SYSTEM RPL for the HP48GX and HP49G

Authors: Timothy Ney & Roger Fraser

We have heard with much interest over the past 6 yeas of our experience with HP
programming, many surveyors sying that they didike the HP48/49 because of the speed
problems. We have dso foundthat many programs avail able to surveyors today, do na go
along way to dspelling this perception. As a result, many surveyors continue to persevere
with their HP42S or even aHP41.

Why does the cal culator suffer from these perceived speed problems?

The answer lies in the language in which programs are written, that is UserRPL. UserRPL is
the language that is documented in the alculator reference material and is redaily
programmed onthe calculator through the use of << >> commands.

S0, can the cdculator be programmed to go faster?

The answer is yes, through a language known as SystemRPL or SysRPL for short. SysRPL is
the built in language that is custom designed for the cdculator’'s processor. UserRPL is
adually a “subset” of SysRPL.

Why is SysRPL faster than UserRPL?

The main reason is that UserRPL commands have built in argument and error cheding. In
SysRPL, the programmer is resporsible for al error cheding and avoiding memory crashes.
For example, if you know what type and haw many arguments are required for a cetain
command a function, then it should not be necessary to perform error checking. This
effedively increases exeaution time of the cmmand. If you dothis over several commands
or even a program then execution ke can somewhere around 10times (this is a figure that we
have head alot) fastest then UserRPL.

S0, to get a good undrstanding of SysRPL, it is important to understand hov a program is
exeauted on the clculator. Essentially UserRPL and SysRPL are similar in that the cdculator
does not store the name of commands, only a series of memory addresses.

When a program runs, execution jumps to each addresssimil ar to a GOSUB statement. Some
more eeaution may take place there or possibly jump to ancther address, eventualy the
exeaution will return to the origina program and exeaution proceals to the next addressuntil
the program is finished.

If the clculator however only stores addresses, then how can we alit UserRPL files? The
cdculator actualy corntains a table in memory that is used to crossreference the aldresses to
the UserRPL command names. When you view a UserRPL program, the information
displayed is a readable form of the addresses. When you edit the program using UserRPL
command names, the alculator searches the table for the crresponding address and
constructs a program in memory containing that address

What happens if there are aldresses (or more cmmonly known as entry points) that do nd
have names that you can use onyour calculator?

In fad there ae over 3000commands on the HP49G without names. How do we gain access
to these entry points? The answer is SysRPL. It is worth noting here, that SysRPL is a

compiled language that requires specia todls to develop programs. It can not be alited like
UserRPL programs.

Why do we nedl these tools?

As we mentioned above, SysRPL commands do nd have mmmand names, this however is
not quite true. The cmmands do have names, they are simply not stored on the cculator
and therefore cannat be compiled internaly like UserRPL programs. When you write a
program, the SysRPL compiler searches for the names in an entry point table (thisis a table
that contains a series of command names and their correspording addresses in the Calculators
ROM) For example, the following table tells the compiler that when it encounters the
command name !!append$, it should use the corresponding #623A0 address

Example of part of a entry point table

=llappend$ EQU #623A0 * llappend$ equates to #623A0
=Il append$? EQU #62312
=llinsert$ EQU #62394
=lappend$ EQU #62376
=lappend$SWAP EQU #62F2F
=linsert$ EQU #6225

The compil er will develop a program into a series of addresses that exeaute one after another
urtil the program is finished. This, as you can see, is $milar to how the cdculator internally
compil es UserRPL programs.

What tools are available?

There are many toodls available today to compile SysRPL program, ranging from PC to
cdculator based. A good pace to start looking is at http://www.hpcalc.org. Our preferred
option is the PC based HP-TOOLS (these tods are somewhat outdated now, but we ae
luckily enough to have access to a PC and prefer nat to plug away at our HP49GS).
However, thisis purdly a choice for the programmer. We have based the remainder of this
aticle on the use of HP-TOOLS. Look for “HP Tools for WIN32 3.0.6 at
http://www.hpcal c.org/hpd8/pc/programming: This should be the latest version.

Before, we show you an example of a SysRPL program and hav to compile it ready for the
cdculator; a programmer shoud have one more important tool. That isan Emulator. Exactly
what is an emulator? Thisis aprogram that runs on a PC, that imitates a HP48/49 cdculator.
Programs can be tested by this emulator prior to udoading to your calculator to ensure that
SysRPL programs are freefrom errors saving many crashes of your cdculator. The emulator
that we prefer is EMU48. You can download it from http://www.hpcalc.org. Installation
instructions are included with the download file and are relatively easy to understand. We
have sometimes written entire programs and tested them on the emulator before uploading to
the calculator. Figure 1 shows EMU48 with an HP49 KML script.

Figure1

sr || Foo O % 8 [orncomscompedinea.

So, what does a simple SysRPL program look like?

There are a several options available for writing and compiling a SysRPL program. One such
option isto write the program source in atext file, compile the code using a HP compiler and
then build the final binary file. You could simplify this procedure by using a batch file to
automate the compiling and building of the final binary file. We discuss this later in the
article.

Thefirst step isto write some source code. L ets assume we want a ssmple HP49 program that
takes a bearing and distance from the stack and converts the values into the corresponding
departure and latitude (i.e. a Polar to Rectangular coordinate conversion). For this exercise,
the program requires is a Distance on Stack Level two and a Bearing (in hours minutes and
seconds) on Stack Level one. (Stack levels are simply the corresponding place that the
objects sit on the stack) Figure 2 isasample of source code.

