Enabling User Interaction — Integrating Menus and the Keyboard

You’ve probably noticed in just about every software application you’ve ever installed a method for
handling commands. In many windows applications, you will find that commands can be instigated by
events such as keyboard shortcuts (accelerators), menu items, buttons, mouse events (such as right
click, drag/drop and double-click), timers, and even a USB connection. Depending on the function of
the application, each of these events will be managed by the appropriate command handler and in turn,
a single action or sequence of commands will be performed. With HP programming, the two most
common forms of interacting with a program is the keyboard and on-screen menu.

If you were like us, the first thing you did when you removed your HP out of the box was create your
own custom menu and keyboard shortcuts using the standard CST and user keys methods. Just
looking at the standard HP menus and keyboard no doubt made you feel cluttered by the number of
functions that are available to you, and perhaps frustrated that there was so much of little use to your
business needs. Persevering one afternoon with a stiff coffee and your user manual, you soon enough
had direct access to many system commands and via a single key press. Your computing world was
one bit simpler.

So how do you incorporate these into a System RPL program? How are the desired menu keys drawn
to the screen? Where on the screen can I put them? How do you handle hierarchical menus? How can
these menu commands be mapped using the keyboard? What about handling a single key press? What
about a right-shift (green) or a left-shift (purple) key press? With a small amount of effort, access to
your favourite program commands can be handled using some relatively simple programming
techniques.

Parameterised Outer Loop —the Command Handler

Knowing exactly when a key has been pressed is not a simple process. Writing the necessary code to
manually poll or watch all sources of input for the appropriate input command is a complex task and
will usually involve some assembly programming. To handle the input messages correctly, you will
need write a program that runs in a continuous loop to process every user input action, testing what
key was pressed and then handling it with the appropriate command. Fortunately, System RPL
provides an easy, high-level method for input and command handling in a very simple loop that won’t
compromise your processing power — the Parameterised Outer Loop: ParOuterLoop.

Parameterised outer loop functions just like a Windows message map. It is a structure that enables you
to create a comprehensive program that can receive keystrokes and perform different actions based on
the key that was pressed. The loop is repeated infinitely until an exit condition or a system command is
sent, such as the standard key commands canceL or prop. Basically, you simply determine which
keyboard messages (commands) you want to trap and then define the function(s) to handle that
command.

Using a parameterised outer loop to handle your program input requires you to state nine input
arguments. These are described as follows:

1. Screen Display This object is evaluated before each key is evaluated and should be
used to refresh the screen (where the keys do not), local variable
initialisation, and any other special error conditions.

2. Key Handlers This object sets up the custom key mapping to override the
functionality of a particular key. These objects may return values to
the stack.

3. Key Handle Flag TRUE: Non assigned keys perform their normal action.

raLse: The keys not assigned are cancelled.

Standard Handle Flag

Menu

Initial Menu Row

Run-time Environment Flag

Exit condition

Error Function

TrUE: Standard key definitions are used for non-application keys.
rFaLsE: The key processing defaults are used.

The menu specification. There are a few ways of handling menu
input. For this issue, we will use the method of using key
assignments to handle menu buttons, whereby a standard menu
label is created using graphic objects (grobs).

If a single menu level spans more than one row (ie. contains more
than six items), this argument specifies the row which should
appear first. Hence, this should be ONE.

TrRUE: If any command or object evaluation forces a suspended
environment or restart, the loop instead sends an error message.
raLseE: The command or object is evaluated as normal.

This object is evaluated before each update or key evaluation, and
determines whether the loop should continue. If the result is TRUE,
the loop exits.

The definition (or code body) of the object to be evaluated when an
error message is sent.

After placing these arguments on the stack, execute the command parouterLoop. The command does

not return any results to the stack.

Lets look at the code to use ParouterLoop. Using our program to convert polar to rectangular
coordinates, we’ll write a command handler for processing some keyboard commands using a simple
menu. Logically, we'll call it comvanp_sanpiLeR. Basically, we want Key A to initialise a vector list
and run a loop that prompts the user for bearings and distances, Key B to display the resultant missing
bearing and distance, and Key C to display the equivalent departure and latitude.

