
Trigonometry with the
HP49G

(and with the HP48)

By Nick Karagiaouroglou

Many, many special thanks to:

Adolph Weidanz for the endless interest, for all the questions
which made me see clearer what I could
express better.

Alban Schann for all the ideas, corrections and the
enthusiasm with which he supported me all the
time.

Bill Storey for reading the whole marathon and marking
up orthographic errors.

Giorgos Illias for his suggestion to me, to make an additional
trigonometry marathon part for the HP48.

Máximo Castañeda Riloba for the in depth going comments and ideas
about pattern matching and its potential
dangers.

Thomas Rast for keeping on sending me his remarks about
errors in mathematical formulae, for his ideas
about formuale layout and font usage for
program listings and for the humour.

Veli-Pekka Nousiainen for his remarks on conceptual errors in
programs, for his ideas about key pressing
conventions and also for the humour.

And also thanks a lot to all the guys out there who kept on powering me
up and supported me while I was writing this trigonometric marathon.

Thanks you so much guys, you are magnificent!

Key pressing conventions

Right shifted key on the HP49G
Unshifted key

Menu key (Soft key)

Left shifted key on the HP48

Select the command from the
command catalog of the HP49G
or type it in the command line
and enter it

Hi everybody!

This is the first part of a (hopefully long) news-group-marathon-serial
about the trigonometry capabilities of the HP49G and about the
mysterious ideas that some strange guys had, a long long time ago in
the land which I come from. I mean Pythagoras and co.

I‘ ll start with the easier things and as the triventure goes on, things
will get more complicated. So if many of you out there find this not so
useful now, because it is easy, then wait! Heavier things are on the
way! Mwaahhahahahaaa!

You already know that a very important relation between the sine and
the cosine is:

sin2(x)+ cos2(x)=1 (1)

The HP49G command for this relation is TRIG . When it finds the
sum of the squares of the sine and the cosine, it converts it always to 1.
From this relation we can derive:

sin2(x)=1− cos2(x) (2)

and also

cos2(x)=1− sin2(x) (3)

The command TRIG can also do these replacements. But it does these
replacements depending on flag -116 (Prefer SIN or COS). When
this flag is set, then the CAS of the HP49G prefers the sine and tries to
put as much of it in the result, as possible. So it would do the

replacement given with formula (3). When the flag is clear, then the
CAS prefers the cosine and tries to put as much of it as possible in the
results. So it would do replacement (2). A mnemonic for this
behaviour:

Flag -116
Set -> Sin (Two Ss)
Clear- > Cos (Two Cs)

There are two commands, that are related to TRIG . They are:
TRIGSIN and TRIGCOS . TRIGSIN always does replacement (3)
and sets the flag -116. TRIGCOS does replacement (2) and clears the
flag -116. So after a TRIGSIN the command TRIG will prefer Sines
and after a TRIGCOS the command TRIG will prefer Cosines.

Now, you also know that the definition of tangent is:

tan(x)=
sin(x)
cos(x)

(4)

The command for transforming tangents to the quotient of sine and
cosine is TAN2SC (TAN to SIN , COS). When you use it,
transformation (4) takes place. The inverse transformation can be
achieved with the command TRIGTAN , which would return the

TAN X() if fed with
SIN X()
COS X() .

From relation (4) we derive:

tan2(x)=
sin2(x)
cos2(x)

(5)

Trigonometry with the HP49G - Part 1

1-1

Now we can replace sin2(x) with 1− cos2(x) on the right hand side to
get:

tan2(x)=
1− cos2(x)

cos2(x)
 ⇔ tan2(x)=

1
cos2(x)

−1 ⇔

tan2(x)+1=
1

cos2(x)
 ⇔ cos2(x)=

1
tan2(x)+1

(6)

The command TRIGTAN does also this transformation.

From relation (4) we can also derive:

sin2(x)=
tan2(x)

tan2(x)+1
(7)

Replace in relation (4) cos2(x) using relation (3) and you‘ll see. The
wonderful thing is that TRIGTAN can do also transformation (7).

Now enough theory, let‘s have a party!

Examples:

1) Show that:

SIN X()4 −COS X()4 = SIN X()2 − COS X()2

In the EQW type:

SIN(X)4 − COS(X)4

and enter it in stack level 1. Let‘s try . The result

TAN(X)2 − 1
TAN X()2 +1

looks nice, so let‘s work with it. We have TAN and we want
SIN and COS , so let‘s use . We get

SIN X()
COS X()



 




2

−1

SINX()
COS X()



 




2

+1

which looks uglier, but if you this you get:

SIN X()2 −COS X()2

SIN X()2 +COS X()2

Now, you may tend to use , to replace the denominator with
1, but this would also replace either the square of the sine or the
square of the cosine on the numerator. So take this expression in
the EQW, select the denominator and then press , so that the
command acts only upon the denominator. Put this now back on
the stack. Press to get rid of the 1 in the denominator and
you are the trigo-king of the day.

Trigonometry with the HP49G - Part 1

1-2

2) Show that:

SIN X()4 −COS X()4 = − 2 ⋅COS X()2 −1() = 2 ⋅SIN X()2 −1

Type:

SIN X()4 −COS X()4

in the EQW and put it on stack. We want first to transform this
expression to another, which contains only COS , so let‘s try

. Here you are! Now, press to get the
expression that contains only SIN . Done!

3) Show that:

SIN X() − COS X()()2
= 1− 2 ⋅ SINX()⋅ COS X()

Enter

SIN X() − COS X()()2

on stack level 1 and press to DUPlicate it. (You‘ll see later
why the DUPlication.) Let‘s this, to see what comes out.
You get:

SIN X()2 − 2 ⋅SIN X() ∗COS X() + COS X()2

This contains the square of the sine plus the square of the cosine,
so use to get them converted to 1. Voila!

But wait! Was the really necessary? Press the key to
drop stack level 1 and try directly. Wow! It works :-)

4) Show that:

SIN X() + COS X()()2
+ SINX() − COS X()()2

= 2

Yes, you know what I am going to say. Enter

SIN X() + COS X()()2
+ SINX() − COS X()()2

blah, blah, right? Good. Now because in example 3 we saw that
 is clever, let‘s use it again. Press . Did you? What do

you have? A nice round 2 . :-)

5) Show that:

SIN X()2 ⋅COS Y()2 − COS X()2 ⋅ SIN Y()2 = SINX()2 − SIN X()2

We want a result that only contains SIN , so let‘s try .
Nice, isn‘t it? Oh yes, it is. ;-)

6) Show that:

COS X()2 ⋅ COS Y()2 − SINX()2 ⋅ SIN Y()2 =

COS X()2 + COS Y()2 −1

Since we saw that worked so well in the last example,
and we want a result that only has COS, let‘s try the cousin of

, , that tries to put as much cosine as possible in
the result. (I guess that‘s why is the co(u)sin(e) of

. ;-)) OK, press , and see the marvel. :-)

Trigonometry with the HP49G - Part 1

1-3

7) Show that:

COS X()2

TAN X()2 =
1

TAN X()2 −COS X()2

This is a bit tougher, but don‘t worry. We‘ll get it soft! Go to the
EQW and type:

COS X()2

TAN X()2

Don‘t enter it to the stack, we‘ll stay in the EQW for a while, since
the surroundings are so picturesque there. As you know, from the
relation:

TAN X() =
SINX()

COS X()

we can derive

1
TAN X() =

COS X()
SINX()

Since we want to have
1

TAN X()2 in the result, we could try to put

SIN in the denominator of our expression so that perhaps the
cosine in the numerator and the sine in the denominator give:

COS X()2

TAN X()2

Select the denominator and apply to it. Now press

 to put the whole expression on the stack and it.
You get a ratio with a big numerator and a denominator that only
has SIN X()2

. The first expression in the numerator is:

COS X()2 ⋅ SINX()2

so this part would give the −COS X()2
 . Use to fully

distribute the division over the sum of the numerator. Fine. Now
perhaps you think that you only have to use , to convert
COS X()2

SIN X()2 to
1

TAN X()2 . But if you apply to the whole

expression, then the part −COS X()2
 will also be converted to an

expression that contains TAN X() . So take the expression in the
EQW again, and shoot some pictures of that beautiful place, while

you select
COS X()2

SIN X()2 and press . Press to return

to the dusty place of the stack again and here you are! A present
from the EQW smiles at you in the middle of the dirty suburban
stack.

8) Show that:

TAN X() + TAN Y() = TAN X() ⋅ TAN Y()⋅
1

TAN X() +
1

TAN Y()


 




This is even tougher. (To me at least.) I only managed to tame it
using the peaceful contemplative place of the EQW and ,

, . If someone finds an easier way, then please,
please, post it. Then I‘ll take your solution to my cousin
Pythagoras and tell him that he was wrong, telling me that the

Trigonometry with the HP49G - Part 1

1-4

only way to do that, is to use the EQW and some manually done
transformations. And who knows, perhaps after some thousands
of years, people will talk about the great mathematician and great
HP49Gician Vincentoras or Time2Pawgoras.

Let‘s go. Enter the left hand side on the stack. Don‘t ask me why I
did that, say just for a try, but using is a good start. So
use it, now! Did that? OK. Now this to get everything in
only one ratio. The stack contains now:

COS Y()⋅ SINX() − COS X()⋅ SIN Y()
COS Y() ⋅COS X()

The denominator of the beast contains COS Y()⋅ COS X() , which
is a good start if we want to get TAN X() ⋅ TAN Y() . So, perhaps
something good happens, if we multiply the numerator by
SIN X()⋅ SIN Y() . But if we do that, then we must also multiply
the denominator by SIN X()⋅ SIN Y() . Take the expression to the
EQW. Select the numerator, press and type SIN X() , press
again and type SIN Y() . Now select the product SIN X()⋅ SIN Y()
that you just have entered and it. Select the denominator
and press again. Press . The EQW contains now:

COS Y() ⋅SIN X() −COS X()⋅ SIN Y()()⋅ SIN X()⋅ SIN Y()
COS Y() ⋅COS X() ⋅SIN X() ⋅SIN Y()

Now we can take the part COS Y()⋅ COS X() of the denominator
away and put it in a new denominator of the part SIN X()⋅ SIN Y()
of the numerator. In the denominator select COS Y()⋅ COS X()

and press . Press once to get rid of the placeholder left
by the operation. Now go to the numerator and select again
the part SIN X()⋅ SIN Y() that you have entered a couple of years
ago. Press and then . You should have now:

COS Y() ⋅SIN X() −COS X()⋅ SIN Y()()⋅
SIN X() ⋅SIN Y()

COS Y()⋅COS X()
SIN X() ⋅SIN Y()

Select the whole sub-expression:

SIN X() ⋅SIN Y()
COS Y()⋅ COS X()

and press . Now the expression in the EQW is:

COS Y() ⋅SIN X() −COS X()⋅ SIN Y()()⋅ TAN Y()⋅ TAN X()
SIN X() ⋅SIN Y()

We have a part of the solution, the part TAN Y()⋅ TAN X() . While

this part is selected, it. Press once to get rid of the place
holder again. Select the whole remaining expression, press and
then to put the sub-expression back. The EQW contains
now:

COS Y() ⋅SIN X() −COS X()⋅ SIN Y()()
SINX()⋅ SIN Y() ⋅ TAN Y()⋅ TAN X()

Now select the ratio:

COS Y() ⋅SIN X() −COS X()⋅ SIN Y()()
SINX()⋅ SIN Y()

and press . The ratio is split in two smaller ratios:

COS X()
SINX() −

COS Y()
SIN Y()



 


 ⋅ TAN Y()⋅ TAN X()

Trigonometry with the HP49G - Part 1

1-5

Select the expression
COS X()
SIN X() and do a to it. Select the

expression
COS Y()
SIN Y() and do again. Now you can press

 to put the whole expression back on the stack again, or
stay in the EQW and examine what happens if you apply each and
every command of the HP49G to the expression.

What? You want more? OK, take this for today and try to solve them
alone.

1
COS X()2 +

1
SINX()2 =

1
SIN X()2 ⋅ COS X()2

SIN X() + COS X()()2
− SINX() − COS X()()2

=

4 ⋅SIN X() ⋅COS X()

1+ TAN X()2 =
1

COS X()2

1+
1

TAN X()2 =
1

SIN X()2

1
TAN X()2 ⋅ COS X()2 =

1
TAN X()2 − COS X()2

Don‘t miss the next part of the marathon, where we‘ll be talking about
the solutions other beasts, other trigonometric relations and relations of
Scotland to Greece, or in other words, ... you will see ;-)

Pythagorian greetings,
Nick.

Trigonometry with the HP49G - Part 1

1-6

Hi trig-freaks!

Welcome to our second part of the marathon. A big big „thanks a lot“
goes to Thomas Rast for correcting my errata of the first part. You
perhaps think that I start with the errata because it is better to correct
them before telling more. Well, yes this is one reason. But there is
another reason which has to do with monsters. „Errata“ resembles the
greek word „terata“ which means „monsters“. Keep on reading to find
out what monsters have to do with out marathon. :-)

In the last part we had much fun using the commands TRIG ,
TRIGSIN , TRIGCOS , TAN2SC, and TRIGTAN . There are a lot
more trigonometric commands but let‘s first do an excursion to a place
where there are no similar commands. Our marathonial journey doesn‘t
introduce new built-in trig commands of the 49G today, but we‘ll see
how we can make our own!

You remember that:

cos2(x)=1− sin2(x) (3)

which give us a possibility to express the cosine as a function of the
sine:

cos(x) = s1⋅ 1− sin2(x) (8)

where s1 is an arbitrary sign of + or − .

There is no command for this on the 49G . Of course you could first
enter COS X() , square it, use the command TRIGSIN and then take
the square root. But this would be cumbersome and also dangerous in
expressions with many sines and arbitrary signs of the sines. (Signs of
sines... how poetical ;-) What can we do about it?

Well, it seems that if we could somehow substitute s1⋅ 1−SIN X()2

for COS X() , we would have what we want. Let‘s try it with a small
program:

<<
 'COS(X)=s1* (1-SIN(X)^2)'
 SUBST
>>

Store this in C → S , enter COS X() and press the soft key . It
takes half a century but at the end we have what we wanted. But wait!
What happens if we have COS Y() instead of COS X() ? Will the

cosine of Y also be substituted with s1⋅ 1−SIN Y()2
? Let‘s try it:

Enter COS Y() and press . Again after half a century you can see
that you waited for nothing. No substitution took place, because the
substitution rule was made for X , not for Y . We need a way for doing
this for arbitrary names or even expressions like COS a + b() . So
SUBST doesn‘t fit our needs. Another disadvantage of SUBST for
this purpose is, that not only sub-expressions of the form
COS(something) will be substituted. Try the following: Enter:

COS X()
SIN X()

and press . While the 49G is working (close to a century), you
may think that you will get:

s1⋅ 1−SIN X()2

SIN X()

But you don‘t get this result. You get an ugly thing with many sub-
expressions and wonder how could this ever be calculated. The reason
is the way that SUBST works in this case. It seems that it first solves:

Trigonometry with the HP49G - Part 2

2-1

COS X() = s1⋅ 1− SIN X()2

for X and then uses the found solution to substitute not every
occurrence of COS X() , but every occurrence of X with the found
solution.

The following example also shows this. Enter:

SIN X() + COS X()

then enter:

SIN X() =
1
Y

and then press . The result is not:

1
Y

+ COS X()

but:

1
Y

+ COS ASIN
1
Y









 



This shows that the X in COS X() has been replaced by the solution

X = ASIN
1
Y





 of the equation SIN X() =

1
Y

 .

Here comes one of the secret weapons of the HP49G, one of the most
neglected commands, one of my favourites. :-) It is the command
MATCH in its two variations ↑ MATCH and ↓ MATCH . This
command searches patterns and replaces them, with no further
algebraic work. It takes an expression from stack level 2 and a list from

stack level 1. The list contains two items. The first is the expression
that must be replaced and the second is the expression with which the
first expression must be replaced. To see it in work, enter COS X() ,
then enter the list:

COS X() s1⋅ 1− SINX()2{ }
and then press . Very quickly you get the desired result and

a 1 on stack level 1, which shows that a replacement happened. You
would see a 0 there if no replacement were possible. This is an
indicator which you can use in your programs, to make decisions what
should happen next, if a replacement took place or if it didn‘t. But what
can we do if we don‘t have COS X() but, say, COS a + b() instead?
Can we somehow tell the HP49G that the name of the argument of
COS doesn‘t matter? Oh yes, we can. Instead of using the list:

COS X() s1⋅ 1− SINX()2{ }
we use the list:

COS &a() s1⋅ 1− SIN&a()2{ }
The ampersand before the name a makes this to a special argument. It
is not only COS &a() that will be replaced, but also COS X() ,
COS Y() or even COS a + b() . Any pattern of the form:

COS something()

will be replaced by the pattern:

s1⋅ 1−SIN something()2

Trigonometry with the HP49G - Part 2

2-2

So this is exactly what we need. Note also that this substitution
introduces a new variable s1 (the sign) which was not in the original
expression. This variable doesn‘t belong to any replacements that use
the ampersand, but we can freely mix up the two types. To see how

powerful this command is, use with the algebraic object

SIN(&A + &B) and the list:

SIN(&A + &B) COS(&B)⋅ SIN(&A) +SIN(&B)⋅ COS(&A){ }

Here we have two variables for pattern replacement. There is no limit
to the number of such „general“ variable names. So let us make a small
program for the replacement of COS something() with

s1⋅ 1−SIN something()2
. Enter:

<<
 { 'COS(&X)' 's1* (1-SIN(&X)^2)' }
 ↑ MATCH DROP
>>

and STOre this in ↑ C → S . Note again that &X is only a place holder
for any argument of COS . Let‘s try it. Enter COS x2 − a() and press

. Fine!

Now, in the equation:

tan x() =
sin x()
cos x()

we can replace cos x() with s1⋅ 1− sin x()2
 and we have:

tan(x)=
sin(x)

s1* 1− sin2(x)
(9)

so that we can also express TAN as a function of SIN . Let‘s make a
new program for this replacement. Enter:

<<
 { 'TAN(&X)' 'SIN(&X)/(s1* (1-SIN(&X)^2))' }
 ↑MATCH DROP
>>

and STOre this in ↑ T → S . Note also that this time the argument &X
appears in two places in the replacement. Nice, isn‘t it? Let‘s give it a
try. Enter COS X() ⋅ TAN X() , press and then press

 to replace both COS and TAN with functions of SIN .

But the pattern matching and replacing commands have even more
power. Consider for example the following replacement list:

{ &A +&B SAB }

which would replace a sum of two arbitrary arguments with the
variable SAB . If you apply this replacement to the expression:

SIN(a+ b) + SIN(c + d)

then it is not clear what should be replaced. Did you mean the
arguments A + B and C +D of the two sines, or did you mean the
whole expression, SIN(a+ b) + SIN(c + d), which is also a sum of
two things? Well, MATCH in its two variations allows any of these
cases.

↑ MATCH starts searching from the innermost sub-expressions. In
the example above it would return SIN(SAB) + SIN(SAB). The
opposite does ↓ MATCH . It starts at the outermost sub-expressions.
In the example above it returns SAB .

And what can we do if we want that all occurrences of a pattern at any
level in the algebraic object, are to be replaced with some other pattern?

Trigonometry with the HP49G - Part 2

2-3

Well, there comes the indicator for a successful matching, that the
pattern matching commands also return. Consider the following:

<<
 DO
 { replacementList }
 ↑MATCH
 UNTIL NOT
 END
>>

Every time ↑ MATCH runs it returns a 1 or a 0 . When a replacement
takes places a 1 is returned, which NOT makes to a 0 , so that the loop
runs again. But when no replacement takes place, that means that we
can‘t do anything more. ↑ MATCH then returns 0 , which NOT turns
to 1 that terminates the loop. All possible replacements of the type
given by {replacementList} are done and afterwards the program
ends. Perfect!

Now, if I tell you that the pattern matching commands have even more
power, you‘ll say that I am crazy. But they do. (And I am indeed
crazy!) Let‘s find it out using an example. Enter:

COS X()4 − COS X()2

and press . Press to expand this. The result contains
many occurrences of s1 which is the arbitrary sign. All occurrences are
raised to an even power so they should be replaced by a 1. But the
HP49 doesn‘t know that s1 is 1 or −1, and so it can‘t replace all

s1evenPower
 with a 1. We could of course make a replacement program

for this, but then we could‘t use it for the cases when s1 is raised to an
odd power. So what can we do? There cometh pattern matching again.
The replacement list can contain also 3 items. The first two are the
items that we already know. The third is a condition. If it evaluates to
true, then the replacement will be done. If it evaluates to false, then no

replacement will be done. We must check if s1 is raised to an even
power, so the object:

FP
power

2


 


 ==0.

could be the condition. Note that we use here not the normal sign for
equals, "= ", but the test function "is equal to?" which on the 49G is
"== ". Note also that we must write the zero in the condition as 0.
(real) and not 0 (integer) because it doesn‘t work with 0 as integer.
(Though it should, because testing 0.==0 evaluates to true, but that‘s
another story.)

Enter the program:

<<
 { 's1^&n' 1 'FP(&n/2)==0.' }
 ↑ MATCH DROP
>>

and STOre this in s1even → 1. Now with the last expression (the one
with many s1 occurrences) on stack level 1, press and

. Nice!

Note also that we used s1 and not &somevar in the replacement,
because we don‘t want everything raised to some even power to be
replaced by a 1. This limits us to the use of s1 as a sign variable, but if
we use this convention throughout all other replacements, then
everything will work fine.

If you have time you could also make such replacement programs for
the following relations.

sin(x) = s1⋅ 1− cos2(x) (10)

Trigonometry with the HP49G - Part 2

2-4

tan(x) =
s1⋅ 1− cos2(x)

cos(x)
(11)

cos(x) =
1

s1⋅ 1+ tan2(x)
(12)

sin(x) =
tan(x)

s1⋅ 1+ tan2(x)
(13)

and a replacement program that turns s1oddPower to −1 when s1 is −1
and to 1 otherwise.

The very interested user could also wrap all these replacement
commands to a new library, so that they are available from
everywhere. (Though John H. Meyers will say: „Put it in the HOME
directory“ where they are also available from everywhere.) Well, do as
you like. All ways are open.

It‘s time now to tell the story about the monsters and the relation of
Scotland to Greece. You all know about Nessy at Loch Ness, don‘t
you? Well, there is a lake at Marathon in Greece, and at the early 80's,
Nessy decided to have give extraordinary concerts at the lake of
Marathon, where it was much warmer than in cold Scotland. All head
bangers went there and had a good time. The first to see Nessy was the
witness Charalambos Trabakoulas, a shepherd, who was interviewed
after Nessy‘s first appearance:

TV-Man holding the microphone directly at Charalambos‘ mouth: Mr.
Trabakoulas, tell us what you saw!

Charalambos: My son, I was over there with the sheep, when
I, from eye to eye, directly, with my eyes, I saw the
monster!
TV-Man: Did you see the whole monster?

Charalambos: Oh no, only the head, my son, take that thing
away (the microphone) and put it where you know. (What does
he mean here?)

TV-Man: You mean, you saw the monster as it came out of
the water of the lake?

Charalambos: Oh, no! It had already drunk the whole lake!

Which is the reason why there is not much water in Athens in summer,
and the people don‘t have anything better to do, than finding
trigonometric relations!

End for today. Next time we‘ll learn about some new commands. And
have some exercises. And have fun. And... talk about the adventures
of Charalambos with the extraterrestrials.

Always yours,
greetings from me and Charalambos.
(And of course the sheep... Meeeeehhh Beeeep, Meeeeehhhh,
Beeeep!)
Nick.

Trigonometry with the HP49G - Part 2

2-5

Hi everybody!

Continuing the marathon with the third part, I see that there is stuff left
having to do with substitutions and programming, which only
indirectly relates to trigonometry. I think that it would be a pity, not to
mention this stuff, so let's start where we ended last time: At the
possibilities for replacements and general manipulations of algebraics.
It may seem that we lost the path of the trig marathon, but what we see
here will be very valuable for later, when we make our way though the
jungle of trigonometry. We will return in part 4 to the main route of the
trigonometric marathon.

First of all, thanks to VPN for pointing out that making a program for
replacement of s1oddPower with a −1 would be incorrect when s1
represents a 1.

So we must find a way to distinguish the cases where s1= 1 from the
cases where s1= −1. One possible solution would be to take advantage
of the fact that the command IFTE is actually a function which can be
included in algebraics. So we could substitute s1 raised to some odd
power with IFTE s1== 1,1,−1() . The replacement list should also had a
third item that checks if the power is odd, like for example

FP
&n
2



 


 ≠0.

