
BIT Numer Math (2014) 54:7–30
DOI 10.1007/s10543-013-0449-x

Fast computation of eigenvalues of companion,
comrade, and related matrices

Jared L. Aurentz · Raf Vandebril ·
David S. Watkins

Received: 6 December 2012 / Accepted: 24 September 2013 / Published online: 15 October 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The class of eigenvalue problems for upper Hessenberg matrices of
banded-plus-spike form includes companion and comrade matrices as special cases.
For this class of matrices a factored form is developed in which the matrix is rep-
resented as a product of essentially 2 × 2 matrices and a banded upper-triangular
matrix. A non-unitary analogue of Francis’s implicitly-shifted QR algorithm that pre-
serves the factored form and consequently computes the eigenvalues in O(n2) time
and O(n) space is developed. Inexpensive a posteriori tests for stability and accu-
racy are performed as part of the algorithm. The results of numerical experiments are
mixed but promising in certain areas. The single-shift version of the code applied to
companion matrices is much faster than the nearest competitor.

Keywords Polynomial · Root · Companion matrix · Comrade matrix · LR algorithm

Mathematics Subject Classification 65F15 · 15A18

Communicated by Peter Benner.

The research was partially supported by the Research Council KU Leuven, projects OT/11/055
(Spectral Properties of Perturbed Normal Matrices and their Applications), CoE EF/05/006
Optimization in Engineering (OPTEC), by the Fund for Scientific Research–Flanders (Belgium)
project G034212N (Reestablishing smoothness for matrix manifold optimization via resolution of
singularities) and by the Interuniversity Attraction Poles Programme, initiated by the Belgian State,
Science Policy Office, Belgian Network DYSCO (Dynamical Systems, Control, and Optimization).

J.L. Aurentz · D.S. Watkins (B)
Department of Mathematics, Washington State University, Pullman, WA 99164-3113, USA
e-mail: watkins@math.wsu.edu

J.L. Aurentz
e-mail: jaurentz@math.wsu.edu

R. Vandebril
Department of Computer Science, KU Leuven, 3001 Leuven (Heverlee), Belgium
e-mail: raf.vandebril@cs.kuleuven.be

mailto:watkins@math.wsu.edu
mailto:jaurentz@math.wsu.edu
mailto:raf.vandebril@cs.kuleuven.be

8 J.L. Aurentz et al.

1 Introduction

This paper is about computing the zeros of polynomials. If a polynomial is expressed
in terms of the monomial basis, say

p(z) = zn + cn−1z
n−1 + · · · + c1z + c0,

its zeros can be found by computing the eigenvalues of the associated companion
matrix

C =

⎡
⎢⎢⎢⎣

−c0
1 −c1

. . .
...

1 −cn−1

⎤
⎥⎥⎥⎦ .

This is the method used by MATLAB’s roots command.
Often polynomials are presented in terms of some other basis such as Chebyshev

or Legendre polynomials. What happens then? If

p(z) = c0p0(z) + c1p1(z) + · · · + cnpn(z),

where p0, . . . , pn is a polynomial basis with the property that each pk has degree
exactly k, then one can construct an upper Hessenberg confederate matrix [2] whose
eigenvalues are the zeros of p. This procedure is cost effective if the (pk) can be
generated by a short recurrence such as the three-term recurrences that produce the
classical Legendre, Hermite, and Chebyshev polynomials. In the case of a three-term
recurrence, the confederate matrix takes a special form whose pattern of nonzeros is

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × × ×

× × × ×
× × × ×

× × ×
× ×

⎤
⎥⎥⎥⎥⎥⎥⎦

,

i.e. tridiagonal plus a spike. This special type of confederate matrix is called a com-
rade matrix.

To find the zeros of p, we just need to compute the eigenvalues of this matrix.
One way to do this is to apply the standard algorithm for upper Hessenberg matrices,
Francis’s implicitly-shifted QR algorithm [10, 17, 18]. This method preserves the
upper-Hessenberg form, but it does not exploit the large number of zeros above the
main diagonal of the matrix. Consequently the algorithm runs in O(n3) time and
requires O(n2) storage. It is natural to look for more efficient ways to compute the
eigenvalues of this matrix.

Several methods that do the computation in O(n2) time and O(n) storage have
been proposed. These include, for the companion case, Chandrasekaran et al. [6],
Bini et al. [3, 4], and Boito et al. [5]. All of these methods are implementations of
Francis’s implicitly shifted QR algorithm that exploit the quasiseparable structure,

Fast computation of eigenvalues 9

i.e. low-rank structure of the submatrices above the subdiagonal. For the comrade
case we note the work of Eidelman, Gemignani, and Gohberg [7], Vandebril and Del
Corso [14], and Zhlobich [19]. These are also implementations of Francis’s algorithm
that exploit the quasiseparable structure, except that the Zhlobich method uses the
differential qd algorithm of Fernando and Parlett [8, 12, 16].

This paper is an outgrowth of earlier work [1] that was specific to the companion
matrix. We did not make direct use of the quasiseparable structure. Instead we used a
Fiedler factorization [9] of the companion matrix into a product of essentially 2 × 2
matrices. We then developed a non-unitary variant of Francis’s algorithm that oper-
ates on the factored form and preserves it. The new algorithm requires O(n) storage
and runs in O(n2) time. In [1] it was shown to be three to four times faster than the
nearest competition for large n.

In this work we consider the broader class of upper Hessenberg matrices having
the banded-plus-spike structure, which includes both comrade and companion matri-
ces as special cases. We will produce a factored form of the matrix into a product of
essentially 2 × 2 matrices times a banded upper-triangular matrix that allows us to
store it in O(n) space. We will develop a non-unitary variant of Francis’s algorithm
that operates on the factored form and preserves it. Thus the total memory require-
ment is O(n). More precisely, if the band width (recurrence length) is b, we need
to store (4 + b)n numbers. This is significantly less than is needed for a quasisepa-
rable generator representation. Furthermore the cost of executing the algorithm will
be shown to be O(n) flops per iteration, (12 + 4b)n for the single-shift case and
(28 + 8b)n for the double-shift case. Making the usual (reasonable) assumption that
O(1) iterations are needed per root, the total flop count is O(n2). In the companion
case our new method is about three times faster than our previous method [1] and
more than ten times faster than all other competitors.

The price we pay for extreme speed is that we sacrifice stability. The similar-
ity transformations that we use are Gauss transforms, unit lower-triangular matrices,
hence potentially unstable. Since the total similarity transformation for each itera-
tion is a product of unit lower-triangular matrices, it is itself unit lower triangular.
Thus our algorithm is an LR algorithm. More precisely, it is a structure-preserving
implicitly-shifted LR algorithm.

