COS X( )2 − 2 ⋅ 2 +1( )⋅ SINX( ) + 2 = 0

TRISOL returns a list with 4 numeric solutions after 88.8 seconds. It 
first tries to COLLECT  which doesn‘t do anything here, and then 
recognises the equation as one of the special group 
f sin(x),cos(x),tan(x)( ) = 0 . It uses HALFTAN to turn it to 

f tan
x
2

 
 
  

 
 

 
 
 

 
 
 =0 , with f tan

x
2

 
 
  

 
 

 
 
 

 
 
  a ratio of polynomials in tan

x
2

 
 
  

 
 . 

The degree of the numerator is 4. This polynomial ratio is passed to 
FACTOR  which factors it by switching to numeric mode. Then the 
equations list with equations of the form factor =0  is built up. The 

substitution 
X
2

= Y  is made for each of these equations and the list is 

given to SOLVE . When the solutions are returned, the back 
substitution is made and the equations are solved for X . The solutions 
can be converted to symbolic solutions by applying → NUM to the 
resulting sub expressions 2. ⋅ ATAN(arg) of the solutions, and then 
XQ  to the whole solution.

SOLVE  returns an empty list in 31.7 seconds if you start with exact 
mode. It returns the numeric solutions in 26.8 seconds if you start at 
approximate mode. So the flag for automatic switch to approx. mode, 
doesn‘t seem to help much here.

15) Solve 3 ⋅ TAN X( )2 − 4 ⋅ 3 ⋅ TAN X( ) + 3 = 0

TRISOL returns the solutions in 38.7 seconds. It first COLLECT s the 
equation and makes the equation list:

3 ⋅ TAN(X) − 3 = 0 TAN(X)− 3 = 0{ }

It then passes this to SOLVE .

SOLVE  returns more complicated looking solutions in 12.7 seconds. 
The solutions contain ATAN  functions with many square roots, but 
applying  to the solutions makes them like the solutions that 
TRISOL returns.

16) Solve 2 ⋅ SIN(X) = 3 ⋅TAN(X)

TRISOL solves this in 50.7 seconds. It first uses HALFTAN and 
FACTOR  and then passes the resulting factored equation

2 ⋅ TAN
X
2

 
 

 
 ⋅ 5 ⋅ TAN

X
2

 
 

 
 + i ⋅ 5

 
 
  

 
⋅ 5 ⋅ TAN

X
2

 
 

 
 + i ⋅ 5

 
 
  

 
= 0

to SOLVE . Note that two of the three solutions are complex.

SOLVE  returns the same solutions in 21.1 seconds.

17) Solve a ⋅SIN(X) = b ⋅ TAN(X)

TRISOL needs 67.8 seconds to find the solutions. It works here like in 
16. SOLVE  errors out with „Not reducible to a rational expression“ 
after about 20 seconds.
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18) Solve a + TAN(X)= b +
1

TAN(X)

TRISOL returns the solutions in 37.5 seconds. It COLLECT s and 
builds the equation TAN(X)2 + a + b( )⋅ TAN(X) −1= 0  which is then 
passed to SOLVE .

SOLVE  needs 16 seconds to solve the equation.

19) Solve SIN(X) ⋅COS(X) + SIN(X)− COS(X) −1= 0

TRISOL returns

X = −
4 ⋅ π ⋅n1 − π

2
X =

4 ⋅ π ⋅n1 +π
2

 
 
 

 
 
 

in 33.5 seconds. It first COLLECT s the equation and builds up the 
list

COS(X)+1=0 SIN(X)−1=0{ }
then passes the list to SOLVE .

SOLVE  returns

X =
4∗π∗ n1 +π

2

in 11.6 seconds. It looks like it has lost some solutions but it hasn‘t. 
Make a sequence of solutions for both results to prove that.

20) Solve COS(X) = 2 ⋅ SIN
X
2

 
 

 
 

Both TRISOL and SOLVE  error „Not reducible to a rational 
expression“ But this is not true. If we apply  to COS(X)  

twice, and to SIN
X
2

 
 
  

 
  once, then we have a rational expression, a 

ratio of polynomials in TAN
X
4

 
 
  

 
 . This should be solvable, at least 

with numeric factoring.

If you feed TRISOL with this polynomial in TAN
X
4

 
 
  

 
 , then it returns 

the numeric solutions in 59.4 seconds. SOLVE  needs 21.1 seconds.

The question here is, how to add code to TRISOL to handle such 
cases. It should first find all trigonometric functions, check if all 

arguments for these functions are of the form 
numerator

n∗2m  where 

numerator and n  are the same for all arguments, and then apply 
HALFTAN to each trigonometric function the appropriate number of 

times, so that an equation of the form f TAN
numerator

k
 
 
  

 
 

 
 
 

 
 
 =0  

appears, where numerator and k  are the same for all arguments of 
TAN . It is possible to do that, but I don‘t know if it is also reasonable. 
(Well, I must confess that I would like to do that, if only for the fun of 
it. :-) )
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21) Solve 1+ COS(2 ⋅ X) = 6 ⋅ SINX( )2

TRISOL returns the solutions in 43.3 seconds. SOLVE  needs 28.5 
seconds. TRISOL doesn‘t find this equation to belong to any of the 
special groups, so it simply passes it to SOLVE  hoping for the best. 
So the time difference is only for the overhead of checking for such 
special cases.

22) Solve 2 ⋅ SIN X( )2 + SIN 2 ⋅ X( )2 = 3

TRISOL needs  56.5 seconds and works here like in 21. SOLVE  
needs for the same solutions 39.5 seconds.

23) Solve 2 +1( ) ⋅SIN X( )2 + 2 −1( )⋅ COS X( )2 +SIN 2 ⋅ X( ) = 2

TRISOL needs 63.2 seconds to find the solutions. SOLVE  finds the 
same solutions in 31.1 seconds. TRISOL works here like in 21.

24) Solve COS X( ) =
2 ⋅TAN X( )

1+ TAN X( )2

Taken from exams at the greek military school.

TRISOL finds the equation to belong to the special group 
f sin(x),cos(x),tan(x)( ) =0 . It uses HALFTAN EXPAND  FACTOR  

to build a polynomial in TAN
X
2

 
 

 
  and then passes the polynomial to 

SOLVE . It needs 70.9 seconds to complete.

SOLVE  finds the solutions in 25.5 seconds.

Applying HALFTAN and FACTOR  to the original equation, we get:

− TAN
X
2

 
 

 
 + 1

 
 
  

 ⋅ TAN
X
2

 
 

 
 −1

 
 
  

 ⋅ TAN
X
2

 
 

 
 − 2 − 3( ) 

 
  

 ⋅ TAN
X
2

 
 

 
 − 2 + 3( ) 

 
  

 
 
 
  

 
 

TAN X
2

 
 

 
 

2

+ 1
 

 
  

 
 

2

Some of the solutions of this equation are a bit hard to understand. If 
we simply put the solutions of the form

X =
4 ⋅ n1 ⋅π −π

2

and

X =
4 ⋅ n1 ⋅π −π

2

for some integer values of n1 back to the original equation, then the 

right hand side becomes 
+∞
∞

, so we must calculate the limit of the right 

hand side for X  approaching 
4 ⋅n1 ⋅π −π

2
 or 

4 ⋅n1 ⋅π −π
2

. The result 

is 0  for any integer value of n1, like the result for the left hand side, so 
the solutions are correct.
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25) Solve 

3 ⋅ TAN X( ) +
2

TAN X( )
3 ⋅ TAN X( ) +

5
TAN X( )

=
2
3

TRISOL needs 24.8 seconds to find the solutions while SOLVE  
needs 11.9 seconds. TRISOL COLLECT s, drops the denominator 
and passes 3 ⋅ TAN X( )2 − 4 = 0  to SOLVE .

26) Solve SIN X( ) + SIN 3 ⋅ X( ) = 2 ⋅SIN2 ⋅ X( )

TRISOL needs 45 seconds to find the 5 solutions which SOLVE  
returns in 27.6 seconds. TRISOL simply passes the equation to 
SOLVE  in this case.

27) Solve SIN X( ) + SIN 2 ⋅ X( ) + SIN 3 ⋅ X( ) + SIN 4 ⋅ X( ) = 0

TRISOL works like in 26 and finds 7 solutions in 84.8 seconds. 
SOLVE  finds the same solutions in 65.2 seconds.

28) Solve COS X( ) −COS 2 ⋅X( ) + SIN3 ⋅X( ) = 0

Both find the same solutions. TRISOL in 59.8 seconds and SOLVE  
in 39.1 seconds. TRISOL does here the same like in 26.

29) Solve 2 ⋅ SIN X( )2 + 2 ⋅SIN X( ) ⋅COS X( ) −1= 0

TRISOL finds that the equation belongs to the special group 
a ∗sin2(x)+b ∗ sin(x)∗ cos(x)+ c ∗ cos2(x)+ d =0 . It transforms this 
equation to:

2 ⋅ SIN X( )2 + 2 ⋅SIN X( ) ⋅COS X( ) −1⋅ SINX( )2 + COS X( )2( ) = 0 ⇔

SIN X( )2 + 2 ⋅SIN X( ) ⋅COS X( ) − COS X( )2 = 0

then factors it and builds up the equations list 

SIN X( ) + 1+ 2( ) ⋅COS X( ) = 0 SIN X( )− −1+ 2( ) ⋅COS X( ) = 0{ }
to SOLVE . It takes 39.9 seconds to find the solutions.

SOLVE  needs 21.1 seconds but finds the same solutions in numerical 
form.

30) Solve 2 ⋅ SIN X( )2 + 2 ⋅SIN X( ) ⋅COS X( ) + a ⋅ COS X( )2 −b = 0

TRISOL works like in 29. It returns the solutions in 77.3 seconds. 

SOLVE  on the other hand returns an empty list in 24.9 seconds.

31) Solve 2 ⋅ SIN X( )2 + 4 ⋅SIN X( ) ⋅COS X( ) + 5 ⋅ COS X( )2 = 3

TRISOL finds the solutions in 46.5 seconds while SOLVE  needs 
29.4 seconds but returns numerical solutions. TRISOL works here like 
in 29.
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32) Solve 5 ⋅ SIN X( )2 − 3 ⋅SIN X( ) ⋅COS X( ) − 2 ⋅COS X( )2 = 0

TRISOL returns the solutions in 80.5 seconds. It factors the equation 
to:

SIN X( ) − COS X( )( ) ⋅ 5 ⋅SIN X( ) + 2 ⋅COS X( )( ) = 0

It then MATCHes SIN X( ) − COS X( ) = 0  to:

COS X −
π
2

 
 

 
 −COS X( ) = 0

and then finds that this belongs to the special group 
COS a( ) − COSb( ) = 0  . The second equation 5⋅ SIN X( ) + 2⋅ COS X( ) = 0 
is found to be of the form f sin(x),cos(x),tan(x)( ) =0  and so 

HALFTAN EXPAND  is used to find a polynomial in TAN
X
2

 
 

 
  

which is then passed to SOLVE .

SOLVE  finds the solutions in 28.5 seconds.

33) Solve SIN X( ) + 2 ⋅COS X( ) =
1

COS X( )

TRISOL needs 43.5 seconds for this. SOLVE  does it in 25.4 seconds 
but returns numeric results. TRISOL works here like in 32.

34) Solve a ⋅SIN X( ) + 2 ⋅COS X( ) =
1

COS X( )  

TRISOL finds the solutions in 51.8 seconds and works here like in 32. 
SOLVE  returns an empty list in 13.8 seconds.