The replacement program would look like:

<<
 { 's1^&n' 'IFTE(s1==1,1,-1) 'FP(&n/2)≠ 0.' }
 ↑MATCH DROP
>>

If you store this in ↑ s1odd → you can use it together with the
program s1even → 1 in another program that replaces s1 raised to
even and to odd powers. This program could be something like:

<<
 ↑s1even→1
 EXPAND
 ↑s1odd→
 EXPAND
>>

Now, for small expressions the programs are nice but for bigger
expressions that also contain many odd powers of s1, you can quickly
come to very ugly looking results with many IFTE , which don't
contribute to the overall readability of the expression. Another problem
is that the replacement programs will match anything of the form s1n
but not a single s1 that isn't raised to some power. (Remember? No
algebraic replacement, just patterns.) We could of course check the
whole algebraic for existence of s1 not raised to any power, but that
would be cumbersome. In other words, I am too lazy to do that. ;-)

But let's think again (as VPN says) about this problem. The main
advantage of the pattern matsching commands is that is can find and
replace patterns. Now, we made the convention that s1 is always the
name of the arbitrary sign, so we don't need to look for patterns. The
command SUBST seems to fit better here, as the code

's1=1' SUBST

or

's1=-1' SUBST

would substitute every occurrence of s1 with 1 or −1 respectively,
even when s1 is not raised to any power at all. But the problem is that
we can't do both substitutions with only one SUBST. Remember,
when the HP49G wants to tell us that there are more than one possible
results, it packs them in a list. Imitating this behaviour we can write a
program like:

Trigonometry with the HP49G - Part 3

3-1

<<
 DUP
 's1=-1' SUBST EXPAND
 SWAP
 's1=1' SUBST EXPAND
 2 →LIST
>>

which makes both substitutions and returns the two results in a list. We
see here, that the choice of the right tool can make life easier. Since the
49G has so many commands, it is sometimes not easy to decide which
one should be used. But using some method for a long time often
shows the disadvantages and suggests another method to be used.

Continuing about replacements: As Máximo Castañeda Riloba has
pointed out, the replacement of the pattern COS &X() with

s1∗ 1− SINX()2
 will work for an expression that only contains one

occurrence of the pattern COS &X() . When we have an expression
with multiple occurrences of COS &X() , as in COS X() +COS 2 ⋅X()
then each of the COS patterns should be replaced in a way that each
sign is independent from the other, because one sign can be 1 or −1,
no matter what the other sign is. Putting simply s1 for every replaced
pattern makes them both the same. If we only somehow could use a
numbering system that distinguishes the signs and writes, say, s1 for
the first and s2 for the second, and so on. MATCH can't do that1 ,
because one pattern is replaced by one pattern with no numbering or
other distinguishing capabilities. Neither SUBST nor | (where) can be
used for this purpose. But this doesn't mean that it isn't possible. (A
well known phrase when using the HP49G ;-))

We need to write a program that not only checks occurrences of
COS (or other trigs) but also keeps track of the value of some iterator
variable, which then can be used to make the signs s1, s2 , and so on.
1 Well, take a look at the second part of the Basic Calculus Marathon, to see how

pattern matching can be used for this purpose.

A fantastic property of the HP49G is that functions (like COS) are
also objects, which can be used not only to perform calculations but
also for other purposes. For example enter the list COS{ } and then
use the command HEAD, which extracts the first element of a list. A
naked COS function sits now on stack level 1. It can be used as
argument for tests and other things.

Another command made available to the users on the HP49G is the
command → LST (Menu 256, second page). This beauty takes an
algebraic object, translates it to the RPN command sequence that
corresponds to the algebraic, and returns this sequence as a list. Enter
for example COS X() − 1() ⋅SIN X() , and press → LST . The result is
the list representation of the algebraic object:

X COS 1 − 2 X ∗ SIN ∗{ }

The opposite is the command → ALG (Menu 256, second page)
which would take this list and build up the original algebraic object.

Having this two things in combination allows as to turn an algebraic to
a list, check for occurrences of COS (or any other command/function)
keeping track ot the number of the occurrences and replace each
occurrence with something that contains a numbered arbitrary sign. For

a replacement of COS with s1∗ 1− SINX()2
 where sn is the

numbered arbitrary sign, enter the program:

<< →LST
 1
 <<
 IF DUP { COS } HEAD SAME
 THEN DROP { SIN SQ NEG 1 + SQRT } "s" NSUB R→I +
 S~N { * } + + OBJ→ DROP
 END
 >>
 DOSUBS →ALG
>>

Trigonometry with the HP49G - Part 3

3-2

and STOre it in C → S . This program simply checks each object in the
list that → LST created. If the object is the function COS , it
constructs the list:

SIN SQ NEG 1 + sn ∗{ }
and then explodes it dropping the item count of the list. The program
may look like one that uses a local variable procedure but it isn't. The
inner program is placed on the stack at run time and is used as an
argument to the command DOSUBS.

DOSUBS needs a list at stack level 3, the number of arguments that
the program on level 1 needs, and a program on level 1. It applies this
program to each group of n arguments of the list in level 3, n being the
number of arguments in stack level 2. The result of the program
replaces each group of n arguments in the list. NSUB returns the
number of the current group of items used as arguments for the
program on level 1, as a real number. R → I transforms this real to an
integer and adding this integer to the string "s" returns the numbered
arbitrary sign as a string, which the command S ~ N then transforms
to a name.

To try it, enter:

COS X() +SIN X() + COS X()2

and press . You get:

−SIN X()2 +1∗s2 + SIN X() + −SIN X()2 +1∗s7





2

where s2 and s7 are two distinct arbitrary signs.

You could now be impressed of the ease with which such things are
achievable with the HP49G, but there are things even more

impressing. Consider for example the algebraic object:

COS X() ∗SIN X()dX
0

π

∫

Applying C → S to this returns the same object unchanged. Why? If
you re-enter the algebraic and apply the command → LST to it, the
result is:

0 π COS X() ⋅SIN X() X ∫{ }
Checking if each item is the same as COS doesn't work here because
the integrant is not transformed into an elementary command sequence
that includes COS at some point. Some of the functions that can be in
algebraics behave this way, when we apply → LST . One of these

functions is the function ∫ . So we could of course think, that we

must first find all that functions and do something special if we
encounter them. But what if such functions are nested? How many
passes should we explicitly program to catch all of those functions?

Fortunately we don't need to do that. Recall that C → S splits an
algebraic to its elements, checks each element for a COS function and
if it is, it replaces this element. Exactly the same procedure can be used
for the case, when one of the elements of the list is itself an algebraic
object. Since algebraic objects and built-in functions have different
types (9 and 18 respectively), we can do:

<<
 →LST
 1
 <<
 IF DUP TYPE 9. ==
 THEN C→S
 END

Trigonometry with the HP49G - Part 3

3-3

Program continues on next page

 IF
 DUP { COS } HEAD SAME
 THEN
 DROP { SIN SQ NEG 1 + } "s" NSUB

R→I + S~N { * } + + OBJ→ DROP
 END
 >>
 DOSUBS
 →ALG
>>

STOre this in C → S . Note that the program uses itself recursively (!)
to split any number of nested algebraics and replace each occurrence of
COS . To test it, enter for example:

COS X()⋅ SINY()dXdY
0

π

∫
0

π

∫

Then press . Isn't that nice? (It is a recursion, so Nick must find
it beautiful.)

Finishing for today, there is a problem left, that arises because we use
numbered arbitrary signs. How could one write a program, that checks
for any arbitrary sign, like s1, s2 and so on, and then builds up a list
with algebraics in all possible combinations of all arbitrary signs?

That's all for today. Take care and keep on HP49Ging.
'Till next time, recursive greetings,
Nick.

Trigonometry with the HP49G - Part 3

3-4

Hi everybody!

In the last two parts of the trigonometry marathon we made a long trip
through the replacements jungle. Then came Christmas any the New
Year, when Nick was drinking Ouzo with Trabakoulas, thinking about
trigonometry and monsters.

Trabakoulas also said that he had an experience with aliens, who came
to his house carrying their HP calcs in their heads. I told him that this
must have been VPN, but he insisted that they were aliens. They were
eager to show him how much trigonometry can be done with the
HP49G and they told him to tell me about this lessons. The poor guy
now has a big headache applying trigonometry to find positions of his
sheep.

Now let‘s return to our main path and examine other trigonometry
commands that the HP49G provides. This time we will talk about
trigonometric functions of sums of two or more angles. Perhaps you
already know about relations like:

cos(x + y)= cos(x)∗cos(y)− sin(x)∗ sin(y)

sin(x + y)= sin(x)∗ cos(y)+ cos(x)∗ sin(y)

tan(x + y)=
tan(x)+ tan(y)

1− tan(x)∗ tan(y)

Can the HP49G do these things? As you may have guessed, yes! The
command TEXPAND takes the left hand side of these relations and
returns the right hand side. Try it. TEXPAND can also transform
differences of angles. Enter for example SIN X − Y() and press

. You get:

SIN X()⋅ COS Y() − COS X()⋅ SIN Y()

The command TEXPAND can also be used to show such things like
SIN X + π() = SINX() . Enter SIN X + π() , press and then

 to get the final result.

But what about the opposite way? What if you have, say,
COS X() ⋅COS Y() − SIN X()⋅ SIN Y() and want to transform this to
COS X + Y() ? Well, then you use the command TCOLLECT . Just
try it. Enter COS X() ⋅COS Y() − SIN X()⋅ SIN Y() , press
and enjoy.

There is also the command TLIN , which takes products of
trigonometric functions and tries to convert them into expressions with
linear trigonometric terms.

Now let‘s have some fun! Take the ouzo bottle out, and help
Trabakoulas find his sheep.

1) Simplify the expression:

SIN
π
3

+ a




 + SIN

π
3

− a






This is easy. After you entered the expression press and
then . The result is:

3 ⋅COS a()

Trigonometry with the HP49G - Part 4

4-1

2) Simplify the expression:

SIN X − Y() ⋅COS X + Y() − COS X − Y()⋅ SIN X + Y()

Looks like we should use TEXPAND and hope that many sub-
expressions cancel out. Let‘s try it. and then
returns:

− 2 ⋅COS Y()⋅ SINY()⋅ SINX()2 + 2 ⋅COS Y()⋅ COS X()2 ⋅SIN X()()
Not very satisfying. But we can common factors and
we get:

− SIN X()2 +COS X()2() ⋅COS Y()⋅ SINY()⋅ 2()
Now we can use , to turn SIN X()2 +COS X()2

 to 1. The
result is now:

− 2 ∗COS Y()∗ SIN Y()()
Now we have a product of trigonometric expressions. Let‘s try

 to see if it can converted to a linear trigonometric function.
Press and you get −1⋅ SIN2 ⋅Y() . this and you have
−SIN 2 ⋅ Y()

But there is another easier way. Re-enter the expression
SIN X − Y() ⋅COS X + Y() − COS X − Y()⋅ SIN X + Y() and press

. Voila! (does exactly the same in this case. Try
it!)

3) Turn SIN X + Y + Z() to a sum of products of trigonometric
functions.

Enter SIN X + Y + Z() and press . (It works with an
arbitrary number of angles in the sum.) Use to
completely distribute × over + and you get:

COS Y()⋅ SINX()⋅COS Z() + SIN Y() ⋅COS X()⋅ COS Z() +
COS Y()⋅ COS X()⋅ SINZ() − SIN Y() ⋅SIN X() ⋅SIN Z()

(This could be also called, „Turn SIN X + Y + Z() to something
that is much more complicated“)

4) Express
1

TAN X + Y() as a function of TAN X() and TAN Y()

Enter
1

TAN X + Y() and press . You get:

−
TAN Y() ⋅ TAN X() −1
TAN X() + TAN Y()

Trigonometry with the HP49G - Part 4

4-2

5) Show that:

SIN X + Y()2 + SINX − Y()2 =

2 ⋅ SIN X()2 ⋅COS Y()2 + 2 ⋅SIN Y()2 ⋅ COS X()2

Just enter the left hand side and use and then .

6) Show that:

SIN X + Y() ⋅SIN X − Y() =

SIN X()2 −SIN Y()2 = COS Y()2 − COS X()2

Enter SIN X + Y() ⋅SIN X − Y() , press and then
 to get:

COS Y()2 ∗ SIN X()2 −COS X()2 ⋅SIN Y()2

Now we have squares of SIN and COS . We can use to
turn squares of COS to squares of SIN . Press to get:

SIN X()2 −SIN Y()2

If you press you will get:

− COS X()2 − COS Y()2() .

7) Show that:

2 ⋅SIN X + Y()
COS X + Y() + COS X − Y() = TAN X() + TAN Y()

Enter the left hand side of the equation. Press and then
 to obtain:

COS Y()⋅ SINX() + COS X() ⋅SIN Y()
COS Y() ⋅COS X()

Use to distribute / over the + and you have:

SIN X()
COS X() +

SINY()
COS Y()

Now use to obtain TAN X() + TAN Y() .

8) Show that:

COS X() +COS
2 ⋅π

3
+ X





 + COS

4 ⋅π
3

+ X




 = 0

 and then gives you the 0 .

Trigonometry with the HP49G - Part 4

4-3

9) Show that:

COS X()2 + COS
2 ⋅π

3
+ x







2

+ COS
4 ⋅π

3
− x







2

is a constant.

Enter the left hand side, press , then to get:

3 ⋅ SINX()2+3∗ COS X()2

2

Then use to obtain
3
2

.

10) Show that:

TAN
π
4

− X




 =

SIN X() − COS X()
SIN X() + COS X()

Enter TAN
π
4

− X




 and press to convert the TAN to a

quotient of SIN and COS . Then use and to
obtain the final result.

11) And now a messy one. Show that:

COS X + Y()2 + COS Y()2 − 2 ⋅COS X + Y() ⋅COS X() ⋅COS Y()
SIN X + Y()2 + SIN Y()2 − 2⋅ SINX + Y() ⋅COS X() ⋅COS Y()

= 1

Enter the big left hand side. Let‘s try and then .
We get an expression with many squares of SIN and COS . We
hope that replacing squares of SIN through squares of COS will
cancel out many sub-expressions, so we use . And the
answer is: 1

Alternatively we can apply to the big left hand side.
This returns a sum of quotients, which we can to obtain
the final answer 1. (TCOLLECT needs some seconds to make its
job, so be patient and let it finish.)

Another way is to use to the big left hand side. This also
returns a sum of quotients, which we can to obtain the 1.
(TLIN also needs some seconds to make its job, so again be
patient until it finishes.)

Let‘s stop for today, as ouzo starts influencing me very strongly. Here
are some more things, which you could try to solve alone. (After you
have survived the ouzo influence, of course ;-))

1) Show that:

COS X + Y() ⋅COS X − Y() = COS X()2 − SINY()2 =

COS Y()2 − SIN X()2

Trigonometry with the HP49G - Part 4

4-4

2) Show that:

SIN X − Y()
SIN X()⋅ SIN Y() =

1
TAN Y() −

1
TAN X()

3) Show that:

COS X + Y()2 + COS Y()2 − 2 ⋅ COS X+ Y() ⋅COS X()⋅ COS Y() = SIN X()2

4) Show that the expression:

COS X()2 − 2 ⋅ COS X()⋅ COS A() ⋅COS A − X() + COS A − X()2

doesn‘t depend on X .

Just for completeness! Greetings,
Nick.

Trigonometry with the HP49G - Part 4

4-5

Hi everybody!

We have seen so far how much power the trigonometric commands of
the HP49G provide, but what we have seen isn't even half the
available power! Actually Trabakoulas said: "The real power of the
HP49G is that it helped me find my sheep, which I was searching a
little far away from here, when I saw the aliens. Inform HP that a
sheep-finder application for the calc would be a real nice thing, and
also that alien trigonometry is identical to ours."

The marathon will continue today with trigonometric functions of
products and some additional techniques for working with the
trigonometric commands of the HP49G.

Let's take a look to the some formulas of trigonometry, which you may
already know.

sin(x)=2 ∗ sin
x
2



 


 ∗ cos

x
2



 


 (14)

cos(x)= cos2 x
2



 


 − sin2 x

2


 


 (15)

tan(x)=
2 ∗ tan

x
2



 




1− tan2 x
2



 




(16)

How could we do the first one? Well, notice that on the right hand side
we have trigonometric functions with an argument that is the half of the
argument of the trigonometric functions on the left hand side. In such
cases it is often a good start, to use HALFTAN and then TAN2SC.

So here we go again. Enter SIN X() and press . You get a

ratio with TAN functions of
X
2

. Turn the TAN functions to SIN and

COS of the same argument using . Press to make
things a little bit clearer. The denominator of the resulting ratio is the
sum of the squares of COS and SIN , so press to turn it to 1 and
get rid of the denominator.

The same way can be used to achieve (15). Enter COS X() and press
, , . If you now press to make a 1 out

of the denominator, then you'll get:

− 2 ∗SIN X()2 −1()
This is equivalent to:

COS
X
2







2

− SIN
X
2







2

Obviously TRIG acts also upon the numerator in this case. So instead
of pressing , press , to get the ratio in the EQW, then select
the denominator and then press , so that the command acts upon
the denominator only. Now press and to get the
desired result.

Let's continue to the third formula. You're lucky! Press and
you're done.

The opposite direction is also possible. Enter for example the right
hand side of (15) and press or . The result is

COS 2 ⋅
X
2





 which can be EXPAND ed to give COS X() .

Trigonometry with the HP49G - Part 5

5-1

Now enter right hand side of (16) and press or .
Nothing happens except for some reordering. Notice however that we

have an expression with TAN functions of
X
2

, the half of X , and we

want an expression that only contains trigonometric functions of X .
The command TAN2SC2 seems appropriate here, since it takes
trigonometric functions of the half argument and returns trigonometric
functions of the argument itself. So let's use it and hope that it does
good in this case. Press . (Be careful because TAN2SC and
TAN2SC2 show up identically on the menu keys. TAN2SC2 is the
third menu key from the left in the second page of the trigonometry
menu 122.) Now press and you're done.

Let's take a look to some additional examples now.

1) Show that:

SIN3 ⋅X() = 3 ⋅ SINX() − 4 ⋅SIN X()3

Enter SIN(3⋅ X) , which is the same as SIN(x + 2 ⋅ X) , an
expression of the form SIN(A + B) . So we expect that
TEXPAND could help us here. Press and you get:

SIN X()⋅ 4 ⋅ COS X()2 −1() .

We want to have only SIN on the right hand side, so press
 and voila!

(TCOLLECT or TLIN applied on SIN X()⋅ 4 ⋅ COS X()2 −1()

give you SIN3 ⋅X() , the expression you started with.)

2) Show that:

COS 3 ⋅ x() = 4 ⋅COS X()3 − 3 ⋅ COS X()

Enter COS 3 ⋅ X() and press .

3) Show that:

COS X() + SIN X()()2
= 1+ SIN2 ⋅ X()

This is also easy. Just enter the left hand side and press
. The HP49G starts getting bored, so give it something

to crunch a bit more.

4) Show that:

1+ TAN X() + TAN 2 ⋅ X() =
1

COS 2 ⋅ X()

Enter the left hand side of the equation. In this case we want to get
an expression with COS of 2 ⋅ X . So turning TAN X() to some
trigonometric function of 2 ⋅ X sounds reasonable. Pressing

 while the expression is on the stack is not good because
then TAN(2 ⋅X) is turned to a function of 4 ⋅X . So take the
expression to the EQW, select TAN X() and then press .
Still in the EQW select TAN(2 ⋅X) and press . Press

 to return to the stack. Press to turn the

expression to
1

COS 2 ⋅ X() .

Trigonometry with the HP49G - Part 5

5-2

5) Show that:

TAN
π
4

− X






2

=
1− SIN 2 ⋅ X()
1+ SIN 2 ⋅ X()

The argument of TAN on the left hand side is of the general form
A −B , so TEXPAND seems appropriate as a start. Press

 and you get a new function with TAN functions of X .
Because the result involves SIN functions of 2 ⋅ X , try .
This leaves a function with SIN and COS functions of 2 ⋅ X .
Now press to get the desired result.

6) Show that:

SIN2 ⋅X()
1+ COS 2 ⋅ X() ⋅

COS X()
1+ SINX() = TAN

X
2







In this case we have 2 ⋅ X and x as arguments for SIN and COS

on the left hand side and we want
X
2

 as argument for TAN on the

right hand side. We must use HALFTAN twice for the first factor
of the left hand side and once for the second factor of the left hand
side. To do this we take the left hand side to the EQW, select the
first factor and press . The resulting expression looks a
bit complicated, but press and you get TAN X() . While
TAN X() is still selected, press again. Now select the
second factor and press . Press to take the big

expression on the stack. This expression contains only
X
2

 as

argument for the TAN functions. Press and you have
what you wanted.

7) Show that:

TAN
π
4

+ X




 − TAN

π
4

− X




 = 2 ⋅ TAN(2 ⋅X)

Because we again have sums as arguments for TAN functions on
the left hand side, press . Then the result to
make it a little more readable. Now, we want to have 2 ⋅ X as
argument for TAN in the final result, so let's try and
then , which gives exactly what we wanted to have.

8) Show that:

SIN(2 ⋅X)2 − 4 ⋅ SIN(X)2

SIN(2⋅ X)2 + 4 ⋅ SIN(X)2 − 4
= TAN X()4

It should be clear by now that the arguments 2 ⋅ X of SIN
functions on the left hand side should be converted to X first. So
take the left hand side on the EQW, select SIN(2⋅ X)2 on the
numerator and press . Then select SIN(2⋅ X)2 on the
denominator and press again . Press to go to the
stack and then press .

Trigonometry with the HP49G - Part 5

5-3

9) Find to what TAN X() has to be equal, if the following equation
has to be satisfied:

4 ⋅SIN 2 ⋅ X() + 3 ⋅COS 2 ⋅ X() = 3

First enter the equation and then press to convert all
trigonometric functions to TAN functions of the half angle, that is
of X . Then enter TAN X() and press . (Don't worry about
the denominator, as it never is 0 when X is real.)

10) What values must l and m have, if the equation

1
SIN X() =

l

TAN
X
2







+
m

TAN X()

must be satisfied for any value of X ?

Let's first convert TAN
X
2





 to trigonometric functions of X . Get

the whole equation to the EQW, select
l

TAN
X
2







 on the right

hand side and press , which also converts TAN to SIN

and COS functions. Select
m

TAN X() and press . Now,

select the whole right hand side and press .

If you have:

(l+ m)⋅ COS X() + l
SINX()

you are on the right path. With this expression selected, press
. Now you have the equation:

1
SIN X() =

(l+ m) ⋅COS X()
SIN X() +

l
SIN X()

The expression
(l+ m)⋅ COS X() + l

SINX() on the right hand side must

vanish, because otherwise the right hand side can't be equal to the
left hand side for every X value. That means that it must be:

l+ m = 0 ⇔ m = −l

So the equation turns to:

1
SIN X() =

l
SIN X()

which clearly shows that:

l =1 and m = −1.

That's all for now, stay tuned for the next parts.
Greetings,
Nick.

Trigonometry with the HP49G - Part 5

5-4

Hi everybody!

First of all many thanks to Thomas Rast for posting a correction to an
error in the last part. Also many thanks to G. Illias for suggesting to
make side notes, if appropriate, to show how such things can be done
with the HP48.

If anything has became clear until now, then this must be the fact that
there are many too many relations between trigonometric functions,
and no general rule for working with all of them. Knowledge of math
is important, but getting used to the way that the commands work is
also important. As you use your HP49G more and more, you start
„knowing in advance“ what the result of some function or command
will look like, and you develop a kind of built-in instinct, which helps
you to find out, which way you should follow to solve some problem.
As Trabakoulas, the father soul of all shepherds says: „Here on the
Trigomounts, my son, there is no such thing like a compass that
always brings you to your destination. Go with care and ratio and
don‘t be afraid to stop and return to your starting point, when you see
that some way gets difficult with time.“

In this 6th part of the trigonometry marathon we are going to do some
stuff for which the HP49G doesn‘t provide built-in commands. But we
will see that nonetheless the HP49G can handle such cases. If I
remember well, there has been a discussion here, about such
conversions like:

sin(x) + sin(y) = 2 ⋅sin
x + y

2




 ⋅cos

x − y
2





 (17)

I didn‘t find any single command on the HP49G, which does this
conversion from the left to the right. We have to use several commands
in combination. Let‘s enter SIN X() + SIN Y() . Note that the result that
we want to have contains only trigonometric functions of the half of
the sum of X and Y . So we hope that we can start with HALFTAN,

which converts trigonometric functions to TAN functions of the half

angle. Press . Now the arguments are all
X
2

 and
Y
2

 but we

have TAN instead of SIN and COS functions. Let‘s turn TAN to
SIN and COS functions. Press . The resulting expression
looks a bit of weird. Through repeated attempts and not through
„knowing in advance“ I found that a good way to go is the following:
Press to factor the expression. (Takes some time, so be
patient.) Take the resulting expression in the EQW and switch to mini
font to see more of the expression. The numerator is:

COS
Y
2







⋅ SIN
X
2







+COS
X
2







⋅SIN
Y
2









 


⋅ SIN

Y
2







⋅SIN
X
2







+COS
X
2







⋅ COS
Y
2









 


⋅ 2

The denominator is:

SIN
X
2







2

+ COS
X
2







2


 


 ⋅ SIN

Y
2







2

+ COS
Y
2







2


 




Select the first sub-expression of the numerator:

COS
Y
2





 ⋅ SIN

X
2





 +COS

X
2





 ⋅SIN

Y
2









 



and press . This converts the sub-expression to:

SIN
X + Y

2






Looks like we are on the right way. Select the second sub-expression
of the numerator:

Trigonometry with the HP49G - Part 6

6-1

SIN
Y
2





 ⋅SIN

X
2





 + COS

X
2





 ⋅COS

Y
2









 



and press again. Fine, we have:

COS
X − Y

2






Select the whole denominator:

sin2 x
2



 


 + cos2 x

2


 










 ∗ sin2 y

2


 


 + cos2 y

2


 












and press again. This returns a nice round 1. Press
and then to get rid of this 1 in the denominator. Voila!

