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DIFFERENTIAL  EQUATIONS 
NUMERICAL  METHODS  2 

 
RUNGE  KUTTA  4 
 

The most widely known member of the Runge–Kutta family is generally referred to 
as "RK4", the "classic Runge–Kutta method" or simply as "the Runge–Kutta method".  The 
‘4’ refers to the estimated error of the order of h4.  Again, RK4 will only solve 1st order ODE, 
with initial values, although there is a technique to transpose a 2nd degree ODE to a 1st.  
See p6 of this paper.  Let an initial value problem be specified as follows: 
 

dy

dt
 = f(t,y),  y(t0) = t0 

 
RK4 basically computes the next value yn+1 using the current yn plus the weighted average 
of four increments. 

Here is an unknown function (scalar or vector) of time, which we would like to 
approximate.  We are told that, dy

dt
, the rate at which it changes, is a function of t and of y 

itself.  At the initial time t0 the corresponding y value is y0.  The function and the initial 
conditions, are given.  Now pick a step-size h > 0 and define: 
 

yn+1= yn+
1
6

h(k1+2k2+2k3+k4) 

    tn+1 =  tn + h 
  
1. k1 is the slope at the beginning of the 
time step (this is the same as k1 in the 
first  order method, Euler). 
2. If we use the slope k1 to step halfway 
through the time step, then k2 is an 
estimate of the slope at the midpoint.  This 
is the same as the slope, k2, from the 
second order midpoint method.  This slope 
proved to be more accurate than k1 for 
making new approximations for y(t). 
3. If we use the slope k2 to step halfway 
through the time step, then k3 is another 
estimate of the slope at the midpoint. 
4. Finally, we use the slope, k3, to step all 
the way across the time step (to t₀+h), 
and k4 is an estimate of the slope at the 
endpoint. 
 
We then use a weighted sum of these 
slopes to get our initial estimate of y(t₀+h). 
 

y(t0+h) = y(t0)
k1+2k2+2k3+k4

6
h  =  y(t0)+ ቀ

1

6
k1+

1

3
k2+

1

3
k3+

1

6
k4ቁ  =  y(t0) + mh 

  (RK 0, p23). 
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 This method gives surprisingly accurate results, without the need of using extremely 
small values of h. 

 k1 = (h)f(x0,y0), 
 k2=(h)f ቀx0+

h

2
, y0+

k1

2
ቁ,  

 k3=(h)f ቀx0+
h

2
, y0+

k2

2
ቁ,  

 k4 = (h)f(x0 + h,y0 + k3),  
 K= ቀ

1

6
ቁ (k1+2k2+2k3+k4).  

Now we set y1 = y0 + K          (05) 
 

Having determined y1, we proceed to approximate x2 = x1 + h in the same way.  
k1 = (h)f(x1,y1), 
k2=(h)f ቀx1+

h

2
, y1+

k1

2
ቁ,  

k3=(h)f ቀx1+
h

2
, y1+

k2

2
ቁ,  

k4 = (h)f(x1 + h,y1 + k3),  
K= ቀ

1

6
ቁ (k1+2k2+2k3+k4).  

Now we set y2 = y1 + K 
And take this as the approximate value of the exact solution at x2 = x1 + h. 
Continue the same way until the final h is reached.  (Ross, 456). 
 
*Note that this uses “x” for the independent value.  This is because this section is copied 
from my math text rather than engineering notes. 
 
EXAMPLE  03 
y’ = y – t2 + 1 ,  y(0) = 0.5  
The exact solution for this problem is y(x) = t2+2t+1- 1

2
et, and we are interested in the 

value of y for 0 ≤ t ≤ 2. 
We solve this using RK4 with h = 0.5, from t = 0 to t = 2. 
t0 = 0, y0 = 0.5 
 
t1 = 0.5      
k1 = (h)f(t0,y0) = (0.5)(f(0,0.5)) = (0.5)(1.5) = 0.75 
k2 = (h)f ቀt0+

h

2
, y0+

k1

2
ቁ = (0.5)(f(0.25,0.875)) = (0.5)(1.8125) = 0.90625 

k3 = (h)f ቀt0+
h

2
, y0+

k2

2
ቁ = (0.5)(f(0.25,0.953125)) = (0.5)(1.890625) = 0.9453125 

k4 = (h)f(t0+h,y0+k3) = (0.5)(f(0.5,1.4453125)) = (0.5)(2.1953125) = 1.09765625 
y1 = y0 + (k1 + 2k2 + 2k3 + k4) / 6 = 