R L R S S T

*

*

*

*

FUNCTION NAME:

INPUT:
OUTPUT:

COMMENTS :

Nil
Error on Exit.

COMMAND_HANDLER

Sets menu display and key conditions.

R S T

ASSEMBLE

CON (1)

RPL

NULLNAME COMMAND_HANDLER

GARBAGE

8 * Tell parser

'Non algebraic'

(clear memory)

FALSE { LAM exit } BIND (exit condition variable)

DEFINE kpNoShift ONE (single key press in un-shifted plane)

DEFINE kpLeftShift TWO (Purple key press for left-shifted plane)

DEFINE kcMenuKeyl ONE (A Key, Row 1, Column 1)

DEFINE kcMenuKey2 TWO (B Key, Row 1, Column 2)

DEFINE kcMenuKey3 THREE (C Key, Row 1, Column 3)

DEFINE kcMenuKey6 SIX (F Key, Row 1, Column 6)

(set up the main keyboard buttons - for ease of reading)

L} ..
(1. Draw the screen display and menu buttons - using standard menu grobs.)
(See the following section on Menus for the definition of MENU_BUTTONS)
MENU_BUTTONS__

’

kpNosShift #=casedrop

kcOn ?CaseKeyDef

(2. set up the key handlers)

(process un-shifted plane)

(was the On Key pressed?)

TakeOver TRUE (exit ParOuterLoop)
' LAM exit STO store exit condition)

12
kcMenuKeyl ?CaseKeyDef (was the A Key pressed?)

..TakeOver MAIN_ (run our main loop for data input)
icMenuKeyZ ?CaseKeyDef (was the B Key pressed?)
::TakeOver MBD (compute missing bearing & distance)
icMenuKey3 ?CaseKeyDef (was the C Key pressed?)
::TakeOver MDL (display missing departure & latitude)
icMenuKey6 ?CaseKeyDef (was the F Key pressed?)
::TakeOver CLR_glob (initialise global g_Lat and g_Dep to zero)
gROP 'DoBadKeyT (prevent suspended environment)
épLeftShift #=casedrop (process left-shifted plane)
::chenuKeyl ?CaseKeyDef (was the A Key pressed?)
::TakeOver
$ "Left Shift A Key!" (place a simple message on)
DISPROW1 (the first row of the screen)
BROP 'DoBadKeyT (prevent suspended environments)

2DROP 'DoBadKeyT

’

TrueTrue (3. Key handle flag and 4. Standard handle flag)
NULL{} (5. Menu built by MENU_BUTTONS)

ONEFALSE (6. Initial menu row and 7. Run time environment flag)
' LAM exit (8. exit condition)

' ERRJMP (9. error function)

ParOuterLoop (run the ParOuterLoop)

ABND (abandon temporary variables)

RECLAIMDISP (resize and clear display)

ClrDAsOK (redraw display)

Lets look at the above code in a little more detail. Once we have forced a garbage collection of
unwanted data in the memory heap, we create a temporary local variable (LaM exit) to hold the exit
condition. Since the value held by this variable is used to evaluate whether the loop will halt or not,
giving it a default value of FaLsE will ensure that the loop initiates as normal.

For the keyboard assignment, any key in the six planes can be assigned to have a new function,
whether right- or left-shifted. Here, we assign command handlers for the first three keys and one for a
left-shifted first key. For all other keys not assigned (and the key handle flag parameter is TRUE), the
standard key definition is executed.

The menu items can be handled in two different ways. However, since we have a function to print the
menu to the screen, we can set this parameter to NULL. This will be discussed later.

The next parameters set the initial menu row and a switch for handling errors. If the flag is set to TRUE,
any user command creating a suspended environment (such as HALT) or a cold restart will generate an
error.