35) Solve 2 ⋅ COS X( ) + SIN 3 ⋅ X( ) = 1

TRISOL simply passes this to SOLVE . It returns the solutions in 65.1 
seconds.

SOLVE  needs for the same solutions only 47.3 seconds.

Both return numeric solutions.

36)Solve SIN3 ⋅X( ) = 8 ⋅ SINX( )3

TRISOL works like in 35 and returns the solutions in 52 seconds.

SOLVE  needs only 35.7 seconds.

37) Solve 
COS X( )

COS a − X( ) = m

TRISOL works like in 35 and returns the solutions in 72.5 seconds.

SOLVE  needs only 55 seconds.
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38) Solve SIN π ⋅COS(X)( ) = COS π ⋅SIN(X)( )

Taken from exams at the greek Polytechnics. What weird exams are 
those in Greece, I‘m telling you! ;-)

TRISOL needs 72.4 seconds to return the solutions. It finds the 
equation to be of the form sin(a)− cos(b)=0 , MATCHes it to

COS π ⋅COS(X) −
π
2

 
 

 
 − COS π ⋅SIN(X)( ) = 0

and then finds that it belongs to the group cos(a)− cos(b)=0 . It builds 
up the equation list

π ⋅COS(X) − π
2

= 2⋅ π ⋅n1 + π ⋅SIN(X) π ⋅COS(X) − π
2

= 2⋅ π ⋅n1 − π ⋅SIN(X)  
 

  
 

and passes this list to SOLVE .

SOLVE  returns, well I don‘t know because I interrupted it after about 
2 minutes.

39) Solve 
TAN(X + a)
TAN(X − a)

= m

TRISOL does it in 58.3 seconds while SOLVE  needs only 38.7 
seconds.

40) Solve 
TAN

π
3

− X
 
 

 
 

COS X( )2 =
TAN X( )

COS
π
3

− x
 
 

 
 

2

TRISOL needs  120.1 seconds. SOLVE needs only 94.7 seconds.

41) Solve TAN
1

TAN(X)

 
 
  

 
=

1
TAN TAN(X)( )

Both error with „Not reducible to a rational expression“ But the 
equation can be solved. Use , , . Take the 
resulting expression to the EQW, select the numerator and . 
The numerator goes to

−1⋅ cos
SIN X( )2 + COS X( )2

COS X( ) ⋅SIN X( )
 

 
  

 
 

Select the sub-expression SIN X( )2 +COS X( )2
 and press TRIG to 

convert it to a 1. Now the whole expression is:

−1⋅ COS
1

COS X( )⋅ SINX( )
 
 
  

 
 

COS COS X( ) ⋅SIN X( )( )⋅ SINCOS X( )⋅SIN X( )( ) = 0

Press  to put this expression to the stack and  for X . 
You get the results 180.5 seconds.

If you feed TRISOL with the above equation you get an empty list after 
56.3 seconds and this is very very surprising if you think about what 
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TRISOL does in this case. It COLLECT s and throws away the 
denominator, so that

−1⋅ COS
1

COS X( )⋅ SINX( )
 
 
  

 
 = 0

remains as the equation to solve. Then it checks for special groups, and 
finds that this equation doesn‘t belong to any of these groups. So it 
passes the remaining equation to SOLVE .

Now SOLVE  takes over and can‘t solve

−1⋅ COS
1

COS X( )⋅ SINX( )
 
 
  

 
 = 0

though it can solve

−1⋅ COS
1

COS X( )⋅ SINX( )
 
 
  

 
 

COS COS X( ) ⋅SIN X( )( )⋅ SINCOS X( )⋅SIN X( )( ) = 0

that is the same equation with a denominator! Why? Dunno, but it is 
kind of amusing.

So if you had to solve the equation

−1⋅ COS
1

COS X( )⋅ SINX( )
 
 
  

 
 = 0

you should first MATCH the expression

1
COS X( ) ⋅SIN X( )

to Y , solve for Y , then substitute

Y =
1

COS X( ) ⋅SIN X( )

back to the solutions and solve again for X .

42) Solve 

SIN X( ) + COS X( ) + TAN X( ) +
1

SIN X( ) +
1

COS X( ) +
1

TAN X( ) + 3 = 0

Taken from the exams at the Greek Polytechnics 1947. I told you, the 
exams are really weird there. ;-) 

TRISOL needs 312.6 seconds and SOLVE  needs 109.7 seconds. 
(Complex mode, X  is assumed to be real.)

We have 42 examples, and if I remember well this number has to do 
something with the question about the universe, us and everything 
else. So I think I better stop here. We don‘t want to know more than 
this universe tells us, do we?

Only a small word about TRISOL. It isn‘t meant to replace SOLVE . It 
is only a try, a very imperfect try, to automate what you do when you 
don‘t get an answer with SOLVE  right away. I hope you enjoyed the 
bugs, the corrections, the ideas behind it. And I hope that you change it 
and tailor it to best fit your needs. What I find big fun, when trying to 
do such things like solving similar equations, is that I can‘t always 
explain to myself how I do it, in order to sit down and write a program 
that does the same. I mean, look at

SIN(X)+ COS
X
4

 
 

 
 − TAN

X
2

 
 

 
 = 0
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You can see immediately that you must apply  once to 

cos
X
4

 
 

 
 , twice to TAN

X
2

 
 

 
 , and 3 times to SIN(X)  in order to turn 

this equation to a ratio of polynomials in TAN
X
8

 
 

 
 . Now writing a 

program that does the same is like transferring a thought to the calc or 
to any other programmable machine. But to do that you must first think 
about things that happen automatically in mind. When you write such a 
program that does the same as you do, it doesn‘t of course mean that 
your thoughts work in exactly the same way. You don‘t find 

logarithms of the denominators of X , 
X
2

 and 
X
4

, and you don‘t divide 

them with ln(2)  in mind. You simply see that TAN
X
2

 
 

 
  should be 

transformed twice with HALFTAN, while SIN X( )  should be 
transformed 3 times. But what hides behind this „you simply see“? 
There must be a relation, some vague kind of similarity between this 
„you simply see“ and the program. A relation that can be described on 
the level of bits and bytes (?), or a relation of what the currents in my 
brain and my calc produce when they flow, which at the end is the 

polynomial in TAN
X
8

 
 

 
  in this case.

Well that‘s all for today. Keep tuned and solve them all!
(TRI)SOLved greetings,
Nick.
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Hi all!

It is the tenth and last part of the Trigonometry Marathon and we 
already have seen a lot of things. But there is still stuff waiting to be 
discovered. Would you ever think that the little HP49G is such a big 
place if you take a look from the inside? ;-)

Until now we stayed in the real domain. Today we will dare a small 
jump into the complex. (As if it weren‘t complex enough already..;-) )

So get your backpack and VPN don‘t forget your swiss army knife and 
here we go, our trip into the complex begins.

You may already know that there are some relations between 
trigonometric functions and complex exponentials. Since the Complex 
Marathon starts right after the end of the Trigonometry Marathon, I 
think it is better to leave the derivation of these relations on the HP49G 
for the first part of the Complex Marathon. For now it is enough to 
show what can be done with these relations:

1) ei⋅x = cos(x) + i ⋅ sin(x)
2) e−i⋅x = cos(x) − i ⋅sin(x)

First of all, the HP49G can do this. The command SINCOS takes 
complex exponentials and returns them as trigonometric functions. It is 
the first command on the second page of the TRIG menu.

We assume here that X  and Y  are real and also that Z  is complex. 
Enter X ADDTOREAL  then Y ADDTOREAL  and then 
Z UNASSUME so that these assumptions are done. Also switch the 
HP49G to complex rigourous mode.

Now, enter e
i⋅X + π

2  and press . The HP49G returns

e
π
2 ⋅ COS(X) + i ⋅SIN(X)( )

Enter eX +i⋅Y , press , and you get

eX ⋅ COS(Y) + i ⋅SIN(Y)( )

But enter ei⋅Z , press , and the result is

e−IM(Z) ⋅ COSRE(Z)( ) + i ⋅SINRE(Z)( )( )
Why the difference? Well, X  and Y  are assumed to be real, so the 
HP49G knows for example that the real part of X  is X  and the 
imaginary part of X  is 0 . But if Z  is complex, and nothing else is 
known about it, then the HP49G writes leaves RE(Z)  and IM(Z) 
unevaluated, to denote the real and imaginary part of Z .

If we add the relations (1) and (2) we get:

3) cos(x) =
ei⋅x

2
+

e−i⋅x

2

If we subtract (2) from (1) we get:

4) sin(x) = i ⋅
e−i⋅x

2
− i ⋅

ei⋅x

2

The command for converting trigonometric functions to complex 
exponentials is EXPLN . It is the first command on the menu 
EXP&LN.

Enter SIN(X) , press , and you get the result

ei⋅X −
1

ei⋅X

2 ⋅ i
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Though it is already readable enough on the HP49G, let‘s make it 
looking more familiar. Press  (third command on the menu 
EXP&LN) to get

i ⋅
e− i⋅x

2
− i ⋅

ei⋅x

2

LIN tries to make real or complex exponentials linear. (EXPAND  

doesn‘t fit here, because it brings the two terms ei⋅X  and 
1

ei⋅X  over a 

common denominator and so returns a more complex looking 
expression.)

Now, with

i ⋅
e− i⋅x

2
− i ⋅

ei⋅x

2

on stack level 1 press  to make two copies and then press  
to get the real part of the expression. Press  or  and 
you see SIN(X)  again. This is correct, because we started with a real 
thing, that is SIN(X) , and so even turning it to a complex exponential, 
it still remains real. You‘ll see how important this can be later on, in 
this part. Press now  to bring one of the copies that you have made 
on stack level 1 and press  to get the imaginary part of the 
expression. Press  and you see that the imaginary part is 0  as 
it must be. (Since we started with the real SIN(X) , we expect the 
HP49G to return 0 .)

Instead of using  and , you can also use . Press  to 
bring the second copy on stack level 1, Press  and then 

. The result is again SIN(X) .

If you enter SIN(Z) and press , then you get

ei⋅Z −
1

ei⋅Z

2 ⋅ i

Perhaps you wonder why there are no RE(Z)  and IM(Z) in this case. 
Well, if there were such expressions, they would appear as

ei⋅ RE(Z) +i⋅IM(Z)( ) − 1
ei⋅ RE(Z) +i⋅IM(Z)( )

2 ⋅ i

that is in a form that is equivalent to Z  itself, because every complex 
number Z  is the same as RE(Z) + i ⋅IM(Z) .

Not only the trigonometric functions can be converted to complex 
exponentials/logarithms but also the inverse trigonometric functions. 
Enter for example ACOS(X)  and press . The result is

LN e
LN X 2 −1( )

2 + X
 

 
 

 

 
 

i

If you don‘t like the representation e
LN X2 −1( )

2 , then press  to 
convert this to

LN X + X2 −1( )
i

There are some things that should be mentioned about this result.

The first is, that the HP49G can‘t get REal and IM aginary parts of this 
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expression. So if we want to do that, we must do something ourselves. 
Though this will be covered better at the complex marathon, let it be 
said here, that the argument of the LN can be written as a complex 
number of the form r ⋅ei⋅θ , where r  is the magnitude and θ  the angle 
of the complex number. Thus we have LNr ⋅ ei⋅θ( ) = LN(r) + i ⋅θ . The 

REal and IM aginary parts of this are easy to calculate (if we assume 
that θ  is the angle of the principal value).

