Enabling User Interaction — Advanced Menu and Keyboard Input

Designing a simple yet comprehensive user interface to handle data entry, whilst also
providing the user with the most efficient means for interacting with the program, is perhaps
the most difficult task of writing a program. Once you’ve got this part of the program sorted
out, implementing the computational functionality of your program is in most cases somewhat
trivial.

In our last article, we introduced the Parameterised Outer Loop (POL). POLs are very
efficient, however the standard POL provides the developer with a very general means for
user interaction. In this article, we will extend the standard POL to take full advantage of the
available user input options, and thereby provide you with an understanding of how you can
build advanced functionality into your user interface.

Our example code will demonstrate how to set up a simple, context-sensitive interface that
can be used to accept data for our ongoing survey program.

An Advanced User Interface

POLs are a very general construct and enable the developer to select from a variety of options
for accepting data input, such as Prompts, Input Forms and Browsers (or Choose Boxes). For
this reason, POLs require elaborate arguments. As stated in the previous article, the POL
requires nine inputs, those being:

Screen Display

Key Handlers

Key Handle Flag

Standard Handle Flag
Menu

Initial Menu Row

Run-time Environment Flag
Exit Condition

Error Function

WX bW

Despite the large number of inputs, we actually only require three inputs from the stack to set
the context within which we require data entry. The remaining inputs for the POL are simply
standard inputs. So to take full advantage of the available user interface options provided
within the System RPL design space, we really should take a look at how POLs actually
work.

The SystemRPL command ParOuterLoop itself decompiles to a set of calls to other
SystemRPL commands as shown in Figure 1 (note the appropriate error handling). None of
the commands return anything, and the only one that takes any arguments is POLSetUT,
which requires the same nine arguments required by ParOuterLoop.

Figure 1  ParOuterLoop

POLSaveUI ( save current user interface in a temporary environment )
ERRSET ( start error trap )

POLSetUI ( set new user interface, according to the parameters given )
POLKeyUI ( Displays, reads and evaluates keys. Handles errors and )
( exits according to the user interface specified by POLSetUI )



ERRTRAP

POLResUI&Err ( if an error happened, restore )
( the saved interface and error )

POLRestoreUI ( Restores the user interface saved by POLSaveUI and )
(

abandons the temporary environment )

Therefore, if we plan to use the same key handlers, exit condition and error functions for our
entire user interface (regardless of what data we require), then we could write our own POL
that is flexible enough to be adapted to any data context. For the example program we have
been working with (BD2EN), the two contexts for our data entry are bearings and distances.
Hence, we should consider an interface (and context menus accordingly) that provides
additional functionality depending on whether we are entering in bearings or distances.

We’ve called our POL function iEditor. The arguments required for iEditor are the title
string to be displayed (or user prompt), the initial value to be entered, and the context menu
specification. Therefore, each time we need to create an instance of a new user interface, we
onlly place 3 arguments on the stack and then call iEditor. But, before we look at the code
for iEditor, we’ll begin with the arguments it requires.

Arg 1: The Title String
Firstly, we need a title string to prompt the user for the data we actually require. This can be
done simply by placing a sting on the stack, for example:

$ "Enter bearing: "

If we would like to append the last entered bearing to the end of this string, then we could
declare a global variable initially at run-time, initialise it each time a new value is entered,
and then append it as the title string is displayed. Appending the value is performed as
follows:

$ "Enter bearing: " LAM g Brg a%>$ &S$

Arg 2: The Context Menu

In our last article, we described how we could handle menu interaction through the use of
graphic objects (grobs) and keyboard handlers. In this example, we will define the menus
using a list of strings and objects, which each define a menu item caption and the
functionality to be executed (upon selecting the menu item) respectively.

For bearing input, our context menu has been designed to allow cancelling, accepting and the
deletion of the current input, setting the last bearing entered, reversing (180+) and converting
between decimal degrees and degrees, minutes and seconds. Of course, you could provide
further functionality if you require, such as data addition and subtraction options. Figure 2
defines the code for our bearing input context menu. Note that it has two rows.