The summary of what we have done: HALFTAN, TAN2SC,
COLLECT , TCOLLECT applied to the first and second sub-
expression of the numerator, TCOLLECT applied to the denominator
and EXPAND .

You can use the same method also for:

sin(x)− sin(y)=2∗sin
x − y

2


 


 ∗cos

x + y
2



 


 (18)

cos(x)+ cos(y)= −2∗ cos
x + y

2


 


 ∗cos

x − y
2



 


 (19)

cos(x)− cos(y)=2∗ sin
x + y

2


 


 ∗sin

x − y
2



 


 (20)

A similar transformation is:

sin(x)− sin(y)
sin(x)+ sin(y)

=
tan

x − y
2



 




tan
x + y

2


 




(21)

Apply the method used to show (17) separately on the numerator and
the denominator. Take the left hand side in the EQW, select the
numerator, apply the above method, then select the denominator and
apply the method again. Then you get:

SIN
X − Y

2




 ⋅ COS

X + Y
2







COS
X − Y

2




 ⋅ SIN

X + Y
2







Press to put this expression on the stack. Use to
convert SIN and COS to TAN functions of the same argument, and
you‘re ready.

But now the question is: „Do I have to do all this every time I want to
do such a conversion?“ Well, no! It would be cumbersome and not so
easy, because we applied some trigonometric functions separately on
parts of our expressions. If we wanted to do exactly the same
programmatically, then we would have to use commands that split our
expressions, check what the sub-expressions are and what the
functions are that combine the sub-expressions, check arguments, and

Trigonometry with the HP49G - Part 6

6-2

so on. Because we don‘t want to write a new CAS on top of the
existing CAS, we choose an easier way: MATCH (Again, ;-))

For example, we can use MATCH with the list:

SIN(&A) + SIN(&B) 2 ⋅ SIN
&A + &B

2




 ⋅COS

&A − &B
2















for the conversion (17). But then we have 2 problems:

1) How can we be sure that this would work, also for not factored
expressions, like for example SIN X()2 −SIN Y()2

?

2) How can we repeatedly match, until all matching has been done?

The answer to the first question seems to be to use COLLECT , so that
the necessary factoring for the following MATCH is achieved. I don‘t
know if this works perfectly, but I didn‘t have any case where it didn‘t
up to now.

The answer to the second question is, to use MATCH in a loop, until
nothing more can be matched. The following (not so) small program
does this for the conversions (17), (18), (19) and (20):

<<
 COLLECT

 WHILE
 { 'SIN(&A)+SIN(&B)' '2*SIN((&A+&B)/2)*COS((&A-
&B)/2)' }
 ↓ MATCH
 REPEAT
 END

 WHILE
 { 'SIN(&A)-SIN(&B)' '2*SIN((&A-
&B)/2)*COS((&A*&B)/2)' }
 ↓ MATCH

 REPEAT
 END

 WHILE
 { 'COS(&A)+COS(&B)' '2*COS((&A+&B)/2)*COS((&A-&B)/2)'
 }
 ↓ MATCH
 REPEAT
 END

 WHILE
 { 'COS(&A)-COS(&B)' '2*SIN((&A+&B)/2)*SIN((&A-
&B)/2)' }
 ↓ MATCH
 REPEAT
 END
>>

You can add more WHILE − REPEAT − END loops for other similar
conversions if you like. The loop uses the 1 or 0 returned by
↓ MATCH , to check if it some matching has been done or not. If
something matched, it repeats. If nothing matched it exits. There also a
funny thing in this loop. Remember that the general form of such loops
is:

WHILE
 test-clause
REPEAT
 body
END

But in this case we have done something like:

WHILE
 body-and-test-clause
REPEAT
END

The actions to be repeated is also where the test-clause resides,
between the WHILE and the REPEAT statement, because

Trigonometry with the HP49G - Part 6

6-3

↓ MATCH returns both the results of the work and a true (1) or false
(0). Nice demonstration of the flexibility of the HP49G, isn‘t it?
Somehow it reminds me of C, where such „compacting“ of test-clauses
and work in a single line are also possible.

Let‘s now move on to:

tan(x) + tan(y) =
sin(x + y)

cos(x)∗ cos(y)

Enter the left hand side, TAN(X) + TAN(Y) , and press , to
convert TAN to SIN and COS functions that appear on the right hand
side. Press and you get:

COS Y()⋅ SINX() + COS X() ⋅SIN Y()
COS X()⋅ COS Y()

The denominator already looks like what we want. Press to get the
expression in the EQW, select the numerator and press .
Voila!

And now for some examples:

1) Turn SIN X()2 −SIN Y()2
 to a product of trigonometric functions

of
X
2

 and
Y
2

.

The method described above works here. We first to
turn the expression to:

SIN X() − SIN Y()() ⋅ SIN X() + SIN Y()()

Then we use separately for SIN X() − SIN Y() and
SIN X() + SIN Y() :

a)
b)
c)
d) applied to the first and second sub-expression of
 the numerator
e) applied to the denominator and .

Or we just use the program from above.

2) Turn

SINX()2 − SIN Y()2

COS X() + COS Y()()2

to a product of trigonometric functions of
X
2

 and
Y
2

.

We first to turn the expression to:

SIN X() − SIN Y()() ⋅ SIN X() + SIN Y()()
COS X() + COS Y()()2

Then we use the above method separately for SIN X() − SIN Y()
and SIN X() + SIN Y() on the numerator and for the denominator

COS X() + COS Y()()2
d. At the end we also use and we

get:

TAN
X + Y

2




 ⋅ TAN

X − Y
2







Or we just use the program from above, followed by a .

Trigonometry with the HP49G - Part 6

6-4

3) Show that:

COS(2 ⋅ A) − COS(4 ⋅A)
COS(4 ⋅ A) + COS(2 ⋅A)

= TAN(A) ⋅ TAN(3⋅ A)

Again, enter the lest hand side and press , and
 on the whole expression. Then each factor

of the numerator and the denominator separately. Then apply
 on the whole expression. Or use the program and then
.

4) Convert the expression:

1+ SIN X() + COS X() + SINX()⋅ COS X()

to a product.

Enter the expression. Press , and .
After this you have:

SIN
X
2





 + COS

X
2









 



2

⋅COS
X
2







2

⋅ 2

SIN
X
2







2

+COS
X
2







2


 




2

Get the expression in the EQW and apply on the
denominator, to replace it with a 1. Now select the sub-
expression:

SIN
X
2





 + COS

X
2







of the numerator and press . Press and then
 to get:

COS
X
2







2

⋅cos
x
2

−
π
4





 ⋅ 4

In the last example the step did another trigonometric
transformation:

a ⋅sin(x) + b ⋅ cos(x) = a2 + b2 ⋅ cos x + arctan
b
a





 −

π
2



 



If you enter the left hand side and press then you get that.
But this works only in real mode. In complex mode pressing
TCOLLECT doesn‘t do anything. Also, if a and b are expressions
with trigonometric functions themselves, then you get different results,
depending on what exactly a and b look like. So if you want this type
of conversion to be performed independently of what a and b look
like, you should write a small program (perhaps using MATCH ;-)) to
always get the desired result.

That‘s all for today. Of course if some genius out there finds a
better/faster method, then please tell us, so that we don‘t raise the
consumation of coffee to unbelievable degrees, waiting for the HP49G
to finish some calculation. Having said that and after all complaining
about the slowness of the HP49G, how much time would such things
take, if we were supposed to do them by hand?

Greetings,
Nick.

Trigonometry with the HP49G - Part 6

6-5

Hi everybody!

We are at the seventh part of our trigo marathon already, if I didn‘t
make any mistakes with counting. In this seventh part we‘ll take a look
at the inverse functions of sin , cos and tan . We‘ll also take a look at
Trabakoulas‘ time travel.

You of course know that trigonometric functions are periodic. They
behave like doing after a while what they already have done. For
example the sin function keeps repeating itself, as it oscillates between
1 and −1.

The distance between two x -coordinates which SIN X() sends to the
same y -coordinate is the period of the function. (Actually this is not

quite correct, but it suffices for now.) For SIN X() the period is 2 ⋅π .
If we express this algebraically, then we have:

SIN X + 2 ⋅π() = SINX()

You can do this on your HP49G: Enter SIN X + 2 ⋅π() , then press
 and . The result is SIN X() . Or enter SIN X + 4 ⋅π()

and press and . Same result!

The period of COS X() is also 2 ⋅π . That means, if you have some
quantity and take its cosine, then adding 2 ⋅π to this quantity and
taking the cosine, returns the same number.

The period of TAN X() is π .
Now, why is all this important?
Imagine that you have for example
SIN X() and you want the quantity X .
There are more than one X which have
the known sine. In fact there is an
infinite number of such X .

This was what Trabakoulas found
difficult to understand. The aliens told
him all about periods and the like and
he applied this to time coordinate. He
found that if he starts at t0 assuming a

sin ω∗ t0 + t()() function with
frequency ω for his picture of the

world, then when t =
2∗n1∗π

ω
 has

passed by, he actually has reached the
point where he started, though he never
went backwards in time. But this
contradicts his observation of steadily

Trigonometry with the HP49G - Part 7

7-1

getting older. ;-)

The functions that return an angle when fed a value of a trigonometric
function of that angle are the inverse trigonometric functions. The
inverse function to SIN X() is on the HP49G ASIN X() . It finds an
angle, or arc, which has a given sine. If you solve an equation like:

SIN X() = a

for X , then the HP49G answers with:

x = − 2∗ n1−1()∗π() + ASIN(a) x =2∗n1∗π + ASIN(a){ }
Both solutions contain an arbitrary integer n1. The infinite number of
values that this integer can have, shows that there is also an infinite
number of angles x , that have the given sine a. It would be nice if we
could show that the found solutions really have the sine a . So press

 while the solutions list is on stack level 1. Now you have:

SIN X() = SIN − 2∗n1−1()∗π() + ASIN(a)()
SIN X() = SIN 2∗n1∗ π + ASIN(a)()









Both right hand sides can be TEXPANDed, so press . Now
press , and then to explode the solutions list. On stack
level 1 you have:

SIN X() = − a 2 −1() ⋅ SIN2 ⋅n1⋅π() + a ⋅ COS 2 ⋅n1⋅π()

Here comes again VPN‘s idea and wish for INTEGERASSUME. The
HP49G returns solutions that contain some arbitrary integer, but
afterwards it doesn‘t know what variables are assumed to be integers.
If we had this, then the above formula would simplify to a because
SIN2 ⋅n1⋅π() = 0 and COS 2 ⋅n1⋅π() = 1 when n1 is integer. The

same is true for the other solution. We can of course make a program
that replaces SIN2 ⋅n1⋅π() with 0 and COS 2 ⋅n1⋅π() with 1, but
having such a feature like INTEGERASSUME would be better.

Anyway, the other inverse trigonometric functions are ACOS and
ATAN . There are also commands that convert between them. These
are:

ACOS2S - convert arccos(x) to
π
2

− arcsin(x)

ASIN2C - convert arcsin(x) to
π
2

− arccos(x)

ASIN2T - convert arcsin(x) to arctan
x

1− x2











ATAN2S - convert arctan(x) to arcsin
x

1− x2











For example, if you have ATAN X() and want to convert to ACOS ,
then you press and then . The result is:

π
2

− ACOS
X

X2 +1



 




The HP49G has some automatic simplifications when it deals with
inverse trigonometric functions. For example, enter ASIN X() and then

press . The result is − X2 −1() . Try also other combinations.

Enter an inverse trigonometric function (ASIN , ACOS , ATAN) and
then press the key of a trigonometric function (, ,) in any
combination you like. Look how the HP49G gets rid of the inverse
trigonometric functions, returning expressions with no trigonometric
functions at all.

Trigonometry with the HP49G - Part 7

7-2

Let‘s do some examples:

1) Show that ASIN X() + ACOS X() is a constant.

Enter the expression and press and then , to get
π
2

.

2) Show that SIN ACOS X()() + COS ASIN X()() = 1− X2

Enter the left hand side and press , . Or enter
the left hand side and press .

3) Show that the expression

SIN ATAN X() + ATAN
1
X









 



can be used as a kind of definition of the function SIGN.

Enter the expression and press . Then press .

The result is
X
X

 which can be thought as a definition for SIGN.

(What happens at X = 0?)

4) Given an angle a , find all angles that have a sine equal to
−SIN a() .

The equation SIN(X) = −SIN(a) must be solved for X . So enter
the equation, enter X and then press .

Example (4) shows where we are going to go in the next part. Yes,
you guessed right: Trigonometric equations and their solutions! So if
you like, send me any trigonometric equation that you find
hard/impossible to solve with the HP49G, and I‘ll try to solve them
and take them in the next part.

Greetings,
Nick.

Trigonometry with the HP49G - Part 7

7-3

Hi everybody!

In the previous parts of the trigonometry marathon we learned many
things about the trigonometric and some algebraic capabilities of the
HP49G. Things that will be very useful for what we are going to do in
this part: Solve trigonometric equations.

First of all, let it be said, there is no general method that will solve
all trigonometric equations. But there are some groups of
trigonometric equations. Any equation that belong to such a group can
be solved using the same method. Of course the method for solving an
equation that belongs to one group will be different from the method
for solving an equation that belongs to another group.

But we can make a program, that checks to which group such an
equation belongs, and then acts accordingly. The general requirements
for this program will be:

• Recognise the group that such an equation belongs to, no matter
how the equation is written.

• Let as much as possible be done by the built in CAS.

• When an equation doesn‘t belong to the groups that we examine
here, pass it to the built in SOLVE.

The commented code that represents the thoughts/ideas here, is at the
end of this part. It is written solely in UserRPL. You can download it
from www.hpcalc.org or enter yourself it in your HP49G.

So let‘s start!

Group 1.
A very easy kind of trigonometric equation is:

a ∗ trigFunction(x)= b

where trig function can be SIN , COS or TAN . As you might have
expected the HP49G can solve such equations right out of the box.

Example:

Solve the equation COS(X) =
2
3

 for X

Simply enter the equation, enter X and then press .

The result is:

X = − 2∗ n1∗π + ACOS
2
3



 










 X = 2∗n1∗ π + ACOS

2
3



 












So for this group, we don‘t need to program anything. :-)

Group 2.
trigFunction f x()() = trigFunctiong x()()
where trigfunction can be again SIN, COS or TAN (but the same for
both sides of the equation) and f(x) and g(x) are two distinct functions
of x . Let‘s try to solve such an equation:

Enter:

SIN 3∗X +
π
4



 


 = SIN 2 ∗ X −

π
3



 




then enter X and if you are brave enough then press . The
HP49G needs an eternity to return some result. Actually I never was
patient enough to let it finish this calculation. So perhaps it can solve
such equations, but the time that it needs to do so is not acceptable. It is
a bit strange that the HP49G can solve much more difficult looking
equations easily, and at the same time it seems to hang with such easy

Trigonometry with the HP49G - Part 8

8-1

things.

So let‘s help it. Press ON to interrupt the calculation, if you were brave
enough to start it. The equation:

SIN 3∗X +
π
4



 


 = SIN 2 ∗ X −

π
3



 




tells us, that X is such that the arcs of:

3∗ X +
π
4

and of:

2∗ X −
π
3

have equal sines. Remember the property of arc sine in part 7? There
are infinite arcs whose sines are equal to:

SIN 3∗X +
π
4



 




They are:

 L , −4∗π +3∗ X +
π
4

, −2 ∗ π + 3∗ X +
π
4

, 3∗ X +
π
4

,

2∗π +3∗ X +
π
4

, 4 ∗ π + 3∗ X +
π
4

, L

and also

 L , 5∗π +3∗ X +
π
4

, 3∗π +3∗ X +
π
4

, π −3∗ X +
π
4

,

−π−3∗ X +
π
4

, −3∗ π + 3∗ X +
π
4

, L

The two sets of solutions are represented by:

2∗ k1 ∗ π + 3∗ X +
π
4

and by:

− 2 ∗k1 −1() ∗π() −3∗ X +
π
4

-

where k1 is an arbitrary integer. The last 2 formulae are all arcs whose
sines are equal to the sines of:

3∗ X +
π
4

The same way all arcs whose sines are equal to the sines of:

2∗ X −
π
3

are given through:

2∗ l1 ∗ π + 2∗ X −
π
3

and:

− 2 ∗ l1 −1() ∗π() − 2∗ X −
π
3

where l1 is another arbitrary integer.

Trigonometry with the HP49G - Part 8

8-2

Now, we want to find X such that:

SIN 3∗X +
π
4



 


 = SIN 2 ∗ X −

π
3



 




which means that the arcs having these sines must also be equal. That
leads us to 4 equations:

1) 2∗ k1 ∗ π + 3∗ X +
π
4

= 2 ∗ l1 ∗ π + 2 ∗X −
π
3

2) − 2 ∗k1 −1() ∗π() −3∗ X +
π
4

= − 2 ∗ l1 −1() ∗π() − 2∗ X −
π
3

3) 2∗ k1 ∗ π + 3∗ X +
π
4

= − 2∗ l1 −1() ∗π() − 2 ∗X −
π
3

4) − 2 ∗k1 −1() ∗π() −3∗ X +
π
4

= 2 ∗ l1 ∗ π + 2 ∗X −
π
3

From the first, we derive:

2∗ k1 ∗ π + 3∗ X + π
4

= 2 ∗ l1 ∗ π + 2 ∗X − π
3

⇔

3∗ X +
π
4

= 2∗ l1 ∗ π − 2 ∗k1 ∗ π + 2 ∗X −
π
3

⇔

3∗ X +
π
4

= 2∗ l1 − k1()∗ π + 2 ∗ X −
π
3

Because l1 and k1 are integers, l1 − k1 is also an integer, which we can

give the name n1. So we have:

3∗ X +
π
4

= 2∗n1 ∗ π + 2 ∗X −
π
3

We turned the trigonometric equation to an equation without any
trigonometric functions, which the HP49G can easily solve.

The second equation gives us the same set of solutions as the first one.

From the third equation we derive:

2∗ k1 ∗ π + 3∗ X + π
4

= − 2∗ l1 −1() ∗π() − 2 ∗X − π
3

⇔

3∗ X +
π
4

= −2∗ k1∗π − 2∗ l1 −1() ∗π() − 2 ∗X −
π
3

⇔

3∗ X +
π
4

= − 2∗ k1 + l1() −1()∗π() − 2 ∗ X −
π
3

Because k1 and l1 are integers, k1 + l1 is also an integer, which we can
give the name m1. So we have:

3∗ X +
π
4

= − 2∗m1 −1()∗π() − 2 ∗ X −
π
3

The last equation can be simplified a little bit further if we consider m1,
which is an integer ...,-3, -2, -1, 0, 1, 2, 3, ...

The quantity − 2 ∗m1 −1() ∗π() is then:

 L , 7∗π , 5∗π , 3∗π , π , −π , −3∗π , −5∗π , L

That means, the quantity − 2 ∗m1 −1() ∗π() is π multiplied by an odd

Trigonometry with the HP49G - Part 8

8-3

integer. This can be also represented by 2∗ n1 +1() ∗π .

So the last equation turns to:

3∗ X +
π
4

= 2 ∗n1 +1() ∗ π − 2 ∗X −
π
3

That means, that if we could check that the equation belongs to the
group SIN(A)= SIN(B), we could replace it with the two equations
A = 2∗ n1 ∗ π + B and A = 2∗ n1 +1() ∗ π − B and solve these two new
equations for X , instead of the original equation.

How can we check that an equation belongs to the group
SIN(A)= SIN(B)? We could for example MATCH SIN(A)= SIN(B)
with A = 2∗ n1 ∗ π + B , check the flag that MATCH returns and act
accordingly. But consider an equation of the form SIN(A)= −SIN(B).
This also belongs to the same group because −SIN(B)= SIN(−B) and
so the equation becomes SIN(A)= SIN(−B) . If we use MATCH to
replace SIN(A)= SIN(B), then cases like SIN(A)= −SIN(B), or
−SIN(A)= SIN(B), or −SIN(A)= −SIN(B), and also
SIN(A)+SIN(B)= 0 and so on will not be MATCHed. Furthermore
when the equation to solve is not factored but contains
SIN(A)− SIN(B) as a factor, then we of course can‘t make a MATCH.

What can we do? An easy solution is to first find all factors of the
equation, build an equation with each factor equal to 0 and build a list
with all these equations.

If our factoring part of the program also finds a -1
and−SIN(A)+ SIN(B) as factors of − SIN(A)−SIN(B)() , then the
possible variations of such equations are:

SIN(A)− SIN(B)= 0
SIN(A)+SIN(B)= 0

The built-in command FACTORS does this, but we will not use it
here because it factors too much for our purposes. You‘ll see later on
why it doesn‘t exactly fit here. The built in command COLLECT does
factoring that better suits our needs, but it doesn‘t return a list of all
factors. But we can use COLLECT and a little bit programming to get
all factors from COLLECT not in an algebraic object but in a list. The
code that does this is commented at the end of this part of the
marathon. It takes an algebraic object and returns the factors that
COLLECT finds in a list. Note that it simply rejects any denominator
from a factor, which can be dangerous if the denominator is 0 for the
solutions of the numerator.

If an equation contains factors of the form SIN(A)− SIN(B) or
SIN(A)+SIN(B), the code will also return the corresponding equations
in a list. The two forms of course can‘t be MATCHed both at once.
But we can make an additional pre-check and convert one possible
forms of an equation to the other form, and then replace it with the list:

A = 2∗ n1 ∗ π + B A = 2 ∗n1 +1() ∗ π − B{ }
which can be solved easily. So we choose SIN(A)− SIN(B)= 0 to
represent both possible forms of such equations and need to make an
additional check that converts SIN(A)+SIN(B)= 0 to
SIN(A)− SIN(−B)= 0 .

But there is an additional thing, to take care of. Suppose that we want
to solve for X . The equation can in general contain factors that don‘t
depend on X , like for example 2, var1− var2 and so on. These factors
will later lead to equations like 2 = 0 or var1− var2 = 0 , which can't
be solved for X . We must filter out such factors. This is done with a
subsequent procedure which filters out all factors that don't depend on
the variable for which we want to solve.

Exactly the same way, we can include code in the program, that solves
equations like COS(A)= COS(B). With the same considerations as

Trigonometry with the HP49G - Part 8

8-4

above, we can replace equations of the form COS(A)+ COS(B)= 0
with COS(A)− COS(B −π)= 0 because COS(B)= −COS(B −π) ,
then replace the created equation of the form COS(A)− COS(B)= 0
with:

A = 2∗ n1 ∗ π + B A = 2 ∗n1 ∗ π − B{ } .

For TAN(A)= TAN(B) we can replace equations of the form
TAN(A)+ TAN(B)= 0 with TAN(A)− TAN(− B)= 0 because
TAN(A)= −TAN(−B) , then replace the so created equation of the
form TAN(A)− TAN(B)= 0 with A = n1∗π +B .

We are at the end of the second group. Let‘s move on to the third
group.

Group 3.
This group contains equations of the form

trigFunction1f x()() = trigFunction2 g x()()
where trigFunction1, trigFunction2 are two different trigonometric
functions and f(x) , g(x) are two different terms that contain the
variable to solve for. Examples would be:

COS(X − π) = SIN 2 ⋅ X +
π
3





 , TAN(X) = SIN

X
2

+π






and so on.

For equations that only contain SIN and COS but no TAN , it is
easier. Take for example COS(A)= SIN(B). Since it is:

SIN(B)= COS B −
π
2



 




we can replace SIN(B) with COS B −
π
2



 


 and then use the code that

we already have written for the cases COS(A)− COS(B)=0. For
example an equation of the form SIN(A)+COS(B)= 0 will be
MATCHed to:

COS A −
π
2



 


 + COS(B)= 0

through the extra code. The resulting equation

COS A −
π
2



 


 + COS(B)= 0

will be MATCHed to:

COS A −
π
2



 


 − COS(B −π)= 0

through the subsequent MATCH for which we already wrote the code.
And the equation:

COS A −
π
2



 


 − COS(B −π)= 0

will be MATCHed to the equation list:

A −
π
2

= 2∗n1 ∗ π + B −π A −
π
2

= 2∗ n1∗π − B − π()







Trigonometry with the HP49G - Part 8

8-5

also with code which is already written.

In the same group we have also equations that contain TAN , like
SIN(A)= TAN(B). For such equations, I didn‘t find a general
programmable method (yet). It seems that the way to solve them, if
there is a way, varies to much from case to case.

Group 4.
Let‘s move on to the fourth group. This group has trigonometric
equations that are algebraic in a trigonometric function. An example
would be: a ⋅SIN X()2 +b ⋅SIN X() + c = 0 . If we substitute Y for

SIN X() , then the equation becomes a ∗ Y2 + b∗ Y + c = 0 , which we
can solve for Y . Then we have the two solutions of the quadratic
equation Y = solution1 and Y = solution2 . We make the back-
substitution Y = SIN X() we then we have SIN X() = solution1 and
SIN X() = solution2 , which can be solved easily. The HP49G can
solve such equations without help. And because the original equation
with the variable to solve for is passed to SOLVE , when none of the
previous MATCHes did anything, we don‘t need to program
additional code for such cases. Almost every algebraic expression with
trigonometric functions that can be factored, can be solved this way.

