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Abstract

Numerical methods for the solution of initial value problems in ordinary di�erential equations made enormous progress
during the 20th century for several reasons. The �rst reasons lie in the impetus that was given to the subject in the
concluding years of the previous century by the seminal papers of Bashforth and Adams for linear multistep methods
and Runge for Runge–Kutta methods. Other reasons, which of course apply to numerical analysis in general, are in the
invention of electronic computers half way through the century and the needs in mathematical modelling of e�cient
numerical algorithms as an alternative to classical methods of applied mathematics. This survey paper follows many of
the main strands in the developments of these methods, both for general problems, sti� systems, and for many of the
special problem types that have been gaining in signi�cance as the century draws to an end. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

It is not possible to assess the history of this subject in the 20th century without �rst recognizing
the legacy of the previous century on which it has been built. Notable are the 1883 paper of
Bashforth and Adams [5] and the 1895 paper of Runge [57]. Not only did the former present the
famous Adams–Bashforth method, which plays an essential part in much modern software, but it
also looked ahead to the Adams–Moulton method and to the practical use of Taylor series methods.
The paper by Runge is now recognized as the starting point for modern one-step methods. These
early contributions, together with a brief introduction to the fundamental work of Euler, will form
the subject matter of Section 2.
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These early papers each formulates the general initial value problem in much the same form. That
is, given a function f(x; y) and an “initial value” y0, corresponding to a solution value at x0, we
seek to evaluate numerically the function y satisfying

y′(x) = f(x; y(x)); y(x0) = y0: (1)

The basic approach is to extend the set of x values for which an approximation to y(x) is known,
in a step-by-step fashion.
In the early writing on this problem, y is regarded as a scalar value function but the generalization

to more general problems is suggested by a consideration of a pair of simultaneous equations

y′(x) = f(x; y(x); z(x)); y(x0) = y0;

z′(x) = g(x; y(x); z(x)); z(x0) = z0:

Today it is more natural to use formulation (1) but to interpret y as a vector-valued function. In
this case, it is even possible to consider an autonomous system of di�erential equations

y′(x) = f(y(x)); (2)

because, if necessary, x can be appended to y(x) as an additional component satisfying the trivial
di�erential equation dx=dx = 1.
After the section dealing with 19th century contributions, this review paper is divided into a

number of further sections dealing either with speci�c periods of time or with contributions with a
unifying theme. The development of algorithms based on linear multistep methods continued with the
paper of Moulton [49] and to the predictor–corrector formulation together with local error estimation
using Milne’s device. This will be discussed in Section 2.6.
Sections follow on Runge–Kutta methods and on Taylor series methods. Special methods are

needed for sti� problems, and we review some of the stability and other issues involved with the
phenomenon of sti�ness in Section 6. The development of software to solve initial value problems
is discussed in Section 7. Finally, we discuss in Section 8 a number of identi�able problem classes
that call for special techniques and special methods.

2. Early work on numerical ordinary di�erential equations

2.1. The Adams–Bashforth paper

The famous booklet by Bashforth and Adams [5] has a very long title but, when this is broken
into two halves, as it appears on the title page, Fig. 1, the authorship of the two distinct aspects
of the work is clearly ascribed to the separate authors. Thus, we may assume that the numerical
component of this work is due to Mr Adams.
The numerical discussion begins by pointing out that given, for example, a second-order di�erential

equation

d2y
dt2

= f
(
dy
dt
; y; t

)
;
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Fig. 1. The title page of the Adams–Bashforth paper.

it is possible to �nd, by repeated di�erentiation and substitution of d2y=dt2 into the result, formulas
for

d3y
dt3
;
d4y
dt4
; : : : :

From these data evaluated at the initial value, the solution may then be advanced using the Taylor
series. Hence, after a small time-step, values of y and of dy=dt can be found. Further steps can then
be taken in the same manner until a desired value of t is reached.
After these remarks, Adams goes on to derive the Adams–Bashforth method, as we know it today,

in the form

y1 − y0 = !
(
q0 + 1

2�q0 +
5
12�

2q0 + · · ·) ; (3)

where ! is the stepsize and q0; q−1; : : : denote the derivatives computed at the points t0; t−1; : : :
where the solution values are y0; y−1; : : : : In the Adams notation, � denotes the backward di�erence
�q0 = q0− q−1, in contrast to the modern terminology of reserving � for the forward di�erence and
using 3 for the backward di�erence.
Adams goes on to discuss the relative merits of using, instead of (3), the formula

y0 − y−1 = !
(
q0 − 1

2�q0 − 1
12�

2q0 + · · ·) : (4)

He correctly observes the advantages of (4) in terms of magnitudes of the error constants. The
use of this implicit form of the Adams method was revisited and developed many years later by
Moulton [49].
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Fig. 2. An extract from the Runge paper.

2.2. The Runge paper

The second great legacy of the 19th century to numerical methods for ordinary di�erential equa-
tions was the work of Runge [57]. Whereas the Adams method was based on the approximation of
the solution value for given x, in terms of a number of previously computed points, the approach of
Runge was to restrict the algorithm to being “one step”, in the sense that each approximation was
based only on the most recent point already computed in a previous step. To achieve the required
accuracy, approximations are found at a number of internal points within each step and the �nal
result is computed in terms of these various stage values. The short extract from Runge’s paper given
in Fig. 2, includes the formulations of methods with two derivative calculations per step, based on
the mid-point and trapezoidal quadrature rules, respectively.

2.3. The contributions of Heun and Kutta

Following the important and prophetic work of Adams and of Runge, the new century began with
further contributions to what is now known as the Runge–Kutta method, by Heun [40] and Kutta
[45]. In particular, the famous method in Kutta’s paper is often known as the Runge–Kutta method.
Heun’s contribution was to raise the order of the method from two and three, as in Runge’s paper, to
four. This is an especially signi�cant contribution because, for the �rst time, numerical methods for
di�erential equations went beyond the use of what are essentially quadrature formulas. Even though
second-order Runge methods can be looked at in this light, because the derivatives of the solution
are computed from accurate enough approximations so as not to disturb the second-order behaviour,
this is no longer true for orders greater than this. Write a three stage method in the form

Y1 = y0; F1 = f(x0; Y1);

Y2 = y0 + ha21F1; F2 = f(x0 + hc2; Y2);

Y3 = y0 + h(a31F1 + a32F2); F3 = f(x0 + hc3; Y3);

y1 = y0 + h(b1F1 + b2F2 + b3F3);
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where a21, a31, a32, b1, b2, b3, c2, c3 are constants that characterize a particular method in this family.
We can view computation of the stage values Y1, identical to the initial value for the step, Y2, which
approximates the solution at x0+hc2 and Y3, which approximates the solution at x0+hc3 as temporary
steps, whose only purpose is to permit the evaluation of F1, F2 and F3 as approximations to y′(x0),
y′(x0 + hc2) and y′(x0 + hc3), respectively. From these derivative approximations, the result at the
end of the step is found from the quadrature approximation

y(x0 + h) ≈ y(x0) + h(b1y′(x0) + b2y′(x0 + hc2) + b3y′(x0 + hc3)):

It is essential that this quadrature formula be su�ciently accurate to integrate polynomials of degree
up to 2 exactly. This gives the conditions

b1 + b2 + b3 = 1;

b2c2 + b3c3 = 1
2 ;

b2c22 + b3c
3
3 =

1
3 :

