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Pipe flow with friction losses – solutions using HP and TI calculators 
By Gilberto E. Urroz, October 2005 

 
1. Darcy-Weisbach Equation and friction factor 
The basic equation governing friction losses in a pipeline is the Darcy-Weisbach 
equation: 
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where f is the friction factor, e is the absolute roughness (or equivalent sand roughness) of 
the pipe, D is the pipe diameter, R is the Reynolds number, L is the pipe length, V is the 
flow velocity, Q is the discharge, and g is the acceleration of gravity.  The discharge Q 
and the flow velocity V are related by the continuity equation, namely,  
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The Reynolds number is defined as 
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where ρ is the fluid density, μ is its dynamic (or absolute) viscosity, and ν = μ/ρ is its 
kinematic viscosity [units = m2/s or ft2/s]. 
 
The friction factor f is a function of the relative roughness e/D and of the Reynolds 
number R.  Values of f can be obtained from the Moody diagram that shows curves of 
constant relative roughness for a range of values of the Reynolds number and the 
corresponding friction factors.   The diagram includes also the laminar friction factor 
given by Stokes’ equation:  
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Function DARCY in HP calculators 
The HP 48 G and HP 49 G series calculators provide function DARCY(ee/D,R)1 to 
calculate the friction factor f for turbulent flows.  In the HP 48 G, function DARCY is 
available by using the keystrokes: 
 

[ ][ EQ LIB ][UTILS] 
 
The resulting menu will show the functions: 

                                                 
1 Here we use ee instead of e because the HP calculators would interpret e as exp(1). 
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MINE:   Minesweeper game 
ZFACT:  Gas compressibility Z factor function 
FANNI:  Fanning’s friction factor (4 times D-W’s friction factor) 
DARCY:  The function of interest (Darcy-Weisbach’s friction factor) 
F0λ:   Black-body emissive power function 
SIDEN:  Silicon intrinsic density  

 
In the HP 49 G, HP 49 G+, and HP 48GII, function DARCY is available through the 
function catalog, [CAT], or you could simply type the name of the function. 
 
To calculate the friction factor with function DARCY using the HP 48 G series 
calculators, or the HP 49 G, HP 49 G+, and HP 48GII calculators in RPN (Reverse Polish 
Notation), enter the values of e/D and R in the stack, and then invoke function DARCY.  
If using the HP 49 G, HP 49 G+, and HP 48GII calculators in ALG (algebraic) mode, 
enter the expression DARCY(value of e/D, value  of R).   
 
As an example, calculate the friction factors for the following combinations of friction 
factors and Reynolds numbers.  Verify the values listed in Table 1. 
 

Table 1. Friction factors calculated with HP’s function DARCY 
 

e/D R f 
0.001 1.23x105 0.0217 

0.0001 3.32x106 0.0125 
0.00001 1.03x108 0.0081 
0.0005 5.23x107 0.0167 
0.0032 8.25x104 0.0281 

 
Function DARCY implements the Coolebrook-White equation, as well as the laminar 
equation, to calculate the friction factor.  Using function DARCY in the HP calculators is 
equivalent to reading f out of the Moody diagram knowing the values of e/D and R.   
 
Equations for the friction factor 
The Coolebrook-White equation, shown below, is an implicit equation in f, and, 
therefore, not amenable to direct solution.   
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Modern alternatives for the Coolebrook-White equation that are explicit in f include 
Haaland’s equation and Swamee-Jain’s equation.  Haaland’s equation is: 
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or, equivalently,  
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Swamee-Jain equation is given by: 
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In equations (5) through (8), log stands for the logarithm of base 10, and log2() ≡ [log()]2. 
 
Implementing Haaland’s and Swamee-Jain equations in HP calculators 
As alternatives for the function DARCY in the HP calculators, one can define functions 
fHA and fSJ to implement the explicit form of the Haaland’s and Swamee-Jain’s 
equations, respectively.   In order to keep all the pipe-related functions and equations 
together, I suggest creating a sub-directory, call it PIPES, within the HOME directory of 
your calculator.  In order to define the functions you need to use the key DEF with the 
following arguments: 
 

‘fHA(eD,R)=0.3086/(LOG((eD/3.7)^1.11+6.9/R))^2’ 
‘fSJ(eD,R)=0.25/(LOG(eD/3.7+5.74/R^0.9))^2’ 

 
In these definitions eD stands for the relative roughness (e/D) and R stands for the 
Reynolds number R.  After defining these functions there will be soft-menu keys labeled 
[ fHA ] and [ fSJ ] in your calculator.  To see the variables available in your PIPES sub-
directory you may have to press the [VAR] key. 
 
The operation of these two user-defined functions, namely, fHA and fSJ, is very similar to 
the operation of function DARCY.  To verify the implementation of these functions in HP 
calculators check the following values returned by the functions for the parameters e/D 
and R as given in Table 2. 
 

