
JAZZ 50G v1.25

System RPL and Machine Language

Development Library

c©1995-1999 Mika Heiskanen and Jan Brittenson
c©2010-2012 Han Duong

March 19, 2012

1

Contents

1 Copyright & Acknowledgements 6
1.1 Copyright . 6
1.2 Extra credits & Acknowledgements 6
1.3 HP48 Beta Testing & Suggestions 7
1.4 Version Numbers . 7

2 Introduction 8
2.1 Overview . 8
2.2 Installing and Deleting JAZZ . 9

2.2.1 Installing JAZZ . 9
2.2.2 Deleting JAZZ . 9

2.3 Installing the Entry Tables . 9
2.3.1 Installing the Entry Tables 10
2.3.2 Creating Custom Entry Tables 10

2.4 Related Material Available via HTTP. 10

3 Assembler 12
3.1 The Assembler Command . 12

3.1.1 Report Mode . 12
3.1.2 Errors . 12

3.2 System RPL Assembly . 13
3.2.1 System RPL Comments 13
3.2.2 Lambda Variable Generation 13
3.2.3 Escape Sequences . 14
3.2.4 System RPL Tokens . 15

3.3 Machine Language Assembly . 17
3.3.1 Machine Language Comments 17
3.3.2 Machine Language Tokens 17
3.3.3 Object inclusion in machine language 19
3.3.4 Macros . 19
3.3.5 Label Generation . 20
3.3.6 Conditional Assembly . 20
3.3.7 Expressions . 21
3.3.8 Debugging . 21

3.4 Library Assembly . 21
3.5 Differences to HP Tools and GNU Tools 23

4 Disassembler 25
4.1 The Disassembler Commands . 25
4.2 Guess Mode . 26
4.3 DOB End Address Guessing . 26
4.4 ROMPTR Name Hook . 27
4.5 Warnings . 28

2

5 Machine Language Debugger 29
5.1 DB Command . 29
5.2 MLDLpar Variable . 29
5.3 DB Entry Hook . 29
5.4 DB Screens . 30

5.4.1 Screen 1 – General CPU State 30
5.4.2 Screen 2 – General CPU State II 30
5.4.3 Screen 3 – CPU State & Instruction Stream 31
5.4.4 Screen 4 – Data Pointers 31
5.4.5 Screen 4.1 – Data Stream 32
5.4.6 Screen 4.1 – RPL Stream 32
5.4.7 Screen 4.3 – Data Table Stream 32
5.4.8 Screen 5 – Memory Dump 33
5.4.9 Screen 6 – ML Instruction Stream 33
5.4.10 Screen 7 – General CPU State & Breakpoints 34
5.4.11 Screen 8 – Watchpoints 34

5.5 Debugging with DB . 34
5.6 DB Regular Mode Keyboard . 36
5.7 Movement in DB . 36
5.8 Register Save Buffer . 37
5.9 Breakpoints . 37
5.10 DB Arguments . 38
5.11 Cycle Counters . 38
5.12 Register Editing . 39

6 System RPL Debugger 41
6.1 SDB Command . 41
6.2 SDB Menu . 41

7 Entries Catalog 43

8 Editor 45
8.1 Editor Mode Keys . 46
8.2 Cursor Movement Keys . 46
8.3 Editing Keys . 46
8.4 Block Keys . 47
8.5 Searching and Replacing Keys . 47
8.6 Marking Keys . 48
8.7 Editor Macros . 48
8.8 Editor Counter Keys . 48
8.9 Character Catalog . 49
8.10 Editor Inputline . 50
8.11 Editor Programming Keys . 50
8.12 Editor Subprogram Keys . 51
8.13 Editor Keyboard Layout . 53

8.13.1 Non-shifted Keyboard . 53

3

8.13.2 Left Shift Keyboard . 54
8.13.3 Right Shift Keyboard . 55
8.13.4 Alpha Shift Keyboard . 56
8.13.5 Alpha Left Shift Keyboard 57
8.13.6 Alpha Right Shift Keyboard 58

9 String and Grob Viewers 59
9.1 String Viewer Keys . 59
9.2 Grob Viewer Keys . 60

10 Entry & Memory Utilities 61

11 SRPL Stack Display 62

12 Minifont Editor 63

A Library source code example 64

B JAZZ Command Index 67

C Error Messages 70
C.1 General Error Messages . 70
C.2 Assembler Error Messages . 70

4

List of Tables

1 Character escape sequences . 14
2 Miscellaneous SRPL Tokens . 15
3 RPL Token Abbreviations . 15
4 Object Generating Tokens . 16
5 Mnemonics with changed behaviour. 17
6 Mnemonics that are not implemented. 18
7 Implemented GNU Tools mnemonics. 18
8 GNU Tools mnemonics that are not implemented. 18
9 Object stripping in machine language. 19
10 Components in expressions. 21
11 Entries catalog keys . 43
12 Displayed entry types in EC . 44

5

1 Copyright & Acknowledgements

The JAZZ library is distributed in the public domain with the hope that it will
be useful. It is provided ’as is’ and is subject to change without notice. No
warranty of any kind is made with regard to the software or documentation.
The authors shall not be liable for any error for incidental or consequential
damages in connection with the software and the documentation.

1.1 Copyright

Permission to copy the whole, unmodified JAZZ package is granted provided
that the copies are not made or distributed for resale (excepting nominal copying
fees).

1.2 Extra credits & Acknowledgements

Mika Heiskanen Original author of JAZZ for the HP48 series.
Jan Brittenson Original author of the machine language debugger.

Jan has graciously given permission to modify the
program and to include it in JAZZ.

Jens Kerle Bug fixes.
Dan Kirkland The rewrite of the HP48 version of keyhandler sub-

routines used in ED and EC The first sensible sort
of the entries tables.

Will Laughlin Backward searching in ED and calling EC from
ED.

Christophe Meynard Alphabetical sort and alphabetical searching in EC.
Fill-key and parametric calls to EC in ED. Screen
reformatting and register editing in DB.

Mario Mikocevic Basis for the machine language disassembler; the
author of GNU Tools which were used to develop
JAZZ and to test new ideas.

Detlef Mueller and Inspiration through RPL48 package.
Raymond Hellstern
Rick Grevelle Medium font. (No longer used.)
Davor Jadricevic Original small font. (No longer used.)
Al Arduengo Improved small font. (No longer used.)
Dominique Rodriguez First version of the LATEX documentation.
Cary McCallister For answering.
Andre Schoorl For UFL (no longer used), JAZZHOOK, bug fixes,

and former maintainer of JAZZ source on the HP48
series.

6

1.3 HP48 Beta Testing & Suggestions

Seth Arnold Douglas Cannon Carlos Ferraro
Rick Grevelle Joe Horn Boris Ivanovich

Jens Kerle Dan Kirkland Jeoff Krontz
Will Laughlin Bill Levenson Tom van Migem

Mario Mikocevic Detlef Mueller Richard Steventon
Kurt Vercauteren Vladimir Vukicevic Christ van Willegen

Stefan Wolfrum

1.4 Version Numbers

There are three version numbers. The internal version number is incremented
from v6.8 (which as designed for the HP48 series). The current internal version
number is 7.25. The version number for the HP49G+ and HP50G calculators
is simply the internal version number minus six (v1.25). When the JAZZ library
is placed onto the stack, the version number listed there reflects the compile date
of that particular binary. So for example, the most recently compiled binary
would show v2012.03.18.

7

2 Introduction

JAZZ was originally a library for the HP48 calculator and provided commands
that enabled assembling, disassembling and debugging both system RPL and
machine language on the calculator. It has since been and ported to the
HP49G+ and HP50G and updated with new features. Documentation will
henceforth be for the HP49G+ and HP50G. In the development of the library,
the syntax used by HP was kept closely in mind, thus minimizing the learning
time and the work required in transporting source code between JAZZ, HP
Tools and GNU Tools.

2.1 Overview

As opposed to the computer-based development tools, JAZZ is very tightly inte-
grated. For example instead of having four separate phases in library assembly

1. RPLCOMP to compile system RPL to assembly language.

2. MAKEROM to create library header files and tables.

3. SASM to assemble the sources.

4. SLOAD to link the object files.

one can do the same with a single JAZZ command. Moreover, from within the
string editor ED one can use word completion, assemble source code, study the
disassembly of named and unnamed entries, call the entries catalog, and visit
the stack. The following table is a brief overview of the commands available in
JAZZ in the order they appear in the library menu.

Command Description
ASS Assembler
DIS Disassembler

DISXY Memory area disassembler
DOB Disassembler with guessing
DISN Machine language disassembler

DB Machine language debugger
SDB SRPL debugger

SHALT SDB HALT command
SKILL SDB KILL command

EC Entries catalog
ED String editor

TED User RPL editor
VV String and grob viewer
EA Entry name conversion utility

SSTK SRPL stack display
MFED Minifont editor

8

2.2 Installing and Deleting JAZZ
JAZZ is a regular auto-attaching library (library number 992). JAZZ takes
approximately 71Kb of memory without entry tables. JAZZ currently does not
work from a covered port, thus Ports 1 (ERAM), 2 (FLASH), and 3 (SD CARD)
are not allowed as storage ports.

2.2.1 Installing JAZZ

1. Download the file jazz50g.hp into your calculator in binary mode.

2. Put the content of the created variable jazz50g.hp on the stack.

3. Delete the variable jazz50g.hp.

4. Store it in Port 0 (for example with 0 STO.)

5. Power-cycle the calculator (ON-C).

2.2.2 Deleting JAZZ

1. Exit any running JAZZ programs.

2. Detach the library with :0:992 DETACH.

3. Purge the library with :0:992 PURGE. If the error message ‘Object in
use’ appears, then do ON-C and start again from 2.

2.3 Installing the Entry Tables

To provide symbolic names for ROM subroutines JAZZ uses preformatted entry
tables. Older versions of JAZZ relied on the entry library (hptab.hp) which
contained RPL.TAB and DIS.TAB and only supported symbols with a maxi-
mum of 16 characters. However, there are entries for the HP49G+ and HP50G
which are longer than 16 characters. JAZZ 50G v1.25 and onward will instead
use extable.hp.

The purpose of the tables is the same as that of entries.o for HP and GNU
Tools. Without the tables one would have to use addresses instead of symbolic
names whenever using ROM entries, or one would have to write the equivalent
equates by hand (as in entries.a). In either case programming would be
extremely tedious. While the tables are not obligatory, using them is highly
recommended. The entries in extable.hp (provided in the JAZZ package)
were built from Hewlette Packard’s latest supported entries table. Please note
that the entries table provided within the JAZZ package is NOT the same as
that from the extable package!1

1The one provided within the JAZZ package is backward compatible, however.

9

2.3.1 Installing the Entry Tables

To install the tables download the file extable.hp into your calculator and
proceed as in JAZZ installation process. The tables may be stored in Port 0,
Port 1, or Port 2. The current version now dynamically configures memory so
that storing the tables in any port will no longer result in any slowdowns, nor
will the tables be copied into RAM.2

2.3.2 Creating Custom Entry Tables

The entries library was built from the Suprom49.a using a modified version of
Deltef Mueller’s gentab program. The C-source for the program is also included
in the package. The syntax is

gentab2 < Suprom49.a > table.a

and then table.a can be assembled as instructed with SASM. The resulting
table can then be compiled into extable.hp using the extable package.

2.4 Related Material Available via HTTP.

This document describes only the provided tools, not the languages themselves.
For information on the latter please refer to the tools package published by HP.