Group 5.
The fifth group contains equations of the form
f sin(x),cos(x),tan(x)() = 0 . A general way to work with such
equations is to convert every trigonometric function that appears in the

equation to a function of TAN
X
2





 with the command HALFTAN. So

we will have an equation where only terms with TAN
X
2





 . This can

then be solved by the HP49G through factorisation. Many of the

resulting equations contain big powers of TAN
X
2





 and so can‘t be

factored analytically. But if you have set the flag -109 for numerical
factorisation, then the HP49G returns numerical solutions.

The nice thing is that the HP49G does solve such equations without
help, when the arguments of SIN , COS and TAN , are all simply X .
The not so nice thing is that the HP49G gets more and more problems
when the arguments are the same for all trigonometric functions, but
they are more complicated than simply X . For example it solves
SIN X() + COS X() + TAN X() but SIN X + 1() + COSX +1() + TAN X +1()
causes much more problems.

So we need to program additional code which checks to see if there are
at least two different trigonometric functions, and if the arguments of
them are all the same, then substitutes, say Y for this argument,

transforms all trigonometric functions to TAN
X
2



 


 -functions, solves

for Y , then substitutes back Y = argument and then solves for X .

Group 6.
The sixth group contains equations of the form
a ⋅sin2(x) + b ⋅cos2(x) + c ⋅ sin(x) ⋅cos(x) + d = 0 . The HP49G often
runs into troubles, when trying to solve such equations. It seems that
often the factorisation of such equations results in factors which are
difficult to solve for the CAS. That‘s why we didn‘t use FACTORS
at the start. The equation could be factored in such a way, that neither
the form of the equation can be easily recognised, nor the resulting
equations of the form factor = 0 can be solved. First the idea for
recognising such a form. Use FDISTRIB to remove all groupings of
terms. Then MATCH COS(X)2 , SIN(X)2 and COS(X) ⋅ SIN(X) to 0.
EXPAND ing will then return an equation of the form d = 0 . Check to
see if d depends on the variable to solve for. If not, then we have an
equation that belongs to group 6.

Trigonometry with the HP49G - Part 8

8-6

Now how to transform it to something easy to solve: Subtract d = 0
from the equation and then add d ⋅ SIN(X)2 +COS(X)2() to the left

hand side. Since SIN(X)2 + COS(X)2 =1 we have added and subtracted
d , so the equation remains the same. But now it is in the form:

a ⋅sin2(x) + b ⋅cos2(x) + c ⋅ sin(x) ⋅cos(x) + d ⋅ sin2(x)+ cos2(x)() = 0

or

a + d()⋅ sin2(x) + b + d()⋅ cos2(x) + c ⋅sin(x) ⋅ cos(x) = 0

that means in the general form:

A ⋅ X1
2 +B ⋅ X2

2 + C ⋅ X1 ⋅X2 = 0

where A = a + d , B = b + d , C = c , X1 = sin(x) and X2 = cos(x) .

Equations of the form A ⋅ X1
2 +B ⋅ X2

2 + C ⋅ X1 ⋅X2 = 0 can always be
factored to:

2⋅ A ⋅ X1+ C ⋅ X2 + X2 ⋅ − 4 ⋅B ⋅ A − C2()() ⋅ 2⋅ A ⋅ X1 + C ⋅X 2 − X2 ⋅ − 4 ⋅B ⋅ A − C2()()
4 ⋅ A

(Try it yourself).

The factored form of such equations can be easily solved by the CAS.
If we consider that X1 = sin(x) , X2 = cos(x) then we can divide by
cos(x) and get and equation of the form a ∗ tan(x)+ b = 0 for every
factor. (Caution! we must check if the solutions are such that also
cos(x)= 0)

So we use FACTORS to find the two factors, divide each factor by

cos(x) and then use TRIGTAN to change
sin(x)
cos(x)

 to tan(x) . We

have now two equations with only one occurrence of tan(x) , which
can both be solved by the built-in CAS.

Before we go to the program that does all this, some things must be
said. First of all, the program is far from being perfect, if there is such
a thing like a perfect program. I tried to make it as general as possible,
but there will be always cases, where it doesn‘t give solutions, or
where it even crashes. We could add for example code for argument
checking, or code for solving additional cases, or code for fixing bugs,
which can appear when some equation behaves in such a way, that it
leads to errors. Also we could add code for checking the behaviour of
solutions, when some denominators are simply thrown away. And
many many other things.

And at the end, after so much blah blah, here it is. TRISOL, the
program for solving trigonometric equations. (No, it is not TRIstan
and ISOLde, it is TRIgonometric SOLve ;-))

%%HP: T(3)A(R)F(.);
\<< OVER

@Make a list with the
@COLLECTed equation

"Finding factors
" 1
DISP COLLECT 1 \->LIST

@Put this list in local variable factors
@Next routine returns all factors that
@the previous COLLECT found in a list.

\-> factors
 \<< 20 SF @Set flag 20
 WHILE 20 FS? @While flag 20 is set
 REPEAT 20 CF @repeat
 @clear flag 20

Trigonometry with the HP49G - Part 8

8-7

factors 1 @Put factors list
 @and a 1 on the stack
 @DOSUBS procedure starts here
 \<< \-> fact @store current factor in
 @local variable fact
 \<<
 IF fact @if current factor is alg
TYPE 9 ==
 THEN @then
 CASE fact @case factor is a product
OBJ\-> { * } SWAP POS
 THEN
DROP 20 SF @then drop the argument
 @count. Set flag 20
 END
DROPN fact OBJ\-> @drop as many objects as
 @the argument count
{ NEG} SWAP POS @case the factor is negated
 THEN @then drop argument count
DROP -1 20 SF @return -1 and set flag 20
 END
DROPN fact OBJ\-> { / } @drop as many objects as
 @the argument count
SWAP POS @case factor is a quotient
 THEN
DROP2 20 SF @drop argument count and
 END @denominator. Set flag 20
DROPN fact
 END @default case: drop as many
 @objects as the argument count.
 @return current factor
 ELSE fact @else current factor is
 @name or number. Simply return it
 END
 \>>
 \>> DOSUBS @DOSUBS procedure ends here
'factors' STO @Store factors list in local factors
 END factors @End of WHILE-REPEAT loop
 \>> NOVAL NOVAL RCLF @Return factors list and
 @two NOVAL and the current
 @flags. The NOVALs are the
 @initial contents of the

 @locals subs and subvar
 @which we will use later on.

@Store arguments in local variables.
@ eq: The unchanged equation.
@ var: The variable to solve for
@ feq: List with all factors
@ subs: Variable will be used if
@ substitutions must be done
@ subvar: Name of the substitution variable
@ flags: The user flags

\-> eq var feq subs
subvar flags
 \<<

@The factors that do not depend on
@the variable to solve for will
@be filtered out from feq

"Filtering factors
"
1 DISP feq 1 @Put feq and a 1 on the stack
 @DOSUBS procedure starts here

 \<< NSUB R\->I 2 DISP @display current
 @factor count
 IF DUP TYPE 9 \=/ @If current factor
OVER TYPE 6 \=/ AND @is not algebraic
 @and not name
 THEN DROP @then drop it
 ELSE @else
 IF LNAME DUP @if it doesn‘t
{ } SAME @contain any names
 THEN DROP2 @then drop it
 ELSE @else
 IF AXL var @if it doesn‘t
POS NOT @contain the
 @variable to
 @solve for

Trigonometry with the HP49G - Part 8

8-8

 THEN DROP @then drop it
 ELSE 0 = @else
 @else build up
 @the equation
 @factor=0
 END
 END
 END
 \>> @DOSUBS procedure ends here
DOSUBS 'feq' @Store the resulting
STO @list of factors in
 @local variable feq

feq 1 @return filtered factors list and 1

 @DOSUBS procedure starts here
 \<<

 @MATCH each factor to a standard
 @form that will be used with MATCH
 @later.

"Standardizing
"
NSUB R\->I + 1 DISP

@MATCH forms with SIN and COS
@(Third group -> second group)

@MATCH sin(a)+cos(b)=0 to cos(a-Pi/2)+cos(b)=0
{ '
SIN(&A)+COS(&B)=0' '
COS(&A-\pi/2)+COS(&B)=0
' } \|vMATCH DROP

@MATCH cos(a)+sin(b)=0 to cos(a)+cos(b-Pi/2)=0
{ '
COS(&A)+SIN(&B)=0' '
COS(&A)+COS(&B-\pi/2)=0
' } \|vMATCH DROP

@MATCH sin(a)-cos(b)=0 to cos(a-Pi/2)-cos(b)=0

{ '
SIN(&A)-COS(&B)=0' '
COS(&A-\pi/2)-COS(&B)=0
' } \|vMATCH DROP

@MATCH cos(a)-sin(b)=0 to cos(a)-cos(b-Pi/2)=0
{ '
COS(&A)-SIN(&B)=0' '
COS(&A)-COS(&B-\pi/2)=0
' } \|vMATCH DROP

@MATCH forms with SIN only or COS only
@(Find form that represents all variations of
@an equation of the second group)

@MATCH sin(a)+sin(b)=0 to sin(a)-sin(-b)=0
{ '
SIN(&A)+SIN(&B)=0' '
SIN(&A)-SIN(-&B)=0' }
\|vMATCH DROP

@MATCH cos(a)+cos(b)=0 to cos(a)-cos(b-pi)=0
{ 'COS(&A
)+COS(&B)=0' 'COS(&A)
-COS(&B-\pi)=0' }
\|vMATCH DROP

@MATCH tan(a)+tan(b)=0 to tan(a)-tan(-b)=0
{ 'TAN(&A
)+TAN(&B)=0' 'TAN(&A)
-TAN(-&B)=0' } \|vMATCH
DROP

\-> eqfact @Store current equation
 @factor=0 in local variable

@The next local variables procedure finds
@the type of the current equation factor=0.
@If the equation belongs to any of the groups

Trigonometry with the HP49G - Part 8

8-9

@that were considered in this part, then it
@puts an equivalent equation in eqfact, which
@can be solved much easier by the CAS

 \<<
"Finding type of eq
"
NSUB R\->I + 1 DISP
 CASE @Second group of equations
eqfact @Case sin(a)-sin(b)=0
{
'SIN(&A)-SIN(&B)=0' '
&A=2*\pi*n1+&B' }
\|vMATCH
 THEN @then put a list with
 @A=2*pi*n1+B and
 @A=(2*n1+1)*pi-B
 @in local eqfact
"Type sin(a)-sin(b)=0
"
1 DISP eqfact { 'SIN(
&A)-SIN(&B)=0' '&A=(2
n1+1)\pi-&B' } \|vMATCH
DROP 2 \->LIST 'eqfact'
STO
 END DROP
 @Case cos(a)-cos(b)=0
eqfact { 'COS(&A)-COS
(&B)=0' '&A=2*\pi*n1+&B
' } \|vMATCH
 THEN @then put a list with
 @A=2*pi*n1+B and
 @A=2*pi*n1-B
 @in local eqfact

"Type cos(a)-cos(b)=0
"
1 DISP eqfact { 'COS(
&A)-COS(&B)=0' '&A=2*
\pi*n1-&B' } \|vMATCH
DROP 2 \->LIST 'eqfact'
STO

 END DROP
eqfact @Case tan(a)-tan(b)=0
{ 'TAN(&A)-TAN
(&B)=0' '&A=\pi*n1+&B'
} \|vMATCH
 THEN @then put
 @A=pi*n1+B
 @in local eqfact
"Type tan(a)-tan(b)=0
"
1 DISP 'eqfact' STO
 END DROP
eqfact FDISTRIB @Sixth group of equations
 @Put the fully distributed
 @form of eqfact in eqfact
'eqfact' STO eqfact @Case eqfact contains
var SIN 2 ^ { 0 } + @at least two of the
\|vMATCH SWAP var COS 2 @forms a*SIN(X)^2
^ { 0 } + \|vMATCH SWAP @b*COS(X)^2 c*SIN(X)*COS(X)
var COS var SIN * @and a form that does not
{ 0
} + \|vMATCH SWAP '&A' @contain the variable to
var COS * var SIN * @solve for
{
0 } + \|vMATCH SWAP 5
ROLLD OR 3 \->LIST
\GSLIST 2 \>= SWAP EXPAND
LNAME
 IF DUP { }
SAME
 THEN DROP 0
 ELSE AXL
var POS
 END NOT ROT
AND
 THEN @then replace the constant
 @term with itself
"Type asin\178x+bcos\178x+
csinxcosx" @multiplied with
1 DISP eqfact OVER - @SIN(X)^2+COS(X)^2
SWAP var SIN 2 ^ var @and factor the
COS 2 ^ + * + FACTORS @resulting eqfact

Trigonometry with the HP49G - Part 8

8-10

1
"Filtering factors,
building equations"
1 DISP

 @Another DOSUBS starts here
 @to filter out factors that
 @do not contain the variable
 @to solve for.

 \<< NSUB
R\->I 2 DISP
 IF DUP
TYPE 9 \=/ OVER TYPE 6
\=/ AND
 THEN
DROP
 ELSE
 IF
LNAME DUP { } SAME
 THEN
DROP2
 ELSE
IF AXL var POS NOT
THEN DROP
ELSE 0 =
END
 END
 END
 \>> @DOSUBS procedure ends here
DOSUBS
1 @Next DOSUBS procedure
 @also checks to see if the
 @equation contains SIN and COS.
 @If it does, then it divides
 @by COS(X) and then applies
 @TRIGTAN to the factor.
 @It builds the equivalent
 @equations of the form
 @a*TAN(X)+b=0, which can
 @be solved easily by the CAS
 \<<

 IF DUP
\->LST DUP { SIN } HEAD
POS 1 \>= SWAP { COS }
HEAD POS 1 \>= AND
 THEN
var COS / DISTRIB
TRIGTAN
 END
 \>> DOSUBS
 @DOSUBS procedure ends here

'eqfact' STO
 END DROP @Fifth group of equations
 @Find all arguments of
 @trigonometric functions.

eqlst trigarg
eqfact \->LST @Convert algebraic to list
{ } \->
eqlst trigarg
 \<< eqlst 1 @Return the list
 @of the algebraic
 @DOSUBS procedure starts here
 \<<
 IF DUP @If the current object is
{ SIN COS TAN } SWAP @SIN COS or TAN
POS
 THEN
OVER EXPAND 'trigarg' @Then expand the previous
STO+ @object and add it to the list
 @trigarg
 END
EVAL @evaluate current object
 \>>
 @DOSUBS procedure ends here
DOSUBS
DROP

trigarg eqlst
 \>> DUP { TAN @If there are at least
} HEAD POS 1 \>= OVER
{ SIN } HEAD POS 1 \>= @two of the functions

Trigonometry with the HP49G - Part 8

8-11

ROT { COS } HEAD POS @SIN COS TAN
1 \>= 3 \->LIST \GSLIST 2 \>=
 THEN DUP 2 @and if all arguments
 \<< SAME @of these functions
 \>> DOSUBS @are the same
 IF { 1 }
+ \PILIST
 THEN @then
"Type f(sinx,cosx,tanx)
"
1 DISP eq HALFTAN @turn all trigonometric
EXPAND FACTOR -105 CF @functions to tan(arg/2)
OVER HEAD 2 / EXPAND
'TempSolVar' 2 \->LIST @replace arg/2 with
\|^MATCH DROP 'eqfact' @TempSolVar
STO 'TempSolVar' SWAP @and store the back
HEAD 2 / EXPAND = @substitution formula
'subs' STO var @in local subs.
'subvar' STO
'TempSolVar' 'var'
STO
 ELSE DROP
 END
 END DROP @Equation belongs to
 @none of the above groups
"CAS Type
" 1 DISP
 END eqfact @solve
var "Solving
" NSUB
R\->I + 1 DISP SOLVE
 IF subs NOVAL @If subs contains something
\=/ @different than NOVAL
 THEN @then
 IF DUP { } @if the solutions list
\=/ @isn‘t empty
 THEN @then
"Back substitution,
and solution"
1 DISP subs SUBST @perform back substitution
subvar SOLVE @and solve for original
 END subvar @variable

'var' STO NOVAL @restore var, subs, subvar and
'subs' STO NOVAL @flags to their initial values
'subvar' STO
 END flags @restore flags
STOF
 \>>
 \>> DOSUBS @Do for each equation of the
 \>> @form factor=0
\>>

If you must solve trigonometric equations, then give it a try. Next time
we‘ll be solving some examples with it.

Boy! I‘m so tired, I see only SIN COS and TAN . Must go sleep
now. (John, you got me! ;-)) No wake up till next part, keep tuned!

Solved Greetings(x)= 0
Nick.

P.S. Dreaming of the Meta-CAS that runs on the CAS that runs on the
OS. Zzzzzzzzzzzzzzzzz......

Trigonometry with the HP49G - Part 8

8-12

Hi everybody!

In this part we are going to solve many trigonometric equations. Some
of them really weirdos. Some of them so strange that even the CAS
and TRISOL together can‘t figure out how they return solutions. And
we are going to see how the story of the universe is similar to the story
of software.

You know of course that the Big Bang theory is the widely accepted
theory about the birth of the universe. But did you know about the Big
Bug theory? No? Oh, this is going to be the widely accepted theory
about the birth of the software universe. Especially for the
trigonometry software universe, there are reasons to believe that at
some time in the past there was a huge Bug, a singularity, which we
call TRISOL. Our knowledge about what was before TRISOL is quite
limited, as God (Mr. Parisse ;-)) won‘t tell us much about the
mysteries of the CAS. (Cosmic Algebra Superstring ;-))

But Big Bugs tend to evolve with time and sometimes, quite
unexpectedly, they may contain usable code. Pattern formation out of
the chaos, so to speak. ;-) So it happened with TRISOL. Trabakoulas
the shepherd has edited some parts, after he came to me and told me
that he lost some sheep because he used Big Bug TRISOL to find their
positions. He left me in peace only after I had promised to pay for the
lost sheep. Boy, why are these animals so expensive? ;-) But he gave
me the re-edited and re-commented code, TRISOL the second, which
we are going to use for solving a bunch of equations. It is at the end of
the previous chapter, and at www.hpcalc.org together with this
document.

After you downloaded it to your HP49G, switch to complex exact
mode, set flag -109 for numeric factorisation, and here we go.

1) Let‘s start with an easy one. Solve 3 ⋅ 2 ⋅ COS a ∗ X +
π
3





 =

2
3

Enter the equation, enter X and press . It finds the solutions:

X =
6 ∗n1 −1() ∗ π + 3∗ ACOS

2
9





















3∗ a

and

X =
− 6∗n1 +1()∗π +3∗ ACOS

2
9





















3∗ a

in 37.6 seconds. If you solve the same equation for X with the
command SOLVE, you get the same solutions in 17.4 seconds. It is
clear that TRISOL has a big overhead trying to determine what kind of
equation this is. Let‘s follow the fate of the equation as it passes
through the processing teeth of TRISOL. First it is COLLECTEDed
to:

9 ⋅COS a ⋅X + π
3





 − 2



 


⋅ 2

3

Then the denominator is dropped and the numerator gets converted to
its factors list:

9 ⋅ COS a ⋅ X +
π
3





 − 2 2









The factor 2 is filtered out, because it can‘t give us any solutions.
The remaining factors are used to build a list of equations:

Trigonometry with the HP49G - Part 9

9-1

9 ⋅ COS a ⋅ X +
π
3





 − 2 = 0









Each equation in the list (only one in this case) is checked for
belonging to one of the special groups that TRISOL processes further.
The checks that are done to see if it belongs to the group
a ⋅sin2(x) + b ⋅cos2(x) + c ⋅ sin(x) ⋅cos(x) + d = 0 are negative.

Because the equation is found to be none of the special kinds, TRISOL
faithfully passes it to the built-in SOLVE, which does its work very
well in this case.

2) Solve SIN 3 ⋅X +
π
4





 = SIN 2 ⋅X −

π
3







Using TRISOL you get the two solutions

X =
24 ⋅ π ⋅n1 − 7 ⋅π

12

and

X =
24 ⋅ π ⋅n1 −13 ⋅π

60

in 17.2 seconds.

If you use SOLVE for this equation you get

X = 2 ⋅n1 ⋅ π − 2 ⋅ATAN
35 ⋅ 2 − 28 ⋅ 3 −1()

64 ⋅ 3 −155()⋅ 2 +127 ⋅ 3 − 156











in 330.9 seconds

Let‘s first see if the solutions are the same. If you apply on the
expression

ATAN
35⋅ 2 − 28 ⋅ 3 −1()

64 ⋅ 3 −155() ⋅ 2 +127 ⋅ 3 −156











to turn it to a number, and the apply to this number, you get
7 ⋅π
24

.

The EXPAND ed solution that SOLVE returned is then:

X =
24 ⋅n1 −7() ⋅π

12

which is exactly the same as the first of the 2 solutions that TRISOL
returned. If we make a sequence of such solutions entering:

X =
24 ⋅n1 −7() ⋅π

12
 −3 3 1 SEQ

then we get the list of solutions with n1 from −3 to 3 :

X =
−79∗π

12
X =

−55∗π
12

X =
−31∗π

12
X =

−7∗π
12

X =
17∗π

12
X =

41∗π
12

X =
65∗π

12

















SUBSTituting these solutions for X in the original equation and
EXPAND ing the resulting equations always returns 1= 1, which
shows that the found solutions are OK.

But what about the second solution that TRISOL found? Let‘s make a
sequence again. Entering

Trigonometry with the HP49G - Part 9

9-2

X =
24 ⋅n1 −7() ⋅π

12
 −3 3 1 SEQ

returns:

X =
−59∗π

60
X =

−7∗π
12

X =
−11∗π

60
X =

13∗π
60

X =
37∗π
60

X =
61∗π
60

X =
17∗π
12

















First of all we see here that there are some solutions in this set, which
are also in the first. But most of them are new. If you SUBSTitute
these solutions in the original equation and EXPAND then you get a
list of equations:

−SIN
27∗Pi

10


 


 = −SIN

23∗Pi
2



 


 1=1

− SIN
3∗Pi
10



 


 = SIN

7∗Pi
2



 


 L 1=1




 








 





Most of them seem to be wrong, but if you apply on the left
and right hand side you see that they are correct solutions. You can
also apply to the whole equation at once. A result of 0 (or
about 0) shows that the equation holds.

So TRISOL gave us solutions that the built-in SOLVE didn‘t find!
What does this tell us? Even when a set of solutions is found, never be
sure that there are no more than those that you see on the screen!

Let‘s now again follow what happens to the equation when TRISOL
starts crunching on it. First it gets COLLECT ed to:

SIN 3 ⋅X +
π
4





 − SIN 2 ⋅X −

π
3





 .

Then the list

SIN 3 ⋅X +
π
4





 − SIN 2 ⋅X −

π
3





 = 0









is made, and the contained equation is compared to certain patterns, in
order to MATCH it with some standard form, that will be used later to
find if the equation belongs to a special group. This step leaves the
equation untouched. The check for special groups find out that this
equation belongs to the group SIN(A)− SIN(B)= 0 and so transform
the equation to the list of two equations:

3⋅ X +
π
4

= 2 ⋅π ⋅n1 + 2⋅ X −
π
3

3 ⋅X +
π
4

= 2 ⋅ n1 + 1() ⋅π − 2 ⋅X −
π
3















This list is then passed to SOLVE which finds the two solutions.

Is there any other way to solve this equation? Well, yes theoretically.
We can use TEXPAND , to get trigonometric functions that all have X
as arguments. We then have an expression containing sines and

cosines of X . We can turn COS X() and SIN X() to TAN of
X
2

 using

HALFTAN. We can the COLLECT to cancel some terms and factors.

So we have an equation which only contains TAN
X
2





 as

trigonometric function, but what an expression this is! If we use this
way for the equation here we get a huge ratio of two polynomials in

TAN
X
2





 . The numerator is factored in a product of a polynomial in

Trigonometry with the HP49G - Part 9

9-3

TAN
X
2





 of degree 2, and a polynomial in TAN

X
2





 of degree 4. The

coefficients of the powers of TAN
X
2





 are often rather big integers.

The HP49G can solve the polynomial of degree 2 in TAN
X
2





 in this

case, and returns the first solution set that TRISOL also found. But it

can‘t solve the polynomial of degree 4 in TAN
X
2





 and so it doesn‘t

find the second set of solutions this way. It should find this set of
solutions with numeric factorisation, because the equation to solve is a
polynomial, the flag for numeric factorisation was set, and the equation
has no other symbolic parameters. But it doesn‘t! So for me this is
reason to believe that this is the reason why SOLVE finds the first but
not the second solution set. Internally it seems to be trying to do what
was described above, or at least something similar.

This second equation can only be solved if you apply to the

coefficients of the powers of TAN
X
2





 and the use SOLVE , which is

not very understandable for me, because as already said, the flag for
numeric factorisation was set, so the HP49G should automatically do
this.

Note that the (theoretical) method TEXPAND , HALFTAN,
COLLECT , SOLVE works theoretically only with integer multiples

of X , that is X , 2 ⋅ X and so on but not
3 ⋅ X

2
 or

X
3

 as arguments of

SIN , COS , TAN . This because it is only then when TEXPAND
returns trigonometric functions only of X and nothing else.

3) Solve COS 7 ⋅ X +
π
9





 = COS 6 ⋅ X −

4 ⋅π
45







TRISOL returns

X =
− 10 ⋅ π ⋅n1 + π()

5
X =

90 ⋅ π ⋅n1 − π
585









in 21.1 seconds. Essentially it does the same as in example 2: It
COLLECT s, it transforms to a standard form, it checks for special
groups, it finds the group COS(A)− COS(B)= 0 and it builds up the
equation list for SOLVE .

