Libraries

In the second instalment of programming for the HP48/49, we would like to discuss libraries. In
particular, what are libraries, why should we use them and how do we aeae them?

Libraries are a olledion of routines in a precompiled form that are loaded into the cdculator's RAM
and operate very similar to the cdculators own “entry points’ (commands). The precompil ed form of
alibrary consists of alibrary name, a hash table (contains alist of all of the routine names), alink table
(contains the execaution addressof the routines) and an optional message table (used for generating user
error messages).

What are the alvantages of using a library? A good pace to start is to compare alibrary to the
implementation of abasic UserRPL program.

When we first began writing UserRPL programs, we determined reasonably quickly that a good
programming technique was to bre&k a large program into several small er sub-programs, ead stored as
a separate variable on the cdculator. Thiswas for threemain reasons:

1 The time taken to edit/view large fil es was painfully slow

2. With the lack of GOTO and GOSUB commands in UserRPL, you could reuse cde by
exeauting a variable several times.

3. As the programs became quite large, the source @de was fundamentally easier and more

eonomica to maintain.

Obviously, the main disadvantage was that the programs could not be hidden from the main menu and
hence, the user could execute any of the variables, sometimes with unpredictable results. So how do
we overcome this potential problem? The answer isthough the use of libraries.

The main advantage of alibrary isthat the user can only gain access to the commands the programmer
wants acessd. Routines that are internal to a program and not required by the user are not shown on
the menu. This effedively removes the potential to corrupt the program.

How the cdculator adualy performs the execution d the library using the hash and link tables is
beyond the scope of this article. Instead, we will focus on how to crede library routines and whether
they will be accssdbleto the user.

How do we programmatically create library routines?

Three déements things tell the compiler (RPL compil er referred to in article 1) to turn the references
(routines) into library ROM pointers (user entry points).

1. The diredive xROM D (refer later in the aticle for more darificaion) says to compile
routines for additional user entry points and not for the cdculators built in “entry points’
(commands)

2. All library routines names are dedared with either x NAME, which will show the name on
the menu, or NULLNAME that simply credes the user entry point.

3. The ompiler diredive EXTERNAL identifies which of the NULLNAME routines will be

compil ed as an user entry points (ROM poainters)

To illustrate the @ncept of creding and cdling library routines, lets revisit our simple poar to
redangular program: BD2EN. Suppase that we would like arepetitive program that asks the user for a
beaing and dstance Each time the beaing and dstance ae etered in, the program will display the
total departure and latitude. Seefigure below:

The input should consist of valid fractiona numbers, where the bearing is in degrees, minutes and
seconds, and the distance is in metres. Note that the distance, or magnitude, can be in any unit of
measure. Upon displaying the output values, the program should be ready to take in new values and
thus continue in a simple loop.

Firstly, we would structure the program as follows:

Clean the stack and initialise program environnment.
Pronpt user for Bearing and Di stance.
Wil e the user did not press cancel,

Pronpt for Distance.

Check for valid data or *cancel *.

Convert val ues.

Di spl ay output and pronpt user for new Bearing.
Restore stack and redraw displ ay.

As an example, we shall write three transparent functions for handling the main loop, input and
conversion. ldeally, we want to pass these functions some data that we know exists in the correct
format. In this instance, they must be transparent from the user as no error checking is performed once
they are called.

Before we start writing the main program, let us start with the input function, which is called
BDI NPUT. Since we may want to prompt the user for other values, we want to be able to use this
function again without having to write duplicate code. Therefore, we shall pass it the string to be
displayed to the user when asking for input. Note that the function does not actually have an argument
calling convention. Instead, a SysRPL function takes the required value(s) from the stack.

R R Sk Sk Sk Sk Sk Sk Sk Sk S Sk S S Sk kS S kS Sk S S S Sk Sk Sk Sk Sk S Sk Sk Sk Sk Sk Sk S Sk S S S S Sk Sk Sk Sk Sk S Sk Sk S S S S S S

* FUNCTI ON NAME: BDI NPUT
* | NPUT: User-i nput pronpt string.
* QUTPUT: Halts the programand waits for input. Returns
* TRUE if the user presses enter, FALSE if aborted
* by on/cancel .
R S S R
ASSEMBLE
CON(1) 8
RPL
NULLNAMVE BDI NPUT (use NULLNAME to hide the function fromthe user)
NULL$ initial edit line)
#ZEROFONE cursor position ie. at end, insert node)
Bl NT1 prograni i nmedi ate entry)

(

(

(
Bl NT2 (al pha disabled)
NULL{} (no nenu)
BI NT1 (initial menu row nunber)
TRUE (pressing CANCEL will abort input)
TWO (parse and evaluate the edit line)
I nput Li ne (pronpt the user...)

Next, we want a function to convert the input values to the respective departure and latitude. The
obvious name for this function is POLTOREQCWe know that for this function to be called there must be
two real numbers on the stack and thus, we do not need to perform any error checking.