The instability does not imply that our algorithm is not useful. Instead it means that
once we have computed our roots, we must perform a posteriori tests to determine
whether or not they can be trusted. In Sect. 6 two inexpensive tests are discussed. One
is a residual test that measures backward stability, and the other is an estimate of the
error in the computed root. The latter also furnishes us with enough information to
do a step of Newton’s method and thereby refine the root.

The numerical results in Sect. 7 give a preliminary indication of where our method
might be useful. Our single-shift code shows promise. It is much faster than any com-
petitors that we are aware of. The accuracy is satisfactory, especially after a Newton
correction. The double-shift code was less successful. It too is very fast, but it is too
unstable in its current form. We cannot recommend it for accurate computation of
roots of high-degree polynomials. It could find use as an extremely fast method to get
a rough estimate of the spectrum.

10 J.L. Aurentz et al.

2 Confederate matrices

Results equivalent to the following appeared years ago in the book by Barnett [2].
We include brief sketches of proofs for the reader’s convenience. Let p(z) be any
polynomial of degree n whose roots we would like to find.

Let p0(z),p1(z), . . . , pn(z) be polynomials with complex coefficients such that
each pk has degree exactly k. These polynomials can otherwise be completely arbi-
trary, but we are mainly interested in ones that can be generated by a short recurrence,
for example

αkpk(z) = zpk−1(z) − βkpk−1(z) − γkpk−2(z). (2.1)

Since the polynomial p(z) whose roots we are looking for has degree exactly n, it
can be written as a linear combination

p(z) = c0p0(z) + · · · + cnpn(z) (2.2)

for unique coefficients c0, . . . , cn with cn �= 0. We need just a bit more notation. Let
η0, . . . , ηn, and η be the unique nonzero constants such that η0p0, . . . , ηnpn, and ηp

are monic.
We consider two closely related problems. (a) Build a matrix A such that for k =

1, . . . , n the leading principal submatrix of A of order k has ηkpk as its characteristic
polynomial. (b) Build a matrix B as in problem (a), but replace ηnpn by ηp. Of course
there is no difference between these two problems in general, but if p0, . . . , pn are
generated by a short recurrence like (2.1) while p is given by the long expression
(2.2), there will be a difference in the structure of the matrices. We will produce
upper Hessenberg matrices that solve problems (a) and (b).

For each k there are unique coefficients a1k, . . . , ak+1,k , with ak+1,k �= 0, such that

zpk−1(z) =
k+1∑
j=1

pj−1(z) ajk. (2.3)

The subscripts on the coefficients are offset by one because the ajk are about to
become entries of a matrix.

Theorem 2.1 Let An be the n × n upper Hessenberg matrix

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 a2n

a32 a33 a3n

. . .
. . .

...

an,n−1 ann

⎤
⎥⎥⎥⎥⎥⎦

generated from the coefficients of (2.3) for k = 1, . . . , n. Then, for k = 1, . . . , n, the
characteristic polynomial of Ak , the k × k leading principal submatrix of An, is
ηkpk(z), where ηk is a complex constant.

Fast computation of eigenvalues 11

Proof We just sketch the proof. Rewrite (2.3) as a recurrence

pk(z)ak+1,k = zpk−1(z) −
k∑

j=1

pj−1(z) ajk. (2.4)

Then rewrite it as a recurrence for the monic polynomials ηkpk . Next compute the
determinant χk(z) = det(zI − Ak) by expanding on the last column. This yields a
recurrence that is identical to the monic version of (2.4). Therefore the monic poly-
nomials ηkpk are the characteristic polynomials of Ak, k = 1, . . . , n.

A second proof, which gives eigenvector information, can be obtained by writing
(2.3) for k = 1, . . . ,m as a single matrix equation. Let

wm(z) = [
p0(z) · · · pm−1(z)

]
. (2.5)

Then, from (2.3)

zwm(z) = wm(z)Am + pm(z)am+1,meT
m,

an Arnoldi configuration. If we now take z = zi to be a zero of pm, we get

ziwm(zi) = wm(zi)Am,

which shows that wm(zi) is a left eigenvector of Am with eigenvalue zi . If pm has m

distinct roots z1, . . . , zm, then these are the m eigenvalues of Am. It follows that the
characteristic polynomial of Am is ηmpm.

If Am has multiple eigenvalues, a more elaborate argument is needed. We must
take derivatives of (2.3) and build Jordan blocks. �

Theorem 2.1 solves problem (a). To solve problem (b) we just need to replace pn

by p. Starting from the case k = n of (2.3), using (2.2) to eliminate pn, and defining

ĉk = an+1,nck/cn, k = 0, . . . , n − 1,

we find that

zpn−1(z) =
n∑

j=1

pj−1(z)(ajn − ĉj−1) + (an+1,n/cn)p(z).

This is the equation we have to use in place of (2.3) to form the nth column. Thus

B =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n − ĉ0
a21 a22 a23 a2n − ĉ1

a32 a33 a3n − ĉ2
. . .

. . .
...

an,n−1 ann − ĉn−1

⎤
⎥⎥⎥⎥⎥⎦

(2.6)

is the solution of problem (b). Barnett [2] calls this a confederate matrix. Its impor-
tance to us is that its eigenvalues are the zeros of p.

12 J.L. Aurentz et al.

Now consider the special case where the polynomials pk are generated by the
three-term recurrence (2.1). Now (2.3) takes the form

zpk−1(z) = γkpk−2(z) + βkpk−1(z) + αkpk(z),

and A (An of Theorem 2.1) has the tridiagonal form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

β1 γ2 0 · · · 0
α1 β2 γ3 0

α2 β3
. . .

...

. . .
. . . γn

αn−1 βn

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and B is tridiagonal plus a spike:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

β1 γ2 0 · · · −ĉ0
α1 β2 γ3 −ĉ1

α2 β3
. . .

...

. . .
. . . γn − ĉn−2

αn−1 βn − ĉn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This is a comrade matrix [2]. In the special case of a Newton basis:

pk(z) = (z − βk)pk−1(z),

B is bidiagonal plus a spike. In the even more special case of the monomial basis
pk(z) = zk , which is a Newton basis with all βk = 0, B becomes a companion matrix.

