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DIFFERENTIAL  EQUATION 
NUMERICAL  METHODS  1 

 
 These are methods for approximating DE numerically.  That is, when you cannot 
solve one for all variables, this will give an approximate numerical solution.  The caveat for 
this is that you need an initial value.  Most of the time, in the real world, this is not difficult.  
*These equations are mostly used for physical problems, ie, astronomical predictions, 
biological systems, chemical reactions, etc.  A researcher should know the initial conditions, 
location, population numbers, etc. 
*The accepted symbol for the independent variable is “t.”  This is because for most uses of 
DE, time is the independent variable.  Whereas, in mathematics, this variable is normally 
“x.” 
 We will begin with the most basic algorithm, Euler.  While this method is very simple, 
it presents the format that all other methods follow.  Euler is a one step, or starter method.  
I will describe this method in detail, because the remaining methods were developed from 
Euler. 
*As a reminder, we will check the accuracy of our calculations with “actual” calculations.  
Very simply, this is a solution using the initial variable values inserted into the actual DE 
solution (Important note, do not put these numbers into the given DE, you need to find the 
solution and use that).  Therefore, we will need to know this real solution in order to 
determine the accuracy of our predictive algorithms.  From these, we can decide which 
method will be appropriate for future problems.  (See equation (04) p 5, below). 
 
EULER 
 
 The Euler method is a first-order numerical procedure for solving ordinary differential 
equations with a given initial value.  It is the most basic explicit method for numerical 
integration of ordinary differential equations and is the simplest Runge–Kutta method.   The 
Euler method is a first-order method, which means that the local error (error per step) is 
proportional to the square of the step size, and the global error (error at a given time) is 
also proportional to the step size.  The Euler method often serves as the basis to construct 
more complex methods. 
 Consider the problem of calculating the 
shape of an unknown curve which starts at a 
given point and satisfies a given differential 
equation.  Here, a differential equation can be 
thought of as a formula by which the slope of 
the tangent line to the curve can be computed 
at any point on the curve, once the position of 
that point has been calculated. 

The idea is that while the curve is 
initially unknown, its starting point, which we 
denote by A0 is known. Then, from the 
differential equation, the slope to the curve at 
A0 can be computed, and so, the tangent line. 
 Take a small step along that tangent 
line up to a point A1.  Along this small step, 
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the slope does not change too much, so A1 will be close to the curve.  If we pretend that A1 
is still on the curve, the same reasoning as for the point A0 above can be used.  After 
several steps, a polygonal curve A0 A1 A2 … is computed.  In general, this curve does not 
diverge too far from the original unknown curve, and the error between the two curves can 
be made small if the step size is small enough and the interval of computation is finite.  
(Wikipedia, Euler Method). 

Up to this point practically every differential equation that we’ve been presented with 
could be solved.  The problem with this is that these are the exceptions rather than the rule. 
The vast majority of first order differential equations can’t be solved.  (Dawkins, 101). 

In order to teach you something about solving first order differential equations we’ve 
had to restrict ourselves down to the fairly restrictive cases of linear, separable, or exact 
differential equations or differential equations that could be solved with a set of very specific 
substitutions.  Most first order differential equations however fall into none of these 
categories.  In fact, even those that are separable or exact cannot always be solved for an 
explicit solution.  Without explicit solutions to these it would be hard to get any information 
about the solution. 

So, what do we do when faced with a differential equation that we can’t solve?  The 
answer depends on what you are looking for.  If you are only looking for long term behavior 
of a solution you can always sketch a direction field. This can be done without too much 
difficulty for some fairly complex differential equations that we can’t solve to get exact 
solutions. 

The problem with this approach is that it’s only really good for getting general trends 
in solutions and for long term behavior of solutions.  There are times when we will need 
something more.  For instance, maybe we need to determine how a specific solution 
behaves, including some values that the solution will take.  There are also a fairly large set 
of differential equations that are not easy to sketch good direction fields for. 