However, because of possible inaccuracies in the computation of Y2 and Y3 as approximations to
y(x0 + hc2) and y(x0 + hc3), respectively, the quadrature conditions are not enough and it is also
necessary that

b3a32c2 = 1
6 ;

to obtain third-order behaviour.
An example of a method due to Heun which satis�es the four conditions for this order uses the

coe�cients

c2 = 1
3 ; c3 = 1; a21 = 1

3 ; a31 = 0; a32 = 2
3 ; b1 = 1

4 ; b2 = 0; b3 = 3
4 :

Kutta took this investigation further and found a complete classi�cation of the solutions to the eight
conditions for four-stage methods with order 4. He also derived the 16 conditions for order 5.
The extract of Kutta’s paper given in Fig. 3, includes the formulation of the method, together with

the order conditions and the �rst line of the solution in the case that 0, c2; c3 and c4 are all distinct
numbers. In his notation we see that � = c2; � = c3 and � = c4. It is an interesting consequence of
these order conditions, that � is necessarily equal to 1.
Of the various four stages, fourth-order methods derived by Kutta, the most famous, and also the

most widely used, is

Y1 = y0; F1 = f(x0; Y1);

Y2 = y0 + 1
2hF1; F2 = f(x0 + h

2 ; Y2);

Y3 = y0 + 1
2hF2; F3 = f(x0 + h

2 ; Y3);

Y4 = y0 + hF3; F4 = f(x0 + h; Y4);

y1 = y0 + h( 16F1 +
1
3F2 +

1
3F3 +

1
6F4):

The set of conditions for �fth-order methods is actually a little more complicated than Kutta realised,
because there are actually 17 conditions. The reason for the discrepancy is that he was dealing
with scalar di�erential equations, rather than vector-valued di�erential equations, and for orders �ve
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Fig. 3. An extract from the Kutta paper.

or greater the conditions become di�erent. Another di�culty is in actually �nding solutions to the
algebraic conditions and Kutta presented methods that are slightly incorrect. It is interesting that once
the correction is made, the additional condition, to make the method applicable to high-dimensional
problems, happens to be satis�ed.

2.4. The contributions of E.J. Nystr�om

The early history of Runge–Kutta methods culminated in the work of Nystr�om [53] in 1925. He
was able to correct some of the �fth-order methods of Kutta and he also showed how to apply the
Runge–Kutta method to second-order di�erential equation systems.
At �rst sight this is quite straightforward, because every second-order system can be re-formulated

as a �rst-order system with additional dependent variables. However, solving such a problem directly
may be much more e�cient and the great prevalence of second-order problems in physical modelling
makes this sort of gain in e�ciency of considerable practical signi�cance.

2.5. Moulton’s paper and predictor–corrector methods

Implicit versions of Adams methods were �rst suggested in the Adams–Bashforth paper, but not
studied in their own right until the paper of Moulton [49]. These so-called Adams–Moulton methods
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have two great advantages over the original explicit methods. The �rst is that they do not need to
use so many past values to obtain the same order and they have smaller error constants. To use them
in practice, however, one �rst has to overcome the di�culty associated with their implicit nature.
This di�culty hinges on the fact that yn is not given in terms of rational operations on known data,
but as the solution to an algebraic equation. For example, consider the third-order Adams–Bashforth
and Adams–Moulton methods given by

yn = yn−1 + h( 2312f(xn−1; yn−1)− 4
3f(xn−2; yn−2) +

5
12f(xn−3; yn−3)); (5)

yn = yn−1 + h( 512f(xn; yn) +
2
3f(xn−1; yn−1)− 1

12f(xn−2; yn−2)): (6)

It is known that the error introduced into the result in a single step is − 3
8y

(4)h4+O(h5) for the Adams–
Bashforth method and 1

24y
(4)h4 + O(h5) for the Adams–Moulton method. The way that advantage is

gained from the desirable properties of each of the methods is to use them in “predictor–corrector
mode”. This means that a predicted value of yn is �rst found using the explicit form of the method.
The implicit or Moulton form of the method is then used with the term f(xn; yn) replaced by the
value calculated using the predicted value of yn. There are many variants of this method in common
use, but the most popular is the so-called PECE mode. In this mode, f(xn; yn) is re-evaluated for
use in later steps using yn found from the Adams–Moulton method. Thus each step requires two
evaluations of the function f and is thus twice as expensive as the simple use of the Adams–
Bashforth formula alone. However, the advantages in terms of stability and accuracy resulting from
the use of this PECE predictor–corrector mode are usually regarded as well worth the additional
computing cost.

2.6. The Milne device

Although Milne preferred methods based on Newton–Cotes quadrature formulas, methods which
are largely abandoned today in favour of Adams methods, a proposal he made [47] has been adapted
to other situations and widely used. In the context of the predictor pair (5) and (6), implemented,
for example in PECE mode, there are two approximations to y(xn) computed in each step. Since
the local truncation errors of the two approximations are in the ratio – 9 to 1, it is proposed that
the di�erence of the two approximations divided by 10 should be used as an estimate of the error
in the corrected formula.
Milne, of course, intended this device to be used to check the accuracy of hand-computed results,

but today it is used in automatic solvers, not just to verify the accuracy of any completed step, but
also to adjust the size of a subsequent step in the interests both of e�ciency and robustness.
Many modern computer codes implement predictor–corrector methods in a di�erent manner than

we have described. Speci�cally, the step number k is chosen to be the same for both the predictor
and corrector formulas. This means that the order of the predictor will be k and the order of the
corrector, which becomes the overall order of the combined method, will be p= k+1. Even though
the di�erence between the predicted and corrected solutions is no longer asymptotically equal to a
multiple of the local truncation error, this di�erence is still used as the basis for stepsize control.
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3. The modern theory of linear multistep methods

The modern analysis of linear multistep methods is intimately bound up with the work of Dahlquist
[21,22]. This large body of work is in several parts, of which the �rst deals with the concepts of
consistency, stability and convergence, expressed in terms of generating functions for the coe�cients
of the method. The key result in this phase of the work, is that consistency and stability are together
equivalent to convergence. The second principle phase relates order of accuracy to stability and
culminates in the famous “Dahlquist barrier” result, which limits the order of a convergent linear
k-step method to k+1 (if k is odd) and to k+2 (if k is even). The remaining phase of Dahlquist’s
work is more appropriately discussed in Section 6.

3.1. Generating functions

Consider a linear multistep method of the form

�kyn + �k−1yn−1 + �k−2yn−2 + · · ·+ �0yn−k
= h(�kf(xn; yn) + �k−1f(xn−1; yn−1) + �k−2f(xn−2; yn−2) + · · ·+ �0f(xn−k ; yn−k));

assuming that �k 6= 0 and that �0 and �0 are not both zero (otherwise the value of k could be reduced).
Such a method is known as a “linear k-step method” because the solution at step number n depends
on exactly k previous step values. Dahlquist introduced polynomials � and � to characterize the
method as follows:

�(z) = �kzk + �k−1zk−1 + �k−2zk−2 + · · ·+ �0;
�(z) = �kzk + �k−1zk−1 + �k−2zk−2 + · · ·+ �0:

Although Dahlquist allowed for the generality of allowing the coe�cient of zk to take on any
non-zero value, in an actual computation with the method, the value of �k has to be cancelled out
from both polynomials.
It is clear that given any linear multistep method, the corresponding pair of polynomials (�; �)

can be written down automatically and, given the polynomials, the method is completely speci�ed.
Hence, it has become customary to identify the methods with the pair of polynomials and we can
speak of “the method (�; �)”. It is convenient to assume that � and � have no common polynomial
factor, since it would be possible to describe most aspects of the computational behaviour of the
method in terms of simpler polynomials. Following Dahlquist, we will make this assumption.

