Pipe flow with friction losses — solutions using HP and TI calculators
By Gilberto E. Urroz, October 2005

1. Darcy-Weisbach Equation and friction factor
The basic equation governing friction losses in a pipeline is the Darcy-Weisbach
equation:
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where f is the friction factor, e is the absolute roughness (or equivalent sand roughness) of

the pipe, D is the pipe diameter, R is the Reynolds number, L is the pipe length, V is the

flow velocity, Q is the discharge, and g is the acceleration of gravity. The discharge Q

and the flow velocity V are related by the continuity equation, namely,

4-Q o Q:V-”'Dz. ).

V= =
7-D 4

The Reynolds number is defined as
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where pis the fluid density, w is its dynamic (or absolute) viscosity, and v = w/pis its
kinematic viscosity [units = m’/s or ft?/s].

The friction factor f is a function of the relative roughness e/D and of the Reynolds
number R. Values of f can be obtained from the Moody diagram that shows curves of
constant relative roughness for a range of values of the Reynolds number and the
corresponding friction factors. The diagram includes also the laminar friction factor
given by Stokes’ equation:

f= 4)

Function DARCY in HP calculators

The HP 48 G and HP 49 G series calculators provide function DARCY(ee/D,R)* to
calculate the friction factor f for turbulent flows. In the HP 48 G, function DARCY is
available by using the keystrokes:

[<][ EQ LIB J[UTILS]

The resulting menu will show the functions:

! Here we use ee instead of e because the HP calculators would interpret e as exp(1).



MINE: Minesweeper game

ZFACT: Gas compressibility Z factor function

FANNI: Fanning’s friction factor (4 times D-W'’s friction factor)
DARCY: The function of interest (Darcy-Weisbach’s friction factor)
FOA: Black-body emissive power function

SIDEN: Silicon intrinsic density

In the HP 49 G, HP 49 G+, and HP 48GllI, function DARCY is available through the
function catalog, [CAT], or you could simply type the name of the function.

To calculate the friction factor with function DARCY using the HP 48 G series
calculators, or the HP 49 G, HP 49 G+, and HP 48Gl|I calculators in RPN (Reverse Polish
Notation), enter the values of /D and R in the stack, and then invoke function DARCY.

If using the HP 49 G, HP 49 G+, and HP 48GlI calculators in ALG (algebraic) mode,
enter the expression DARCY(value of /D, value of R).

As an example, calculate the friction factors for the following combinations of friction
factors and Reynolds numbers. Verify the values listed in Table 1.

Table 1. Friction factors calculated with HP’s function DARCY

e/D R f
0.001 1.23x10° 0.0217
0.0001 3.32x10° 0.0125

0.00001 1.03x10° 0.0081
0.0005 5.23x10° 0.0167
0.0032 8.25x10" 0.0281

Function DARCY implements the Coolebrook-White equation, as well as the laminar
equation, to calculate the friction factor. Using function DARCY in the HP calculators is
equivalent to reading f out of the Moody diagram knowing the values of /D and R.

Equations for the friction factor
The Coolebrook-White equation, shown below, is an implicit equation in f, and,
therefore, not amenable to direct solution.
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Modern alternatives for the Coolebrook-White equation that are explicit in f include
Haaland’s equation and Swamee-Jain’s equation. Haaland’s equation is:
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or, equivalently,
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Swamee-Jain equation is given by:
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In equations (5) through (8), log stands for the logarithm of base 10, and log?() = [log()]>.

Implementing Haaland’s and Swamee-Jain equations in HP calculators

As alternatives for the function DARCY in the HP calculators, one can define functions
fHA and fSJ to implement the explicit form of the Haaland’s and Swamee-Jain’s
equations, respectively. In order to keep all the pipe-related functions and equations
together, I suggest creating a sub-directory, call it PIPES within the HOME directory of
your calculator. In order to define the functions you need to use the key DEF with the
following arguments:

“fHA(eD,R)=0.3086/(LOG((eD/3.7)"1.11+6.9/R))" 2"
<£SJ(eD,R)=0.25/(LOG(eD/3.7+5.74/R"0.9))" 2"

In these definitions eD stands for the relative roughness (e/D) and R stands for the
Reynolds number R. After defining these functions there will be soft-menu keys labeled
[ fHA ] and [ fSJ ] in your calculator. To see the variables available in your PIPES sub-
directory you may have to press the [VAR] key.