 0.5 + (0.75 + 0.90625 + 096453125 + 1.09765625) / 6 = 1.42513020833333 
 
t2 = 1  
k1 = (h)f(t1,y1) = (0.5)(f(0.5,1.4251302083333333)) = (0.5)(2.175130208333333) = 
 1.0875651041666667   
k2 = (h)f ቀt1+

h

2
, y1+

k1

2
ቁ = (0.5)(f(0.75,1.968912760416667) = 

 (0.5)(2.40641276047) = 1.203206380208333 
k3 = (h)f ቀt1+

h

2
, y1+

k2

2
ቁ = (0.5)(f(0.75,2.0267333984375) = 

 (0.5)(2.46423339844) = 1.23211669921875 
k4 = (h)f(t1+h,y1+k3) = (0.5)(f(1,2.657246907552083)) =  

(0.5)( 2.657246907552083) = 1.328623453776042  
y2 = = y1 + (k1 + 2k2 + 2k3 + k4) / 6 = 2.639602661132812 
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… 
 
t4 = 4 
y4 = 1.378409485022227 + 1.316761856277783 + 1.301349949091673 + 

1.154084459568063 = 5.301605229265987  
t (i) Exact y(ti) RK4 y(i) Error |Exact-RK4|

0.0 0.5 0.5 0.0
0.5 1.42563936464993 1.42513020833333 0.000509156316603
1.0 2.64085908577047 2.63960266113281 0.001256424637665
1.5 4.00915546483096 4.00681897004445 0.002336494786515
2.0 5.30547195053467 5.30160522926598 0.003866721268688  

(RK 3, p1). 
 
 While smaller values of h provided better approximations with Euler, we can see that 
the same applies to RK4.  However, where Euler uses a smaller h with a factor of 2, 
producing improved accuracy by 2, RK4 will reduce errors by a factor of 16!  (Ross, 459).  A 
simple way to determine whether your h value is small enough is to do the problem again 
with h/2.  Then compare the results.  I know that this is a lot of work.  Perhaps both trials 
can be done with a small data sample.  However, changing to a more precise method, might 
be better.  See Felhberg and ABAM below. 
 
 Dawkins describes a method to transform a 2nd degree ODE to a 1st degree.  See 
Dawkins 276 PDF, also p6 of this paper.  There are several other PDF describing this 
technique in Methods folder. 
 
 
FELHBERG 
 

The trickiest part of RK is determining the right step size.  Many problems in celestial 
mechanics, chemical reaction kinematics, and other areas have long periods of time where 
nothing much is happening (and for which large step-sizes are appropriate) mixed in with 
periods of intense activity where a small step-size is vital.  What we need is an algorithm 
which includes a method for choosing the appropriate step-size at each step. The Runge-
Kutta-Fehlberg methods do just this, which is why they have largely replaced the Runge-
Kutta methods in practice. 
 Let us assume that for constant C’ 

     ቚC'
ቚ ≈

หyభ
ᇲ ିyమ

ᇲᇲห

h3   

Once we have this approximation for C’, we can pick a step-size h1 to get the local error of 
the size we want.  If we want the local error to be about size T, we just take a step-size hnew 
where 

 hnew=h ൬
T

หyభ
ᇲ ିyమ

ᇲᇲห
൰

1 3⁄

 

You might be a little worried about how all the errors in the different approximations mount 
up as we carry out all these computations to get our new step-size .  This is a serious 
consideration and is dealt with by introducing a chicken factor, usually taken to be 0.9.  We 
actually use a step-size 

 h1=(0.9)h ൬
T

หyభ
ᇲ ିyమ

ᇲᇲห
൰

1 3⁄

 

Fehlberg uses exactly this technique to pick the right step-size.  Suppose the initial value 
problem we want to solve is 
     dy

dx
= f(x,y),   y(x0) = y0 

We have an initial step-size h (taken to be whatever value you fancy, we will update it  
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automatically as needed).  We compute the improved Euler and RK3 estimates in the usual 
fashion. 

 k1 = f(x0, y0)  
 k2 = f(x0 + h, y0 + (h)(k1))    
 k3 = f(x0 + h/2, y0 + (h)((k1 + k2)/4) 
 y