Each time the loop is executed, the temporary local variable (1.aM exit) is evaluated. If the result is
TRUE, the loop is exited. Finally, call the system command ParouterLoop to handle the user input
messages.

For this application to run a little smoother, we need to modify the code for our Ma1N_ function. Using
the code from the last edition, the modifications are in bold below. Note that we will use global

variables to store the departure and latitude. These globals are handled by the function that calls MATN_
and thus, should not be deleted here.

R T R S S T

* FUNCTION NAME: MATIN_
* INPUT: Two named local variables
* QUTPUT: NONE
* COMMENTS: The main Program: Polar to Rectangular.
* Requires global variables g_Dep and g_Lat
Rk kb kb kb b b b b bk bk kg kb bk gk b kb b b e b bk kb b bk kb b bk kb ki
ASSEMBLE
CON (1) 8
RPL

NULLNAME MAIN_ (use NULLNAME to hide the function from the user)

(Remove local variable declaration and null string)

BEGIN (Begin the loop)

$ "Bearing? " (Put bearing prompt on the stack)

BDINPUT (Prompt the user for a bearing)

ITE (did the function return TRUE or FALSE?)
CK1NOLASTWD (check for argument on stack)
$ "Distance? " (Prompt the user for a distance)
BDINPUT (create instance of InputLine)
ITE (did the function return TRUE or FALSE?)

CK2&Dispatch (check that 2 reals have been entered in)

2REAL

SWAP POLTOREC

LAM g_Dep %+ ' LAM g_Dep STO
LAM g_Lat $+ ' LAM g_Lat STO
FALSE

convert to rectangular)
store total Departure)
store total Latitude)
continue loop)

—_~ e~~~

4
(at this point, the loop is ready to continue back to the start.)

(The only difference is that we are not prefixing an output string)
(to the bearing input-prompt)

DROP TRUE ; (*cancel* on distance input... exit MAIN_)
7
:: TRUE ; (*cancel* on bearing input... exit MAIN_)
;
UNTIL (repeat while valid data is entered - unless cancel is pressed)

(remove local variable clean up)
7
Ak hkhhkhhhkhhkhhdhhhhhdhhhhhkhhkhhkdhhhkhhkhkhhhhkhkhkhkhkhkhdhhhkhkhkhkrdhrhhkhkhkrhkrhdhhhkhx

Menus

There are no standards for how menus should be designed, so the look and feel is up to you. Whether
you have a neatly designed hierarchical menu system that functions neatly from a single entry menu,
or whether you have various data-centric menu systems that are accessible via a single custom key
handle, the choice is ultimately dependent on which is most comfortable to you. Remember, the 48s
and 49s dont come with large Windows style screens, hence simple, logical and intuitive menus are
very much an important design criteria.

The same applies with handling commands. That is, whether to perform an action using the data on the
stack or to instigate the user to enter in data for a subsequent computation. In the oncoming articles, we
will assume that a menu item or a key press requires the user to enter some data on the stack before
performing any functions on the data.

We noted previously that there are two ways to handle menu interaction. For this article, we have used
the method of drawing graphic objects (grobs) to the screen and using keyboard handlers to respond to
a key stroke. The other method, which we will discuss in the next article, uses the parouterLoop (see
argument 5) to set up and handle the menu drawing and key stroke processing.

LRI 9

For this article’s program, let’s create a s imple menu that has menu items called “1npUT”, “MBD”,

and “c1r”. Here’s the code that does just that.