Figure 1 brgContextMenu

R R R R I Ik Ik kb b b b b b b 2h b b b b 2h I 2 b b E I b b E IE IE I IE I Ik 2 I 2 I b bk I IE I I 2 I I I I I Ik I I 2k 2 Ik I I i

* FUNCTION NAME: brgContextMenu

* INPUT: NONE
* OQUTPUT: Menu specification as a ‘list’
* COMMENTS: Requires global variable g Brg
R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
ASSEMBLE
CON (1) 8
RPL

NULLNAME brgContextMenu



{
{ "DEL" :: TakeOver DODEL.L ; }

{ "LAST" :: TakeOver InitEd&Modes LAM g Brg a%>$ CMD PLUS ; }
{ "REV" :: TakeOver RCL_ CMD DUPLENS
#0=ITE
:: DROP LAM g Brg ; ( NULL? recall last input bearing )

:: palparse NOTcase 3DROP ;
CKREAL %180 %+ 1REV $MOD BINT4 DOFIX
a%>$ InitEd&Modes CMD_PLUS

i}

NullMenuKey
{ "DMS->" :: TakeOver RCL_CMD DUPLENS

#0=ITE

: DROP LAM g Brg ;
:: palparse NOTcase 3DROP ;
CKREAL %>HMS a%>$ InitEd&Modes CMD_PLUS
i}

{ "->DMS" :: TakeOver RCL_CMD DUPLENS$

#0=ITE
:: DROP LAM g Brg ;
:: palparse NOTcase 3DROP ;
CKREAL $HMS> a%>$ InitEd&Modes CMD_PLUS
i}
{ :: TakeOver "INS" INSERT? Box/StdLabel ;
: TakeOver Tog.Insert SetDA12NoCh ; }

<SkipKey

>SkipKey

{ "INFO" :: TakeOver DOTEXTINFO ; }

{ "CANCL" :: TakeOver iEditorCANCL ; }
{ "OK" :: TakeOver iEditorOK ; }

}

Note that the menu is a list that generally follows the structure:
{ Menultem1 Menultem2 Menultem3 ... MenultemN }
where each menu item can be one of the following:

NullMenuKey

KeyObj

{ Label KeyProcNS }

{ Label KeyProcNS KeyProcLS }

{ Label KeyProcNS KeyProcLS KeyProcRS }

Label is the object (either a string or a 21*8 GROB) to be displayed as a label
KeyProc is the action to be taken upon a key press.
NS, LS, RS are No-Shift, Left Shift and Right Shift when the key is pressed.

If KeyProc, is a sub program with TakeOver as the first command, the sub program will
override the normal execution until the sub program is complete. It is through this
functionality that we are able to change the value on the stack or in the editor without actually
exiting the POL.

You will notice in the menu specification many commands that relate the internal editor of the
HP49G such as CMD PLUS. An explanation of the editor is beyond the scope of this article
and the reader is encouraged to refer to the document “Programming in SystermRPL (Second
Edition), 2002 by Eduardo de Mattos Kalinowski & Carsten Dominik” for more information
on menu specifications and the editor commands. This document can be downloaded at
www.hpcalc.org

For distance input, we have created a context menu that caters for converting between links
and metres. Hence, you could expand this menu to include any functionality you require.


http://www.hpcalc.org/

Figure 2 distContextMenu

R IR R Ik b b b b b b I I I b I b I b I I I I I I I I I b b S I I I I I I I I I I I I I I I I I I I I I I O I

* FUNCTION NAME: distContextMenu

* INPUT: NONE
* QUTPUT: Menu specification as a ‘list’
* COMMENTS: Requires global variable g Dist
R R Ik b b b b b I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
ASSEMBLE
CON (1) 8
RPL

