HP49 Assembly
Language Examples

By
Peter Geelhoed

HP49 Assembly Language Examples

This document is aimed at System RPL programmers who wish to learn
Assembly. We will assume MASD syntax in SysRPL mode on a 49 for the
documentation of MASD look here: http://www.hpcalc.org/details.php?id=2986

The following programs are very useful for programming, they are virtually
indispensable. SysRPL programmers probably have these already.

ROM version 1.19-6, Other ROM’'s may cause problems with the following
programs
http://www.hpcalc.org/details.php?id=3240

For programming itself you should of course have the extable library.
http://www.epita.fr/~avenar_j/hp/49.html

Emacs is the programming environment for the 49, get it!
http://www.hpcalc.org/details.php?id=3940

Nosy can be used to look into the code of Rom routines and other programmes,
which is very educational.
http://www.hpcalc.org/details.php?id=4323

It is a good idea to step through some of these programs to see how they work.
It is the way | learned Assembly. | recommend Jazz6.8e s DB.
http://www.hpcalc.org/details.php?id=4700

If you want to know everything about assembly you should read:
“Introduction to Saturn Assembly Language” available at
http://www.hpcalc.org/details.php?id=1695.

For a description of romroutines you can take a look at the ML part of
entries.srt But remember it is a 48 document so the addresses will be different
http://www.hpcalc.org/details.php?id=1782

Carsten Dominik’s Entry Database also is a great source of romroutine
descriptions. It contains entries.srt and more.
http://zon.astro.uva.nl/~dominik/hpcalc/entries/

For a complete description of the 48 RAM you can study rammap.a
http://www.hpcalc.org/details.php?id=3231

http://www.hpcalc.org/details.php?id=2986
http://www.hpcalc.org/details.php?id=3240
http://www.epita.fr/~avenar_j/hp/49.html
http://www.hpcalc.org/details.php?id=3940
http://www.hpcalc.org/details.php?id=4323
http://www.hpcalc.org/details.php?id=4700
http://www.hpcalc.org/details.php?id=1695
http://www.hpcalc.org/details.php?id=1782
http://zon.astro.uva.nl/~dominik/hpcalc/entries/
http://www.hpcalc.org/details.php?id=3231

Contents

HP49 Assembly Language EXampPles..............co.vueiueeiiiiiiiaiiii et 2
(000]] 1=] 1 £ PP 3
(O J 1 1 oo [Tox 1 [0] o H 4
. BASICS. .. 6
EXAMPLE 1.1 From ASM O RPLciiiii e 6
EXAMPLE 1.2 Calling ROMIOULINES ..o 6
EXAMPLE 1.3 Saving RPL POINTEIS. 7
EXAMPLE 1.4 DISPKEY ...ttt ettt 7
EXAMPLE 1.5 Loading a register with aconstant..................ccooiiiiiiiinnn. 8
D I g 1= - Tod 9
EXAMPLE 2.1 Doubling a binary integer.........cccooiiiiiiii e 9
EXAMPLE 2.2 MUItIPIYING ... 10
EXAMPLE 2.3 DIVIAING ..uitiiiieiee et e e e e 10
EXAMPLE 2.4 EAiting @ STFriNQ ..cuoviiiiiie et 11
3. TESES & IOOPS. ... 13
EXAMPLE 3.1 Comparing regiSters ... 13
L N 1V | I e 2 I T o 1= P 13
EXAMPLE 3.2A Masd Ssyntax loOPo 14
EXAMPLE 3.3 Status DitsS ...ccuieiiiii e 15
EXAMPLE 3.4 TIMEY ettt e e e 15
4. Subroutines and the Return StackKcuuueeiiieiiiiiiiiieiieeeeeeeea 16
EXAMPLE 4.1 Calling your subroutine ... 16
EXAMPLE 4.2 Using the return stackcoooiiiiiiiiiiece e 16
EXAMPLE 4.3 Data inside YOUFr COAEc.oiuiiiiiiiiiie e 17
5. TOMIPOD ... 18
EXAMPLE 5.1 MaKing @ String......ccoiuiiiiiiiii et e e 18
EXAMPLE 5.2 Writing iN ML ..ot 19
EXAMPLE 5.3 Shrinking the String..........cooeuiiiiiiiiee e 20
Lo I g 1= ol £ == o PP 21
EXAMPLE 6.1 THE SCIrEeN ... 21
EXAMPLE 6.2 Writing tO the SCreenc.ocuiiiiiiiiie e 22
EXAMPLE 6.3 DISPADDR ... ettt et 22
EXAMPLE 6.4 Greyscales [ADVANCED]cccoiiiiiiiieeie e 23
7. TRE KEYDOAIU........c.eeeeeee e 26
EXAMPLE 7.1 Waiting fOr @ KeY ..o 26
EXAMPLE 7.2 Reading the KeY COAEeccoouiiiiiiiii e 27
EXAMPLE 7.3 Beeping in ML [ADVANCED].......couiiiiiiiieeeeeee e 27
8. Garbage COIIECTIONSccoeeeeeeee et 30
EXAMPLE 8.1 Garbage colleCtionscc.ooiiiiiiiiiie e 30
EXAMPLE 8.2 Garbage collections from TempOb ..., 31
EXAMPLE 8.3 Reserving all memory [ADVANCED]ccoooiiiiiiiiiiieiieeene, 32
9. MEMIOKY BANKS ...ttt ettt 35
EXAMPLE 9.1 Reading the serial number ... 35
EXAMPLE 9.2 Reading a library title from a port [ADVANCED].................. 36

O. Introduction

Although these examples will not crash your 49, it is probably a good idea to
backup your memory. Typos are easily made! You can also upload the file
examples.bz to your 49, it is a selfextracting directory containing all the

examples. It will save you loads of work typing everything in.

The last four chapters have a few advanced examples, you might want to
postpone examining them until you have taken a look at the other examples.