The operation of these two user-defined functions, namely, fHA and fSJ, is very similar to
the operation of function DARCY. To verify the implementation of these functions in HP
calculators check the following values returned by the functions for the parameters e/D
and R as given in Table 2.

Table 2. Values of f calculated with user-defined functions fHA and fSJ

e/D R fHA fSJ
0.001 1.23x10° 0.0216  0.0219
0.0001 3.32x10° 0.0125 0.0126
0.00001 1.03x10° 0.0082  0.0082
0.0005 5.23x10" 0.0167 0.0167
0.0032 8.25x10" 0.0280  0.0284

Implementing Haaland’s and Swamee-Jain equations in T1 calculators
In the T1-89 or TI-92 calculators, you can program functions fha(k,r) and fgj(k,r) to
calculate the friction factor using Haaland’s and Swamee-Jain’s equations, respectively.



In these definitions, k represents the relative roughness (e/D) and r represents the
Reynolds number. To program function fha, select the Program Editor in your
calculator, and then select the option 3:New to enter a new function. Select:

Type: 2:Function
Folder: (your favorite folder, e.g., one called “ fluids’)
Variable: fha

and press [Enter]. Edit the function such that the editor’s window looks as follows:
fha(k,r)

Func
:.3086/(log((k/3.7)"M.11+6.9/r)"2
EndFunc

Similarly, to implement function fg select the Program Editor in your calculator, and
then select the option 3:New to enter a new function. Select:

Type: 2:Function
Folder: (your favorite folder, e.g., one called “ fluids’)
Variable: fg
and press [Enter]. Edit the function such that the editor’s window looks as follows:
fsjk,r)
:Func
:.25/(log(k/(3.75)+5.74/r (.92
EndFunc

Press [HOME] to return to the HOME screen. At this point you are ready to use
functions fha and fg to calculate friction factors. To load the function name in the
HOME screen entry line, you can either type the function name fha or fg, or use
[2ND][VAR-LINK] and select the function from the list thus produced. The function
name must be followed by a set of parentheses including the values of k = e/D and Re
separated by commas. Press [ENTER] to evaluate the function. After implementing
functions fha and fg in your TI calculator, verify the results shown in Table 2.

2. Types of problems involving the Darcy-Weisbach equation for friction losses
The textbook by Finnemore and Franzini identifies three types of problems using the
Darcy-Weisbach equation, namely:

1. Head loss problem: calculate h; given D, Qor V,and g, L, e, v.
2. Discharge problem: calculate Q or V, given D, hrand g, L, €, v.
3. Sizing problem: calculate D, given Q, hrand g, L, €, v.

Examples of the three types of problems are shown next:

Problem [1]. Given D = 0.3 ft, Q = 0.20 cfs, g = 32.2 ft/s*, L = 1000 ft, e = 0.002 in =
0.000166 ft, and v= 1.13x107 ft%/s, find h.



Problem [2]. Given D = 0.7 ft, hy = 15 ft, g = 32.2 ft/s’, L = 750 ft, e= 0.005in =
0.000416 ft, and v= 1.2x10” ft¥s, find Q.

Problem [3]. Given Q = 3cfs, b= 10ft, g= 32.2ft/s?, L = 1500 ft, e= 0.01in =
0.000833 ft, and v= 1.5x10° ft¥s, find D.

These problems are solved next using a variety of approaches.

Solution of sample problems using the Moody diagram
Solution to Problem [1]: For &/D ~0.0006, R = 4Q/(xD) = 7.5x10% the Moody diagram
shows f ~0.022, therefore, |n; = 8ILQ%(#°gD®) = 9.12 ft

Solution to Problem [2]: &/D ~0.0006. From h; = 8fLQ%(#°gD>), we get
Q%= 7°gD°h/(8L) = 0.1335, from which Q = 0.365/f (A). Also, R = 4Q/(mD) =
1.52x10°Q (B). An iterative solution proceeds as follows:

e Assume f= 0.03, (A) gives Q = 0.365/10.03 = 2.107 cfs, R = 3.2x10°

e Moody: f = 0.019, (A) gives Q = 0.365/10.019 = 2.65 cfs, R = 4.03x10°

e Moody: f = 0.019, convergence achieved, thus |Q = 2.65 cfs.

