
Coding 50g User RPL math functions
for size and speed: stack math, algebraic

expressions, and local variables

D.A. Burkett
17 April 2024

We have two options when writing userRPL code to evaluate formulas. The
first option is to translate the formula to a sequence of userRPL commands
and functions, including commands to move and copy operands on the
stack. I will call this option ‘stack math’. The second option is to define
the formula as a ticked algebraic expression, such as 'a * x + b', where a, x,
and b are local variables. This method will be called ’expression math’.

Writing stack math programs to evaluate complicated functions is time-
consuming. Using expression math can simplify and speed up program
development, but what penalty is incurred in code size and execution time?
Fast execution matters if the function is evaluated dozens or hundreds of
times for plotting, numerical integration, or numerical solving, or if the
program is applied to large lists. Code size is always relevant for calculators
with limited memory.

We are interested in approximate numeric results so the mode settings
used are Numeric, Approx, Complex, and Radians, with Number Format set to
Std. For this comparison we will not optimize the formula or code for
accuracy, overflow, underflow, or maximum input domain.

The following equation∗ is used as a test case.

f(x) =
2

b

√
(bx+ c)

(
bx+ c+

b2

4

)
+

b

2
arsinh

(
2
√
bx+ c

b

)
(1)

Let
t1 = bx+ c, t2 = 2/b, t3 = b/2

then equation (1) can be written as

f(x) = t2

√
t1(t1 + t23) + t3 arsinh(t2

√
t1) (2)

We’ll write a few programs using stack math and expression math to
evaluate equation (1) and compare program size and execution time. All
of the programs have the same stack I/O definition:

3 c

2 b =⇒
1 x f(x)

∗The equation finds the arc length of a parabola segment, from section 11.14 of An
Atlas of Functions, 2e, Keith Oldman et al. ‘arsinh’ is the inverse hyperbolic sine, the
50g function is ASINH.

1



The first program, F1 (shown in Table 1), uses stack math to evaluate
f(x) without local variables. The code is not particularly optimized but
that’s sort of the point: we want a fairly naive implementation to compare
with the other methods. The capital letters A, B, … in the stack diagram
indicate these intermediate results:

A = t2
√
t1 B = arsinh(A) C = t3B

D = t1 + t23 E = t1D F = t2
√
E

Table 1: Program F1 code and stack diagram (checksum #E284h)

Instruction 1: 2: 3: 4: 5: 6:
« x b c

OVER b x b c

* bx b c

ROT c bx b

+ t1 b

SWAP b t1
DUP b b t1
2. 2 b b t1
/ t3 b t1
2. 2 t3 b t1
ROT b 2 t3 t1
/ t2 t3 t1
3. 3 t2 t3 t1
DUPN t2 t3 t1 t2 t3 t1
ROT t1 t2 t3 t2 t3 t1
√ √

t1 t2 t3 t2 t3 t1

* A t3 t2 t3 t1
ASINH B t3 t2 t3 t1

* C t2 t3 t1
4. 4 C t2 t3 t1
ROLLD t2 t3 t1 C

SWAP t3 t2 t1 C

SQ t23 t2 t1 C

PICK3 t1 t23 t2 t1 C

+ D t2 t1 C

ROT t1 D t2 C

* E t2 C
√ √

E t2 C

* F C

+ f(x)

»

Note that eleven of the thirty instructions just copy and move things on
the stack, which seems excessive. But we’ll press on.

2



The second program F2 uses expression math and is perhaps the fastest
program to write, as long as you get all the parentheses in the right places.
The algebraic expression is a (mostly) direct translation of equation (1).
Note that EVAL must be used to evaluate the expression to a numeric result,
and that local variables can be used within the expression.

Program F2, expression math (checksum #D5D1h)

« → c b x
«
'2.*

√ ((b*x+c)*(b*x+c+SQ (b)/4.))/b+b*ASINH (2.*
√ (b*x+c)/b)/2.'

EVAL
»»

The third program F3 also uses expression math, but pre-computes the
term t1 = bx+ c and saves it in local variable t to reduce the program size
and execution time.

Program F3, expression math, pre-compute t1 (checksum #BF63h)

« OVER * ROT + → b t
«
'2.*

√ (t*(t+SQ (b)/4.))/b+b*ASINH(2.*
√ t/b)/2.'

EVAL
»»

The fourth program F4 uses stack math, but pre-computes terms t1, t2,
and t3 and saves them as local variables p, q, and r, respectively.

Program F4, stack math with local variables (checksum #B6FC)

« OVER * ROT + SWAP 2. / DUP INV → p r q
«
p √ q * ASINH r * r SQ p + p *

√ q * +

»»

Each program was tested with b = 5, c = 3, and x = 2, and all four
programs return 9.23341584302. The table below shows the program size
and the execution time returned by TEVAL. The reported times for F1 and
F4 are the average of ten executions.

Program Description Bytes Time (s)

F1 Stack math without local variables 89.0 0.0448
F2 Expression math 163.5 0.4360
F3 Expression math, pre-compute t1 = bx+ c 127.0 0.2726
F4 Stack math with local variables 116.5 0.0465

3



Some conclusions and observations:

• Implementing the function with stack math and without local vari-
ables results in the smallest, fastest program (F1).

• Expression math results in larger programs and dramatically increased
execution time; compare 0.436 seconds for F2 to 0.0448 seconds for
F1: using expression math takes almost ten times as long.

• Execution time and code size of expresssion math programs can be
reduced by pre-computing subexpressions, if possible, as shown in
program F3.

• Local variables incur a small execution time penalty in stack math
programs. Program size is increased, but the resulting code is more
straightforward and easier to understand without a stack diagram.

• Despite the longer execution time and larger code size, expression
math programs are useful to test formula evaluation for correctness
and accuracy before putting the time and effort into a stack math
program. The expresson math version can then be used to test the
stack math program for correctness.

• If a function is only to be evaluated occasionally from the keyboard,
expression math is probably adequate.

4