We will learn to use the registers of the SATURN in due course but it is useful
that you know them now:

Registers Description Communicates with: Width in
nibbles

A working register | All, except RSTK, ST, P 16

B, D working register |C, A 16

C working register | All 16

RO...R4 scratch registers |C, A 16

DO, D1 memory pointer |C, A 5

DATO, DAT1 memory itself C A 2720

RSTK return stack C 5

PC program counter |C, A 5

IN IN register C, A 4

ouT OUT register C,A 3

P field selector C 1

ST status bits C 4

To read from memory you set DO (or D1) to the correct value and then do
A=DATO f. f Is a field selector

The working and scratch registers are 16 nibbles wide and operations can work

on different fields.

[P-P]
[0-P]
[2-2]
[0- 2] | S|

[15- 15]

[3-14] | <

wn

>PESWIOXXZT

[0- 15]
[0-4]

Field Selection

[0-1] | <eeemmmmmmmmmmoees Wosmmmmmmmmm e

We will use the A field very frequently, it is 5 nibbles wide and the A stands for
Address. As the address space of the SATURN is 5 nibbles. The B register is the
Byte register, it is particularly useful when you are working with strings.

Some examples of instructions

A=CA this speaks for itself; copy the contents of field A of C
to A

A=DATO B copy from memory location DO into A(B)

AR1EX W exchange the contents of A and R1

LC 123 load C with #123h

GOSBVL romroutine calls romroutine

GOSUB subroutine calls subroutine

The code is set in blue font for better readability.

1. Basics

Generally, ML objects are called from RPL (User/Sys) and when they finish they
need to return to RPL again. This means that certain registers must contain the
right values.

D (A) the amount of free mem (in chunks of 5 nibbles)
D1 points to top of the stack (level 1)

DO points to the runstream

B (A) pointer to top of return stack

It is *IMPERATIVE* that you set these correctly before you return to RPL. You
may crash your calculator if they are wrong. Also the field selector register P
must be 0.

EXAMPLE 1.1 From ASM to RPL

When finishing a ML program you need to set the Program Counter (PC) to the
next object in the runstream.

DO contains an address which has the address of the next object in the
runstream.

"CODE

A=DATO A % recall next object in runstream

DO+5 % set DO to "nextnext" object in runstream

PC=(A) % set the program counter to the address A
% is pointing to

ENDCODE

@"

EXAMPLE 1.2 Calling Romroutines

to call a romroutine there are two commands
GOSBVL which means GOSuBVeryLong, and
GOVLNG which stands for GOVeryLoNG.

Remember that GOVLNG does not set the ReturnStack so when you call a
routine with GOVLNG your code will not continue after the romroutine. It is
mainly used for routines that return you to RPL.

Example 1.1 can also be written as

"CODE

GOVLNG Loop

ENDCODE

@"

Loop is a subroutine that does exactly what Example 1.1 does
We use GOVLNG because you do not need to continue after Loop

EXAMPLE 1.3 Saving RPL pointers

The previous examples do not do very much, in fact they do nothing. If we want
to do more we will probably need to use more registers. But remember? We
need to set them back to the right values. Fortunately there are romroutines that
do this for you: SAVPTR saves the RPL pointers and GETPTR recalls them

"CODE

GOSBVL SAVPTR % save RPL pointers, use GOSBVL
% because we want to
% continue after this

GOSBVL GETPTR % get the pointers back

GOVLNG Loop % return to RPL

ENDCODE

@"

There is also a subroutine that does the last two lines in one;
romroutine GETPTRLOOP.

EXAMPLE 1.4 DISPKEY

I want to mention here that there is a romroutine which displays the contents of
all the registers and waits for you to press a key: DISPKEY, you can also call it
with GOSBVL DBUG.TOUCHE

"CODE

GOSBVL SAVPTR % save RPL pointers

DISPKEY % display the registers

GOVLNG GETPTRLOOP % get the pointers back and return
% to RPL

ENDCODE

@

These programs still do not do anything, but it is important that you understand
how they work.

EXAMPLE 1.5 Loading a register with a constant

Quite often you will need to load a constant into a register. You can do this with
P, DO, D1 and A and C. The following program shows how, please step through it
with Jazz or insert DI SPKEY’s.

"CODE

GOSBVL SAVPTR % save RPL pointers

DO= 12345 % load hex digits 12345 in DO
D0= 12 % load 12 into the two least

% significant digits of DO
% DO now has 12312
LA 1234567890ABCDEF % fill A with constant

D=0W % 0 is the only constant that will also
% work with B and D

C=0WwW % clear C to see the next one more
% clearly

P=3 % load the filed selector with 3

LC 123 % load 123 into C but start at digit

% three, C will now contain
% 0000000000123000

P=0 % reset P to O, or else RPL will crash

GOVLNG GETPTRLOOP % get the pointers back and return
% to RPL

ENDCODE

@H

2. The Stack

Quite often you will need your code to work on an object on the stack. D1 points
to the first stack level so we can get the address of the object on the stack there.

EXAMPLE 2.1 Doubling a binary integer
Let's double the binary integer on the stack. We need to make sure there is an
integer on the stack, we use SysRpl to put one there

A Bint (binary integer) is an object with a prologue #02911h and a body of 5
nibbles:

BINT 1 = 1192010000

BINT 12F45 = 1192054F21

A good way to explore the syntax of objects is the command ->H.

BINT1 (put bint on the stack)
CODE
A=DAT1 A % read address of bint
D1+5 % point to next item on stack
% (basically removing level 1)
D+1A % free mem has increased by 5 nibbles
SAVE % MASD syntax for GOSBVL SAVPTR
DO=A % DO now points to the bint in the
% memory
DO+5 % skip the bint prologue
A=DATO A % read the value of the bint
A+A A % double the value

GOVLNG PUSH#ALOOP % does GETPTR, pushes the value of A(A)
% to the stack as a bint and then
% goes to RPL

ENDCODE

@ll

There is also a subroutine that gets the address of the object on the stack and
saves the RPL pointers: "PopASavptr" so we could replace

"A=DAT1 A

D1+5

D+1A

SAVE"

in example 2.1 with

"GOSBVL PopASavptr"

Sometimes you just want the value of the BINT on the stack. POP# gets it for
you. It puts the value of the bint in A(A) but be sure to have the RPL pointers
intact, use it before you do GOSBVL SAVPTR!