Solution to Problem [3]: From h; = 8fLQ%(7°gD>), we get D*/f = 8LQ%/(# ghy) =33.98,
from which D = 2.02 f*° (A). The relative roughness is &D = 0.000833/D (B), and the
Reynolds number is R = 4Q/(7D) = 2.55x10°/D (C). An iterative procedure is
implemented as follows:

e Assume f=0.03, (A) D= 1.00ft, (B) &/D = 0.0008, (C) R = 2.55x10°

e Moody: f = 0.020, (A) D = 0.923 ft, (B) ¢/D = 0.0009, (C) R = 2.76x10
e Moody: f= 0.021, (A) D = 0.93ft, (B) &D ~0.0009, (C) R = 2.74x10°
[ ]

Moody: f = 0.021, convergence achieved, thus D = 0.93 ft.

Solution using functions DARCY, fHA and fSJ instead of the Moody diagram

Use of the Moody diagram requires us to read the values of f from the diagram for known
values of €D and R. Functions DARCY (in HP calculators only), fHA (or fha) and fSJ (or
fg) can be used to calculate the values of f instead of reading them out of the Moody
diagram.

Solution of sample problems using the DARCY function

The DARCY function being available only in the HP calculators, these solutions cannot
be implemented in the Tl calculator. Solutions using functions fHA and fSJ for both
calculators will be presented in subsequent sections. The following solutions used
function DARCY to calculate the friction factor f:

Solution to Problem [1]: Given D = 0.3 ft, Q= 0.20 cfs, g = 32.2 ft/s?, L = 1000 ft, e =
0.002 in = 0.000166 ft, and v= 1.13x10° ft*/s, find h.

For /D =0.00059 , R = 4Q/(zD) = 7.5x10" the DARCY function shows f = 0.0194,
therefore, |t = 8fLQ%(#gD") = 8.04 ft.




Solution to Problem [2]: Given D = 0.7 ft, hy = 15 ft, g = 32.2 ft/s?, L = 750 ft, e= 0.005
in = 0.000416 ft, and v= 1.2x10° fts, find Q.

e/D = 0.00059. From h = 8fLQ%(7°gD®), we get fQ*= 7°gD°hy/(8L) = 0.1335, from
which Q = 0.365/vf (A). Also, R = 4Q/(mD) = 1.52x10°Q (B). An iterative solution
proceeds as follows:

e Assume f= 0.03, (A) gives Q = 0.365/10.03 = 2.107 cfs, R = 3.2x10°

e DARCY: f = 0.0186, (A) gives Q = 0.365/10.0186 = 2.67 cfs, R = 4.05x10°
e DARCY: f= 0.0184, (A) gives Q = 0.365/10.0184 = 2.69 cfs, R = 4.09x10°
[ ]

DARCY: f = 0.0184, convergence achieved, thus |Q = 2.69 cfs.

Solution to Problem [3]: Given Q = 3cfs, hy = 10 ft, g = 32.2 ft/s?, L = 1500 ft, e = 0.01
in = 0.000833 ft, and v= 1.5x107 ft*s, find Q.

From h = 8fLQ%(#°gD®), we get D°/f = 8LQ?(7°ghs) =33.98, from which D = 2.02 f°
(A). The relative roughness is /D = 0.000833/D (B), and the Reynolds number is R =
4Q/(mD) = 2.55x10°/D (C). An iterative procedure is implemented as follows:

e Assume f=0.03, (A) D = 1.00 ft, (B) &D = 0.000833, (C) R = 2.55x10°

e DARCY: f = 0.0200, (A) D = 0.924 ft, (B) &/D = 0.0009, (C) R = 2.35x10°

e DARCY: f = 0.0204, (A) D = 0.927 ft, (B) /D ~0.0009, (C) R = 2.36x10°

e DARCY: f = 0.0204, convergence achieved, thus \D = 0.927 ft ~0.93 ftl.

Solution of sample problems using the fHA or fha function

Function fHA or fha implement Haaland’s equation (7) to calculate the friction factor.
The solutions to the three sample problems using this equation for f, instead of the
Moody diagram, is shown next:

Solution to Problem [1]: Given D = 0.3ft, Q= 0.20 cfs, g = 32.2 ft/s?, L = 1000 ft, e =
0.002 in = 0.000166 ft, and v= 1.13x10° ft*/s, find h.

For e/D =0.00059 , R = 4Q/(7D) = 7.5x10% function fHA shows f ~0.0212, therefore,
I = 8fLQ?(#*gD®) = 8.73 ftl.

