WL-Calc 1.1
Wesley Loewer's Collection of Calculus Programs

for the HP-49g/49g+
July 2006

The programs included in WL-Calc are small but useful programs that I wrote for use in
teaching Calculus. They have been very helpful to me and perhaps others may benefit from
them as well. There are numerous other programs available which have similar
functionality, however, the programs included WL-Calc have the following important
advantages

* They follow the same syntax as similar functions built-in to the 49g/49g+.

* They take advantage of certain commands that were not available on the 48 series which
makes them run a bit faster.

* They can be used in either RPN or Algebraic Mode

* All of the programs are written in pure UserRPL. They have been tested on a real 49g+
and a 49g emulator (Emu48). They should probably work fine on a real 49g and 50g.

The programs can be divided into several categories.
Numerical Root Solvers: NEWTON, BISECT
Numerical Integrators: RIEMANN, TRAP, SIMPSON, SIMPS38
Graphical Integrators: Grint, MonteCarlo
Arc Length Calculators: ArcLen, EstArc

Error Functions: ERF, ERFC

Installation
To install, just copy the WLCalc.hp directory to your calculator or emulator.

Some of the 49g/49g+’s built-in commands come in two versions (DERIV and DERVX for
instance), one which requires you to specify the independent variable, and another in which
the independent variable is assumed to be the system default independent variable. Most of
the commands in WL-Calc also have two such versions: NEWTON and NEWTX, TRAP and
TRAPX, etc.

These ‘X’ versions of the commands are simply tiny wrapper programs which call the full
program with default arguments. If you find that having two or more versions of each
command makes for a cluttered directory, you can safely delete any of the commands that
end in ‘X’. The full command will run fine without them. However, you cannot delete the
full versions and use just the ‘X’ versions as the latter depend on the former.

Description of Commands

Numerical Root Solvers: NEWTON, NEWTX, BISECT, BSCTX

These commands are useful for demonstrating Newton’s Method and the Method of
Bisectors for solving equations. The built-in ROOT command is certainly more powerful for
solving equations, but these are useful for teaching and learning the principles of calculus.

NEWTON
The NEWTON command has the same syntax as the built-in ROOT command described by
the following stack diagram:

Level 3 Level 2 Level 1 - Level 1

expression variable guess - root

For example, to find the root of SIN(X) near 3.0, the following stack diagram would be used.

Level 3 Level 2 Level 1 - Level 1

‘SIN(X)’ ‘X’ 3.0 - 3.14159265359

For those unfamiliar with stack diagrams, the stack diagram above means that you enter the
values shown below on the left, then execute the NEWTON command, which results in the
values shown below on the right.

KAD #%¥Z DEC K= '&' FAD #YZ2 DEC K= 'n'

LHOME HLCHLCZ LUsE LHOHE HLCHLCZ LUsE

7 %

St » &

41 dq

=k STHA) =

2 ' 2

1: =F 1: 2. 14139265359
NEWTHINEWTOL [| | | NEWTHINEWTOL | | | |
For those who prefer to use Algebraic Mode EAD WYZ HEW E= 'H' ALY

instead of RPN Mode, the stack diagrams shown SHOHESH DA L5k

also describe the order of the arguments for
algebraic entry. For example, to use the NEWTON
command shown above, you would enter:

NEWTON(SIN(X),X,3.)

s HEWTOMIS THGA) =2]

All of the programs in WL-Calc can be used in 2. 1 ""I: 1 592559
either RPN or Algebraic Mode. HEH BLDEC L OCT L EID L EaE LBk

NEWTX
The NEWTX command is similar to NEWTON, but assumes the variable is the default
independent variable, usually ‘X’.

Level 2 Level 1 - Level 1
expression guess - root
Example:
Level 2 Level 1 -2 Level 1
‘SIN(X)’ 3.0 - 3.14159265359
BISECT

The BISECT command is similar to the NEWTON command, except it takes two initial
guesses: the left bound and the right bound. The function evaluated at the left and right
guesses must have different signs (one positive and the other negative). The program simply
evaluates the function at these guesses and their midpoint, then repeatedly divides the
interval in half until it gets sufficiently close to the root. This is not a very efficient method,
but is important in developing the concept of a limit.

Level 4 Level 3 Level 2 Level 1 - Level 1
expression variable left bound right bound - root
Example:
Level 4 Level 3 Level 2 Level 1 - Level 1
‘SIN(X)’ . 3.0 4.0 - 3.14159265358
BSCTX

The BSCTX command is similar to the BISECT command, but assumes the variable is the
default independent variable, usually ‘X’.