ଵ
ᇱ  = y0 + (h)(k1 + k2)/2  

 y
ଶ
ᇱᇱ = y0 + (h)ቀ

k1+k2+4k3

6
ቁ  

|error|≈หy
ଵ
ᇱ − y

ଶ
ᇱᇱห 

If this error is small enough, say within a tolerance of T = (0.001)(max(หy0ห,1)), then we 
accept this step-size for the current step and let 

 x1 = x0 + h  
 y1 = y

ଵ
ᇱᇱ 

If the error is greater than T, we reject this step-size for the current step and leave x0 and 
y0 as they are.  In either case, we choose a new step-size 

 hnew = 0.9h ൬
T

หyభ
ᇲ ିyమ

ᇲᇲห
൰

1 3⁄

 

We then either compute the next step with the new step-size (if our error was less than T) 
or we repeat the current step with the new step-size (if the error was greater than T) and 
try again to find x1 and y1.  (RKF2, 3). 
 
EXAMPLE  04 
Approximate y(1) if dy/dx = x + y, with y(0) = 0.  Use Felhberg with tolerance T = 0.01.  
We need to pick an initial step-size to get things started. We have to go from x0 = 0 to x = 
1, so why not go for it all in one shot and guess initially h = 1.  Choosing a step-size of 
about the length of the interval divided by 16 or32 is more typical.  I wanted to be sure I 
had to reject the estimate sometime in the course of the example so I decided to start off 
wrong with too large a step size to be sure that happened.  We carry out the following 
computations. 
 K1 = 0 
 K2 = 1 
 K3 = 0.75 
 y

ଵ
ᇱ   = 0.5 

 y
ଶ
ᇱᇱ  = 0.6666666666666… 

 หy
ଵ
ᇱ − y

ଶ
ᇱᇱห = 0.166666666666… 

 The estimated error is greater than the tolerance 0.01, so we reject the initial step-size of h 
= 1. We compute a new step-size and try again. 
 hnew = (0.9)(1)(0.01/1.66666…)1/3 = 0.3523380877 
 K1 = 0 
 K2 = 0.35233880877 
 K3 = 0.2072045759 
 y

ଵ
ᇱ  = 0.062071064  

 y
ଵ
ᇱᇱ = 0.069361064 

 หy
ଵ
ᇱ − y

ଵ
ᇱᇱห = 0.00729 < 0.01 

This time the estimated error is less than the tolerance so we accept the step-size and 
estimate and compute  
 x1 = x0 + h  
 y1 = y

ଵ
ᇱᇱ 

We now compute a new step-size and go on to the next step (Twice in this problem, we 
compute a new step-size and it turns out to exactly equal the old step-size.  This is a freak 
accident.) 
 hnew = (0.9)(0.3523380877)(0.01/0.00729…)1/3 = 0.3523380877 
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 K1 = 0.4216991517 
 K2 = 0.9276179121 
 K3 = 0.7162817215 
 y

ଶ
ᇱ  = 0.3061881158 

 y
ଶ
ᇱᇱ = 0.3165523026 

 หy
ଶ
ᇱ − y

ଶ
ᇱᇱห = 0.013641868 > 0.01 

This time the estimated error is greater than the tolerance so we reject the step-size and try 
again with the same x1 and y1. 
 hnew = (0.9)(0.3523380877)(0.1/0.0103641868)1/3  
 K1 = 0.4216991515 
 K2 = 0.8671284185 
 K3 = 0.6793383478 
 y

ଶ
ᇱ  = 0.2712937907 

 y
ଶ
ᇱᇱ = 0.2785837907 

 หy
ଶ
ᇱ − y

ଶ
ᇱᇱห = 0.00729 < 0.01 

This estimated error is less than the tolerance so we accept the step-size and compute 
 x2 = x1 + h = 0.6656837532 
 y2 = y

ଶ
ᇱᇱ = 0.2785837907 

We now compute the new step-size for the next step and repeat the process 
 hnew = (0.9)(0.3133456655)(0.1/0.0729)1/3 = 0.3133456655  
 K1 = 0.9442675439 
 K2 = 1.553495351 
 K3 = 1.296606171 
 y

ଷ
ᇱ  = 0.669915379 

 y
ଷ
ᇱᇱ = 0.679849358 

 หy
ଷ
ᇱ − y

ଷ
ᇱᇱห = 0.0099695568 < 0.01 

Estimated error is less than tolerance, so we accept and compute 
 x3 = x2 + h = 0.9790294187  
 y3 = y