The second thing is that the HP49G doesn‘t consider assumptions 

about variables when it evaluates or expands LN X + X2 −1( ) . If you 

make the assumption X ≥1, and then try to find the REal part of this 
expression, the HP49G doesn‘t return the expression itself, but simply 

writes RE LN X + X2 −1( )( ) . The same with the IM aginary part. It 

doesn‘t return 0  but IM LN X + X2 −1( )( ) . If you have only 

X + X2 −1  as argument, and have made the assumption X ≥1, then 

the HP49G returns X + X2 −1  as the REal part of the expression and 
0  as the IM aginary part.

The third thing is that, if you start at complex mode with ACOS(X)  
and you press EXPLN, you get

LN X + X2 −1( )
i

no matter what assumptions you have made for X . But if you are at 
real mode, enter for example ASIN(X)  and press , then you get 
a huge expression:

i ⋅LN

e
RELN X 2 −1( )( )

2

 

 
 

 

 
 

2

⋅SIN
IM LN X2 −1( )( )

2

 

 
 

 

 
 

2

+ e
RE LN X2 −1( )( )

2

 

 
 

 

 
 

2

⋅ COS
IM LN X2 −1( )( )

2

 

 
 

 

 
 

2

+ 2 ⋅X ⋅ e
RELN X 2 −1( )( )

2 ⋅COS
IM LN X2 −1( )( )

2

 

 
 

 

 
 

2

+ X2

 

 

 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
 

2
+

π
2

If you start at real mode and you have previously assumed that for 
example X ≥1 then these assumptions are taken into consideration . I 
think that the HP49G in complex mode considers expressions like for 
example LN X2 +1( )  to be general complex expressions and so it 
doesn‘t care to show explicitly what is the real or the imaginary part. 
But in real mode, it explicitly shows real and imaginary parts, as well 
as the CAS allows and tries to return results according to the 
assumptions you have made. A bit more on assumptions. Lets say that 

you make the assumption X ≥1. Then things like IM X2 −1( )  are 

correctly evaluated to 0 . Does this means that the HP49G considers 
this assumption? Well, it does in many other cases, but not for this 
one, though it looks like it did. Lets assume −1≤ X ≤1 and find then 

the imaginary part of X2 −1. How can we make the assumption 

X ≥ −1 AND X ≤1? Entering this expression and then using 

, results in an error. But you can enter X ≥ −1, press 

, then enter X ≤1 and press . If you now take a look 

at the list REALASSUME, you see that X ≥ −1 AND X ≤1 is in 
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the list. Quite hard to understand why the HP49G doesn‘t let you do it 

directly with X ≥ −1 AND X ≤1   and wants you to use 

X ≥ −1  and then X ≤1  instead. But it has its 

reasons. If you do X ≤2   and then X ≤1 , then the 

HP49G only writes X ≤1 in the list REALASSUME because it 

correctly finds out that X ≤2 AND X ≤1 is equivalent to X ≤1! 

And this though X ≤2 AND X ≤1 can‘t be simplified with 

 or  on the stack! Could it be that this is the built-in back 
door for simplifying logical expressions? (And also the back door for 

another marathon? ;-)) Back to our imaginary part of X2 −1. With the 

assumption X ≥ −1 AND X ≤1 the expression IM X2 −1( )  should 

be evaluated to  1− X2  and RE X2 −1( )  should be evaluated to 0 . 

But it doesn‘t! If you make this assumption, enter X2 −1 and press 

 then the result is X2 −1 and the result of X2 −1  is 0 , which 
is not correct, considering that −1≤ X ≤1. More about the influence of 
the many operation modes and assumptions to the calculations will be 
in the complex marathon.

The fourth thing is that the expression

LN X + X2 −1( )
i

cannot be reconverted to ACOS(X)  using . So it looks like a 
one way ticket from inverse trigonometric functions to complex 
logarithms. Let‘s try to find if and how the conversion from logarithms 
to inverse trigonometric functions can be made. Let‘s say we have 
LN(Z) and want to convert it to ASIN(W), where W  is some function 

of Y . We want to find what W  looks like. So enter LN(Z)= ASIN(W) 
and solve this for W . The result is W = SINLN(Z)( ) . Does this mean 
that whenever you have LN(Z) you can convert it to 
ASIN SINLN(Z)( )( ) ? Well, unfortunately not exactly. The reason is the 
ASIN  which can send one argument to more than one result. Because 
of this property, this function (and all other inverse trigonometric 
functions) are programmed so that they return the principal value of all 

different possible values, which goes from −
π
2

 to 
π
2

. ASIN SINX( )( )  

not necessarily equal to X . To understand this better, do the following:

Define F(X)= LN(X)−ASIN SINLN(X)( )( ) .

Then enter .5 and press . The result is 0 , which shows that in this 
case LN(X)= ASINSINLN(X)( )( ) . The function returns always 0  for 
arguments between 0.20787957635 and 4.81047738099. But try to 
calculate F(5.)  and suddenly you get 0.07728317126. What is going 
on here? What are the strange numbers 0.20787957635 and 
4.81047738099? I got a real headache thinking about the reason and 
was about to throw this HP49G away. That‘s why the 10th part of the 
trigonometry marathon had such a delay. But then Trabakoulas came 
and helped again. He told me to make a plot of the SINLN(Z)( )  against 
LN(Z) to understand why the HP49G behaves this way. (Turn page to 
read his explanations.)
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When LN(Z) is less than 
π
2

 and greater than −
π
2

 , then a given value 

for the sine is sent by  ASIN  to the principal value Xo . (You start at 
the Y -Axis at Y , go horizontally until you meet the sine curve at point 
o , then go down vertically to the X -Axis until you meet the point Xo .)

But when LN(Z) is for example greater than 
π
2

 then the SIN  function 

sends LN(Z) to SINLN(Z)( ) = Y , (from X  go up until you meet the 
SIN  curve and then to the left until you meet Y = SINLN(Z)( )  at the Y
-axis ). But then ASIN  sends Y  to Xo  and not to X . (From Y  at the 
Y -Axis go to the right until you meet the curve SIN(X)  and then down 
until you reach Xo .)

We see that the arguments that „belong“ to the principal values are 

those between −
π
2

 and 
π
2

. But in this case the argument of SIN  is not 

X  but LN(X) . That means that these arguments LN(X)  go from −
π
2

 

to 
π
2

. And that means that X  itself goes from e
− π

2 =0.20787957635 to 

e
π
2 =4.81047738099. That is where the strange numbers come from.
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And it can get even crazier! See for example how an argument greater 
than π , can be sent to the other side (the spy who jumped over), to a 
negative X0  value. You start at X , go down until you cut the sine 
curve, then go to the left until you are on the Y -axis at point Y . (The 
border to the other side ;-) ) Then ASIN  (the master executor) sends 
you leftwards to the sine curve because that branch is nearest, and 
when you go up again, to meet the X -axis, you realise that you are not 
where you started but at Xo<0. (The other spies cheated you, should 
we plan vengeance?) 

And to make things „better“ ;-), the same happens at the other side, 
when LN(Z) is negative. The situation is mirrored there.

We see that converting from LN to ASIN  (or any other inverse 
trigonometric function) is not an easy thing to do.

Now, the benefit of converting trigonometric functions to complex 

exponentials ( and/or logarithms ) is that many things become possible, 

which can‘t be done otherwise. Consider for example SIN(n⋅ X)
n =0

N

∑ . 

The HP49G can‘t return a result for this symbolic sum. And even if 
you have a numeric N, it takes a lot of time to return a result, when N 
goes to bigger values. But this sum can be calculated using conversion 

to complex exponentials. Let‘s do that. Enter SIN(n⋅ X)
n =0

N

∑ . Take the 

sum to the EQW and select SIN(n⋅X) ). Press now . The 
expression SIN(n⋅X)  is converted to

ei⋅n⋅X −
1

ei⋅n⋅X

2 ⋅ i

Press  to take the sum to the stack. Now, before going any 
further, enter 'N' ADDTOREAL  to tell the HP49G that the N of the 
sum is a real. Now press  and after some seconds you have 
the symbolic result for the symbolic sum! It is in complex form, but the 
imaginary part of it is 0 , as it must be because we started from the real 
expression SIN(n⋅X) . Press  to make a copy of this result and 
then press . It takes a while, but then a result with trigonometric 
functions is returned. Press  to simplify this result to 0 . 
Press  to get rid of the 0  and then  to calculate the real part of 
the sum. Then press ,  to get

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)( )
2 ⋅COS(X) − 2

This result is the sum of SIN(n⋅X)  with n  from 0  to N. It is valid for 
every N. We just have jumped to complex hyper space (without a 
sheep on our back ;-) ), made things that are impossible in our real 
space, and then returned with the result.  You can use this result to 
DEFINE  user functions that calculate such a sum, with n from 0  to, 
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say 1000, instead of waiting until the HP49G builds 
SIN(0⋅ X) + SIN(1⋅ X) +…+ SIN(1000⋅ X) . The same way you can 

calculate SIN(n⋅ X)
n= n0

N

∑  or COS(n⋅ X)
n =0

N

∑  and so on.

But wait a minute. The sum of SIN(n⋅X)  with n  from 0  to N is a 
finite quantity for any X  when N is a finite number. But our result for 
this sum contains 2∗ COS(X)−2  in the denominator. This is equal to 
0 , when X  is 2 ⋅ π ⋅n . Does this mean that then the sum is the infinite 
and we have made a mistake? No, because the numerator of the result 

is then also 0 , which tells us that we have 
0
0

 and so must work with 

limits. Because N in our result is an integer and because the HP49G 
still doesn‘t have INTEGERASSUME, lets put an integer value for N 
in our result. Press  to make a copy of the result for the sum, 
and then enter 'N =5 ' and press . Then enter 'X = 2 ⋅π ' and 
press . The HP49G returns 0  which is correct. That means that the 
expression

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)( )
2 ⋅COS(X) − 2

is 0  for N =5  and X = 2 ⋅π . You can try also other combinations of 
values for N and X , like N =4  and X = 2 ⋅π , N =4  and X = 6 ⋅π  and 
so on. This is also a nice way to demonstrate the following fact: 
Because the sum SIN(0⋅ X) + SIN(1⋅ X) +…+ SIN(1000⋅ X)  has no 
singularities when N is finite, so does also its equivalent form

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)( )
2 ⋅COS(X) − 2

The value of this expression for 2 ⋅ π ⋅n  can be defined to be the limit  
for X = 2 ⋅ π ⋅n . It is not only that we can go infinitely near the point 
2 ⋅ π ⋅n  to have a defined result for

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)( )
2 ⋅COS(X) − 2

but that we can also use that result as the value of the expression at that 
point. This result, that we define, exists also at the point X = 2 ⋅ π ⋅n , 
because if it wouldn‘t, then also the sum 
SIN(0⋅ X) + SIN(1⋅ X) +…+ SIN(1000⋅ X)  should have an undefined 
value for X = 2 ⋅ π ⋅n , which is absurd! The same holds for every 

other expression (like 
SIN(X)

X
 when X →0 ) if the limit exists.