3.2. Consistency, stability and convergence

There are some natural assumptions that can be made about linear multistep methods to guarantee
that they can at least solve certain speci�c problems. We will consider these one, by one.
The �rst problem is y′(x) = 0, with initial value y(0) = 0. Since we are given only this single

initial value we will need an algorithm to generate y0; y1; y2; : : : ; yk−1 which is, in the limit as
h → 0; consistent with the given initial data. Choose some x¿ 0; for example x = 1; as the point
where the numerical result approximating the solution is supposed to be found. We would like our
method to be able to compute y(1) exactly in the limiting case as x → 0.
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This requirement is equivalent to the “stability condition”: A linear multistep method (�; �) is
stable if all zeros of � lie in the unit disc and all zeros on the boundary are simple.
The second initial value problem is also based on the equation y′(x) = 0 but with y(0) = 1. To

compute the correct result y(1) = 1; in the limit, it is necessary that �(1) = 0. We will refer to this
as the “pre-consistency condition”.
Finally, consider the initial value problem y′(x)=1; y(0)=0. If a method is stable and pre-consistent,

then its ability to solve this problem in the limit hinges on the requirement that �′(1) = �(1). This
condition, when combined with the pre-consistency condition, is known as the “consistency condi-
tion”.
The de�nition of convergence is rather technical but deals with the ability of the linear multistep

method to solve any di�erential equation system on condition only that f is continuous in its
�rst variable and satis�es a Lipschitz condition in its second variable. The k initial approximations
required to start the numerical process must converge to the given initial value as the stepsize tends
to zero. This class of problems might seem restrictive but it is easy to extend it to many situations
where the Lipschitz condition is replaced by a local Lipschitz condition.
The basic theorem connecting these concepts is that a method is convergent if and only if it

is both stable and consistent. Of course convergence is not enough to ensure that the method is
computationally e�cient. In the next section we look at the criteria for the method to have some
speci�c order of accuracy and we review a famous result of Dahlquist which imposes a barrier on
what order is really achievable.

3.3. The order of linear multistep methods

Given a linear multistep method characterized by the polynomials � and �; de�ne the operator L
on the continuously di�erentiable functions I → RN by the formula

L(y)(x) =
k∑
i=0

�k−iy(x − ih)− h
k∑
i=0

�k−iy′(x − ih): (7)

A method is said to be of order p if L(P) = 0 for P any polynomial of degree not exceeding p.
To understand the signi�cance of this de�nition, assume that y is continuously di�erentiable at

least p+ 1 times and expand the right-hand side of (7) in a Taylor series about xn. We have

L(y)(xn) =
p+1∑
i=0

Cihiy(i)(xn) + O(hp+2);

where

C0 =
k∑
i=0

�i;

C1 =−
k∑
i=1

i�k−i −
k∑
i=0

�k−i ;

Cj =
(−1) j
j!

(
k∑
i=1

ij�k−i + j
k∑
i=1

ij−1�k−i

)
; j = 2; 3; : : : ; p+ 1:
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If y is replaced by a polynomial of degree p, then

L(P)(xn) =
p∑
i=0

CihiP(i)(xn)

and, for this to vanish for all such polynomials, it is necessary and su�cient that

C0 = C1 = C2 = · · ·= Cp = 0:
We derive the two methods (5) and (6) using these expressions. The Adams–Bashforth method of
order 3 requires k = 3 and assumes that �3 = 1; �2 =−1; �1 = �0 = �3 = 0. We have

C0 = �3 + �2 + �1 + �0 = 0;

C1 =−�2 − 2�1 − 3�0 − �2 − �1 − �0 = 1− �2 − �1 − �0;
C2 = 1

2(�2 + 4�1 + 9�0 + 2(�2 + 2�1 + 3�0)) = �2 + 2�1 + 3�0 − 1
2 ;

C3 =− 1
6 (�2 + 8�1 + 27�0 − 3(�2 + 4�1 + 9�0)) = 1

6 − 1
2 (�2 + 4�1 + 9�0):

The solution of C1 = C2 = C3 = 0 is �2 = 23
12 ; �1 =− 4

3 ; �0 =
5
12 ; with the �rst nonzero coe�cient in

the Taylor expansion of L(y)(xn) given by

C4 =− 1
24 (1− 4(�2 + 8�1 + 27�0)) = 3

8 :

The value of this quantity is closely related to the “error constant” for the method which is actually
given by C4=�′(1). Note that, in this case, and also for the Adams–Moulton method which we will
discuss next, �′(1) = 1.
For the Adams–Moulton method of order 3; an additional nonzero parameter �k is available and

k = 2 is su�cient for this order. We �nd C0 = 0; C1 = 1 − �2 − �1 − �0; C2 = �1 + 2�0 − 1
2 and

C3 = 1
6 − 1

2 (�1 + 4�0) and C1 = C2 = C3 = 0 implies �2 =
5
12 ; �1 =

2
3 ; �0 =− 1

12 ; with

C4 =− 1
24 (1− 4(�1 + 8�0)) =− 1

24 :

To investigate the order conditions further, it is convenient to consider the expression (�(exp(z))−
z�(exp(z))) exp(−kz) which can be expanded by Taylor series

(�(ez)− z�(ez)) e−kz = �k + �k−1e−z + �k−2e−2z + · · ·
+ z(�k + �k−1e−z + �k−2e−2z − · · ·)

=C0 + C1z + C2z2 + · · ·
=Cp+1zp+1 + O(zp+2);

if the order is p. The number Cp+1 does not vanish unless the order is actually higher than p. Hence

�(ez)− z�(ez) = O(zp+1):
Because �(1) = 0 for a consistent method, we can divide by z and we �nd

�(ez)
z

− �(ez) = O(zp)
and substituting exp(z) by 1 + z

�(1 + z)=z
ln(1 + z)=z

− �(1 + z) = O(zp); (8)
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where ln(1 + z)=z is de�ned in a neighbourhood of 0 by the series

ln(1 + z)
z

= 1− z
2
+
z2

3
− · · ·

so that(
ln(1 + z)

z

)−1
= 1 +

z
2
− z2

12
+
z3

24
− 19z4

720
+
3z5

160
+ O(z6):

Using this expression, (8) can be used to derive methods with speci�c choices of �. Rewriting in
the form

�(1 + z) = �(1 + z)

(
z − z2

2
+
z3

3
− · · ·

)

enables coe�cients to be found for the backward di�erence and similar methods in which the form
of � is prescribed.