In these cases, we resort to numerical methods that will allow us to approximate 
solutions to differential equations.  There are many different methods that can be used to 
approximate solutions to a differential equation and in fact whole classes can be taught just 
dealing with the various methods.  We are going to look at one of the oldest and easiest to 
use here. This method was originally devised by Euler and is called, oddly enough, Euler’s 
Method. 

Let’s start with a general first order IVP  
 

 dy

dx
 = f(t,y)  y(t0) = f(t0)      (01) 

 
where f(t,y) is a known function and the values in the initial condition are also known 
numbers.  From the second theorem in the Intervals of Validity section (Dawkins, 79), we 
know that if f and fy are continuous functions then there is a unique solution to the IVP in 
some interval surrounding t = t0.  So, let’s assume that everything is nice and continuous so 
that we know that a solution will in fact exist. 
 We want to approximate the solution to (01) near t = t0.  We’ll start with the two 
pieces of information that we do know about the solution.  First, we know the value of the 
solution at t = t0 from the initial condition.  Second, we also know the value of the 
derivative at t = t0.  We can get this by plugging the initial condition into f(t,y) into the 
differential equation itself.  So, the derivative at this point is 
 

 dy

dx
ቚ
t=t0

  =  f(t0,y0) 

 
Now, recall from Calculus I that these two pieces of information are enough for us to 

write down the equation of the tangent line to the solution at t = t0. The tangent line is 
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y = y0 +  f(t0,y0)(t − t0) 

 
If t1 is close enough to t0 then the point y1 on the tangent line should be fairly close to the 
actual value of the solution at t1 or y(t1).  Finding y1 is easy enough.  All we need to do is 
plug t1 in the equation for the tangent line: 
 

y = y0 +  f(t0,y0)(t − t0) 
 

 
 

Now, we would like to proceed in a similar manner, but we don’t have the value of 
the solution at t1 and so we won’t know the slope of the tangent line to the solution at this 
point.  This is a problem.  We can partially solve it however, by recalling that y1 is an 
approximation to the solution at t1.  If y1 is a very good approximation to the actual value of 
the solution then we can use that to estimate the slope of the tangent line at t1.  
So, let’s hope that y1 is a good approximation to the solution and construct a line through 
the point (t1,y1) that has slope f(t1,y1).  This gives: 
 

 y = y1 +  f(t1,y1)(t – t1) 
 

Now, to get an approximation to the solution at t = t2 we will hope that this new line 
will be fairly close to the actual solution at t2 and use the value of the line at t2 as an 
approximation to the actual solution. 
 

y2 = y1 +  f(t1,y1)(t2 – t1) 
 
 We continue in this fashion.  Use the previously computed approximation to get the 
next. 
 

y3 = y2 +  f(t2,y2)(t3 – t2) 
y4 = y3 +  f(t3,y3)(t4 – t3) 

etc. 
 
In general, if we have tn and the approximation to the solution at this point, yn, and we 
want to find the approximation at tn+1 all we need to do is use the following. 
 

 yn+1 = yn +  f(tn,yn)(tn+1 – tn)  
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If we define fn = +  f(tn,yn) we can simplify the formula to  
   

yn+1 = yn +  (fn)(tn,yn)    (02) 
 
Often, we will assume that the step sizes between the points t0, t1, t2, … are of a uniform 
size of h.  In other words, we will often assume that,  
 

tn+1 − tn  =  h 
 
This doesn’t have to be done and there are times when it’s best that we not do this.  
However, if we do the formula for the next approximation becomes: 
 

yn+1  =  yn + (h)(fn)     (03) 
 

So, how do we use Euler’s Method?  It’s fairly simple.  We start with (01) and then 
decide if we want to use a uniform step size or not.  Then starting with (t0,y0) we repeatedly 
evaluate (02) or (03) depending on whether we chose to use a uniform set size or not.  We 
continue until we’ve gone the desired number of steps or reached the desired time.  This 
will give us a sequence of numbers y0, y1, y2, … yn that will approximate the value of the 
actual solution at t0, t1, t2, … tn. 
 What do we do if we want a value of the solution at some other point than those 
used here?  One possibility is to go back and redefine our set of points to a new set that will 
include the points we are after and redo Euler’s Method using this new set of points.  
However this is cumbersome and could take a lot of time especially if we had to make 
changes to the set of points more than once. 