Table 2. Values of f calculated with user-defined functions fHA and fSJ 
 

e/D R fHA fSJ 
0.001 1.23x105 0.0216 0.0219 

0.0001 3.32x106 0.0125 0.0126 
0.00001 1.03x108 0.0082 0.0082 
0.0005 5.23x107 0.0167 0.0167 
0.0032 8.25x104 0.0280 0.0284 

 
Implementing Haaland’s and Swamee-Jain equations in TI calculators 
In the TI-89 or TI-92 calculators, you can program functions fha(k,r) and fsj(k,r) to 
calculate the friction factor using Haaland’s and Swamee-Jain’s equations, respectively.   
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In these definitions, k represents the relative roughness (e/D) and r represents the 
Reynolds number.  To program function fha, select the Program Editor in your 
calculator, and then select the option 3:New to enter a new function.  Select: 
 

Type:   2:Function 
Folder:  (your favorite folder, e.g., one called “fluids”) 
Variable:  fha 

 
and press [Enter].  Edit the function such that the editor’s window looks as follows: 

:fha(k,r) 
:Func 
:.3086/(log((k/3.7)^1.11+6.9/r)^2 
:EndFunc 

 
Similarly, to implement function fsj select the Program Editor in your calculator, and 
then select the option 3:New to enter a new function.  Select: 
 

Type:   2:Function 
Folder:  (your favorite folder, e.g., one called “fluids”) 
Variable:  fsj 

 
and press [Enter].  Edit the function such that the editor’s window looks as follows: 

:fsj(k,r) 
:Func 
:.25/(log(k/(3.75)+5.74/r^(.9))^2 
:EndFunc 

 
Press [HOME]  to return to the HOME screen.  At this point you are ready to use 
functions fha and fsj to calculate friction factors.  To load the function name in the 
HOME screen entry line, you can either type the function name fha or fsj, or use 
[2ND][VAR-LINK] and select the function from the list thus produced.   The function 
name must be followed by a set of parentheses including the values of k = e/D and Re 
separated by commas.   Press [ENTER] to evaluate the function.   After implementing 
functions fha and fsj in your TI calculator, verify the results shown in Table 2. 
 
2. Types of problems involving the Darcy-Weisbach equation for friction losses 
The textbook by Finnemore and Franzini identifies three types of problems using the 
Darcy-Weisbach equation, namely: 
 

1. Head loss problem: calculate hf given D, Q or V, and g, L, e, ν. 
2. Discharge problem: calculate Q or V, given D, hf and g, L, e, ν. 
3. Sizing problem: calculate D, given Q, hf and g, L, e, ν. 

 
Examples of the three types of problems are shown next: 
 
Problem [1]. Given D = 0.3 ft, Q = 0.20 cfs, g = 32.2 ft/s2, L = 1000 ft, e = 0.002 in = 
0.000166 ft, and ν = 1.13x10-5 ft2/s, find hf. 
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Problem [2]. Given D = 0.7 ft, hf = 15 ft, g = 32.2 ft/s2, L = 750 ft, e = 0.005 in = 
0.000416 ft, and ν = 1.2x10-5 ft2/s, find Q. 
 
Problem [3]. Given Q = 3 cfs, hf = 10 ft, g = 32.2 ft/s2, L = 1500 ft, e = 0.01 in = 
0.000833 ft, and ν = 1.5x10-5 ft2/s, find D. 
 
These problems are solved next using a variety of approaches. 
 
Solution of sample problems using the Moody diagram 
Solution to Problem [1]: For e/D ≈ 0.0006, R = 4Q/(πνD) = 7.5x104, the Moody diagram 
shows f ≈ 0.022, therefore, hf = 8fLQ2/(π2gD5) = 9.12 ft.  
 
Solution to Problem [2]: e/D ≈ 0.0006.  From hf = 8fLQ2/(π2gD5), we get 
fQ2=π2gD5hf/(8L) = 0.1335, from which Q = 0.365/√f (A).  Also, R = 4Q/(πνD) = 
1.52x105Q (B).  An iterative solution proceeds as follows: 

• Assume f = 0.03, (A) gives Q = 0.365/√0.03 = 2.107 cfs, R = 3.2x105 
• Moody: f = 0.019, (A) gives Q = 0.365/√0.019 = 2.65 cfs, R = 4.03x105 
• Moody: f = 0.019, convergence achieved, thus Q = 2.65 cfs. 

 
Solution to Problem [3]: From hf = 8fLQ2/(π2gD5), we get  D5/f = 8LQ2/(π2ghf) =33.98, 
from which D = 2.02 f1/5 (A).  The relative roughness is e/D = 0.000833/D (B), and the 
Reynolds number is R = 4Q/(πνD) = 2.55x105/D (C).  An iterative procedure is 
implemented as follows: 

• Assume f = 0.03, (A) D = 1.00 ft, (B) e/D = 0.0008, (C) R = 2.55x105 
• Moody: f = 0.020, (A) D = 0.923 ft, (B) e/D = 0.0009, (C) R = 2.76x10 
• Moody: f = 0.021, (A) D = 0.93 ft, (B) e/D ≈ 0.0009, (C) R = 2.74x105 
• Moody: f = 0.021, convergence achieved, thus D = 0.93 ft. 

 
Solution using functions DARCY, fHA and fSJ instead of the Moody diagram 
Use of the Moody diagram requires us to read the values of f from the diagram for known 
values of e/D and R.  Functions DARCY (in HP calculators only), fHA (or fha) and fSJ (or 
fsj) can be used to calculate the values of f instead of reading them out of the Moody 
diagram.   
 
