DIFFERENTIAL EQUATIONS
NUMERICAL METHODS 2

RUNGE KUTTA 4

The most widely known member of the Runge-Kutta family is generally referred to
as "RK4", the "classic Runge-Kutta method" or simply as "the Runge-Kutta method". The
‘4’ refers to the estimated error of the order of h*. Again, RK4 will only solve 1st order ODE,
with initial values, although there is a technique to transpose a 2nd degree ODE to a 1st.
See p6 of this paper. Let an initial value problem be specified as follows:

2 = f(t,y), y(to) = to

RK4 basically computes the next value y,.; using the current y, plus the weighted average
of four increments.

Here is an unknown function (scalar or vector) of time, which we would like to

approximate. We are told that, %, the rate at which it changes, is a function of t and of y
itself. At the initial time ty the corresponding y value is yo. The function and the initial

conditions, are given. Now pick a step-size h > 0 and define:

1
yn+1= yn+€h(k1+2k2+2k3+k4)
tn+1 = tn + h

1. k; is the slope at the beginning of the
time step (this is the same as k; in the
first order method, Euler).

2. If we use the slope k; to step halfway
through the time step, then k; is an
estimate of the slope at the midpoint. This
is the same as the slope, k;, from the
second order midpoint method. This slope
proved to be more accurate than k; for
making new approximations for y(t).

3. If we use the slope k to step halfway Yo+ hki/2
through the time step, then ks is another
estimate of the slope at the midpoint.

4. Finally, we use the slope, k3, to step all
the way across the time step (to to+h),
and k4 is an estimate of the slope at the
endpoint.

Yo+ hk3

y0+hk2/2

Yo ¢

Y

to to+h/2 to+h
We then use a weighted sum of these
slopes to get our initial estimate of y(to+h).
y(to+h) = y(to) TEEEIEE R = y(to)+ (sky+sko+Ska+sks) = y(to) + mh

(RK 0, p23).

This method gives surprisingly accurate results, without the need of using extremely
small values of h.

|(1 = (h)f(XOlyhO)l K
ka=(h)F (xo+2,y,+),
h k
ks=(M)F (xo+2,y,+2),
k4 = (h)f(XO + h,YO + k3)l
K= (3) (ki +2kp+2k3+ks).
Now we set y; =yo + K (05)

Having determined y;, we proceed to approximate x, = x; + h in the same way.
ki = (h)f(x1,y1),
ka=()f (x1+5,y,+2),
ka=(h)f (x.+3,y,+2),
Ks = (M)f(x1 + h,y;s + ks),
K= (3) (ki +2kp+2k3+ks).
Now weset vy, =vy; +K

And take this as the approximate value of the exact solution at x, = x; + h.
Continue the same way until the final h is reached. (Ross, 456).

*Note that this uses “x” for the independent value. This is because this section is copied
from my math text rather than engineering notes.

EXAMPLE 03
y=y-t*+1, y(0)=0.5
The exact solution for this problem is y(x) = t2+2t+1-%et, and we are interested in the

valueof y for0 <t < 2.
We solve this using RK4 with h = 0.5, fromt=0to t = 2.
to = 0, Yo = 0.5

t1 = 0.5

ki = (h)f(to,Yo) = (0.5)(f(0,0.5)) = (0.5)(1.5) = 0.75

k, = (h)f(to+g,y0+%) = (0.5)(f(0.25,0.875)) = (0.5)(1.8125) = 0.90625

ks = ()F (to+3,yo+2) = (0.5)(f(0.25,0.953125)) = (0.5)(1.890625) = 0.9453125

ke = (h)f(to+h,yo+ks) = (0.5)(F(0.5,1.4453125)) = (0.5)(2.1953125) = 1.09765625
yl=yO+(k1+2k2+2k3+k4)/6=
0.5 + (0.75 + 0.90625 + 096453125 + 1.09765625) / 6 = 1.42513020833333

tz =1
(h)f(t1,y1) = (0.5)(f(0.5,1.4251302083333333)) = (0.5)(2.175130208333333) =
1.0875651041666667

k, = (h)f(t1+g,y1+k71) = (0.5)(f(0.75,1.968912760416667) =
(0.5)(2.40641276047) = 1.203206380208333
ks = (W (ti+5,y,+2) = (0.5)(f(0.75,2.0267333984375) =
(0.5)(2.46423339844) = 1.23211669921875
= (h)f(ti+h,y;+ks) = (0.5)(f(1,2.657246907552083)) =

(0.5)(2.657246907552083) = 1.328623453776042
yo = =yi + (ki + 2Kz + 2k3 + ka) / 6 = 2.639602661132812

x
KA
I

=~
IS
|

t4=4
= 1.