3 The matrix decomposition

We find it convenient to work with matrices that have the spike in the first row instead
of the last column. We consider the class of upper Hessenberg matrices that are upper
banded except for a spike of nonzero entries in the first row. More precisely, given a
nonnegative integer b, we consider all A for which aij = 0 when i − j > 1, or i > 1
and j − i ≥ b. The matrices we considered in the previous section all fall into this
category after reversing rows and columns and transposing. The cases b = 0, 1, and
2 correspond to companion, Newton, and comrade matrices, respectively.

The matrix decomposition that we will use is obtained by Gaussian elimination
with a row interchange at each step. The first step explains the whole algorithm. For
illustration we consider the case n = 6 and b = 2, in which the matrix has the form

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 c2 c3 c4 c5 c6
a1 d1 b1

a2 d2 b2
a3 d3 b3

a4 d4 b4
a5 d5

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.1)

Fast computation of eigenvalues 13

At step 1 we multiply A on the left by a matrix C−1
1 that has the effect of interchang-

ing the first two rows, then subtracting c1/a1 times the new first row from the second.
The result is

C−1
1 A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 d1 b1
0 ĉ2 č3 c4 c5 c6

a2 d2 b2
a3 d3 b3

a4 d4 b4
a5 d5

⎤
⎥⎥⎥⎥⎥⎥⎦

.

C1 = diag{C̃1, I4}, where

C̃1 =
[
c1/a1 1

1 0

]
.

The second step is just like the first, resulting in

C−1
2 C−1

1 A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 d1 b1
a2 d2 b2
0 ĉ3 č4 c5 c6

a3 d3 b3
a4 d4 b4

a5 d5

⎤
⎥⎥⎥⎥⎥⎥⎦

.

C2 = diag{1, C̃2, I3}, where

C̃2 =
[
ĉ2/a2 1

1 0

]
.

After five steps our decomposition is finished.

A = C1 · · ·C5

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 d1 b1
a2 d2 b2

a3 d3 b3
a4 d4 b4

a5 d5
ĉ6

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.2)

In the general n × n case the factorization has the form

A = C1C2 · · ·Cn−1R, (3.3)

where R is a banded upper-triangular matrix with band width b+1. Each Ci is a core
transformation (defined immediately below) acting on rows i and i + 1 with active
part of the form (let ĉ1 = c1)

C̃i =
[
ĉi/ai 1

1 0

]
.

The total flop count for the reduction is approximately 2nb.

14 J.L. Aurentz et al.

4 Operations on core transformations

A core transformation is a nonsingular n × n matrix Ci that “acts on two adjacent
rows or columns”. More precisely, Ci is identical to the identity matrix, except for the
two-by-two submatrix at the intersection of rows and columns i and i + 1, which can
be any nonsingular 2×2 matrix. It is called the active part of the core transformation.
Core transformations will normally be written, as shown here, with a subscript i that
indicates that the transformation acts on rows i and i + 1.

We find it convenient to introduce a compact notation for core transformations.
For example, we will depict the factorization (3.2) as

��
��

��
��

��

⎡
⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×

× × ×
× × ×

× ×
×

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Each double arrow represents a core transformation Ci , with the arrows pointing to
rows i and i + 1, the rows upon which the core transformation acts.

A core transformation that is unit lower triangular will be called a Gauss trans-
form. The active part of a Gauss transform has the form

[
1 0
m 1

]
.

Multiplying a matrix A by a Gauss transform Gi on the left has the effect of adding
m times the ith row of A to the (i + 1)st row.

Notice that two core transformations Ci and Bj will commute if |i − j | > 1, so
we only need to consider interactions between core transformations with adjacent
or equal indices. We will employ three types of operations on core transformations,
called fusion, turnover, and passing through.

Fusion If we have two core transformations Ci and Bi that act on the same two
rows and columns, their product CiBi is also a core transformation. The act of mul-
tiplying two such core transformations together to form a single core transformation
is a fusion.

Turnover Suppose we have three adjacent core transformations AiBi+1Gi . The
turnover operation rewrites this product in the form Ĝi+1ÂiB̂i+1. Schematically

� ��
�

�
� =

⎡
⎣

× × ×
× × ×
× × ×

⎤
⎦ = �

�
�

�� � .

Here we are depicting rows (and columns) i through i + 2, which is where all the
action is. The three core transformations on the left are Ai , Bi+1, and Gi . They can
be multiplied together to form a matrix whose active part is 3 × 3, as depicted in the

Fast computation of eigenvalues 15

middle. This 3×3 matrix is then factored into a product of three core transformations
Ĝi+1, Âi , and B̂i+1, as shown on the right.

Such a factorization is always possible if the core transformations are unitary. This
property of unitary matrices is well known and has been exploited in many algorithms
[6, 13, 15]. In the nonunitary case it is almost always possible. For a discussion of
turnover operations in general see [1].

In this paper we will only use special types of turnover operations, those for which
the resulting Ĝi+1 is a Gauss transform. We call these turnover operations that pro-
duce a Gauss transform on the left. Such operations can be denoted schematically
by

� ��
�

�
� = �

�
�

�� � .

Since Gauss transforms only alter one row, we depict the Gauss transform here with
a single arrowhead.

To figure out when this is possible, suppose the active part of the product
AiBi+1Gi is

⎡
⎣

s11 s12 s13
s21 s22 s23
s31 s32 s33

⎤
⎦ .

If we wish to factor this into a product with a Gauss transform

⎡
⎣

1
1
m̂ 1

⎤
⎦

on the left, we must have

⎡
⎣

1
1

−m̂ 1

⎤
⎦

⎡
⎣

s11 s12 s13
s21 s22 s23
s31 s32 s33

⎤
⎦ =

⎡
⎣

s11 s12 s13
s21 s22 s23
0 ŝ32 ŝ33

⎤
⎦ .

If s31 = 0, this can be realized by taking m̂ = 0. Otherwise we must take m̂ = s31/s21.
This fails if s21 = 0, and in this case we cannot do the turnover. Now suppose s21 �=
0. Then we can complete the turnover if (and only if) we are able to compute a
factorization

⎡
⎣

s11 s12 s13
s21 s22 s23
0 ŝ32 ŝ33

⎤
⎦ =

⎡
⎣

â11 â12
â21 â22

1

⎤
⎦

⎡
⎣

1
b̂22 b̂23

b̂32 b̂33

⎤
⎦ .

One easily checks that such a factorization is possible if and only if the submatrix

[
s12 s13
s22 s23

]

16 J.L. Aurentz et al.

has rank one. To get an idea when this condition will hold, consider the product of
three core transformations AiBi+1Gi , whose 3 × 3 active part has the form

⎡
⎣

a11g11 + a12b22g21 a11g12 + a12b22g22 a12b23
a21g11 + a22b22g21 a21g12 + a22b22g22 a22b23

b32g21 b32g22 b33

⎤
⎦ .