Level 3 Level 2 Level 1 -» Level 1
expression left bound right bound - root
Example:
Level 3 Level 2 Level 1 -» Level 1

‘SIN(X)’ 3.0 4.0 - 3.14159265358

Numerical Integrators: RIEMANN, TRAP, SIMPSON, SIMPS38

For comparison, the built-in definite integration, [, has the following stack diagram:

Level 4 Level 3 Level 2 Level 1 - Level 1
lower limit upper limit integrand variable - integral
Example:
Level 4 Level 3 Level 2 Level 1 -» Level 1
0 T ‘SIN(X)’ ‘X’ = 2.
RIEMANN

The RIEMANN command for calculating Riemann Sums adds two more arguments: one
indicating the number of steps to use, and another indicating whether the function should be
evaluated on the left edge, the right edge, or the midpoint.

Level 6 Level 5 Level 4 Level 3 Level2 Levell - Level 1

lower upper integrand variable steps Imr - integral
limit limit

where Imr indicates whether the sum is evaluated on the left, middle, or right of the section
(Left = 0., Middle = 1., Right = 2.).

Example: Integrate SIN(X) from 0 to © using 24 increments evaluated on the right.

Level 6 Level 5 Level4 Level3 Level2 Levell -» Level 1
0 s ‘SIN(X)’ ‘X’ 24 2 -» 1.99714339581

RIEMLX

RIEMMX

RIEMRX

These three commands are shortcuts for Riemann Sums evaluated on the left edge, midpoint,
and right edge respectively, assuming the variable is the default independent variable, usually
X,

Level 4 Level 3 Level 2 Level 1 -» Level 1

lower limit upper limit integrand steps - integral

Example:

Level 4 Level 3 Level 2 Level 1 - Level 1
0 s ‘SIN(X)’ 24 -» 1.99714339581
TRAP
SIMPSON
SIMP38

These three commands find numerical definite integrals by the Trapezoid Rule, Simpson’s
Rule, and Simpson’s 3/8 Rule. All three have the same syntax. For Simpson’s Rule, the
number of steps must be even; and for Simpson’s 3/8 Rule, ‘steps’ must be a multiple of 3.
If these criteria are not met, ‘steps’ is rounded up to the next multiple of 2 or 3.

Level 5 Level 4 Level 3 Level 2 Level 1 -» Level 1

lower limit upper limit integrand variable steps - integral

Example: Integrate SIN(X) from 0 to m using 24 increments.

Level 5 Level4 Level3 Level2 Levell -» Level 1
0 b8 ‘SIN(X)’ ‘X’ 24 - 2.00000326887
TRAPX
SIMPX
SMP38X

These three commands are shortcuts to TRAP, SIMPSON, SIMP38, but assume the variable
is the default independent variable, usually ‘X’.

Level 4 Level 3 Level2 Level 1 - Level 1

lower limit upper limit integrand steps - integral
Example:

Level4 Level3 Level2 Levell -» Level 1

0 T ‘SIN(X)’ 24 - 2.00000326887

Graphical Integrators: Grint, MonteCarlo

Grint

GrInt is a Graphical Integrator which graphs the indefinite integral and approximates the
definite integral of a function. A more technical description will follow, but an example will
help explain how this command works.

Example:

Say you want to graph the integral of ‘X-SIN(X)’ from 0 to 7 with an integration constant of
1.5. First go to the Y= window and make X-SIN(X) the only function listed. Then go to the
WIN editor and indicate the integration limits by setting the H-View values to be 0 to
3.14159 and the V-View to be -2 to 5.

2 FLOT = FURCTION 33 s EESEE FLOT MINDOM - FUNCTIOn S
H-vied [2.14155
W-RigH:-3. 5.
Indep Lav: DefFault Haigh:DefFault
Step: DefFaqult _Fixal=

Enter HiniHUH héerazontal ualug

EDIT L AOD | DEL |CHOOZ|ERAZE] DRAN EDIT] | | AUTO JERASE] DRAN

Press ERASE then DRAW to see what the original function looks like. Then exit out of the
graph screen back to the stack, enter an integration constant 1.5, and run Grint. You should
see the graph shown below. When you exit back to the stack, the approximate definite
integral (area under the curve) is shown.