3.4. The Dahlquist barrier

Even though it is possible, in principle, for linear multistep methods to have order as high as
2k; this does not yield stable methods if k ¿ 2. This is a consequence of the so-called “Dahlquist
barrier” [21], which states that

Theorem 1. The order of a stable linear k-step method is bounded by

p6
{
k + 2; k even;
k + 1; k odd:

Proof. We will give here a vastly abbreviated proof, along the same lines as originally given by
Dahlquist. Let

r(z) = �
(
1 + z
1− z

)(
1− z
2

)k
;

s(z) = �
(
1 + z
1− z

)(
1− z
2

)k
;

where we note that the order conditions can be rewritten in the form
r(z)=z

ln((1 + z)=(1− z))=z − s(z) = O(z
p): (9)

Let r(z) = a0 + a1z + a2z2 + · · · + akzk and s(z) = b0 + b1z + b2z2 + · · · + bkzk ; where a0 = 0 by
the consistency condition. By the stability condition, a1 6= 0 and no two of the coe�cients in r can
have opposite signs. If

1
ln((1 + z)=(1− z))=z = c0 + c2z

2 + c4z4 + · · · ;
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it can be shown that c2; c4; : : : are all negative [21,39]. If (9) is to hold for p¿k + 1; then the
coe�cient of zp+1 in

(c0 + c2z2 + c4z4 + · · ·)(a1 + a2z + · · ·+ akzk−1); (10)

must vanish. If the order is p¿k + 2; then the coe�cient of zk+2 in (10) must also vanish. The
two coe�cients are respectively

akc2 + ak−2c4 + · · · ; (11)

ak−1c4 + ak−3c6 + · · · : (12)

If k is odd, (11) cannot vanish because this would imply that

ak = ak−2 = · · ·= a1 = 0:
On the other hand, if k is even, then (12) cannot vanish because we would then have

ak−1 = ak−3 = · · ·= a1 = 0:

4. The modern theory of Runge–Kutta methods

The meaning of order looks quite di�erent and is relatively complicated for one-step methods, for
the very good reason that the result computed in a step is built up from the derivatives evaluated
sequentially from the stages values and, at least for the early stages, these have low accuracy. In
contrast, the result computed in linear multistep methods makes use of derivatives evaluated from
a number of step values, which themselves have been evaluated in previous steps and all share the
same order.
The basic approach to the analysis of Runge–Kutta methods is to obtain the Taylor expansions

for the exact and computed solutions at the end of a single step and to compare these series term
by term. This idea dates back to Runge, Heun, Kutta and Nystr�om and we will give as an example
the derivation of the conditions for order 3.
For the scalar di�erential equation

y′(x) = f(x; y(x)); (13)

we calculate in turn

y′′ =
@f
@x
+
@f
@y
f; (14)

y′′′ =
@2f
@x2

+ 2
@2f
@x@y

f +
@2f
@y2

f2 +
@f
@x
@f
@y
+
(
@f
@y

)2
f; (15)

where we have substituted y′=f in the formula y′′=(@f=@x)+ (@f=@y)y′ to obtain (14) and made
similar substitutions in the derivation of (15). From these expressions we can write down the �rst
few terms of the Taylor expansion y(x0 + h) = y(x0) + hy′(x0) + 1

2h
2y′′(x0) + 1

6h
3y′′′(x0) + O(h4).

Complicated though these expressions are, they are simple in comparison with the corresponding
formulas for the fourth and higher derivatives. To obtain conditions for order 3 we also need the
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Table 1
Details of Taylor expansions up to order 3

Y1 hF1 Y2 hF2 Y3 hF3 y1 y(x0 + h)

y 1 0 1 0 1 1 1 1
hf 0 1 a21 1 a31 + a32 1 b1 + b2 + b3 1

h2
@f
@x

0 0 0 c2 a32c2 c3 b2c2 + b3c3
1
2

h2
@f
@y
f 0 0 0 a21 a32a21 a31 + a32 b2a21 + b3(a31 + a32)

1
2

h3
@2f
@x2

0 0 0
1
2
c22

1
2
a32c22

1
2
c23

1
2
(b2c22 + b3c

2
3)

1
6

h3
@2f
@x@y

f 0 0 0 c2a21 a32c2a21 c3(a31 + a32) b2c2a21 + b3c3(a31 + a32)
1
3

h3
@2f
@y2

f2 0 0 0
1
2
a221

1
2
a32a221

1
2
(a31 + a32)2

1
2
(b2a221 + b3(a31 + a32)

2)
1
6

h3
@f
@x
@f
@y

0 0 0 0 0 a32c2 b3a32c2
1
6

h3
(
@f
@y

)2
f 0 0 0 0 0 a32a21 b3a32a21

1
6

formulas for the �rst, second and third derivatives of the approximation computed by a Runge–Kutta
method, which we will assume is explicit and has exactly 3 stages.
To simplify notation we will denote x, y, f and the various partial derivatives, as being evaluated

at the initial point (x0; y0) in a step and we will then �nd Taylor expansions in turn for Y1; hF1; : : : ; Y2,
hF2; Y3; hF3 and �nally y1. We will express the sequence of calculations in tabular form in Table 1,
where the coe�cients of y, hf, etc. are shown. In addition to the coe�cients in the expansion of
y1, we append the corresponding coe�cients for the exact solution at x0 + h.
By equating the last two columns of this table, we obtain conditions for order 3. These imply that

a21 = c2; (16)

a31 + a32 = c3 (17)

and that

b1 + b2 + b3 = 1;

b2c2 + b3c3 = 1
2 ;

b2c22 + b3c
3
3 =

1
3 ;

b3a32c2 = 1
6 :
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If s=p, which turns out to be possible for orders up to 4, conditions such as (16) and (17) always
hold. Even for higher orders, where the argument is a little more complicated, there is never any
reason for not assuming that

s∑
j=1

aij = ci; i = 1; 2; : : : ; s; (18)

where we adopt a convention that aij=0 for j¿i in explicit methods. For the more general implicit
methods, we will continue to assume (18).
There are three reasons for abandoning (1) as the standard problem and replacing it instead by

(2), where the values of y(x) are now in a �nite-dimensional vector space rather than scalars. The
�rst reason for the change to a high-dimensional autonomous problem is that there is no need to
retain x as an argument of f in the vector case, because nonautonomous problems can always be
transformed into equivalent autonomous problems by adding an additional component which always
has a value exactly the same as x. A consideration of this formal re-formulation can be used to
justify the assumption (18). The second reason is that the analysis is actually more straightforward
in the autonomous vector case. Finally, it is found that the conditions for order as derived using the
scalar �rst-order problem (13) are inadequate for specifying the order requirements for the general
vector case. The two theories do not diverge until the �fth-order case is reached but after that the
families of order conditions for the scalar and vector cases become increasingly di�erent.

4.1. The order of Runge–Kutta methods

The analysis of order for the vector case that we present here is due to the present author [9]
and is related to earlier work by Gill [33] and Merson [46]. Since it relates the various terms in the
Taylor series expansion of both the exact solution and the approximation computed by a Runge–
Kutta method, to the graphs known as “rooted trees” or arborescences, we brie
y review rooted
trees.
A rooted tree is simply a connected directed graph for which each vertex, except the root, has

a single predecessor (or parent). The root has no predecessor. The order of a rooted tree t is the
number of vertices. Denote this by r(t). Clearly, the number of arcs in the rooted tree is r(t) − 1.
Let an denote the number of distinct rooted trees with order n. Table 2 gives the �rst few values of
an together with the sums

∑n
i=1 ai.