NULLNAME distContextMenu

{

{ "DEL" :: TakeOver DODEL.L ; }
{ "LAST" :: TakeOver InitEd&Modes LAM g Dist a%>$ CMD PLUS ; }
{ "L->M" :: TakeOver RCL CMD DUPLENS
#0=ITE
DROP LAM g Dist ; ( NULL? recall last input distance )

palparse NOTcase 3DROP ;
CKREAL % 0.201168 %* BINT3 DOFIX
a%>$ InitEd&Modes CMD_PLUS
il
{ :: TakeOver "INS" INSERT? Box/StdLabel ;
TakeOver Tog.Insert SetDA12NoCh ; }

{ "CANCL" :: TakeOver iEditorCANCL ; }
{ "OK" :: TakeOver iEditorOK ; }
<SkipKey

>SkipKey

NullMenuKey NullMenuKey NullMenuKey

{ "INFO" :: TakeOver DOTEXTINFO ; }

Arg 3: The initial value
If we want to place an initial value in our editor, we simply put the value’s string
representation on the stack. Otherwise, you can use a null string.

The Editor
The code for the POL editor is shown in Figure 3.

Figure 3 iEditor

KA KKK KA KA AR A A A A Ak Ak Ak Ak hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkhkkhkkhkkkkkkkkkk

* FUNCTION NAME: iEditor
* INPUT: Title String, Menu specification, initial value
* QUTPUT: POL environment
* COMMENTS: an advanced POL environment for handling context
* sensitive menus and custom functionality
* within the standard editor.
RER R IR Ik Ik Ik b b b b b b b b b I b b b I I b b E b b 2E E IE I I I Sk 2 2h Ik b bk IE I I I I I I I I Ik I I b Ik I I I I O
ASSEMBLE

CON (1) 8
RPL

NULLNAME iEditor

POLSaveUI

ERRSET
DUP
InitEdLine Clear Editline )
CMD PLUS Insert String )

Set Cursor Position )

Default to insert Mode )
Set Program Entry Mode )
Define Exit condition )
Bind Editor Variables )

BINTO SetCursor
INSERT_MODE
SetPrgmEntry
FALSE
4ANULLLAM{} BIND
Al ..

DA2aOK?NOTIT ( Stack area invalid; redraw )



BlankDAl2
ZERO SEVEN 131 SEVEN LINEON

Prepare Screen )
draw a line on the screen )

4GETLAM Retrieve title string )
CODE define scope for assembly )
GOSBVL =PopASavptr
C=A A
GOSBVL =GetStrLenC
ST=0 11
GOSBVL =DO0->Rowl
GOSBVL =MINI DISP * Display title string
GOVLNG =GETPTRLOOP
ENDCODE
DispCommandLine ( Draw CommandLine )
DA30OK?NOTIT ?DispMenu ( Draw Menu )
ClrDAsOK

DUP BINT1 #<> SWAP BINT4 #<> AND casedrpfls
FORTYSEVEN ?CaseKeyDef

TakeOver iEditorCANCL ;
FIFTYONE ?CaseKeyDef

TakeOver iEditorOK ;
FIFTY ?CaseKeyDef

TakeOver $ "SPC Key Not Used" FlashWarning ;
DROPFALSE

TrueFalse
3GETLAM
ONEFALSE

' 1GETLAM

' SysErrorTrap
POLSetUI
ClrDAsOK
POLKeyUI

ABND

Key handle flag and 4. Standard handle flag )
Menu Row )

No suspended env’s and 7. Run time env flag )
Exit condition )

Error function )

O 0 oy U1 W

’

ERRTRAP

DEL_CMD

?ClrAlg

POLResUI&Err
POLRestoreUI
InitEd&Modes
ClrDAsOK

Let’s take a minute to see what we’re doing here. Remembering that prior to calling
iEditor, we placed 3 arguments on the stack. Then, after we define our error condition
(FALSE) inside ERRSET, we bind the four stack items to four null lams (so that we have
access to these objects later) by:

4NULLLAM{} BIND

Having set up the initial objects, we now begin to define the nine inputs required for
POLSetUI.

