
1 The RPL Loop

This is a mini-tutorial on how to create your own prologue using a library. To
start, let’s take a look at the RPL loop. We will start with a simple program,
and its hexadecimal representation. (If you haven’t already, switch to the a
fixed size font for improved legibility).

System RPL Program Hexadecimal representation

:: 02D9D
"Hello" --> 02A2C 0000F 48 45 4C 4C 4F
NEWLINE$&$ 361DA

; 0312B

From the assembly language point of view, how is this program run? To
the system, everything is considered to be a pointer, i.e. an address to some
code block somewhere in memory—be it ROM or RAM or even flash ROM. All
addresses are 5 nibbles in length. The RPL loop is coded as:

ASSEMBLE
A=DAT0 A
D0=D0+ 5
PC=(A)

RPL

During program execution, D0 generally acts as the pointer into the run-
stream, which in this case is the program above. Of course our program must
be stored somewhere in memory. So D0 initially set to the memory location
containing the value 02D9D (this is the prologue corresponding to the :: in our
source code). It reads the content of that memory location and stores it into
A[A]. Then it increments D0 to point to the next memory location, which con-
tains the value 02A2C (this is the prologue of our "Hello" string). Then the
CPU executes the code contained within the address located at A[A] using the
opcode PC=(A). So when A[A] = 02D9D, the program counter would be set to
whatever address is contained at the address 02D9D. Looking at the memory
address 02D9D (this is the address for DOCOL), we see

ASSEMBLE
=DOCOL

CON(5) #028FC =PRLG
RPL

So the program counter is set to 028FC. Now when we look at 028FC, we see
the following code:

ASSEMBLE
=PRLG

1

LC(2) 10 #0Ah
A=A-C B #02D9Dh - #0Ah = #02D93
PC=(A)

RPL

Remember that at this point, A[A] = 02D9D. The code residing at 028FC
(PRLG) says to resume execution at the address contained at 02D93. Peeking
into 02D93, we see

ASSEMBLE
L02D93

CON(5) #02DE0
RPL

So now the program counter gets set to 02DE0 and at this memory location
is the following code:

ASSEMBLE
D0=D0- 5 backtrack to previous

pointer in runstream
CD0EX
D0=C
RSTK=C save current D0
GOSUB SKIPOB after SKIPOB, D0 is now

points to the end of program
C=RSTK
A=C A A[A] contains the address of

the start of our program
D=D-1 A decrease the num of available

ptrs (for our new rtn addr)
GOC L02E15 do garbage if not enough room
C=B A B[A] contains the addr of

where we store the rtn addr
CD0EX
DAT0=C A address of the end of our

program saved as a rtn addr
D0=D0+ 5 advance the rtn stack for

future writes
AD0EX D0 points back to current

runstream
B=A A rtn stack updated w/ the new

rtn addr (end of our prog)
D0=D0+ 5 we backtracked; so now advance

to next pointer in runstream
A=DAT0 A and loop
D0=D0+ 5
PC=(A)

RPL

2

At this point, D0 now points to the nibbles 02A2C. This is the string prologue,
and it has its own, similar set of machine code to handle the execution of a string
object. Any adjustments to the runstream pointer D0 is done by the code located
at 02A2C.

Let’s skip forward to the entry NEWLINE$&$ (address 361DA). If we apply
the RPL loop to this address, then the program counter gets set to the address
contained at 361DA. Here’s what the ROM looks like:

ASSEMBLE
=NEWLINE$&$ source code hexadecimal

CON(5) =DOCOL :: 02D9D
CON(5) =NEWLINE$ NEWLINE$&$ 33B39
CON(5) =&$ &$ 05193
CON(5) =SEMI ; 0312B

RPL

So now when the CPU executes PC=(A), the program counter is set to the
address 02D9D. In the explanation above, when A[A] = 02D9D, the program
counter was set to 028FC because the address 02D9D contained the nibbles 028FC.
This time, however, we have A[A] = 361DA (the value of entry NEWLINE$&$),
and the program counter is set to 02D9D (the nibbles contained at the address
361DA). We saw earlier, however, that the ROM contained the nibbles 028FC at
the address 02D9D. While on the one hand 028FC is the address for the entry
PRLG, it also translates to the opcodes:

D=D-1 A opcode CF
HS=0 0 opcode 820

With this in mind, let’s look at address 02D9D (the address of DOCOL) one
more time, except with the nibbles 028FC translated to opcodes:

ASSEMBLE
=DOCOL

D=D-1 A decrease num of ptrs available
HS=0 0 equivalent to a NOP
GOC L02E15 if CRY, we need to do a garbage

collection and resume execution
C=B A
CD0EX D0 -> rtn stack; C[A] = address

of next runstream obj
DAT0=C A
D0=D0+ 5
AD0EX in our example, A[A] = 361DA;

D0 -> NEWLINE$ within NEWLINE$&
$

B=A A B[A] = new rtn stack addr
D0=D0+ 5

3

A=DAT0 A
D0=D0+ 5
PC=(A)

RPL

So now that we have a (vague?) understanding of how System RPL and
machine language interact, we can then look at the ROM code near the address
02D9D (the DOCOL prologue) to see how we might build our own prologue. Here’s
what the ROM looks like:

ADDRESS NIBBLES MNEMONIC

02D93 0ED20 CON(5) =spancol direct executor for docol
02D98 77030 CON(5) =skipcol code to skip docol objs
02D9D CF820 CON(5) =PRLG indirect execution for docol
... ... GOC L02E15
... ... C=B A
... ... CD0EX
... ... DAT0=C A
... ... D0=D0+ 5
... ... AD0EX
... ... B=A A
... ... D0=D0+ 5
... ... A=DAT0 A
... ... D0=D0+ 5
... ... PC=(A)

Rather than placing all the code for DOCOL immediately after CON(5) =PRLG,
we could simply have a GOVLNG =execcol call and all the machine code to
execute the DOCOL object can be stored at the label =execcol. As you can see,
we really only need a total of 3 ∗ 5 + 7 = 22 nibbles somewhere safe in RAM
where we can inject our own code:

ASSEMBLE
CON(5) spanaddr 5 nibbles
CON(5) skipaddr 5 nibbles
CON(5) =PRLG 5 nibbles
GOVNLG execprolog 7 nibbles

RPL

When we inject this snippet of machine code into RAM, the labels spanaddr,
skipaddr, and execprolog must exist somewhere else that can easily be accessed
by operating system. The best place is in a library stored in Port 0. We could
theoretically store it in covered memory and, instead of the GOVLNG call, add
code to uncover/cover memory banks. However, that requires more overhead
AND objects in covered memory are not stable. In fact, each time an object is
stored into a port, the system rescans the objects stored there. During the scan,

4

it is possible that the system moves objects around within a port to allocate
memory prior to storing. This is done to minimize the number of writes to the
flash chip (for Port 2) and hence maximize the lifespan of the flash memory.
Lastly, Port 0 is uncovered SRAM, which is stable (we do not want spanaddr,
skipaddr, and execprolog to point to correct memory locations upon installation
and then point to invalid memory locations after being moved around).

The implementation I came up with uses a library and the config object of
the library to insert code into RAM. The library itself contains the main code
for handling our new prologue. To insert our prologue into memory, I chose a
place that is seemingly never used after being set up: TolVars and TopicVars
land! The config program of the library modifies FIRSTPROC to include the code
object which will inject our custom prologue into reserved RAM blocks.

Anyway, that’s enough writing for now. Feel free to send questions to
hduong{\textunderscore}nospam@ju.edu (remove the nospam). Feel free to
use the code however you wish; I just ask that you give me credit for whatever
part of my work you use.

5