If you try to solve this with SOLVE , the it takes 438.7 seconds and
again returns only one set of solutions, namely the set:

X =
10 ⋅n1 −1()⋅π

5

This set is the same like the first that TRISOL returns though it looks
different. To see this, you can make a sequence of both sets for n1, say
from −3 to 3 and reverse one of them.

4) Solve SIN(X) = COS 2 ⋅ X −
π
4







TRISOL returns:

X =
8 ⋅ π ⋅n1 + 3 ⋅π

4
X =

8 ⋅ π ⋅n1 + 3 ⋅π
12









in 17.9 seconds. The equation is first COLLECT ed, then its factors
are found and returned as equations of the form factor = 0 in a list.

Trigonometry with the HP49G - Part 9

9-4

Here there is of course only one factor, and so the list is:

SIN(X)− COS 2 ⋅ X −
π
4





 = 0









The equation is then found to be of the general form
SIN(A)− COS(B)= 0 and it is MATCHed to:

COS X −
π
2





 −COS 2 ⋅ x −

π
4





 = 0

Then the new equation is found to be of the form
COS(A)− COS(B)= 0 and is MATCHed to the equation list:

X −
π
2

= 2 ⋅ π ⋅n1 + 2 ⋅ X −
π
4

X −
π
2

= 2 ⋅ π ⋅n1 − 2 ⋅X −
π
4















This equation list is passed to SOLVE .

Solving the original equation with SOLVE returns an empty list in
36.2 seconds, which means that you very quickly get the result, that
there are no solutions! But the solutions that TRISOL finds are valid,
you can try them out!

Why does SOLVE fail that way? Try , ,
on the equation:

SIN(X)− COS 2 ⋅ X −
π
4





 = 0

You get a ratio who‘s numerator is a polynomial in TAN
X
2





 of

degree 4. Again the same problem as in 2 and 3, only that this time
there is no polynomial of degree up to 2, which can be solved at any

case. So no solution is found.

You could also try to solve this another way: Apply and then
 to the whole equation. You get a factored form with

numerator:

2 ⋅ COS(X) −1()⋅ 2 ⋅ SIN(X)+ 2 ⋅COS(X) +1()⋅ 2

The first factor 2 ⋅COS(X) −1 should be easy to solve with SOLVE

and the second 2 ⋅SIN(X) + 2 ⋅COS(X) + 1 also doesn‘t seem to be
very difficult. But SOLVE still returns an empty list! Only when you
manually take the factors apart and SOLVE separately

2 ⋅COS(X) −1 and 2 ⋅SIN(X) + 2 ⋅COS(X) + 1 for X , you get
solutions. Now, why the HP49G can‘t solve the product when each of
the factors is an equation that it can solve? This is a question that I
unfortunately can‘t answer up to now. Perhaps it has to do with the
fact that the CAS doesn't use TEXPAND in this case?

Even stranger: when you start in approximate mode, SOLVE returns
the solutions in 18.6 seconds. But if the factors can be solved in exact
mode then this should not be necessary. And if automatic switch to
approximate mode is enabled, then at least the numeric solutions
should be found.

5) Let‘s try the factors of 4 as equations for themselves. Solve
2 ⋅COS(X) −1

TRISOL returns the solutions in 22 seconds while SOLVE returns the
same solutions in 8.4 seconds. In this case again, the overhead of
TRISOL makes the difference in time.

Trigonometry with the HP49G - Part 9

9-5

6) Solve 2 ⋅SIN(X) + 2 ⋅COS(X) + 1 (second factor of 4)

TRISOL returns the solutions in 63.2 seconds. SOLVE returns them
in 24.4 seconds. The solutions look different but they are
mathematically equal. TRISOL finds out that the equation belongs to
the group f sin(x),cos(x),tan(x)() = 0 and so uses HALFTAN to

build an equation g TAN
X
2









 


= 0 . The function g TAN

X
2









 


 is a

polynomial of degree 2 in TAN
X
2





 and so can be easily solved by the

HP49G.

In both examples 5 and 6 TRISOL needs about 2.6 times longer that
SOLVE needs to solve this.

7) Solve TAN
X
2

+
π
3





 =

1

TAN
X
2







TRISOL returns

X = 2 ⋅n1 ⋅ π − 2 ⋅ATAN 3 − 2() X = 2 ⋅n1 ⋅ π − 2 ⋅ ATAN 3 + 2(){ }
in 39.1 seconds. SOLVE returns exactly the same solutions in 17.9
seconds, that is TRISOL takes about 2.2 times longer.

TRISOL COLLECT s the equation and keeps the numerator

TAN
X
2

+
π
3





 ⋅ tan

x
2





 −1 which it passes to SOLVE .

8) Solve SIN X2 − 3 ⋅ x +1() = SIN 4 ⋅ X − 2()

TRISOL returns the solutions:

X =
7 + 8 ⋅ 8 ⋅ π ⋅n1 + 37

2

X = −
−7 + 8 ⋅ 8 ⋅ π ⋅n1 + 37

2

X =
−1+ 8 ⋅ 8 ⋅ π ⋅n1 + 4 ⋅ π + 5

2

X = −
−1+ 8 ⋅ 8 ⋅ π ⋅n1 + 4 ⋅π + 5

2

in about 23.2 seconds. Again it finds that the equation is of the special
type SIN(A)− SIN(B)= 0 and builds up a list of two equations.
Because the argument X2 − 3 ⋅X +1 of SIN at the left hand side is a
quadratic in X , each of the equations of this list gives two solutions for
a total of 4 solutions.

SOLVE seems to gasp a lot, if you feed it with this equation. It works
and works and works, and after 10 minutes (!) it errors „Not reducible
to a rational expression“. If you use you can see that the
resulting equation also contains trigonometric terms like COS X2()
which take the possibility away to build up an equation of the form

f TAN
X
2









 


= 0 .

Trigonometry with the HP49G - Part 9

9-6

9) Solve SIN(X + a) = COS(3⋅ X + b) for X .
Taken from examinations of the year 1934 at the Pilot School (School
of Icarus) in Greece.

TRISOL returns in 19.6 seconds

X =
4 ⋅ π ⋅n1 − π− 2 ⋅ a − 2 ⋅ b()()

4
X =

4 ⋅ π ⋅n1 + π − 2 ⋅a − 2 ⋅b()
8









It works like in example 4.

SOLVE returns in 134.7 seconds a more complicated form of the
solutions. (Actually much too complicated for my gusto, but it is
correct.)

Now think how the poor guys there at the School of Icarus have solved
this equation, without an HP in their hands. I think not the way the
HP49G solves it. ;-)

10) Solve TAN
X + a
X − a





 = TAN

X +b
X −b





 for X .

TRISOL returns in 54.6 seconds

X =

π ⋅a + π ⋅b() ⋅n1 + 2 ⋅a − 2 ⋅b −

π2 ⋅a 2 − 2 ⋅π 2 ⋅b ⋅a +π 2 ⋅b2() ⋅n1
2 +

4 ⋅ π ⋅a2 − 4 ⋅ π ⋅b2() ⋅n1 + 4 ⋅a 2 − 8 ⋅ b ⋅ a + 4 ⋅ b2






 






 

2 ⋅ π ⋅n1

and

X =

π ⋅a + π ⋅b() ⋅n1 + 2 ⋅a − 2 ⋅b +

π2 ⋅a 2 − 2 ⋅π 2 ⋅b ⋅a +π 2 ⋅b2() ⋅n1
2 +

4 ⋅ π ⋅a2 − 4 ⋅ π ⋅b2() ⋅n1 + 4 ⋅a 2 − 8 ⋅ b ⋅ a + 4 ⋅ b2






 






 

2 ⋅ π ⋅n1

It finds that the equation belongs to the group TAN(A)= TAN(B) and
builds up the equation

X + a
X − a

= π ⋅n1 +
X +b
X −b

It passes then this equation to SOLVE .

I didn‘t have the patience to let SOLVE finish this calculation because
after 20 minutes it was still trying to find a solution. So perhaps it does
find it, perhaps it doesn‘t. But even if it finds a solution, it is not a
good idea to use it for this case.

If you try to and this equation, then you see that

there are TAN functions with many different arguments, like
X

X − A
,

A
X − A

 and so on, so HALFTAN wouldn‘t create a polynomial in

TAN
arg
2





 where arg is always the same.

Trigonometry with the HP49G - Part 9

9-7

11) Solve COS 7 ⋅ X +
π
7







2

= COS 2 ⋅ π +
π
3







TRISOL returns in 38.5 seconds

X =
42 ⋅ π ⋅n1 + 46 ⋅π

147
X =

42 ⋅ π ⋅n1 − 52 ⋅π
147

X =
42 ⋅ π ⋅n1 − 31⋅π

147
X =

42 ⋅ π ⋅n1 + 25 ⋅π
147






 






 

The equation is of the form COS(A)2 = COS(B)2 . TRISOL first
COLLECTS it to:

COS 7 ⋅X + π
7





 − COS 2 ⋅ π + π

3








 


⋅ COS 7 ⋅X + π

7




 + COS 2 ⋅ π+ π

3








 



Then it builds the equation list:

COS 7 ⋅ X+ π
7





 − COS 2 ⋅ π + π

3




 = 0 COS 7 ⋅ X + π

7




 + COS 2 ⋅ π + π

3




 = 0









The first equation in this list belongs to the special group
COS(A)− COS(B)=0 . So TRISOL builds up the equation list

7 ⋅ X +
π
7

= 2 ⋅ π ⋅n1 + 2 ⋅ π +
π
3

7 ⋅ X +
π
7

= 2 ⋅ π ⋅n1 − 2 ⋅π +
π
3















and passes these equations to SOLVE . The second equation in the list
is first MATCHed to

COS 7 ⋅ X +
π
7





 −COS 2 ⋅ π +

π
3

−π




 = 0

then recognised as one of the form COS(A)− COS(B)=0 and then
the equation list is built up:

7 ⋅X + π
7

= 2 ⋅ π ⋅n1 + 2 ⋅ π + π
3

−π 7 ⋅X + π
7

= 2 ⋅ π ⋅n1 − 2 ⋅ π + π
3

−π













which SOLVE solves afterwards.

SOLVE needs only 23.8 seconds and returns solutions involving

ACOS COS 2 ⋅ π +
π
3









 


 which EXPAND ed is

2 ⋅π
3

. You can

prove that the solutions of TRISOL and SOLVE are both
mathematically correct.

12) Solve 4 ⋅SIN(X)2 − 3 ⋅ SIN(X)−1= 0

TRISOL first factors to SIN(X)− 1() ⋅ 4 ⋅SIN(X) +1() and then solves
the two equations SIN(X)−1=0 and 4 ⋅SIN(X) +1= 0 . It returns the
solutions in 34 seconds.

SOLVE only needs 13 seconds to return the same solutions.

13) Solve 4 ⋅COS(X)2 − 2 ⋅ 2 +1() ⋅COS(X) + 2 = 0

TRISOL needs 45.6 seconds to return the solutions while SOLVE
needs only 14.4 seconds for the same solutions.

Trigonometry with the HP49G - Part 9

9-8

14) Solve 4 ⋅COS X()2 − 2 ⋅ 2 +1()⋅ SINX() + 2 = 0

TRISOL returns a list with 4 numeric solutions after 88.8 seconds. It
first tries to COLLECT which doesn‘t do anything here, and then
recognises the equation as one of the special group
f sin(x),cos(x),tan(x)() = 0 . It uses HALFTAN to turn it to

f tan
x
2



 










 =0 , with f tan

x
2



 










 a ratio of polynomials in tan

x
2



 


 .

The degree of the numerator is 4. This polynomial ratio is passed to
FACTOR which factors it by switching to numeric mode. Then the
equations list with equations of the form factor =0 is built up. The

substitution
X
2

= Y is made for each of these equations and the list is

given to SOLVE . When the solutions are returned, the back
substitution is made and the equations are solved for X . The solutions
can be converted to symbolic solutions by applying → NUM to the
resulting sub expressions 2. ⋅ ATAN(arg) of the solutions, and then
XQ to the whole solution.

SOLVE returns an empty list in 31.7 seconds if you start with exact
mode. It returns the numeric solutions in 26.8 seconds if you start at
approximate mode. So the flag for automatic switch to approx. mode,
doesn‘t seem to help much here.

15) Solve 3 ⋅ TAN X()2 − 4 ⋅ 3 ⋅ TAN X() + 3 = 0

TRISOL returns the solutions in 38.7 seconds. It first COLLECT s the
equation and makes the equation list:

3 ⋅ TAN(X) − 3 = 0 TAN(X)− 3 = 0{ }

It then passes this to SOLVE .

SOLVE returns more complicated looking solutions in 12.7 seconds.
The solutions contain ATAN functions with many square roots, but
applying to the solutions makes them like the solutions that
TRISOL returns.

16) Solve 2 ⋅ SIN(X) = 3 ⋅TAN(X)

TRISOL solves this in 50.7 seconds. It first uses HALFTAN and
FACTOR and then passes the resulting factored equation

2 ⋅ TAN
X
2





 ⋅ 5 ⋅ TAN

X
2





 + i ⋅ 5



 


⋅ 5 ⋅ TAN

X
2





 + i ⋅ 5



 


= 0

to SOLVE . Note that two of the three solutions are complex.

SOLVE returns the same solutions in 21.1 seconds.

17) Solve a ⋅SIN(X) = b ⋅ TAN(X)

TRISOL needs 67.8 seconds to find the solutions. It works here like in
16. SOLVE errors out with „Not reducible to a rational expression“
after about 20 seconds.

Trigonometry with the HP49G - Part 9

9-9

18) Solve a + TAN(X)= b +
1

TAN(X)

TRISOL returns the solutions in 37.5 seconds. It COLLECT s and
builds the equation TAN(X)2 + a + b()⋅ TAN(X) −1= 0 which is then
passed to SOLVE .

SOLVE needs 16 seconds to solve the equation.

19) Solve SIN(X) ⋅COS(X) + SIN(X)− COS(X) −1= 0

TRISOL returns

X = −
4 ⋅ π ⋅n1 − π

2
X =

4 ⋅ π ⋅n1 +π
2









in 33.5 seconds. It first COLLECT s the equation and builds up the
list

COS(X)+1=0 SIN(X)−1=0{ }
then passes the list to SOLVE .

SOLVE returns

X =
4∗π∗ n1 +π

2

in 11.6 seconds. It looks like it has lost some solutions but it hasn‘t.
Make a sequence of solutions for both results to prove that.

20) Solve COS(X) = 2 ⋅ SIN
X
2







Both TRISOL and SOLVE error „Not reducible to a rational
expression“ But this is not true. If we apply to COS(X)

twice, and to SIN
X
2



 


 once, then we have a rational expression, a

ratio of polynomials in TAN
X
4



 


 . This should be solvable, at least

with numeric factoring.

If you feed TRISOL with this polynomial in TAN
X
4



 


 , then it returns

the numeric solutions in 59.4 seconds. SOLVE needs 21.1 seconds.

The question here is, how to add code to TRISOL to handle such
cases. It should first find all trigonometric functions, check if all

arguments for these functions are of the form
numerator

n∗2m where

numerator and n are the same for all arguments, and then apply
HALFTAN to each trigonometric function the appropriate number of

times, so that an equation of the form f TAN
numerator

k


 










 =0

appears, where numerator and k are the same for all arguments of
TAN . It is possible to do that, but I don‘t know if it is also reasonable.
(Well, I must confess that I would like to do that, if only for the fun of
it. :-))

Trigonometry with the HP49G - Part 9

9-10

21) Solve 1+ COS(2 ⋅ X) = 6 ⋅ SINX()2

TRISOL returns the solutions in 43.3 seconds. SOLVE needs 28.5
seconds. TRISOL doesn‘t find this equation to belong to any of the
special groups, so it simply passes it to SOLVE hoping for the best.
So the time difference is only for the overhead of checking for such
special cases.

22) Solve 2 ⋅ SIN X()2 + SIN 2 ⋅ X()2 = 3

TRISOL needs 56.5 seconds and works here like in 21. SOLVE
needs for the same solutions 39.5 seconds.

23) Solve 2 +1() ⋅SIN X()2 + 2 −1()⋅ COS X()2 +SIN 2 ⋅ X() = 2

TRISOL needs 63.2 seconds to find the solutions. SOLVE finds the
same solutions in 31.1 seconds. TRISOL works here like in 21.

24) Solve COS X() =
2 ⋅TAN X()

1+ TAN X()2

Taken from exams at the greek military school.

TRISOL finds the equation to belong to the special group
f sin(x),cos(x),tan(x)() =0 . It uses HALFTAN EXPAND FACTOR

to build a polynomial in TAN
X
2





 and then passes the polynomial to

SOLVE . It needs 70.9 seconds to complete.

SOLVE finds the solutions in 25.5 seconds.

Applying HALFTAN and FACTOR to the original equation, we get:

− TAN
X
2





 + 1



 

 ⋅ TAN
X
2





 −1



 

 ⋅ TAN
X
2





 − 2 − 3()


 

 ⋅ TAN
X
2





 − 2 + 3()


 




 




TAN X
2







2

+ 1



 




2

Some of the solutions of this equation are a bit hard to understand. If
we simply put the solutions of the form

X =
4 ⋅ n1 ⋅π −π

2

and

X =
4 ⋅ n1 ⋅π −π

2

for some integer values of n1 back to the original equation, then the

right hand side becomes
+∞
∞

, so we must calculate the limit of the right

hand side for X approaching
4 ⋅n1 ⋅π −π

2
 or

4 ⋅n1 ⋅π −π
2

. The result

is 0 for any integer value of n1, like the result for the left hand side, so
the solutions are correct.

Trigonometry with the HP49G - Part 9

9-11

25) Solve

3 ⋅ TAN X() +
2

TAN X()
3 ⋅ TAN X() +

5
TAN X()

=
2
3

TRISOL needs 24.8 seconds to find the solutions while SOLVE
needs 11.9 seconds. TRISOL COLLECT s, drops the denominator
and passes 3 ⋅ TAN X()2 − 4 = 0 to SOLVE .

26) Solve SIN X() + SIN 3 ⋅ X() = 2 ⋅SIN2 ⋅ X()

TRISOL needs 45 seconds to find the 5 solutions which SOLVE
returns in 27.6 seconds. TRISOL simply passes the equation to
SOLVE in this case.

27) Solve SIN X() + SIN 2 ⋅ X() + SIN 3 ⋅ X() + SIN 4 ⋅ X() = 0

TRISOL works like in 26 and finds 7 solutions in 84.8 seconds.
SOLVE finds the same solutions in 65.2 seconds.

28) Solve COS X() −COS 2 ⋅X() + SIN3 ⋅X() = 0

Both find the same solutions. TRISOL in 59.8 seconds and SOLVE
in 39.1 seconds. TRISOL does here the same like in 26.

29) Solve 2 ⋅ SIN X()2 + 2 ⋅SIN X() ⋅COS X() −1= 0

TRISOL finds that the equation belongs to the special group
a ∗sin2(x)+b ∗ sin(x)∗ cos(x)+ c ∗ cos2(x)+ d =0 . It transforms this
equation to:

2 ⋅ SIN X()2 + 2 ⋅SIN X() ⋅COS X() −1⋅ SINX()2 + COS X()2() = 0 ⇔

SIN X()2 + 2 ⋅SIN X() ⋅COS X() − COS X()2 = 0

then factors it and builds up the equations list

SIN X() + 1+ 2() ⋅COS X() = 0 SIN X()− −1+ 2() ⋅COS X() = 0{ }
to SOLVE . It takes 39.9 seconds to find the solutions.

SOLVE needs 21.1 seconds but finds the same solutions in numerical
form.

30) Solve 2 ⋅ SIN X()2 + 2 ⋅SIN X() ⋅COS X() + a ⋅ COS X()2 −b = 0

TRISOL works like in 29. It returns the solutions in 77.3 seconds.

SOLVE on the other hand returns an empty list in 24.9 seconds.

31) Solve 2 ⋅ SIN X()2 + 4 ⋅SIN X() ⋅COS X() + 5 ⋅ COS X()2 = 3

TRISOL finds the solutions in 46.5 seconds while SOLVE needs
29.4 seconds but returns numerical solutions. TRISOL works here like
in 29.

Trigonometry with the HP49G - Part 9

9-12

32) Solve 5 ⋅ SIN X()2 − 3 ⋅SIN X() ⋅COS X() − 2 ⋅COS X()2 = 0

TRISOL returns the solutions in 80.5 seconds. It factors the equation
to:

SIN X() − COS X()() ⋅ 5 ⋅SIN X() + 2 ⋅COS X()() = 0

It then MATCHes SIN X() − COS X() = 0 to:

COS X −
π
2





 −COS X() = 0

and then finds that this belongs to the special group
COS a() − COSb() = 0 . The second equation 5⋅ SIN X() + 2⋅ COS X() = 0
is found to be of the form f sin(x),cos(x),tan(x)() =0 and so

HALFTAN EXPAND is used to find a polynomial in TAN
X
2







which is then passed to SOLVE .

SOLVE finds the solutions in 28.5 seconds.

33) Solve SIN X() + 2 ⋅COS X() =
1

COS X()

TRISOL needs 43.5 seconds for this. SOLVE does it in 25.4 seconds
but returns numeric results. TRISOL works here like in 32.

34) Solve a ⋅SIN X() + 2 ⋅COS X() =
1

COS X()

TRISOL finds the solutions in 51.8 seconds and works here like in 32.
SOLVE returns an empty list in 13.8 seconds.

35) Solve 2 ⋅ COS X() + SIN 3 ⋅ X() = 1

TRISOL simply passes this to SOLVE . It returns the solutions in 65.1
seconds.

SOLVE needs for the same solutions only 47.3 seconds.

Both return numeric solutions.

36)Solve SIN3 ⋅X() = 8 ⋅ SINX()3

TRISOL works like in 35 and returns the solutions in 52 seconds.

SOLVE needs only 35.7 seconds.

37) Solve
COS X()

COS a − X() = m

TRISOL works like in 35 and returns the solutions in 72.5 seconds.

SOLVE needs only 55 seconds.

Trigonometry with the HP49G - Part 9

9-13

38) Solve SIN π ⋅COS(X)() = COS π ⋅SIN(X)()

Taken from exams at the greek Polytechnics. What weird exams are
those in Greece, I‘m telling you! ;-)

TRISOL needs 72.4 seconds to return the solutions. It finds the
equation to be of the form sin(a)− cos(b)=0 , MATCHes it to

COS π ⋅COS(X) −
π
2





 − COS π ⋅SIN(X)() = 0

and then finds that it belongs to the group cos(a)− cos(b)=0 . It builds
up the equation list

π ⋅COS(X) − π
2

= 2⋅ π ⋅n1 + π ⋅SIN(X) π ⋅COS(X) − π
2

= 2⋅ π ⋅n1 − π ⋅SIN(X) 


 


and passes this list to SOLVE .

SOLVE returns, well I don‘t know because I interrupted it after about
2 minutes.

39) Solve
TAN(X + a)
TAN(X − a)

= m

TRISOL does it in 58.3 seconds while SOLVE needs only 38.7
seconds.

40) Solve
TAN

π
3

− X






COS X()2 =
TAN X()

COS
π
3

− x






2

TRISOL needs 120.1 seconds. SOLVE needs only 94.7 seconds.

41) Solve TAN
1

TAN(X)



 


=

1
TAN TAN(X)()

Both error with „Not reducible to a rational expression“ But the
equation can be solved. Use , , . Take the
resulting expression to the EQW, select the numerator and .
The numerator goes to

−1⋅ cos
SIN X()2 + COS X()2

COS X() ⋅SIN X()



 




Select the sub-expression SIN X()2 +COS X()2
 and press TRIG to

convert it to a 1. Now the whole expression is:

−1⋅ COS
1

COS X()⋅ SINX()


 




COS COS X() ⋅SIN X()()⋅ SINCOS X()⋅SIN X()() = 0

Press to put this expression to the stack and for X .
You get the results 180.5 seconds.

If you feed TRISOL with the above equation you get an empty list after
56.3 seconds and this is very very surprising if you think about what

Trigonometry with the HP49G - Part 9

9-14

TRISOL does in this case. It COLLECT s and throws away the
denominator, so that

−1⋅ COS
1

COS X()⋅ SINX()


 


 = 0

remains as the equation to solve. Then it checks for special groups, and
finds that this equation doesn‘t belong to any of these groups. So it
passes the remaining equation to SOLVE .

Now SOLVE takes over and can‘t solve

−1⋅ COS
1

COS X()⋅ SINX()


 


 = 0

though it can solve

−1⋅ COS
1

COS X()⋅ SINX()


 




COS COS X() ⋅SIN X()()⋅ SINCOS X()⋅SIN X()() = 0

that is the same equation with a denominator! Why? Dunno, but it is
kind of amusing.

So if you had to solve the equation

−1⋅ COS
1

COS X()⋅ SINX()


 


 = 0

you should first MATCH the expression

1
COS X() ⋅SIN X()

to Y , solve for Y , then substitute

Y =
1

COS X() ⋅SIN X()

back to the solutions and solve again for X .

42) Solve

SIN X() + COS X() + TAN X() +
1

SIN X() +
1

COS X() +
1

TAN X() + 3 = 0

Taken from the exams at the Greek Polytechnics 1947. I told you, the
exams are really weird there. ;-)

TRISOL needs 312.6 seconds and SOLVE needs 109.7 seconds.
(Complex mode, X is assumed to be real.)