Ya 378409485022227 + 1.316761856277783 + 1.301349949091673 +
1.154084459568063 = 5.301605229265987

| @) | Exact y(ti) | RK4 y(i) | Error |Exact-RK4| |
0. 0.5 0.5 0.0

0.5 1.42563936464993 1.42513020833333 0.000509156316603
1.0 2.64085908577047 2.63960266113281 0.001256424637665
1.5 4.00915546483096 4.00681897004445 0.002336494786515
2.0 5.30547195053467 5.30160522926598 0.003866721268688

(RK 3, p1).

While smaller values of h provided better approximations with Euler, we can see that
the same applies to RK4. However, where Euler uses a smaller h with a factor of 2,
producing improved accuracy by 2, RK4 will reduce errors by a factor of 16! (Ross, 459). A
simple way to determine whether your h value is small enough is to do the problem again
with h/2. Then compare the results. I know that this is a lot of work. Perhaps both trials
can be done with a small data sample. However, changing to a more precise method, might
be better. See Felhberg and ABAM below.

Dawkins describes a method to transform a 2nd degree ODE to a 1st degree. See
Dawkins 276 PDF, also p6 of this paper. There are several other PDF describing this
technique in Methods folder.

FELHBERG

The trickiest part of RK is determining the right step size. Many problems in celestial
mechanics, chemical reaction kinematics, and other areas have long periods of time where
nothing much is happening (and for which large step-sizes are appropriate) mixed in with
periods of intense activity where a small step-size is vital. What we need is an algorithm
which includes a method for choosing the appropriate step-size at each step. The Runge-
Kutta-Fehlberg methods do just this, which is why they have largely replaced the Runge-
Kutta methods in practice.

Let us assume that for constant C’

|C | ~ |y1h??'2 |
Once we have this approximation for C’, we can pick a step-size h; to get the local error of
the size we want. If we want the local error to be about size T, we just take a step-size hpey
where

BN VE

Poew=h (551
You might be a little worried about how all the errors in the different approximations mount
up as we carry out all these computations to get our new step-size . This is a serious
consideration and is dealt with by introducing a chicken factor, usually taken to be 0.9. We
actually use a step-size

T \1/3

=9 ()

Fehlberg uses exactly this technique to pick the right step-size. Suppose the initial value

problem we want to solve is

= f(x,y), y(%0) = Yo

We have an initial step-size h (taken to be whatever value you fancy, we will update it

automatically as needed). We compute the improved Euler and RK3 estimates in the usual
fashion.

k1 = f(Xo, Yo)

k2 = f(xg + h, yo + (h)(k1))

k3 = f(xg + h/2, yo + (h)((k1 + k2)/4)

Y, = Yo + (h)(k1 + k2)/2

y! = yo + (h)(k1+kz+4k3)

lerror|=|y! — vy |
If this error is small enough, say within a tolerance of T = (O.OOl)(max(|y0|,1)), then we
accept this step-size for the current step and let

X1 =X+ h

yi =Yy
If the error is greater than T, we reject this step-size for the current step and leave xo and
Yo as they are. In either case, we choose a new step-size

1/3
Arew = 0.9h(ﬁ)
1 2

We then either compute the next step with the new step-size (if our error was less than T)
or we repeat the current step with the new step-size (if the error was greater than T) and
try again to find x; and y;. (RKF2, 3).

EXAMPLE 04

Approximate y(1) if dy/dx = x + y, with y(0) = 0. Use Felhberg with tolerance T = 0.01.
We need to pick an initial step-size to get things started. We have to go from xo = 0 to x =
1, so why not go for it all in one shot and guess initially h = 1. Choosing a step-size of
about the length of the interval divided by 16 or32 is more typical. I wanted to be sure I
had to reject the estimate sometime in the course of the example so I decided to start off
wrong with too large a step size to be sure that happened. We carry out the following
computations.