Let‘s move on to other conversions. The HP49G has also the 
hyperbolic functions SINH, COSH, TANH , ASINH, ACOSH, 
and ATANH  built-in. The command EXPLN  also converts such 
functions to complex exponentials. For example, enter COSH(X) and 
press  to convert this to

eX +
1

eX

2

If you don‘t like this form (like I do) press  to get

1
2

⋅ eX +
1
2

⋅e− X

The opposite can be done with the command EXP2HYP, which 
converts exponentials to hyperbolics. For example enter eX  and press 

. The result is SINH(X)+ COSH(X). The trigonometric 
functions SIN , COS , TAN , ASIN , ACOS , ATAN  can also be 
converted to hyperbolic functions with EXP2HYP. Enter TAN(X)  
and press  to get
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SINH(2⋅ i ⋅ X) + COSH(2⋅ i ⋅ X)
i ⋅SINH(2⋅ i ⋅ X) + i ⋅COSH(2 ⋅ i ⋅X) + i

.

And here is a picture with all built-in conversions:

Let‘s do some examples now. ( Complex rigourous mode, X , Y  and 
N are in REALASSUME )

1) Show that COSH(X)2 − SINH(X)2 = 1

Enter COSH2(X)− SINH2(X) . Press  and  to get 
a nice round 1.

2) Express eACOS(X)  without using any exponential, trigonometric or 
hyperbolic functions.

Enter eACOS(X) , press  and . Result:

1

X + X2 −1( )i

3) Express SIN(i⋅X)  as a hyperbolic function.

Enter SIN(i⋅X)  and press  to get

i ⋅SINH(X)

4) Turn COS(X + i ⋅ Y)  to an expression that 
consists of functions that have either X  or Y  
but not both X  and Y as arguments.

Enter COS(X + i ⋅ Y) . Since we want to have 
X  or Y  alone as arguments, press  to 
expand the expression to sums of products:

COS(i⋅ Y) ⋅COS(X) − SIN(i⋅ Y) ⋅SIN(X)

Press  to get this to the EQW. Select 
COS(i⋅ Y)  and press . Now select 
SIN(i⋅ Y)and press again . Press 

 to put the result

COSH(Y) ⋅COS(X) − i ⋅SINH(Y) ⋅SIN(X)

to the stack. 
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5) Find the real and imaginary parts of COS(X + i ⋅ Y) .

Enter COS(X + i ⋅ Y)  and press  to make a copy of this 
expression at stack level 2. Press . You get

e− Y ⋅COS(X) + eX ⋅COS(X)
2

which is the real part. Is this equal to COSH(Y) ⋅COS(X) , the 
real part of the expression from the last example? Let‘s see. Press 

 to convert the expression to

e− Y + eY( ) ⋅SIN(X)

2

Now take this to the EQW, select e− Y + eY  and press . 
The result is

2 ⋅ COSH(Y) ⋅COS(X)
2

Press  and then  to get COSH(Y) ⋅COS(X) . 
Now press  to take COS(X + i ⋅ Y)  to stack level 1. Press  
to find the imaginary part. Press  and take the resulting 
expression to the EQW. Select e− Y − eY  and press . 
Press  and then  to see that this is equal to the 
imaginary part of the previous example.

6) Show that if X , Y  are real, then SIN(X + i ⋅Y) ⋅ SIN(X − i ⋅ Y)  is 
also real.

Enter SIN(X + i ⋅Y) ⋅ SIN(X − i ⋅ Y)  and press . Take the 
result to the EQW. Select and apply  to all occurrences 

of COS(i⋅ Y)  and SIN(i⋅ Y) . Press  and  to 
simplify the expression to

COSHX( )2 ⋅ SIN X( )2 + SINH X( )2 ⋅COS X( )2

7) Find the symbolic sum COSH(n ⋅ X)
n =0

N

∑ .

Enter

COSH(n ⋅ X)
n =0

N

∑

take this to the EQW, select COSH(n⋅ X)  and press . 
Press  and the  to find the symbolic sum. You 
can use  to split this a sum of smaller quotients. Take 
the result to the EQW and apply  to each quotient. The 
result is then

eX⋅N+ X

2 ⋅ eX − 2
+

eX

2 ⋅eX − 2( ) ⋅eX⋅N+ X +
1
2

.

8) Convert eX +i⋅Y  to an expression with trigonometric functions.

Enter eX +i⋅Y  and press .

9) Solve COSH(X)+ eX = 0  for X .

If you try to solve this with the built-in SOLVE  then you get the 
error „Not reducible to a rational expression“. But if you enter 
COSH(X)+ eX = 0 , press  and then solve this for X , you 
get a list with 2 solutions. After you  the arguments of 
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the logarithm functions, the solutions are

X = 2 ⋅ i ⋅ n2 + LN
i ⋅ 3

3

 
 
  

 
 

and

X = 2 ⋅ i ⋅ n2 + LN −
i ⋅ 3

3

 
 
  

 
 

Now, what do you think? Should TRISOL make its evolutionary 
way to HYPEXTRISOL? ;-)

10) Convert 
eX( )6

+ eX( )5
+ eX +1

2∗ eX( )3  to a more simple expression that 

contains hyperbolic functions of multiples of X .

Enter

eX( )6
+ eX( )5

+ eX +1

2∗ eX( )3

Since we want multiples of X  like 2 ⋅ X , 3 ⋅ X  and so on, as 
arguments of hyperbolic functions, it seems reasonable to use 

LIN, to turn things like eX( )n
 to things like en⋅X . Press . Now 

press . The result is SINH(3⋅ X) + COSH(2⋅ X) .

In all these examples I have used very very often VPN‘s program for 
STARTEQW , modified to contain all commands like EXP2HYP, 

EXP2POW  etc., that you find only through menu hunt otherwise. 
(Hello J.H.Meyers ;-)). But of course it's up to you how to use the 
commands. If you prefere menus, the use menus. If you prefer typing 
and entering the commands, then do it that way. There is no "ultimative 
way" to use the HP49G. Just follow your own gusto.

Ending this last part of the Trigonometry Marathon, I want to say 
thanks to all people who commended, corrected and asked. This was 
one of the main powers that kept me on working. Trabakoulas also 
wants to thank you all, for helping find all his sheep. (Except the one at 
the ski jump, of course ;-) )

Before putting the COLLECT ed PDF parts of this marathon to hpcalc, 
I‘ll add a part with trigonometric/hyperbolic/exponential conversions 
on the HP48. But I‘ll not post this part here. Also I‘ll put the newest 
version of TRISOL to hpcalc.

Next marathon will be the Complex Marathon (is that VPN screaming? 
;-) ), where Kojak will SOLVE  complex cases with the joint forces of 
TRISOL and COMSOL. Or was it COMTRISOL? Or 
HYPEXCOMTRISOL? Well, we will see. Also Trabakoulas will be 
running on ice making complex jumps with sheep.
Thanks a lot for your interest and keep tuned.
Hyperbolic greetings,
Nick.

Trigonometry with the HP49G - Part 10

10-10



This additional part of the trigonometry marathon will be dedicated to 
the users of the HP48. This calculator doesn't have out of the box the 
big variety of commands available to the HP49G, but nonetheless there 
are some things that are possible with the built-in commands only. Of 
course it is possible to install ERABLE and do much more, but then the 
biggest part of the marathon up to now applies also to the HP48. So 
let's go and see what is possible using only the built-in functions.

We have seen that on the HP49G the command EXPLN  converts 
trigonometric functions to complex exponentials. On the HP48 there is 
the operation → DEF  which does this. Unfortunately this operation is 
only available in the EQW. You can't use it in programs or elsewhere. 
(Perhaps some guru out there could tell us, if there is a SYSEVAL 
that can perform this operation on an algebraic on the stack.) Let's test 
this operation. Enter 'SINX( )'  on the stack and press  once, to take 
the expression to the EQW. The EQW starts in scroll mode, so press 
the key  (that means the key ) once to exit this mode and 

enter edit-mode. Press  to select the SIN  function. With this 
function selected press the menu key . This brings a menu with 
operations that can be performed. The first is → DEF . Press the menu 
key . After a while the HP48 shows the result:

EXP X ⋅ i( ) − EXP −X ⋅ i( )
2 ⋅ i

This can be used to derive such things like sin2(x)+ cos2(x)=1. Let's 
see how this can be achieved. Enter 'SIN(X)^2 + COS(X)^2' and take 
this to the EQW. Select SIN , press  and then . When 
the HP48 is ready select the function COS , press again  and 
then . Now the expression

EXP X ⋅ i( ) −EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 

2

+
EXP X ⋅ i( ) +EXP −X ⋅ i( )

2

 
 
  

 

2

is on the EQW. Press  to take this to the stack. Now press 
, to get the symbolic menu. Press  twice to expand 

the expression to:

EXP X ⋅ i( )
2 ⋅ i

−
EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 
⋅

EXP X ⋅ i( )
2 ⋅ i

−
EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 
+

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 

Now press again ,  and then select multiplication sign 
between

EXP X ⋅ i( )
2 ⋅ i

−
EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 

and

EXP X ⋅ i( )
2 ⋅ i

−
EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 
.

Press  and then  to distribute the multiplication to the left. 
The result is:

EXP X ⋅ i( )
2 ⋅ i

 
 
  

 
⋅

EXP X ⋅ i( )
2 ⋅ i

−
EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 
−

EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 
+

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 

Select the multiplication sign between
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EXP X ⋅ i( )
2 ⋅ i

 
 
  

 

and

EXP X ⋅ i( )
2 ⋅ i

−
EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 
.

Press  and then press  to distribute to the right. The result 
now is:

EXP X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2 ⋅ i
−

EXP X ⋅ i( )
2 ⋅ i

⋅
EXP −X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 
+

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 

Select multiplication sign between

EXP X ⋅ i( )
2 ⋅ i

and

EXP X ⋅ i( )
2 ⋅ i

and press . Press  to get the last side of the RULES  
menu. Press the menu key . Now you have:

.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 −
EXP X ⋅ i( )

2 ⋅ i
⋅
EXP −X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 
+

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 

Now multiplication between

EXP X ⋅ i( )
2 ⋅ i

and

EXP −X ⋅ i( )
2 ⋅ i

and from the menu RULES  press the menu key   again to get:

.25 ⋅EXP X ⋅ i( )2 ⋅ i2 − .25 ⋅EXP X ⋅ i( ) ⋅EXP −X ⋅ i( )⋅ i−2 −

EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 
+

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2
 
 
  

 

Now select the third multiplication sign (counting from the left) of the 
sub-expression −.25 ⋅EXP X ⋅ i( )⋅EXP −X ⋅ i( )⋅ i−2  and from the menu 
RULES  press  to associate the two exponentials in parentheses. 
The sub-expression is now −.25 ⋅ EXP X ⋅ i( )⋅EXP −X ⋅ i( )( )⋅ i−2 . Select 
the multiplication sign between the exponentials and from the menu 
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RULES  press  to merge the two exponentials. Now the sub-
expression is −.25 ⋅EXP − X ⋅ i( ) + X ⋅ i( )⋅ i−2 . Select the exponential of 

this sub-expression. From the menu RULES  press . The sub 
expression is now: −.25 ⋅1⋅ i−2 . Select the second multiplication sign 
and again press . Now this sub-expression is −.25 ⋅ i−2 .

Now in the sub-expression 

EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 

select the multiplication sign between

EXP −X ⋅ i( )
2 ⋅ i

and

⋅
EXP X ⋅ i( )

2 ⋅ i
−

EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 

and press again . Working like with the first sub-expression you 
can bring this to the form:

.25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2

so that the whole expression is:

.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 − .25 ⋅ i−2 − .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( ) +

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 

Now select the first minus sign in the sub-expression 

25 ⋅ i−2 − .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( )  and from the menu RULES  

press  to include the expression −.25 ⋅ i−2  in the parentheses. The 
expression is now:

.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 − .25 ⋅ i−2 + .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( ) +

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 

Select the first plus sign of the sub-expression 

.25 ⋅ i−2 + .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( )  and from the RULES  menu 

press . Now you have:

.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( ) +

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 

Repeat the whole procedure for the sub-expression

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 
⋅

EXP X ⋅ i( )
2

+
EXP −X ⋅ i( )

2

 
 
  

 
.