The relevant 2 × 2 submatrix is
[
a11g12 + a12b22g22 a12b23
a21g12 + a22b22g22 a22b23

]
,

which has determinant det(Ai)g12b23. We conclude that it has rank one if and only if
either g12 = 0 or b23 = 0. From this we conclude that we will be able to do a turnover
producing a Gauss transform on the left if either Bi+1 or Gi is a Gauss transform.

Turnover, type 1 The type of turnover that is most used by our algorithms is one for
which Gi is a Gauss transform and the Ĝi+1 that is produced is a Gauss transform.
Thus we start with

⎡
⎣

a11 a12
a21 a22

1

⎤
⎦

⎡
⎣

1
b22 b23
b32 b33

⎤
⎦

⎡
⎣

1
g21 1

1

⎤
⎦

and end with
⎡
⎣

1
1

ĝ32 1

⎤
⎦

⎡
⎣

â11 â12
â21 â22

1

⎤
⎦

⎡
⎣

1
b̂22 b̂23

b̂32 b̂33

⎤
⎦ .

Equating the two products we have
⎡
⎣

a11 + a12b22g21 a12b22 a12b23
a21 + a22b22g21 a22b22 a22b23

b32g21 b32 b33

⎤
⎦

=
⎡
⎣

â11 â12b̂22 â12b̂23

â21 â22b̂22 â22b̂23

ĝ32â21 b̂32 + ĝ32â22b̂22 b̂33 + ĝ32â22b̂23

⎤
⎦ ,

showing that we can compute the turnover by the operations

â11 = a11 + a12(b22g21), â12 = a12,

â21 = a21 + a22(b22g21), â22 = a22,

ĝ32 = b32g21/â21,

b̂22 = b22, b̂32 = b32 − (ĝ32a22)b22,

b̂23 = b23, b̂33 = b33 − (ĝ32a22)b23.

Fast computation of eigenvalues 17

These computations require 12 flops. This type of turnover is used in both the single-
and double-shift algorithms.

Turnover, type 2 In the double-shift algorithm, two other types of turnover will be
used. The type-2 turnover starts with Ai and Bi+1 Gauss transforms and ends with
Ĝi+1 and B̂i+1 Gauss transforms. Thus we start with

⎡
⎣

1
a21 1

1

⎤
⎦

⎡
⎣

1
1

b32 1

⎤
⎦

⎡
⎣

g11 g12
g21 g22

1

⎤
⎦

and end with ⎡
⎣

1
1

ĝ32 1

⎤
⎦

⎡
⎣

â11 â12
â21 â22

1

⎤
⎦

⎡
⎣

1
1

b̂32 1

⎤
⎦ .

Equating the two products we have

⎡
⎣

g11 g12
g21 + a21g11 g22 + a21g12

b32g21 b32g22 1

⎤
⎦ =

⎡
⎣

â11 â12
â21 â22

ĝ32â21 b̂32 + ĝ32â22 1

⎤
⎦ ,

showing that we can compute the turnover by the operations
[
â11 â12
â21 â22

]
=

[
g11 g12

g21 + a21g11 g22 + a21g12

]
,

ĝ32 = b32g21/â21, and b̂32 = b32g22 − ĝ32â22.

This costs 9 flops.

Turnover, type 3 The one other kind of turnover that we will need starts with three
Gauss transforms and ends with three Gauss transforms. We begin with

⎡
⎣

1
a21 1

1

⎤
⎦

⎡
⎣

1
1

b32 1

⎤
⎦

⎡
⎣

1
g21 1

1

⎤
⎦ ,

and wish to end with
⎡
⎣

1
1

ĝ32 1

⎤
⎦

⎡
⎣

1
â21 1

1

⎤
⎦

⎡
⎣

1
1

b̂32 1

⎤
⎦ .

For this we require

⎡
⎣

1
a21 + g21 1
b32g21 b32 1

⎤
⎦ =

⎡
⎣

1
â21 1

ĝ32â21 ĝ32 + b̂32 1

⎤
⎦ ,

18 J.L. Aurentz et al.

which is achieved by taking

â21 = a21 + g21, ĝ32 = b32g21/â21, and b̂32 = b32 − ĝ32.

This costs 4 flops.

Passing through The one other ingredient that we will need is the passing through
operation, in which a core transformation is “passed through” an upper-triangular
matrix. We start with a product RGi and end with ĜiR̂, where R and R̂ are upper
triangular and Gi and Ĝi are Gauss transforms. The multiplication of R by Gi on the
right amounts to subtracting m times the (i+1)st column of R to the ith. This disturbs
the triangular form, creating a nonzero element mri+1,i+1 in position (i + 1, i). This
element can be eliminated by a Gauss transform Ĝ−1

i on the left, provided that rii �=
0. The appropriate multiplier (defining Ĝi) is m̂ = mri+1,i+1/rii . The transformation
RGi → Ĝ−1

i RGi = T̂ restores the triangular form by subtracting m̂ times row i from
row i + 1.

In our algorithm the matrix R will not just be upper triangular; it will also be upper
banded as in (3.3). It is clear that the passing through operation does not increase the
bandwidth. This key result depends on the fact that the core transformation is a Gauss
transform. If the bandwidth of R is b, the passing through operation costs about 4b

flops.

5 Bulge chasing on the condensed form

The matrix A in (3.1) is upper Hessenberg, so its eigenvalues can be found by a
bulge-chasing algorithm such as Francis’s implicitly-shifted QR algorithm or one of
its nonunitary analogs. We will achieve economy by operating on the factored form
(3.3) of A.

Single-shift case Given a single shift ρ, we set the iteration in motion by a similarity
transformation

A → L−1
1 AL1 = A1,

where L1 is a Gauss transform whose first column is proportional to (A − ρI)e1,
which is

[
a11 − ρ a21 0 · · · 0

]T
.

See [16, § 4.5]. This succeeds as long as we choose ρ so that ρ �= a11. The entries a11
and a21 are readily obtained by multiplying the first column of the core transformation
C1 by the (1,1) entry of R. The situation immediately after the initial similarity
transformation can be depicted by

� �� �
��

��
��

��

⎡
⎢⎢⎢⎣

× × ×× × ×× × ×× × ×× ××

⎤
⎥⎥⎥⎦

��
.

Fast computation of eigenvalues 19

The transformation L−1
1 on the left can be fused with its neighbor C1 to form a single

core transformation. The transformation L1 on the right can be passed through the
upper-triangular matrix to bring it into contact with the other core transformations,
resulting in

� ��
�

�
�

��
��

��

⎡
⎢⎢⎢⎣

× × ×× × ×× × ×× × ×× ××

⎤
⎥⎥⎥⎦ .