The following files should prove useful for any JAZZ user:

http://www.hpcalc.org/hp49/programming/entries/

This page contains links to documentation of supported entries, in-
cluding RAM entries.

http://www.hpcalc.org/hp49/docs/programming/

This page contains links to documentation on SRPL programming,
assembly programming, as well as documentation for MASD, the
built-in compiler.

http://www.hpcalc.org/hp48/pc/programming/

This page contains links to computer programs which aid in pro-
gramming the Saturn based calculators. In particular, Debug4x
is an excellent programming environment for Windows platforms.

2In previous versions, the tables could be stored in any port. However, storing them in
covered ports required RAM to copy the tables from covered memory even if only for a single
lookup.

10

http://www.hpcalc.org/hp48/pc/programming/sadhp105.tgz

SAD is a very powerful Saturn dissasembler and runs on Unix or
Linux systems. The package contains extensive symbols files so one
can check whether a given unsupported entry is fixed or not. When
disassembling one can ask SAD to do the testing for you—for every
entry used in the program.

comp.sys.hp48

This is a newsgroup where calculator enthusiasts often share ideas,
programming tips, and talk about HP calculators.

11

3 Assembler

Unlike the HP Tools, JAZZ provides only a single command to assemble source
code. Instead of detecting special tokens in separate phases the JAZZ assembler
merely changes the internal modes to expect the tokens suitable for the various
modes. Thus the assembler manages to combine RPLCOMP, MAKEROM,
SASM and SLOAD programs.

3.1 The Assembler Command

Command: ASS
Description: Assemble source string
Stack: $ → ob

$ → $ %erropos
Keys: ON key aborts
Flags: 1 – Report mode on when set

7 – Do not use entry tables when set

3.1.1 Report Mode

When report mode is on, ASS will show how the assembly proceeds in the status
area as follows

PC:[pc] Free:[free] Pass:[p][c]

[Current tokens or source line]

where

pc is the current output location in nibbles

free is the amount of remaining free memory in nibbles

p is the current assembler pass (1-2)

c is “+” if pass 1 is active and pass 2 is known to be needed

3.1.2 Errors

ASS will stop at the first error it encounters, unlike HP Tools and GNU Tools.
To make the error message as informative as possible, ASS will attempt to
emulate the behavior of the internal system error handler. The resulting error
display is then shown in the status area as follows

[Error message] [line][position]

[Current tokens or source line]

12

ASS emulates only the standard internal error trap (SysErrorTrap).3 If the
trap found by ASS is not SysErrorTrap then by default ASS must assume the
error trap may be crucial to the program which called the assembler, and so ASS
lets it run regularly. Since this also implies that no extended error messages can
be shown, ASS provides a way around it by enabling the display if the trap
starts with the SRPL NOP command. This should be useful for example in
internal SOL replacements. Examples can be found in the stack subprogram
called from within ED as well as SSTK.

All the assembler error messages are listed in Appendix C.

3.2 System RPL Assembly

The assembler always starts in SRPL mode. The tokens recognized by ASS
are in Tables 2 and 4 (page 16) at the end of this section.

3.2.1 System RPL Comments

Any line starting with an asterisk “*” is considered a comment in all modes. In
SRPL also anything surrounded by parentheses is considered a comment. Note
that RPLCOMP also requires whitespace after the leading open parenthesis.

3.2.2 Lambda Variable Generation

JAZZ implements localized lambda bindings as follows

{{ label1 .. labelN }} → ’ NULLLAM <#N> NDUPN DOBIND

{{ label }} → 1LAMBIND

The maximum number of variables that can be bound is 22 as that is the
maximum NULLLAM which has direct PUTLAM and GETLAM ROM entries available.
After the bindings the labels can be used as follows

label1 → 1GETLAM

=label1 → 1PUTLAM

!label1 → 1PUTLAM

label1! → 1PUTLAM

The following diagram shows how a program using JAZZ syntax would be
compiled by the assembler.

3The HP49G+ and HP50G evaluate the command line via a flash pointer, which is ex-
ecuted within a special environment that has its own error trap (PTR 0B318). This pointer
restores the ROM view prior to execution of the command line. Therefore, running ASS
via the command line will produce less informative error messages. On the other hand, call-
ing ASS from a menu (either the library menu or a custom menu) will result in the more
informative error message display.

13

JAZZ syntax Assembler interpretation

::

{{ A B }}

B A!

ABND

;

::

’ NULLLAM TWO NDUPN DOBIND

2GETLAM 1PUTLAM

ABND

;

3.2.3 Escape Sequences

To allow editing source files which contain special characters, the assembler
supports the character escape sequences summarized in table 1. The escape
sequences are allowed in

• Character strings ($ "..")

• Identifiers (ID ..)

• Temporary identifiers (LAM ..)

• Library titles (xTITLE ..)

Note that HP Tools and GNU Tools

• may not support all the common escape codes.

• assume character codes are decimal, and use \xhh for hexadecimal char-
acter codes.

• allow variable width values (prone to error)

Code Value Description

\\ 92 Backslash
\a 7 BEL (alert character)
\b 8 BS (backspace)
\t 9 HT (tabulator)
\n 10 LF (linefeed)
\f 12 FF (formfeed)
\r 13 CR (carriage return)
\hh <hex> Character with hex value hh.

Table 1: Character escape sequences

14

3.2.4 System RPL Tokens

Tokens Description

NIBB <len> <hexbody> Hexadecimal data.
PTR <hex> Pointer to the given address.
TITLE <text> Shows <text> on line1. Line 2 is cleared.
STITLE <text> Shows <text> on line 2.
INCLUDE <name> Includes source from named variable.
INCLOB <name> Includes object from named variable.
DEFINE <label> <text> Defines replacement text for label.
LABEL <label> Defines location of a label.
{{ <labels> }} Lambda name generation.

Table 2: Miscellaneous SRPL Tokens

Abbrev. Description

<decint> Decimal integer.
<dec> Signed floating point number or ‘Inf’ ‘-Inf’ or ‘NaN’.
<hex> Hexadecimal integer.
<len> Hexadecimal integer identifying the length of a <hexbody>.

<hexbody> Sequence of hexadecimal digits.
<chr> Character.

<chrbody> Sequence of characters.
<text> Sequence of characters until newline.
<label> A Label.
<labels> A sequence of labels.
<int> A sequence integers.

<fptrname> Flash pointer name (e.g. ^Qadd)
<rptrname> ROM pointer name (e.g. ~Choose)

Table 3: RPL Token Abbreviations

15

Prolog Address Object Tokens

DOINT #02614h Integer ZINT <int>

DOLNGREAL #0263Ah Long Reala L% <int>E<int>

DOLNGCMP #02660h Long Complexb LC% <int>E<int> <int>E<int>

DOMATRIX #02686h Matrix MATRIX ... ;

DOFLASHP #026ACh Flash Pointer FPTR <hex> <hex>

FPTR2 <fptrname>

DOAPLET #026D5h Apletc

DOMINIFONT #026FEh Minifont MINIFONT <len> <hex>

DOBINT #02911h Binary Integerd # <hex> or #<hex>

<decint>

DOREAL #02933h Real Number <dec>

% <dec>

DOEREL #02955h Extended Real %% <dec>

DOCMP #02977h Complex Number C% <dec> <dec>

DOECMP #0299Dh Extended Complex C%% <dec> <dec>

DOCHAR #029BFh Character CHR <chr>

DOARRY #029E8h Array ARRY <len> <hexbody>e

DOLNKARRY #02A0Ah Linked Array LNKARRY <len> <hexbody>

DOCSTR #02A2Ch Character String "<chrbody>"

$ "<chrbody>"

DOHSTR #02A4Eh Hex String HXS <len> <hexbody>

DOLIST #02A74h List { ... }
DORRP #02A96h Directoryf

DOSYMB #02AB8h Symbolic SYMBOL ... ;

DOEXT #02ADAh Unit UNIT ... ;

DOTAG #02AFCh Tagged TAG <chrbody> ...

DOGROB #02B1Eh Graphics GROB <len> <hexbody>

DOLIB #02B40h Library LIB <len> <hexbody>

DOBAK #02B52h Backup BAK <len> <hexbody>

DOEXT0 #02B88h Library Data LIBDAT <len> <hexbody>

DOACPTR #02BAAh Access Pointer ACPTR <hex> <hex>g

DOEXT2 #02BCCh External 2 EXT2 <len> <hexbody>

DOEXT3 #02BEEh External 3 EXT3 <len> <hexbody>

DOEXT4 #02C10h External 4 EXT4 <len> <hexbody>

DOCOL #02D9Dh Program :: ... ;

DOCODE #02DCCh Code CODE <len> <hexbody>

DOIDNT #02E48h Identifier ID <chrbody>

DOLAM #02E6Dh Temporary Identifer LAM <chrbody>

DOROMP #02E92h ROM Pointer ROMPTR <hex> <hex>

ROMPTR2 ~<rptrname>

aOnly disassembly supported in this release.
bOnly disassembly supported in this release.
cNo system support.
dNumber searched in ROM first.
eSyntax specified in RPLCOMP.DOC is not supported.
fDirectory assembly is supported only in MASD.
gDOACPTR is DOEXT1 on the HP48S/SX series.

Table 4: Object Generating Tokens

16

3.3 Machine Language Assembly

Since the assembler always starts in SRPL mode, machine language can only
be assembled when appropriately embedded inside the following tokens:

CODE

...

ENDCODE

ASSEMBLE

...

RPL

The first pair generates a code object while the latter merely switches to machine
language assembly. Note that since the assembler checks the final result for
structural validity, the latter pair can only be used when not generating any code
or when the code will be embedded in a larger object with no strict limitations
on the internal structure (such as libraries).

3.3.1 Machine Language Comments

Any line starting with “*” is considered a comment (in all modes). Additionally,
anything written on a single line after the expected amount of arguments for
the instruction on that line will also be considered a comment.

3.3.2 Machine Language Tokens

The mnemonics recognized by the assembler are documented by SASM.DOC in
the HP Tools package and in newopcodes.txt, so this manual explain them in
any detail. Instead only the main changes are summarized in the tables that
follow. Also, the following mnemonics are recognized, but are simply ignored:

EJECT, REL, LIST, LISTM, LISTALL, UNLIST

Tokens Description

D0=D0+ <expr> Allows values between 1-256.
D0=D0- <expr> Allows values between 1-256.
D1=D1+ <expr> Allows values between 1-256.
D1=D1- <expr> Allows values between 1-256.

TITLE <text> Text shown on line 1, line 2 cleared.
STITLE <text> Text shown on line 2.
MESSAGE <text> Text shown on line 1, line 2 cleared.
SETFLAG <label> Is interpreted as “label = 1”.
CLRFLAG <label> Is interpreted as “label = 0”.

Table 5: Mnemonics with changed behaviour.

17

Tokens Description

EXITM Exit macro description.
ABS <expr> Absolute compile address.
RDSYMB <file> Reads symbols from an object file.
CHARMAP <file> Alternative character set.
Dn=HEX <hex> Loads D0/D1 with a hex number of unspecified width.
GOSHORT <label> Short jump generation based on carry.
JUMP <label> Alias for GOSHORT.
INC(n) <label> Incremental m-nibble reference to label.
LINK <label> Generate offset to next LINK reference to label.
SLINK <label> Generate offset to 1st LINK reference to label.

Table 6: Mnemonics that are not implemented.