We have 42 examples, and if I remember well this number has to do
something with the question about the universe, us and everything
else. So I think I better stop here. We don‘t want to know more than
this universe tells us, do we?

Only a small word about TRISOL. It isn‘t meant to replace SOLVE . It
is only a try, a very imperfect try, to automate what you do when you
don‘t get an answer with SOLVE right away. I hope you enjoyed the
bugs, the corrections, the ideas behind it. And I hope that you change it
and tailor it to best fit your needs. What I find big fun, when trying to
do such things like solving similar equations, is that I can‘t always
explain to myself how I do it, in order to sit down and write a program
that does the same. I mean, look at

SIN(X)+ COS
X
4





 − TAN

X
2





 = 0

Trigonometry with the HP49G - Part 9

9-15

You can see immediately that you must apply once to

cos
X
4





 , twice to TAN

X
2





 , and 3 times to SIN(X) in order to turn

this equation to a ratio of polynomials in TAN
X
8





 . Now writing a

program that does the same is like transferring a thought to the calc or
to any other programmable machine. But to do that you must first think
about things that happen automatically in mind. When you write such a
program that does the same as you do, it doesn‘t of course mean that
your thoughts work in exactly the same way. You don‘t find

logarithms of the denominators of X ,
X
2

 and
X
4

, and you don‘t divide

them with ln(2) in mind. You simply see that TAN
X
2





 should be

transformed twice with HALFTAN, while SIN X() should be
transformed 3 times. But what hides behind this „you simply see“?
There must be a relation, some vague kind of similarity between this
„you simply see“ and the program. A relation that can be described on
the level of bits and bytes (?), or a relation of what the currents in my
brain and my calc produce when they flow, which at the end is the

polynomial in TAN
X
8





 in this case.

Well that‘s all for today. Keep tuned and solve them all!
(TRI)SOLved greetings,
Nick.

Trigonometry with the HP49G - Part 9

9-16

Hi all!

It is the tenth and last part of the Trigonometry Marathon and we
already have seen a lot of things. But there is still stuff waiting to be
discovered. Would you ever think that the little HP49G is such a big
place if you take a look from the inside? ;-)

Until now we stayed in the real domain. Today we will dare a small
jump into the complex. (As if it weren‘t complex enough already..;-))

So get your backpack and VPN don‘t forget your swiss army knife and
here we go, our trip into the complex begins.

You may already know that there are some relations between
trigonometric functions and complex exponentials. Since the Complex
Marathon starts right after the end of the Trigonometry Marathon, I
think it is better to leave the derivation of these relations on the HP49G
for the first part of the Complex Marathon. For now it is enough to
show what can be done with these relations:

1) ei⋅x = cos(x) + i ⋅ sin(x)
2) e−i⋅x = cos(x) − i ⋅sin(x)

First of all, the HP49G can do this. The command SINCOS takes
complex exponentials and returns them as trigonometric functions. It is
the first command on the second page of the TRIG menu.

We assume here that X and Y are real and also that Z is complex.
Enter X ADDTOREAL then Y ADDTOREAL and then
Z UNASSUME so that these assumptions are done. Also switch the
HP49G to complex rigourous mode.

Now, enter e
i⋅X + π

2 and press . The HP49G returns

e
π
2 ⋅ COS(X) + i ⋅SIN(X)()

Enter eX +i⋅Y , press , and you get

eX ⋅ COS(Y) + i ⋅SIN(Y)()

But enter ei⋅Z , press , and the result is

e−IM(Z) ⋅ COSRE(Z)() + i ⋅SINRE(Z)()()
Why the difference? Well, X and Y are assumed to be real, so the
HP49G knows for example that the real part of X is X and the
imaginary part of X is 0 . But if Z is complex, and nothing else is
known about it, then the HP49G writes leaves RE(Z) and IM(Z)
unevaluated, to denote the real and imaginary part of Z .

If we add the relations (1) and (2) we get:

3) cos(x) =
ei⋅x

2
+

e−i⋅x

2

If we subtract (2) from (1) we get:

4) sin(x) = i ⋅
e−i⋅x

2
− i ⋅

ei⋅x

2

The command for converting trigonometric functions to complex
exponentials is EXPLN . It is the first command on the menu
EXP&LN.

Enter SIN(X) , press , and you get the result

ei⋅X −
1

ei⋅X

2 ⋅ i

Trigonometry with the HP49G - Part 10

10-1

Though it is already readable enough on the HP49G, let‘s make it
looking more familiar. Press (third command on the menu
EXP&LN) to get

i ⋅
e− i⋅x

2
− i ⋅

ei⋅x

2

LIN tries to make real or complex exponentials linear. (EXPAND

doesn‘t fit here, because it brings the two terms ei⋅X and
1

ei⋅X over a

common denominator and so returns a more complex looking
expression.)

Now, with

i ⋅
e− i⋅x

2
− i ⋅

ei⋅x

2

on stack level 1 press to make two copies and then press
to get the real part of the expression. Press or and
you see SIN(X) again. This is correct, because we started with a real
thing, that is SIN(X) , and so even turning it to a complex exponential,
it still remains real. You‘ll see how important this can be later on, in
this part. Press now to bring one of the copies that you have made
on stack level 1 and press to get the imaginary part of the
expression. Press and you see that the imaginary part is 0 as
it must be. (Since we started with the real SIN(X) , we expect the
HP49G to return 0 .)

Instead of using and , you can also use . Press to
bring the second copy on stack level 1, Press and then

. The result is again SIN(X) .

If you enter SIN(Z) and press , then you get

ei⋅Z −
1

ei⋅Z

2 ⋅ i

Perhaps you wonder why there are no RE(Z) and IM(Z) in this case.
Well, if there were such expressions, they would appear as

ei⋅ RE(Z) +i⋅IM(Z)() − 1
ei⋅ RE(Z) +i⋅IM(Z)()

2 ⋅ i

that is in a form that is equivalent to Z itself, because every complex
number Z is the same as RE(Z) + i ⋅IM(Z) .

Not only the trigonometric functions can be converted to complex
exponentials/logarithms but also the inverse trigonometric functions.
Enter for example ACOS(X) and press . The result is

LN e
LN X 2 −1()

2 + X










i

If you don‘t like the representation e
LN X2 −1()

2 , then press to
convert this to

LN X + X2 −1()
i

There are some things that should be mentioned about this result.

The first is, that the HP49G can‘t get REal and IM aginary parts of this

Trigonometry with the HP49G - Part 10

10-2

expression. So if we want to do that, we must do something ourselves.
Though this will be covered better at the complex marathon, let it be
said here, that the argument of the LN can be written as a complex
number of the form r ⋅ei⋅θ , where r is the magnitude and θ the angle
of the complex number. Thus we have LNr ⋅ ei⋅θ() = LN(r) + i ⋅θ . The

REal and IM aginary parts of this are easy to calculate (if we assume
that θ is the angle of the principal value).

The second thing is that the HP49G doesn‘t consider assumptions

about variables when it evaluates or expands LN X + X2 −1() . If you

make the assumption X ≥1, and then try to find the REal part of this
expression, the HP49G doesn‘t return the expression itself, but simply

writes RE LN X + X2 −1()() . The same with the IM aginary part. It

doesn‘t return 0 but IM LN X + X2 −1()() . If you have only

X + X2 −1 as argument, and have made the assumption X ≥1, then

the HP49G returns X + X2 −1 as the REal part of the expression and
0 as the IM aginary part.

The third thing is that, if you start at complex mode with ACOS(X)
and you press EXPLN, you get

LN X + X2 −1()
i

no matter what assumptions you have made for X . But if you are at
real mode, enter for example ASIN(X) and press , then you get
a huge expression:

i ⋅LN

e
RELN X 2 −1()()

2











2

⋅SIN
IM LN X2 −1()()

2











2

+ e
RE LN X2 −1()()

2











2

⋅ COS
IM LN X2 −1()()

2











2

+ 2 ⋅X ⋅ e
RELN X 2 −1()()

2 ⋅COS
IM LN X2 −1()()

2











2

+ X2












 














2
+

π
2

If you start at real mode and you have previously assumed that for
example X ≥1 then these assumptions are taken into consideration . I
think that the HP49G in complex mode considers expressions like for
example LN X2 +1() to be general complex expressions and so it
doesn‘t care to show explicitly what is the real or the imaginary part.
But in real mode, it explicitly shows real and imaginary parts, as well
as the CAS allows and tries to return results according to the
assumptions you have made. A bit more on assumptions. Lets say that

you make the assumption X ≥1. Then things like IM X2 −1() are

correctly evaluated to 0 . Does this means that the HP49G considers
this assumption? Well, it does in many other cases, but not for this
one, though it looks like it did. Lets assume −1≤ X ≤1 and find then

the imaginary part of X2 −1. How can we make the assumption

X ≥ −1 AND X ≤1? Entering this expression and then using

, results in an error. But you can enter X ≥ −1, press

, then enter X ≤1 and press . If you now take a look

at the list REALASSUME, you see that X ≥ −1 AND X ≤1 is in

Trigonometry with the HP49G - Part 10

10-3

the list. Quite hard to understand why the HP49G doesn‘t let you do it

directly with X ≥ −1 AND X ≤1 and wants you to use

X ≥ −1 and then X ≤1 instead. But it has its

reasons. If you do X ≤2 and then X ≤1 , then the

HP49G only writes X ≤1 in the list REALASSUME because it

correctly finds out that X ≤2 AND X ≤1 is equivalent to X ≤1!

And this though X ≤2 AND X ≤1 can‘t be simplified with

 or on the stack! Could it be that this is the built-in back
door for simplifying logical expressions? (And also the back door for

another marathon? ;-)) Back to our imaginary part of X2 −1. With the

assumption X ≥ −1 AND X ≤1 the expression IM X2 −1() should

be evaluated to 1− X2 and RE X2 −1() should be evaluated to 0 .

But it doesn‘t! If you make this assumption, enter X2 −1 and press

 then the result is X2 −1 and the result of X2 −1 is 0 , which
is not correct, considering that −1≤ X ≤1. More about the influence of
the many operation modes and assumptions to the calculations will be
in the complex marathon.

The fourth thing is that the expression

LN X + X2 −1()
i

cannot be reconverted to ACOS(X) using . So it looks like a
one way ticket from inverse trigonometric functions to complex
logarithms. Let‘s try to find if and how the conversion from logarithms
to inverse trigonometric functions can be made. Let‘s say we have
LN(Z) and want to convert it to ASIN(W), where W is some function

of Y . We want to find what W looks like. So enter LN(Z)= ASIN(W)
and solve this for W . The result is W = SINLN(Z)() . Does this mean
that whenever you have LN(Z) you can convert it to
ASIN SINLN(Z)()() ? Well, unfortunately not exactly. The reason is the
ASIN which can send one argument to more than one result. Because
of this property, this function (and all other inverse trigonometric
functions) are programmed so that they return the principal value of all

different possible values, which goes from −
π
2

 to
π
2

. ASIN SINX()()

not necessarily equal to X . To understand this better, do the following:

Define F(X)= LN(X)−ASIN SINLN(X)()() .

Then enter .5 and press . The result is 0 , which shows that in this
case LN(X)= ASINSINLN(X)()() . The function returns always 0 for
arguments between 0.20787957635 and 4.81047738099. But try to
calculate F(5.) and suddenly you get 0.07728317126. What is going
on here? What are the strange numbers 0.20787957635 and
4.81047738099? I got a real headache thinking about the reason and
was about to throw this HP49G away. That‘s why the 10th part of the
trigonometry marathon had such a delay. But then Trabakoulas came
and helped again. He told me to make a plot of the SINLN(Z)() against
LN(Z) to understand why the HP49G behaves this way. (Turn page to
read his explanations.)

Trigonometry with the HP49G - Part 10

10-4

When LN(Z) is less than
π
2

 and greater than −
π
2

 , then a given value

for the sine is sent by ASIN to the principal value Xo . (You start at
the Y -Axis at Y , go horizontally until you meet the sine curve at point
o , then go down vertically to the X -Axis until you meet the point Xo .)

But when LN(Z) is for example greater than
π
2

 then the SIN function

sends LN(Z) to SINLN(Z)() = Y , (from X go up until you meet the
SIN curve and then to the left until you meet Y = SINLN(Z)() at the Y
-axis). But then ASIN sends Y to Xo and not to X . (From Y at the
Y -Axis go to the right until you meet the curve SIN(X) and then down
until you reach Xo .)

We see that the arguments that „belong“ to the principal values are

those between −
π
2

 and
π
2

. But in this case the argument of SIN is not

X but LN(X) . That means that these arguments LN(X) go from −
π
2

to
π
2

. And that means that X itself goes from e
− π

2 =0.20787957635 to

e
π
2 =4.81047738099. That is where the strange numbers come from.

Trigonometry with the HP49G - Part 10

10-5

1

0,75

0,5

0,25

0

-0,25

-0,5

-0,75

-1
3,141,570-1,57-3,14

o

Xo= LN(Z)

SINLN(Z)()
Y

1

0,75

0,5

0,25

0

-0,25

-0,5

-0,75

-1
3,141,570-1,57-3,14

X = LN(Z)

SINLN(Z)()

Y

Xo

But ASIN will
send Y to Xo

1

2

And it can get even crazier! See for example how an argument greater
than π , can be sent to the other side (the spy who jumped over), to a
negative X0 value. You start at X , go down until you cut the sine
curve, then go to the left until you are on the Y -axis at point Y . (The
border to the other side ;-)) Then ASIN (the master executor) sends
you leftwards to the sine curve because that branch is nearest, and
when you go up again, to meet the X -axis, you realise that you are not
where you started but at Xo<0. (The other spies cheated you, should
we plan vengeance?)

And to make things „better“ ;-), the same happens at the other side,
when LN(Z) is negative. The situation is mirrored there.

We see that converting from LN to ASIN (or any other inverse
trigonometric function) is not an easy thing to do.

Now, the benefit of converting trigonometric functions to complex

exponentials (and/or logarithms) is that many things become possible,

which can‘t be done otherwise. Consider for example SIN(n⋅ X)
n =0

N

∑ .

The HP49G can‘t return a result for this symbolic sum. And even if
you have a numeric N, it takes a lot of time to return a result, when N
goes to bigger values. But this sum can be calculated using conversion

to complex exponentials. Let‘s do that. Enter SIN(n⋅ X)
n =0

N

∑ . Take the

sum to the EQW and select SIN(n⋅X)). Press now . The
expression SIN(n⋅X) is converted to

ei⋅n⋅X −
1

ei⋅n⋅X

2 ⋅ i

Press to take the sum to the stack. Now, before going any
further, enter 'N' ADDTOREAL to tell the HP49G that the N of the
sum is a real. Now press and after some seconds you have
the symbolic result for the symbolic sum! It is in complex form, but the
imaginary part of it is 0 , as it must be because we started from the real
expression SIN(n⋅X) . Press to make a copy of this result and
then press . It takes a while, but then a result with trigonometric
functions is returned. Press to simplify this result to 0 .
Press to get rid of the 0 and then to calculate the real part of
the sum. Then press , to get

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)()
2 ⋅COS(X) − 2

This result is the sum of SIN(n⋅X) with n from 0 to N. It is valid for
every N. We just have jumped to complex hyper space (without a
sheep on our back ;-)), made things that are impossible in our real
space, and then returned with the result. You can use this result to
DEFINE user functions that calculate such a sum, with n from 0 to,

Trigonometry with the HP49G - Part 10

10-6

 SIN sends X to Y
 through SIN(X)

1

0,75

0,5

0,25

0

-0,25

-0,5

-0,75

-1
543210-1-2-3

X = LN(Z)

Y
 SIN sends X to Y
 through SIN(X)

But ASIN will
send Y to Xo

Xo

1
2

say 1000, instead of waiting until the HP49G builds
SIN(0⋅ X) + SIN(1⋅ X) +…+ SIN(1000⋅ X) . The same way you can

calculate SIN(n⋅ X)
n= n0

N

∑ or COS(n⋅ X)
n =0

N

∑ and so on.

But wait a minute. The sum of SIN(n⋅X) with n from 0 to N is a
finite quantity for any X when N is a finite number. But our result for
this sum contains 2∗ COS(X)−2 in the denominator. This is equal to
0 , when X is 2 ⋅ π ⋅n . Does this mean that then the sum is the infinite
and we have made a mistake? No, because the numerator of the result

is then also 0 , which tells us that we have
0
0

 and so must work with

limits. Because N in our result is an integer and because the HP49G
still doesn‘t have INTEGERASSUME, lets put an integer value for N
in our result. Press to make a copy of the result for the sum,
and then enter 'N =5 ' and press . Then enter 'X = 2 ⋅π ' and
press . The HP49G returns 0 which is correct. That means that the
expression

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)()
2 ⋅COS(X) − 2

is 0 for N =5 and X = 2 ⋅π . You can try also other combinations of
values for N and X , like N =4 and X = 2 ⋅π , N =4 and X = 6 ⋅π and
so on. This is also a nice way to demonstrate the following fact:
Because the sum SIN(0⋅ X) + SIN(1⋅ X) +…+ SIN(1000⋅ X) has no
singularities when N is finite, so does also its equivalent form

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)()
2 ⋅COS(X) − 2

The value of this expression for 2 ⋅ π ⋅n can be defined to be the limit
for X = 2 ⋅ π ⋅n . It is not only that we can go infinitely near the point
2 ⋅ π ⋅n to have a defined result for

SIN(X ⋅N + X) − SIN(X ⋅N) + SIN(X)()
2 ⋅COS(X) − 2

but that we can also use that result as the value of the expression at that
point. This result, that we define, exists also at the point X = 2 ⋅ π ⋅n ,
because if it wouldn‘t, then also the sum
SIN(0⋅ X) + SIN(1⋅ X) +…+ SIN(1000⋅ X) should have an undefined
value for X = 2 ⋅ π ⋅n , which is absurd! The same holds for every

other expression (like
SIN(X)

X
 when X →0) if the limit exists.

Let‘s move on to other conversions. The HP49G has also the
hyperbolic functions SINH, COSH, TANH , ASINH, ACOSH,
and ATANH built-in. The command EXPLN also converts such
functions to complex exponentials. For example, enter COSH(X) and
press to convert this to

eX +
1

eX

2

If you don‘t like this form (like I do) press to get

1
2

⋅ eX +
1
2

⋅e− X

The opposite can be done with the command EXP2HYP, which
converts exponentials to hyperbolics. For example enter eX and press

. The result is SINH(X)+ COSH(X). The trigonometric
functions SIN , COS , TAN , ASIN , ACOS , ATAN can also be
converted to hyperbolic functions with EXP2HYP. Enter TAN(X)
and press to get

Trigonometry with the HP49G - Part 10

10-7

SINH(2⋅ i ⋅ X) + COSH(2⋅ i ⋅ X)
i ⋅SINH(2⋅ i ⋅ X) + i ⋅COSH(2 ⋅ i ⋅X) + i

.

And here is a picture with all built-in conversions:

Let‘s do some examples now. (Complex rigourous mode, X , Y and
N are in REALASSUME)

1) Show that COSH(X)2 − SINH(X)2 = 1

Enter COSH2(X)− SINH2(X) . Press and to get
a nice round 1.

2) Express eACOS(X) without using any exponential, trigonometric or
hyperbolic functions.

Enter eACOS(X) , press and . Result:

1

X + X2 −1()i

3) Express SIN(i⋅X) as a hyperbolic function.

Enter SIN(i⋅X) and press to get

i ⋅SINH(X)

4) Turn COS(X + i ⋅ Y) to an expression that
consists of functions that have either X or Y
but not both X and Y as arguments.

Enter COS(X + i ⋅ Y) . Since we want to have
X or Y alone as arguments, press to
expand the expression to sums of products:

COS(i⋅ Y) ⋅COS(X) − SIN(i⋅ Y) ⋅SIN(X)

Press to get this to the EQW. Select
COS(i⋅ Y) and press . Now select
SIN(i⋅ Y)and press again . Press

 to put the result

COSH(Y) ⋅COS(X) − i ⋅SINH(Y) ⋅SIN(X)

to the stack.

Trigonometry with the HP49G - Part 10

10-8

Inverse trigonometric
Trigonometric

Inverse hyperbolic
hyperbolic

Logarithmic
Exponential

EXPLN

SINCOS

EXPLN

EXP2HYP

EXP2HYP

5) Find the real and imaginary parts of COS(X + i ⋅ Y) .

Enter COS(X + i ⋅ Y) and press to make a copy of this
expression at stack level 2. Press . You get

e− Y ⋅COS(X) + eX ⋅COS(X)
2

which is the real part. Is this equal to COSH(Y) ⋅COS(X) , the
real part of the expression from the last example? Let‘s see. Press

 to convert the expression to

e− Y + eY() ⋅SIN(X)

2

Now take this to the EQW, select e− Y + eY and press .
The result is

2 ⋅ COSH(Y) ⋅COS(X)
2

Press and then to get COSH(Y) ⋅COS(X) .
Now press to take COS(X + i ⋅ Y) to stack level 1. Press
to find the imaginary part. Press and take the resulting
expression to the EQW. Select e− Y − eY and press .
Press and then to see that this is equal to the
imaginary part of the previous example.

6) Show that if X , Y are real, then SIN(X + i ⋅Y) ⋅ SIN(X − i ⋅ Y) is
also real.

Enter SIN(X + i ⋅Y) ⋅ SIN(X − i ⋅ Y) and press . Take the
result to the EQW. Select and apply to all occurrences

of COS(i⋅ Y) and SIN(i⋅ Y) . Press and to
simplify the expression to

COSHX()2 ⋅ SIN X()2 + SINH X()2 ⋅COS X()2

7) Find the symbolic sum COSH(n ⋅ X)
n =0

N

∑ .

Enter

COSH(n ⋅ X)
n =0

N

∑

take this to the EQW, select COSH(n⋅ X) and press .
Press and the to find the symbolic sum. You
can use to split this a sum of smaller quotients. Take
the result to the EQW and apply to each quotient. The
result is then

eX⋅N+ X

2 ⋅ eX − 2
+

eX

2 ⋅eX − 2() ⋅eX⋅N+ X +
1
2

.

8) Convert eX +i⋅Y to an expression with trigonometric functions.

Enter eX +i⋅Y and press .

9) Solve COSH(X)+ eX = 0 for X .

If you try to solve this with the built-in SOLVE then you get the
error „Not reducible to a rational expression“. But if you enter
COSH(X)+ eX = 0 , press and then solve this for X , you
get a list with 2 solutions. After you the arguments of

Trigonometry with the HP49G - Part 10

10-9

the logarithm functions, the solutions are

X = 2 ⋅ i ⋅ n2 + LN
i ⋅ 3

3



 




and

X = 2 ⋅ i ⋅ n2 + LN −
i ⋅ 3

3



 




Now, what do you think? Should TRISOL make its evolutionary
way to HYPEXTRISOL? ;-)

10) Convert
eX()6

+ eX()5
+ eX +1

2∗ eX()3 to a more simple expression that

contains hyperbolic functions of multiples of X .

Enter

eX()6
+ eX()5

+ eX +1

2∗ eX()3

Since we want multiples of X like 2 ⋅ X , 3 ⋅ X and so on, as
arguments of hyperbolic functions, it seems reasonable to use

LIN, to turn things like eX()n
 to things like en⋅X . Press . Now

press . The result is SINH(3⋅ X) + COSH(2⋅ X) .

In all these examples I have used very very often VPN‘s program for
STARTEQW , modified to contain all commands like EXP2HYP,

EXP2POW etc., that you find only through menu hunt otherwise.
(Hello J.H.Meyers ;-)). But of course it's up to you how to use the
commands. If you prefere menus, the use menus. If you prefer typing
and entering the commands, then do it that way. There is no "ultimative
way" to use the HP49G. Just follow your own gusto.

Ending this last part of the Trigonometry Marathon, I want to say
thanks to all people who commended, corrected and asked. This was
one of the main powers that kept me on working. Trabakoulas also
wants to thank you all, for helping find all his sheep. (Except the one at
the ski jump, of course ;-))

Before putting the COLLECT ed PDF parts of this marathon to hpcalc,
I‘ll add a part with trigonometric/hyperbolic/exponential conversions
on the HP48. But I‘ll not post this part here. Also I‘ll put the newest
version of TRISOL to hpcalc.

Next marathon will be the Complex Marathon (is that VPN screaming?
;-)), where Kojak will SOLVE complex cases with the joint forces of
TRISOL and COMSOL. Or was it COMTRISOL? Or
HYPEXCOMTRISOL? Well, we will see. Also Trabakoulas will be
running on ice making complex jumps with sheep.
Thanks a lot for your interest and keep tuned.
Hyperbolic greetings,
Nick.

Trigonometry with the HP49G - Part 10

10-10

This additional part of the trigonometry marathon will be dedicated to
the users of the HP48. This calculator doesn't have out of the box the
big variety of commands available to the HP49G, but nonetheless there
are some things that are possible with the built-in commands only. Of
course it is possible to install ERABLE and do much more, but then the
biggest part of the marathon up to now applies also to the HP48. So
let's go and see what is possible using only the built-in functions.