The eight rooted trees for which r(t)64 are shown in Table 3, together with the values of �(t),
the “symmetry” of t and 
(t) the “density” of t. The quantity �(t) is the order of the group of
permutations of the vertices which leave the structure unchanged, while 
(t) is the product over all
vertices of t of the total number of descendents (including the vertex itself) of this vertex. Also

Table 2
Numbers of trees and accumulated sums up to order 8

n 1 2 3 4 5 6 7 8

an 1 1 2 4 9 20 48 115∑n
i=1 ai 1 2 4 8 17 37 85 200
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Table 3
Various functions on trees

t ·

r(t) 1 2 3 3 4 4 4 4
�(t) 1 1 2 1 6 1 2 1

(t) 1 2 3 6 4 8 12 24
�(t) 1 1 1 1 1 3 1 1
�(t) 1 2 3 6 4 24 12 24

shown are the values of �(t)=r(t)!=
(t)�(t) and �(t)=r(t)!=�(t). The values of � and � have simple
interpretations in terms of possible labellings of the vertices of a tree under various restrictions.
It can be shown that the Taylor expansion of the exact solution has the form

y(x0 + h) = y(x0) +
∑
t∈T

�(t)hr(t)

r(t)!
F(t)(y0) (19)

and that the corresponding expansion for the solution computed using a Runge–Kutta method is

y(x0) +
∑
t∈T

�(t)�(t)hr(t)

r(t)!
F(t)(y0): (20)

In each of these formulas, F(t) is the “elementary di�erential” which we will de�ne below and �(t)
is the “elementary weight”. The formula for F(t)(y) is de�ned in terms of the di�erential equation
and �(t) in terms of the Runge–Kutta method being used. Each of these quantities can be de�ned
recursively but, for our present purposes, it will be enough to present one example, using a tree of
order 7 and to list these quantities for all trees of order up to 4. In the special example, the tree t
is shown with labels i, j, k, l, m, n, o attached to the vertices. The formula for F(t), is given in
terms of an expression for component number i, written as a superscript. The summation convention
is assumed and fijkl denotes the third partial derivative, @

3fi=@yj@yk@yl, of fi, evaluated at y, with
similar meanings for fjm, f

k
no. The summations in the formula for �(t) are over all subscripts running

from 1 to s. Note that the formula is simpli�ed from �(t) =
∑
biailaijajmaikaknako by summing over

l, m, n and o.

;
Fi(t) = fijklf

lfjmf
mfknof

nfo;

�(t) =
∑
biciaijcjaikc2k :

Because the elementary di�erentials are independent, in the sense that, given any set of n rooted
trees, t1; t2; : : : ; tn and any sequence of real numbers q1; q2; : : : ; qn, it is possible to �nd a function
f such that for some speci�c value of y and some speci�c coordinate direction, say eT1 , all the
equations

eT1F(ti)(y) = qi; i = 1; 2; : : : ; n;
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Table 4
Elementary di�erential and weights up to order 4

t ·

F(t) fi fijf
j fijkf

jfk fijf
j
kf

k fijkl fijkf
jfkl f

l fijf
j
klf

kfl fijf
j
kf

k
l f

l

�(t)
∑
bi

∑
bici bic2i

∑
biaijck

∑
bic3i

∑
biciaijcj

∑
biaijc2j

∑
biaijajkck

can be satis�ed simultaneously, it is only possible that (19) and (20) agree to within O(hp+1) if

�(t) = �(t)�(t)

for every tree t with no more than p vertices.
Inserting the formulas for � and �, we �nd that

�(t) =
1

(t)

(21)

as the condition corresponding to this tree (Table 4).
It is interesting that, for the single �rst-order scalar di�erential equation (13), the independence

of the elementary di�erentials breaks down and it turns out to be possible to obtain methods that
have some speci�ed order in this case, but a lower order for the more general system of equations
given by (2). This e�ect occurs for order 5 and higher orders.
Other interpretations of order are of course possible. An alternative derivation of the order condi-

tions, due to Albrecht [1], is based on expressions arising from the Taylor series for

y(x0) + h
s∑
j=1

aijy′(x0 + hcj)− y(x0 + hci) = �(2)h2 + �(3)h3 + · · · ;

where

�(2)i =
∑
j

aijcj − 1
2
c2j ;

�(3)i =
∑
j

aijc2j −
1
3
c3j ;

...
...

For order 4 for example, it is found to be necessary that∑
i

bi�
(2)
i = 0;

∑
i

bici�
(2)
i = 0;

∑
i

biaij�
(2)
j = 0;

∑
i

bi�
(3)
i = 0;

which, together with the quadrature conditions∑
i

bick−1i =
1
k
; k = 1; 2; 3; 4;

are equivalent to (21), up to order four. A third approach, due to Hairer and Wanner [36], is based
on the use of B-series. This theory, used to study compositions of Runge–Kutta methods, is related
to [13], and has applications also to more general problems and methods.
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Table 5
Minimum s to obtain order p

p 1 2 3 4 5 6 7 8
s 1 2 3 4 6 7 9 11

4.2. Attainable order of Runge–Kutta methods

For explicit Runge–Kutta methods with s stages, there are s(s+1)=2 free parameters to choose. It
is easy to show that an order p is possible only if s¿p. Up to order 4, s= p is actually possible.
However, for p¿ 4, the relationship between the minimum s to obtain order p is very complicated
but is partly given in Table 5. The results given for p¿ 4 were proved in [11,15].
For implicit Runge–Kutta methods, which we will discuss below, the relationship is much simpler.

In fact, order p can be obtained with s stages if and only if p62s.

4.3. Implicit Runge–Kutta methods

One of the earliest references to implicitness, as applied to Runge–Kutta methods, was in the book
by Kunz [44] where the method of Clippinger and Dimsdale was quoted. This method with tableau

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

is the forerunner both of Lobatto methods and of block methods [59].
The method of Hammer and Hollingsworth [38] will be explored in some detail. It is the forerunner

of Gauss and other important classes of methods. The coe�cients for the method are

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

This method has order 4. This is a little surprising because the eight conditions for this order
have been seemingly satis�ed using only the six free parameters in A and bT. Although the order
conditions are trivial to check, we will verify them below using an argument that illustrates what
happens much more generally.
If the coe�cient matrix A is allowed to be fully implicit, that is any element on or above the

diagonal may have a non-zero value, then there are clearly more free parameters available to satisfy
the order conditions. The advantages, in terms of order, are even greater than might be expected
from a mere comparison of the number of conditions with the number of free parameters, because
various simplifying assumptions are easier to satisfy. These simplifying assumptions bring about a
drastic lowering of the number of further conditions required for order; furthermore they interact
and reinforce each other.
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The simplifying assumptions we will use, are denoted by C(�), D(�) and E(�; �), where we have
used the notation of [10]. In each case � and � are positive integers and the assumptions refer to
some equalities involving the coe�cients of a speci�c method. The speci�c meanings are

C(�):
s∑
j=1

aijcl−1j =
1
k
cli ; i = 1; 2; : : : ; s; l= 1; 2; : : : ; �;

D(�):
s∑
i=1

bick−1i aij =
1
k
bj(1− ckj ); j = 1; 2; : : : ; s; k = 1; 2; : : : ; �;

E(�; �):
s∑
i=1

bick−1i aijcl−1j =
1

l(k + 1)
; k = 1; 2; : : : ; �; l= 1; 2; : : : ; �:

Let us consider the relationship between these assumptions in the case that �= �= s and the further
assumption that c and bT are chosen, as in the two-stage method we are considering, so that the
ci are the zeros of the degree s Legendre polynomial, shifted to the interval [0; 1], and bi are the
corresponding Gaussian weights. These assumptions on c and bT will guarantee that

∑
i bic

k−1
i =1=k

for k=1; 2; : : : ; 2s. Under this condition, E(s; s) follows from D(s) and because the linear combinations
used to verify this have coe�cients in a nonsingular (Vandermonde) matrix, the argument can be
reversed. Similarly, C(s) is also equivalent to E(s; s).
In what has come to be referred to as a Gauss method, the bT and c vectors are chosen to satisfy

the requirements of Gaussian quadrature and the elements in each row of A are chosen so that C(s)
is satis�ed. It then follows that D(s) also holds. The method formed in this way always has order
2s and we will verify this for s= 2 in Table 6. Where no reason is given, the result is because of
Gaussian quadrature. In other cases the manipulations are based on C(2) or D(2) and make use of
order conditions already veri�ed earlier in Table 6. Gauss methods for arbitrary s¿1 were introduced
in [10,17].
Methods also exist with order 2s − 1 based on Radau quadrature of type I (c1 = 0) or type II

(cs=1). The most important of these are the Radau IIA methods. Some variants of Lobatto methods
(c1 = 0 and cs = 1) with order 2s− 2, were once considered attractive for practical computation but
have been superseded by other implicit methods.
It is now generally believed that the proper role of implicit Runge–Kutta methods is in the solution

of sti� problems (see Section 6). There is a con
ict between the three aims of high accuracy, good
stability, and low implementation cost. Gauss methods seem to be ideal from the stability and
accuracy points of views but they are very expensive, because of the fully implicit structure of
the coe�cient matrix. The accuracy is not as good as might be expected from order considerations
alone because of an “order reduction” phenomenon [55,29], but the cost alone is enough to make
alternative methods more attractive.