)

* FUNCTION NAME: MENU_BUTTONS
* INPUT: Nil
* QUTPUT: Menu in screen-pixel format (ie. XYGROBS)
* COMMENTS: Sets up custom menu display
Rk kb b kb gk bk b bk kb kb kb b bk kb b kb b b bk kb b bk b gk kb bk ki
ASSEMBLE
CON(1l) 8
RPL

NULLNAME MENU_BUTTONS

’ { n INPUT n IIMBDII IIMDLII n n n n “Clr“ }
{ LAM MenuLine } BIND

(draw some information to the screen)
RECLAIMDISP

95 BINT1 $ "MAIN Menu" $>grob XYGROBDISP
ZERO SEVEN 131 SEVEN LINEON

TURNMENUOFF

r

(Draw labels)

ZERO FIFTYSIX LAM MenuLine BINT1 BINT1 SUBCOMP INCOMPDROP
TWENTYTWO FIFTYSIX LAM MenuLine BINT2 BINT2 SUBCOMP INCOMPDROP
44 FIFTYSIX LAM MenulLine BINT3 BINT3 SUBCOMP INCOMPDROP

66 FIFTYSIX LAM MenuLine BINT4 BINT4 SUBCOMP INCOMPDROP

88 FIFTYSIX LAM MenuLine BINTS5 BINTS5 SUBCOMP INCOMPDROP

110 FIFTYSIX LAM MenulLine BINT6 BINT6 SUBCOMP INCOMPDROP

SIX ZERO DO MakeStdLabel XYGROBDISP LOOP

ABND (abandon temporary variables)

MDL

EL)

In the above code, the local variable MenuLine is given an initial value of a list defining the menu

button labels. The next object (i.e. the code between : : and ;), when evaluated, draws the text “MAIN

Menu” to the screen at the position of x=95 and y=1, where x and y are screen coordinates are in pixels

from the top left corner - 0, 0. Then, from screen position 0, 7 to 131, 7 a line is drawn.

To draw the menu using grobs, we first turn the last drawn menu off using TurRNMENUOFF. Then, using
a loop, MakestdLabel takes each of the six arguments from the stack (the individual elements from the

list) and converts it into a menu label. For example, after the first run through the loop, the first
element “INPUT” is retrieved from the list and placed on the screen at position 0, 56. The remainder of

the menu at this point is blank. Figure 1 shows the menu and simple text.

Figure 1

emulator custom.E49

Yisw Todls Help

HEWLETT
PACKARD

Keyboard Shortcuts

Basically, the keyboard is divided into six columns and, depending on whether you have a HP48 or a
HP49, 9 or 10 rows respectively. So defining which keys to map is a matter of counting across from
the left and then down starting at Key A. For example, key NINETEEN on the HP49 is the ‘O” key
(zow), and TWENTYFIVE is the “T” key (cos).

As mentioned previously, the example in this article uses the following key assignments for the menu
keys in row one:

DEFINE kcMenuKeyl ONE (A Key, Row 1, Column 1)

We could however, assign any of the keys on the keyboard to have this functionality. In this case —
where we are using the method of defining keys to handle the functionality of menu grobs, it makes
sense to use the keys directly below the menu displayed in the screen.

Close

To wrap all this up into a neat application, we will again use our BD2EN function (from the last article)
to setup the program environment. This time however, instead of calling MaTN_ to control the user
input we call commanD_HANDLER. In addition, all we need to do is add in our global variables to handle
the departure and latitude, and some new functions to handle the display of the missing bearing and
distance and departure and latitude.

To add declaration, assignment and clean up of the globals, modify the code for 2p2En as follows.

Kk k ok k kK ok ok ko k k ko k ko ok ko ok ok ok ok ok k ko ok ko ok ok ok ok k ko ok ko ok ok ko ok ok ok ok ok k ko k ko k kK
ASSEMBLE
CON (1) 8
RPL
xNAME BD2EN

%0 %0

{ LAM g _Dep LAM g Lat } BIND (create local variables, initialised to zero)
CKO (Program accepts no input)

SETDEG (degrees mode)

ZERO SetHeader (turn off header)

ClrDAlIsStat (Turn off clock)

RECLAIMDISP (clear and resize the display)

TURNMENUOFF (turns current menu off)
(set system flags. This may be written as a separate routine)

BINT95

set rpn mode)
NINETEEN ->v2 yields a vector)
SEVENTEEN not in radians mode)

BINTS5 BINT1 start = 1, finish = 4)
DO ClrSysFlag LOOP clear the system flags)