1. Screen Display
The screen display is given by the following object, defined by:

DA2aOK?NOTIT ( Only redraw if stack area invalid)

ClrDAsOK ( Refresh the screen



Included in this screen display object is a small section of assembly (defined within CODE and
ENDCODE words) to display the title string in MINI_FONT in the top left hand corner of the
screen. Assembly is a programming language in itself and is well beyond the scope of these
articles. It is used here to assist in the ‘speeding up’ of the refresh rate after each key press.

2. Key Handlers

As the POL will respond to the key strokes A-F (top six keys as defined by our bearing and
distance context menu specifications), only two keys from the keyboard require their actions
to be processed - those being the ENTER and CANCEL keys:

DUP BINT1 #<> SWAP BINT4 AND casedrpfls

FORTYSEVEN ?CaseKeyDef :: TakeOver iEditorCANCL ;
FIFTYONE ? CaseKeyDef :: TakeOver iEditorOK;
DROPFALSE

’

The remaining 7 inputs are described in sufficient detail by the comments in the code for
iEditor above.

Note that two more functions are required to deal with the actions associated with processing
the ENTER & CANCEL keys (whether through the menu or from the keyboard). Figures 4
and 5 outline the code for these functions.

Figure 4 iEditorCANCL

KA KKK KKK A A A Ak Ak hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkhkkhkkkhkkkkkk

* FUNCTION NAME: iEditorCANCL
* INPUT: NONE

* QUTPUT: Exit condition for the POL
Ak hkhkhkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhhkhkhkhkhkkhkhkkhkhkhkhkhrhkhkkhkhkhkhkhhkhkhkhkhkhhkkhkhxkkkxk

NULLNAME iEditorCANCL

DEL CMD FalseTrue 1PUTLAM

’

iEditorCANCL clears the editline, places “false” on the stack and sets the “exit condition” to
true therefore ending our POL editor. Why do we place a “false” on the stack? Well it is
always a good idea after executing a function to return a flag as to whether we were
successful or not. Obviously, if we are unsuccessful then we not wish to continue with the
manipulation of the string. For example, if we were editing a bearing and the user pressed
CANCL then there is little point in “storing” or updating the current bearing.

Figure 5 iEditorOK

R IR R I bk kb b b b I b I I I I I I I I I I I I I I I b S I I I I I I I I I I I I I I I I I I I I

* FUNCTION NAME: 1iEditorOK

* INPUT: NONE
* QUTPUT: Parses the editor string, then leaves a
* real and the exit condition for the POL
KAk hkhkhhkhkhkhkhhhhkhhkhhhkhhkhhhhhkhhhhhhhkhhhhkhhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkkhkhkhkhkhkhkkkhkhkkx
ASSEMBLE
CON (1) 8
RPL

NULLNAME iEditorOK

Parse.2
NOTcase
S5ROLLDROP

ParseFail2

SWAPDROPTRUE
TRUE 1PUTLAM



This function processes the results from the editor and tries to convert the object in the editor
to a string if necessary. If this is not possible, an error message is displayed and our POL
editor is not exited. If it is successful, then no further action is required and the parsed value
is placed on the stack.

So that we can incorporate the POL editor into our BD2EN program, we need to slightly
modify our MATIN function. We have also made MAIN more responsive to keying in invalid
data, such that it will continue looping around asking us for new data. Also two separate loops
(one for bearing and distance) are run until valid data is entered or until the user presses
CANCEL. Figure 6 shows the amended code.