Solution of sample problems using the DARCY function 
The DARCY function being available only in the HP calculators, these solutions cannot 
be implemented in the TI calculator.  Solutions using functions fHA and fSJ for both 
calculators will be presented in subsequent sections.  The following solutions used 
function DARCY to calculate the friction factor f: 
 
Solution to Problem [1]:  Given D = 0.3 ft, Q = 0.20 cfs, g = 32.2 ft/s2, L = 1000 ft, e = 
0.002 in = 0.000166 ft, and ν = 1.13x10-5 ft2/s, find hf. 
For e/D =0.00059 , R = 4Q/(πνD) = 7.5x104, the DARCY function shows f = 0.0194, 
therefore, hf = 8fLQ2/(π2gD5) = 8.04 ft.  
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Solution to Problem [2]: Given D = 0.7 ft, hf = 15 ft, g = 32.2 ft/s2, L = 750 ft, e = 0.005 
in = 0.000416 ft, and ν = 1.2x10-5 ft2/s, find Q. 
 
e/D = 0.00059.  From hf = 8fLQ2/(π2gD5), we get fQ2=π2gD5hf/(8L) = 0.1335, from 
which Q = 0.365/√f (A).  Also, R = 4Q/(πνD) = 1.52x105Q (B).  An iterative solution 
proceeds as follows: 

• Assume f = 0.03, (A) gives Q = 0.365/√0.03 = 2.107 cfs, R = 3.2x105 
• DARCY: f = 0.0186, (A) gives Q = 0.365/√0.0186 = 2.67 cfs, R = 4.05x105 
• DARCY: f = 0.0184, (A) gives Q = 0.365/√0.0184 = 2.69 cfs, R = 4.09x105 
• DARCY: f = 0.0184, convergence achieved, thus Q = 2.69 cfs. 

 
Solution to Problem [3]: Given Q = 3 cfs, hf = 10 ft, g = 32.2 ft/s2, L = 1500 ft, e = 0.01 
in = 0.000833 ft, and ν = 1.5x10-5 ft2/s, find Q. 
 
From hf = 8fLQ2/(π2gD5), we get  D5/f = 8LQ2/(π2ghf) =33.98, from which D = 2.02 f1/5 
(A).  The relative roughness is e/D = 0.000833/D (B), and the Reynolds number is R = 
4Q/(πνD) = 2.55x105/D (C).  An iterative procedure is implemented as follows: 

• Assume f = 0.03, (A) D = 1.00 ft, (B) e/D = 0.000833, (C) R = 2.55x105 
• DARCY: f = 0.0200, (A) D = 0.924 ft, (B) e/D = 0.0009, (C) R = 2.35x105 
• DARCY: f = 0.0204, (A) D = 0.927 ft, (B) e/D ≈ 0.0009, (C) R = 2.36x105 
• DARCY: f = 0.0204, convergence achieved, thus D = 0.927 ft ≈ 0.93 ft. 

 
Solution of sample problems using the fHA or fha function 
Function fHA or fha implement Haaland’s equation (7) to calculate the friction factor.  
The solutions to the three sample problems using this equation for f , instead of the 
Moody diagram, is shown next: 
 
Solution to Problem [1]:  Given D = 0.3 ft, Q = 0.20 cfs, g = 32.2 ft/s2, L = 1000 ft, e = 
0.002 in = 0.000166 ft, and ν = 1.13x10-5 ft2/s, find hf. 
 
For e/D =0.00059 , R = 4Q/(πνD) = 7.5x104, function fHA shows f ≈ 0.0212, therefore, 
hf = 8fLQ2/(π2gD5) = 8.73 ft.  
 
Solution to Problem [2]: Given D = 0.7 ft, hf = 15 ft, g = 32.2 ft/s2, L = 750 ft, e = 0.005 
in = 0.000416 ft, and ν = 1.2x10-5 ft2/s, find Q. 
 
e/D = 0.00059.  From hf = 8fLQ2/(π2gD5), we get fQ2=π2gD5hf/(8L) = 0.1335, from 
which Q = 0.365/√f (A).  Also, R = 4Q/(πνD) = 1.52x105Q (B).  An iterative solution 
proceeds as follows: 

• Assume f = 0.03, (A) gives Q = 0.365/√0.03 = 2.107 cfs, R = 3.2x105 
• fHA: f = 0.0196, (A) gives Q = 0.365/√0.0186 = 2.67 cfs, R = 3.96x105 
• fHA: f = 0.0184, (A) gives Q = 0.365/√0.0184 = 2.69 cfs, R = 4.02x105 
• fHA: f = 0.0183, convergence achieved, thus Q = 2.69 cfs. 
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Solution to Problem [3]: Given Q = 3 cfs, hf = 10 ft, g = 32.2 ft/s2, L = 1500 ft, e = 0.01 
in = 0.000833 ft, and ν = 1.5x10-5 ft2/s, find Q. 
 
From hf = 8fLQ2/(π2gD5), we get  D5/f = 8LQ2/(π2ghf) =33.98, from which D = 2.02 f1/5 
(A).  The relative roughness is e/D = 0.000833/D (B), and the Reynolds number is R = 
4Q/(πνD) = 2.55x105/D (C).  An iterative procedure is implemented as follows: 

• Assume f = 0.03, (A) D = 1.00 ft, (B) e/D = 0.000833, (C) R = 2.55x105 
• fHA: f = 0.0198, (A) D = 0.88 ft, (B) e/D = 0.00095, (C) R = 2.89x105 
• fHA: f = 0.0203, (A) D = 0.93 ft, (B) e/D ≈ 0.0009, (C) R = 2.74x105 
• fHA: f = 0.0202, convergence achieved, thus D = 0.93 ft. 