ଷ
ᇱᇱ = 0.679849358 

Next step-size 
 hnew = (0.9)(0.3133456655)(0.1/0.0099695568)1/3 = 0.2822978588 
But this step-size is too large since x3 + h = 1.261327277 > 1, and so it would put us past 
our final value for x.  Therefore we shrink to hit x = 1 exactly. 
 hnew = 1 – x3 = 0.0209705813 
 K1 = 1.658914354 
 K2 = 1.714673334 
 K3 = 1.687086169 
 y

ସ
ᇱ  = 0.7152579833 

 y
ସ
ᇱᇱ = 0.7152620701 

 หy
ସ
ᇱ − y

ସ
ᇱᇱห = 0.00000408681 < 0.01 

This estimated error is less than the tolerance, so we accept this estimate and make the 
final computations 
 x4 = x3 + h = 1  
 y4 = y

ସ
ᇱᇱ = 0.7152620701  

 yactual    = 0.7182818285 
(RKF2, 5). 

 
EXAMPLE  05 
y’ = y – t2 + 1   y(0) = 0.5   tf = 2   h = 0.2   T = 0.0001 
y(x)actual = c1e

x + x2 + 2x + 1   (courtesy of Wolfram Alpha)  
This technique must be run on a computer or calculator.  So, I will just give the answer.   
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The paper (RK 3) that I copied this from yields intermediate values for t.  Obviously making 
this suitable for graphing. 

 

t EXACT NUMERICAL ABS  ERR
0.0 0.500000000000000 0.500000000000000 0.000000000000000
0.2 0.829298620919915 0.829293333333333 0.000005287586582
0.4 1.214087651179360 1.214076210666660 0.000011440512698
0.6 1.648940599804740 1.648922017041600 0.000018582763146
0.8 2.127229535753760 2.127202684947940 0.000026850805823
1.0 2.640859085770470 2.640822692728750 0.000036393041726
1.2 3.179941538631720 3.179894170232230 0.000047368399496
1.4 3.732400016577660 3.732340072854980 0.000059943722683
1.6 4.283483787802440 4.283409498318400 0.000074289484036
1.8 4.815176267793520 4.815085694579430 0.000090573214092
2.0 5.305471950534670 5.305363000692650 0.000108949842019  

Note that the computer balked on many of the final digits, changing them to zeros. 
(RK 3, p3#2). 

 
 
CHANGING  THE  ORDER  OF  A  DE 
 
 A system of differential equations can arise from a population problem in which we 
keep track of the population of both the prey and the predator.  The differential equation 
that governs the population of either the prey or the predator should in some way depend 
on the population of the other.  This will lead to two differential equations that must be 
solved simultaneously in order to determine the population of the prey and the predator.   

However, systems can arise from nth order linear differential equations as well.  
Here is an example of two different first order (the order is the largest derivative present in 
the equation) linear differential equations (any DE with the form of y=mx+b or 
ୢమ୷

ୢ୶మ + 5
ୢ୷

ୢ୶
 + 6y = 0.  See my paper Diff Eq 0, p1-2).  Here is a system of first order, linear DE. 

 
xଵ

ᇱ  = x1 + 2x2 
x2

ᇱ  = 3x1 + 2x2 
 
 Often we find linear DE of higher orders.  Since the numerical methods we have 
covered are only suitable for first order DE, we need a method to convert a higher order to 
a first order. 
 
EXAMPLE  06 
Write the following DE as a system of first order linear DE. 

2yᇱᇱ − 5yᇱ + y = 0     y(3) = 6     yᇱ(3) = -1 
This can be done with a simple change of variable.  We’ll start by defining two new 
functions. 
 x1(t) = y(t) 
 x2(t) = yᇱ(t)  
Notice that if we differentiate both sides of these we get, 
 x1(t) = yᇱ = x2  
 xଶ

ᇱ  = yᇱᇱ = −
1

2
y + 5

2
y′ = −

1

2
x1 + 5

2
x2  

We can also convert the initial conditions to the new functions.  
 x1(3) = y(3) = 6  
 x2(3) = yᇱ(3) = -1    
Putting this all together gives the following: 
 xଵ

ᇱ  = x2      x1(3) = 6  
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 xଶ
ᇱ  = −