The algorithm will proceed by a sequence of similarity transformations by Gauss
transforms. After each of these, the Gauss transform that ends up on the right will
immediately be passed through the triangular matrix to bring it into contact with the
other core transformations. Bearing this in mind, our depictions will leave out the
triangular matrix from this point on for simplicity. Thus we will write

� ��
�

�
�

��
��

��
.

The next step is to do a type-1 turnover of the three transformations on the left to
obtain

�
�

�
�� �

��
��

��
,

with a Gauss transform, which we will call L2, on the left. Next a similarity transfor-
mation

A1 → L−1
2 A1L2 = A2

removes L2 from the left and makes it appear on the right. We pass L2 through the
upper-triangular matrix at a cost of 4b flops to obtain

��
� ��

�
�

�
��

��
.

Now another turnover causes a new Gauss transform L3 to appear on the left, and
this is then moved to the right by another similarity transformation

A2 → L−1
3 A2L3 = A3.

20 J.L. Aurentz et al.

The pattern of the iteration is now clear:

��
�

�
�

�� �
��

��

��
��

� ��
�

�
�

��

��
��

�
�

�
�� �

��

��
��

��
� ��

�
�

�

��
��

��
�

�
�

�� �

��
��

��
��

� �� �
.

Once the Gauss transform has been chased to the bottom right corner, it can be fused
with the adjacent core transformation, completing the iteration. The result is an upper
Hessenberg matrix

Â = L−1
n−1 · · ·L−1

1 AL1 · · ·Ln−1 = L−1AL

in the factored form (3.3). The first column of L is the same as the first column
of L1, which is proportional to (A − ρI)e1. By Theorem 4.5.5 of [16], this bulge
chase effects an iteration of the generic GR algorithm. Since each of the transforming
matrices Li is unit lower triangular, their product L is also unit lower triangular Thus
this is specifically an LR iteration. Its merit is that it perserves the structure (3.3).

To get a flop count for the iteration, note first that almost all of the work is in the
turnover and pass-through operations. There are n− 2 turnovers at 12 flops each, and
there are n − 1 passing-through operations at approximately 4b flops each. Thus the
total flop count for one iteration is about (12 + 4b)n.

Double-shift case To start a double step on A in the form (3.3), given two shifts ρ1
and ρ2, we begin by computing

x = (A − ρ1I)(A − ρ2I)e1 = A2e1 − (ρ1 + ρ2)Ae1 + ρ1ρ2e1,

which has nonzero entries only in the first three positions. The nonzero part is
⎡
⎣

a2
11 + a12a21 − (ρ1 + ρ2)a11 + ρ1ρ2
a21a11 + a22a21 − (ρ1 + ρ2)a21

a32a21

⎤
⎦ .

This costs O(1) flops. All of the information needed for this computation is in the
first two core transformations C1 and C2, and the upper-left-hand 2 × 2 submatrix of
R in (3.3). If ρ1 and ρ2 are chosen so that the first two entries of x are nonzero, we
can continue. We build Gauss transforms L2 and L1 such that L−1

1 L−1
2 x = αe1, i.e.

L2L1e1 = α−1x. This means that the first column of L2L1 is proportional to x. Then
we do the similarity transform

A → L−1
1 L−1

2 AL2L1,

which can be pictured as

� � ��
�

�
� �

�
� �

�
�

�
��

��
.

Fast computation of eigenvalues 21

Here we continue to suppress the upper triangular matrix. Do a type-2 turnover of the
three leftmost transformations to obtain

� �
�

�
� � �

�
� � �

�
�

�
��

��
.

Then do a fusion:

� �
�

�
� �

�
� �

�
�

�
��

��
.

The three core transformations that are disturbing the upper Hessenberg form are all
Gauss transforms. We need to chase them to the bottom of the matrix to get rid of
them.

The transformations on the right can be moved to the left by two type-1 turnover
operations:

�
� �

�
��

�
� �

�� �
��

��
.

Then there are (at least) two options. (1) The more obvious approach is to do a simi-
larity transformation that removes all three Gauss transforms from the left and makes
them appear on the right. Then they can all be passed through the triangular part and
then through the spine of core transformations by three turnover operations. (2) A less
obvious approach is to do a preliminary type-3 turnover of the three Gauss transforms.
This costs only four flops and results in three new Gauss transforms. Then we do a
similarity transformation that removes only the two leftmost Gauss transforms and
makes them appear on the right. Then we pass these through the upper-triangular part
and use two turnovers of type 1 to pass them through the spine of core transforma-
tions. We choose the second method because it is cheaper at 28 + 8b flops, versus
36 + 12b flops for the first method. Whichever method we choose, we end up with
the configuration

��
�

� �
�

��
�

� �
�� �

��
.

The three Gauss transforms have been moved down by one position.
Repeating this procedure some n − 4 times, we bring the Gauss transforms to the

bottom. We then eliminate each Gauss transform by fusion at the first opportunity.

22 J.L. Aurentz et al.

The last few steps have the form

��
��

�
� �

�
��

�
� �

�� �

��
��

�
�

�
�

�
�

�
�

�� � �

��
��

��
� �

�
�

� �
�

� � �

��
��

��
� �

�
�

�
�

� �

��
��

��
�

� �
�

�� � �

��
��

��
�

�
�

�� �

��
��

��
��

� �� �

��
��

��
��

��
.

The steps are, in order, type-3 turnover, similarity, fusion, type-1 turnover, fusion,
similarity, fusion. The matrix has been returned to the condensed form (3.3), and the
iteration is complete.

The complete bulge-chasing step effects a similarity transformation

Â = L−1AL,

where L is a product of a large number of Gauss core transformations. More precisely,
L = L2L1L̃, where L2 and L1 are the Gauss transforms that initiated the step, and L̃

is the product of all of the similarity transformations in the bulge chase. Since L̃e1 =
e1, we see that Le1 = L2L1e1 = α−1x. That is, the first column of L is proportional
to the first column of (A−ρ1I)(A−ρ2I). By Theorem 4.5.5 of [16], this bulge chase
effects an implicit double step of the LR algorithm.

If A is real, and the shifts ρ1 and ρ2 are either real or a complex conjugate pair,
then the vector x = (A−ρ1I)(A−ρ2I)e1 is real, and the entire iteration can be done
in real arithmetic.

