OEIS A212558: Proof of Unproven Conjecture? Proven!

+- HP Forums (http://www.hpmuseum.org/forum)
+-- Forum: HP Calculators (and very old HP Computers) (/forum-3.html)
+--- Forum: General Forum (/forum-4.html)
+--- Thread: OEIS A212558: Proof of Unproven Conjecture? Proven! (/thread-9719.html)



OEIS A212558: Proof of Unproven Conjecture? Proven! - Gerald H - 12-18-2017 02:23 AM

The sequence

https://oeis.org/A212558

defined as

a(n) = ((n - s)^2 mod (n + s)) - ((n + s)^2 mod (n - s)), where s is the sum of the decimal digits of n

has the value 0 for 2,999 < n < 20,000,000 & for random input 20,000,000 =< n < 10^94.

Can anyone suggest a proof of 0 value for all integer input > 2,999 ?


RE: OEIS A212558: Proof of Unproven Conjecture? - stored - 12-18-2017 04:21 AM

(n - s)^2 = (n + s)^2 - 4 n s = (n + s)^2 - 4 s (n + s) + 4 s^2
(n + s)^2 = (n - s)^2 + 4 n s = (n - s)^2 + 4 s (n - s) + 4 s^2

Then source problem is equivalent
4 s^2 mod (n+s) = 4 s^2 mod (n-s)

This is true for all s, that
4 s^2 < n-s.


RE: OEIS A212558: Proof of Unproven Conjecture? Proven! - stored - 12-19-2017 12:21 AM

Gerald, thanks you for the interesting quiz!

Small addendum about sum of the decimal digits of n.

Let s(n) is the sum of the decimal digits of n.
Consider condition
4*s(n)^2 < n-s(n), (*)
4*s(n)^2 + s(n) < n

Function in left is monotonically increasing function, then
in respect that
s(n) <= 9*log10(n+1)
we get estimation
4*s(n)^2 + s(n) <= 4 * (9 * log10(n+1))^2 + 9*log10(n+1) = 324 * log10(n+1)^2 + 9*log10(n+1)

Maximal solution of the equation
324 * log10(n+1)^2 + 9*log10(n+1) = n
is n0 ~ 4313.68. (I use Wolfram Alpha for getting this value.)
Hence, condition (*) is true for all n > n0.
For n from 2999 to 4313 source statement may be checked by direct computations.


RE: OEIS A212558: Proof of Unproven Conjecture? Proven! - Gerald H - 12-19-2017 02:10 AM

& a programme for the 49G:

Code:
::
  CK1&Dispatch
  BINT1
  ::
    %ABSCOERCE
    DUPDUP
    BINT10
    #<
    OVER
    # BB7
    #>
    OR
    case2drop
    Z0_
    ZEROSWAP
    BEGIN
    BINT10
    #/
    3UNROLL
    #+SWAP
    DUP#0=
    UNTIL
    DROP
    DUPDUP
    #+DUP
    #*
    3UNROLL
    2DUP#+
    4PICKSWAP
    #/
    DROP
    UNCOERCE
    4UNROLL
    #-
    #/
    DROP
    UNCOERCE
    %-
    FPTR2 ^R>Z
  ;
;