 
Solution of sample problems using the fSJ or fsj function 
Function fSJ or fsj implements Swamme-Jain’s equation (8) to calculate the friction 
factor.  The solutions to the three sample problems using this equation for f, instead of the 
Moody diagram, is shown next: 
 
Solution to Problem [1]:  Given D = 0.3 ft, Q = 0.20 cfs, g = 32.2 ft/s2, L = 1000 ft, e = 
0.002 in = 0.000166 ft, and ν = 1.13x10-5 ft2/s, find hf. 
 
For e/D =0.00059 , R = 4Q/(πνD) = 7.5x104, the Moody diagram shows f ≈ 0.0216, 
therefore, hf = 8fLQ2/(π2gD5) = 8.89 ft.  
 
Solution to Problem [2]: Given D = 0.7 ft, hf = 15 ft, g = 32.2 ft/s2, L = 750 ft, e = 0.005 
in = 0.000416 ft, and ν = 1.2x10-5 ft2/s, find Q. 
 
e/D = 0.00059.  From hf = 8fLQ2/(π2gD5), we get fQ2=π2gD5hf/(8L) = 0.1335, from 
which Q = 0.365/√f (A).  Also, R = 4Q/(πνD) = 1.52x105Q (B).  An iterative solution 
proceeds as follows: 

• Assume f = 0.03, (A) gives Q = 0.365/√0.03 = 2.107 cfs, R = 3.2x105 
• fSJ: f = 0.0188, (A) gives Q = 0.365/√0.0186 = 2.66 cfs, R = 4.04x105 
• fSJ: f = 0.0186, (A) gives Q = 0.365/√0.0184 = 2.68 cfs, R = 4.07x105 
• fSJ: f = 0.0186, convergence achieved, thus Q = 2.68 cfs. 

 
Solution to Problem [3]: Given Q = 3 cfs, hf = 10 ft, g = 32.2 ft/s2, L = 1500 ft, e = 0.01 
in = 0.000833 ft, and ν = 1.5x10-5 ft2/s, find Q. 
 
From hf = 8fLQ2/(π2gD5), we get  D5/f = 8LQ2/(π2ghf) =33.98, from which D = 2.02 f1/5 
(A).  The relative roughness is e/D = 0.000833/D (B), and the Reynolds number is R = 
4Q/(πνD) = 2.55x105/D (C).  An iterative procedure is implemented as follows: 
 

• Assume f = 0.03, (A) D = 1.00 ft, (B) e/D = 0.000833, (C) R = 2.55x105 
• fSJ: f = 0.0200, (A) D = 0.92 ft, (B) e/D = 0.0009, (C) R = 2.77x105 
• fSJ: f = 0.0204, (A) D = 0.93 ft, (B) e/D = 0.0009, (C) R = 2.74x105 
• fSJ: f = 0.0204, convergence achieved, thus D = 0.93 ft. 
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The following table summarizes the solutions of the three sample problems using (a) the 
Moody diagram, (b) the DARCY function in the HP calculators, (c) the fHA or fha 
function, and (d) the fSJ or fsj function. 
 

Table 3. Solutions to sample problems through different methods of obtaining f 
 

 Moody DARCY fHA fSJ 
Problem [1] f = 0.022 f = 0.0194 f = 0.0212 f = 0.0216 

 hf = 9.05 ft hf = 8.04 ft hf = 8.73 ft hf = 8.89 ft 
Problem [2] f = 0.019 f = 0.0184 f = 0.0183 f = 0.0186 

 Q = 2.65 cfs Q = 2.69 cfs Q = 2.69 cfs Q = 2.68 cfs 
Problem [3] f = 0.021 f = 0.0204 f = 0.0202 f = 0.0204 

 D = 0.93 ft D = 0.927 ft D = 0. 93 ft D = 0.93 ft 
 
3. Combining the Darcy-Weisbach equation with various equations for f 
Darcy-Weisbach and Coolebrook-White equation 
We can combine the Darcy-Weisbach equation in terms of the velocity V (1) and the 
Coolebrook-White equation (5) as follows.  First, from (1) we get 
 

fL
gDh

V f 12
⋅= ,                                                      (9) 

and 

fgDh
LV

f 2
1

= .                                                      (10) 

 
The last term within the logarithmic function in (5) is written as follows in terms of the 
definition of R (3) and (10): 
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Replacing 1/√f in (5) within equation (9), with the result of (11) included, results in the 
equation [see Eq. 8.56a, page 293, in Finnemore and Franzini]: 
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Equation (12) can be re-written in terms of the discharge by using the continuity equation 
(2) [see Eq. 8.56b, page 293, in Finnemore and Franzini]: 
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Equation (13) is explicit in Q, thus, it is appropriate for a direct solution of problems of 
type 2, the discharge problem.  Solutions of type 1 (head loss) and type 3 (sizing) 
problems using equation (13) require the use of numerical solutions.  Equation (13) is 
referred to by the name DWCWQ, i.e., Darcy-Weisbach + Coolebrook-White in terms of 
Q. 
 