The total flop count for an iteration is approximately (28 + 8b)n flops. This is
more than twice the (12 + 4b)n flop count for a single step. However, in the real case
the double step is more economical because the arithmetic is real, not complex.

Shift strategies and deflation criteria Although our matrices are stored in a com-
pressed form, it is nevertheless easy to assemble the parts needed in order to apply
standard shift strategies and deflation criteria.

For both single- and double-shift codes, we compute the eigenvalues of the lower-
right-hand 2 × 2 submatrix. In the double-shift code we take those two numbers as
shifts for the double step. In the single-shift code, we take the one that is closer to
an,n−1 as the shift. In both codes we interject occasional exceptional shifts if too
many iterations have passed without a deflation.

The deflation criterion is standard. We set aj+1,j to zero if

|aj+1,j | < u
(|ajj | + |aj+1,j+1|

)
,

where u is the unit roundoff.

Fast computation of eigenvalues 23

6 Tests of quality of the computed roots

At each turnover there is the possibility of a breakdown, so the iterations can some-
times fail. Our experience is that this almost never happens, but a remedy is to start
the iteration over with a different set of shifts. A more serious threat is that a near
breakdown occurs, leading to inaccurate results. It is difficult to predict such events.
Therefore there is a need for a posteriori tests to measure the quality of the computed
results. Fortunately some inexpensive tests are available.

For each computed root λ, the corresponding right eigenvector is

v =

⎡
⎢⎢⎢⎢⎢⎣

pn−1(λ)

pn−2(λ)
...

p1(λ)

p0(λ)

⎤
⎥⎥⎥⎥⎥⎦

.

To see this, compare with (2.5), and take into account that the matrix has been flipped
over and transposed. These can be computed in O(nb) flops using the short recur-
rence. Then we can compute the residual ‖(λI − A)v‖. This is an inexpensive com-
putation because of the structure, in fact

(λI − A)v =

⎡
⎢⎢⎢⎣

αnp(λ)/cn

0
...

0

⎤
⎥⎥⎥⎦ .

We can compute p(λ) in 2n flops using (2.2). In an actual residual computation, the
zero components would be nonzero due to the roundoff errors made in computing the
numbers pk(λ) using the short recurrence. We ignore these small numbers, which are
of the order of the unit roundoff with respect to the numbers p0(λ), . . . , pn−1(λ). To
get a dimensionless number, we compute

∥∥(λI − A)v
∥∥∞

/(‖A‖∞‖v‖∞
) = ∣∣αnp(λ)/cn

∣∣/(‖A‖∞‖v‖∞
)
.

This residual is a measure of backward stability of the computation of λ. We always
compute this quantity for each λ.

Differentiating the short recurrence, we can get the quantities p′
k(λ) as well. For

example, if the recurrence is

αkpk(z) = zpk−1(z) − βkpk−1(z) − γkpk−2(z),

we have

αkp
′
k(z) = pk−1(z) + (z − βk)p

′
k−1(z) − γkp

′
k−2(z),

which allows us to compute p′
1(λ), . . . , p′

n−1(λ) in O(nb) flops. We can then compute
p′(λ) in 2n flops using the derivative of (2.2). The quantity 1/|p′(λ)| is a measure of

24 J.L. Aurentz et al.

Fig. 1 Timing comparison,
companion case, single shift

the sensitivity of the computed root λ, and |p(λ)/p′(λ)| is an estimate of the error.
We always compute this quantity.

Once we have p(λ)/p′(λ), we can do a Newton correction λ ← λ − p(λ)/p′(λ)

for free. This often results in a significant improvement in the root.

7 Numerical experiments

All of our numerical experiments were done on a computer with an AMD Athlon
dual core processor with 512 KB cache per core, running at 2.3 GHz. All of the
codes compared here were written in Fortran. Our codes are available online.1

Companion matrices, single-shift code Our first experiments are on companion ma-
trices. The coefficients of the polynomials are random numbers distributed normally.
We compared our code, labeled AVW in Fig. 1, against the LAPACK code ZHSEQR
and a structured companion code, labeled BBEGG in Fig. 1. The LAPACK code
uses Francis’s implicitly-shifted QR algorithm, requiring O(n2) memory and O(n3)

flops. The BBEGG code is from is from Bini et al. [4]. It is an implicitly-shifted
(single shift, complex) QR algorithm that uses a quasiseparable generator represen-
tation of the matrix. It requires O(n) memory and O(n2) flops. On the log-log plot
in Fig. 1, the least-squares fit lines for BBEGG and AVW are approximately parallel,
indicating that they have the same computational complexity. In fact the slopes are
1.97 for BBEGG and 1.84 for AVW, indicating that both have about O(n2) complex-
ity in practice. We note that BBEGG is faster than LAPACK for polynomials of large
degree, while AVW is faster than both codes at all degrees. The AVW times include
the (small) time to do the a posteriori tests described in the previous section. The
highest degree polynomial considered in this test was 1210. At that degree LAPACK

1http://www.math.wsu.edu/students/jaurentz/publications/code.html.

http://www.math.wsu.edu/students/jaurentz/publications/code.html

Fast computation of eigenvalues 25

Table 1 Maximum of residuals ‖(λI − A)v‖/‖A‖‖v‖, companion case, single shift

Degree 17 72 295 1210

LAPACK 1.1 × 10−14 3.1 × 10−14 6.8 × 10−14 2.3 × 10−13

BBEGG 1.5 × 10−14 1.1 × 10−13 4.1 × 10−12 2.4 × 10−11

AVW 7.4 × 10−12 5.0 × 10−11 3.7 × 10−10 1.4 × 10−09

Table 2 Maximum of error estimates |p(λ)/p′(λ)|, companion case, single shift

Degree 17 72 295 1210

LAPACK 4.3 × 10−15 8.5 × 10−15 1.4 × 10−14 2.4 × 10−14

BBEGG 2.4 × 10−14 1.8 × 10−13 1.3 × 10−12 1.2 × 10−11

AVW 4.7 × 10−12 7.5 × 10−11 5.4 × 10−11 1.7 × 10−10

Table 3 Maximum of residuals ‖(λI − A)v‖/‖A‖‖v‖ after Newton correction, companion case, single
shift

Degree 17 72 295 1210

LAPACK 8.1 × 10−16 1.8 × 10−15 2.6 × 10−15 5.2 × 10−15

BBEGG 7.5 × 10−16 1.5 × 10−15 3.5 × 10−15 5.5 × 10−15

AVW 8.6 × 10−16 1.4 × 10−15 2.6 × 10−15 5.3 × 10−15

Table 4 Maximum of error estimates |p(λ)/p′(λ)| after Newton correction, companion case, single shift

Degree 17 72 295 1210

LAPACK 3.2 × 10−16 3.4 × 10−16 3.2 × 10−16 3.1 × 10−16

BBEGG 5.2 × 10−16 3.1 × 10−16 2.9 × 10−16 3.8 × 10−16

AVW 3.3 × 10−16 3.1 × 10−16 3.1 × 10−16 3.1 × 10−16

took 28.2 seconds to find all of the roots, BBEGG took 6.5 seconds, and AVW took
0.5 seconds, including the time to do the tests.