1

2
x1 + 5

2
x2     x2(3) = -1 

 
EXAMPLE  07 
Write this 4th order DE as a system of 1st order linear DE.  
 y(4) + 3yᇱᇱ − sin(t) yᇱ + 8y = t2    y(0) = 1   yᇱ(0) = 2   yᇱᇱ(0) = 3   yᇱᇱᇱ(0) = 4     
Just as we did before, we’ll need to define some new functions.  This time we’ll need 4 new 
functions. 
 x1 = y   ⇒      x1

′  = yᇱ = x2  
 x2 = yᇱ    ⇒      x2

′  = yᇱᇱ = x3  
 x3 = yᇱᇱ   ⇒      x3

′  = yᇱᇱᇱ = x4  
 x4 = yᇱᇱᇱ    ⇒       x4

′  = y(4) = -8y +  sin(t)y′ − 3yᇱᇱ + t2 = -8x1 + sin(t)x2 – 3x3 + t2  
Then this system, along with the initial conditions is 
 xଵ

ᇱ  = x2  
 xଶ

ᇱ  = x3  
 xଷ

ᇱ  = x4  
 xସ

ᇱ  = -8x1 + sin(t)x2 – 3x3 + t2  
 
 Now, when we finally get around to solving these, we will see that we generally don’t 
solve systems in this form.  Systems of DE can be converted to matrices, and this is the 
form that we use to solve them. 
 
EXAMPLE  08 
Convert the following system to matrix form. 
 xଵ

ᇱ  = 4x1 + 7x2 
 x2

ᇱ  = -2x1 − 5x2 
First write the system so that each side is a vector, 

 ൤
xଵ

ᇱ

x2
ᇱ ൨ = ቈ

4x1 7x2

-2x1 -5x2
቉  

Now the RS can be written as a matrix multiplication, 

 ൤
xଵ

ᇱ

x2
ᇱ ൨ = ൤

4 7
-2 -5

൨  

Define: 

 xሬሬ⃑  = ቂ
x1
x2

ቃ  

Then 

 xሬሬ⃑
ᇱ
 = ൤

xଵ
ᇱ

x2
ᇱ ൨  

 
Repeat this process for examples 06 and 07. 
 
EXAMPLE  09 
For example 06: 
 xଵ

ᇱ  = x2      x1(3) = 6  
 x2

′  = −
1

2
x1 + 5

2
x2     x2(3) = -1 

First define, 

 xሬሬ⃑  = ቂ
x1
x2

ቃ  

This system is then, 

 xሬሬ⃑
ᇱ
 = ቈ

0 1
-

1

2

5

2

቉     xሬሬ⃑ (3) = ൤
x1(3)

x2(3)
൨ = ൤

6
-1

൨  
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EXAMPLE  10 
For example 07: 
 x1

′  = x2        x1(0) = 1 
 x2

′  = x3          x2(0) = 2 
 x3

′  = x4          x3(0) = 3 
 x4

′  = -8x1 + sin(t)x2 – 3x3 + t2     x4(0) = 4  
Now, we have to be careful with the t2 in the last equation.  We’ll start by writing the 
system as a vector again.  Then we’ll break it into two vectors.  One will contain the 
unknown functions, the other, the known functions. 

 

⎣
⎢
⎢
⎢
⎡x1

'

x2
'

x3
'

x4
' ⎦

⎥
⎥
⎥
⎤

 = ൦

x2
x3
x4

-8x1+sin(t)x2-3x3+t2

൪ = ൦

x2
x3
x4

-8x1+sin(t)x2-3x3

൪ + ൦

0
0
0
t2

൪  

Now the first vector can be written as a matrix multiplication, 

 xሬሬ⃑
ᇱ
 =  ൦

0
0
0
-8

    

1
0
0

sin(t)

    

0
1
0
-3

    

0
0
1
0

൪ xሬሬ⃑   +  ൦

0
0
0
t2

൪  

Where, 

 xሬሬ⃑ (t) = 

⎣
⎢
⎢
⎡
x1(t)
x2(t)
x3(t)
x4(t)⎦

⎥
⎥
⎤

  

Note that for large systems such as this we will go one step further,  
 xሬሬ⃑

ᇱ
 =  Axሬሬ⃑  + gሬሬ⃑ (t)  

 
Finally, xሬሬ⃑

ᇱ
 =  Axሬሬ⃑  + gሬሬ⃑ (t) is a homogeneous system, while, gሬሬ⃑ (t) = 0ሬሬ⃑  is non homogeneous if  

gሬሬ⃑ (t) ≠ 0ሬሬ⃑ .  (See my paper titled “Basics,” p2, in folder, Math, Papers, DE).  
 