Tokens Description

LCSTR <ascii> Reversed LCASC.
LASTR <ascii> Reversed LAASC.
CSTRING <ascii> NIBASC with a 0-byte terminator (C-style).
ABASE <expr> Set allocation counter to given address.
<label> ALLOC <expr> Allocate given amount of nibbles for label.

Dn=Dn+r Example: D0=D0+A is expanded to
CD0EX C=C+A CD0EX

Dn=Dn-r Example: D1=D1-C is expanded to
AD1EX A=A-C AD1EX

Dn=Dn+P Example: D0=D0+P is expanded to
CD0EX C+P+1 CD0EX

Dn=Dn-P Example: D0=D0-P is expanded to
CD0EX C=-C C+P+1 C=-C CD0EX

r=Dn Example: A=D0 is expanded to
AD0EX D0=A

Example: B=D0 is expanded to
CD0EX B=C CD0EX

Table 7: Implemented GNU Tools mnemonics.

Tokens Description

NIBBIN <binary> Binary version of NIBHEX.
NIBGRB <binary> Grob data (binary) version of NIBHEX.
HEX(n) <hex> Hexadecimal data with size field of width n.
HEXM(n) <hex> Hexadecimal data with decremented size field of width n.
ASC(n) <ascii> Ascii data with size field of width n.
ASCM(n) <ascii> Ascii data with decremented size field of width n.

Table 8: GNU Tools mnemonics that are not implemented.

18

3.3.3 Object inclusion in machine language

In SRPL mode the INCLOB token includes an object into the assembly as is.
In machine language mode one usually wants only to include the actual data
contained by the object though, thus the objects are stripped from the start
based on their type as summarized in the table below.

Prolog Skip

DOARRY 5
DOCODE 10
DOCSTR 10
DOHSTR 10
DOEXT0 10
DOEXT2 10
DOEXT3 10
DOEXT4 10
DOGROB 20

Table 9: Object stripping in machine language.

3.3.4 Macros

The assembler does not implement macros as described in SASM.DOC. Nn par-
ticular, there is no argument substitution. To define a macro, use:

<label> MACRO

<line1>

..

<lineN>

<label> ENDM

After the definition all occurrences of <label> are replaced by the source lines
in the macro definition. For single-line macro definition, the following can be
used instead:

<label> MICRO <line1>

As there are some obvious uses for micros in terms of register assignments, the
assembler provides compact way to assign a symbolic name for a scratch register:

<label> REG <scratch register name>

For example the following line

X REG R2

is equivalent to the following four micro definitions

19

A=X MICRO A=R2

C=X MICRO C=R2

X=A MICRO R2=A

X=C MICRO R2=C

Since the assembler does not use mnemonic tables for speed, it cannot do full
reserved word tests in assembly. Thus the user might mistakingly declare a
scratch register name to be P, which of course causes problems if the user intends
to use the C=P mnemonic elsewhere in the source code. Caution is thus advised
when using symbolic names.

3.3.5 Label Generation

Sometimes assigning names for insignificant branches can be tiresome. Fortu-
nately, the assembler recognizes local labels, which work as follows

+ refers to the next + label

++ refers to the next ++ label

- refers to the previous - label

-- refers to the previous -- label

For example to search for a newline character one might use

LCASC ’\n’

- A=DAT0 B <--+

D0=D0+ 2 |

?A#C B |

GOYES - ---+

Note that overuse can easily make the source code unreadable or cause mistakes
if used a too much in a short range.

3.3.6 Conditional Assembly

JAZZ does not use the unnecessarily complicated conditional assembly opcodes
used both in GNU Tools and HP Tools. Instead JAZZ enables comparison
operators in expressions; testing any condition reduces to a single test for a
non-zero expression. Thus the only needed opcodes in JAZZ are IF, ELSE and
ENDIF.

The opcodes are implemented independent of labels, so the label convention
described in RPLMAN.DOC should not be used either – it would result in duplicate
label errors. JAZZ automatically follows the matching of the opcode pairs, but
due to the simple approach, used extra ELSE’s might be missed if the nested
inside another conditional segment. This causes no ill-effects since it can happen
only when ELSE code shouldn’t be assembled anyway.

The maximum nesting depth for conditional assembly is 64. The matching
opcodes must be located in the same source file.

20

The opcodes are currently implemented only in assembly mode, but the
implementation allows using them for SRPL too as long as the conditional
assembly opcodes are embedded inside ASSEMBLE-RPL tokens. Proper tokens for
doing the same directly in SRPL mode might be added in future versions of
JAZZ via the #IF, #ELSE and #ENDIF tokens.

3.3.7 Expressions

Expressions are evaluated using 64-bit signed integer math except for compari-
son operators, which use unsigned math. If a value does not fit within 64 bits,
the most significant bits are lost.

Term Example Op. Pri. Description
decimal constant 123456 ∧ 9 exponentiation
hexadecimal constant #123ABC ∗ 8 multiplication
binary constant %10110001 / 8 devision
global symbol =symbol % 8 modulo
local symbol symbol + 7 addition

:symbol - 7 substraction
subexpression (expr) & 5 bitwise AND
next local label + ++ ! 4 bitwise OR
previous local label - -- < <= 2 less than (or equal)

> >= 2 greater than (or equal)
== <> 2 equal, not equal

Table 10: Components in expressions.

3.3.8 Debugging

The assembler will recognize DEBUG as a special mnemonic and will output
a GOSBVL call into the proper entry point inside the DB debugger. In the
current release of JAZZ the address is #80900h and coincides with the entry
=TopicVar31. For more information see the DB documentation.

3.4 Library Assembly

The assembler starts library creation mode upon the declaration of the library
number (ROMID). The assembler cannot produce libraries embedded in other
objects, so the declaration must occur at the start of the source (or after
equates). Once in the library mode the assembler expects the optional library
title declaration next. Although not obligatory, it is good practice to group all
the other library specific declarations at the start, too. A library’s source code
might start like this

21

ASSEMBLE

=symbol EQU #value

...

RPL

xROMID <library number>

xTITLE <library title>

xCONFIG <configuration object name>

xMESSAGE <message table name>

EXTERNAL <command 1 name>

...

EXTERNAL <command N name>

The user should note that HP Tools and GNU Tools use a separate MAKEROM
phase to build library-specific tables and headers. This is accomplished by using
separate loader files, thus the only tokens they use are xROMID and EXTER-
NAL. In fact in JAZZ EXTERNAL is (since v5.6) only provided for the possi-
bility of assigning the command numbers based on the order of introduction. If
the declarations are omitted JAZZ will assign the numbers based on the order
of the location declarations instead.

The assembler will include all that follows the library declarations in the
library itself, whatever data there may be. To declare some objects to be actual
commands in the library one would then use the following tokens

xNAME <label> This is the common way to declare a visible com-
mand. The command will be accessible to the user by typing
“label”, while in the source code the object is referred to as
“xlabel”.

NULLNAME <label> This is used to declare a subroutine which will
not be accessible to the user.

sNAME <label> <hash> This is a variant of xNAME which eases
using special characters in the command name. While one uses
“label” in the source code, the user will execute the command
by typing “hash”.

hNAME <label> This is a variant of sNAME where the hash name
is declared to be empty. This means that the user cannot ex-
ecute the command by typing a name. Also, since the library
menu stops displaying as soon as a command with no name is
encountered, hNAME will ’hide’ any command declared after
it. This is quite rarely used though.

One may also declare a command to have a second (or several if used again)
typeable name by using

tNAME <label> <hash>

22

This can be used to assign names to NULLNAME’s too, and is a rather use-
ful feature if one wishes to provide access to the low level subroutines. Note,
however, that the secondary names are only typeable. Whether the command
will have a name that is displayed by the internal decompiler is determined by
the actual declaration of the command with one of xNAME, NULLNAME, sNAME or
hNAME.

The user should note that all visible commands are required to have a prop-
erty field in front of them. The property field is a collection of flags (bits) which
declare the command to have certain properties. The body of the command
may then be required to be followed by a sequence of objects associated to the
flags in the property field. This document will not explain the properties in
detail.4 Suffice it to mention that when the library number is below 1792

CON(1) 8 indicates a command with no special properties.

CON(3) 0 indicates a function with no special properties.

See Appendix A For a sample source code which can be assembled with JAZZ.

3.5 Differences to HP Tools and GNU Tools

Aside from the obvious missing or additional mnemonics, there are several de-
sign differences between JAZZ and HP Tools. The most important ones are
described below.

1. HP Tools MAKEROM is a separate library builder; RPLCOMP does not
support any library title, configuration object or message table creation
tokens.

2. HP Tools does not support extended precision floating point numbers, nor
the special values “Inf”, “-Inf” or “NaN”.

3. JAZZ does not support the ARRY token as defined by HP Tools.

4. JAZZ does not support macro argument substitution.

5. JAZZ implements conditional assembly and the associated SETFLAG and
CLRFLAG opcodes differently.

6. Since the assembly is performed on the calculator itself, there is no need
to include the download header line (NIBASC ’HPHP49-X’) in the source
code.

7. RPLCOMP automatically inserts “::” and “;” at proper places between a
WHILE-REPEAT structure because WHILE expects only a single object before
the REPEAT command. However HP Tools will also introduce the delim-
iters when not desired, such as in “WHILE DROP REPEAT” where there is
only the single object DROP. Thus HP Tools sometimes unnecessarily slows
down the code as well as increases the code size.

4See Appendix E in the entries.srt document. (Section 2.4, reference ent srt.zip.)

23

8. JAZZ does not support the special *256+ operator, while HP Tools does
not support binary terms nor comparison operators in expressions.

9. JAZZ symbol handling allows more than SASM. For example, the follow-
ing would cause an error in HP Tools if used in an expression:

(=GETPTR)-(=SAVPTR)

Absolutely necessary error checks are done, though. For example, each
expression value is checked whether to see if it is absolute or relative, and
accordingly some mnemonics will error if the type is wrong.

D0=D0+ label → Error
D0=D0+ (label2)-(label1) → Valid

10. The Saturn processor contains bugged opcodes, and accordingly SASM
will error for example if A=A+CON fs,expr is used with a single nibble
field selector. JAZZ assembler will allow the mnemonics to be used, since
although they are bugged they do show predictable behaviour. For those
interested, the bug causes the addition (substraction) to extend to the full
64-bit register instead of the single nibble (and only on the older HP48
series). The extend occurs so that the addition starts from the specified
nibble and wraps around to the first nibble. Also the carry is not properly
set. To get an idea of the bug one should try DB on the following example

CODE

A=0 W Clear A[W]

A=A+CON S,15 Works fine; no overflow

A=A+CON S,2 Just see what happens..

LOOP

ENDCODE

11. As there is no specific linker in JAZZ, it expects symbols to be resolvable
when introduced. Such symbols are those defined by the equate mnemon-
ics (=, EQU, ALLOC, ABASE).

12. The EXTERNAL token is not implemented as in RPLCOMP. In particular
it cannot be used to declare “∼symbol” to be external so that “symbol”
would compile to a ROMPTR. However using a DEFINE in this case would,
of course, be much simpler.

24

4 Disassembler

JAZZ has four methods of dissassembly, each differing slightly by how they
dissassemble objects or blocks of memory.

4.1 The Disassembler Commands

Command: DIS
Description: Disassemble object.
Stack: ob → $
Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

4 – Machine language disassembly disabled when set.
5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

Command: DOB
Description: Disassemble object or machine language.
Stack: #address → $ hxs end

hxs start → $ hxs end
“entry” → $ hxs end

Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

Command: DISXY
Description: Disassemble memory area with end address guessing.
Stack: hxs start hxs end → $
Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

Command: DISN
Description: Disassemble n machine language instructions.
Stack: #address %n → $
Keys: ON key aborts
Flags: 5 – Tabulator disabled when set.