Although this test does not make a direct comparison with our earlier method [1],
it is not hard to draw a conclusion. Comparing with the similar experiment in [1], we
find that our new code is faster by a factor of about three.

Table 1 shows the residual norm ‖(λI − A)v‖/‖A‖‖v‖ for a variety of de-
grees, from small to large. We note that the LAPACK residuals are best, followed
by BBEGG and AVW. Table 2 shows a similar picture for the error estimates
|p(λ)/p′(λ)|.

The error estimate computation allows us to do a step of Newton’s method to
correct each of the roots. The results after the correction are shown in Tables 3 and 4
for the residual and the error estimate. We see that for all three methods the results
are equally good. All roots are accurate to machine precision.

26 J.L. Aurentz et al.

Fig. 2 Timing comparison,
companion case, double shift

Table 5 Maximum of residuals ‖(λI − A)v‖/‖A‖‖v‖, companion case, double shift

Degree 17 72 295 1210

LAPACK 1.3 × 10−14 2.9 × 10−14 5.8 × 10−14 2.5 × 10−13

AVW 1.7 × 10−07 9.1 × 10−07 2.8 × 10−06 3.3 × 10−02

Table 6 Maximum of error estimates |p(λ)/p′(λ)|, companion case, double shift

Degree 17 72 295 1210

LAPACK 1.2 × 10−14 8.2 × 10−15 1.9 × 10−14 5.6 × 10−13

AVW 1.4 × 10−07 1.5 × 10−06 3.8 × 10−07 9.1 × 10−03

Companion matrices, double-shift code We did similar experiments with real poly-
nomials and double-shift code. Here we compared against three other codes, which
are labeled LAPACK, BBEGG, and CGXZ in Fig. 2. The LAPACK code is the real
double-shift code DSHEQR. BBEGG is the real, double-shift code from Bini et. al.
[4]. CGXZ is the real, double-shift code from Chandrasekaran et. al. [6]. The timing
results, shown in Fig. 2, are similar to those of the single-shift case. Once again AVW
was much faster than the other methods.

Unfortunately the accuracy results were not so favorable. Tables 5 and 6 show that
both the residuals and the error estimates are unacceptably high, especially at degree
1210. The Newton correction (not shown here) improves the results, but only in the
low-degree cases.

Colleague matrices, single shift We also did experiments using the Chebyshev poly-
nomial basis. The polynomials are random linear combinations of Chebyshev poly-
nomials with the complex coefficients distributed randomly. Chebyshev polynomials
are generated by a three-term recurrence, so the matrices are comrade matrices. For

Fast computation of eigenvalues 27

Fig. 3 Timing comparison,
colleague case, single shift

Table 7 Maximum of residuals ‖(λI − A)v‖/‖A‖‖v‖, colleague case, single shift

Degree 17 72 295 1210

LAPACK 1.7 × 10−13 1.1 × 10−12 6.1 × 10−12 2.8 × 10−11

AVW 7.7 × 10−12 2.8 × 10−10 1.3 × 10−08 3.3 × 10−07

Table 8 Maximum of error estimates |p(λ)/p′(λ)|, colleague case, single shift

Degree 17 72 295 1210

LAPACK 1.9 × 10−14 2.7 × 10−14 3.1 × 10−14 5.1 × 10−14

AVW 3.8 × 10−13 7.9 × 10−12 3.9 × 10−11 1.2 × 10−10

the special cases of Chebyshev polynomials, Good [11] named these colleague ma-
trices. As Fig. 3 shows, our code AVW is faster than LAPACK at all degrees and
much faster at high degrees. At degree 1210, LAPACK took 31.4 seconds to compute
all of the roots, while AVW took 1.1 seconds.

Tables 7 and 8 show the maxima of residuals ‖(λI − A)v‖/‖A‖‖v‖ and error
estimates |p(λ)/p′(λ)|, respectively. We observe that LAPACK is more accurate than
AVW and the AVW figures deteriorate gradually with increasing degree. After the
Newton correction, the AVW results are as good as those of LAPACK, as Tables 9
and 10 show.

Colleague matrices, double shift We tested double-shift codes on real colleague
matrices. In these tests we also compared against the code of Eidelman, Gemignani,
and Gohberg [7], which we call EGG for short. This fast method is applicable to upper
Hessenberg symmetric-plus-rank-one matrices, so it can be applied to the colleague
case. It has been shown to be backward stable [7].

28 J.L. Aurentz et al.

Table 9 Maximum of residuals ‖(λI − A)v‖/‖A‖‖v‖ after Newton correction, colleague case, single
shift

Degree 17 72 295 1210

LAPACK 7.7 × 10−15 2.7 × 10−14 1.7 × 10−13 9.0 × 10−13

AVW 7.4 × 10−15 2.7 × 10−14 1.4 × 10−13 9.9 × 10−13

Table 10 Maximum of error estimates |p(λ)/p′(λ)| after Newton correction, colleague case, single shift

Degree 17 72 295 1210

LAPACK 9.8 × 10−16 6.6 × 10−16 4.9 × 10−16 2.1 × 10−16

AVW 1.7 × 10−15 3.2 × 10−16 2.1 × 10−16 3.4 × 10−16

Fig. 4 Timing comparison,
colleague case, double shift

The timing comparison is shown in Fig. 4. For high degrees both EGG and AVW
are much faster than the LAPACK code DHSEQR. At degree 1210 LAPACK took 9
seconds, EGG took 0.64 seconds, and AVW took 0.49 seconds. AVW is only about
thirty percent faster then EGG.

Tables 11 and 12 provide further numerical support for the backward stability of
EGG, which is seen to be about as accurate as LAPACK. Our code AVW is much
less accurate. The situation is not as bad as for the companion matrix (double-shift)
experiment, but still unsatisfactory. Tables 13 and 14 show that a Newton correction
improves the accuracy of the AVW results, but does not bring it up to the level of the
other two methods. A second Newton correction (not shown here) brings the AVW
results up to machine precision. The clear winner of this experiment is EGG, which
is about as accurate as LAPACK and only marginally slower than AVW.