Another possibility is to remember how we arrived at the approximations in the first 
place.  Recall that we used the tangent line 
 

y = y0 +  f(t0,y0)(t − t0) 
 
to get the value of y1.  We could use this tangent line as an approximation for the solution 
on the interval [t0,t1].  Likewise, we used the tangent line 
 

y = y1 +  f(t1,y1)(t – t1) 
 
to get the value of y2.  We could use this tangent line as an approximation for the solution 
on the interval [t1,t2].  Continuing in this manner we would get a set of lines that, when 
strung together, should be an approximation to the solution as a whole. 

In practice you would need to write a computer program to do these computations 
for you.  In most cases the function f(t,y) would be too large and/or complicated to use by 
hand and in most 
serious uses of Euler’s Method you would want to use hundreds of steps which would make 
doing this by hand prohibitive. So, here is a bit of pseudo-code that you can use to write a 
program for Euler’s Method that uses a uniform step size, h. 

1. define f (t, y) . 
2. input t0 and y0. 
3. input step size, h and the number of steps, n. 
4. for j from 1 to n do 
a. m = f (t0, y0) 
b. y1 = y0 + h*m 
c. t1 = t0 + h 
d. Print t1 and y1 
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e. t0 = t1 
f. y0 = y1 
5. end 

So, let’s take a look at a couple of examples.  We’ll use Euler’s Method to 
approximate solutions to a couple of first order differential equations. The differential 
equations that we’ll be using are linear first order differential equations that can be easily 
solved for an exact solution.  Of course, in practice we wouldn’t use Euler’s Method on these 
kinds of differential equations, but by using easily solvable differential equations we will be 
able to check the accuracy of the method.  Knowing the accuracy of any approximation 
method is a good thing. It is important to know if the method is liable to give a good 
approximation or not. 
 
EXAMPLE  01 
y’ + 2y = 2 – e-4t  y(0) = 1 
Use Euler’s Method with a step size of h = 0.1 to find approximate values of the solution at 
t = 0.1, 0.2, 0.3, 0.4, and 0.5. Compare them to the exact values of the solution as these 
points. 
This is a fairly simple linear differential equation so we’ll leave it to you to check that the 
solution is  
y(t) = 1+ 1

2
e-4t-

1

2
e-2t           (4) 

*Note: this equation, (4) gives the exact solution to the DE.  Substituting the ‘X’ values for 
‘t’ will give the ‘Exact’ answers in the spreadsheet below. 
First rewrite the equation into the form in 1. 
y’ = 2 – e-4t – 2y 
We see that f(t,y) = 2 – e-4t – 2y.  Also note that t0 = 0 and y0 = 1.  We can now start doing 
some computations. 
f(0) = f(0,1) = 2e-4(0) – 2(1) = -1  
y1 = y0 + (h)(f0) = 1 + (0.1)(-1) = 0.9 
So, the approximation of the solution at t1 = 0.1 is y1 = 0.9. 
At the next step we have, 
f1 = f(0.1,0.9) = 2 – e-4(0.1) – (2)(0.9) = -0.470320046 
y2 = y1 + (h)(f1) = 0.9 + (0.1)( -0.470320046) = 0.852967995 
Therefore, the approximation at t2 is y2 = 0.852967995 
f2 = -0.155264954  y3 = 0.837441500  
f3 = 0.023922788  y4 = 0.839833779 
f4 = 0.1184359245  y5 = 0.851677371  
Since we already solved this problem in the beginning (4), we can find the exact values for 
each t value.  This we will use for a comparison to determine the accuracy of this method. 
Error = Exact − Approx