Now that we know what binary integers are and how to pop and push them onto
the stack, we can take a look at dividing and multiplying. MULTBAC multiplies
A(A) and C(A) and puts the result in B(A)

EXAMPLE 2.2 Multiplying

BINT10

(put two bints on the stack)
BINT3
CODE
GOSBVL POP# % pop bint 3
R4=A A % save in R4
GOSBVL POP# % pop bint 10 to A(A)
SAVE % save RPL pointers
C=R4 A % Cis 3, Alis still 10

GOSBVL MULTBAC
A=B A

GOVLNG PUSH#ALOOP

ENDCODE

@ll

% multiply A and C, result in B
% can't push B so putitin A
% push A to the stack

To divide two integers we have IntDiv, it divides A(A) by C(A) and puts the result
in C the remainder will be in A.

EXAMPLE 2.3 Dividing

"2 BINT10 BINT3 (put two bints on the stack)

CODE

GOSBVL POP#

R4=A A % save bint 3 in R4

GOSBVL POP# % bint 10 in A

SAVE % save pointers now

C=R4 A % C has bint 3 and A still has bint 10
GOSBVL IntDiv % devide A by C

RO=C A % put the values in RO and R1

R1=A A % because PUSH2# pushes those

GOSBVL GETPTR
GOSBVL PUSH2#
GOVLNG Loop
ENDCODE

@ll

% get RPL pointers
% and push RO and R1
% return to RPL

10

EXAMPLE 2.4 Editing a string

We will now make a string which contains "HP49G"

Because we will get to making objects from scratch in a later stage we will
assume that there is a 5 character string on level 1 of the stack.

strings have the following structure:

prologue, #02A2Ch

length field, 5 nibbles. It has the size of the string in nibbles, including the size
of the length field itself but excluding the prologue. For a 5 character string it is
therefore: 5 nibbles for the length field and 10 nibbles for the 5 characters which
comes to 15 nibbles.

body, the characters

"AAAAA"

CODE

GOSBVL PopASavptr % save RPL and get addr of string

RO=A A % save the addr of the string in RO

D0=A % point to string prologue

D0+5 % skip prologue

DO+5 % skip length

LC 48 % load C register with #48h which is
% the character number of "H"

DATO=C B % write one byte (2 nibbles) to memory

DO+2 % point to next char

LC 50 % character P

DATO=C B % write P

DO+2 % point to next char

LC 34 % character 4

DATO=C B % write 4

DO+2 % point to next char

LC 39 % character 9

DATO=C B % write 9

DO+2 % point to next char

LC 47 % character G

DATO=C B % write G

GOVLNG GPPushROLp % get pointers, push address in RO,
% return to RPL
ENDCODE

@ll

We can condense this significantly by not loading every character separately
but all in one go:

11

CODE
GOSBVL PopASavptr

RO=A A

DO=A

DO+10

LC 4739345048
DATO=C 10

GOVLNG GPPushROLp
ENDCODE

@"

% save RPL pointers and get addr of

% string

% save the addr of the string in RO

% point to string prologue

% skip prologue and prologue

% load "HP49G" in C

% write string

% get pointers, push address RO, return % to RPL

12

3. Tests & loops

Sometimes we need to test something and jump to a another point in the code
(like an IF THEN ELSE if you like). The points to jump to are called labels. The
assembler expects them after a "*" on a new line. The Saturn can perform many
tests on its working registers.

EXAMPLE 3.1 Comparing registers

Let’s see if we can make a program that returns a TRUE flag if the value of the
bint on the stack is #6FEh

HOFE

CODE

GOSBVL POP# % read a bint from the stack to A(A)
SAVE % save RPL pointers

LC OO6FE % this is the number to check

?C=A A -> Equal % if they match jump to equal

GOVLNG GPPushFLoop % if not get ptrs, push FALSE and loop
*Equal

GOVLNG GPPushTLoop % if match push TRUE

ENDCODE

@H

Another useful thing to test for is the Carry. It is set when an overflow (or
underflow) of a register occurs. So if you subtract something from 0 a carry will
be set. This is extremely useful if you want to do something a number of times.

EXAMPLE 3.2 Loops

"CODE
SAVE % we know this by now
LC O000A % load 10 in C
*Labell % you can use any name for a label
C-1A % subtract one from C
% usually the A field is used as a
% counter, although here we could have
% used the B field
GONC Labell % Go to Labell if there is no carry
LOADRPL % MASD speak for GOVLNG GETPTRLOOP
ENDCODE
@"

13

This code will continue to subtract one from C until a carry is set.
Question: How many times will this loop?

No, it doesn’'t loop 10 times. Let’'s count the number of times the code passes
Labell

Contents of C, after C-1 A Carry
1 00009 No
2 00008 No
3 00007 No
4 00006 No
5 00005 No
6 00004 No
7 00003 No
8 00002 No
9 00001 No
10 00000 No
11 FFFFF Yes

It loops 11 times, so that is one more than what you start with.

EXAMPLE 3.2A Masd syntax loop

The masd syntax can be used to write this up a bit shorter. It compiles to exactly
the same as example 3.2 Personally I do not use it, but that is because I
learned Jazz syntax first. See the masd documentation for the full masd syntax.
“CODE

SAVE % save RPL pointers

LC 0000A

{C-1 AUPNC } % loop 11 times

LOADRPL

ENDCODE

@11

14

EXAMPLE 3.3 Status bits

The status bits are 16 bits that can be set and tested for easily, they are useful
in keeping one bit data. You can use bits O thru 11, 12 thru 15 are used by the
system, don’t set them if you do not know what you are doing!

"CODE

SAVE % save RPL

CLRST % clear status bits O thru 11
ST=19

?ST=0 9 -> Label2 % if bit 9 is not set jump to Label2
LOADRPL % go back to RPL

*Label2

LOADRPL % go to RPL after jump

ENDCODE

@"

EXAMPLE 3.4 Timer

We will now discuss the built in timer, it decreases 8192 times per second and is
8 nibbles wide. It is located at the address TIMER2. There is another timer called
TIMER1, which decreases 16 times per second and is one nibble wide. We will
use TIMER2 to show you an application of the P register. It takes a bint from the
stack and waits that amount of ticks of the TIMER2.