K1=0
K2 =1
K3 = 0.75
y, =0.5

y, = 0.6666666666666...

|y’1 —y’2’| = 0.166666666666...

The estimated error is greater than the tolerance 0.01, so we reject the initial step-size of h
= 1. We compute a new step-size and try again.

hnew = (0.9)(1)(0.01/1.66666...)/* = 0.3523380877

Ki=0

K2 = 0.35233880877

K3 = 0.2072045759

y, = 0.062071064

y; = 0.069361064

ly, —y/| = 0.00729 < 0.01

This time the estimated error is less than the tolerance so we accept the step-size and
estimate and compute

Xy = Xg + h

y1 =Yy

We now compute a new step-size and go on to the next step (Twice in this problem, we
compute a new step-size and it turns out to exactly equal the old step-size. This is a freak

accident.)
hnew = (0.9)(0.3523380877)(0.01/0.00729...)/* = 0.3523380877

4

K1l = 0.4216991517

K2 = 0.9276179121

K3 =0.7162817215

y, = 0.3061881158

y, = 0.3165523026

ly;, —yy| = 0.013641868 > 0.01
This time the estimated error is greater than the tolerance so we reject the step-size and try
again with the same x; and vy;.

hrew = (0.9)(0.3523380877)(0.1/0.0103641868)*3

K1 = 0.4216991515

K2 = 0.8671284185

K3 = 0.6793383478

y, = 0.2712937907

y, = 0.2785837907

ly, —yy| = 0.00729 < 0.01
This estimated error is less than the tolerance so we accept the step-size and compute
X2 = X3 + h = 0.6656837532

y2 =y, = 0.2785837907

We now compute the new step-size for the next step and repeat the process
hnew = (0.9)(0.3133456655)(0.1/0.0729)*° = 0.3133456655

K1 = 0.9442675439

K2 = 1.553495351

K3 = 1.296606171

y, = 0.669915379

y; = 0.679849358

ly; —y%| = 0.0099695568 < 0.01

Estimated error is less than tolerance, so we accept and compute

X3 = Xz + h = 0.9790294187

ys =y, = 0.679849358

Next step-size

hnew = (0.9)(0.3133456655)(0.1/0.0099695568)*3 = 0.2822978588

But this step-size is too large since x3 + h = 1.261327277 > 1, and so it would put us past
our final value for x. Therefore we shrink to hit x = 1 exactly.

hnew = 1 — x3 = 0.0209705813

K1 = 1.658914354

K2 = 1.714673334

K3 = 1.687086169

y, = 0.7152579833

y, = 0.7152620701

ly, —yy| = 0.00000408681 < 0.01

This estimated error is less than the tolerance, so we accept this estimate and make the
final computations

Xs=X3+h=1

ys =y, = 0.7152620701

Yactuar = 0.7182818285

(RKF2, 5).

EXAMPLE 05

y=y-t*?+1 y(0)=0.5 tt=2 h=0.2 T=0.0001

VY(X)actual = C1€° + x> + 2x + 1 (courtesy of Wolfram Alpha)

This technique must be run on a computer or calculator. So, I will just give the answer.

5

The paper (RK 3) that I copied this from yields intermediate values for t. Obviously making
this suitable for graphing.

[t

EXACT

NUMERICAL

ABS ERR

HFHRRPRPRPRFRLOOOOO
o hANOOOOPRANO

N
o

0.500000000000000
0.829298620919915
1.214087651179360
1.648940599804740
2.127229535753760
2.640859085770470
3.179941538631720
3.732400016577660
4.283483787802440
4.815176267793520
5.305471950534670

0.500000000000000
0.829293333333333
1.214076210666660
1.648922017041600
2.127202684947940
2.640822692728750
3.179894170232230
3.732340072854980
4.283409498318400
4.815085694579430
5.305363000692650

0.000000000000000
0.000005287586582
0.000011440512698
0.000018582763146
0.000026850805823
0.000036393041726
0.000047368399496
0.000059943722683
0.000074289484036
0.000090573214092
0.000108949842019

Note that the computer balked on many of the final digits, changing them to zeros.