Darcy-Weisbach and Haaland equations 
Combining the Darcy-Weisbach equation in terms of the discharge Q, equation (1), and 
the Haaland equation (6), and combining numeric terms results in: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+⎟

⎠
⎞

⎜
⎝
⎛⋅⋅−=

Q
D

D
e

L
hgD

Q f ν42.5234.0log0.2
11.15

.        DWHAQ(14) 

 
This equation is implicit in Q and D, but explicit in hf.  Thus, this equation is ideal for 
solving type 1 problems.  Type 2 and 3 problems, however, will require a numerical 
solution.  Equation (14) is referred to by the name DWHAQ, i.e., Darcy-Weisbach + 
HAaland in terms of Q. 
 
Darcy-Weisbach and Swamee-Jain equations 
Combining the Darcy-Weisbach equation in terms of the discharge Q, equation (1), and 
the Swamee-Jain equation (8) requires taking the square root of the friction factor.  In 
such operation we keep the negative value of the square root as shown in the following 
equation: 
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The reason for using the negative value in equation (15) is that the logarithmic function 
has an argument that is smaller than 1, thus producing negative logarithms.  Since the 
discharge in (15) must be a positive quantity, the use of the negative sign in that equation 
is needed. 
 
As with equation (14), equation (15) is implicit in Q and D, but explicit in hf.  Thus, this 
equation is ideal for solving type 1 problems.  Type 2 and 3 problems, however, will 
require a numerical solution.  Equation (15) is referred to by the name DWSJQ, i.e., 
Darcy-Weisbach + Swamee-Jain in terms of Q. 
 
Solution of sample problems using equations (13) through (15) 
The solution of sample problems [1] through [3] using equations (13) through (15) can be 
implemented using the numerical solvers in the HP and TI calculators.  In order to 
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activate such solvers we need to store the equations into variables.  For example, in the 
HP calculators, within sub-directory PIPES, we can define variables DWCWQ, 
DWHAQ, and DWSJQ, which store the following expressions: 
 
DWCWQ: 

‘Q=-2.22*√(g*D^5*hf/L)*LOG(0.27*ee/D+1.775*Nu/D*√(L/(g*D*hf)))’ 
 
DWHAQ: 

‘Q=-2.0*√(g*D^5*hf/L)*LOG(0.234*(ee/D)^1.11+5.42*Nu*D/Q)’ 
 
DWSJQ: 

‘Q=-2.22*√(g*D^5*hf/L)*LOG(0.27*ee/D+4.62*(Nu*D/Q)^0.9)’ 
 
Similar expressions can be stored in variables within TI-89 or TI-92 calculators and 
solved using the numerical solvers available in those calculators.  Notice that in the 
calculators hf represents the head loss hf, ee represents the absolute roughness e, and Nu 
represents the kinematic viscosity ν. 
 
Solution with HP calculators 
The numerical solver in the HP calculators is obtained by using [ ][SOLVE][  OK  ] in 
the HP 48 G series, or [ ][NUM.SLV][  OK  ] in the HP 49 G, HP 49G+, and HP 48 GII 
calculators.  Unless an equation is already stored in variable EQ, you will be prompted to 
enter an equation in the Eq: field.  Type equation one of the equations above (must be 
between quotes), or load an existing equation, then press [ENTER].  The resulting input 
form will include input fields for the variables hf, ee, D, Q, Nu, L, and g.   To solve for 
any of the unknowns, first, enter the values of the six known variables, pressing [  OK   ] 
after each value entered.  Then, using the arrow keys, select the field of the unknown 
variable, and press [SOLVE].   If the value returned is too large to see directly in the 
input form, press the [EDIT] soft menu key to see the full value in the stack. 
 
Solution with TI calculators 
The numerical solver in the TI calculators is obtained by pressing the [APPS] key, and 
selecting the option Numeric Solver.  Type an equation in the eqn: field, and press 
[ENTER], or load an existing equation.   The numeric solver screen will now show the 
equation and a list of variable names (hf, ee, d, q, nu, l, g) followed by equal signs.  The 
last item in the list represents the bounds for the solution, with default value bound = {-
1.E14,1.E14}.  Using the arrow keys move from field to field and enter the values of the 
six known variables.  Change the bounds in the last item in the list if need be (e.g., you 
may require your solution to be a positive number, say, in the interval [0.0,100.0], thus, 
you could use bound = {0.0,100.0}).  Then, move the cursor to the unknown variable, 
enter an initial guess for the result, and, while keeping the cursor in that position, press 
F2-Solve.   The result will be shown at the cursor position. [NOTE: if, in the process of 
finding a solution with the TI calculator you get a domain error message, simply change 
the initial guess of the solution to a larger or smaller value until a solution is produced]. 
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Summary of solutions 
The following table summarizes the solution of the three sample problems using 
numerical solutions of the equations DWCWQ, DWHAQ, and DWSJQ in the HP 
calculators: 
 

Table 3. Solutions to sample problems with equations (13) through (15) 
 

 DWCWQ(13) DWHAQ(14) DWSJQ(15) 
Problem [1] hf = 8.86 ft hf = 8.73 ft hf = 8.90 ft 
Problem [2] Q = 2.69 cfs Q = 2.70 cfs Q = 2.68 cfs 
Problem [3] D = 0.928 ft D = 0.927 ft D = 0.929 ft 