10000

CODE

A=0W
GOSBVL POP#
SAVE

DO=(5) TIMER2
P=7

C=DATO WP
C-A WP

*Wait

A=DATO WP
?A>C WP -> Wait

P=0

LOADRPL
ENDCODE

@11

(put bint on the stack)

% clear A because we need 8 nibbles
% read bint from stack

% save pointers

% point to TIMER2

% load P with 7

% read nibbles 0 true 7

% subtract the bint

% read timer

% wait until A is equal to C

% or less than C if the moment has
% passed

% reset P to zero or else RPL will
% crash

% get pointers and return to RPL

You can use this code with TEVAL but be sure to put a BINT on the stack.

15

4. Subroutines and the Return Stack

We have seen in example 1.3 that there are some very useful subroutines
already in ROM, but you can make your own. They are called with GOSUB which
behaves the same as GOSBVL but you need to make your own routine

EXAMPLE 4.1 Calling your subroutine

“CODE
SAVE % save RPL pointers
GOSUB Delay % call the subroutine Delay

% put adress of next instruction

% (GOSUB Delay) on return stack
GOSUB Delay % do the delay routine again

% and put the addr of LOADRPL in RSTK
LOADRPL % return to RPL
*Delay % Delay subroutine, it simply loops a

% number of times before returning
LC 03000 % loop #3001h times, can be any number
*DelayLoop
C-1A % subtract one
GONC DelayLoop % goto DelayLoop until Carry is set
RTN % jump to the adress in the return stack
ENDCODE
@

The return stack is a 8 level register that is a LIFO (last in first out) stack. It
holds the address at which your code will continue after the subroutine. It can
also be used as a place to save 5 nibbles. Be sure to remove them, otherwise the
code may jump to that address!

The instructions to manipulate the return stack are limited:

RSTK=C puts the A field of the C register onto the returnstack

C=RSTK reads the address on the return stack into C(A) and removes it from the
return stack.

Also all return commands pop one address from the return stack, and jump to it

EXAMPLE 4.2 Using the return stack
This code is not very useful but is shows how one can use the return stack to

save some data. For example when you do not want to alter any of the other
registers.

16

“CODE

C=DAT1 A % read the adress of the object on the
% stack, if this is O the stack is empty
CD1EX % exchange the registers D1 and C
% so that C has the stack pointer and
% D1 the object from the stack
RSTK=C % save the stack pointer in RSTK because you
% will need it to return to RPL at the end
% of the code
C=DAT1 A % read the prologue, you could do other
% things here
C=RSTK % retrieve the stack pointer from the return
% stack
D1=C % reset D1 to the stack
A=DATO A % recall next object in runstream
DO+5 % set DO to "nextnext" object in runstream
PC=(A) % set the program counter to the address A
% is pointing to
ENDCODE
@

EXAMPLE 4.3 Data inside your code

You can use a combination of a GOSUB and C=RSTK to get an address inside
your code. This can be useful when you have some fixed data which you need
in your code.

“CODE
SAVE % save rpl pointers
GOSUB Data % jump to Data and save the address of the

% next instruction (NIBHEX) in RSTK
NIBHEX C2A20B10008454C4C4F40275F425C444
% NIBHEX is a MASD directive that puts raw
% hex in your code
*Data
C=RSTK % read the address of the data
A=CA
GOVLNG GPPushALp % push the data address to the stack
ENDCODE

@11

We have pushed a string to the stack always be sure that you push good objects
to the stack. A corrupt object may crash the calc.

17

5. Tempob

When you want to make new objects you need to reserve an amount of
memory. The easiest way to do this is to MAKES. It will reserve the memory and
make a string prologue and length. The address of the string will be in RO(A) and
DO will point to the first character in the string.

TempOb must always contain objects, if you put raw hex in it the next garbage
collection will screw up your memory. MAKE$ takes care of this, if you use
CREATETEMP you will have to do it yourself see chapter 8 for this.

MAKE$ will however do a GARBAGE collection if there is not enough memory.
Therefore you should not run any programs containing MAKE$ directly after
compilation, instead store the code in a variable before running it. Also see
chapter 8 for more information on this.

EXAMPLE 5.1 Making a string
We will make a string of 10 characters and make the first one a “A”

“CODE

SAVE % save pointers

LC O000A % number of characters
GOSBVL MAKE$ % make the string

LC 41 % character code for “A”
DATO=C B % write the first character

GOSBVL GPPushROLp % get pointers and push string to stack
ENDCODE

@H
You will notice that the first character is an “A” but the rest of the string looks

like garbage. This is because MAKE$ does reserve the memory but it will contain
the leftovers from previous use. You will have to fill it in yourself.

18

EXAMPLE 5.2 Writing in ML
Let’s fill the string with the ten numbers 0 to 9. We shall now use P as a counter,
it is only one nibble wide so we can use it only for loops that loop 16 times or

less

“CODE

SAVE

LC 0000A
GOSBVL MAKES$
LC 30

P=6

*Write

DATO=C B
C+18B

D0O+2

P+1

GONC Write
GOSBVL GPPushROLp
ENDCODE

@11

% save pointers

% number of characters

% make the string

% character “0”

% 16 minus the number of loops

% write the character

% next character

% point to next character

% increase until P= zero again

% loop 10 times

% get pointers and push string to stack

It is important that P is reset to zero, because returning to RPL requires it.

19

EXAMPLE 5.3 Shrinking the string

Sometimes you do not know how big an object will be when it is finished, so you
need to reserve sufficient memory and free the remainder when you are finished.
We can use a routine called Shrink$ that does just that. In the following code we
do know how big the object will be but that is beside the point. We will put the
values of B(A) and D(A) in a list and push it to the stack.