6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

25

4.2 Guess Mode

In guess mode the disassembler will try to guess data structures embedded in
machine language. Currently only the following types are recognized:

GOSUB +

REL(5) +

BSS <expr> Data is all zeros

+ C=RSTK

GOSUB +

REL(5) +

NIBASC ’ASCII’ Data in various formats and

CSTRING ’ASCII’ spanning multiple lines

+ C=RSTK

GOSUB +

REL(5) +

NIBHEX <hex> Miscellaneous data

+ C=RSTK

The sufficient condition for an ASCII guess to be succesful is that the area
should consist mostly (75%) of common ASCII characters. The ASCII lines are
split into CSTRING’s or by newline characters so that the maximum length of
each will be 40 characters.

Should the beginning machine language programmer wonder why the guess
mode is necessary, suffice it to say that as machine language is not a sturctured
high-level language, there is no way of telling when machine language ends,
or even when it starts. In particular, there’s no telling when somebody has
embedded for example a data table inside machine language. A call to a C=RSTK

instruction is a common way to pass the address of such a table. There are yet
other ways which the disassembler cannot reasonably be expected to guess; there
are cases in which the disassembler is bound to fail.

4.3 DOB End Address Guessing

The end address guessing algorithm has changed since version 6.8a. When given
only a start address DOB will try to guess the end address of disassembly as
follows

• A leading DupAndThen is skipped.

• For skippable RPL objects, the end address is the end address of the
object.

• For primitive code objects the first 5 nibbles are skipped, then machine
language is skipped until either an RPL object is found, or the “end” of
machine language is reached (see below).

26

• In machine language

– all normal instructions are included.

– if a forward branch forward is found then scanning continues at the
target address of the branch.

– if a short jump forward is found then scanning continues at the target
address of the jump.

– if a backward jump to an address smaller than the start address is
found then the the jump terminates the scan.

– a double backward branch terminates scan.

– scanning is terminated if one of the following instructions is encoun-
tered:

GOVLNG, GOLONG, PC=(A), PC=(C), PC=A, PC=C, APCEX, CPCEX,
RTNSXM, RTN, RTNSC, RTNCC, RTI, RPL2, ARM_LOOP.5

Older versions of JAZZ worked under the assumption that primitive code
objects ended at either the start of another primitive code object, or at the start
of an RPL object (both of which we will simply call SRPL objects). This leads
to erroneous end addresses when machine language ends at a new, unprologued
SRPL entry.6

4.4 ROMPTR Name Hook

The entry tables contain only ROM entry addresses, anything else such as
ROMPTR’s cannot be stored in it. For convenience, all disassembler commands
check for variable “Romps” in the HOME directory, which can contain names
for ROMPTR objects. This feature should be especially useful when debugging
libraries, as then SDB can show the names of the subroutines one is debugging.
The variable should contain a list of the form

{

ROMPTR <hex> <hex> ID name1

ROMPTR <hex> <hex> ID name2

...

}

Just to advertise another product by the author, the Profiler library which
performs execution time and crash analysis on libraries also provides a command
which creates the “Romps” variable given a text file containing the names of
the various ROMPTR’s.

5ARM LOOP is not a supported token, but is the disassembly corresponding to various ROM
overwrites of the opcodes A=DAT0 A D0=D0+ 5 PC=(A).

6These entries, such as CK&DISPATCH1, exist even in the HP48 series.

27

4.5 Warnings

When using JAZZ to dissassemble objects (or memory), please be aware of the
following discrepencies.

1. DOB, DISXY and DISN disassemble areas of memory instead of well
defined objects. Using these commands to disassemble memory in the
temporary object area is dangerous since a possible grabage collection
during disassembly can move the memory area being disassembled. Use
only DIS to disassemble objects in temporary object area!

2. Composite type (RPL tokens: {}, SYMBOL, MATRIX) is tracked up to 64
levels. If the limit is exceeded a “;” may be output when a “}” is due.

3. Label values are guessed for Dn=(2) and Dn=(4) instructions if

• Dn=(2) is likely to refer to the control device.

• Dn=(4) is likely to refer to a RAM variable.

This works well for disassembling ROM but does badly when disassembling
a program which uses the even-page method in its data allocation. The
benefits are clearly greater, though.

28

5 Machine Language Debugger

DB is a machine language debugger which permits one to single-step machine
language as well as examine register and memory contents. Since it single-steps
machine language only, it is not generally useful for debugging RPL, unless one
wishes to follow RPL execution on machine language level.

5.1 DB Command

Command: DB
Description: Debug machine language.
Stack: id →

romptr →
$entry →
#address →
hxs address →

When invoked DB expects an argument that directly refers to machine lan-
guage, wehther by address, type (code object) or an object whose content is a
code object. If no such reference is found the debugger returns immediately.

5.2 MLDLpar Variable

The debugger stores all it’s internal variables into a variable called “MLDLpar”.
The variable will be created automatically when DB is executed, or verified if
ti already exists.

5.3 DB Entry Hook

Whenever DB is started it also initializes a special entry hook to enable start-
ing DB directly from machine language. To call this hook one would then
use GOSBVL #80900 or DEBUG. Note that this address resides in reserved RAM
and coincides with the entry =TopicVar31 which, for now, is not used by the
system. The assembler provides a JAZZ specific token named DEBUG which
will automaticall be assembled to GOSBVL #80900. The disassembler will also
output “DEBUG” whenever it encounters these special calls. The hook can also
be initialized by the hidden command DBHOOK which will not only validate
MLDLpar but also set up the necessary hooks.

The text display grob used to display DB screens is usually 9 lines high,
while DB uses the expanded 10 line size. The expansion cannot be done in
machine language without violating the CPU register contents (which the hook
saves), so one should still resort to using DBHOOK for the initialization. If
the display size is invalid on entry, the graphics grob might be corrupted and
memory could be lost. It is up to the calling program to ensure that the display
is initialized (i.e. the menu area is turned off).

29

User flag 1 disables the entry hook so that it simply returns back to the
calling place instead of starting DB. This enables keeping the DEBUG tokens in
source code while trying out regular runs in development phase.

5.4 DB Screens

To get an idea of what is possible with the debugger we start by first describing
the screens in DB. The user should not feel obliged to go through the details
for each screen yet; one can always come back to this section when needed.

The sample screens in this section can be reasonably reproduced by starting
DB with

"#>HXS" DB (or #59CCh DB)

and then by pressing the key assigned for each screen.
Some people have found the small font screens too hard to read (or just

too hard to get used to). Starting with JAZZ version 5.9, some screens have
alternatives which are displayed with the medium font instead. Toggling the
font size is done with the SPC -key.

5.4.1 Screen 1 – General CPU State

key: f1 Description Sample Screenshot
row1: mnemonic
row2: opcode
row3: pc, c, cry, hex/dec mode, st
row4: a[a], c[a], mp, sr
row5: b[a], d[a], sb, xm
row6: d0 and 6 bytes of @d0
row7: d1 and 6 bytes @d1
row8: top 3 levels of rstk
row9: next 3 levels of rstk

row10:

5.4.2 Screen 2 – General CPU State II

Screen 2 by default shows the CPU state using 13 rows of MINIFONT text.

key: f2 Description Sample Screenshot
row1: pc, opcode
row2: mnemonic
row3: d0 and 12 bytes of @d0
row4: d1 and 12 bytes of @d1
row5: a[w], p, st
row6: b[w], st[11-8], st[7-4], st[3-0]
row7: c[w], cry, hex/dec mode, hst
row8: d[w]
row9: r0[w]

row10: r1[w], rstk 1, rstk 5
row11: r2[w], rstk 2, rstk 6
row12: r3[w], rstk 3, rstk 7
row13: r4[w], rstk 4, rstk 8

30

key: f2 Description Sample Screenshot
row1: mnemonic
row2: pc, p, cry, hex/dec mode, st
row3: a[w]
row4: b[w]
row5: c[w]
row6: d[w]
row7: d0 and 6 bytes of @d0
row8: d1 and 6 bytes of @d1
row9:

row10:

5.4.3 Screen 3 – CPU State & Instruction Stream

Screen 3 by default shows the CPU state using 13 rows of MINIFONT text.

key: f3 Description Sample Screenshot
row1: a[a], c[a], d0/d0[0-7]
row2: b[a], d[a], d1/d1[0-7]
row3: instruction 1 p, cry, mode
row4: instruction 2 st
row5: instruction 3 hst
row6: instruction 4 r0[a]
row7: instruction 5 r1[a]
row8: instruction 6 r2[a]
row9: instruction 7 r3[a]

row10: instruction 8 r4[a]
row11: instruction 9 rstk 1
row12: instruction 10 rstk 2
row13: instruction 11 rstk 3

key: f3 Description Sample Screenshot
row1: mnemonic
row2: pc, p, cry, hex/dec mode, st
row3: r0[w]
row4: r1[w]
row5: r2[w]
row6: r3[w]
row7: r4[w]
row8: top 3 levels of rstk
row9: next 3 levels of rstk

row10:

5.4.4 Screen 4 – Data Pointers

Screen 4 actually has three different views, all of which deal with the two data
pointers D0 and D1. The F4 key will switch to Screen 4 if it is not already in
view. Otherwise, it will switch to the next view of Screen 4.

For all three views, the √
x key may be used to change the view to show

information for both D0 and D1, or only one of the two. Each screen may also
have additional options. However, none have larger font equivalent.

31

5.4.5 Screen 4.1 – Data Stream

key: f4 Description Sample Screenshot
row1: d0 memory dump
row2: d0 ascii stream
row3: ..
row4: ..
row5: ..
row6: ..
row7: ..
row8: d1 memory dump
row9: d1 ascii stream

row10: ..
row11: ..
row12: ..
row13: ..

5.4.6 Screen 4.1 – RPL Stream

key: f4 Description Sample Screenshot
row1: d0 rpl stream
row2: ..
row3: ..
row4: ..
row5: ..
row6: ..
row7: ..
row8: d1 rpl stream
row9: ..

row10: ..
row11: ..
row12: ..
row13: ..

• yx 0-8 will show RSTK level n instead of D0.

5.4.7 Screen 4.3 – Data Table Stream

key: f4 Description Sample Screenshot
row1: d0 table stream
row2: ..
row3: ..
row4: ..
row5: ..
row6: ..
row7: ..
row8: d1 table stream
row9: ..

row10: ..
row11: ..
row12: ..
row13: ..

• 0 ... √
x will toggle the table format.

• yx 0-8 will show RSTK level n instead of D0.

• TOOL 3 toggles ascii/hexadecimal constants.