 
4 - Numerical solution of friction problems using functions DARCY, fHA and fSJ 
We can use the calculators’ numerical solver to solve friction loss problems when the 
Darcy-Weisbach equation is written in terms of functions DARCY (HP calculators only), 
fHA, and fSJ.  For example, in the HP calculators, the Darcy-Weisbach equation given in 
(1) in terms of velocity V can be entered in any of the following forms if using functions 
DARCY, fHA, or fSJ for the friction factor: 
 

‘hf = DARCY(ee/D,V*D/Nu)*L/D*V^2/(2*g)’         DWfDV(16) 
‘hf = fHA(ee/D,V*D/Nu)*L/D*V^2/(2*g)’          DWfHV(17) 
‘hf = fSJ(ee/D,V*D/Nu)*L/D*V^2/(2*g)’          DWfSV(18) 

 
The names of the variables listed next to the equation numbers above reflect the equation 
being implemented (DW means Darcy-Weisbach), the friction factor used (e.g., fD means 
f given by the DARCY function), and V means Velocity. 
 
In the TI calculators, we can define the following variables representing the Darcy-
Weisbach equation with friction factors given by the Haaland’s and Swamee-Jain’s 
equations, respectively: 
 

hf = fha(ee/d,v*d/nu)*l/d*v^2/(2*g)            dwfhv(19) 
hf = fsj(ee/d,v*d/nu)*l/d*v^2/(2*g)            dwfhv(20) 

 
Notice that variable Nu or nu in these equations represents the kinematic viscosity ν.  
[NOTE: Neither the HP nor the TI calculators include the Greek letter ν in their 
collection of characters.] 
 
Next, we present some examples of numerical solutions of equations (16) through (20): 
 
Example 1 
Consider the following data: Q = 0.05 m3/s, L = 1 km, D = 0.20 m, ee = 0.12 mm, g = 
9.806 m/s2, and ν = 1×10-6 m2/s.  The velocity is calculated with equation (2), V = 
4Q/(πD2) = 4×0.05/(π×0.202) = 1.59 m/s.  With the values of V, L, D, e, g, and ν, given 
above, we find that hf = 12.04 m (HP calculator, DARCY) or hf = 12.10 m (TI calculator, 
fsj). 
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Example 2 
Suppose that we use the same data as in Example 1, above, but we now need to find the 
diameter required to maintain a velocity of V = 0.75 m/s if the head loss in a km of 
pipeline is to be 5.5 m.  Thus, we keep all the values used above, except for V = 0.75, hf 
= 5.5, and solve for D.  The result is D = 0.1174 m (HP calculator, DARCY) or D = 
0.1179 m (TI calculator, fsj). 
 
Example 3 
Using the same data as in Example 1, we now determine the velocity in a 0.25-m-
diameter, 500-m-long pipe, if the require friction loss is 2.5 m, i.e., use D = 0.25, L = 
500, hf = 2.5.  The result is V = 1.16 m/s in either the HP calculator (DARCY) or TI 
calculator (fsj).  
 
Example 4 – Reservoir-pipe system 
Consider the case of a reservoir whose free surface is located and an elevation z1 = 60 m, 
draining through a pipe open to the atmosphere whose outlet is located at an elevation z2 
= 40 m.  The system is depicted in the following figure. 
 

 
 
Point 1 in the energy equation is at the reservoir free surface where p1 = 0 and V1 = 0.   
Point 2, on the other hand, is at the pipe outlet where p2 = 0 and V2 = V, the pipe velocity.   
In order to make the problem as general as possible, we’ll write z1 = z2 + H, i.e., H = z1 – 
z2 = 60 m – 40 m = 20 m, for this case.  Writing out the energy equation between points 1 
and 2, thus, we find: 
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In this equation, we’ll use H = 20 m, L = 100 m, e = 0.046 mm, D = 0.5 m, g = 9.806 
m/s2, and ν = 1×10-6 m2/s.  The problem requires us to find the flow velocity V.  Equation 
(8) can be solved using the numerical solvers in either the HP or the TI calculators, 
entering the equation as: 
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‘H = V^2/(2*g)*(1+DARCY(ee/D,V*D/nu)*L/D)’               (22) 

 
 in the HP calculators, or as 
 

h = v^2/(2*g)*(1+fsj(ee/d,v*d/nu)*l/d)              (23) 
 
in the TI calculators.   
 
Using an approach similar to that of the previous examples, we find that V = 10.69  m/s 
(HP calculator) or V = 10.68  m/s (TI calculator). 
 