* FUNCTION NAME: POLTOREC

* INPUT: Distance on level 2, bearing on level 1.
* OUTPUT: Resultant departure and latitude.
ASSEMBLE

CON(1) 8
RPL

NULLNAME POLTOREC (use NULLNAME to hide the function from the user)

%HMS> (convert the first value to decimal hours)
%POL>%REC (convert bearing and distance to departure and latitude)

Since we are writing a program that functions around a loop, we can actually use the input function as
an output function. To illustrate this, let us now write the main function of the program that controls the
loop. So that we can display the total departure and latitude after each round, we need to use some local
variables. The obvious names are Dep and Lat .

Here is the main program that controls the loop:

*kkkkkkkkkk

* FUNCTION NAME: MAIN_

* INPUT: Two named local variables

* QUTPUT: NONE

* COMMENTS: The main Program: Polar to Rectangular.

ASSEMBLE
CON(1) 8
RPL
NWLNAME MAIN_ (use NULLNAME to hide the function from the user)

%0 %0

{LAM Dep LAM Lat } BIND (create local variables, initialised to zero)

NULL$ (Put null string on stack so output can be displayed)
(in the input prompt)

BEGIN (Begin the loop)

$ "Bearing? " &3$ (Append bearing prompt to the string on the stack)
BDINPUT (Prompt the user for a bearing)
ITE (did the function return TRUE or FALSE?)

CKINOLASTWD (check for argument on stack)

$ "Distance? " (Prompt the user for a distance)

BDINPUT (create instance of InputLine)
ITE (did the function return TRUE or FALSE?)

CK2&Dispatch (check that 2 reals have been entered in)
2REAL

SWAP POLTOREC (convert t o rectangular)
LAM Dep %+ ' LAM Dep STO (store total Departure)

LAM Lat %+ ' LAM Lat STO (store total Latitude)

$ "dep (t): " LAM Dep a%>$ &$ (display departure)

$" \Oalat (t): " LAM Lat a%>$ &$ &$ (display latitude)

$" \ 0a\ 0a" &$ FALSE (‘add two carriage returns)

k at this point, the loop is ready to continue back to the start)
(the string formed above will be p refixed to the bearing input - prompt)

::DROP TRUE ; (*cancel* on distance input... exit MAIN_)
= TRUE; (*cancel* on bearing input... exit MAIN_)

UNTIL (repeat while valid data is entere d - unless cancel is pressed)

ABND (delete naned | ocal variables)
;c**

Note that before we call our function BDI NPUT, we must leave a valid string on level 1 of the stack.
This string acts like a stack (or command line) argument and must be present to correctly use the
System RPL command | nput Li ne.

The command &3$ concatenates two strings. On the first run, & concatenates the predefined string
"Bearing? " toanull string, given by the System RPL command NULL$. On the second pass the
latitude and departure output string is left on the stack ready for the next concatenation of the input
prompt string " Beari ng? ".

Finally, we need to set up the program environment so we can trap any errors, initialise any system
flags and, upon exit, restore the original stack display. Here is the code that does just that:

R R Sk kS Sk Sk Sk Sk Sk S S S S Sk S S S S Sk Sk Sk S S Sk Sk Sk Sk Sk S S Sk Sk Sk Sk Sk Sk S Sk Sk S S S Sk Sk Sk Sk Sk Sk Sk Sk S S S S S S

* FUNCTI ON NAME: BD2EN

* | NPUT: NONE
* OUTPUT: NONE
* COMMENTS: The main Program Polar to Rectangul ar.
R S R
ASSEMBLE
CoN(1) 8
RPL

xNAME BD2EN

Ko
SETDEG

(Program accepts no input)

(degrees node)

ZERO Set Header (turn off header)

Cl r DA1l sSt at (Turn off clock)

RECLAI MDI SP (clear and resize the display)

TURNMENUOFF (turns current menu off)

(set systemflags. This may be witten as a separate routine)
Bl NT95 (set rpn node)

NI NETEEN (->v2 yields a vector)

SEVENTEEN (not in radians node)

El GHTEEN (Degrees node)

BI NT5 BI NT1 (start =1, finish = 4)

DO A rSysFlag LOOP (clear the systemflags)

105 Set SysFl ag (approx node on)

ERRSET (set up environment to trap any errors)
MAI N_ (call our main function)

ERRTRAP (exit on any error)
GARBAGE (clear nmenory)
TURNVENUON (turn nmenu back on)
RECLAI MDI SP (resize and clear display)
G r DAsXK (redraw display)

BI NT1 Set Header (redraw default header to one row)
;***

So how do we create a library?

The process of generating a library is not simple, so the general file structures and procedures used to
generate alibrary areillustrated below.

To create alibrary, we must

. Compile and assembl e the source code

. Use the HP Tool MAKEROM to create the head, hash, end and loader control file

. Use the contral file to build the library in combination with the source code

. Add a binary header to the front of the library and fill in the references to the “entry poi nt
table”

We begin with the source code.

The source code MUST contain some configuration information that lets the compiler know that we
are creating alibrary, what to do when we install it on our calculator, atitle and a unique D number.