32

5.4.8 Screen 5 – Memory Dump

key: f5 Description Sample Screenshot
row1: locations 05990-0599f
row2: locations 059a0-059af
row3: locations 059b0-059bf
row4: locations 059c0-059cf
row5: locations 059d0-059df
row6: locations 059e0-059ef
row7: locations 059f0-05aff
row8: locations 05a00-05a0f
row9: locations 05a10-05a1f

row10: locations 05a20-05a2f
row11: locations 05a30-05a3f
row12: locations 05a40-05a4f
row13: locations 05a50-05a5f

key: f5 Description Sample Screenshot
row1: locations 05990-0599f
row2: locations 059a0-059af
row3: locations 059b0-059bf
row4: locations 059c0-059cf
row5: locations 059d0-059df
row6: locations 059e0-059ef
row7: locations 059f0-05aff
row8: locations 05a00-05a0f
row9: locations 05a10-05a1f

row10: locations 05a20-05a2f

5.4.9 Screen 6 – ML Instruction Stream

key: f6 Description Sample Screenshot
row1: instruction 1
row2: instruction 2
row3: instruction 3
row4: instruction 4
row5: instruction 5
row6: instruction 6
row7: instruction 7
row8: instruction 8
row9: instruction 9

row10: instruction 10
row11: instruction 11
row12: instruction 12
row13: instruction 13

key: f6 Description Sample Screenshot
row1: instruction 1
row2: instruction 2
row3: instruction 3
row4: instruction 4
row5: instruction 5
row6: instruction 6
row7: instruction 7
row8: instruction 8
row9: instruction 9

row10: instruction 10

33

5.4.10 Screen 7 – General CPU State & Breakpoints

key: apps Description Sample Screenshot
row1: mnemonic brk1
row2: opcode brk2
row3: cycles/total cycles brk3
row4: pc, p, cry, mode, st brk4
row5: a[a], c[a], mp, sr brk5
row6: b[a], d[a], sb, xm brk6
row7: d0/d0[0-11] brk7
row8: d1/d1[0-11] brk8
row9: top 3 levels of rstk, r0[a]

row10: r1[a], r2[a], r3[a], r4[a]
row11:
row12:
row13:

5.4.11 Screen 8 – Watchpoints

key: var Description Sample Screenshot
row1: watchpoint 1
row2: watchpoint 2
row3: watchpoint 3
row4: watchpoint 4
row5: watchpoint 5
row6: watchpoint 6
row7: tempob bottom watchpoint
row8: tempob top watchpoint
row9: rpl return stack watchpoint

row10: rpl data stack watchpoint
row11:
row12:
row13:

key: var Description Sample Screenshot
row1: watchpoint 1
row2: watchpoint 2
row3: watchpoint 3
row4: watchpoint 4
row5: watchpoint 5
row6: watchpoint 6
row7: temptop, dsktop
row8: tempbot, rsktop
row9:

row10:

• Watchpoints 1-6 are changeable, but are initialized by DB to 0 for watch-
points 1-4, to (=IRAMBUFF)+11 for watchpoint 5, and to =uart_buffer

for watchpoint 6.

• Watchpoints 7-10 are not changeable, but are updated continuously.

5.5 Debugging with DB

At the lowest level the debugger works by storing the current instruction into
an execution buffer and storing a jump back into DB after that instruction.

34

When stepping, the current registers are restored from MLDLpar, then a jump
to the execution buffer is made, and the jump back then causes the possibly
changed registers to be saved back into MLDLpar. The debugger will even
execute the hardware bug in the A=A+CON and similar instructions on the HP48
series.7 Although all new opcodes available to the HP49G+ and HP50G are
also properly handled by DB, care should be taken when debugging unsupported
ARM opcodes.

Obviously the method does not work for opcodes which change the PC. Such
instructions are merely emulated separately by special code for each instruction.
The end result will, of course, be exactly what the user expects; the CPU
status is correctly changed. For actual debugging DB offers various methods to
advance the machine language execution

• The “StepIn”-key (+) executes a single opcode.

• The “Step”-key (−) is similar to the “StepIn”-key except that subroutine
calls are executed as if they were a single opcode.

• The “RunIn”-key (×) is similar to “StepIn”-key, but the debugger keeps
running with display updates until aborted with the ON-key or until a
specified number (ARG) instructions have been executed.

• The “Run”-key (÷) is a similar variant for the “Step”-key.

• The “Eval”-key (EVAL)returns full control to the program by letting it run
freely. This differs from the above debugging keys so that only breakpoints
set to RAM are recognized. The stepping keys compare the current ad-
dress against the set breakpoints after each step and thus can catch break-
points even in ROM. However since here the full control is returned to the
program itself only breakpoints directly in the program can be found, this
naturally means the program must be in RAM so that the breakpoints can
be stored. If no breakpoints are encountered in the evaluation the control
returns to whatever program called the debugger, be it for example the
internal system loop or the SDB debugger.

To exit the debugger one can use the “Eval”-key to let the program finish, or
one might use one of the direct exit keys

• The “ExitNow”-key (⇐) assumes the current CPU status is fine and
executes the LOOP sequence to exit to RPL. Obviously this can be danger-
ous if the RPL status registers are not in place, or if the program hasn’t
completed any possible environment changes it has been doing.

• The “Exit”-key (TAN) restores the RPL status registers to the values
which they had at the start of DB, and then executes the LOOP sequence
to exit to RPL as if nothing has happened. If the program hasn’t changed
the RPL environment in any way, for example by allocating an object,

7This bug has since been fixed in ROM 2.15 on the HP49G+ and HP50G.

35

then this is a fast and clean way to exit the debugger. However if the
environment has changed then this, like the previous method, can cause
crash.

• If the user knows the debugged program has made a fatal error then he
should not let the control pass back to RPL again. To avoid memory loss
one should then press the “Reset”-key (1/x) which causes a warmstart.
To prevent accidents though this key must be pressed twice, any other
key would abort the reset. Note that ON-C can also be used unless it is
specifically disabled by the program.

5.6 DB Regular Mode Keyboard

Screen 1 Screen 2 Screen 3 Screen 4 Screen 5 Screen 6

Screen 7 SetBrkHere SetOpt: pc -= 16

Screen 8 Skip pc -= 1 pc += 16 pc += 1

Eval EditRegs ExitNow

SetStk: SaveRegs SwapRegs Exit

ViewPict mark↔pc Reset Run

Help RunIn

Step

StepIn

Arg SetMark Redraw

5.7 Movement in DB

Backward scrolling in machine language streams is a very complex task, and
(at best) very prone to errors. Movement within a machine language stream is
limited to the following basic tasks.

36

• The cursor keys, with an optional ARG multiplier, modify the PC by a
given amount. For example the down-arrow does not scroll down to the
next instruction; it merely adds 16 to the current PC.

• Forward skipping is done with the “Skip”-key (NXT).

• “SetMark”-key (·) sets a mark at PC (or ARG), the PC and the mark
can then be swapped by using the “mark↔pc”-key (+/−).

5.8 Register Save Buffer

DB saves all the registers into a special register save buffer. New register con-
tents can be saved at any time, or the contents of the save area can be swapped
with the current CPU registers at any time, thus providing a primitive “undo”-
feature. One should note though that only the CPU status can be saved, not
the RAM variables or anything from calculator memory for that matter. Thus
one cannot undo any changes in the RPL environment, using the undo-key for
example after a data allocation could cause a crash if debugging is continued as
if nothing has happened.

The feature is useful for studying the register usage of ROM code. One can
save the registers (“SaveRegs”-key, SIN) before single-stepping a subroutine,
and then press the “SwapRegs”-key (COS) repeatedly to see what registers
have been changed. Naturally one cannot count on this analysis too much.
Disassembling the subroutine is always a more accurate method for obtaining
this information.

5.9 Breakpoints

Up to eight breakpoint addresses can be set. The breakpoints are stored in a
separate table in MLDLpar, and whenever the debugger is about to single step
something it will first check if a breakpoint is set to the current PC. If so, a
breakpoint message is displayed and debugging is aborted.

The table-comparison method does not work, though, when a breakpoint has
been set into a subroutine which is stepped as a single entity with the “Step” or
“Run” instructions. Thus DB stores a special breakpoint jump into DB at such
breakpoint addresses. Naturally this works only when the debugged program is
in RAM.

Breakpoints are set as follows

• “SetBrkHere” (MODE) sets a breakpoint at the current PC.

• “SetBrkAddr” (MODE) sets a breakpoint at the address given as ARG.

• “SetBrkCntr” (STO) sets a breakpoint counter to zero (or ARG). The
breakpoint number is given by pressing 1-8 .

37

5.10 DB Arguments

Several of the DB keys accept an optional argument which can serve as a repeat
count, or will alter the behavior of the key completely. Argument editing is
started by pressing the 0 -key, after which the following keyboard is in effect.

A B C D E F

SetBrkAddr ShowBinary pc -= 16

SetBrkCnt Skip N pc -= 1 pc += 16 pc += 1

EditAt BackSpace

SetFormat SetCycles SetTotal Abort

AddPC Negate Run N

7 8 9 RunIn N

4 5 6 Step N

1 2 3 StepIn N

Abort 0 SetMarkAtN Redraw SetPC

5.11 Cycle Counters

The debugger maintains two cycle counters which can be set to any value at any
time. The counters are named after the purpose for which they were designed.

Cycles This counter is intended for measuring cycle counts for individual code
segments or subroutines. “SetCycles”-key can be used to set a value to it,
in particular using a zero-ARG will initialize it to zero.

Total This counter is intended for measuring cycle counts for larger entities,
such as a collection of subroutines. “SetTotal”-key can be used to set a
value to it.

38

The cycles for each opcode are not those given by SASM.DOC but were measured
with a special program which is able to determine the effects of even and odd ad-
dresses. The counts have been scaled by four to avoid units of 0.25 cycles in the
display. If the cycle count for some opcode could be determined experimentally,
DB will use zero cycles.

5.12 Register Editing

Register editing in DB is initialized by pressing the “EditRegs”-key (’), after
which the debugger expects another keypress to choose the register for edit-
ing. The possible choices are summarized below; any other key aborts register
editing.

A[W] B[W] C[W] D[W] D0 D1

DAT0 HEX/DEC

DAT1

P

SB ST

CRY XM

R4[W]

R1[W] R2[W] R3[W]

R0[W] CRC @PC

Some of the choices contain merely a flag, in which case the flag is merely toggled
(HEX/DEC , CRY , SB and XM). Another special choice is CRC which does not
imply the hardware CRC, but a library CRC. Based on the current PC the
debugger will try to find the library the user is debugging. If one is found, then
one can edit the CRC. The debugger automatically prompts the user with a
calculated value, this should be especially useful when poking simple fixes in

39

libraries. Once a register has been chosen the following keys can be used to edit
the register contents.

RotLeft

Left RotRight Right

Left

Clear

Not Neg Reset ÷16

×16

÷2

×2

Abort Save & Exit

40

6 System RPL Debugger

SDB is a system RPL debugger, not a user RPL debugger. There is no special
code to debug user RPL commands, consequently some of them will not be
single stepped correctly. One example is xHALT, for which the substitute xSHALT
command is provided.

Debugging SRPL is a very complicated task and undoubtedly SDB cannot
debug some lesser known commands correctly. If such commands are encoun-
tered SDB can even cause a crash and memory loss. This is unfortunately
unavoidable since there really is too much code in ROM to worry about. SDB
should manage to debug most normal programs though.

SDB either enters into programs or executes them (by emulation for known
tricky programs). None of the interactive commands in ROM are emulated, in
particular ParOuterLoop. To emulate it one must insert SHALT commands
into the ParOuterLoop parameter programs, then start SDB and use CONT to
reach the points where the SHALT commands are.

6.1 SDB Command

Command: SDB
Description: Debug SRPL program. If the debugger is already

running, then show the SDB menu.
Stack: seco →

id →
lam →
romptr →

6.2 SDB Menu

When started SDB will show a menu of the following commands. If lost during
debugging the menu can always be recovered by executing SDB again.

→SST Single step next command in RPL stream. If right-shifted
then single-steps rest of the stream as a single unit.

→IN If possible then enter the program referred to by the next
command, else single step it.

SNXT Show next commands on status area. If pressed for a second
time shows the RPL return stack.