Solution to Problem [2]: Given D = 0.7 ft, hy = 15 ft, g = 32.2 ft/s?, L = 750 ft, e= 0.005
in = 0.000416 ft, and v= 1.2x10" ft¥/s, find Q.

e/D = 0.00059. From h; = 8fLQ?(7°gD>), we get fQ*= z°gDhy/(8L) = 0.1335, from
which Q = 0.365/vf (A). Also, R = 4Q/(mD) = 1.52x10°Q (B). An iterative solution
proceeds as follows:

e Assume f = 0.03, (A) gives Q = 0.365/10.03 = 2.107 cfs, R = 3.2x10°

e fHA: f=0.0196, (A) gives Q = 0.365/10.0186 = 2.67 cfs, R = 3.96x10°
o fHA: f=0.0184, (A) gives Q = 0.365/10.0184 = 2.69 cfs, R = 4.02x10°
[ J

fHA: f = 0.0183, convergence achieved, thus |Q = 2.69 cfs.



Solution to Problem [3]: Given Q = 3cfs, hy = 10 ft, g = 32.2 ft/s?, L = 1500 ft, e = 0.01
in = 0.000833 ft, and v= 1.5x10° fts, find Q.

From hy = 8fLQ%(#°gD"), we get D°/f = 8LQ%/(# ghy) =33.98, from which D = 2.02 f*°
(A). The relative roughness is /D = 0.000833/D (B), and the Reynolds number is R =
4Q/(mD) = 2.55x10°/D (C). An iterative procedure is implemented as follows:

e Assume f=0.03, (A) D = 1.00 ft, (B) &/D = 0.000833, (C) R = 2.55x10°

e fHA: f=0.0198, (A) D = 0.88ft, (B) &/D = 0.00095, (C) R = 2.89x10°
e fHA: f=0.0203, (A) D = 0.93ft, (B) &D ~0.0009, (C) R = 2.74x10°
[ ]

fHA: f = 0.0202, convergence achieved, thus D = 0.93 ft.

Solution of sample problems using the fSJ or fsj function

Function fSJ or fg implements Swamme-Jain’s equation (8) to calculate the friction
factor. The solutions to the three sample problems using this equation for f, instead of the
Moody diagram, is shown next:

Solution to Problem [1]: Given D = 0.3ft, Q= 0.20 cfs, g = 32.2 ft/s?, L = 1000 ft, e =
0.002 in = 0.000166 ft, and v= 1.13x10° ft*/s, find h.

For /D =0.00059 , R = 4Q/(zD) = 7.5x10", the Moody diagram shows f ~0.0216,
therefore, s = 8fLQ%(7#gD®) = 8.89 ft.

Solution to Problem [2]: Given D = 0.7 ft, hy = 15 ft, g = 32.2 ft/s?, L = 750 ft, e= 0.005
in = 0.000416 ft, and v= 1.2x10" ft¥/s, find Q.

e/D = 0.00059. From h; = 8fLQ?(#°gD>), we get fQ*= z°gDhy/(8L) = 0.1335, from
which Q = 0.365/f (A). Also, R = 4Q/(mD) = 1.52x10°Q (B). An iterative solution
proceeds as follows:

e Assume f = 0.03, (A) gives Q = 0.365/10.03 = 2.107 cfs, R = 3.2x10°

o fSJ: f=0.0188, (A) gives Q = 0.365/10.0186 = 2.66 cfs, R = 4.04x10°
e fSJ:f=0.0186, (A) gives Q = 0.365/10.0184 = 2.68 cfs, R = 4.07x10°
[}

fSJ: f = 0.0186, convergence achieved, thus |Q = 2.68 cfs.

Solution to Problem [3]: Given Q = 3 cfs, hy= 10 ft, g = 32.2 ft/s, L = 1500 ft, e= 0.01
in = 0.000833 ft, and v= 1.5x10° fts, find Q.

From hy = 8fLQ%(#°gD"), we get D°/f = 8LQ%/(# ghy) =33.98, from which D = 2.02 f*°
(A). The relative roughness is /D = 0.000833/D (B), and the Reynolds number is R =
4Q/(mD) = 2.55x10°/D (C). An iterative procedure is implemented as follows:

Assume f = 0.03, (A) D = 1.00 ft, (B) &/D = 0.000833, (C) R = 2.55x10°
fSJ: f = 0.0200, (A) D = 0.92 ft, (B) &D = 0.0009, (C) R = 2.77x10°
fSJ: f = 0.0204, (A) D = 0.93 ft, (B) &D = 0.0009, (C) R = 2.74x10°

fSJ: f = 0.0204, convergence achieved, thus|D = 0.93 ft.