“CODE
SAVE

LC 01000
GOSBVL MAKE$
LC 02A74
DATO=C A
DO+5

LC 02911
DATO=C A
DO+5
C=BA
DATO=C A
DO+5

LC 02911
DATO=C A
DO+5
C=DA
DATO=C A
DO+5

LC 0312B
DATO=C A
DO+5
GOSBVL Shrink$

A=R0O A

A+10 A

GOVLNG GPPushALp
ENDCODE

@11

% reserve 1000 bytes

% DOLIST prologue

% write it

% point to next addr

% DOBINT prologue

% write it

% and point to the next addr again

% write value of B(A)

% do all this again for D(A)

% load SEMI
% and write it to terminate the list

% Shrink$ will shrink the string to the

% current DO with the addr of the strin
% prologue in RO

% RO is the string prologue

% the list prologue is 10 nibbles down

% pust it to the stack

20

6. The Screen

Because ML is so fast it is very useful for displaying graphics on the screen. We
will start with writing something to the screen.

EXAMPLE 6.1 The Screen

Let’s see if we can put some pixels on the screen, don’t be afraid it only looks

like a crash!

"CODE

SAVE

GOSBVL "D0O->Row1"

D1=A
D0=00000
LC(5) 34*56

GOSBVL MOVEDOWN
C=0A

*Wait

C+1A

GONC Wait

LOADRPL

ENDCODE

@ll

% this sets DO to the first

% nibble of the screen buffer

% A also contains the address

% point DO to an address in mem
% load 5 nibbles of C with 34*56
% 34 nibbles per line 56 lines

% copy C nibbles from DO to D1
% make a little loop to allow

% some time for viewing the text

% return to RPL

21

EXAMPLE 6.2 Writing to the Screen

While writing nibbles to the screen can be entertaining it may be more useful to
write readable text.

"CODE

SAVE

GOSBVL "D0O->Row1" % point DO to screen

GOSUB Data

NIBHEX 8454C4C4F40275F425C444

*Data

C=RSTK % remember this from EXAMPLE 4.3?

D1=C % point to characters

LC 00005

B=C A % B is the offset of the text in nibbles

LC 00022

D=CA % D is the width of the screen
% usually it is 34 (#22h)

LC 0000B % C is the number of characters

GOSBVL "$5x7" % display the text in the screen

C=0A % make that loop again

*Wait

C+1A

GONC Wait

LOADRPL % return to RPL

ENDCODE

@"

And there we have the program you learn in every language!

EXAMPLE 6.3 DISPADDR

There is a very handy address called DISPADDR at #00120h you can write an
address at this position and the system will start displaying the data at that
address. DISPADDR is *WRITE* only

So we can rewrite example 6.1 as

"CODE

SAVE

DO= 00120 % DISPADDR

A=0 A % the address of the new screen
DATO=A A

LOADRPL % return to RPL

ENDCODE

@"

22

You noticed that there is no wait loop, this is because the DISPADDR pointer is
not updated after the code is finished. To update the screen you could generate
an error or reset the original pointer.

EXAMPLE 6.4 Greyscales [ADVANCED]

Greyscales are basically very simple. Since the pixels on the screen have only
two states (on/off) you need to turn a pixel on and off really quick to get a grey
pixel. The 49 has a grey grob type, which we shall not use. It is more
instructional to use the old method of two 131*64 grobs, one beneath the other
in a single 131*128 grob. This is also the format used by most PC based
conversion programs. (I think XNView is very good). It means that with two
grobs you can have 4 colours. The “heaviest” grob is the top one

First we need to create a greyscale grob. We do this in UserRPL.

<<

#131d #128d BLANK {#0d #0d} #131d #32d BLANK NEG REPL {#0d #64d}
#131d #16d BLANK NEG REPL {#0d #96d} #131d #16d BLANK NEG REPL

>>

The code will take the resulting grob as an argument on level 1 on the stack
MAKE SURE there is a 131*128 grob on the stack or it may crash

“CODE
ST=0 15 % this turns off some interrupts

% see below for further explanation
GOSBVL =PopASavptr % get the address of the grob

A+20 A % point to grob body of heaviest grob
B=AA % save addr in B
GOSBVL "D0O->Row1" % get the addr of the current screen
RO=A A % save it in RO
LC(5) 64*34 % 64 lines and 34 nibbles per line
C+B A % Add to addr of first grob so that
A=CA % A has the addr of grob2
DO= 00100 % #00100h is BITOFFSET you can move the
C=DATO X % screen pixel by pixel by altering it
RSTK=C % save current bitoffset in RSTK
?ABIT=0 0 -> EVEN % if addr of grob is even no need to

% shift
LCC % shift 4 bits left (-4=C)
DATO0=C 1 % write new bitoffset
DO= 00125 % LINENIBS contains the number of

% nibbles per line
LC FFF % it has to be decreased because of the
DATO0=C X % new bitoffset

23

*EVEN
DO= 00120
D1= 00128

LC 3F
DAT1=C B

*MAIN
GOSUB PAINT
ABEX A
GOSUB PAINT
GOSUB PAINT
ABEX A

GOSBVL OnKeyDown?

GONC MAIN
ST=115
A=RO A
DATO=A A
LC 37
DAT1=CB
D1-3

C=0A
DAT1=C X
DO= 00

C=RSTK
DATO=C X
LOADRPL

*PAINT

C=DAT1 B

% DISPADDR

% in LINECOUNT you can write the number
% of lines to be displayed

% 64 lines including line 0 so #63d

% subroutine that displays grob in A
% switch grobl and grob2
% display grobl twice

% A has grob2 and B grobl again

% OnKeyDown? returns a carry if the
% On Key is being pressed. If ST 15 is
% clear, holding down ON will halt the
% code until you release it, and the
% code will simply continue

% keep looping until ON key is pressed
% Allow the interrupts again

% Get the old display address

% reset it

% set the linecount back to 55

% 00128 — 3 = 00125 LINENIBS

% set the LINENIBS to O

% load the last two digits of DO with
% 00 (00120 -> 00100 =BITOFFSET)
% get the old bitoffset

% return to RPL

% subroutine that waits until the

% display refresh is at line 0 then

% displays the grob in A

% D1= LINECOUNT, when reading it, it
% has the current display line

% DO= DISPADDR

% read current display line

24

?C#0 B -> PAINT % until it is O

DATO=A A % write addr of grob

*WAIT

C=DAT1 B % wait until line is no longer 0
?C=0 B -> WAIT % or the screen may flicker
RTN % return from subroutine
ENDCODE

@

25

7. The Keyboard

The keyboard can be read from the IN register, it must be run from a even
address. This is why we use the romroutine “CINRTN” or “AINRTN”

The IN register is 4 nibbles wide and the bits O to 8 are used for the keys, bit 11
is set if ON is pressed. It more or less tells you which row the key is on.