The results of the manipulations are:

1)  

.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 − .5 ⋅i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( ) +

EXP X ⋅ i( )
2

⋅
EXP X ⋅ i( )

2
+

EXP −X ⋅ i( )
2

 
 
  

 +

EXP −X ⋅ i( )
2

⋅ EXP X ⋅ i( )
2

+ EXP −X ⋅ i( )
2

 
 
  

 
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2)  

.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( ) +

EXP X ⋅ i( )
2

⋅
EXP X ⋅ i( )

2
+

EXP X ⋅ i( )
2

⋅
EXP −X ⋅ i( )

2
EXP −X ⋅ i( )

2
⋅
EXP X ⋅ i( )

2
+

EXP −X ⋅ i( )
2

⋅
EXP −X ⋅ i( )

2

3)  
.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( ) +

.25 ⋅EXP X ⋅ i( )2 + .25+ .25 + .25 ⋅EXP −X ⋅ i( )2

4)  
.25 ⋅EXP X ⋅ i( )2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i( )2 ⋅ i−2( ) +

.25 ⋅EXP X ⋅ i( )2 + .5 + .25 ⋅EXP −X ⋅ i( )2

Now, you may think that the rest is easy, but it isn't. This has to do 
with the fact that i−2  can't be easily converted to a −1 on the HP48. We 
have a little more to do. Select the exponentiation sign of the first i− 2  
and from the menu RULES  press the key  to convert i− 2  to 
INV i2( ) . Now select the exponentiation sign of i2  in INV i2( )  and from 

the RULES  menu press  to convert this to INV −1( ) . Convert 

all appearances of i− 2  to INV −1( )  this way. Now the expression is:

.25 ⋅EXP X ⋅ i( )2 ∗INV −1( ) −

.5 ⋅INV −1( ) − .25 ⋅EXP −X ⋅ i( )2 ⋅INV −1( )( ) +

.25 ⋅EXP X ⋅ i( )2 + .5 + .25 ⋅EXP −X ⋅ i( )2

Press  to put this edited expression on the stack. Press 
 for the symbolic menu and from this menu press . 

The result is a 1.

If despite all this work you still don't want to install ERABLE, then 
you must belong to the hard(est) core of the users that want to control 
each electron that passes through the registers of the processor. ;-)

And if despite all this work you still complain that the HP49G is slow, 
then you must be very young and didn't have any experience with the 
HP48. ;-)

The operation that does the opposite of → DEF  is → TRG . It 
transforms exponentials to trigonometric functions. Enter for example 
EXP(i⋅ X)  and take it to the EQW. Select the EXP  function, press 

 and then press . The result is

COS
i ⋅ X

i
 
 

 
 + SIN

i ⋅ X
i

 
 

 
 ∗ i

which you can  to SIN(X) ⋅ i + COS(X).

Let's have an example. (What a patient guy I am ;-) ) We want to 

transform SIN X( )⋅ COS X( )  to 
SIN(2⋅ x)

2
. Go to the EQW, enter 

SIN X( )⋅ COS X( )  and then press  to go to edit mode. Now select 
the SIN  function and from the menu RULES  press the key . 
Do the same with the function COS . Now you have:

EXP X ⋅ i( ) −EXP −X ⋅ i( )
2 ⋅ i

 
 
  

 
⋅

EXP X ⋅ i( ) +EXP −X ⋅ i( )
2

 
 
  

 

Now, select the division line of the first ratio and from the RULES  
menu press  to distribute the division by 2 ⋅ i. The expression now 
is:
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EXP X ⋅ i( )
2 ⋅ i

−
−EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 
⋅

EXP X ⋅ i( ) +EXP −X ⋅ i( )
2

 
 
  

 

Select the division line of the second ratio and from the RULES menu 
press  again to distribute the division by 2 . The expression now 
is:

EXP X ⋅ i( )
2 ⋅ i

−
−EXP −X ⋅ i( )

2 ⋅ i
 
 
  

 
⋅

EXP X ⋅ i( )
2

+
+EXP −X ⋅ i( )

2

 
 
  

 

Next, select the multiplication sign between the two big parentheses 
and from the RULES  menu press  again. The expression is now:

EXP X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2
+

+EXP −X ⋅ i( )
2

 
 
  

 
−

−EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2
+

+EXP −X ⋅ i( )
2

 
 
  

 

Now select the first multiplication sign  and from the RULES  menu 
press  to convert the expression to:

EXP X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2
+

EXP X ⋅ i( )
2 ⋅ i

⋅
+EXP −X ⋅ i( )

2
−

−EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2
+

+EXP −X ⋅ i( )
2

 
 
  

 

Select again the first multiplication sign  and from the RULES  menu 
press :

.25 ⋅EXP X ⋅ i( )2

i
+

.25⋅EXP X ⋅ i( )⋅EXP −X ⋅ i( )
2 ⋅ i

−

−EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2
+

EXP −X ⋅ i( )
2

 
 
  

 

Now repeat the last steps for the sub-expression

−EXP −X ⋅ i( )
2 ⋅ i

⋅
EXP X ⋅ i( )

2
+

+EXP −X ⋅ i( )
2

 
 
  

 

That is, select the multiplication sign and press  from the rule 
menu. Then  the two resulting sub-terms so that you have:

.25 ⋅EXP X ⋅ i( )2

i
+

.25⋅EXP X ⋅ i( )⋅EXP −X ⋅ i( )
2 ⋅ i

−

.25 ⋅EXP −X ⋅ i( ) ⋅EXP X ⋅ i( )
i

+
.25 ⋅EXP − X ⋅ i( )( )2

i

 

 
 

 

 
 

Press  to put the expression on the stack. From the 
SYMBOLIC  menu press . This returns:

−
.25 ⋅EXP − X ⋅ i( )( )2

i
+

.25 ⋅EXP X ⋅ i( )2

i

Press  to take the expression to the EQW, and  to exit 
scroll mode. Select the exponentiation sign of the first exponential and 

from the menu RULES  press . This linearizes the exponential. Do 
the same with the second exponential, so that you have:
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−
.25 ⋅EXP − X ⋅ i( ) ⋅2( )

i
+

.25 ⋅EXP X ⋅ i ⋅ 2( )
i

Select now the first exponential,  press  and then , to 
convert the exponential to trigonometric functions. Do the same with 
the second exponential. Now you have:

−
.25 ⋅ COS

− X ⋅ i( ) ⋅2
i

 
 
  

 
+ SIN

− X ⋅ i( )⋅ 2
i

 
 
  

 
⋅ i

 
 
  

 
 

i
+

.25 ⋅ COS
X ⋅ i ⋅2

i
 
 

 
 + SIN

X ⋅ i ⋅2
i

 
 

 
 ⋅ i

 
 
  

 
i

Press  to exit the EQW and to go to the stack with the edited 
expression. It looks as if you could COLCT  terms but you must first 
use EXPA . From the menu SYMBOLIC  press  five times to 
convert the expression to

−0.25 ⋅COS
− X ⋅ i( )⋅ 2

i

 
 
  

 
i

+
−.25 ⋅SIN

− X ⋅ i( ) ⋅2
i

 
 
  

 
⋅ i

i
+

.25 ⋅COS
X ⋅ i ⋅ 2

i
 
 

 
 

i
+

.25 ⋅ SIN
X ⋅ i ⋅ 2

i
 
 

 
 ⋅ i

i

Now press  once. This converts the expression to:

− .25 ⋅−SIN 2⋅ X( )( ) −
0.25 ⋅COS 2 ⋅ X( )

i
+

.25 ⋅SIN 2⋅ X( )+
.25⋅COS 2 ⋅X( )

i

Press  again to get the result: .5 ⋅ SIN2 ⋅ X( ) .

The method can be used also for other expressions. We use  to 
turn trigonometric functions to complex exponentials. Then we 
distribute using  and . We can linearize the exponentials with 

. And at the end we turn the complex exponentials to trigonometric 
functions using . Between these steps, we can use ,  or 

,  or  to group terms,  to bring products of 
exponentials EXP(a) ⋅EXP(b) to the form EXP(a + b) , and also 

 to collect like terms. At the end we use  as many times 
as needed, so that the following  can perform a collection of 
like terms and throw away terms that cancel each other. Note the 
importance of the operation  which linearizes the product 
EXP(a) ⋅EXP(b). It is this step, which causes the creation of functions 
with the combined arguments EXP(a + b) .

Another non-programmable operation that is available in the menu 
RULES  is the operation TRG ∗ . This operation makes conversions 
like SIN(x + y) = SIN(x) ⋅COS(y) + COS(x) ⋅ SIN(y). Let's try it. Go 

to the EQW and enter COS(X − Y) . Press  and then select the 
function COS . Press the menu key  and then . The 
result is COS(X) ⋅ COS(Y) + SIN(X)⋅ SIN(Y) .

The same operation can also be used for transformations of 
trigonometric functions of multiples of an angle, like for example 
SIN(2⋅ X) , though a little bit additional work is needed. Let's do that. 
In the EQW enter SIN(2⋅ X)  and select SIN . From the RULES  menu 
press . The HP48 gives a short insulting beep and does nothing. 
But we can transform 2 ⋅ X  to X + X . Select the factor 2  of 2 ⋅ X , go 
to the RULES  menu and press  to add and subtract 1 to 2 . Now 
the expression is SIN 2 + 1−1( )⋅ X( ) . Select the minus sign and from 
the RULES  menu press  to transfer the −1 before the +1. The 
expression is now SIN 2 + −1+ 1( ) ⋅ X( ) . Select the plus sign that is 
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before the −1 and from the RULES  menu (second page) press 
. Now the expression is SIN 1+1( )⋅ X( ) . Select the 

multiplication sign and from the RULES  menu press  to distribute 
the multiplication over the sum. the expression becomes 
SIN1⋅ X + 1⋅ X( ) . Now select the SIN  function and from the RULES  
menu press . The EQW now contains 
SIN(1⋅X) ⋅COS(1⋅ X) + COS(1⋅ X) ⋅ SIN(1⋅X) . Press  to go to 
the stack and from the menu SYMBOLIC  press  to get the 
result 2 ⋅ COS(X) ⋅SIN(X) .

As you can see, many of the trigonometric conversions are possible, 
but the available operations cannot be used from the stack or in 
programs. Also, these operations are much more "elementary" than 
those of the HP49G, which means that you have to press many more 
keys, "many more" being an euphimism. If you combine this with the 
slower execution of the HP48, then you see directly that you must have 
patience. But on the other hand, I wish I had some of these elementary 
operations on the HP49G, like for example +1-1, to turn a simple 2  
into a 1+ 1, for which I still don't know if it can be done on the 
HP49G. This would be nice for such things like for example 
SIN(4 ⋅X)  which I could transform to SIN(3⋅ X + X)  or 
SIN(2⋅ X + 2 ⋅ X)  according to my needs. The first could be converted 
to SIN(3⋅ X) ⋅COS(X) + COS(3 ⋅X) ⋅SIN(X)  and the second to 
2 ⋅ COS(2 ⋅X) ⋅SIN(2 ⋅ X) . Both expressions are mathematically equal, 
but many times one just fits better than the other. A set of such 
elementary commands for the HP49G would give us a much more 
detailed control of the way that the calculator does its work.