Figure 6 MAIN

R R R Ik I b b b b b I b I I b b I I I I I I I I I b I I I I I I I I I I I I I I I I I I I I I I I I I

* FUNCTION NAME: MAIN

R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

ASSEMBLE
CON (1) 8
RPL
NULLNAME MAIN ( use NULLNAME to hide the function from the user )
BEGIN ( begin data entry loop )
BEGIN ( Begin the brg input loop )
$ "Enter bearing: " LAM g Brg a%>$ &S ( append last brg to prompt )
brgContextMenu ( prepare the context menu )
NULLS$ iEditor ( initial value is NULL )
ITE
CheckReal ( return value holds next test condition )
ITE
DUP ' LAM g Brg STO ( store global Bearing )
TrueTrue ( exit this loop and continue )
: FALSE ; ( invalid data? continue loop )
:: TRUE FalseTrue ; ( cancel? exit this loop and all input )
UNTIL
IT
BEGIN ( Begin the dist input loop )
$ "Enter distance: " LAM g Dist a%>$ &$ ( append last dist to prompt )
distContextMenu ( prepare the context menu )
NULLS$ iEditor ( initial wvalue is NULL )
ITE
CheckReal ( return value holds loop condition )
ITE
DUP ' LAM g Dist STO ( store global Distance )
TrueTrue ( exit this loop and continue )
:: FALSE ; ( invalid data? continue loop )
:: DROP TRUE FalseTrue ; ( exit this loop and all input )
UNTIL
IT
SWAP POLTOREC ( convert to rectangular )
LAM g Dep %+ ' LAM g Dep STO ( store total Departure )
LAM g Lat %+ ' LAM g _Lat STO ( store total Latitude )
FALSE ( continue data input )

UNTIL



Note that to use the LAMS g Brg and g Dist, we need to declare them within BD2EN as
follows:

%0 DUP
{ LAM g Brg LAM g Dist } BIND ( create global variables, initialised to zero )

The function CheckReal is provided here in assembly for run-time efficiency (it is worth
noting here that our programs may run up to 100 times faster if we were to code them entirely
using Assembly!). The function attempts to convert the string returned from the editor to a
real, and upon success returns TRUE or FALSE.

KA KKK KKK A A A Ak hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkhkkhkkkkkkkk

* FUNCTION NAME: CheckReal

* INPUT: an object on level 1
* QUTPUT: a real and TRUE (if the object is a real),
* otherwise FALSE
R IR I b b b b b b b I b I I I I I I I I I I I b I I I I I b I I I I I I I I I I I I I I I I I I I I I I I O I
ASSEMBLE
CON(1) 8
RPL

NULLNAME CheckReal

( check for valid object )

CODE
GOSBVL =SAVPTR
A=DAT1 A * Read Address of Object on Stack
D1=A * Point to that address
A=DAT1 A * Read Prolog
LC(5) =DOREAL * Load Real Prolog
?A#C A * Do we have a Real Object?
GOYES +
GOVLNG =GPPushTLoop * Push TRUE if we have a real number
+ GOVLNG =GPPushFLoop * Push FALSE if it fails
ENDCODE
ITE
TRUE ; ( Push TRUE if it is a real )
ERRSET
CKREAL TRUE ; ( Can we convert object to real?
ERRTRAP
DROP FALSE ; ( Push FALSE if we can not convert object )
Close

The resulting BD2EN program now boasts an extremely efficient, context sensitive user
interface. Our first POL (described in our last article) defines the scope for the main menu,
and our new POL editor provides data-centric functionality for entering in bearings and
distances. Figures 7 and 8 show the interfaces for the bearing and distance input editors
respectively.

The efficiency and effectiveness of System RPL must not be underestimated. Developing the
same interface functionality as described herein using User RPL is very cumbersome and of
course, VERY SLOW! Using the POL (either via an advanced interface or not), your current
HP survey program could be up to 12 times faster, whilst at the same time giving you the
ability to perform additional functions on your input data.



Figure 7 Bearing input editor
Jhpiemulator’ custom.E49
File Edit Wew Tools Help

| () Jortsbtd

Figure 8 Distance input editor
dev'.hp.emulator',custom.E49
File Edit WYew Tools Help

HEWLETT
(‘*f PACKARD