Exact
 x 100  

 
Time (tn) Approx Exact Error
t0 = 0.0 y0 = 1.000000000 y(0.0) = 1.000000000 0.00%
t1 = 0.1 y1 = 0.900000000 y(0.1) = 0.925794646 2.79%
t2 = 0.2 y2 = 0.852967995 y(0.2) = 0.889504459 4.11%
t3 = 0.3 y3 = 0.837441500 y(0.3) = 0.876191288 4.42%
t4 = 0.4 y4 = 0.839833779 y(0.4) = 0.876283777 4.16%
t5 = 0.5 y5 = 0.851677371 y(0.5) = 0.883727921 3.63%  

(Dawkins, 104 #1). 
 

The maximum error in the approximations from the last example was 4.42%, which 
isn’t too bad, but also isn’t all that great of an approximation.  So, provided we aren’t after 
very accurate approximations this didn’t do too badly.  This kind of error is generally 
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unacceptable in almost all real applications however. So, how can we get better 
approximations? 

Recall that we are getting the approximations by using a tangent line to approximate 
the value of the solution and that we are moving forward in time by steps of h.  So, if we 
want a more accurate approximation, then we should take smaller h’s. 
 
EXAMPLE  02 
Repeat the previous example only this time give the approximations at t = 1, t = 2, t = 3, 
t = 4, and t = 5.  Use h = 0.1, h = 0.05, h = 0.01, h = 0.005, and h = 0.001 for the 
approximations. 
Do this by: for t = 1, ti = 0, yi = 1, tf = 1, h = 0.1;  for t = 2, ti = 0, yi = 1, tf = 1, h = 0.1. 
However!  I don’t recommend doing this problem.  It is very time consuming.  Some of the 
solution is here. 

  

TIME EXACT h=0.1 h=0.05 h=0.01 h=0.005 h=0.001
t=1 0.9414902 0.9313244 0.9364698 0.9404994 0.9409957 0.9413914
t=2 0.9910099 0.9913681 0.9911126 0.9910193 0.9910139 0.9910106
t=3 0.9987637 0.9990501 0.9988982 0.9987890 0.9987763 0.9987662
t=4 0.9998323 0.9998976 0.9998657 0.9998390 0.9998357 0.9998330
t=5 0.9999773 0.9999890 0.9999837 0.9999786 0.9999780 0.9999774

TIME h=0.1 h=0.05 h=0.01 h=0.005 h=0.001
t=1 1.08% 0.53% 0.105% 0.053% 0.0105%
t=2 0.036% 0.010% 0.00094% 0.00041% 0.0000703%
t=3 0.029% 0.013% 0.0025% 0.0013% 0.00025%
t=4 0.0065% 0.0033% 0.00067% 0.00034% 0.000067%
t=5 0.0012% 0.00064% 0.00013% 0.000068% 0.000014%

APPROXIMATIONS

PERCENTAGE  ERRORS

 
  (Dawkins, 105 #2). 
 
 It should be clear that this method is not very practical.  If h is not very small, then 
the approximation errors grow to inaccurate results.  If h is very small, then the errors will 
be smaller, but the number of computations will increase.  So this method will become 
tedious.  In general, we will find for a fixed value of h, the error becomes larger and larger 
the distance we move from the initial point.  In fact, for Euler, reducing the step size of h by 
a factor of 2 generally reduces the error sizes by a factor of 2.  But, this increases the 
number of calculations by 3.  (Ross, 446). 
 Please understand that much of the data illustrated here is using rounded off 
numbers to save typing strain. 
*In practice, use all of the calculated values without rounding.  This will improve the 
accuracy of all of these methods. 
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