Now, let's ask ourselves, if it is possible to program the HP48 using 
only UserRPL, so that many trigonometric conversions that are 
possible in the EQW, become also possible on the stack?. If we 
succeed making such programs, then we would have some benefits 
like for example, using these programs in other programs, avoiding 
work in the slow EQW, and last but not least taking a look at the way 
that elementary commands are combined to give more complex 
commands which can be further combined and so on. Like 

constructing a house out of a set of a few pieces. We will watch the 
construction of a set of trigonometric commands using pictures.

First of all, let's make a program that converts an algebraic object to a a 
list of RPL objects. The list should be constructed in a way, that 
evaluating the objects one after the other, the original algebraic object 
appears again. You should have reason to be glad, because HP already 
put such a program in the calculator. Just type TEACH  and press 

. A new directory EXAMPLES with examples is generated in 
HOME . Go to that directory. Inside EXAMPLES there is another 
directory named PRGS . Go to PRGS . In the menu VAR  you see 
that there is a program named → RPN . This is the program that we 
need. Recall → RPN  and go to HOME  again. Create a directory 
named TRIGO  (or anything else you 
like) and go to this directory. The 
program should be on stack level 1. Enter 
' → RPN' and press . This is one of 
our basic programs. We will need it 
occasionally, for example to prove that 
some sub-expression is or is not in an 
algebraic object. This program uses 
repeated OBJ →  in a loop to split an 
algebraic object to the objects of which it 
consists. It uses conditionals to check if 
an object of the original algebraic is itself 
an algebraic, in which case it just calls 
itself and passes itself this sub-algebraic, 
or to just puts the current object in the 
result list, if it is not an algebraic. Our set 
of trigonometric commands now consists 
of one basic command, namely the 
program → RPN .

The next basic thing that we need, is a program that completely 
expands an algebraic. The programmable command EXPAN  which the 
HP48 provides, does only one expansion and then stops. 
Programming a new command for complete expansion just uses the 

Trigonometry with the HP48 - Additional Part 11

11-7

 ->RPN

 Loops

 Conditionals

 Lists

 Recursions



built-in command EXPAN  repeatedly, until the algebraic object 
doesn't change any more. Here we go:

<< 0 -> iter
<< "Expanding..." 1 DISP
   DO

"Pass " 'iter' INCR +
2 DISP
DUP EXPAN
DUP ROT

   UNTIL
SAME

   END
>>

>>

Store this program in EXPAND  in the same directory you have 
already stored → RPN . The program takes an algebraic and returns its 
completely expanded form. It also shows which pass is being 
performed during execution. Let's have an example. Enter

EXP(X ⋅ i − Y)

and press . Go to the 
menu SYMBOLIC  and 
press . The result is:

EXP(X ⋅ i)
EXP(Y)

.

Now press , go to the 
menu VAR  and press 

. The result is:

EXP(X)i

EXP(Y)
.

We will use this command very often in the following programs for 
trigonometric conversions. Our set of commands now consists of 2 
commands.

Now that we have EXPAND , the opposite comes into mind. A 
program that does complete collection of like terms. The manual of the 
HP48 says that the built-in COLCT  does this, but this is not always 
true. There are cases, where further collecting is possible, but COLCT  
stops at an intermediate point. It is easy to make such a program, now 
that we have EXPAND . We just edit EXPAND  and replace the 
command EXPAN  with COLCT :

<< 0 -> iter
<< "Collecting..." 1 DISP
   DO

"Pass " 'iter' INCR +
2 DISP
DUP COLCT
DUP ROT

   UNTIL
SAME

   END
>>

>>

Enter the program and store it in COLLECT . Now our set looks like 
the first picture on the next page.

The next command that we will program, will be TR → EXP  for 
conversion of trigonometric functions to complex exponentials. We use 
MATCH repeatedly until no more matching can be done. The program 
listing is on the next page.
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<< "Converting SIN->EXP...
" 1 DISP
   DO

{ 'SIN(&A)' '(EXP(&A*i)-
  EXP(-(&A*i)))/(2*i)' }
MATCH

   UNTIL
NOT

   END
   "Converting COS->EXP...
" 1 DISP
   DO

{ 'COS(&A)' '(EXP(&A*i)+
  EXP(-(&A*i)))/2' }
MATCH

 UNTIL
NOT

 END
 "Converting TAN->EXP...
" 1 DISP
  DO

 { 'TAN(&A)' '(EXP(&A*i*2)-1)/

   ((EXP(&A*i*2)+1)*i)' }
 MATCH

  UNTIL
 NOT

  END
>>

Store this program in TR → EXP . Try to convert some trigonometric 
functions to complex exponentials. Enter for example 
SIN(X) ⋅COS(X)  and press . The result is:

EXP(X ⋅ i)−EXP − X ∗ i( )( )
2 ⋅ i

 

 
  

 
 ⋅

EXP(X ⋅ i)+EXP − X ⋅ i( )( )
2

 

 
  

 
 

We can apply our EXPAND  and then our COLLECT  to this result. 
We then get:

−
.25 ⋅EXP(−X)2⋅i

i

 
 
  

 
+

.25 ⋅EXP(X)2⋅i

i

We see that COLLECT  doesn't collect the powers of exponentials. 
This is because the command COLCT  doesn't do this. We will see 
what we can do about it later on.

Our set has now already four commands and looks like:
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Now that we have TR → EXP  we should also have the opposite, a 
program for transforming exponentials to trigonometric functions. We 
use the same method as for EXP → TR .

<< "Converting EXP->SINCOS...
" 1 DISP
   DO

{ 'EXP(&A)' 'COS(&A/i)+
  SIN(&A/i)*i' }
MATCH

   UNTIL
NOT

   END
>>

Store this in EXP → TR . Test it by entering EXP(−i ⋅X)  and press 

. The result is COS
X ⋅ i

i
 
 

 
 + SIN

X ⋅ i
i

 
 

 
 ⋅ i. The two last 

commands don't return their result completely expanded, but this is not 
what they are made for. You can use EXPAND  and COLLECT  after 
EXP → TR  or TR → EXP  to do that. The commands TR → EXP  
and EXP → TR  will be used for the construction of further 
commands, and so they are made as elementary as possible.

Our command set now consists of 5 commands:

Let's start now making such commands like TRIGLIN  for linearizing 
products or powers of trigonometric functions. The recipe is mainly to 
first completely expand the trigonometric functions, so that powers like 
SIN(X)2  are converted to SIN(X) ⋅SIN(X) . Then we can use 
MATCH repeatedly, to replace such products with their linearized 
form. When we are done with replacements, we can re-COLLECT  
everything. In order to also catch TAN(X)  we can convert it to 
SIN(X)
COS(X)

 at the start of the program. Because the need for this 

conversion is likely to return later, we make an extra small program 
that does this, so that we can use it a lot in other programs.

<< "Converting TAN->SINCOS
" 1 DISP
    DO
        {'TAN(&X)' 'SIN(&X)/COS(&X)'}
        MATCH
  UNTIL
    NOT
  END
>>

Stre this program in TAN2SC. Now enter:

<< 0 ->iter
    <<  TAN2SC
        DO

    COLLECT EXPAND
    COLLECT EXPAND
    "Linearizing TRIG...

" 1 DISP
    "PASS " 'iter' INCR +
    2 DISP
    {'SIN(&X)*SIN(&Y)'
     '.5*COS(&X-&Y)-.5*COS(&X+&Y)'}
    MATCH SWAP
    {'COS(&X)*COS(&Y)'
     '.5*COS(&X-&Y)+.5*COS(&X+&Y)'}
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    MATCH ROT OR SWAP
    {'SIN(&X)*COS(&Y)'
     '.5*SIN(&X-&Y)+.5*SIN(&X+&Y)'}
    MATCH ROT OR SWAP
    {'COS(&X)*SIN(&Y)'
     '-.5*SIN(&X-&Y)+.5*SIN(&X+&Y)'}
    MATCH ROT OR SWAP
    {'&A*SIN(&X)*SIN(&Y)'
     '&A*(.5*COS(&X-&Y)-.5*COS(&X+&Y))'}
    MATCH ROT OR SWAP
    {'&A*COS(&X)*COS(&Y)'
     '&A*(.5*COS(&X-&Y)+.5*COS(&X+&Y))'}
    MATCH ROT OR SWAP
    {'&A*SIN(&X)*COS(&Y)'
     '&A*(.5*SIN(&X-&Y)+.5*SIN(&X+&Y))'}
    MATCH ROT OR SWAP
    {'&A*COS(&X)*SIN(&Y)'
     '&A*(-.5*SIN(&X-&Y)+.5*SIN(&X+&Y))'}
    MATCH ROT OR

        UNTIL
    NOT
   END
   COLLECT
>>

>>

Store this in TRLIN . You may wonder why the the sequence 
COLLECT  EXPAND  is called twice at the start of the program. 
Well, even COLLECT  and EXPAND  don't do their work completely 
sometimes. I have experimented with them and I I found out that 
calling them twice is enough. Should you find cases where even calling 
them twice is not enough, then Nick must think again. ;-)

You also may wonder why we MATCH every pattern twice, like 
SIN(&X) ⋅SIN(&X)  and &A ⋅ SIN(&X) ⋅SIN(&X) , when 
SIN(&X) ⋅SIN(&X)  appears in &A ⋅ SIN(&X) ⋅SIN(&X)  as a pattern. 
The answer is that ↑ MATCH  doesn't see that. So we have to do the 
matching explicitly also for &A ⋅ SIN(&X) ⋅SIN(&X) . This makes 

execution time longer, but it covers all (?) cases, so that it is 
worthwhile to do.

Let's take a look again at our growing command set, and the 
dependencies of the commands.

Couldn't we do a similar program for linearizing exponentials? Well, 
yes, we could for example collect all products, quotients and powers of 
exponentials, but COLLECT  doesn't fit here because COLCT  can't 
collect such things. So we need three additional small programs that 

collect expressions of the form ea( )b
 to ea∗b , expressions of the form 

ea

eb  to ea −b  and expressions of the form ea ⋅eb  to ea +b . We don't put 
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all this functionality in one program, because we will need only some 
but not all of this functionality in other programs later. So we are 
going to program each conversion separately. Let's do the first 
conversion:

<< 0 -> iter
  << "Collecting (e^a)^b...
" 1 DISP
      DO
       "PASS " 'iter' INCR
       + 2 DISP

      { 'EXP(&A)^&B'
         'EXP(&A*&B)' }

       MATCH
      UNTIL

       NOT
      END
   >>
>>

Store this in EXPPOWCLCT . 

Now the second conversion:

<< 0 -> iter
  << "e^a/e^b -> e^a*e^-b...
" 1 DISP
    DO
       "PASS " 'iter' INCR
       + 2 DISP

{ 'EXP(&A)/EXP(&B)'
  'EXP(&A)*EXP(-*&B)' }
MATCH SWAP
{ '&A*EXP(&B)/EXP(&C)'
  '&A*EXP(&B)*EXP(-*&C)' }
MATCH ROT OR SWAP

{ 'EXP(&B)/(&A*EXP(&C))'
'EXP(&B)*EXP(-*&C)/&A' }
MATCH ROT OR SWAP

{ '&A*EXP(&B)/(&C*EXP(&D))'

 '&A*EXP(&B)*EXP(-*&D)/&C' }
MATCH ROT OR

UNTIL
NOT

END
>>

>>

Store this EXPRAT2PROD . Again we match EXP &A( )⋅EXP &B( )) 

in all possible forms because otherwise the command ↑ MATCH  
wouldn't match a ⋅EXP X( )⋅EXP Y( )  to a ⋅EXP X + Y( )  using the 
pattern EXP &A( )⋅EXP &B( ) .