SST→ Starts continuous →SST mode, subsequent presses toggle
slow/fast mode, e.g. whether stack display is updated after
each step or not. Any other key aborts continuous evalua-
tion.

IN→ Starts continuous →IN mode.
DB Start DB on next code or PCO object in stream.

41

SKILL The SDB equivalent of the KILL command, which restores
user settings prior to running SDB. For this reason, the
built-int KILL should NOT be used

SKIP Skip next command. If right-shifted then skips rest of the
current stream, e.g. executes a SEMI.

SEXEC Excecute program on stack level 1 as the “next” command.
SBRK Set object on stack level 1 to be a breakpoint object. If

right-shifted clears breakpoint object.
LOOPS Browse loop environments. Up/down keys scroll display,

any other key exits. If right-shifted dumps the topmost
loop environment to the stack.

LAMS Browse lambda environments. Up/down keys scroll display,
left/right keys decrease/increase environment depth, any
other key exits. If right-shifted dumps topmost lambda
environment to the stack.

IN? Toggles →IN mode to never enter into secondaries, only
into ID’s, LAM’s and ROMPTR’s when allowed. Prevents the
debugger from entering into ROM subroutines during con-
tinous debugging.

42

7 Entries Catalog

The EC command enables browsing the entries in extable. As opposed to the
assembler and disassembler EC does extable to be present.

Command: EC
Description: Entries table browser.
Stack: →

For each entry the browser shows the entry address, the entry name and the
entry type based on the Table 12. The entries themselves can be sorted alpha-
betically or by address (default). For all commands the entry being selected is
always the one topmost in the display.

Key Description

4 Move up one entry.

5 Move down one entry.

LS 4 Move up one page.

LS 5 Move down one page.

RS 4 Move up to first entry.

RS 5 Move down to last entry.

B If grob entry call VV else disassemble and call ED to view.

F1 Toggle alphabetical and address sorts.
F2 Toggle substring and exact match modes.
F3 View stack diagram. Requires SDIAG package.
F4 Toggle entry type.
F6 Input string and find match in current match mode.
α Input string and find match in current match mode.

NXT Find next match in current match mode.
LS NXT Find previous match in current match mode.

EEX Toggle normal and grep modes. In grep mode only matches
to the last search string are displayed.

ENTER Push entry address to the stack tagged with the name.
’ Push entry address to the stack tagged with the name.

LS ENTER Push entry address to the stack.
EVAL Push entry address to the stack.

RS ENTER Push entry name to the stack.
SYMB Push entry name to the stack.

0-9 Find entry starting with input address. Use 0-9 to specify
more digits in the address.

+/− Toggle beep on/off.

ON Exit the entries browser.

Table 11: Entries catalog keys

43

Type Prolog Display

Integer DOINT INT

Long Real DOLNGREAL L%

Long Complex DOLNGCMP LC%

Matrix DOMATRIX [M]

Flash Pointer DOFLASHP FPTR

Minifont DOMINIFONT MFNT

Binary Integer DOBINT #

Real Number DOREAL %

Extended Real DOEREL %%

Complex Number DOCMP C%

Extended Complex DOECMP C%%

Character DOCHAR CHR

Array DOARRY []

Linked Array DOLNKARRY [L]

Character String DOCSTR $

Hex String DOHSTR HXS

List DOLIST {}
Directory DORRP RRP

Symbolic DOSYMB SYMB

Unit DOEXT EXT

Tagged DOTAG TAG

Graphics DOGROB GROB

Library DOLIB LIB

Backup DOBAK BAK

Libdary Data DOEXT0 EXT0

Access Pointer DOACPTR APTR

External 2 DOEXT2 EXT2

External 3 DOEXT3 EXT3

External 4 DOEXT4 EXT4

Program DOCOL ::

Code DOCODE CODE

Identifier DOIDNT ID

Temporary Identifier DOLAM LAM

ROM Pointer DOROMP ROMP

Primitive Code Object (*)+5 PCO

Type #1111h Pointer #11111h @1x5

Unprologued Pointer (address) SRPL

Machine Language ML

Other ML

Table 12: Displayed entry types in EC

44

8 Editor

ED is an editor intended for editing system RPL and machine language source
code and thus has many keys for this special purpose. The editor can neverthe-
less easily be used as a general purpose editor.

Command: ED
Description: Editor.
Stack: $ → $’

$ %position → $’
ob → ob’

Command: TED
Description: Text editor.
Stack: $ → $’

ob → ob’

ED makes no duplicate of the string being edited if it is in temporary object
area; it can edit very large strings, almost the size of available RAM. Note
that this implies any changes made to the string cannot be recovered, if one for
example has multiple copies of the string on stack they all change at the same
time. If one wishes to keep a copy of the original one must store it for example
in the HOME directory.

If the input is not one of the standard string input combinations JAZZ
will automatically assume stack one has to be decompiled for editing, and will
then be assembled when the editor exits. Any error generated in the assembly
phase will cause the editor to restart at the error position. TED is an alternate
interface to the editor itself which assumes the object is user level instead of
system level – meaning the built-in decompiler and compiler will be used instead
of the JAZZ disassembler and assembler.

While ED is very fast, it has to do special display adjustment calculations
whenever the display is scrolled in order to support tabulation. Thus scrolling
the display when very long lines are in view can appear to be slower.

The optional cursor position argument is compatible with the error position
output of the ASS assembler. Thus if the assembler generates an error and its
position starting ED will automatically put the cursor at the error location.

Sample ED Session Status Screen

45

8.1 Editor Mode Keys

Key Acronym Description
MODE Status Display editor status page.

EEX TogBeep Toggle beep on/off.
LS α TogCase Toggle upper/lower case.
RS α TogOver Toggle insert/overwrite mode.

+/− TogSpeed Toggle normal/fast mode.

The status screen shows typical editing information. ED also maintains a
stack of DOB calls 256 levels deep, and the current flash bank disassembled by
DOB (see screenshot above).

8.2 Cursor Movement Keys

All cursor keys behave as described below regardless of alpha mode. Thus B

and α B behave the same.

Key Acronym Description
C Left Move cursor left.
B Right Move cursor right.
4 Up Move cursor up.

5 Down Move cursor down.

LS C WordLeft Skip word to the left.
LS B WordRight Skip word to the right.
RS C LineStart Jump to start of line.
RS B LineEnd Jump to end of line.
LS 4 PageUp Jump up one page.

LS 5 PageDown Jump down one page.

RS 4 TextStart Jump to start of text.

RS 5 TextEnd Jump to end of text.

8.3 Editing Keys

Unlike the HP48 series, the HP49G+ and HP50G do not have a dedicated
delete key. This version of JAZZ implements the DEL key found on the HP48
calculators as the TAN key. Whereas the key combinations below for the ⇐

work regardless of the alpha mode, those associated with the TAN key are only
valid when alpha lock is off.

Key Acronym Description
TAN Del Delete character under cursor.

LS TAN CutLine Cut current line.
RS TAN CutRight Cut rest of current line.

⇐ BackSpc Delete previous character.
LS ⇐ CutWordLeft Cut word to the left.
RS ⇐ CutWordRight Cut word to the right.

46

8.4 Block Keys

Block is a segment marked by two block delimiters. When both delimiters are
set and the delimiters are properly ordered so that the end delimiter comes after
the start delimiter the editor will show the block in inverse video. The clip is
a saved segment of text which is not directly visible. Cutting refers to deletion
where the deleted area of text is saved in the clip. When a command refers to
block/clip the block is always selected if one has been marked.

Key Acronym Description
RS APPS BlockStart Mark start of block at cursor.

RS MODE BlockEnd Mark end of block at cursor.
RS VAR BlockCopy Copy block/clip to cursor position.

or RS NXT

RS STO BlockCut Copy block to clip and then delete it.
LS APPS BlockUp Mark end of block at cursor, start of

block at start of text.
LS MODE BlockDown Mark start of block at cursor, end of

block at end of text.
STO BlockSwap Swap clip and text.

F4 BlockDel Delete block.
LS VAR BlockKeep Delete all but block.
LS HIST BlockPush Push block/clip to the stack.
LS STO BlockPop Pop string from stack to cursor posi-

tion.
1/x BlockRev Reverse characters in block.

APPS BlockToHex Convert block to hexadecimal.
VAR BlockToAsc Convert block to ascii.

8.5 Searching and Replacing Keys

All find keys are incremental, e.g. the display a new match is sought as soon as
the find string is changed. Find and replace keys normally act forward, starting
at the cursor. The global replace keys, however, replace matches in the entire
text and then return to the starting cursor position when done.

Key Acronym Description
F6 Find Find.

NXT FindNext Find next match.
LS NXT FindPrev Find previous match.

LS F6 Repl? Find/replace with verification.
RS F6 ReplAll Find/replace all.
LS F5 GlobalRepl? Global find/replace with verification.
RS F5 GlobalRepl Global find/replace.

47

The replace keys asking for verification will display the current match in
inverse video and offer a menu of choices. The choices are

YES Replace the match.
ALL Replace this and all following matches.
NONE Do not replace any matches.
NO Do not replace current match.

8.6 Marking Keys

The editor offers nine marks which can be set at any text position. In addition
“mark 0” is used to indicate the cursor position before the last operation.

Set a mark: Press left-shift followed by a digit 1-9.
Jump to a mark: Press right-shift followed by a digit 1-9.
Jump to last position: Press right-shift followed by 0.

8.7 Editor Macros

The editor allows defining a single macro which can be up to 50 keys long.
Macro definition is started by pressing the “MacroStart” key and is ended by
pressing the “MacroDo” or “MacroEnd” keys. If an error occurs during the
macro definition the macro save is aborted. If an error occurs during macro
evaluation the macro execution is aborted.

Key Acronym Description
TOOL MacroDo Execute macro.

LS TOOL MacroStart Start macro definition.
RS TOOL MacroEnd End macro definition.

8.8 Editor Counter Keys

Key Acronym Description
F1 CntrInit Initialize counter value, range and type. If the input-

line starts with the character “#” the counter type
will be hexadecimal, else decimal. The number of
digits determines the range of the counter so that
when the maximum value is exceeded the counter
goes to zero. The digits themselves form the initial
value of the counter.

F2 CntrOut Inserts the current counter into text in the current
format and increments the counter.

48

Below is an example producing line numbers using the macro editor as well as
the counter.

TextStart Jump to start of text
CntrInit 001 ENTER Assuming there are less than 999

lines
MacroStart Start defining a macro
CntrOut Output the first value
Space Press space to separate the value

from text
LineStart Back to start of line
Down To next line
MacroEnd End macro
Arg? 999 ENTER Input repeat count
MacroDo And repeat the macro

Assuming there are less than 999 lines the macro execution would cause an
error at the bottom of text (the cursor cannot be moved down) and the macro
execution would automatically stop. Alternatively the key-repeater and macro
execution can both be abortered with the ON-key.

8.9 Character Catalog

Not all characters have an assigned key in the keyboard, thus the editor provides
a character catalog which can be invoked with RS EVAL both from regular mode
and during input line editing.

Key Acronym Description
C CatLeft Move cursor left.
B CatRight Move cursor right.
4 CatUp Move cursor up.

5 CatDown Move cursor down.

RS C CatFarLeft Move cursor to start of row.
RS B CatFarRight Move cursor to end of row.
RS 4 CatFarUp Move cursor to far toprow.

RS 5 CatFarDown Move cursor to bottom row.

ENTER CatEnter Echo character to text/input line.
ON CatExit Exit character catalog.