OUT is a three nibble wide register which is used to determine the “column” of
the key.

EXAMPLE 7.1 Waiting for a key
This program waits for a key to be pressed and then returns the value of the IN
register.

“CODE

SAVE

LC 1FF % we need to set the out register to
% nine ones

ouT=C

A=0A % clear 5 nibbles of A because the IN
% register is only 4 nibbles wide

*MAIN

GOSBVL AINRTN % read the IN register

?A=0 X -> MAIN % if no key then zero don’'t check for ON

GOSBVL Flush % flush the key, or else it will be

% executed after the code
GOVLNG PUSH#ALOOP % push the number to the stack
ENDCODE

@11

26

EXAMPLE 7.2 Reading the key code

To read a key you need to set a mask in the out register, if you set one bit only

keys from that column will result in an IN value.

This program waits for a key press and return the IN and OUT registers to the

stack.

“CODE
SAVE
ST=0 15
C=0A
C+1A
A=0A

*“MAIN
P=0

C+CA

?CBIT=0 9 -> RESET
C=0A

C+1A

*RESET

ouT=C

GOSBVL AINRTN
P=3

?A=0 WP -> MAIN

P=0

RO=A A

R1=C A

ST=115
GOSBVL Flush
GOSBVL GETPTR
GOSBVL PUSH2#
GOVLNG LOOP
ENDCODE

@H

% turn off interrupts

% load C(A) with 1

% this is shorter than LC 00001
% clear A

% set P to zero, it may be three
% after the test for IN

% shift C left one bit

% OUT uses only 9 bits

% so set bit 0 again

% set the OUT mask

% read the IN register

% test only 4 nibbles

% if not zero then key pressed from this
% column

% reset P to zero

% RO is the IN value

% and R1 has OUT

% allow interrupts again

% flush keys

% Get the RPL pointers

% push RO and R1 to the stack
% back to RPL

EXAMPLE 7.3 Beeping in ML [ADVANCED]

The out register can also be used to make beeps, the process is complicated but
luckily we have the “makebeep” romroutine. It takes the pitch in Hz in D(A) and
the length in msec in C(A). We shall now look at a piece of code that plays a
hxsstring. The format of this string must be:

27

Hxsprologue, hxslength, pitchl, lenl, pitch2, len2, Jpitch#n, len#n.

With pitch and len in three nibbles.

EG HXS 0000C 8B1046601046, this would play an A and a C of 1,6 seconds
To easily create these strings take a

http://www.hpcalc.org/details.php?id=4698

look at my NOKIA program

I've added a song already, you may have to remove the linefeeds in the

hxsstring

HXS 000FC

C024B0000500C024B0C028618818614924B00005004924B0492861C02861C0286
14924B00138610134B00005000134B0AB24B00005004924B0C42861C424B0000B
00C424B00005004924B0AB2861AB28614924B0000500C424B0492861C02861C0

24B00005004924B0C428610005008814BOEE14B0000500C424B0C02861

CODE

GOSBVL =PopASavptr

D1=A
D1+5
C=DAT1 A
C-11 A

GONC NULL
LC 00203
GOVLNG GPErrjmpC
*NULL
RSTK=C
A+10 A
R4=A A
*MAIN

A=R4 A
D1=A

C=0 A
C=DAT1 X
D=C A
D1+3
C=DAT1 X
D1+3

AD1EX

R4=A A
?D#0 X -> NoPause
GOSUB WAIT
GOTO SKIP
*NoPause

% get the addr of the hxs string

% point to length of hxsstring

% read length

% subtract 5 for length and 6 for

% predecrease

% if hxs smaller than 6 nibbles

% error out with “bad argument value”

% save length in RSTK

% A has addr of first pitch

% save in R4, make beep changes almost
% every regqister

% get addr of pitch

% point to it

% clear C, since makebeep uses 5 nibbles
% read pitch

% D(A) must have the pitch

% point to length of beep

% read it

% point to next pitch

% save it in R4

% if pitch is O then it is a pause
% do the wait subroutine

% and skip the beep

28

http://www.hpcalc.org/details.php?id=4698

GOSBVL =makebeep
*SKIP

C=RSTK

C-6 A

GONC END
LOADRPL

*END

RSTK=C

GOTO MAIN

*WAIT

DO=(5) TIMER2
A=0 W

A=C A

A+A A

A+A A

A+A A
CSRB A
CSRB A
CSRB A
A+C A
CSRB A
A+C A

CSR A

A+C A
CSRB A
CSRB A
CSRB A
A+C A

P=7
C=DATO WP
C-A WP
*WLOOP
A=DATO WP
2C<A WP -> WLOOP
P=0

RTN
ENDCODE

@H

% beep at pitch D(A) for C(A) msec

% get the remaining length of the hxs
% decrease by 6 nibbles per beep

% and go to RPL if end is reached

% return to RPL

% save count in RSTK
% and return do next beep

% Wait subroutine, waits for C(A) msec

% we need to calculate the number of

% ticks you have to wait, so multiply C

% with 8.192 ticks per msec

% 1/8 + 1/16 + 1/256 + 1/2048 = 0.19189
% point to 8 nibble counter

% clear A

% get msec’s

% multiply by 8

% add 1/8 msec’s
% C= 1/16 msec's

% C= 1/256 msec’s

% C= 1/2048 msec’s

% 8 nibbles
% read counter
% subtract number of ticks

% read counter

% loop until it is time

% reset P

% and return from subroutine

29

8. Garbage collections

For certain programs you will need a lot of memory, then a garbage collection
may be necessary. This code cannot be run from port 1 or 2 or TempOb, the
garbage collection might move the code itself and the PC (program counter)
would not point to the correct address. After compilation store it in a variable in

your directory.

Let's see how it is done.