4.4. DIRK and SIRK methods

An obvious alternative to fully implicit methods, is to insist that the coe�cient matrix have a
lower triangular structure, because in this case the stages can be evaluated sequentially and the cost
of each is relatively low. It turns out to be an advantage to have the diagonal elements equal and this
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Table 6
Veri�cation of order conditions for 2 stage Gauss method

· b1 + b2 = 1

b1c1 + b2c2 = 1
2

b1c21 + b2c
2
2 =

1
3

b1(a11c1 + a12c2) + b2c2(a11c1 + a12c2)
=1
2 (b1c

2
1 + b2c

2
2) =

1
6

b1c31 + b2c
3
2 =

1
4

b1c1(a11c1 + a12c2) + b2c2(a11c1 + a12c2)
=1
2 (b1c

3
1 + b2c

3
2) =

1
8

(b1a11 + b2a21)c
2
1 + (b1a12 + b2a22)c

2
2

=b1(1− c1)c21 + b2(1− c2)c22 = 1
12∑

biai1(a11c1 + a12c2) +
∑

biai2(a21c1 + a22c2)

=1
2 (
∑

biai1c
2
1 +
∑

biai2c
2
2) =

1
24

additional requirement has little impact on the availability of methods of a required order with good
stability. Methods of this type have been variously named “semi-implicit” [10], “semi-explicit” [51]
and “diagonally implicit” or “DIRK” [2]. Although equal diagonals were originally built into the
DIRK formulation, common usage today favours using this name more widely and using “SDIRK”
(or “singly diagonally implicit”) in the more restricted sense. Other key references concerning these
methods are [3,18].
Singly implicit methods, without necessarily possessing the DIRK structure are those for which

A has only a single eigenvalue �(A)= {
} [7]. If the stage order is s, it turns out that the abscissae
for the method satisfy ci = 
�i, where �1; �2; : : : ; �s are the zeros of the Laguerre polynomial Ls. The
advantage of these methods is that for many large problems, the component of the computer cost
devoted to linear algebra is little more than for a DIRK method. Various improvements to the design
of SIRK methods have been proposed.

5. Nontraditional methods

While the traditional methods, linear multistep and Runge–Kutta, are widely used and are generally
regarded as satisfactory for solving a wide variety of problems, many attempts have been made to
extend the range of available methods. Some of these will be discussed in this section.
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5.1. Taylor series methods

Because the Euler method is based on approximations to the Taylor expansion

y(x0 + h) ≈ y(x0) + hy′(x0);

it is natural to ask if it is possible to take this expansion further by evaluating y′′(x0), and possibly
higher derivatives, by algebraic means. Algorithms for carrying out this process can be constructed
using a recursive evaluation scheme. We mention two important early papers which exploit this
idea, using a classical view of computer arithmetic but combined with this non-classical method of
solution [4,32].
A second interesting and important contribution to Taylor series that has a further distinctive

feature is the work of Moore [48]. The distinctive feature is that the work is carried out in the
context of interval arithmetic. This means that it becomes possible, not only to advance the solution
step-by-step in a relatively e�cient manner, but it also becomes possible, owing to the standard
bounds on the truncation error of a Taylor expansion, to obtain rigorous error bounds. Thus, in
principle, it became possible to obtain intervals in which each component of the solution is certain
to lie for any particular value of x. The di�culty is, of course, that the lengths of these intervals
can grow rapidly as x increases.

5.2. Hybrid methods

These methods are similar to linear multistep methods in predictor–corrector mode, but with one
essential modi�cation: an additional predictor is introduced at an o�step point. This means that
the �nal (corrector) stage has an additional derivative approximation to work from. This greater
generality allows the consequences of the Dahlquist barrier to be avoided and it is actually possible
to obtain convergent k-step methods with order 2k+1 up to k=7. Even higher orders are available
if two or more o�step points are used. The three independent discoveries of this approach were
reported in [34,30,12]. Although a 
urry of activity by other authors followed, these methods have
never been developed to the extent that they have been implemented in general purpose software.

5.3. Cyclic composite methods

It is remarkable that even though a number of individual linear multistep methods may be unstable,
it is possible to use them cyclically to obtain a method which, overall, is stable. An example of a
�fth-order method given in the key paper on this subject [26] is as follows:

yn=− 8
11yn−1 +

19
11yn−2

+h( 1033f(xn; yn) +
19
11f(xn−1; yn−1) +

8
11f(xn−2; yn−2)− 1

33f(xn−3; yn−3)); (22)

yn= 449
240yn−1 +

19
30yn−2 − 361

240yn−3 + h(
251
720f(xn; yn) +

19
30f(xn−1; yn−1)− 449

240f(xn−2; yn−2)

− 35
72f(xn−3; yn−3)); (23)

yn=− 8
11yn−1 +

19
11yn−2

+ h( 1033f(xn; yn) +
19
11f(xn−1; yn−1) +

8
11f(xn−2; yn−2)− 1

33f(xn−3; yn−3)): (24)
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The method is used cyclically in the sense that in each of three steps, the �rst uses (22), the second
uses (23) and the third uses (24) (which in this particular example happens to be the same as the
�rst member of the cycle). Methods of this family have been studied by a number of authors and
have also been discovered for use with sti� problems.

5.4. Rosenbrock methods

Rosenbrock in his 1963 paper [56], discusses the problem of evaluating the stages of a diagonally
implicit Runge–Kutta methods. Normally this is carried out by an iteration process based on Newton’s
method. For each stage and each iteration, an evaluation of f is carried out together with a solution
of a linear equation system with matrix of coe�cients of the form I − h�J , where J denotes an
approximation to the Jacobian matrix. The question was then asked if improved performance can be
obtained by an alternative procedure in which exactly the same amount of work is performed but
only once per stage, with the proviso that J is exactly the Jacobian evaluated at yn−1. Amongst the
examples of this type of “Rosenbrock method” given in the original paper, the following is identi�ed
as having order 2 and possessing L-stability:

F1 = (I − h(1−
√
2
2 )J )

−1f(yn−1);

F2 = (I − h(1−
√
2
2 )J )

−1f(yn−1 + h( 12
√
2− 1

2 )F1);

yn= yn−1 + hF2:

Amongst the many further contributions to the study of Rosenbrock methods, and their generaliza-
tions, we refer to [16,52,43].