The catalog will show the full character set, 32 characters in each row. Below
the character set display is the character information line which shows

• the possible key to which the character is assigned

• the character itself

• the character code in hexadecimal, decimal and binary

49

8.10 Editor Inputline

The following keys all input information from the user before doing their specific
operations

Key Acronym Description
X Row? Goto-row

RS ÷ Arg? Repeat next key N times.

LS ÷ Pos? Goto-cursor-position

LS EVAL Char? Echo character code.

During the input line the following keys are active

Key Acronym Description
C InputLeft Move cursor to left.
B InputRight Move cursor to right.

RS C InputFarLeft Move cursor to start of inputline.
RS B InputFarRight Move cursor to end of inputline.

DEL InputDel Delete character under cursor.
⇐ InputBackSpace Delete previous character.

RS EVAL InputCatalog Start character catalog.
5 InputWord Initialize inputline to word under cursor.

NXT InputNext During search finds next match.
LS NXT InputPrev During search finds previous match.

ENTER InputExit Accept inputline.
ON InputAbort Abort inputline.

8.11 Editor Programming Keys

The editor defines several keys which are were designed to make the editor
especially useful for programming. These include simple keys for some often
uses phrases, such as assembly language calls and jumps and RPL delimiters,
keys for visiting the entries catalog, filling up entry names from the entry tables,
temporarily visiting the stack environment, assembling the text, disassembling
entries in the text and studying them in a new editor etc.

Key Acronym Description
LS ’ MATRIX Insert indented MATRIX ; into text.
RS ’ SYMBOL Insert indented SYMBOL ; into text.

RS − ASS-RPL Insert ASSEMBLE-RPL into text.

α RS · :: ; Insert :: ; into text.
α RS − $ "" Insert $ "" into text.

α LS + {} Insert indented {} into text.

α RS + << >> Insert indented � � into text.

α LS SPC CODE-END Insert CODE-ENDCODE into text.

50

Key Acronym Description
yx GOTO Insert GOTO into text.

LS yx GOLONG Insert GOLONG into text.

RS yx GOVLNG Insert GOVLNG into text.
√
x GOSUB Insert GOSUB into text.

LS
√
x GOSUBL Insert GOSUBL into text.

RS
√
x GOSBVL Insert GOSBVL into text.

SIN GOYES Insert GOYES into text.
LS SIN GONC Insert GONC into text.
RS SIN GOC Insert GOC into text.

COS RTN Insert RTN into text.
LS COS RTNNC Insert RTNNC into text.
RS COS RTNC Insert RTNC into text.

8.12 Editor Subprogram Keys

Key Acronym Description
LS ENTER ASS Assemble text. If assembly succeeds ED exits,

else the error message is shown until a key press
and the cursor is moved to the error location.

RS SYMB DOB Disassemble object under cursor and view the dis-
assembly in a new editor. To come back simply
exit the new editor.

SYMB ECCAT Start entries catalog in alphabetical mode. Any
data pushed from the catalog is is inserted into
the cursor position.

EVAL ECFILL This key will attempt to fill the word under cursor
with the best match from the entries tables. If
there is only one possible match ED will just fill-
up the word. If there are more than one possible
expansions then the word is expanded to longest
possible length and a single beep is given. If there
are no possible matches at all then two beeps are
given.

HIST STK Start internal system loop. The calculator is fully
functional, including the possibility of starting a
new editor. To come back to the editor press the
CONT-key.

F3 SDIAG Show SDIAG information for term under cursor.
F5 DFIND Find matching delimiter for the delimiter under

cursor. This works for the usual SRPL compos-
ite delimiters, the user RPL � and � delimiters
as well as CODE-ENDCODE, DIR-ENDDIR and
ASSEMBLE-RPL pairs.

51

The special tokens understood by the DOB-key are

Tokens Description
#<hex> Generates disassembly of address.
L<hex> Generates disassembly of address.
PTR <hex> Generates disassembly of address.
ROMPTR <hex> <hex> Generates disassembly of ROMPTR.
FPTR <hex> <hex> Generates disassembly of the flash pointer.
FPTR2 <fptrname> Generates disassembly of the flash pointer.
ID <name> The contents are disassembled, edited, assembled

and stored back.
LAM <name> The contents are disassembled, edited, assembled

and stored back.
INCLOB <name> The contents are disassembled, edited, assembled

and stored back.
INCLUDE <name> The text contents are edited and stored back.
GROB <hex> <hexbody> View the grob on top of the text.

52

8.13 Editor Keyboard Layout

8.13.1 Non-shifted Keyboard

CntrInit CntrOut BlockDel DFIND Find

BlockToHex Status MacroDo Up

BlockToAsc BlockSwap Left Down Right

STK EDFILL ’ ’ ECCAT BackSpc

GOTO GOSUB GOYES RTN Del

TogBeep TogSpeed Row? BlockRev /

AlphaOn 7 8 9 *

LeftShiftOn 4 5 6 −

RightShifOn 1 2 3 +

ON 0 . Space Exit

53

8.13.2 Left Shift Keyboard

GlobalRepl? Repl?

BlockUp BlockDown MacroStart PageUp

BlockKeep BlockPop WordLeft PageDown WordRight

BlockPush Chr? MATRIX DOB@ CutLine

GOLONG GOSUBL GONC RTNC CutWordLeft

6= ≤ ≥ Pos?

TogCase SetMark7 SetMark8 SetMark9 []

LeftShiftOff SetMark4 SetMark5 SetMark6 ()

RightShifOn SetMark1 SetMark2 SetMark3 {}

∞ :: π ASS

54

8.13.3 Right Shift Keyboard

GobalRepl ReplAll

BlockStart BlockEnd MacroEnd TextStart

BlockCopy BlockCut BlockCopy LineStart TextEnd LineEnd

ChrCat SYMBOL DOB CutRight

GOVLNG GOSBVL GOC RTNC CutWordRight

== < > Arg?

TogOver GoMark7 GoMark8 GoMark9 ””

LeftShiftOn GoMark4 GoMark5 GoMark6 ASSEMBLE

RightShiftOff GoMark1 GoMark2 GoMark3 � �

OFF → NewLine ,

55

8.13.4 Alpha Shift Keyboard

A B C D E F

G H I Up

J K L Left Down Right

M N O P BackSpc

Q R S T U

V W X Y Z

AlphaOff 7 8 9 *

LeftShiftOn 4 5 6 −

RightShiftOn 1 2 3 +

0 . Space IndEnter

56

8.13.5 Alpha Left Shift Keyboard

a b c d e f

g h i PageUp

j k l WordLeft PageDown WordRight

m n o p CutLine

q r s t u

v w x y z

TogCase 7 8 9 []

LeftShiftOff $ £ ¡ ()

RightShiftOn % ; # {}

!NO CODE :: ; CODE &

57

8.13.6 Alpha Right Shift Keyboard

α β ∆ δ ε ρ

| TextStart

LineStart TextEnd LineEnd

µ λ ‘
∏

∧
√

σ θ τ

ω = < > /

TogOver $ ””

LeftShiftOn (euro) \ (angle)

RightShiftOff ∼ ! ? � �

→ Newline Tabulator @

58

9 String and Grob Viewers

The string viewer is obsolete with ED. The grob viewer uses a “grob!” replace-
ment with automatic cutting at the display borders. Masking grobs less than
4 bits wide is not properly implemented yet, thus grobs that narrow may appear
strange or even vanish from the display. As a special feature VV recognizes the
AGROB fancy print decompiler which exists for example in Eqstk and Java
libraries. This feature is somewhat obsolete since fancy print is built-in on the
HP49G+ and HP50G although there are arguably significant differences in
how algebraic objects are decompiled.

Command: VV
Description: String and grob viewer.
Stack: $ → $

grob → grob
ob → ob

9.1 String Viewer Keys

Start PageUp End

PaeLeft PageDown PageRight Left Down Right

Slow

Fast

Exit Exit

59

9.2 Grob Viewer Keys

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5 Speed 6

Up

Left Down Right

Slow

Fast

Exit Exit

60

10 Entry & Memory Utilities

The HP49G+ and HP50G port of JAZZ no longer supports entry table gen-
eration on the calculator itself since these tables are now so large that building
them on the calculator is no longer efficient. However, JAZZ still maintains the
entry conversion command EA.

Command: EA
Description: Convert between entry addresses and entry names.
Stack: $entry → hxs address

hxs address → $entry
ob → hxs address

JAZZ also provides two new hidden commands for studying the ROM. The
built-in command PEEK calls a flash pointer that is supposed to peek into ROM
and copy the underlying nibbles into a string object. Since the system handles
flash pointers by switching to the appropriate flash bank, peeking into ROM
in the address range #40000h – #7FFFFh results in erroneous output (it will
always return the data from the flash bank called by PEEK). JAZZ provides
an equivalent, hidden command that avoids this problem:

Command: Peek
Description: Full-ROM equivalent of PEEK.
Stack: hxs address hxs length → $nibbles

Command: FPTR→
Description: Disassembles a flash pointer.
Stack: fptr → $ hxs addressend
Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

61

11 SRPL Stack Display

The SSTK command starts a new loop to replace the built-in stack display
with one which uses the JAZZ disassembler to display the lines. Most of the
functionality remains exactly the same as in the internal loop, however the error
handler has been coded to resemble that of the HP48 series. To exit SSTK
simply execute it again.

Command: SSTK
Description: System RPL stack display.
Stack: →

62

12 Minifont Editor

Since ED as well as several screens of DB make use of the MINIFONT, JAZZ
now provides a utitlity to modify the system MINIFONT via MFED. The
editor is essentially the same as built-in character catalog.

Command: MFED
Description: Minifont editor.
Stack: minifont → minifont’

Sample MFED Session

While editing, use the cursor keys to highlight the desired character. Press
F4 to begin editing the character. Although the editor uses a 6 × 6 grid, all

characters will be cropped down to the leftmost 6 × 4 pixels. The other two
menu labels are disabled. Press ENTER to save the changes, or ON to abort all
changes.

63

A Library source code example

The following source code example is for a simplified version of my personal
’crash’-library which sets up my favourite user-keys and flags after a warm-
start. Note especially that several of the key assignments come from the HACK
library, so it has to be installed in order to assemble the source code.

* Disable flag define

DEFINE fDISABLE 64

* Unsupported entries

ASSEMBLE

=CONTRAST EQU #00101 * Contrast register

=’EvalNoCK: EQU #18F6A * Strip CK<n> from next

=StoUserKeys EQU #41E32 * Store user keys

=FIRSTPROC EQU #7067E * Hook to first program executed

=G_FIRSTPROC EQU #807FC * after warmstart.

RPL

* Library starts

xROMID 4 (Typical crash-library romid)

** No title - library won’t show up in library menu

xCONFIG CrashCfg

** No message table

* The following declarations are not necessary, they are here merely

* to emphasise the fact that the data objects have names. This is for

* convenience only as it enables easy editing of the output when

* splitting the library with for example L->DIR from the HACK library.

EXTERNAL xOwnKeys

EXTERNAL xOwnFlags

* The configuration object does all the work

LABEL CrashCfg

::

* Abort if disable flag is set

fDISABLE TestUserFlag ?SEMI

* Set favourite contrast

CODE

GOSBVL =SAVPTR Set contrast to value 14

D0=(5) =CONTRAST

LC(2) 14

DAT0=C B

GOVLNG =GETPTRLOOP

ENDCODE

* FIRSTPROC is not updateable, so we cannot use it safely

64

* when the library is covered

CODE

?C<B A PC below RPL return stack?