EXAMPLE 8.1 Garbage collections

“CODE
SAVE
LC OF000

R4=C A
GOSBVL CREATETEMP
GONC MemOk

GOSBVL GARBAGECOL
C=R4 A

GOSBVL CREATETEMP
GONC MemOk
GOVLNG GPMEMERR

*MemOKk
ADOEX
DO=A
LC(5)DOCSTR
DATO=C A
DO+5
C=R4 A
C-5A
DATO=C A
GOVLNG GPPushALp
ENDCODE

@11

% save rpl pointers

% 30 kB of room, you can change the
% amount to see how the garbage

% collections work

% save it in R4

% reserve the mem

% if no carry, it all worked

% if carry was set there is to little

% free mem

% and we need to do a garbagecollection
% get the 30 kB again

% and try again to reserve the room
% if no carry goto MemOk

% if still not enough room, error out
% with a “not enough memory” error

% get the addr of tempob

% load the string prologue

% write it at the start of tempob

% point to length of string

% size of tempob

% subtract 5 nibbles for the prologue
% write length

% push it to the stack

To make programs that can run from port 1 or 2 we need to use a little trick.
We will do the garbage collection in SysRPL. It will move the code but the PC will

be correct.

30

EXAMPLE 8.2 Garbage collections from TempOb

It is important that, if your code needs arguments from the stack, you do not

change the stack before you test the amount of memory. The code should be

“restartable” after the GPMEMERR

ERRSET
CODE
GOTO Start

ENDCODE
ERRTRAP

GARBAGE
CODE
*Start

SAVE

LC OF000

R4=C A

GOSBVL CREATETEMP

GONC MemOk

GOVLNG GPMEMERR
*MemOKk

ADOEX

DO=A

LC(5)DOCSTR

DATO=C A

DO+5

C=R4 A

C-5A

DATO=C A

GOVLNG GPPushALp

ENDCODE

@H

(start the errortrapping structure)

% goto the Start label in the next CODE

% object

(if an error is found do the)
(garbagecollection and start the code)

(again)

(This is only done after an error)

% Label to jump to from the first CODE

% object

% reserve 30 kB
% save for length

% error if not enough memory

% get the addr of tempob
% load the string prologue
% write it at the start of tempob
% point to length of string

% size of tempob

% subtract 5 nibbles for the prologue

% write length

% push the string to the stack

If there is not enough memory after the garbage collection you will get the

“insufficient memory” error

31

EXAMPLE 8.3 Reserving all memory [ADVANCED]
There is a romroutine that reserves all the possible memory in a string, but leave
room for pushing it to the stack. This is particularly useful when you do not know
how much memory you will need. The romroutine is MAKERAMS. It will return
the size of the string in D(A). You will have to make sure that you do not write
anything outside of the string, so we will use D as a counter. We will now discuss
a complicated example. It puts all the words in a string separately in a list. You
cannot know how much memory you will need so we will reserve all the memory.
We will also show how to leave the string on the stack in case you want to use
the GARBAGE trick of example 8.2

"wordl word2
word3 word4"

CODE

A=DAT1 A

R4=A A

SAVE

GOSBVL MAKERAM$
A=R4 A

D1=A

D-10 A

GOC MEMERR

LC(5)DOLIST
DATO=C A
DO+5

D145
C=DAT1 A
C-7A

GOC NULL
CSRB A
B=CA
D1+5
*START
LC 20

*MAIN
A=DAT1 B

(sample string, you can also use)
(the source itself)

% get the address but leave it on the
% stack and save it in R4

% reserve all memory

% get the string address

% point to string prologue

% D has the remaining nibbles in the

% TEMPOB string, decrease 10 nibbles
% for the DOLIST prologue and the SEMI
% if carry then not enough memory so
% error out

% write DOLIST prologue

% skip it

% skip sample string prologue

% read size of string

% subtract 5 and 2 for predecrease
% it now has the number of nibbles
% minus two of the sample string
% if carry then null$

% number of characters minus one
% use B as a character counter

% skip length

%

% use any character under #21h as a
% separation character

% read character

32

?C<A B -> BLACK

D1+2

B-1A

GONC MAIN

*NULL

LC(5)SEMI

DATO=C A

DO+5

GOSBVL Shrink$

A=RO A

A+10 A

GOVLNG GPOverWrALp

*MEMERR
GOVLNG GPMEMERR

*BLACK
D-10 A

GOC MEMERR
CDOEX

DO=C

R1=C A
LC(5)DOCSTR
DATO=C A
DO+10

A=0 M

LC 21

*CLOOP

A=DAT1 B

?A<C B -> WHITE
D-2 A

GOC MEMERR

% if A is greater than 20 it is a

% character and therefore a word
% we have to make a new string in
% TEMPOB

% if not it is a separation character
% so skip it

% decrease counter in B

% if carry then end of string

% load SEMI

% write it, to terminate the string

% skip the SEMI

% Shrink the string

% read the address of the TEMPOB string
% point to the address of the list

% overwrite the string on the stack

% and push the list, return to RPL

% jump here if there is to little mem

% jump here if you find a new word
% you need 5 nibbles for the prologue
% and 5 for the size

% memory error if carry

% get the address of the string in C
% and R1
% string prologue

% skip prologue and length because we
% do not know the size of the word yet
% clear nibbles 3 thru 14 of A

% we will use it as a counter, since we
% will use only the B field of A for

% the characters

% load character 33 any character

% smaller than that is a separation

% character

% read character

% check for separation character

% decrease memory for one character
% error out if not enough memory

33

DATO=A B
A+1 M

D1+2

DO+2

B-1A

GONC CLOOP
B+1A

*WHITE
ASR W

ASR W

ASR W

A+A A

A+5 A
C=R1A
CDOEX
DO+5
DATO=A A
DO=C

?B#0 A -> AGAIN
GOTO NULL

*AGAIN
GOTO START
ENDCODE

@ll

% write the character

% add one to word size counter

% skip character in sample string

% also skip it in the word

% decrease sample string char counter
% end only if sample string ends

% then add one to B

% when word ends jump here
% shift A(M) to A(A)

% double to get size in nibbles
% add five for length field
% get address of word prologue

% point to string length field

% write it

% and put DO back to addr after word
% if B=0 then the sample string ends
% we need a GOTO here because

% GONC can only jump 256 nibbles

% start a new word

34

9. Memory Banks

The ports of the 49 are a very good place to keep your libraries and backup data.
Sometimes you need to access one of the banks in a port or perhaps in ROM
itself. You can do this with ACCESSBankO, ACCESSBankl to ACCESSBank15.
They “open” the bank if P=0 and they “close” it if P=1. Other values for P have
different operations but that goes to far here.