We have seen that on the HP49G the command EXPLN converts
trigonometric functions to complex exponentials. On the HP48 there is
the operation → DEF which does this. Unfortunately this operation is
only available in the EQW. You can't use it in programs or elsewhere.
(Perhaps some guru out there could tell us, if there is a SYSEVAL
that can perform this operation on an algebraic on the stack.) Let's test
this operation. Enter 'SINX()' on the stack and press once, to take
the expression to the EQW. The EQW starts in scroll mode, so press
the key (that means the key) once to exit this mode and

enter edit-mode. Press to select the SIN function. With this
function selected press the menu key . This brings a menu with
operations that can be performed. The first is → DEF . Press the menu
key . After a while the HP48 shows the result:

EXP X ⋅ i() − EXP −X ⋅ i()
2 ⋅ i

This can be used to derive such things like sin2(x)+ cos2(x)=1. Let's
see how this can be achieved. Enter 'SIN(X)^2 + COS(X)^2' and take
this to the EQW. Select SIN , press and then . When
the HP48 is ready select the function COS , press again and
then . Now the expression

EXP X ⋅ i() −EXP −X ⋅ i()
2 ⋅ i



 



2

+
EXP X ⋅ i() +EXP −X ⋅ i()

2



 



2

is on the EQW. Press to take this to the stack. Now press
, to get the symbolic menu. Press twice to expand

the expression to:

EXP X ⋅ i()
2 ⋅ i

−
EXP −X ⋅ i()

2 ⋅ i


 


⋅

EXP X ⋅ i()
2 ⋅ i

−
EXP −X ⋅ i()

2 ⋅ i


 


+

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 



Now press again , and then select multiplication sign
between

EXP X ⋅ i()
2 ⋅ i

−
EXP −X ⋅ i()

2 ⋅ i


 



and

EXP X ⋅ i()
2 ⋅ i

−
EXP −X ⋅ i()

2 ⋅ i


 


.

Press and then to distribute the multiplication to the left.
The result is:

EXP X ⋅ i()
2 ⋅ i



 


⋅

EXP X ⋅ i()
2 ⋅ i

−
EXP −X ⋅ i()

2 ⋅ i


 


−

EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i



 


+

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 



Select the multiplication sign between

Trigonometry with the HP48 - Additional Part 11

11-1

EXP X ⋅ i()
2 ⋅ i



 



and

EXP X ⋅ i()
2 ⋅ i

−
EXP −X ⋅ i()

2 ⋅ i


 


.

Press and then press to distribute to the right. The result
now is:

EXP X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2 ⋅ i
−

EXP X ⋅ i()
2 ⋅ i

⋅
EXP −X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i



 


+

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 



Select multiplication sign between

EXP X ⋅ i()
2 ⋅ i

and

EXP X ⋅ i()
2 ⋅ i

and press . Press to get the last side of the RULES
menu. Press the menu key . Now you have:

.25 ⋅EXP X ⋅ i()2 ⋅ i−2 −
EXP X ⋅ i()

2 ⋅ i
⋅
EXP −X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i



 


+

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 



Now multiplication between

EXP X ⋅ i()
2 ⋅ i

and

EXP −X ⋅ i()
2 ⋅ i

and from the menu RULES press the menu key again to get:

.25 ⋅EXP X ⋅ i()2 ⋅ i2 − .25 ⋅EXP X ⋅ i() ⋅EXP −X ⋅ i()⋅ i−2 −

EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i



 


+

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2


 



Now select the third multiplication sign (counting from the left) of the
sub-expression −.25 ⋅EXP X ⋅ i()⋅EXP −X ⋅ i()⋅ i−2 and from the menu
RULES press to associate the two exponentials in parentheses.
The sub-expression is now −.25 ⋅ EXP X ⋅ i()⋅EXP −X ⋅ i()()⋅ i−2 . Select
the multiplication sign between the exponentials and from the menu

Trigonometry with the HP48 - Additional Part 11

11-2

RULES press to merge the two exponentials. Now the sub-
expression is −.25 ⋅EXP − X ⋅ i() + X ⋅ i()⋅ i−2 . Select the exponential of

this sub-expression. From the menu RULES press . The sub
expression is now: −.25 ⋅1⋅ i−2 . Select the second multiplication sign
and again press . Now this sub-expression is −.25 ⋅ i−2 .

Now in the sub-expression

EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i



 



select the multiplication sign between

EXP −X ⋅ i()
2 ⋅ i

and

⋅
EXP X ⋅ i()

2 ⋅ i
−

EXP −X ⋅ i()
2 ⋅ i



 



and press again . Working like with the first sub-expression you
can bring this to the form:

.25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2

so that the whole expression is:

.25 ⋅EXP X ⋅ i()2 ⋅ i−2 − .25 ⋅ i−2 − .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() +

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 



Now select the first minus sign in the sub-expression

25 ⋅ i−2 − .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() and from the menu RULES

press to include the expression −.25 ⋅ i−2 in the parentheses. The
expression is now:

.25 ⋅EXP X ⋅ i()2 ⋅ i−2 − .25 ⋅ i−2 + .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() +

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 



Select the first plus sign of the sub-expression

.25 ⋅ i−2 + .25 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() and from the RULES menu

press . Now you have:

.25 ⋅EXP X ⋅ i()2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() +

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 



Repeat the whole procedure for the sub-expression

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 


⋅

EXP X ⋅ i()
2

+
EXP −X ⋅ i()

2



 


.

The results of the manipulations are:

1)

.25 ⋅EXP X ⋅ i()2 ⋅ i−2 − .5 ⋅i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() +

EXP X ⋅ i()
2

⋅
EXP X ⋅ i()

2
+

EXP −X ⋅ i()
2



 

 +

EXP −X ⋅ i()
2

⋅ EXP X ⋅ i()
2

+ EXP −X ⋅ i()
2



 



Trigonometry with the HP48 - Additional Part 11

11-3

2)

.25 ⋅EXP X ⋅ i()2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() +

EXP X ⋅ i()
2

⋅
EXP X ⋅ i()

2
+

EXP X ⋅ i()
2

⋅
EXP −X ⋅ i()

2
EXP −X ⋅ i()

2
⋅
EXP X ⋅ i()

2
+

EXP −X ⋅ i()
2

⋅
EXP −X ⋅ i()

2

3)
.25 ⋅EXP X ⋅ i()2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() +

.25 ⋅EXP X ⋅ i()2 + .25+ .25 + .25 ⋅EXP −X ⋅ i()2

4)
.25 ⋅EXP X ⋅ i()2 ⋅ i−2 − .5 ⋅ i−2 − .25 ⋅EXP −X ⋅ i()2 ⋅ i−2() +

.25 ⋅EXP X ⋅ i()2 + .5 + .25 ⋅EXP −X ⋅ i()2

Now, you may think that the rest is easy, but it isn't. This has to do
with the fact that i−2 can't be easily converted to a −1 on the HP48. We
have a little more to do. Select the exponentiation sign of the first i− 2
and from the menu RULES press the key to convert i− 2 to
INV i2() . Now select the exponentiation sign of i2 in INV i2() and from

the RULES menu press to convert this to INV −1() . Convert

all appearances of i− 2 to INV −1() this way. Now the expression is:

.25 ⋅EXP X ⋅ i()2 ∗INV −1() −

.5 ⋅INV −1() − .25 ⋅EXP −X ⋅ i()2 ⋅INV −1()() +

.25 ⋅EXP X ⋅ i()2 + .5 + .25 ⋅EXP −X ⋅ i()2

Press to put this edited expression on the stack. Press
 for the symbolic menu and from this menu press .

The result is a 1.

If despite all this work you still don't want to install ERABLE, then
you must belong to the hard(est) core of the users that want to control
each electron that passes through the registers of the processor. ;-)

And if despite all this work you still complain that the HP49G is slow,
then you must be very young and didn't have any experience with the
HP48. ;-)

The operation that does the opposite of → DEF is → TRG . It
transforms exponentials to trigonometric functions. Enter for example
EXP(i⋅ X) and take it to the EQW. Select the EXP function, press

 and then press . The result is

COS
i ⋅ X

i




 + SIN

i ⋅ X
i





 ∗ i

which you can to SIN(X) ⋅ i + COS(X).

Let's have an example. (What a patient guy I am ;-)) We want to

transform SIN X()⋅ COS X() to
SIN(2⋅ x)

2
. Go to the EQW, enter

SIN X()⋅ COS X() and then press to go to edit mode. Now select
the SIN function and from the menu RULES press the key .
Do the same with the function COS . Now you have:

EXP X ⋅ i() −EXP −X ⋅ i()
2 ⋅ i



 


⋅

EXP X ⋅ i() +EXP −X ⋅ i()
2



 



Now, select the division line of the first ratio and from the RULES
menu press to distribute the division by 2 ⋅ i. The expression now
is:

Trigonometry with the HP48 - Additional Part 11

11-4

EXP X ⋅ i()
2 ⋅ i

−
−EXP −X ⋅ i()

2 ⋅ i


 


⋅

EXP X ⋅ i() +EXP −X ⋅ i()
2



 



Select the division line of the second ratio and from the RULES menu
press again to distribute the division by 2 . The expression now
is:

EXP X ⋅ i()
2 ⋅ i

−
−EXP −X ⋅ i()

2 ⋅ i


 


⋅

EXP X ⋅ i()
2

+
+EXP −X ⋅ i()

2



 



Next, select the multiplication sign between the two big parentheses
and from the RULES menu press again. The expression is now:

EXP X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2
+

+EXP −X ⋅ i()
2



 


−

−EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2
+

+EXP −X ⋅ i()
2



 



Now select the first multiplication sign and from the RULES menu
press to convert the expression to:

EXP X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2
+

EXP X ⋅ i()
2 ⋅ i

⋅
+EXP −X ⋅ i()

2
−

−EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2
+

+EXP −X ⋅ i()
2



 



Select again the first multiplication sign and from the RULES menu
press :

.25 ⋅EXP X ⋅ i()2

i
+

.25⋅EXP X ⋅ i()⋅EXP −X ⋅ i()
2 ⋅ i

−

−EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2
+

EXP −X ⋅ i()
2



 



Now repeat the last steps for the sub-expression

−EXP −X ⋅ i()
2 ⋅ i

⋅
EXP X ⋅ i()

2
+

+EXP −X ⋅ i()
2



 



That is, select the multiplication sign and press from the rule
menu. Then the two resulting sub-terms so that you have:

.25 ⋅EXP X ⋅ i()2

i
+

.25⋅EXP X ⋅ i()⋅EXP −X ⋅ i()
2 ⋅ i

−

.25 ⋅EXP −X ⋅ i() ⋅EXP X ⋅ i()
i

+
.25 ⋅EXP − X ⋅ i()()2

i











Press to put the expression on the stack. From the
SYMBOLIC menu press . This returns:

−
.25 ⋅EXP − X ⋅ i()()2

i
+

.25 ⋅EXP X ⋅ i()2

i

Press to take the expression to the EQW, and to exit
scroll mode. Select the exponentiation sign of the first exponential and

from the menu RULES press . This linearizes the exponential. Do
the same with the second exponential, so that you have:

Trigonometry with the HP48 - Additional Part 11

11-5

−
.25 ⋅EXP − X ⋅ i() ⋅2()

i
+

.25 ⋅EXP X ⋅ i ⋅ 2()
i

Select now the first exponential, press and then , to
convert the exponential to trigonometric functions. Do the same with
the second exponential. Now you have:

−
.25 ⋅ COS

− X ⋅ i() ⋅2
i



 


+ SIN

− X ⋅ i()⋅ 2
i



 


⋅ i



 




i
+

.25 ⋅ COS
X ⋅ i ⋅2

i




 + SIN

X ⋅ i ⋅2
i





 ⋅ i



 


i

Press to exit the EQW and to go to the stack with the edited
expression. It looks as if you could COLCT terms but you must first
use EXPA . From the menu SYMBOLIC press five times to
convert the expression to

−0.25 ⋅COS
− X ⋅ i()⋅ 2

i



 


i

+
−.25 ⋅SIN

− X ⋅ i() ⋅2
i



 


⋅ i

i
+

.25 ⋅COS
X ⋅ i ⋅ 2

i






i
+

.25 ⋅ SIN
X ⋅ i ⋅ 2

i




 ⋅ i

i

Now press once. This converts the expression to:

− .25 ⋅−SIN 2⋅ X()() −
0.25 ⋅COS 2 ⋅ X()

i
+

.25 ⋅SIN 2⋅ X()+
.25⋅COS 2 ⋅X()

i

Press again to get the result: .5 ⋅ SIN2 ⋅ X() .

The method can be used also for other expressions. We use to
turn trigonometric functions to complex exponentials. Then we
distribute using and . We can linearize the exponentials with

. And at the end we turn the complex exponentials to trigonometric
functions using . Between these steps, we can use , or

, or to group terms, to bring products of
exponentials EXP(a) ⋅EXP(b) to the form EXP(a + b) , and also

 to collect like terms. At the end we use as many times
as needed, so that the following can perform a collection of
like terms and throw away terms that cancel each other. Note the
importance of the operation which linearizes the product
EXP(a) ⋅EXP(b). It is this step, which causes the creation of functions
with the combined arguments EXP(a + b) .

Another non-programmable operation that is available in the menu
RULES is the operation TRG ∗ . This operation makes conversions
like SIN(x + y) = SIN(x) ⋅COS(y) + COS(x) ⋅ SIN(y). Let's try it. Go

to the EQW and enter COS(X − Y) . Press and then select the
function COS . Press the menu key and then . The
result is COS(X) ⋅ COS(Y) + SIN(X)⋅ SIN(Y) .

The same operation can also be used for transformations of
trigonometric functions of multiples of an angle, like for example
SIN(2⋅ X) , though a little bit additional work is needed. Let's do that.
In the EQW enter SIN(2⋅ X) and select SIN . From the RULES menu
press . The HP48 gives a short insulting beep and does nothing.
But we can transform 2 ⋅ X to X + X . Select the factor 2 of 2 ⋅ X , go
to the RULES menu and press to add and subtract 1 to 2 . Now
the expression is SIN 2 + 1−1()⋅ X() . Select the minus sign and from
the RULES menu press to transfer the −1 before the +1. The
expression is now SIN 2 + −1+ 1() ⋅ X() . Select the plus sign that is

Trigonometry with the HP48 - Additional Part 11

11-6

before the −1 and from the RULES menu (second page) press
. Now the expression is SIN 1+1()⋅ X() . Select the

multiplication sign and from the RULES menu press to distribute
the multiplication over the sum. the expression becomes
SIN1⋅ X + 1⋅ X() . Now select the SIN function and from the RULES
menu press . The EQW now contains
SIN(1⋅X) ⋅COS(1⋅ X) + COS(1⋅ X) ⋅ SIN(1⋅X) . Press to go to
the stack and from the menu SYMBOLIC press to get the
result 2 ⋅ COS(X) ⋅SIN(X) .

As you can see, many of the trigonometric conversions are possible,
but the available operations cannot be used from the stack or in
programs. Also, these operations are much more "elementary" than
those of the HP49G, which means that you have to press many more
keys, "many more" being an euphimism. If you combine this with the
slower execution of the HP48, then you see directly that you must have
patience. But on the other hand, I wish I had some of these elementary
operations on the HP49G, like for example +1-1, to turn a simple 2
into a 1+ 1, for which I still don't know if it can be done on the
HP49G. This would be nice for such things like for example
SIN(4 ⋅X) which I could transform to SIN(3⋅ X + X) or
SIN(2⋅ X + 2 ⋅ X) according to my needs. The first could be converted
to SIN(3⋅ X) ⋅COS(X) + COS(3 ⋅X) ⋅SIN(X) and the second to
2 ⋅ COS(2 ⋅X) ⋅SIN(2 ⋅ X) . Both expressions are mathematically equal,
but many times one just fits better than the other. A set of such
elementary commands for the HP49G would give us a much more
detailed control of the way that the calculator does its work.

Now, let's ask ourselves, if it is possible to program the HP48 using
only UserRPL, so that many trigonometric conversions that are
possible in the EQW, become also possible on the stack?. If we
succeed making such programs, then we would have some benefits
like for example, using these programs in other programs, avoiding
work in the slow EQW, and last but not least taking a look at the way
that elementary commands are combined to give more complex
commands which can be further combined and so on. Like

constructing a house out of a set of a few pieces. We will watch the
construction of a set of trigonometric commands using pictures.

First of all, let's make a program that converts an algebraic object to a a
list of RPL objects. The list should be constructed in a way, that
evaluating the objects one after the other, the original algebraic object
appears again. You should have reason to be glad, because HP already
put such a program in the calculator. Just type TEACH and press

. A new directory EXAMPLES with examples is generated in
HOME . Go to that directory. Inside EXAMPLES there is another
directory named PRGS . Go to PRGS . In the menu VAR you see
that there is a program named → RPN . This is the program that we
need. Recall → RPN and go to HOME again. Create a directory
named TRIGO (or anything else you
like) and go to this directory. The
program should be on stack level 1. Enter
' → RPN' and press . This is one of
our basic programs. We will need it
occasionally, for example to prove that
some sub-expression is or is not in an
algebraic object. This program uses
repeated OBJ → in a loop to split an
algebraic object to the objects of which it
consists. It uses conditionals to check if
an object of the original algebraic is itself
an algebraic, in which case it just calls
itself and passes itself this sub-algebraic,
or to just puts the current object in the
result list, if it is not an algebraic. Our set
of trigonometric commands now consists
of one basic command, namely the
program → RPN .

The next basic thing that we need, is a program that completely
expands an algebraic. The programmable command EXPAN which the
HP48 provides, does only one expansion and then stops.
Programming a new command for complete expansion just uses the

Trigonometry with the HP48 - Additional Part 11

11-7

 ->RPN

 Loops

 Conditionals

 Lists

 Recursions

built-in command EXPAN repeatedly, until the algebraic object
doesn't change any more. Here we go:

<< 0 -> iter
<< "Expanding..." 1 DISP
 DO

"Pass " 'iter' INCR +
2 DISP
DUP EXPAN
DUP ROT

 UNTIL
SAME

 END
>>

>>

Store this program in EXPAND in the same directory you have
already stored → RPN . The program takes an algebraic and returns its
completely expanded form. It also shows which pass is being
performed during execution. Let's have an example. Enter

EXP(X ⋅ i − Y)

and press . Go to the
menu SYMBOLIC and
press . The result is:

EXP(X ⋅ i)
EXP(Y)

.

Now press , go to the
menu VAR and press

. The result is:

EXP(X)i

EXP(Y)
.

We will use this command very often in the following programs for
trigonometric conversions. Our set of commands now consists of 2
commands.

Now that we have EXPAND , the opposite comes into mind. A
program that does complete collection of like terms. The manual of the
HP48 says that the built-in COLCT does this, but this is not always
true. There are cases, where further collecting is possible, but COLCT
stops at an intermediate point. It is easy to make such a program, now
that we have EXPAND . We just edit EXPAND and replace the
command EXPAN with COLCT :

<< 0 -> iter
<< "Collecting..." 1 DISP
 DO

"Pass " 'iter' INCR +
2 DISP
DUP COLCT
DUP ROT

 UNTIL
SAME

 END
>>

>>

Enter the program and store it in COLLECT . Now our set looks like
the first picture on the next page.

The next command that we will program, will be TR → EXP for
conversion of trigonometric functions to complex exponentials. We use
MATCH repeatedly until no more matching can be done. The program
listing is on the next page.

Trigonometry with the HP48 - Additional Part 11

11-8

 ->RPN

 Loops

 Conditionals

 Lists Recursions

EXPAND

 EXPAN

<< "Converting SIN->EXP...
" 1 DISP
 DO

{ 'SIN(&A)' '(EXP(&A*i)-
 EXP(-(&A*i)))/(2*i)' }
MATCH

 UNTIL
NOT

 END
 "Converting COS->EXP...
" 1 DISP
 DO

{ 'COS(&A)' '(EXP(&A*i)+
 EXP(-(&A*i)))/2' }
MATCH

 UNTIL
NOT

 END
 "Converting TAN->EXP...
" 1 DISP
 DO

 { 'TAN(&A)' '(EXP(&A*i*2)-1)/

 ((EXP(&A*i*2)+1)*i)' }
 MATCH

 UNTIL
 NOT

 END
>>

Store this program in TR → EXP . Try to convert some trigonometric
functions to complex exponentials. Enter for example
SIN(X) ⋅COS(X) and press . The result is:

EXP(X ⋅ i)−EXP − X ∗ i()()
2 ⋅ i




 


 ⋅

EXP(X ⋅ i)+EXP − X ⋅ i()()
2




 




We can apply our EXPAND and then our COLLECT to this result.
We then get:

−
.25 ⋅EXP(−X)2⋅i

i



 


+

.25 ⋅EXP(X)2⋅i

i

We see that COLLECT doesn't collect the powers of exponentials.
This is because the command COLCT doesn't do this. We will see
what we can do about it later on.

Our set has now already four commands and looks like:

Trigonometry with the HP48 - Additional Part 11

11-9

 ->RPN

 Loops
 Conditionals Lists Recursions

EXPAND

 EXPAN COLCT

COLLECT

MATCH

TR->EXP

 ->RPN

 Loops
 Conditionals Lists Recursions

EXPAND

 EXPAN COLCT

COLLECT

Now that we have TR → EXP we should also have the opposite, a
program for transforming exponentials to trigonometric functions. We
use the same method as for EXP → TR .

<< "Converting EXP->SINCOS...
" 1 DISP
 DO

{ 'EXP(&A)' 'COS(&A/i)+
 SIN(&A/i)*i' }
MATCH

 UNTIL
NOT

 END
>>

Store this in EXP → TR . Test it by entering EXP(−i ⋅X) and press

. The result is COS
X ⋅ i

i




 + SIN

X ⋅ i
i





 ⋅ i. The two last

commands don't return their result completely expanded, but this is not
what they are made for. You can use EXPAND and COLLECT after
EXP → TR or TR → EXP to do that. The commands TR → EXP
and EXP → TR will be used for the construction of further
commands, and so they are made as elementary as possible.

Our command set now consists of 5 commands:

Let's start now making such commands like TRIGLIN for linearizing
products or powers of trigonometric functions. The recipe is mainly to
first completely expand the trigonometric functions, so that powers like
SIN(X)2 are converted to SIN(X) ⋅SIN(X) . Then we can use
MATCH repeatedly, to replace such products with their linearized
form. When we are done with replacements, we can re-COLLECT
everything. In order to also catch TAN(X) we can convert it to
SIN(X)
COS(X)

 at the start of the program. Because the need for this

conversion is likely to return later, we make an extra small program
that does this, so that we can use it a lot in other programs.

<< "Converting TAN->SINCOS
" 1 DISP
 DO
 {'TAN(&X)' 'SIN(&X)/COS(&X)'}
 MATCH
 UNTIL
 NOT
 END
>>

Stre this program in TAN2SC. Now enter:

<< 0 ->iter
 << TAN2SC
 DO

 COLLECT EXPAND
 COLLECT EXPAND
 "Linearizing TRIG...

" 1 DISP
 "PASS " 'iter' INCR +
 2 DISP
 {'SIN(&X)*SIN(&Y)'
 '.5*COS(&X-&Y)-.5*COS(&X+&Y)'}
 MATCH SWAP
 {'COS(&X)*COS(&Y)'
 '.5*COS(&X-&Y)+.5*COS(&X+&Y)'}

Trigonometry with the HP48 - Additional Part 11

11-10

 ->RPN

 Loops

 Conditionals Lists Recursions

EXPAND

 EXPAN COLCT

COLLECT

MATCH

TR->EXPEXP->TR

->Qπ

 MATCH ROT OR SWAP
 {'SIN(&X)*COS(&Y)'
 '.5*SIN(&X-&Y)+.5*SIN(&X+&Y)'}
 MATCH ROT OR SWAP
 {'COS(&X)*SIN(&Y)'
 '-.5*SIN(&X-&Y)+.5*SIN(&X+&Y)'}
 MATCH ROT OR SWAP
 {'&A*SIN(&X)*SIN(&Y)'
 '&A*(.5*COS(&X-&Y)-.5*COS(&X+&Y))'}
 MATCH ROT OR SWAP
 {'&A*COS(&X)*COS(&Y)'
 '&A*(.5*COS(&X-&Y)+.5*COS(&X+&Y))'}
 MATCH ROT OR SWAP
 {'&A*SIN(&X)*COS(&Y)'
 '&A*(.5*SIN(&X-&Y)+.5*SIN(&X+&Y))'}
 MATCH ROT OR SWAP
 {'&A*COS(&X)*SIN(&Y)'
 '&A*(-.5*SIN(&X-&Y)+.5*SIN(&X+&Y))'}
 MATCH ROT OR

 UNTIL
 NOT
 END
 COLLECT
>>

>>

Store this in TRLIN . You may wonder why the the sequence
COLLECT EXPAND is called twice at the start of the program.
Well, even COLLECT and EXPAND don't do their work completely
sometimes. I have experimented with them and I I found out that
calling them twice is enough. Should you find cases where even calling
them twice is not enough, then Nick must think again. ;-)

You also may wonder why we MATCH every pattern twice, like
SIN(&X) ⋅SIN(&X) and &A ⋅ SIN(&X) ⋅SIN(&X) , when
SIN(&X) ⋅SIN(&X) appears in &A ⋅ SIN(&X) ⋅SIN(&X) as a pattern.
The answer is that ↑ MATCH doesn't see that. So we have to do the
matching explicitly also for &A ⋅ SIN(&X) ⋅SIN(&X) . This makes

execution time longer, but it covers all (?) cases, so that it is
worthwhile to do.