The following table summarizes the solutions of the three sample problems using (a) the
Moody diagram, (b) the DARCY function in the HP calculators, (c) the fHA or fha
function, and (d) the fSJ or fg function.

Table 3. Solutions to sample problems through different methods of obtaining f

Moody DARCY fHA fSJ
Problem [1] f=0.022 f=0.0194 f=0.0212 f=0.0216
hf = 9.05 ft hf = 8.04 ft hf = 8.73 ft hf = 8.89 ft
Problem [2] f=0.019 f=0.0184 f=0.0183 f=0.0186
Q =2.65cfs Q =2.69 cfs Q =2.69 cfs Q =2.68 cfs
Problem [3] f=0.021 f=0.0204 f=0.0202 f=0.0204
D=0.93ft D = 0.927 ft D=0.93ft D=0.93ft

3. Combining the Darcy-Weisbach equation with various equations for f
Darcy-Weisbach and Coolebrook-White equation

We can combine the Darcy-Weisbach equation in terms of the velocity V (1) and the
Coolebrook-White equation (5) as follows. First, from (1) we get
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The last term within the logarithmic function in (5) is written as follows in terms of the
definition of R (3) and (10):
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Replacing 1/+f in (5) within equation (9), with the result of (11) included, results in the
equation [see Eq. 8.56a, page 293, in Finnemore and Franzini]:
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Equation (12) can be re-written in terms of the discharge by using the continuity equation
(2) [see Eq. 8.56h, page 293, in Finnemore and Franzini]:

and
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Equation (13) is explicit in Q, thus, it is appropriate for a direct solution of problems of
type 2, the discharge problem. Solutions of type 1 (head loss) and type 3 (sizing)
problems using equation (13) require the use of numerical solutions. Equation (13) is
referred to by the name DWCWAQ, i.e., Darcy-Weisbach + Coolebrook-White in terms of

Q.

Darcy-Weisbach and Haaland equations
Combining the Darcy-Weisbach equation in terms of the discharge Q, equation (1), and
the Haaland equation (6), and combining numeric terms results in:

D5h 1.11
Q=-20,2 : f -Iog[0.234-(%j +5.42-%J. DWHAQ(14)

This equation is implicit in Q and D, but explicit in h.. Thus, this equation is ideal for
solving type 1 problems. Type 2 and 3 problems, however, will require a numerical
solution. Equation (14) is referred to by the name DWHAQ, i.e., Darcy-Weisbach +
HAaland in terms of Q.

Darcy-Weisbach and Swamee-Jain equations

Combining the Darcy-Weisbach equation in terms of the discharge Q, equation (1), and
the Swamee-Jain equation (8) requires taking the square root of the friction factor. In
such operation we keep the negative value of the square root as shown in the following
equation:

D°h
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The reason for using the negative value in equation (15) is that the logarithmic function
has an argument that is smaller than 1, thus producing negative logarithms. Since the
discharge in (15) must be a positive quantity, the use of the negative sign in that equation
iS needed.

As with equation (14), equation (15) is implicit in Q and D, but explicit in h;. Thus, this
equation is ideal for solving type 1 problems. Type 2 and 3 problems, however, will
require a numerical solution. Equation (15) is referred to by the name DWSJQ, i.e.,
Darcy-Weisbach + Swamee-Jain in terms of Q.

Solution of sample problems using equations (13) through (15)
The solution of sample problems [1] through [3] using equations (13) through (15) can be
implemented using the numerical solvers in the HP and TI calculators. In order to



activate such solvers we need to store the equations into variables. For example, in the
HP calculators, within sub-directory PIPES, we can define variables DWCWQ,
DWHAQ, and DWSJQ, which store the following expressions:

DWCWQ:
<Q=-2.22*V(g*D5*hF/L)*LOG(0.27*ee/D+1 . 775*Nu/D*V(L/ (g*D*hF)))’

DWHAQ:
“Q=-2.0*V(g*D"5*hF/L)*LOG(0.234*(ee/D)"1.11+5.42*Nu*D/Q)’

DWSJQ:
<Q=-2.22*V(g*D"5*hF/L)*LOG(0.27*ee/D+4.62*(Nu*D/Q)"0.9)”

Similar expressions can be stored in variables within T1-89 or T1-92 calculators and
solved using the numerical solvers available in those calculators. Notice that in the
calculators hf represents the head loss h;, ee represents the absolute roughness e, and Nu
represents the kinematic viscosity v.