(DE_276; Second Order Differential Equations; 5520Notes DE LA; all in folder: BOOKS, PDF, 
MATH, DE and Lin Alg). 
 
 
ADAMS – BASHFORTH / ADAMS – MOULTON 
 
 Where RK4 is a single step method, basing each prediction on only one previously 
predicted point, (ABAM) is a multi step method.  As such, it cannot calculate the first few 
input y values.  Therefore, it is necessary to turn to a one step method such as Euler to find 
these values.  Then one begins using the multi step after a sufficient number of starting 
values are found.  ABAM is also a predictor-corrector method.  This uses a formula to first 
predict an approximation yෝn+1

, which is then used indirectly in the correcting formula to find 
yn+1. 
 ABAM can be used to approximate the value of (xn+1) from the solution  of the IVP  

 y’ = f(x,y)       (06) 
       y(x0) = y0   
at xn+1 = x0 + (n + 1)h, provided we have previously found approximations yn, yn-1, yn-2, 
yn-3, corresponding to the four previous points xn, xn-1, xn-2, xn-3. 
 The method follows: we use (06) to determine y’ at each of xn, xn-1, xn-2, and xn-3.  In 
particular we set y’n = f(xn,yn),  y’n-1 = f(xn-1,yn-1),  y’n-2 = f(xn-2,yn-2), and y’n-3 = f(xn-3,yn-3).  
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Using these initial values, we find an initial approximation yෝn+1
 for (xn+1) with the predicting 

formula: 

 yෝn+1 = yn+
h

24
൫55y

୬
ᇱ  −  59y

୬ିଵ
ᇱ  + 37y

୬ିଶ
ᇱ  −  9y

୬ିଷ
ᇱ ൯   (07) 

Inserting numbers into this, we find the number 
 yෝ’n+1 =  f(xn+1, yෝn+1).       (08) 

This is used to find yn+1 in this correcting formula: 

 yn+1 =  yn+
h

24
൫9yෝ’n+1 + 19y

୬
ᇱ  − 5y

୬ିଵ
ᇱ  + y

୬ିଶ
ᇱ ൯   (09) 

Once the values y0, y1, y2, y3 have been determined, we can start using ABAM with n = 3 to 
determine y4.  Then with y4 use this to find y5, … 
 Because of the accuracy of RK4, this is the preferred starting method for values y0 to 
y3.  (Ross, 463). 
 
EXAMPLE  11 
Use RK4 to approximate the solutions for y’ = 2x + y, y(0) = 1, for 0.2, 0.4, and 0.6.  Then 
use ABAM for 0.8 to 2.0.  Also finish RK4 for 0.8 to 2.0 for comparison purposes.  Finally 
make a table with actual solutions, RK4, ABAM, and actual values, and calculate % errors.  
The actual solution is y(x) = -2x + 3ex -2. 
Begin with running RK4 for four iterations for y’ = 2x + y, for h = 0 to 0.6. 
 x0 = 0, y0 = 1.00000000000, 
 x1 = 0.2, y1 = 1.26420000000, 
 x2 = 0.4, y2 = 1.67545388000, 
 x3 = 0.6, y3 = 2.26631936903, 
The first three RK4 are used directly in ABAM.  These we will calculate in y’, using the RK4 
‘x’ and ‘y’ values.  (This is not a derivative, merely a marker). 
 y

଴
ᇱ  = f(x0y0) = f(0.0,1.00000000000) = 1.00000000000 

 y
ଵ
ᇱ  = f(x1y1) = f(0.2,1.26420000000) = 1.66420000000 

 y
ଶ
ᇱ  = f(x2y2) = f(0.4,1.67545388000) = 2.47545388000 

 y
ଷ
ᇱ  = f(x3y3) = f(0.6,2.26631936903) = 3.46631936903 

Starting with x0 = 0.6, we start ABAM intermediate calculations (07).  These should be 
placed into a table.  y

଴
ᇱ , y

ଵ
ᇱ , y

ଶ
ᇱ , y

ଷ
ᇱ  were calculated immediately above. 