6. Methods for sti� problems

The paper by Curtiss and Hirschfelder [20] is usually acknowledged as introducing numerical
analysts to the phenomenon of sti�ness. Much has been written about what “sti�ness” really means
but the property is generally understood in terms of what goes wrong when numerical methods not
designed for such problems are used to try to solve them. For example, classical explicit Runge–
Kutta methods were not intended to solve sti� problems but, when one attempts to use them,
there is a severe restriction on stepsize that must be imposed, apparently because of stability rather
than accuracy requirements. It is easy to see how this can come about for linear problems of the
form

y′(x) =My(x);

if the matrix M happens to have all its eigenvalues close to zero or else in the left half complex
plane and with a large magnitude. Assuming for simplicity that M can be diagonalized and that the
problem is solved in its transformed form, the accuracy is determined by the ability of the numerical
method to solve problems of the form

y′(x) = �y(x);
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where |�| is small. However, the stability of the numerical approximation is limited by the fact that
we are simultaneously trying to solve a problem of the form

y′(x) = �y(x);

where |�| is large. In the exact solution, terms of the second type correspond to rapidly decaying
transients, whereas in the computed solution they represent unstable parasitic solutions, unless h is
so small that h� lies in what is known as the “stability region”.
To �nd the stability region for a numerical method it is necessary to consider the behaviour of

the numerical method with a problem of just this type. For classical methods the behaviour depends
on the product of h and � which we will write as z. For the classical fourth-order Runge–Kutta
method, the numerical solution for this problem satis�es

yn = R(z)yn−1; (25)

where

R(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
and the stability region is the set of points in the complex plane for which |R(z)|61.
If z= h� is outside this set, as it might well be, then selecting h to make h� of a reasonable size

will not be satisfactory because the unstable behaviour of the component of the solution associated
with � will swamp the solution and destroy its accuracy.
To analyse this type of possible instability, Dahlquist [23] introduced the concept of A-stability.

A numerical method is said to be “A-stable” if its stability region includes all of the left half-plane.
Even though the de�nition was �rst framed in the context of linear multistep methods, it was soon
applied to Runge–Kutta methods, for which it takes a particularly simple form. Write Y for the
vector of stage values, then this vector and the output approximation are related by

Y = yn−1e + zAY; yn = yn−1 + zbTY;

leading to (25) with the stability function given by

R(z) = 1 + zbT(I − zA)−1e:
For explicit methods the stability region is always a bounded set and these methods cannot be
A-stable. On the other hand for an implicit method, R(z) has the form N (z)=D(z) where the poly-
nomials N and D can have degrees as high as s. Methods of arbitrarily high orders can be A-stable.
For a general linear multistep method, de�ned by polynomials � and �, the stability region is the

set of points z for which the polynomial �(w)− z�(w), of degree k in w satis�es the root condition.
It was shown by Dahlquist [23] that for these methods, A-stability cannot exist for orders greater
than 2.

6.1. Order stars

Runge–Kutta methods of Gauss type have stability functions of the form

R(z) =
N (z)
N (−z) ;



J.C. Butcher / Journal of Computational and Applied Mathematics 125 (2000) 1–29 23

where the polynomial N has degree s. Furthermore, R(z)= exp(z)+O(z2s+1). This is an example of
a “Pad�e approximation” to the exponential function, in the sense that the order of approximation is
exactly the sum of the numerator and denominator degrees. Not only are the diagonal members of
the Pad�e table signi�cant, but the same can be said of the �rst subdiagonal (with degree s − 1 for
the numerator and s for the denominator, because these correspond to the stability functions for the
Radau IA methods, and for the practically important Radau IIA methods. The second subdiagonals
are also important because they are the stability functions for the Lobatto IIIC methods. It is known
that the Pad�e approximations to the exponential function, in each of these three diagonals, correspond
to A-stable methods. It is also clear that the approximations above the main diagonal cannot share
this property but what can be said about approximations below the second subdiagonal? Considerable
evidence existed for the “Ehle conjecture” [27] which claimed that none of these stability functions
can correspond to an A-stable method or, in Ehle’s terminology, that they are not A-acceptable.
In 1978 a new method was discovered for settling this, and many related questions. This approach

introduced “order stars” [60], based on relative stability regions. Rather than study the regions of
the complex plane for which |R(z)|¡ 1, the regions are studied for which |exp(−z)R(z)|¡ 1. Since
A-stable methods are those for which the stability function has no poles in the left half-plane and
has its magnitude bounded by 1 on the imaginary axis, changing from the stability function R(z)
to the relative stability function exp(−z)R(z) leaves this criterion unchanged, but introduces much
more structure, because exp(−z)R(z) = 1 + Czp+1 + O(zp+2), when z is small.
Consider Fig. 4 taken from [60]. Shown in this �gure are the order stars of four Pad�e approxima-

tion, with degrees j (denominator) and k (numerator). The shaded parts of the �gures, known as the
�ngers and characterized by |exp(−z)R(z)|¿ 1 and the unshaded parts, the dual �ngers characterized
by |exp(−z)R(z)|¡ 1 meet at 0 in a pattern determined by the sign of the real part of Czp+1, for
|z| small. This means that there will be exactly p+ 1 �ngers and the same number of dual �ngers
meeting at zero. Furthermore, the angles subtended by each �nger is the same �=(p+ 1). It can be
shown that all the bounded �ngers contain poles and the bounded dual �ngers contain zeros. The
two upper �gures are for A-stable methods, in which all the poles are in the right half-plane and
no �nger crosses the imaginary axis. The two lower �gures, for which j− k ¿ 2, cannot meet these
requirements, because there are too many bounded �ngers for it to be possible for them all to leave
zero in the right-hand direction. Some of these �ngers must leave zero in the left-hand direction and
either reach poles in the left half-plane or cross the imaginary axis to reach poles in the right-hand
half-plane. A rigorous form of this argument is used to prove the Ehle conjecture and to prove a
number of other results concerning both one step and multistep methods.
A recent study of order stars, which reviews most of the work up to the present time, is available

in the book by Iserles and NHrsett [42].

6.2. Nonlinear stability

To obtain a deeper understanding of the behaviour of sti� problems, and of the numerical methods
used to solve them, Dahlquist in 1975 [24], studied nonlinear problems of the form

y′(x) = f(x; y(x)); (26)

where f satis�es the dissipativity condition

〈f(x; u)− f(x; v); u− v〉60 (27)
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Fig. 4. An extract from the order star paper.

and 〈·〉 denotes an inner product, with ‖ · ‖ the corresponding norm. It is easy to see that two exact
solutions to (26) possess the property that

‖y(x)− z(x)‖6‖y(x0)− z(x0)‖; for x¿x0: (28)

The aim is now to �nd conditions on a method such that a discrete analogue of (28) holds. It turns
out to be more convenient to consider instead of a linear multistep method

�kyn + �k−1yn−1 + �k−2yn−2 + · · ·+ �0yn−k
= h(�kf(xn; yn) + �k−1f(xn−1; yn−1) + · · ·+ �0f(xn−k ; yn−k));

the corresponding “one-leg method”

�kyn + �k−1yn−1 + �k−2yn−2 + · · ·+ �0yn−k

= h

(
k∑
i=0

�i

)
f

(
�k∑k
i=0 �i

yn +
�k−1∑k
i=0 �i

yn−1 + · · ·+ �0∑k
i=0 �i

yn−k

)
:

For this type of method, Dahlquist considered contractivity in the sense that

‖Yn‖6‖Yn−1‖;
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where

Yn =




yn
yn−1
...

yn−k+1




and ∥∥∥∥∥∥∥∥∥



�1
�2
...
�k



∥∥∥∥∥∥∥∥∥
=

k∑
i; j=1

gij〈�i; �j〉:

It is assumed that

G =



g11 g12 · · · g1k
g21 g22 · · · g2k
...