CHANGING THE ORDER OF A DE

(RK 3, p3#2).

A system of differential equations can arise from a population problem in which we
keep track of the population of both the prey and the predator. The differential equation
that governs the population of either the prey or the predator should in some way depend
on the population of the other. This will lead to two differential equations that must be
solved simultaneously in order to determine the population of the prey and the predator.

However, systems can arise from nth order linear differential equations as well.
Here is an example of two different first order (the order is the largest derivative present in
the equation) linear differential equations (any DE with the form of y=mx+b or

%+ 5% + 6y = 0. See my paper Diff Eq 0, p1-2). Here is a system of first order, linear DE.

X; = X1 + 2X;
X5 = 3X1 + 2X;

Often we find linear DE of higher orders. Since the numerical methods we have

covered are only suitable for first order DE, we need a method to convert a higher order to
a first order.

EXAMPLE 06
Write the following DE as a system of first order linear DE.
2y" =5y'+y=0 y(3)=6 y'(3)=-1
This can be done with a simple change of variable. We’ll start by defining two new
functions.

x1(t) = y(t)

X2(t) = y'(©)

Notice that if we differentiate both sides of these we get,
xi(t) =y = i<2])]

XIZ = y” = —Ey + Eyl = _EX]' + EXZ

We can also convert the initial conditions to the new functions.
X1(3) =y(3) =6

X2(3) =y'(3) =-1

Putting this all together gives the following:

X,1 = X2 X1(3) =6

!

1 5
X, = —Exl + EXZ X2(3) =-1

EXAMPLE 07

Write this 4th order DE as a system of 1st order linear DE.

y® +3y" —sin(t)y +8y =t y(0)=1 y (@) =2 y'(@0)=3 y"(0) =4

Just as we did before, we’ll need to define some new functions. This time we’ll need 4 new
functions.

Xy =y = Xy =Y =X

X2 =y’ = X3 =Y =X

X3 = y// :> X’3 — yIH = X4

Xs = y" = Xy = y® = -8y + sin(b)y’ — 3y” + t> = -8x; + sin(t)x, - 3x3 + t?
Then this system, along with the initial conditions is

X1 = X2

Xy = X3

X5 = Xq

X, = -8X; + sin(t)x, - 3x3 + t

Now, when we finally get around to solving these, we will see that we generally don’t
solve systems in this form. Systems of DE can be converted to matrices, and this is the
form that we use to solve them.

EXAMPLE 08

Convert the following system to matrix form.

X1 = 44Xy + 7X;

X5 = -2X3 — 5%,

First write the system so that each side is a vector,
X’1 4X1 7X2
[x’z] - [-le -5X,

Now the RS can be written as a matrix multiplication,
Xi1_[4 7
[x’z] a [-2 -5]

Define:

. X1
X = [Xz

Then
x = [l

X2

Repeat this process for examples 06 and 07.

EXAMPLE 09

For example 06:

x| = Xz x1(3) =6

X5 = —%xl + gxz X2(3) = -1

First define,

- _ X1

X = [Xz]

This system is then,

0 1 - x1(3) 6
s =)= 14

EXAMPLE 10
For example 07:

Xy = Xz x1(0) =1
X5 = X3 x(0) = 2
X3 = X4 x3(0) = 3
Xy = -8xy + sin(t)x, - 3x3 + t* x4(0) = 4

Now, we have to be careful with the t* in the last equation. We'll start by writing the
system as a vector again. Then we’ll break it into two vectors. One will contain the

i NG
%2 = X3 _ X3 + 10
| -) iy :
I,] -8xy +sin(t)x,-3x3+t> -8x; +sin(t)x,-3x3 t2
Now the first vector can be written as a matrix multiplication,
0 1 0 o 0
— |0 0 1 of< 0
X = 0 0 0 1 X + 0
-8 sint) -3 0 t?
Where,
X1 (%)
N Xz(t)
X(t) =
®=hao
X4(t)
Note that for large systems such as this we will go one step further,
X = AX + g(t)

Finally, X' = AX + g(t) is a homogeneous system, while, g(t) = 0 is non homogeneous if
g(t) # 0. (See my paper titled “Basics,” p2, in folder, Math, Papers, DE).