Now, using (07) the predicting formula with n = 3, h = 0.2, we find  
 yෝ4 = y3+

0.2

24
൫55y

ଷ
′ − 59y

ଶ
′ + 37y

ଵ
′ − 9y

଴
′ ൯  

 = 2.2663194 + (55)(4.6765836) – (59)(3.4663193) + (37)(2.4754538) - 9.0000000

120.0
 

 = 3.0760793 
Having determined yෝ4 we determine yෝ’4 by substituting (0.80, 3.0760793) into the given 
 yᇱ = 2x + y  
 = 4.6760793 
Use this new value of yෝ’4 in the correcting formula (08) to find y4.  Again, n = 3, h = 0.2.  
Pay attention to the difference between yෝ’n+1 and the other y

୬
ᇱ , no hats. 

 y4 = yn+
0.2

24
൫9yෝ’n+1 + 19y

୬
ᇱ  − 5y

୬ିଵ
ᇱ  + y

୬ିଶ
ᇱ ൯   

 = 2.2663194 + 
(9)(4.6760793) + (19)(3.46631936903) - (5)(2.47545388000)+ 1.66420000000

120.0
  

 = 3.0765836  
Now, n = 4, using the new value for y4, first find y

ସ
ᇱ   

 y
ସ
ᇱ  = f(0.80,3.0765836) = 4.6765836  

Next use the predicting formula (07) with n = 4, and h = 0.20  

 yෝ5 = 3.0765836 + 
(55)(4.6765836) - (59)(3.46631936903)+ (37)(2.47545388000) - (9)(1.66420000000)

120.0
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 = 4.1541941  
Next with n = 4, h = 0.20 and yෝ5, find yෝ’5  
 yෝ’5 = f൫x5, yෝ5൯ = f(1.0, 4.1541941) = 6.1541941  
Now use these in the correcting formula 
 y5 = y4 + h

ଶସ
൫9yෝ

ହ

ᇱ
+ 19y

ସ
ᇱ −  5y

ଷ
ᇱ +  y

ଶ
ᇱ ൯  

 = 3.0765836 + 1

120
[(9)(6.1541941) + (19)(4.6765836) – (5)(3.46631936903)] 

  + 2.47545388000 = 4.1548061.  
(Ross, 465 #8.13). 

 
 If you must do this by hand, it is best to put intermediate results into a table.  Below 
is an example.  Notice that the first three rows represent the initial RK4 values. 

y’ = 2x + y 
N Xn Yn Yn' Xn+1 Yhat(n+1) Y'hat(n+1) Yn+1
0 0.00 1.00000 1.00000
1 0.20 1.26420 1.66420
2 0.40 1.67545 2.47545
3 0.60 2.26632 3.46632 0.80 3.07608 4.67608 3.07658
4 0.80 3.07658 4.67658 1.00 4.15419 6.15419 4.15481
5 1.00 4.15481 6.15481 1.20 5.55956 7.95956 5.56031
6 1.20 5.56031 7.96031 1.40 7.36465 10.16465 7.36557
7 1.40 7.36557 10.16557 1.60 9.65795 12.85795 12.54893
8 1.60 9.65907 12.85907 1.80 12.54756 16.14756 12.54893
9 1.80 12.54893 16.14893 2.00 16.16550 20.16550 16.16717
10 2.00 16.16717  

 
 Error values for the exact solution: 

f(x) = -2x + 3ex − 2 
Xn Exact ABAM ABAM Err RK RK Err

0.20 1.264208 1.264200 0.000008 1.264200 0.000008
0.40 1.675474 1.675454 0.000020 1.675454 0.000020
0.60 2.266356 2.266319 0.000037 2.266319 0.000037
0.80 3.076623 3.076584 0.000039 3.076562 0.000060
1.00 4.154845 4.154806 0.000039 4.154753 0.000092
1.20 5.560351 5.560312 0.000038 5.560216 0.000135
1.40 7.365600 7.365565 0.000035 7.365408 0.000192
1.60 9.659097 9.659070 0.000028 9.658829 0.000268
1.80 12.548942 12.548927 0.000016 12.548574 0.000369
2.00 16.167168 16.167171 0.000003 16.166668 0.000501  

 The RK method requires four separate evaluations per step, while ABAM calculates 
only twice, once for y

୬
ᇱ , and again to find yෝ’n+1.  One advantage of RK is that the iteration 

size may be changed any time.  This must not be done with ABAM.  This is actually done in 
RKFehlberg, which includes a test to compare the approximation with the error value.  
Fehlberg will then adjust the step size if necessary.  (Ross, 468). 
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