Solving friction loss problems in terms of flow discharge 
Instead of using the flow velocity in the Darcy-Weisbach equation, we can write out the 
equations in terms of the discharge as shown in equation (1).  The corresponding 
equations to be entered in the calculators are:  
 

‘hf = DARCY(ee/D,4*Q/(π*nu*D))*8*L*Q^2/(π^2*g*D^5)’      DWfDQ(24) 
‘hf = fHA(ee/D,4*Q/(π*nu*D))*8*L*Q^2/(π^2*g*D^5)’       DWfHQ(25) 
‘hf = fSJ(ee/D,4*Q/(π*nu*D))*8*L*Q^2/(π^2*g*D^5)’       DWfSQ(26) 

 
 in the HP calculators, or, in the TI calculators: 
 

hf = fha(ee/d,4*q/(π*nu*d))*8*l*q^2/(π^2*g*d^5)        dwfhq(27) 
hf = fsj(ee/d,4*q/(π*nu*d))*8*l*q^2/(π^2*g*d^5)        dwfhq(28) 

 
Solutions to sample problems [1] through [3] 
The following table summarizes the solution of the three sample problems using 
numerical solutions of the equations DWfDQ, DWfHQ, and DWfSQ in the HP 
calculators: 
 

Table 3. Solutions to sample problems with equations (13) through (15) 
 

 DWfDQ(24) DWfHQ(25) DWfSQ(26) 
Problem [1] hf = 8.85  ft hf = 8.73 ft hf = 8.88 ft 
Problem [2] Q = 2.69 cfs Q = 2.70 cfs Q = 2.68 cfs 
Problem [3] D = 0.928 ft D = 0.927 ft D = 0.929 ft 

 
Additional solutions in terms of discharge are shown next. 
Example 5 
Consider the data: Q = 0.05 m3/s, L = 1 km, D = 0.20 m, ee = 0.12 mm, g = 9.806 m/s2, 
and ν = 1×10-6 m2/s.  With the equations (14) and (15) given in terms of discharge, there 
is no need to calculate the velocity.  Instead, we program the equations in the 
corresponding calculators and solve directly for hf.  The result is hf = 12.06 m (HP 
calculator) or hf = 12.12 m (TI calculator). 
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Example 6 
Suppose that we use the same data as in Example 1, above, but we now need to find the 
diameter required to maintain a discharge of Q = 0.10  m/s if the head loss in a km of 
pipeline is to be 5.5 m.  Thus, we keep all the values used above, except for Q = 0.10 , hf 
= 5.5, and solve for D.  The result is D = 0.3035 m (HP calculator) or D = 0.3038 m (TI 
calculator). 
 
Example 7 
Using the same data as in Example 1, we now determine the discharge in a 0.25-m-
diameter, 500-m-long pipe, if the require friction loss is 2.5 m, i.e., use D = 0.25, L = 
500, hf = 2.5.  The result is Q = 0.057 m3/s in either the HP calculator or TI calculator.  
 
Example 8 – Reservoir-pipe system 
Consider the flow described by Equation (8), presented above.  This equation was given 
in terms of the flow velocity.   If we re-write it now in terms of the discharge, we find the 
following equation: 
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In this equation, we’ll use H = 20 m, L = 100 m, e = 0.046 mm, D = 0.5 m, g = 9.806 
m/s2, and ν = 1×10-6 m2/s.  The problem requires us now to find the discharge Q.  
Equation (16) can be solved using the numerical solvers in either the HP or the TI 
calculators, entering the equations as: 
 

‘H = 8*Q^2/(π^2*g*D^4)*(1+DARCY(ee/D,4*Q/(π*nu*D))*L/D)’      (30) 
 
 in the HP calculators, or as 
 

h = 8*q^2/(π^2*g*d^4)*(1+sj(ee/d,4*q/(π*nu*d))*l/d)       (31) 
 
in the TI calculators.   
 
Using an approach similar to that of the previous examples, we find that Q = 2.10  m3/s 
(HP calculator) or Q = 2.10  m3/s (TI calculator). 
 
Example 9 – Two reservoirs connected by a single pipe – case 1 
Two reservoirs (A) and (B) are connected by a pipe with L = 1500 ft, D = 0.50 ft, and e = 
0.000005 ft.  The level of reservoir (A) is maintained at an elevation H = 20 ft above that 
of reservoir (B).   Take the kinematic viscosity of water to be ν = 1.3x10-5 ft2/s.  
Assuming that all minor losses are negligible, except for the discharge loss at the 
entrance to reservoir (B), calculate the discharge Q.  The system is depicted in the 
following figure. 
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Setting up the energy equation between the free surfaces of reservoirs (A) and (B), with 
pA = pB  = 0, VA = VB  = 0, and zA  = zB + H, and including friction losses and discharge 
losses, the resulting equation turns out to be the same as equation (29).  Entering equation 
(30) into the HP calculators or equation (31) into the TI calculators, with the given data, 
we find Q = 1.02 cfs.  
 
Example 10 – Two reservoirs connected by a single pipe – case 2 
Suppose that for the system of Example 9 we have Q = 3 cfs and we are asked to find D.  
Using the equation for Example 9 with the same data except for Q, and solving for D 
results in D = 0.75 ft.   
 
Example 11 – Two reservoirs connected by a single pipe – case 3 
Suppose that for the system of Example 9 we have Q = 3 cfs and D = 0.6 ft, and we are 
asked to determine the length L of the pipe while all other data remain the same as in 
Example 9.  Using the equation for Example 9 with the same data except for Q and D, 
and solving for L results in L = 474.51 ft.   
 
Example 12 – Two reservoirs connected by a single pipe – case 4 
Suppose that for the system of Example 9 we have Q = 2.5 cfs, D = 0.6 ft, and L = 1200 
ft, and we are asked to determine the elevation H of reservoir (A) over that of reservoir 
(B) while all other data remain the same as in Example 9.  Using the equation for 
Example 9 with the same data except for Q, D, and L, and solving for H results in H = 
34.31 ft.   
 