...
...

gk1 gk2 · · · gkk




is a positive-de�nite matrix.
It is explained in Dahlquist’s paper how results for one-leg methods can be interpreted as having

a signi�cance also for the corresponding linear multistep methods. He also found necessary and
su�cient conditions for this property to hold. In a later paper [25], he showed that for one-leg
methods, A-stability and G-stability are essentially equivalent properties.
The corresponding theory for Runge–Kutta methods [14,19,8], leads to a consideration of a matrix

M with (i; j) element equal to biaij+bjaji−bibj. Assuming that this matrix is positive semi-de�nite,
and the same is true for diag(b1; b2; : : : ; bs), then a Runge–Kutta method applied to two distinct
solutions of (26), satisfying (27), satis�es the contractivity property

‖yn − zn‖6‖yn−1 − zn−1‖:
It is interesting that M has a more modern role in connection with symplectic methods for Hamil-
tonian problems.
A further development, initiated in the paper [29], is connected with the behaviour of truncation

error for Runge–Kutta methods applied to sti� problems.

7. The beginnings of di�erential equation software

Programs to solve di�erential equations are as old as modern computers themselves. Today, a
central aim in the design of di�erential equation software is the building of general purpose codes,
speci�c only as regards sti�ness versus nonsti�ness, which adapt their behaviour to that of the
computed solution dynamically. Variable stepsize is a characteristic feature of this software and
usually variable order is used as well.
The most famous of the early codes in this tradition is the FORTRAN subroutine named by its

designer, Gear, as “DIFSUB” [31]. Actually, this name was used generally by Gear for a range of
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possible subroutines using a range of di�erent methods. We will concentrate for the moment on the
linear multistep version of DIFSUB.
As with all linear multistep implementations, the characteristic problems of starting values, local

error estimation, change of stepsize and output interpolation have to be solved. A basic principle
used in DIFSUB are the use of the Nordsieck representation of the data passed between steps, and
this plays a crucial role in the solution of all these implementation questions, as well as the further
problem of variable order.
The single paper of Nordsieck [50] explains how it is possible to rewrite a k-step Adams methods

so that information on the values of hf(xn−i ; yn−i) for i=1; 2; : : : ; k is organized as approximations to
hy′(xn−1); 12!h

2y′′(xn−1); : : : ; 1k!h
ky(k)(xn−1). The rules for integration to the next step, are particularly

simple in the case of the Adams–Bashforth method. The solution is �rst extrapolated using the
approximation



y(xn)
hy′(xn)
1
2!h

2y′′(xn)
...

1
k!h

ky(k)(xn)



≈




1 1 1 1 · · · 1
0 1 2 3 · · · k

0 0 1 3 · · ·
(
k
2

)
...
...
...
...

...
0 0 0 0 · · · 1







y(xn−1)
hy′(xn−1)
1
2!h

2y′′(xn−1)
...

1
k!h

ky(k)(xn−1)




and a correction is then made to each component using a multiple of hf(xn; yn)− hy′(xn), so as to
ensure that the method is equivalent to the Adams–Bashforth method. Adding an Adams–Moulton
corrector to the scheme, is equivalent to adding further corrections.
Using the Nordsieck representation, it is possible to change stepsize cheaply, by simply rescaling

the vector of derivative approximations. It is possible to estimate local truncation error using the
appropriately transformed variant of the Milne device. It is also possible to measure the accuracy of
lower and one higher-order alternative methods so that the appropriateness of order-changing can be
assessed. Thus the ingredients are present to build a completely adaptive nonsti� solver. By adapting
the backward di�erence methods to a similar form, it is possible to allow also for sti�ness.
The DIFSUB program of Gear uses these techniques to obtain an e�cient solver and many

later programs are based on similar ideas. The �rst general purpose solver for di�erential–algebraic
equations, the DASSL subroutine of Petzold [54], is also closely related to DIFSUB.
Early success was also achieved in the algorithm of Bulirsch and Stoer [6]. This used extrapolation

in a similar manner to the quadrature algorithm of Romberg. The main di�erence between di�erential
equations and quadrature is that signi�cant e�ciency gains are made by reusing some of the abscissae
in a quadrature formula; this happens in the traditional version of the Romberg method because the
mesh size is halved in each iteration. For di�erential equations there is no advantage in this, because
reuse is not possible. Hence, in later developments of extrapolation methods, for both nonsti� and
sti� problems, various sequences of stepsizes have been considered, where the aim is to balance
computational cost against the quality of the convergence.
As many programs became available, using a variety of methods and variety of implementations of

the same basic method, it became appropriate to consider what is really expected of these automatic
solvers. Each person who develops this software needs to apply quality tests and to compare any new
implementation against existing codes. In the interests of providing objective standards, a number of
test sets have been developed. The earliest of these that has become widely adopted, and which in
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fact serves as a de facto standard, is the DETEST problem set [41]. While this is appropriate for
testing and comparing nonsti� solvers, a sti� counterpart, known as STIFF DETEST, [28] became
available a little later.

8. Special problems

While the general aim of providing accurate and e�cient general purpose numerical methods and
algorithms has been a central activity in the 20th century, there has always been a realization that
some problem types have such distinctive features that they will need their own special theory and
techniques. Sti� problems were recognized approximately half way through the century as such a
problem type and these have received considerable attention, especially in the last 30 years.
Another of the special problem types that has a separate claim for its own special methods, has

been second-order di�erential equations and systems. These have a natural importance as arising in
classical mechanical modelling and they were treated as a particular case by Nystr�om and others.
While any problem of this type can be rewritten as a �rst-order system, it is found that treating
them directly can lead to substantial gains in e�ciency, especially if the second-order system takes
the special form

y′′(x) = f(x; y(x));

where we note that y′(x) does not occur as an argument of f. The Runge–Kutta approach to this
type of problem was studied by Nystr�om [53] and has been of interest ever since. A modern theory
of these methods is given in [37]. Linear multistep methods for this problem were studied as part
of an investigation of a more general situation

y(n)(x) = f(x; y(x));

by Dahlquist [22].
It is interesting that one of the most active areas of modern research is closely related to this

long-standing problem. Mechanical problems that can be expressed in a Hamiltonian formulation,
rather than as a second-order system, can be studied in terms of the preservation of qualitative
properties. It is found that the symplectic property can be preserved by the use of specially designed
Runge–Kutta methods. The burgeoning subject of geometric integration, started from the study of
Hamiltonian systems by Feng Kang, J.M. Sanz-Serna and others, and is now a central activity as the
century closes. Although it is too early to view geometric integration from a historical perspective,
it is at least possible to refer to a recent review of this subject [58].
There are several other evolutionary problems that can be solved by methods closely related to

ordinary di�erential equation methods. Delay di�erential equations, and other types of functional dif-
ferential equations can be solved using a combination of a di�erential equation solver, an interpolator
and a means of handling discontinuities.
We have already noted that algebraic di�erential equations, especially those of low index, can

be e�ectively solved using linear multistep methods. Implicit Runge–Kutta methods also have an
important role in the numerical treatment of di�erential–algebraic equations. The theory of order of
these methods can be extended to allow for the inclusion of algebraic constraints in the formulation,
using generalizations of rooted trees [35].
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