The next utility program:

<< 0 -> iter
  << "Collecting e^a*e^b...
" 1 DISP
      DO
       "PASS " 'iter' INCR
       + 2 DISP

  { 'EXP(&A)*EXP(&B)'
         'EXP(&A+&B)' }

  MATCH
  { '&C*EXP(&A)*EXP(&B)'

         '&C*EXP(&A+&B)' }
  MATCH ROT OR

      UNTIL
   NOT

      END
   >>
>>

Store this in EXPPRODCLCT .

We now have enough, to be able to construct a new command that 
completely linearizes exponentials. Assume that we have some 
expression with exponentials like for example 
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EXP(−X)i ⋅ EXP(X ⋅2) −EXP(X ⋅ i)2( )
We can use EXPAND  to completely expand it to

EXP(−X)i ⋅ EXP(X) ⋅EXP(X)( ) −EXP(−X)i ⋅ EXP(X)i ⋅EXP(X)i( )
Then, using repeatedly EXPPOWCLCT  we transform it to

− EXP(−X ⋅ i)⋅EXP(X ⋅(2 ⋅ i))( ) + EXP(−X ⋅ i)⋅EXP(X ⋅2)

Next we use EXPPRODCLCT  to transform it to

EXP(−X ⋅ i) ⋅ EXP(X) ⋅EXP(X)( ) −EXP(−X ⋅ i)⋅ EXP(X ⋅ i) ⋅EXP(X ⋅ i)( )

We then use EXPRAT2PROD  but this has no effect since there are 
no quotients of exponentials. Then comes EXPPRODCLCT  which 
turns the expression to

EXP − X ⋅ i( ) + (X + X)( ) −EXP(−X ⋅ i + (X ⋅ i + X ⋅ i))

And finally we use COLLECT  again to get the linearized form

EXP − X ⋅ i( ) + 2 ⋅X( ) −EXP(X ⋅ i)

Programming this function is really easy. We just use already 
programmed commands:

<< 
   EXPAND
   DO
     DUP EXPPOWCOLCT EXPRAT2PROD
     EXPPRODCLCT COLLECT DUP ROT
   UNTIL SAME
   END
>>

STOre this in EXPLIN .

Now let's try our new programs, TRLIN  and EXPLIN .

Enter SIN(X) ⋅COS(X)  and press . In about  12 seconds you 
get .5 ⋅ SIN(2⋅ X) . Enter COS(X)2  and press  again. In about 
14 seconds you get .5 + .5 ⋅COS(2 ⋅ X) . Enter SIN(X) ⋅COS(Y)  and 
press . You get .5 ⋅ SIN(X − Y) + .5 ⋅ SIN(X + Y)  in about 16 
seconds.

Now enter

EXP(X)2 ⋅EXP(2 ⋅Y + X)
EXP(X)

Press . The result EXP(2 ⋅ X + 2 ⋅ Y)  is returned in about 27 
seconds. But there is still a problem. Enter SIN(X)2  and press 

. You get

EXP(X ⋅ i)−EXP −(X ⋅ i)( )
2 ⋅ i

 
 
  

 

2

Now press  to linearize this. The program needs about 98 
seconds to return the expression

.25 ⋅EXP −(2 ⋅X ⋅ i)( ) ⋅ i−2 + .25 ⋅EXP 2 ⋅ X ⋅ i( ) ⋅ i−2 − .5 ⋅ i−2

As you can see the program COLLECT, didn't collect i− 2  to −1. This 
is because the underlying COLCT  can't do this. We need an additional 
utility that does this. How can we program this? We can replace in  with 
its numeric equivalent 0,1( )n  and then evaluate the expression. Powers 
of the imaginary unit i, are then evaluated to their numeric equivalents. 
Then the built-in command ->Qπ can be used to turn the complex 
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numbers to symbolics again, and COLLECT  can be used to simplify 
things. 

Enter the program:

<< 0 ->iter
   << "Collecting i^n...
" 1 DISP
      DO
        "Pass " 'iter' INCR +
        2 DISP { 'i^&n' '(0,1)^&n' }
        MATCH
      UNTIL

   NOT
      END
      EVAL ->Qπ
      0 'iter' STO
      "Converting (1,0)->1...
" 1 DISP
      DO
        "Pass " 'iter' INCR +
        2 DISP { (1,0) 1 } MATCH
      UNTIL

   NOT
      END
      0 'iter' STO
      "Converting (0,1)->i...
" 1 DISP
      DO
        "Pass " 'iter' INCR +
        2 DISP { (1,0) 1 } MATCH
      UNTIL

   NOT
      END
    >>
>>

and store it in iCLCT . (Its iMac, iSearch, iRon time, so why not 
iCLCT? ;-) ) But why do we have to MATCH also(1,0) to 1 and (0,1)  
to i? The (unexpected) answer is  that ->Qπ will turn for example (0,1)  

to −i , but not (1,0) to 1 and not (0,1)  to i. So for these two cases we 
must do that explicitly in our program. Now edit EXPLIN . At the end 
of the program add iCLCT  and COLLECT , so that EXPLIN  now is:

<< 
      EXPAND
      DO
         DUP
         EXPPOWCOLCT
         EXPRAT2PROD
         EXPPRODCLCT
         COLLECT DUP ROT
    UNTIL
         SAME
    END
    iCLCT COLLECT
>>

Let's try the last example again. Enter SIN(X)2 and press . 
You get

EXP(X ⋅ i)−EXP −(X ⋅ i)( )
2 ⋅ i

 
 
  

 

2

Press . The result

.5 − .25 ⋅EXP −(2 ⋅ X ⋅ i)( ) − .25 ⋅EXP 2 ⋅ X ⋅ i( )

is shown in about 114 seconds.

Let's take a look again at our command set which has grown taller and 
wider. (Picture in next page.)

Trigonometry with the HP48 - Additional Part 11

11-14



Well, now comes TREXPAND , which proves to be difficult to 
achieve with MATCH in loop. If someone manages to do that, then 
please, please post it!

But that doesn't mean that it can't be done with other means. We 
already have TR → EXP  which converts trigonometric functions to 
exponentials. We can use it, then EXPAND  the resulting expression 
and use EXPPOWCLCT , EXPRAT2PROD  and EXP → TR  again 
to turn the exponentials to products. The first version of TREXPAND  
looks like:

<<
EXPAND COLLECT
EXPAND COLLECT
TR->EXP EXPAND
EXPPOWCLCT

EXPRAT2PROD
EXP->TR
COLLECT EXPAND
COLLECT

>>

The double execution of EXPAND  COLLECT  at the start of the 
program is because of the same reasons as on page 11-11. At the end 
of the program we use the sequence COLLECT  EXPAND  
COLLECT  because after EXP → TR  has finished, the arguments of 
the trigonometric functions are sometimes complicated. We use 
COLLECT  them to simplify them, making the following EXPAND  
somehow easier for the HP48. We then COLLECT  to let some terms 
vanish.
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But this version has a problem. It will not expand things like 
SIN(2⋅ X)  because none of the used commands can expand 
EXP(2 ⋅ X)  to EXP(X + X) . We must add code that does this. To do 
this, we must check if some arguments of the trigonometric functions 
are of the form n ⋅X , where n is an integer. If we find such an 
argument we can replace it with the sum   X + X +K+ X  and then 
repeat the procedure of trigonometric expansion. We can be sure that 
after the first part of the program has finished (this is the program 
TREXPAND  as it is now), no sums will appear as arguments to 
trigonometric functions, because sums will be already 
(trigonometrically) expanded.

First we need a function that turns expressions of the form n ⋅X  to 
  X + X +K+ X .

<<
EXPAND COLLECT
EXPAND COLLECT
"Converting ALG->RPN...

" 1 DISP
->RPN
-> alglst
<<

alglst 1
<<

"Searching TRIG. args...
Object " NSUB 1 DISP

IF
{SIN COS TAN}
OVER POS

THEN
SWAP PROD->SUM
SWAP

END
EVAL

>>
DOSUBS EVAL

>>
>>

Stire this in FINDTRIGARGS . (I can't think of a better name.) The 
program uses → RPN  to turn the algebraic to a RPN list. The 
following DOSUBS procedure checks if the next object is a 
trigonometric function SIN , COS  or TAN . If it isn't then it simply 
evaluates the object to build the algebraic step by step again. If it is, 
then it uses the function PROD → SUM (which we didn't write yet) 
to turn arguments of trigonometric functions that are of the form n ⋅X  
to sums and then evaluates the object to build the algebraic with the 
altered arguments of trigonometric functions.

Now we need PROD → SUM, a function for conversion of n ⋅X  to 
  X + X +K+ X , where n is an integer.

<<
"Checking TRIG. arg...

" 1 DISP
IF DUP TYPE 9 ==
THEN

DUP ->RPN DUP HEAD OVER 3 GET
3 PICK 2 GET 4 ROLL 4 OVER SIZE SUB +
-> oldarg factor oper rest
<<

IF factor TYPE NOT
THEN

IF
factor FP NOT { * } oper POS AND

THEN
rest EVAL 'rest' STO rest 1 factor 1 -
START

rest +
NEXT

ELSE
oldarg

END
ELSE

oldarg
END

>>
END

>>
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Store this in PROD → SUM. Perhaps you would like to use DBUG  
to see how it works. ;-)

So the program TREXPAND  now becomes:

<<
EXPAND COLLECT
EXPAND COLLECT
TR->EXP EXPAND
EXPPOWCLCT
EXPRAT2PROD
EXP->TR
COLLECT EXPAND
COLLECT
IF

DUP FINDTRIGARG
DUP ROT SAME NOT

THEN
TR->EXP EXPAND
EXPPOWCLCT EXPRAT2PROD
COLLECT EXP->TR COLLECT
iCLCT COLLECT EXPAND
COLLECT

END
>>

Store this in TREXPAND  again. Let's try it. Enter SIN(X + Y)  and 
press . After 76 seconds you get the result 
COS(X) ⋅ SIN(Y)+ SIN(X) ⋅COS(Y) . Press now . After 17 
seconds you get SIN(X + Y) , the expression with which you started. 
Another example: Enter COS(X)2  and press . In 14 seconds the 
HP48 returns .5 + .5 ⋅COS(2 ⋅ X) . Now press . It takes 98 
seconds for the HP48 to show .5 + .5 ⋅COS(X)2 − .5 ⋅ SIN(X)2 . As 
you can see, the execution time of TREXPAND  is very long. 
compared to the execution time of TRLIN . This is because TRLIN  
only works with many subsequent MATCHes, while TREXPAND  
uses very often EXPAN  to fully expand products of the intermediately 
produced exponentials. If somebody has an algorithm, that makes 

TREXPAND  faster, then please post it to cure the slow TREXPAND .

Our command set is now pretty large and the interdependencies of the 
commands are more complex. (Picture on next page.)