(
(
(
EIGHTEEN (Degrees mode)
(
(
105 SetSysFlag (approx mode on)

7
ERRSET (set up environment to trap any errors)

COMMAND_HANDLER (call our ParOuterLoop function)
ERRTRAP (exit on any error)
GARBAGE (clear memory)
TURNMENUON (turn menu back on)
RECLAIMDISP (resize and clear display)
C1lrDAsOK (redraw display)
(

BINT1 SetHeader redraw default header to one row)
ABND (delete named local variables)

’
B)

To display the total departure and latitude, simply call the global variables and place them in the first
row of the screen display.

R)

* FUNCTION NAME: MDL
* INPUT: Nil
* OUTPUT: Displays Departure and Latitude
* COMMENTS: Displays summation of total traverse data -rect-
* Requires global variables g_Dep and g_Lat
Rk kb bk bk kb kb b bk kb b kb bk b bk kg b bk kb b bk kb i
ASSEMBLE
CON (1) 8
RPL

NULLNAME MDL

BINT4 DOFIX fix precision to 4 decimal places)

S "Dep: " LAM g_Dep a%>$ &$ append global to departure string)
$ "\OaLat: " LAM g_Lat a%>$ &S append global to latitude string)

&$ BlankDAl2 %1 xDISP
WaitForKey 2DROP

clear the screen, display output)
wait for next key input)

To compute the missing bearing and distance, simply convert the departure and latitude to polar
coordinates first before displaying the results. Ideally, we would write a separate function to remove
the duplication of code in displaying the data.

Rk kb bk bk h h bk kb bk kb kb b b gk kb b kb b bk b bk kb b bk kb b b kb ki

* FUNCTION NAME: MBD
* INPUT: Nil
* OUTPUT: Displays missing Bearing and Distance
* COMMENTS: Displays summation of total traverse data -polar-—
* Requires global variables g_Dep and g_Lat
Khkhkkhkhkkhkhkhkhkhkhhkhkhhkhkhbhhhkhhkhkhhhbhk bbbk b hk b h b hkh b hk b hk b hkhk bk b hk bk hk bk kA hk bk khhkx*k
ASSEMBLE

CON (1) 8
RPL

NULLNAME MBD

BINT4 DOFIX

LAM g_Lat LAM g_Dep RECTOPOL

$ "Brg: " SWAP a%>$ &$

SWAP $ "\OaDist: " SWAP a%>$ &$
&$ BlankDAl2 %1 xDISP
WaitForKey 2DROP

fix precision to 4 decimal places)
recall globals and convert to polar)
append global to bearing string)
append global to distance string)
clear the screen, display output)
wait for next key input)

e)

* FUNCTION NAME: RECTOPOL

* INPUT: Distance on departure 2, latitude on level 1.

* OUTPUT: Resultant distance and bearing.

hAhkhkkhhkkhhhkhkhkhhkhhhhkhhkhhkhhkhhhkhbhhhkhhkhhbhk b hk bbbk b hk b hk bk h bk kb hk bk hk kA rk kb khkkkx

ASSEMBLE

CON(1) 8

RPL

NULLNAME RECTOPOL (use NULLNAME to hide the function from the user)
SREC>%POL (convert departure and latitude to distance and bearing)
$>HMS (convert bearing to hours minutes and seconds)

’
B R S T

Finally, a function to initialise the departure and latitude to zero for subsequent input of new traverse
data.

R)

* FUNCTION NAME: CLR_glob
* INPUT: Nil
* OUTPUT: Sets global Departure and Latitude to zero
* COMMENTS: Initialises traverse data for new input
* Requires global variables g_Dep and g_Lat
Rk kb bk bk kb kb b bk kb b kb bk b bk kg b bk kb b bk kb i
ASSEMBLE

CON (1) 8
RPL

NULLNAME CLR_glob

<
S

0 ' LAM g_Dep STO (store 0 in departure)
%0 ' LAM g_Lat STO (store 0 in latitude)