(DE_276; Second Order Differential Equations; 5520Notes DE LA; all in folder: BOOKS, PDF,
MATH, DE and Lin Alg).

ADAMS - BASHFORTH / ADAMS - MOULTON

Where RK4 is a single step method, basing each prediction on only one previously
predicted point, (ABAM) is a multi step method. As such, it cannot calculate the first few
input y values. Therefore, it is necessary to turn to a one step method such as Euler to find
these values. Then one begins using the multi step after a sufficient number of starting
values are found. ABAM is also a predictor-corrector method. This uses a formula to first
predict an approximation y__,, which is then used indirectly in the correcting formula to find

Yn+1-
ABAM can be used to approximate the value of ¢(x,+1) from the solution ¢ of the IVP
y' = f(x,y) (06)
y(Xo0) = Yo

at xp+1 = Xg + (n + 1)h, provided we have previously found approximations y,, Yn-1, Yn-2,
Yn-3, corresponding to the four previous points X,, Xn-1, Xn-2, Xn-3.

The method follows: we use (06) to determine y’ at each of x,,, Xn-1, Xn-2, and Xn-3. In
particular we set y'y = f(Xn,¥n), Y'n-1 = f(Xn-1,Yn-1), Y'n2 = f(Xn-2,Yn-2), @and y'n.3 = f(Xn-3,Yn-3)-

Using these initial values, we find an initial approximation y ., for ¢(x,+1) with the predicting
formula:

~ h 12 ! ! !
Voot = Yot 55 (55Y, — 59y, +37y,_, — 9y,,) (07)
Inserting numbers into this, we find the number
Vner = f(Xn+1, Vpypq)- (08)
This is used to find y,+; in this correcting formula:
h ~7 ’ ' ’
Y1 = Yo+ 25 (90wt + 19y; = 5y, + V) ,) (09)

Once the values vy, Y1, Y2, Y3 have been determined, we can start using ABAM with n = 3 to
determine y,. Then with y, use this to find ys, ...

Because of the accuracy of RK4, this is the preferred starting method for values y, to
y3. (Ross, 463).

EXAMPLE 11

Use RK4 to approximate the solutions fory' = 2x + vy, y(0) = 1, for 0.2, 0.4, and 0.6. Then
use ABAM for 0.8 to 2.0. Also finish RK4 for 0.8 to 2.0 for comparison purposes. Finally
make a table with actual solutions, RK4, ABAM, and actual values, and calculate % errors.
The actual solution is y(x) = -2x + 3e* -2.

Begin with running RK4 for four iterations for y' = 2x + y, forh = 0 to 0.6.

Xo =0, Yo = 1.00000000000,

x; = 0.2, y: = 1.26420000000,

x; = 0.4, y> = 1.67545388000,

x3 = 0.6, y3 = 2.26631936903,

The first three RK4 are used directly in ABAM. These we will calculate in y’, using the RK4
‘X" and 'y’ values. (This is not a derivative, merely a marker).

Yy, = f(xoYo) = f(0.0,1.00000000000) = 1.00000000000

y; = f(x1y1) = f(0.2,1.26420000000) = 1.66420000000

y, = f(xay2) = f(0.4,1.67545388000) = 2.47545388000

y, = f(xsys) = f(0.6,2.26631936903) = 3.46631936903

Starting with xo = 0.6, we start ABAM intermediate calculations (07). These should be
placed into a table. yg, y;, Y,, y; were calculated immediately above.

Now, using (07) the predicting formula with n = 3, h = 0.2, we find

Y, = y3+%(55y'3 - 59y, + 37y, — 9y,)

(55)(4.6765836) - (59)(3.4663193) + (37)(2.4754538) - 9.0000000

= 2.2663194 + 3.0

= 3.0760793
Having determined y, we determine y’; by substituting (0.80, 3.0760793) into the given
y =2x +y

= 4.6760793

Use this new value of y'4 in the correcting formula (08) to find y4. Again, n = 3, h = 0.2.
Pay attention to the difference between ¥',;; and the other y;, no hats.
0.2 “~7 ' I ’
Ya =Y+t 55 (991 + 19y, = 5y, + v, ,)
— 2.2663194 4 Q46760793 + (19)(3.46631936903) - (5)(2.47545388000) + 1.66420000000