EAD ®YZ DEC K= "W’
LHOWE WLCHLCZ UER

ol WU Y) [0 |

Arrea~: 3. 14166910003

[Zo0H [i, W [TRRCEL FCh [EDIT L Ee | Y1 | FFARJGrIntiSHF22[ZTHF 2]

You do not actually have to graph the original function — Grlnt can graph just the integral.

And now for a few more technical details:

* GrlInt reads the EQ and PPAR variables to determine the graphing properties.

» The function to be graphed does not really have to be only function, but it does have to be
the first function. From the Y= screen, press NXT to get to the MOVE T and MOVE!
commands, if necessary, to make the desired function the first one.

» Itis possible to set the integration limits different from the H-View settings by using the
Indep Low and High values for the integration limits.

» The Step size is used when graphing the integral.

» The graph can be connected or points only as specified in Plot Setup (System Flag 31)

* The independent variable does not have to be ‘X
» The “integration constant” simply specifies the y value on the left edge of the graph. If
the bottom of the stack (Level 1) does not contain a number, then the graph starts at y=0.

The stack diagram is

Level 1 - Level 1

[integration constant] - approximate area under curve

where the optional integration constant is assumed to be zero if not present or if it is not a
number.

MonteCarlo

This command gives a graphical demonstration of the Monte Carlo method of determining
the area under a curve. This method is not very practical or even accurate, but it is a clever
concept and can be fun to see in practice. The idea is to pick random points on the screen
and count how many hit within the area under the curve. The ratio of “hits”:“total points”
should be approximately the same as the ratio “area under curve:“total area in window”.
The more points you plot, the more accurate it will be.

Example:

Enter the same function and window settings as in the GrInt example above. On the stack,
enter the number of points you want to plot, say 1000. Then run MonteCarlo. After it has
finished plotting point, the approximate area is returned on the stack.

EAD ®YZ DEC K= "W
LHOWE WLCHLCZ

ol WU Y) [0 |

T '-ﬁuﬁ Arrea~: 3. 224658724
mmm Hontal E¢ | Y1 | FFAR [GrInt[SHF22
The stack diagram is

Level 1 - Level 1
number of points -» approximate area under curve
Example:
Level 1 - Level 1

1000. - 3.25468724

Arc Length Calculators: ArcLen, EstArc
These two functions calculate the arc length of a function between two points.

ArcLen

ArcLen generate the integral that calculates the arc length of a given function. If the
calculator is in Exact Mode, the integral will be left in integral form if the integral cannot be
solved symbolically. Ifthe calculator is in Approximate mode, the integral will be evaluated
numerically.

Level 4 Level 3 Level 2 Level 1 - Level 1
lower limit upper limit expression variable - length
Examples:
Level 4 Level 3 Level 2 Level 1 -» Level 1
0 1 X? ‘X’ - '-((LN(-2+f 5)-2*\/' 5)/4)'
Level 4 Level 3 Level 2 Level 1 -» Level 1
0.0 1.0 X? ‘X’ - 1.47894285755

ArcLX
Same as ArcLen, but assumes the variable is the default independent variable, usually ‘X’.
Level 3 Level 2 Level 1 - Level 1
lower limit upper limit expression - length
Examples:
Level 3 Level 2 Level 1 - Level 1
0 1 X2 - '(LN(-2-+/5)-2%/5)/4)'

Level 3 Level 2 Level 1 Level 1

d

0.0 1.0 X? - 1.47894285755

EstArc
Estimates arc length by dividing the function into small increments and using a linear
approximation (distance formula) to estimate the length of each increment.

Level 5 Level 4 Level 3 Level 2 Level 1 - Level 1
lower upper expression variable steps - length
limit limit

Example:
Level 5 Level 4 Level 3 Level 2 Level 1 - Level 1
0 1 X? X 40 - 1.4788962724
EstAX

Estimates arc length assuming the variable is the default independent variable, usually ‘X’.

Level 4 Level 3 Level 2 Level 1 -» Level 1
lower upper expression steps - length
limit limit

Example:
Level 4 Level 3 Level 2 Level 1 -» Level 1

0 1 X? 40 - 1.4788962724

Error Functions: ERF, ERFC
The Error Function and Complementary Error function are used to evaluate certain integrals.
They are defined to be:

o

e di

x
A
|

erfix) = —
=1

erfc(x)= 1- erf(x)

ERF
ERFC
Level 1 - Level 1
number - result
ERF Example:
Level 1 - Level 1
0.75 - 0.711155633654
ERFC Example:
Level 1 - Level 1

0.75 - 0.288844366346

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