Figure 2
ASSEMBLE
NI BASC / HPHP49- C/
RPL
- (defines the start of a source object)
CK2&Di spat ch (check if there are two real nunbers on the stack)
2REAL
- (if so...)
%VE> (convert the first value to decimal hours)
(convert bearing and distance to departure and latitude)

9%POL>YREC

(ends the main source object)

So how does this program work?

Firstly, we need to ook at the header information.

ASSEMBLE
NI BASC / HPHP49- C/
RPL

All HP files contain header information (including UserRPL, but you do not see it) that lets
the calculator know for which version of the HP the program was written. Since we are
compiling and building source code on a PC, no header information is automatically added to
the find file. Without this header information, files will not load correctly in the HP48/49.
Therefore, the instruction at the top of the program, allow us to freely upload filesto the HP.

The next line cortains the start of a program- shown as :: (known as a secondary marker).
The end marker is; thistellsthe calculator where the secondary begins and ends. Asyou can
see the program uses another secondary under 2reaL, this again instructs the calculator to
perform only the functions between the markers.

Where the real power of SysRPL liesisin the removal of error cheding. Inthe example we
have used a @mmand x2&bi spatch. This command cheds for two arguments then
dispatches their respective types, in this case 2 real numbers. Obvioudy, if we were to
perform this conversion part way through program exeaution (and we were &solutely
confident that we had two reas on the stack) we wuld exclude the @mmmands ck2&bi spat ch,
2REAL and the secondary under 2REeAL.

The remaining commands are self-explanatory.

As an example, if we had 402.803on stack level 2 and 80 45 16" on stadk level 1 and we
exeauted this program, we would end upwith 64.7167 on stadk level 2 and 397.5701 onstack
level 1, as srown by Figure 3.

Figure 3

| () B3]

NN

— -

cn dn S5 BB B
In up coming issues, we will show you haw to create programs that perform the various tasks
involved with survey caculation and data management.

So howv dowe create, compile and huild afile suitable for the cdculator?

1. The first step is to create some source ®de such as figure 2 and save it with an
extension of .s. For example, if we have aprogram cdled survey then the source file
would be survey.s. Why .s?, well this follows the general naming convention as
follows:

Sat urn assenbl er source file

External |ist generated by RPLCOVP

Include file, used by RPLCOWP or SASM
Saturn assenbler list file

SLOAD output list file

SLOAD control file

MAKEROM control file

Saturn object code file (with Saturn header)
Loader output file

RPL source file

'm'p'oég;i—ig&

2. Thenext step isto create abatch file that contains the necessary programs to compile
and kuild thefinal file.

RPLCOVP SURVEY. S SURVEY. A
SASM SURVEY. A

SLOAD -HB. M
So how does the batch file work?

3. Firgtly, we run rRPLCOW SURVEY. S SURVEY.A. This will generate the file survey.a,
which isthe Saturn assembly source @defile. The programs, RPLCOMP, SASM and
SLOAD eadt have a +200 page document manual, that is beyond the scope of this
article and the programmer should read this materia if further information or
clarificationisrequired.

4. Wenowrunsasm SURVEY. A Thiswill generate two files survey.l and survey.o.

5. Creae ancther file called B. m that contains the following

TITLE Binary File Conpilation Program Title for file

*
REL SURVEY. O * Input File
QUTPUT SURVEY. GX * Qutput File
LLI ST SURVEY. LR * Log file

*

SEARCH ENTRI ES49. O
SUPRESS XREF
END

Entry Point table

With thisfile, werun sLoap -+ B.M . Thiswill producethe fina binary file clled
survey.gx, that you could upload to your calculator / emulator. Ensure that you use
the —H asthistells the program that an output fileisrequired.

You may have naticed the reference to the file entries49.0. This is a Saturn adbject
code file of the entry point table discussed in the introduction to this article. Again,
look at www.hpcdc.org for the latest version d the table. Many of the tables that
you can download are in the form of entries49.a — A Saturn assembly source code
file. To create a Saturn adbject code file (extension .0), we would use the same
methodas shownin 4, i.e. SASM entries49.a -> entries49.0

6. Findly, you should look at the file, SURVEY.LR. If there are no errors, then your
program shoud be ready. If nat, you should return to the source @de, correct the
error and rerun the batch file.

So where dowe go from here?

You can download several articles that can assist in leaning System RPL. Some excdlent
documentsinclude

Programming In Syssem RPL: Eduardo Kalinowski, 1998
http://www.hpcal c.org/hp48/docs/programming/

Rpl man.pdf - A guide to programming in systemRPL
http://www.hpcal c.org/hp48/docs/programming/

HP48GX / 49G Entry Reference: Carsten Dominik and Thomas Rast, 2002
http://zon.astro.uva.nl/~dominik/hpcalc/entries/

The authors are available any time to assist anyone who may want to develop SystemRPL
programs or needs an application written for their calculator.

Who are the authors?

Timothy Ney

Currently alicensed surveyor employed with the Department of Natural Resources and Mines
in Mackay, Queendland. Tim has 6 years experience in HP programming including UserRPL,

SystemRPL and assembly (machine Code).

Timothy.Ney@nrm.qgld.gov.au

Roger Fraser

Also alicensed surveyor with Natural Resources and Mines, Brisbane Queensland and is
currently pursuing a PhD in Marine Spatial Data Infrastructure. Roger has over 7 years
experiencein writing HP calculator programs (UserRpl and SystemRPL) and has over 4 years
experience in Windows software development (C, C++, VC, VB & Web), speciaisingin
applications for the transition to GDA.

roger.fraser@nrm.qld.gov.au