EXAMPLE 9.1 Reading the serial number
Let’s read the serial number of your 49, it is in BankO.

“CODE

SAVE

LC O000A % it is a string of 10 characters

GOSBVL MAKE$ % so make one!

ADOEX

D1=A % get the addr of the body of the
% string in D1 and A

P=0

GOSBVL ACCESSBank0 % select the bank0

DO= 40130 % the ID is at this address

LC 00014 % copy 20 nibbles

GOSBVL MOVEDOWN

P=1 % P=1 means return from that bank

GOSBVL ACCESSBank0

GOVLNG GPPushROLp % push the string to the stack

ENDCODE

@

To work with libraries you should know how to access them in ML. There is a
librarytable in memory which has the three nibble library ID and the address of
the library itself, as well as the address of the romroutine that you have to call to
access the bank in which the library is located. The address of the lib points to
the libid in the library itself and not to the prologue!

The access routine should be called with a little trick you will see that in the
example.

35

EXAMPLE 9.2 Reading a library title from a port [ADVANCED]

This is an advanced example and you need to know a little about libraries to

really understand it.
1790

CODE

GOSBVL POP#
SAVE

LC 101

?A>C X -> LibOk

LC 00203

GOVLNG GPErrjmpC
*LibOk

DO= 8611D
C=DATO0 X

B=C X

D0-13

*Find

DO+16

B-1 X

GONC END

GOVLNG GPPushFLoop

*END

C=DATO X
?A#C X -> Find
DO0+3

A=DATO A
R1=A A

DO+5

C=DATO A
R2=C A
GOSUB CallBank
DO=A

D0-2

C=0A
C=DATO B
C+CA
C+10 A

(library id of Emacs, you can change this)

% get the id

% check if it is larger than 257

% test only last three digits because

% that is what you will be working with
% bad argument value error

% addr of libcount (number of libs)

% store it in B(X) as a counter
% +3 —16 skip lib count but
% “predecrease” because you do a DO+16

% next

% point to next libid

% push False if end of libtable, so

% that lib is not there

% read lib id

% if not same then next one

% skip lib id
% read addr of lib
% save in RO

% point to access routine

% save it in R2

% call the access routine

% point to libid in lib

% point to second title length field
% title itself will be in front of it

% clear C

% read title length in bytes

% title length in nibbles

% add 10 nibbles for prologue and

36

GOSBVL CREATETEMP
GONC MemOk
GOVLNG GPMEMERR
*MemOKk

A=R1 A

ADOEX

RO=A A

D1=A

LC(5)DOCSTR
DAT1=CA

D1+5

D0-2

C=0A

C=DATO B

C+CA

A=CA

C+5 A

DAT1=CA

D1+5

CDOEX

C-AA

CDOEX

C=AA

GOSBVL MOVEDOWN
P=1

GOSUB CallBank
P=0

A=RO A

GOSBVL GPPushA
GOVING PushTLoop

*CallBank

C=R2 A
?7C=0 A RTNYES

PC=C
ENDCODE

@ll

% length

% reserve the room
% if not enough room
% error out

% get addr of libid again
% put it in DO

% and point D1 to TEMPOB
% string prologue

% write it

% skip it

% point to title length

% length in nibbles
% also store it in A
% add 5 for length of stringlength

% point to body of string

% get addr of title length field
% subtract length

% point DO to beginning of title
% copy C nibbles

% P=1 to return from the bank
% call the access routine again
% P could be 1 if library is in RAM
% get the addr of TEMPOB

% push it to the stack

% push true and go to RPL

% routine to access a bank

% before calling it R2 should contain

% the address of the accessroutine from
% the librarytable

% get the accessroutine address

% return if C=0, which means that the
% library is in RAM

% point the programcounter to the

% access routine

37

	HP49 Assembly Language Examples
	Contents
	HP49 Assembly Language Examples	2
	1. Basics
	EXAMPLE 1.1 From ASM to RPL
	EXAMPLE 1.2 Calling Romroutines
	EXAMPLE 1.3 Saving RPL pointers
	EXAMPLE 1.4 DISPKEY
	EXAMPLE 1.5 Loading a register with a constant
	2. The Stack

	EXAMPLE 2.1 Doubling a binary integer
	EXAMPLE 2.2 Multiplying
	EXAMPLE 2.3 Dividing
	EXAMPLE 2.4 Editing a string
	3. Tests & loops

	EXAMPLE 3.1 Comparing registers
	EXAMPLE 3.2 Loops
	EXAMPLE 3.2A Masd syntax loop
	EXAMPLE 3.3 Status bits
	EXAMPLE 3.4 Timer
	4. Subroutines and the Return Stack

	EXAMPLE 4.1 Calling your subroutine
	EXAMPLE 4.2 Using the return stack
	EXAMPLE 4.3 Data inside your code
	5. Tempob

	EXAMPLE 5.1 Making a string
	EXAMPLE 5.2 Writing in ML
	EXAMPLE 5.3 Shrinking the string
	6. The Screen

	EXAMPLE 6.1 The Screen
	EXAMPLE 6.2 Writing to the Screen
	EXAMPLE 6.3 DISPADDR
	EXAMPLE 6.4 Greyscales [ADVANCED]
	7. The Keyboard

	EXAMPLE 7.1 Waiting for a key
	EXAMPLE 7.2 Reading the key code
	EXAMPLE 7.3 Beeping in ML [ADVANCED]
	8. Garbage collections

	EXAMPLE 8.1 Garbage collections
	EXAMPLE 8.2 Garbage collections from TempOb
	EXAMPLE 8.3 Reserving all memory [ADVANCED]
	9. Memory Banks

	EXAMPLE 9.1 Reading the serial number
	EXAMPLE 9.2 Reading a library title from a port [ADVANCED]