GOYES + Yes = library covered

+ GOVLNG =PushT/FLoop

ENDCODE

?SEMI

* Set FIRSTPROC - the program run after configuration loop finishes

’

::

’ StartupProc (Default FIRSTPROC)

>R ’R >R (’emulate’ first instructions..)

’REVAL (..which initialize internal variables)

xOwnKeys StoUserKeys (Set userkeys)

%2 InitMenu% (Set VAR menu)

xOwnFlags ’EvalNoCK: xSTOF (Set flags)

; (and drop into StartupProc)

CODE

GOSBVL =PopASavptr A[A] = ->prog

D0=(5) =IRAM@ RAM base address variable

C=DAT0 S C[S] = 7/8 for S/G

C=C+C S CRY set if G

D0=(5) =FIRSTPROC SX value

GONC + Skip if S

D0=(5) =G_FIRSTPROC GX value

+ DAT0=A A Store ->prog

GOVLNG =GETPTRLOOP

ENDCODE

;

** Own flags **

ASSEMBLE

CON(1) 8 *Regular command*

RPL

xNAME OwnFlags

{ HXS 10 0FF05819C0300083 (System flags)

HXS 10 0000000000000010 (User flags)

}

** Own userkeys **

DEFINE NO NULL{} (Shorthand)

ASSEMBLE

65

CON(1) 8 *Regular command*

RPL

xNAME OwnKeys

{ NO NO NO NO NO NO NO

{ NO NO xEC NO NO NO } (PRG)

NO NO NO NO

{ NO xUP NO NO NO NO } (’)

{ xXSTO xSTOX xXRCL NO NO NO } (STO)

{ NO xCOERCE NO NO NO NO } (EVAL)

NO NO NO NO NO NO NO NO NO

{ NO xVV xED NO NO NO } (ENTER)

{ NO xASS xDIS NO NO NO } (+/-)

{ NO xPG xDOB NO NO NO } (EEX)

NO NO NO NO NO NO NO NO NO NO NO

NO NO NO NO NO NO NO NO NO NO NO

}

66

B JAZZ Command Index

Command: ASS
Description: Assemble source string
Stack: $ → ob

$ → $ %erropos
Keys: ON key aborts
Flags: 1 – Report mode on when set

7 – Do not use entry tables when set

Command: DIS
Description: Disassemble object.
Stack: ob → $
Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

4 – Machine language disassembly disabled when set.
5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

Command: DOB
Description: Disassemble object or machine language.
Stack: #address → $ hxs end

hxs start → $ hxs end
“entry” → $ hxs end

Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

Command: DISXY
Description: Disassemble memory area with end address guessing.
Stack: hxs start hxs end → $
Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

Command: DISN
Description: Disassemble n machine language instructions.
Stack: #address %n → $
Keys: ON key aborts
Flags: 5 – Tabulator disabled when set.

6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

67

Command: DB
Description: Debug machine language.
Stack: id →

romptr →
$entry →
#address →
hxs address →

Command: SDB
Description: Debug SRPL program. If the debugger is already

running, then show the SDB menu.
Stack: seco →

id →
lam →
romptr →

Command: SHALT
Description: SDB HALT command.
Stack: →

Command: SKILL
Description: SDB KILLcommand.
Stack: →

Command: EC
Description: Entries table browser.
Stack: →

Command: ED
Description: Editor.
Stack: $ → $’

$ %position → $’
ob → ob’

Command: TED
Description: Text editor.
Stack: $ → $’

ob → ob’

Command: VV
Description: String and grob viewer.
Stack: $ → $

grob → grob
ob → ob

68

Command: EA
Description: Convert between entry addresses and entry names.
Stack: $entry → hxs address

hxs address → $entry
ob → hxs address

Command: SSTK
Description: System RPL stack display.
Stack: →

Command: MFED
Description: Minifont editor.
Stack: minifont → minifont’

Command: DBHOOK
Description: Hidden command to initialize DB hooks.
Stack: →

Command: Peek
Description: Full-ROM equivalent of PEEK.
Stack: hxs address hxs length → $nibbles

Command: FPTR→
Description: Disassembles a flash pointer.
Stack: fptr → $ hxs address
Keys: ON key aborts
Flags: 2 – Guess mode disabled when set

5 – Tabulator disabled when set.
6 – Put labels on own rows when set.
7 – Entry tables disabled when set.

69

C Error Messages

C.1 General Error Messages

Invalid DBpar

DBpar variable is too short or corrupt. Purge it and restart DB

Lib Not Fixed

JAZZ does not work from a covered port.

RPL.TAB Missing

Command requires an existing RPL.TAB.

C.2 Assembler Error Messages

ACPTR is a G Object

Access pointers cannot be compiled on a S/SX.

Argument 0-15 Expected

Argument must be in the range 0-15.

Argument 1-16 Expected

Argument must be in the range 1-16.

Argument 1-256 Expected

D1=D1+ etc. expect an argument in the range 1-256.

Argument Field Expected

Instruction requires an argument.

Body Len Not Hex

Body length field must be hexadecimal.

Body Len Too Big

Body length field is too big.

Body Too Long

Body is longer than indicated by the length field.

Body Too Short

Body is shorter than indicated by the length field.

Branch Too Long

Branch target is too far for the instruction. May have to reverse the test
and use a jump instead.

Can’t INCLOB

Object was not found from the current path.

Can’t INCLUDE

Source string was not found from the current path.

70

Cannot Redefine Value

A symbol value assigned by “=” can only be changed by “=”.

DEFINE Depth Overflow

Define stack depth overflow, possible recursion.

DEFINE String Missing

The defined text for symbol is missing.

Division By Zero

Expression contains division by zero.

Duplicate Config

Configuration object label has already been declared.

Duplicate Label

Label has already been used.

Duplicate Message Table

Message table label has already been declared.

Duplicate Name

Library command with same name already exists.

Embedding Not Allowed

xROMID must be used before any code is assembled.

Empty Label

A label is expected after “=” and “:” in column 1.

Empty Macro

Macro contains no text.

ENDCODE Expected

ENDCODE is expected before end of source for the matching CODE.

ENDCODE Not Expected

Use RPL as matching delimiter for ASSEMBLE.

ENDM Missing

MACRO was used without a ENDM.
Expecting Hex Size

CODE must be followed by blank or a hexadecimal size field.

Expr Buffer Overflow

Expression is too complex for the parser.

EXT1 is a S Object

EXT1 objects cannot be compiled on a G/GX.

Field Selector Expected

A field selector is expected.

FPTR CMD > FFFF

FPTR CMD must be between #0h and #FFFFh.

71

FPTR ID > FFF

FPTR ID must be between #0h and #FFFh.

GOYES Expected

Previous instruction was a test, GOYES must be used next.

GOYES Without Test

Previous instruction was not a test.

Invalid #

Token is not a hexadecimal number.

INCLUDE Depth Overflow

Include stack depth overflow, possible recursion.

INCLUDE Ob Not String

Included variable must contain as string.

Invalid %

Invalid real number.

Invalid %%

Invalid extended real number.

Invalid APda

Hexadecimal access address is expected.

Invalid APaa

Hexadecimal access handler address is expected.

Invalid Asc Field

Argument cannot be decoded, probably due to an invalid escape sequence.

Invalid Binary Number

Invalid binary (base 2) number.

Invalid Body

Body contains non-hexadecimal characters.

Invalid C%

Invalid complex number.

Invalid C%%

Invalid extended complex number.

Invalid CHR

Invalid escape sequence used for the value of a character object.

Invalid Decimal Number

(not used)

Invalid Expression

Invalid expression. (Missing argument, ASCII not allowed etc.)

Invalid Hash Assignment

There is no library command for which to assign the secondary hash, or
the label is not used by a library command.

72

Invalid Hex Number

Invalid hexadecimal number.

Invalid Field Selector

Field selector must be one of P,WP,XS,X,S,M,B,W,A.

Invalid FPTR CMD

Second token after FPTR must be a hexadecimal value from #0h to
#FFFFh.

Invalid FPTR ID

Token after FPTR must be a hexadecimal value from #0h to #FFFh.

Invalid ID/LAM

Name part was not decoded correctly, probably due to an invalid escape
sequence.

Invalid LibID

Library number must be a hexadecimal number.

Invalid Mnemonic

Unknown mnemonic.

Invalid (N) Field

(N) field is non-decimal or is too big.

Invalid NIBB Length

Data segment length must be hexadecimal.

Invalid Operator

Expression is missing an operator.

Invalid PTR

A hexadecimal address is expected.

Invalid Reg Combination

The CPU has no instruction for the used register combination.

Invalid ROMID

Library number must be in the range #0 to #7FFh.

Invalid RomWd

Command number must be a hexadecimal number.

Invalid Scratch Reg

Scratch registers are R0, R1, R2, R3, R4.

Invalid String

Body of string was not decoded correctly, probably due to an invalid
escape sequence.

Invalid TITLE

Library title contains bad escape sequence.

Invalid Token

SRPL word was not recognized.

73

Invalid Use of Symbol

Symbol cannot be used in machine language.

Invalid ZINT

Integer contains non-decimal digits.

Label Already External

Symbol is already defined by the entries tables.

Label Already Defined

Symbol has already been used for a DEFINE.

Label Already Romptr

Label has already been used for a library command.

Label Expected

Instruction expects a label as argument.

Label Reserved

Symbol is a reserved word.

Length Too Big

Data segment length field is too big.

Macro Already Exists

Symbol has already been used for a MACRO.

MACRO Missing

ENDM was used without a MACRO.

Missing Body

A hexadecimal body is expected.

Missing String

Body of string object is expected.

Missing TagOb

A tagged object must have an object to tag.

Missplaced ; or }
The composite depth counter couldn’t match all delimiters, one (or more)
is probably missing.

More Tokens Expected

Multi-token segment requires more tokens.

Need Hex Field

A hexadecimal number is expected next.

No Program

No code was assembled.

Not Implemented

The token is not implemented.

Not in MAKEROM Mode

xROMID must be used before any other library tokens.

74

Relative Value

Argument must have absolute value, it cannot be a label.

ROMPTR LibID > FFF

Library number must be in the range #0 to #FFFh.

ROMPTR RomWd > FFF

Command number must be in the range #0 to #FFFh.

Too Big #

Integers should be in the range #0 to #FFFFFh.

Too Big Exponent

Expression has an exponent larger than 48.

Too Big PTR

Address should be in the range #0 to #FFFFFh.

Too Long Hex Field

LCHEX argument has more than 16 hexadecimal digits.

Too Long Asc Field

Argument has more than 8 characters.

Too Long ID/LAM

Identifer objects cannot be over 255 characters long.

Too Long Label

All labels must be 1-15 characters long.

Too Long Name

Library command names must be 1-16 characters long.

Too Long Offset

Offset is too long for the REL(n) instruction.

Too Long Title

Library title must be shorter than 256 characters.

Too Many (’s

Expression doesn’t have enough closing parenthesis.

Too Many)’s

Expression doesn’t have enough opening parenthesis.

Too Many Labels

Lambda binding can only declare 22 labels.

Undefined Label

Label has not been defined.

Undefined Result

An invalid object was assembled.

Unresolved Expression

Expression was not resolved. (Some opcodes require it in the first pass.)

75

Used Before Declaration

Library command was used before it was declared, and so it was compiled
wrong in the first pass (unrecoverable error).

Value Changed

Cannot change value assigned by EQU.

Zero Length

Data segment length field must be non-zero.

76