Fast computation of eigenvalues 29

Table 11 Maximum of residuals ‖(λI − A)v‖/‖A‖‖v‖, colleague case, double shift

Degree 17 72 295 1210

LAPACK 1.7 × 10−13 1.7 × 10−12 6.3 × 10−12 5.4 × 10−11

EGG 1.9 × 10−13 2.1 × 10−12 7.4 × 10−12 1.1 × 10−10

AVW 4.3 × 10−09 1.2 × 10−06 4.6 × 10−07 2.4 × 10−03

Table 12 Maximum of error estimates |p(λ)/p′(λ)|, colleague case, double shift

Degree 17 72 295 1210

LAPACK 7.7 × 10−14 1.4 × 10−14 2.6 × 10−14 2.8 × 10−13

EGG 2.9 × 10−14 2.7 × 10−14 1.0 × 10−13 9.2 × 10−14

AVW 1.4 × 10−10 9.8 × 10−09 1.9 × 10−09 1.7 × 10−06

Table 13 Maximum of residuals ‖(λI − A)v‖/‖A‖‖v‖ after Newton correction, colleague case, double
shift

Degree 17 72 295 1210

LAPACK 8.2 × 10−15 3.5 × 10−14 1.0 × 10−13 1.6 × 10−12

EGG 6.5 × 10−15 3.3 × 10−14 1.3 × 10−13 2.1 × 10−12

AVW 5.8 × 10−15 5.8 × 10−13 5.0 × 10−12 4.3 × 10−05

Table 14 Maximum of error estimates |p(λ)/p′(λ)| after Newton correction, colleague case, double shift

Degree 17 72 295 1210

LAPACK 8.1 × 10−16 3.4 × 10−16 2.3 × 10−16 7.3 × 10−16

EGG 1.6 × 10−15 2.3 × 10−16 4.6 × 10−16 2.0 × 10−16

AVW 8.5 × 10−16 4.7 × 10−15 1.1 × 10−14 2.0 × 10−08

8 Conclusions

We considered the problem of computing the eigenvalues of upper Hessenberg matri-
ces of banded-plus-spike form, a class that includes companion and comrade matrices
as special cases. We developed a factored form in which the matrix is represented as a
product of core transformations and a banded upper-triangular matrix. A non-unitary
variant of Francis’s implicitly-shifted QR algorithm that preserves the factored form
is used to compute the eigenvalues in O(n2) time and O(n) space. Inexpensive a
posteriori tests for stability and accuracy are performed as part of the algorithm. The
output of these tests allows a Newton correction to be taken for free. Single-step and
double-step versions of the code have been developed. Numerical tests show promise
for the single-step code. It is reasonably accurate on random matrices of order up to
1000 or more, especially after the Newton correction. In the case of companion ma-
trices it is three times faster than our earlier code [1] and more than ten times faster

30 J.L. Aurentz et al.

than any other code we are aware of. The double-shift code was disappointing. It is
very fast but too unstable.

References

1. Aurentz, J.L., Vandebril, R., Watkins, D.S.: Fast computation of the zeros of a polynomial via factor-
ization of the companion matrix. SIAM J. Sci. Comput. 35, A255–A269 (2013)

2. Barnett, S.: Polynomials and Linear Control Systems. Dekker, New York (1983)
3. Bini, D.A., Eidelman, Y., Gemignani, L., Gohberg, I.: Fast QR eigenvalue algorithms for Hessenberg

matrices which are rank-one perturbations of unitary matrices. SIAM J. Matrix Anal. Appl. 29, 566–
585 (2007)

4. Bini, D.A., Boito, P., Eidelman, Y., Gemignani, L., Gohberg, I.: A fast implicit QR algorithm for
companion matrices. Linear Algebra Appl. 432, 2006–2031 (2010)

5. Boito, P., Eidelman, Y., Gemignani, L., Gohberg, I.: Implicit QR with compression. Indag. Math. 23,
733–761 (2012)

6. Chandrasekaran, S., Gu, M., Xia, J., Zhu, J.: A fast QR algorithm for companion matrices. Oper.
Theory, Adv. Appl. 179, 111–143 (2007)

7. Eidelman, Y., Gemignani, L., Gohberg, I.: Efficient eigenvalue computation for quasiseparable Her-
mitian matrices under low rank perturbation. Numer. Algorithms 47, 253–273 (2008)

8. Fernando, K.V., Parlett, B.N.: Accurate singular values and differential qd algorithms. Numer. Math.
67, 191–229 (1994)

9. Fiedler, M.: A note on companion matrices. Linear Algebra Appl. 372, 325–331 (2003)
10. Francis, J.G.F.: The QR transformation, part II. Comput. J. 4, 332–345 (1962)
11. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math. 12,

61–68 (1961)
12. Parlett, B.N.: The new qd algorithms. Acta Numer. 4, 459–491 (1995)
13. Van Barel, M., Vandebril, R., Van Dooren, P., Frederix, K.: Implicit double shift QR-algorithm for

companion matrices. Numer. Math. 116, 177–212 (2010)
14. Vandebril, R., Del Corso, G.M.: An implicit multishift QR-algorithm for Hermitian plus low rank

matrices. SIAM J. Sci. Comput. 32, 2190–2212 (2010)
15. Vandebril, R., Van Barel, M., Mastronardi, N.: Matrix Computations and Semiseparable Matrices,

Vol. II: Eigenvalue and Singular Value Methods. Johns Hopkins University Press, Baltimore (2008)
16. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadel-

phia (2007)
17. Watkins, D.S.: Fundamentals of Matrix Computations, 3rd edn. Wiley, New York (2010)
18. Watkins, D.S.: Francis’s algorithm. Am. Math. Mon. 118(5), 387–403 (2011)
19. Zhlobich, P.: Differential qd algorithm with shifts for rank-structured matrices. SIAM J. Matrix Anal.

Appl. 33, 1153–1171 (2012)

	Fast computation of eigenvalues of companion, comrade, and related matrices
	Abstract
	Introduction
	Confederate matrices
	The matrix decomposition
	Operations on core transformations
	Fusion
	Turnover
	Turnover, type 1
	Turnover, type 2
	Turnover, type 3
	Passing through

	Bulge chasing on the condensed form
	Single-shift case
	Double-shift case
	Shift strategies and deﬂation criteria

	Tests of quality of the computed roots
	Numerical experiments
	Companion matrices, single-shift code
	Companion matrices, double-shift code
	Colleague matrices, single shift
	Colleague matrices, double shift

	Conclusions
	References