5 – Empirical equations for single-pipe flow 
For water flow in pipes there are a couple of empirical equations that are often used to 
calculate flow velocities in pipelines.  These are the Hazen-Williams equation and the 
Manning’s equation. 
 
The Hazen-Williams equation 
This equation is valid for water in pipes whose diameters are larger than 2 inches and for 
flow velocities less than 10 fps.  The Hazen-Williams equation is given, in BG and SI 
units, as follows: 
 

BG units:        V = 1.318 CHW Rh
0.63S0.54,         with V(fps), Rh(ft), S (ft/ft)        (32) 

 
SI units:        V = 1.318 CHW Rh

0.63S0.54,        with V(m/s), Rh(m), S (m/m)       (32) 
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Where V is the flow velocity, Rh is the hydraulic radius (for a pipe flowing full, Rh = 
D/4), and S is the energy gradient, S = hf /L.  The Hazen-Williams coefficient (CHW) 
depends on the pipe material.  Some typical values are: 
 

CHW = 140,  smooth straight pipe 
CHW = 110, riveted steel or vitrified pipe 
CHW =  90,  old pipes 
CHW =  80, tuberculated pipes 

 
The Manning’s  equation 
The Manning’s equation was developed for open-channel flow applications, but can also 
be used in pipelines. The equation, in BG and SI units, is given as follows: 
 

BG units:        2/13/2486.1 SR
n

V h
m

⋅⋅= ,         with V(fps), Rh(ft), S (ft/ft)        (32) 

 

SI units:             2/13/21 SR
n

V h
m

⋅⋅= ,            with V(m/s), Rh(m), S (m/m)       (32) 

 
The Manning’s resistance coefficient (nm) depends on the pipe material.  Some typical 
values are: 

nm = 0.008,       brass or plastic pipe 
nm = 0.012,      concrete pipes 
nm = 0.014,      drainage tile, vitrified sewer pipe 
nm = 0.021-0.030    old pipes 
nm =  0.035,      tuberculated cast-iron pipes 

 
Non-rigorous head-loss equations 
Unlike the Darcy-Weisbach’s equation with a friction factor f that depends on the relative 
roughness (e/D) and the Reynolds number (R), the Hazen-Williams and Manning’s 
equations use coefficients that are constant.  Since the rigorous derivation of the Darcy-
Weisbach equation demonstrated that such should not be the case for pipe flow, the 
Hazen-Williams and Manning’s equations produce non-rigorous, yet practical, head-loss 
equations. 
 
Using either the Hazen-Williams  equations the head loss can be written in the general 
form: 

hf =K⋅Qn.                                                           (33) 
 
Sometimes, to avoid the iterative process typically involved in solving the Darcy-
Weisbach equation, it can be assumed that the flow is in the fully-rough regime and that a 
constant value of f applies.  Thus, equation (33) would also apply for this non-rigorous 
Darcy-Weisbach equation.   
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The values of K and n for the Darcy-Weisbach, Hazen-Williams, and Manning’s 
equations (the two latter in the BG system only) are given by: 
 

• Darcy-Weisbach:                          52

8
gD
fLK

π
= , n = 2                                       (34) 

• Hazen-Williams (BG):                87.4852.1

727.4
DC
LK

HW ⋅
= , n = 1.857                          (35) 

• Manning’s (BG):                        3/16

266.4
D

Ln
K m ⋅⋅

= , n = 2                                   (36) 

 
Example 13 – Two reservoirs connected by a single pipe – case 1 
Two reservoirs (A) and (B) are connected by a pipe with L = 1500 ft, and D = 0.50 ft.  
The level of reservoir (A) is maintained at an elevation H = 20 ft above that of reservoir 
(B).   Use a Hazen-Williams coefficient CHW = 140 and a Manning’s coefficient nm = 
0.008.  Assuming that all minor losses are negligible, except for the discharge loss at the 
entrance to reservoir (B), calculate the discharge Q.  The system is depicted in the 
following figure: 

 
 
Setting up the energy equation between the free surfaces of reservoirs (A) and (B), with 
pA = pB  = 0, VA = VB  = 0, and zA  = zB + H, and including friction losses and discharge 
losses, the resulting equation turns out to be  
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Replacing the following expression for the velocity head 
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and equation (33) for the friction loss hf, equation (37) becomes: 
 

H = KQn + KVQ2                                                       (37) 
 
where K is given by either equation (35) or (36), and  
 

42
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gD
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= .                                                        (38) 
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For this problem we find Kv = 0.403 and the following values for K and n: 
 

• Hazen-Williams,     KHW = 87.4852.1

727.4
DC

L

HW ⋅
 = 21.98, nHW = 1.857 

• Manning’s,                 Km = 3/16

266.4
D

Lnm ⋅⋅  = 18.04,   nm = 2 

 
Thus, the system equation (37), for the Hazen-Williams formula is: 
 

20 = 21.98Q1.857 + 0.403Q2.                                            (39) 
 

A numerical solution with a calculator solver produces the result Q = 0.94 cfs. If using 
the Manning’s equation, equation (37) becomes  
 

20 = 18.04Q2+0.403Q2,                                               (40) 
 
 whose solution is Q = 1.04 cfs. 