Let's now move on to the next thing to do, a program that converts 
SIN , COS  and TAN  functions to TAN  functions of the half 
argument. This seems easy to do using MATCH, but there is 
something that we must take care of. If we use first match SIN  and 
COS  then the resulting TAN  functions along with the TAN  functions 
that were in our algebraic object right from the start, will be all matched 
again to TAN  functions. If for example we start with 
SIN(X)+ TAN(X) and we match first SIN X( )  to

2 ⋅ TAN
X
2

 
 

 
 

TAN
X
2

 
 

 
 

2

+ 1

then the resulting expression will be: 
2 ∗ TAN

X
2

 
 
  

 
 

TAN
X
2

 
 
  

 
 

2

+1
+ TAN(X)

If we match now TAN X( ) , then we will have:

−
4 ⋅TAN X

4
 
 

 
 

TAN
X
4

 
 

 
 

2

−1

2 ⋅ TAN X
4

 
 

 
 

TAN
X

4
 
 

 
 

2

−1

 

 

 
  

 

 

 
  

2

+ 1

−
2 ⋅TAN

X
2

 
 

 
 

TAN
X
2

 
 

 
 

2

−1
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which means that we converted to TAN  functions of the half and of 
the quarter argument. To avoid this we must first match TAN  
functions and then SIN  and COS  functions.

<<
EXPAND COLLECT EXPAND COLLECT
"TAN(X)->TAN(X/")

" 1 DISP
{ 'TAN(&X)' '2*TAN(&X/2)/(1-TAN(&X/2)^2)'}
MATCH DROP

"SIN(X)->TAN(X/")
" 1 DISP

{ 'SIN(&X)' '2*TAN(&X/2)/(TAN(&X/2)^2+1)'}
MATCH DROP

"COS(X)->TAN(X/")
" 1 DISP { 'COS(&X)' 

  '(1-TAN(&X/2)^2)/(TAN(&X/2)^2+1)'}
MATCH DROP

COLLECT
>>
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Store that in HALFTAN. Try it with COS(X) ⋅ TAN(X). The result is

2
1+ TAN(.5⋅ X)2 ⋅ TAN(.5⋅ X)

which comes in about 7 seconds.

We can also program TRIGSIN  and TRIGCOS , for conversion of 
COS(X)2  to 1− SIN(X)2   and of SIN(X)2  to 1− COS(X)2 .

Enter

<<
{ 'COS(&X)^2' '1-SIN(&X)^2 }
MATCH DROP COLLECT

>>

and Store it in TRIGSIN .

Enter

<<
{ 'SIN(&X)^2' '1-COS(&X)^2 }
MATCH DROP COLLECT

>>

and Store it in TRIGSIN .

Programming TRIGTAN  for such conversions like for example 
SIN(X)
COS(X)

 to TAN(X)  is a bit more complicated. If would be really 

tough to search one algebraic expression for occurrences of 
SIN(X)
COS(X)

, 

because such patterns could be "hidden for the eye of MATCH". 
Consider for example

SIN(X)+ COS(X)
2

+ SIN(X)

COS(X)

Matching here 
SIN(X)
COS(X)

 to TAN(X)  would leave the expression 

unchanged. If we first expand, then we get:

SIN(X)
2

COS(X)
+

COS(X)
2

COS(X)
+

SIN(X)
COS(X)

If we collect this we get:

1.5
COS(X)

⋅ SIN(X)+ .5

We could of course sit down and experiment, in order to find all 

possible patterns which are equivalent to 
SIN(X)
COS(X)

 but as Nick is a 

rather lazy person, he found an easier but also dirtier method. If there 
is a SIN  function in the algebraic expression, then match SIN(X)  to 
COS(X) ⋅ TAN(X). If there is no SIN , then match COS(X)  to 
SIN(X)
TAN(X)

. We use → RPN  to turn the algebraic in an RPN list, and 

check if the list contains SIN .

<<
DUP ->RPN
IF

{ SIN } HEAD POS
THEN

{ ' SIN(&X)' 'COS(&X)*TAN(&X)' }
MATCH
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ELSE
{ ' COS(&X)' 'SIN(&X)/TAN(&X)' }
MATCH

END
DROP EXPAND COLLECT

>>

Store the program in TRIGTAN . To try it enter the expression

SIN(X)+ COS(X)
2

+ SIN(X)

COS(X)

and press .

The result is .5 +1.5 ⋅ TAN(X) .

Enter also

SIN(X)
COS(X)2

Press  once. You get INV(COS(X)) ⋅ TAN(X). Now press 
 again. This time you get

TAN X( )2

SINX( )

because there was no SIN  function in the expression. This is the result 
of the design of the function. Both results are equivalent, but you 
should always use TRIGTAN  twice to check if one of the possible 
results fits your needs better.

Last thing we have to do is TAN2SC2 .

<<
{ 'TAN(&X)' 'SIN(2*&X)/(1+COS(2*&X))' }
MATCH DROP COLLECT

>>

STtore this in TAN2SC2 .

Now turn page to take a look at our command set in all its beauty.

We see that the HP48 is not so weak, regarding symbolic mathematics. 
Actually the set of UserRPL commands available to the "normal" user 
is mighty enough, to allow to program many manipulations of 
symbolics. It is the execution time of such programs that makes the 
HP48 looking less powerful, comparing it to the HP49G. The fact that 
we have such a language like UserRPL, that allows making such 
programs, but a processor that needs such a long time to execute these 
programs, should make some things clear. The theoretical concept of 
UserRPL is fantastic! It is nearly complete, at least complete enough to 
let almost anything be possible. If it only were put on faster hardware! 
It reminds me somehow of the theoretical predictions of physicists that 
were experimentally proven much later, when the needed hardware 
was available. Imagine what the HP48 could be used for, if it only 
could run such programs in shorter time.

The whole set of commands occupies about 4.8 KBytes which shows, 
that UserRPL is also compact.

Now let's try our commands in some examples that we already have 
done with the HP49G and its built in CAS.

1) Show that:

SIN X( )4 −COS X( )4 = SIN X( )2 − COS X( )2

Enter the left hand side of the equation. We have powers of 
trigonometric functions, so let's use . We get:
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−COS(2 ⋅ X)

in 108 seconds. Now we have a trigonometric function with a 
multiple of X  as argument, so let's try TREXPAND. In 91 
seconds the HP48 returns:

−COS(X)2+ SIN(X)2

2) Show that:

SIN X( )4 −COS X( )4 = 1− 2∗ COS(X)2 = 2 ⋅ SINX( )2 −1

Use example 1 to turn the expression SIN(X)4 − COS(X)4  to 
−COS(X)2+ SIN(X)2 . Now press . In about 2 seconds 
you get:
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1− 2 ⋅COS(X)2

Now press . In about 1 second you get:

1− 2 ⋅ 1− SIN(X)2( )
Press  and the  to simplify this to:

−1+ 2 ⋅ SIN(X)2

3) Show that:

SIN X( ) + COS X( )( )2
+ SINX( ) − COS X( )( )2

= 2

Enter the left hand side of the equation on stack level 1 and press 
. In about 31 seconds you get a nice round 2 .

4) Simplify the expression:

SIN X +
π
2

 
 

 
 + SIN X −

π
2

 
 

 
 

Enter expression and press . In about 230 seconds 
you get:

2 ⋅ COS(.5 ⋅π ) ⋅SIN(X)

Now, it would be nice if the built-in commands could simplify 
COS(.5 ⋅π )  to 0 , but they don't. Even if you use ->Qπ, you get 

2 ⋅ COS(
1
2

⋅π) ⋅SIN(X) , which can't be simplified to 0 .

4) Simplify the expression:

SIN(X − Y) ⋅COS(X + Y) + COS(X − Y) ⋅ SIN(X + Y)

Enter expression and press . In about 28 seconds you get:

SIN(2⋅ X)

5) Turn SIN(X + Y + Z)  to a sum of products of trigonometric 
functions.

Enter SIN(X + Y + Z)  and press . The HP48 needs 
224 seconds to return:

COS(X) ⋅ COS(Y) ⋅SIN(Z) + COS(X) ⋅ SIN(Y) ⋅COS(Z) +
SIN(X) ⋅COS(Y) ⋅COS(Z) − SIN(X) ⋅SIN(Y) ⋅ SIN(Z)

6) Show that:

SIN(X + Y) ⋅SIN(X − Y) = SIN X( )2
− SIN Y( )2

= COS Y( )2
− COS X( )2

Enter SIN(X + Y) ⋅SIN(X − Y) , press  and you get

− .5 ⋅ COS(2⋅ X)( ) + .5 ⋅ COS(2 ⋅Y)
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in 26 seconds. Now press . In 230 seconds the 
HP48 returns:

− .5 ⋅ COS(X)2( ) + .5 ⋅SIN(X)2 + .5 ⋅ COS(Y)2 − .5 ⋅SIN(Y)2

Press . In 6 seconds you get:

.5 ⋅ 1− COS(X)2( )− .5 ⋅ 1− COS(Y)2( ) − .5 ⋅COS(X)2 + .5 ⋅ COS(Y)2

Press  and then  to get:

−COS(X)2+ COS(Y)2

Press  now and you get:

SIN(X)2 − SIN(Y)2

This example shows that adding EXPAND  COLLECT  instead 
of only COLLECT  at the end of TRIGCOS  and TRIGSIN  
seems to be a good idea.

7) Show that:

2 ⋅SIN(X + Y)
COS(X + Y) + COS(X − Y)

= TAN(X)+ TAN(Y)

Enter the numerator 2 ⋅ SIN(X + Y)  of left hand side of the 
equation. Press  to expand the trigonometric function 
of X + Y  to trigonometric functions of X  and Y . The HP48 
needs 71 seconds to return:

2 ⋅ COS(X) ⋅SIN(Y) + 2 ⋅SIN(X) ⋅COS(Y)

Now enter the denominator COS(X + Y)+ COS(X − Y)  of left 
hand side of the equation and press  again, to get

2 ⋅ COS(X) ⋅COS(Y)

in 118 seconds. Press ,  and then . Now you 
have:

INV COS(X)( )⋅ SIN(X)+ INV COS(Y)( ) ⋅SIN(Y)

Press now  to get TAN(X)+ TAN(Y) .

8) Show that:

SIN X( ) = 2 ⋅SIN
X
2

 
 

 
 ⋅COS

X
2

 
 

 
 

Enter SIN(X) . Since we want to transform this to trigonometric 

functions of 
X
2

, we use  first. The result is:

2
1+ TAN(.5⋅ X)2 ⋅ TAN(.5⋅ X)

Let's convert all TAN  functions to SIN  and COS . We use 
 for this. The result is:

2

1+
SIN(.5 ⋅ X)
COS(.5 ⋅ X)

 
 
  

 

2 ⋅
SIN(.5 ⋅X)
COS(.5 ⋅ X)
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Let's  and  this. We get:

INV .5 + .5 ⋅ COS(.5 ⋅X)−2 ⋅ SIN(.5⋅ X)2( )
COS(.5 ⋅ X)

⋅SIN(.5 ⋅ X)

Now we use  to convert SIN(.5 ⋅X)2  to 1− COS(.5 ⋅ X)2 . 
The expression now is:

INV .5 + .5 ⋅ 1− COS(.5 ⋅ X)2( )⋅ COS(.5 ⋅ X)−2( )
COS(.5 ⋅X)

⋅ SIN(.5 ⋅X)

 and  this again to get the result:

2 ⋅ COS(.5 ⋅ X) ⋅ SIN(.5⋅ X)

Finishing this last part, I must say again that the programs here are way 
far from being perfect. I only wanted to wake your appetite for using 
your HP48. Change the programs, add new ones, think of better 
algorithms, do what you think is best for your needs. And post your 
ideas so that we can join you in the continuing trigonometry marathon.

RPL-Greetings,
Nick.
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