120.0
= 3.0765836

Now, n = 4, using the new value for y,, first find y,

y, = f(0.80,3.0765836) = 4.6765836

Next use the predicting formula (07) with n = 4, and h = 0.20
9 = 3.0765836 + (55)(4.6765836) - (59)(3.46631936903)-;2(03;)(2.47545388000) - (9)(1.66420000000)

= 4.1541941

Next with n = 4, h = 0.20 and ¥, find ¥'s
¥'s = f(xs,¥5) = f(1.0, 4.1541941) = 6.1541941
Now use these in the correcting formula
Ys = Ya + = (995 + 19y, — 5y, +)

= 3.0765836 + %[(9)(6.1541941) + (19)(4.6765836) - (5)(3.46631936903)]

+ 2.47545388000 = 4.1548061.
(Ross, 465 #8.13).

If you must do this by hand, it is best to put intermediate results into a table. Below
is an example. Notice that the first three rows represent the initial RK4 values.

y =2x+y
| N | Xn | Yn | Yn' | Xn+1 |Yhat(n+1)]|Y'hat(n+1)] VYn+1 |

0 0.00 1.00000 1.00000

1 0.20 1.26420 1.66420

2 0.40 1.67545 2.47545

3 0.60 2.26632 3.46632 0.80 3.07608 4.67608 3.07658
4 0.80 3.07658 4.67658 1.00 4.15419 6.15419 4.15481
5 1.00 4.15481 6.15481 1.20 5.55956 7.95956 5.56031
6 1.20 5.56031 7.96031 1.40 7.36465 10.16465 7.36557
7 1.40 7.36557 10.16557 1.60 9.65795 12.85795 12.54893
8 1.60 9.65907 12.85907 1.80 12.54756 16.14756 12.54893
9 1.80 12.54893 16.14893 2.00 16.16550 20.16550 16.16717
10 2.00 16.16717

Error values for the exact solution:
f(x) = -2x + 3e* - 2

| Xn | Exact | ABAM |ABAM Err| RK | RKErr |
0.20 1.264208 1.264200 0.000008 1.264200 0.000008
0.40 1.675474 1.675454 0.000020 1.675454 0.000020
0.60 2.266356 2.266319 0.000037 2.266319 0.000037
0.80 3.076623 3.076584 0.000039 3.076562 0.000060
1.00 4.154845 4.154806 0.000039 4.154753 0.000092
1.20 5.560351 5.560312 0.000038 5.560216 0.000135
1.40 7.365600 7.365565 0.000035 7.365408 0.000192
1.60 9.659097 9.659070 0.000028 9.658829 0.000268
1.80 12.548942 12.548927 0.000016 12.548574 0.000369
2.00 16.167168 16.167171 0.000003 16.166668 0.000501

The RK method requires four separate evaluations per step, while ABAM calculates
only twice, once for y;, and again to find y¥',+;. One advantage of RK is that the iteration
size may be changed any time. This must not be done with ABAM. This is actually done in
RKFehlberg, which includes a test to compare the approximation with the error value.
Fehlberg will then adjust the step size if hecessary. (Ross, 468).

5520Notes.

BIBLIOGRAPHY

https://www.math.cuhk.edu.hk/course_builder/1415/mmat5520/5520notes.pdf

Dawkins, Paul. “Paul’s Online Math Notes.” http: //tutorial.math.lamar.edu/. Downloaded:
18 Feb 2017. This PDF is "DE Complete.”

10

DE_276. Paul Dawkins. PDF. http: //tutorial.math.lamar.edu/.

RKO. Erik Cheever. https://Ipsa.swarthmore.edu/NumInt/NumIntAll.html

RK3.
https://math.okstate.edu/people/ygqwang/teaching/math4513_fall11/Notes/rungekutta.pdf

RKF2. (onlinehw.math.ksu.edu/math340book/chapl/xcl.php)

Ross, Shepley L. Introduction To Ordinary Differential Equations. 4th ed. New York: John
Wiley & Sons, 1989.

Second Order Differential Equations. PDF. (mathisfun.com).

11