Let's take a look again at our growing command set, and the
dependencies of the commands.

Couldn't we do a similar program for linearizing exponentials? Well,
yes, we could for example collect all products, quotients and powers of
exponentials, but COLLECT doesn't fit here because COLCT can't
collect such things. So we need three additional small programs that

collect expressions of the form ea()b
 to ea∗b , expressions of the form

ea

eb to ea −b and expressions of the form ea ⋅eb to ea +b . We don't put

Trigonometry with the HP48 - Additional Part 11

11-11

 ->RPN

 Loops

 Conditionals

 Lists

 Recursions

EXPAND

 EXPAN COLCT

COLLECT

MATCH

TR->EXPEXP->TR

TAN2SC

TRLIN

all this functionality in one program, because we will need only some
but not all of this functionality in other programs later. So we are
going to program each conversion separately. Let's do the first
conversion:

<< 0 -> iter
 << "Collecting (e^a)^b...
" 1 DISP
 DO
 "PASS " 'iter' INCR
 + 2 DISP

 { 'EXP(&A)^&B'
 'EXP(&A*&B)' }

 MATCH
 UNTIL

 NOT
 END
 >>
>>

Store this in EXPPOWCLCT .

Now the second conversion:

<< 0 -> iter
 << "e^a/e^b -> e^a*e^-b...
" 1 DISP
 DO
 "PASS " 'iter' INCR
 + 2 DISP

{ 'EXP(&A)/EXP(&B)'
 'EXP(&A)*EXP(-*&B)' }
MATCH SWAP
{ '&A*EXP(&B)/EXP(&C)'
 '&A*EXP(&B)*EXP(-*&C)' }
MATCH ROT OR SWAP

{ 'EXP(&B)/(&A*EXP(&C))'
'EXP(&B)*EXP(-*&C)/&A' }
MATCH ROT OR SWAP

{ '&A*EXP(&B)/(&C*EXP(&D))'

 '&A*EXP(&B)*EXP(-*&D)/&C' }
MATCH ROT OR

UNTIL
NOT

END
>>

>>

Store this EXPRAT2PROD . Again we match EXP &A()⋅EXP &B())

in all possible forms because otherwise the command ↑ MATCH
wouldn't match a ⋅EXP X()⋅EXP Y() to a ⋅EXP X + Y() using the
pattern EXP &A()⋅EXP &B() .

The next utility program:

<< 0 -> iter
 << "Collecting e^a*e^b...
" 1 DISP
 DO
 "PASS " 'iter' INCR
 + 2 DISP

 { 'EXP(&A)*EXP(&B)'
 'EXP(&A+&B)' }

 MATCH
 { '&C*EXP(&A)*EXP(&B)'

 '&C*EXP(&A+&B)' }
 MATCH ROT OR

 UNTIL
 NOT

 END
 >>
>>

Store this in EXPPRODCLCT .

We now have enough, to be able to construct a new command that
completely linearizes exponentials. Assume that we have some
expression with exponentials like for example

Trigonometry with the HP48 - Additional Part 11

11-12

EXP(−X)i ⋅ EXP(X ⋅2) −EXP(X ⋅ i)2()
We can use EXPAND to completely expand it to

EXP(−X)i ⋅ EXP(X) ⋅EXP(X)() −EXP(−X)i ⋅ EXP(X)i ⋅EXP(X)i()
Then, using repeatedly EXPPOWCLCT we transform it to

− EXP(−X ⋅ i)⋅EXP(X ⋅(2 ⋅ i))() + EXP(−X ⋅ i)⋅EXP(X ⋅2)

Next we use EXPPRODCLCT to transform it to

EXP(−X ⋅ i) ⋅ EXP(X) ⋅EXP(X)() −EXP(−X ⋅ i)⋅ EXP(X ⋅ i) ⋅EXP(X ⋅ i)()

We then use EXPRAT2PROD but this has no effect since there are
no quotients of exponentials. Then comes EXPPRODCLCT which
turns the expression to

EXP − X ⋅ i() + (X + X)() −EXP(−X ⋅ i + (X ⋅ i + X ⋅ i))

And finally we use COLLECT again to get the linearized form

EXP − X ⋅ i() + 2 ⋅X() −EXP(X ⋅ i)

Programming this function is really easy. We just use already
programmed commands:

<<
 EXPAND
 DO
 DUP EXPPOWCOLCT EXPRAT2PROD
 EXPPRODCLCT COLLECT DUP ROT
 UNTIL SAME
 END
>>

STOre this in EXPLIN .

Now let's try our new programs, TRLIN and EXPLIN .

Enter SIN(X) ⋅COS(X) and press . In about 12 seconds you
get .5 ⋅ SIN(2⋅ X) . Enter COS(X)2 and press again. In about
14 seconds you get .5 + .5 ⋅COS(2 ⋅ X) . Enter SIN(X) ⋅COS(Y) and
press . You get .5 ⋅ SIN(X − Y) + .5 ⋅ SIN(X + Y) in about 16
seconds.

Now enter

EXP(X)2 ⋅EXP(2 ⋅Y + X)
EXP(X)

Press . The result EXP(2 ⋅ X + 2 ⋅ Y) is returned in about 27
seconds. But there is still a problem. Enter SIN(X)2 and press

. You get

EXP(X ⋅ i)−EXP −(X ⋅ i)()
2 ⋅ i



 



2

Now press to linearize this. The program needs about 98
seconds to return the expression

.25 ⋅EXP −(2 ⋅X ⋅ i)() ⋅ i−2 + .25 ⋅EXP 2 ⋅ X ⋅ i() ⋅ i−2 − .5 ⋅ i−2

As you can see the program COLLECT, didn't collect i− 2 to −1. This
is because the underlying COLCT can't do this. We need an additional
utility that does this. How can we program this? We can replace in with
its numeric equivalent 0,1()n and then evaluate the expression. Powers
of the imaginary unit i, are then evaluated to their numeric equivalents.
Then the built-in command ->Qπ can be used to turn the complex

Trigonometry with the HP48 - Additional Part 11

11-13

numbers to symbolics again, and COLLECT can be used to simplify
things.

Enter the program:

<< 0 ->iter
 << "Collecting i^n...
" 1 DISP
 DO
 "Pass " 'iter' INCR +
 2 DISP { 'i^&n' '(0,1)^&n' }
 MATCH
 UNTIL

 NOT
 END
 EVAL ->Qπ
 0 'iter' STO
 "Converting (1,0)->1...
" 1 DISP
 DO
 "Pass " 'iter' INCR +
 2 DISP { (1,0) 1 } MATCH
 UNTIL

 NOT
 END
 0 'iter' STO
 "Converting (0,1)->i...
" 1 DISP
 DO
 "Pass " 'iter' INCR +
 2 DISP { (1,0) 1 } MATCH
 UNTIL

 NOT
 END
 >>
>>

and store it in iCLCT . (Its iMac, iSearch, iRon time, so why not
iCLCT? ;-)) But why do we have to MATCH also(1,0) to 1 and (0,1)
to i? The (unexpected) answer is that ->Qπ will turn for example (0,1)

to −i , but not (1,0) to 1 and not (0,1) to i. So for these two cases we
must do that explicitly in our program. Now edit EXPLIN . At the end
of the program add iCLCT and COLLECT , so that EXPLIN now is:

<<
 EXPAND
 DO
 DUP
 EXPPOWCOLCT
 EXPRAT2PROD
 EXPPRODCLCT
 COLLECT DUP ROT
 UNTIL
 SAME
 END
 iCLCT COLLECT
>>

Let's try the last example again. Enter SIN(X)2 and press .
You get

EXP(X ⋅ i)−EXP −(X ⋅ i)()
2 ⋅ i



 



2

Press . The result

.5 − .25 ⋅EXP −(2 ⋅ X ⋅ i)() − .25 ⋅EXP 2 ⋅ X ⋅ i()

is shown in about 114 seconds.

Let's take a look again at our command set which has grown taller and
wider. (Picture in next page.)

Trigonometry with the HP48 - Additional Part 11

11-14

Well, now comes TREXPAND , which proves to be difficult to
achieve with MATCH in loop. If someone manages to do that, then
please, please post it!

But that doesn't mean that it can't be done with other means. We
already have TR → EXP which converts trigonometric functions to
exponentials. We can use it, then EXPAND the resulting expression
and use EXPPOWCLCT , EXPRAT2PROD and EXP → TR again
to turn the exponentials to products. The first version of TREXPAND
looks like:

<<
EXPAND COLLECT
EXPAND COLLECT
TR->EXP EXPAND
EXPPOWCLCT

EXPRAT2PROD
EXP->TR
COLLECT EXPAND
COLLECT

>>

The double execution of EXPAND COLLECT at the start of the
program is because of the same reasons as on page 11-11. At the end
of the program we use the sequence COLLECT EXPAND
COLLECT because after EXP → TR has finished, the arguments of
the trigonometric functions are sometimes complicated. We use
COLLECT them to simplify them, making the following EXPAND
somehow easier for the HP48. We then COLLECT to let some terms
vanish.

Trigonometry with the HP48 - Additional Part 11

11-15

 ->RPN

 Loops Conditionals Lists Recursions

EXPAND

 EXPAN COLCT

COLLECT

MATCH

TR->EXPEXP->TR

TAN2SC

TRLIN

EXPPRODCLCT EXPRAT2PROD EXPPOWCLCT iCLCT

EXPLIN

->Qπ

But this version has a problem. It will not expand things like
SIN(2⋅ X) because none of the used commands can expand
EXP(2 ⋅ X) to EXP(X + X) . We must add code that does this. To do
this, we must check if some arguments of the trigonometric functions
are of the form n ⋅X , where n is an integer. If we find such an
argument we can replace it with the sum X + X +K+ X and then
repeat the procedure of trigonometric expansion. We can be sure that
after the first part of the program has finished (this is the program
TREXPAND as it is now), no sums will appear as arguments to
trigonometric functions, because sums will be already
(trigonometrically) expanded.

First we need a function that turns expressions of the form n ⋅X to
 X + X +K+ X .

<<
EXPAND COLLECT
EXPAND COLLECT
"Converting ALG->RPN...

" 1 DISP
->RPN
-> alglst
<<

alglst 1
<<

"Searching TRIG. args...
Object " NSUB 1 DISP

IF
{SIN COS TAN}
OVER POS

THEN
SWAP PROD->SUM
SWAP

END
EVAL

>>
DOSUBS EVAL

>>
>>

Stire this in FINDTRIGARGS . (I can't think of a better name.) The
program uses → RPN to turn the algebraic to a RPN list. The
following DOSUBS procedure checks if the next object is a
trigonometric function SIN , COS or TAN . If it isn't then it simply
evaluates the object to build the algebraic step by step again. If it is,
then it uses the function PROD → SUM (which we didn't write yet)
to turn arguments of trigonometric functions that are of the form n ⋅X
to sums and then evaluates the object to build the algebraic with the
altered arguments of trigonometric functions.

Now we need PROD → SUM, a function for conversion of n ⋅X to
 X + X +K+ X , where n is an integer.

<<
"Checking TRIG. arg...

" 1 DISP
IF DUP TYPE 9 ==
THEN

DUP ->RPN DUP HEAD OVER 3 GET
3 PICK 2 GET 4 ROLL 4 OVER SIZE SUB +
-> oldarg factor oper rest
<<

IF factor TYPE NOT
THEN

IF
factor FP NOT { * } oper POS AND

THEN
rest EVAL 'rest' STO rest 1 factor 1 -
START

rest +
NEXT

ELSE
oldarg

END
ELSE

oldarg
END

>>
END

>>

Trigonometry with the HP48 - Additional Part 11

11-16

Store this in PROD → SUM. Perhaps you would like to use DBUG
to see how it works. ;-)

So the program TREXPAND now becomes:

<<
EXPAND COLLECT
EXPAND COLLECT
TR->EXP EXPAND
EXPPOWCLCT
EXPRAT2PROD
EXP->TR
COLLECT EXPAND
COLLECT
IF

DUP FINDTRIGARG
DUP ROT SAME NOT

THEN
TR->EXP EXPAND
EXPPOWCLCT EXPRAT2PROD
COLLECT EXP->TR COLLECT
iCLCT COLLECT EXPAND
COLLECT

END
>>

Store this in TREXPAND again. Let's try it. Enter SIN(X + Y) and
press . After 76 seconds you get the result
COS(X) ⋅ SIN(Y)+ SIN(X) ⋅COS(Y) . Press now . After 17
seconds you get SIN(X + Y) , the expression with which you started.
Another example: Enter COS(X)2 and press . In 14 seconds the
HP48 returns .5 + .5 ⋅COS(2 ⋅ X) . Now press . It takes 98
seconds for the HP48 to show .5 + .5 ⋅COS(X)2 − .5 ⋅ SIN(X)2 . As
you can see, the execution time of TREXPAND is very long.
compared to the execution time of TRLIN . This is because TRLIN
only works with many subsequent MATCHes, while TREXPAND
uses very often EXPAN to fully expand products of the intermediately
produced exponentials. If somebody has an algorithm, that makes

TREXPAND faster, then please post it to cure the slow TREXPAND .

Our command set is now pretty large and the interdependencies of the
commands are more complex. (Picture on next page.)

Let's now move on to the next thing to do, a program that converts
SIN , COS and TAN functions to TAN functions of the half
argument. This seems easy to do using MATCH, but there is
something that we must take care of. If we use first match SIN and
COS then the resulting TAN functions along with the TAN functions
that were in our algebraic object right from the start, will be all matched
again to TAN functions. If for example we start with
SIN(X)+ TAN(X) and we match first SIN X() to

2 ⋅ TAN
X
2







TAN
X
2







2

+ 1

then the resulting expression will be:
2 ∗ TAN

X
2



 




TAN
X
2



 




2

+1
+ TAN(X)

If we match now TAN X() , then we will have:

−
4 ⋅TAN X

4






TAN
X
4







2

−1

2 ⋅ TAN X
4







TAN
X

4






2

−1






 






 

2

+ 1

−
2 ⋅TAN

X
2







TAN
X
2







2

−1

Trigonometry with the HP48 - Additional Part 11

11-17

which means that we converted to TAN functions of the half and of
the quarter argument. To avoid this we must first match TAN
functions and then SIN and COS functions.

<<
EXPAND COLLECT EXPAND COLLECT
"TAN(X)->TAN(X/")

" 1 DISP
{ 'TAN(&X)' '2*TAN(&X/2)/(1-TAN(&X/2)^2)'}
MATCH DROP

"SIN(X)->TAN(X/")
" 1 DISP

{ 'SIN(&X)' '2*TAN(&X/2)/(TAN(&X/2)^2+1)'}
MATCH DROP

"COS(X)->TAN(X/")
" 1 DISP { 'COS(&X)'

 '(1-TAN(&X/2)^2)/(TAN(&X/2)^2+1)'}
MATCH DROP

COLLECT
>>

Trigonometry with the HP48 - Additional Part 11

11-18

 ->RPN

 Loops Conditionals Lists Recursions

EXPAND

 EXPAN COLCT

COLLECT

MATCH

TR->EXPEXP->TR

TAN2SC

TRLIN

EXPPRODCLCT EXPRAT2PROD EXPPOWCLCT iCLCT

EXPLIN FINDTRIGARG

PROD->SUM

TREXPAND

->Qπ

Store that in HALFTAN. Try it with COS(X) ⋅ TAN(X). The result is

2
1+ TAN(.5⋅ X)2 ⋅ TAN(.5⋅ X)

which comes in about 7 seconds.

We can also program TRIGSIN and TRIGCOS , for conversion of
COS(X)2 to 1− SIN(X)2 and of SIN(X)2 to 1− COS(X)2 .

Enter

<<
{ 'COS(&X)^2' '1-SIN(&X)^2 }
MATCH DROP COLLECT

>>

and Store it in TRIGSIN .

Enter

<<
{ 'SIN(&X)^2' '1-COS(&X)^2 }
MATCH DROP COLLECT

>>

and Store it in TRIGSIN .

Programming TRIGTAN for such conversions like for example
SIN(X)
COS(X)

 to TAN(X) is a bit more complicated. If would be really

tough to search one algebraic expression for occurrences of
SIN(X)
COS(X)

,

because such patterns could be "hidden for the eye of MATCH".
Consider for example

SIN(X)+ COS(X)
2

+ SIN(X)

COS(X)

Matching here
SIN(X)
COS(X)

 to TAN(X) would leave the expression

unchanged. If we first expand, then we get:

SIN(X)
2

COS(X)
+

COS(X)
2

COS(X)
+

SIN(X)
COS(X)

If we collect this we get:

1.5
COS(X)

⋅ SIN(X)+ .5

We could of course sit down and experiment, in order to find all

possible patterns which are equivalent to
SIN(X)
COS(X)

 but as Nick is a

rather lazy person, he found an easier but also dirtier method. If there
is a SIN function in the algebraic expression, then match SIN(X) to
COS(X) ⋅ TAN(X). If there is no SIN , then match COS(X) to
SIN(X)
TAN(X)

. We use → RPN to turn the algebraic in an RPN list, and

check if the list contains SIN .

<<
DUP ->RPN
IF

{ SIN } HEAD POS
THEN

{ ' SIN(&X)' 'COS(&X)*TAN(&X)' }
MATCH

Trigonometry with the HP48 - Additional Part 11

11-19

ELSE
{ ' COS(&X)' 'SIN(&X)/TAN(&X)' }
MATCH

END
DROP EXPAND COLLECT

>>

Store the program in TRIGTAN . To try it enter the expression

SIN(X)+ COS(X)
2

+ SIN(X)

COS(X)

and press .

The result is .5 +1.5 ⋅ TAN(X) .

Enter also

SIN(X)
COS(X)2

Press once. You get INV(COS(X)) ⋅ TAN(X). Now press
 again. This time you get

TAN X()2

SINX()

because there was no SIN function in the expression. This is the result
of the design of the function. Both results are equivalent, but you
should always use TRIGTAN twice to check if one of the possible
results fits your needs better.

Last thing we have to do is TAN2SC2 .

<<
{ 'TAN(&X)' 'SIN(2*&X)/(1+COS(2*&X))' }
MATCH DROP COLLECT

>>

STtore this in TAN2SC2 .

Now turn page to take a look at our command set in all its beauty.

We see that the HP48 is not so weak, regarding symbolic mathematics.
Actually the set of UserRPL commands available to the "normal" user
is mighty enough, to allow to program many manipulations of
symbolics. It is the execution time of such programs that makes the
HP48 looking less powerful, comparing it to the HP49G. The fact that
we have such a language like UserRPL, that allows making such
programs, but a processor that needs such a long time to execute these
programs, should make some things clear. The theoretical concept of
UserRPL is fantastic! It is nearly complete, at least complete enough to
let almost anything be possible. If it only were put on faster hardware!
It reminds me somehow of the theoretical predictions of physicists that
were experimentally proven much later, when the needed hardware
was available. Imagine what the HP48 could be used for, if it only
could run such programs in shorter time.

The whole set of commands occupies about 4.8 KBytes which shows,
that UserRPL is also compact.

Now let's try our commands in some examples that we already have
done with the HP49G and its built in CAS.

1) Show that:

SIN X()4 −COS X()4 = SIN X()2 − COS X()2

Enter the left hand side of the equation. We have powers of
trigonometric functions, so let's use . We get:

Trigonometry with the HP48 - Additional Part 11

11-20

−COS(2 ⋅ X)

in 108 seconds. Now we have a trigonometric function with a
multiple of X as argument, so let's try TREXPAND. In 91
seconds the HP48 returns:

−COS(X)2+ SIN(X)2

2) Show that:

SIN X()4 −COS X()4 = 1− 2∗ COS(X)2 = 2 ⋅ SINX()2 −1

Use example 1 to turn the expression SIN(X)4 − COS(X)4 to
−COS(X)2+ SIN(X)2 . Now press . In about 2 seconds
you get:

Trigonometry with the HP48 - Additional Part 11

11-21

 ->RPN

 Loops Conditionals Lists Recursions

EXPAND

 EXPAN COLCT

COLLECT

MATCH

TR->EXPEXP->TR

TAN2SC

TRLIN

EXPPRODCLCT EXPRAT2PROD EXPPOWCLCT iCLCT

EXPLIN FINDTRIGARG

PROD->SUM

TREXPAND

HALFTAN TRIGSIN TRIGCOS TRIGTAN TAN2SC2

->Qπ

1− 2 ⋅COS(X)2

Now press . In about 1 second you get:

1− 2 ⋅ 1− SIN(X)2()
Press and the to simplify this to:

−1+ 2 ⋅ SIN(X)2

3) Show that:

SIN X() + COS X()()2
+ SINX() − COS X()()2

= 2

Enter the left hand side of the equation on stack level 1 and press
. In about 31 seconds you get a nice round 2 .

4) Simplify the expression:

SIN X +
π
2





 + SIN X −

π
2







Enter expression and press . In about 230 seconds
you get:

2 ⋅ COS(.5 ⋅π) ⋅SIN(X)

Now, it would be nice if the built-in commands could simplify
COS(.5 ⋅π) to 0 , but they don't. Even if you use ->Qπ, you get

2 ⋅ COS(
1
2

⋅π) ⋅SIN(X) , which can't be simplified to 0 .

4) Simplify the expression:

SIN(X − Y) ⋅COS(X + Y) + COS(X − Y) ⋅ SIN(X + Y)

Enter expression and press . In about 28 seconds you get:

SIN(2⋅ X)

5) Turn SIN(X + Y + Z) to a sum of products of trigonometric
functions.

Enter SIN(X + Y + Z) and press . The HP48 needs
224 seconds to return:

COS(X) ⋅ COS(Y) ⋅SIN(Z) + COS(X) ⋅ SIN(Y) ⋅COS(Z) +
SIN(X) ⋅COS(Y) ⋅COS(Z) − SIN(X) ⋅SIN(Y) ⋅ SIN(Z)

6) Show that:

SIN(X + Y) ⋅SIN(X − Y) = SIN X()2
− SIN Y()2

= COS Y()2
− COS X()2

Enter SIN(X + Y) ⋅SIN(X − Y) , press and you get

− .5 ⋅ COS(2⋅ X)() + .5 ⋅ COS(2 ⋅Y)

Trigonometry with the HP48 - Additional Part 11

11-22

in 26 seconds. Now press . In 230 seconds the
HP48 returns:

− .5 ⋅ COS(X)2() + .5 ⋅SIN(X)2 + .5 ⋅ COS(Y)2 − .5 ⋅SIN(Y)2

Press . In 6 seconds you get:

.5 ⋅ 1− COS(X)2()− .5 ⋅ 1− COS(Y)2() − .5 ⋅COS(X)2 + .5 ⋅ COS(Y)2

Press and then to get:

−COS(X)2+ COS(Y)2

Press now and you get:

SIN(X)2 − SIN(Y)2

This example shows that adding EXPAND COLLECT instead
of only COLLECT at the end of TRIGCOS and TRIGSIN
seems to be a good idea.

7) Show that:

2 ⋅SIN(X + Y)
COS(X + Y) + COS(X − Y)

= TAN(X)+ TAN(Y)

Enter the numerator 2 ⋅ SIN(X + Y) of left hand side of the
equation. Press to expand the trigonometric function
of X + Y to trigonometric functions of X and Y . The HP48
needs 71 seconds to return:

2 ⋅ COS(X) ⋅SIN(Y) + 2 ⋅SIN(X) ⋅COS(Y)

Now enter the denominator COS(X + Y)+ COS(X − Y) of left
hand side of the equation and press again, to get

2 ⋅ COS(X) ⋅COS(Y)

in 118 seconds. Press , and then . Now you
have:

INV COS(X)()⋅ SIN(X)+ INV COS(Y)() ⋅SIN(Y)

Press now to get TAN(X)+ TAN(Y) .

8) Show that:

SIN X() = 2 ⋅SIN
X
2





 ⋅COS

X
2







Enter SIN(X) . Since we want to transform this to trigonometric

functions of
X
2

, we use first. The result is:

2
1+ TAN(.5⋅ X)2 ⋅ TAN(.5⋅ X)

Let's convert all TAN functions to SIN and COS . We use
 for this. The result is:

2

1+
SIN(.5 ⋅ X)
COS(.5 ⋅ X)



 



2 ⋅
SIN(.5 ⋅X)
COS(.5 ⋅ X)

Trigonometry with the HP48 - Additional Part 11

11-23

Let's and this. We get:

INV .5 + .5 ⋅ COS(.5 ⋅X)−2 ⋅ SIN(.5⋅ X)2()
COS(.5 ⋅ X)

⋅SIN(.5 ⋅ X)

Now we use to convert SIN(.5 ⋅X)2 to 1− COS(.5 ⋅ X)2 .
The expression now is:

INV .5 + .5 ⋅ 1− COS(.5 ⋅ X)2()⋅ COS(.5 ⋅ X)−2()
COS(.5 ⋅X)

⋅ SIN(.5 ⋅X)

 and this again to get the result:

2 ⋅ COS(.5 ⋅ X) ⋅ SIN(.5⋅ X)

Finishing this last part, I must say again that the programs here are way
far from being perfect. I only wanted to wake your appetite for using
your HP48. Change the programs, add new ones, think of better
algorithms, do what you think is best for your needs. And post your
ideas so that we can join you in the continuing trigonometry marathon.

RPL-Greetings,
Nick.

Trigonometry with the HP48 - Additional Part 11

11-24