Firstly, create a new source file, for example “Survey.s’, and add to the start of the source the
following configuration information:

TITLE Survey Library v2.0 (Title of library)
xROMID 2FC (The unique ID number)
ASSEMBLE

=SUROMID EQU #2FC
RPL

HIDDEN ROUTINES

EXTERNAL BDINPUT (Declare the library subroutines)
EXTERNAL MAIN_
EXTERNAL POLTOREC

ASSEMBLE
=Sucfg (Routi ne that's lets the compiler know what to do after
installation)

RPL

DOBINT SUROMID
XEQSETLIB (‘autoattach library)

Next, paste in the required routines as given by the aforementioned source code after this information.

Compiling the source code.

To compile this source code file, we undertake those steps as described in our first article. That is:

RPLCOMP SURVEY.S SURVEY.A SURVEY.EXT
SASM SURVEY

Here an additional output file has been created; “SURVEY.EXT”. Upon running the program
RPLCOMP, this file contains declarations for al routines that have been defined in the source code.
As mentioned in the first article, al of the procedures can be simplified by using a batch file. A
complete listing is shown at the end of thisarticle.

Next we aede the library with MAKEROM.
What is MAKEROM?

At this point in the construction of the fina file, we must branch away from the procedure for
compiling a single binary file (as described in our first article) and introduce the program required to
credethelibrary, thatisMAKEROM. Thusthe next line of your batch file would contain:

MAKEROM SU. MN SU. M

Two more fil es have been now introduced, “SU.MN” and “SU.M”. This iswhy the aeation of library
is no trivial matter. These files are basicdly the input and output from MAKEROM. A sample input
SU.MN is given by the foll owing:

TI TLE Survey Library Conpiler SU M
QUTPUT SU. O

LLI ST SU. LR

CONFI GURE Sucf g

NAME SULI B : Survey Program

Title of Input file)

Directs the Saturn output code to SU.O)
Log File)

Location of configuration information)
Name of library)

e T T L N N)

ROVPHEAD SUHEAD. A Start)

REL SURVEY. O Location of the source code)
TABLE SUHASH. A Hash Tabl e)

FI NI SH SUEND. A End)

END

The output from the program MAKEROM may look like the foll owing (Note that the li nes containing
the ** are comment lines only).

TI TLE Survey Library Conpiler SU M Title of Input File)

(
QUTPUT SU. O (Location of the Saturn object code file)
LLI ST SU. LR (Log file)
** CONFI GURE SUcf g
**NAME SULI B : Survey Program
** ROVPHEAD QUTPUT/ SUHEAD
REL SUHEAD. o (Location of the header code)
** Parsing OUTPUT/ SURVEY. EXT
REL SURVEY. O (Location of the source code)
**TABLE SUHASH. A
REL SUHASH. o (Location of the hash table)
**FI Nl SH SUEND. A
REL SUEND. o (Location of the end code)
END

A spedal note is made here &out the NAME. The name ‘SULIB :Survey Program” is what will
appea in the menu label in the library menu. To correspond with other library names, the first field
should be short enough to fit in a menu label, and can be followed by a spaceand whatever text you
like.

The next step is to generate the Saturn objed code for the threefil es generated by MAKEROM that is:
SUHEAD. A, SUHASH. A and SUEND. A. Thisissimply done by:

SASM SUHEAD
SASM SUHASH
SASM SUEND

Two final steps are required to finali se the cnstruction.

SLOAD SU. M
SLOAD -H S. M

Running SL OAD with the output from MAKEROM produces afinal binary file that isready to be
linked to the internal routines of the HP49G, for example the ‘entry point table’

Thelast step in the aedion of alibrary isacomplished with yet another control file, S.M

TI TLE Survey Library Conpiler S.M (Title of this file)
OUTPUT SULI B. LIB (Cutput file)

OPTI ON CODE (Options)

LLI ST SULIB. LR (Log file)
SUPPRESS XR

SEARCH ENTRI ES49. O

REL BI NHD49. O

REL SU. O

CK LI B2BC SYSEND2BC

Entry point table)

I ncl ude header info)

Location of Saturn object code file)
Check sum)

~~~

The header information “BINHD49.0" can be created by simply undertaking those steps described in
our first article. For example, create afile called “BINHD49.S’ that contains the following code:

ASSEMBLE
NI BASC / HPHP49- C/
RPL

Compile with

RLPCOVP BI NHD49. S  BI NHD49. A
SASM Bl NHD49. A

Output will be afile “BINHD49.0”

Putting it all together

To summarise the basic stepsin the creation of alibrary, a sample batch filelisting isillustrated below:

RPLCOVP SURVEY. S QUTPUT/ SURVEY. A QUTPUT/ SURVEY. EXT
SASM QUTPUT/ SURVEY

MAKEROM SU. M\N SU. M
SASM OQUTPUT/ SUHEAD
SASM OQUTPUT/ SUHASH
SASM QUTPUT/ SUEND

SLOAD SU. M
SLOAD -H S. M

Output from the batch file, used in conjunction with the two control files will be a single file called
“SULIB.LIB". Thisfile can now be freely uploaded to your calculator or Emulator and installed as a
library. When you cold start the calculator it will automatically be attached and ready for use.

Timothy Ney & Roger Fraser