Solution with HP calculators

The numerical solver in the HP calculators is obtained by using ["][SOLVE][ OK ]in
the HP 48 G series, or [][NUM.SLV][ OK ] inthe HP 49 G, HP 49G+, and HP 48 GlI
calculators. Unless an equation is already stored in variable EQ, you will be prompted to
enter an equation in the EQ: field. Type equation one of the equations above (must be
between quotes), or load an existing equation, then press [ENTER]. The resulting input
form will include input fields for the variables hf, e, D, Q, Nu, L, and g. To solve for
any of the unknowns, first, enter the values of the six known variables, pressing [ OK ]
after each value entered. Then, using the arrow keys, select the field of the unknown
variable, and press [SOLVE]. If the value returned is too large to see directly in the
input form, press the [EDIT] soft menu key to see the full value in the stack.

Solution with Tl calculators

The numerical solver in the TI calculators is obtained by pressing the [APPS] key, and
selecting the option Numeric Solver. Type an equation in the egn: field, and press
[ENTERY], or load an existing equation. The numeric solver screen will now show the
equation and a list of variable names (hf, ee, d, g, nu, |, g) followed by equal signs. The
last item in the list represents the bounds for the solution, with default value bound = {-
1.E14,1.E14%. Using the arrow keys move from field to field and enter the values of the
six known variables. Change the bounds in the last item in the list if need be (e.g., you
may require your solution to be a positive number, say, in the interval [0.0,100.0], thus,
you could use bound = {0.0,100.03}). Then, move the cursor to the unknown variable,
enter an initial guess for the result, and, while keeping the cursor in that position, press
F2-Solve. The result will be shown at the cursor position. [NOTE: if, in the process of
finding a solution with the TI calculator you get a domain error message, simply change
the initial guess of the solution to a larger or smaller value until a solution is produced].
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Summary of solutions

The following table summarizes the solution of the three sample problems using
numerical solutions of the equations DWCWQ, DWHAQ, and DWSJQ in the HP

calculators:

Table 3. Solutions to sample problems with equations (13) through (15)

DWCWQ(13) | DWHAQ(14) | DWSJQ(15)
Problem [1] hf = 8.86 ft hf = 8.73 ft hf = 8.90 ft
Problem[2] | Q=269cfs | Q=2.70cfs | Q=2.68cfs
Problem[3] | D=0.928ft | D=0.927# | D=0.9291t

4 - Numerical solution of friction problems using functions DARCY, fHA and fSJ
We can use the calculators’ numerical solver to solve friction loss problems when the
Darcy-Weisbach equation is written in terms of functions DARCY (HP calculators only),
fHA, and fSJ. For example, in the HP calculators, the Darcy-Weisbach equation given in
(1) in terms of velocity V can be entered in any of the following forms if using functions
DARCY, fHA, or fSJ for the friction factor:

“hf = DARCY(ee/D,V*D/Nu)*L/D*V~2/(2*g)” DWFDV(16)
“hf = fHA(ee/D,V*D/Nu)*L/D*V 2/ (2*g)” DWFHV(17)
“‘hf = £SJ(ee/D,V*D/Nu)*L/D*V 2/ (2*g)” DWFSV(18)

The names of the variables listed next to the equation numbers above reflect the equation
being implemented (DW means Darcy-Weisbach), the friction factor used (e.g., fD means
f given by the DARCY function), and V means Velocity.

In the TI calculators, we can define the following variables representing the Darcy-
Weisbach equation with friction factors given by the Haaland’s and Swamee-Jain’s
equations, respectively:

ht
ht

fha(eesd,v*d/nu)*1/d*v”2/(2*g)
fsj(eesd,v*d/nu)*1/d*v”2/(2*g)

dwfhv(19)
dwfhv(20)

Notice that variable Nu or nu in these equations represents the kinematic viscosity v.

[NOTE: Neither the HP nor the TI calculators include the Greek letter vin their
collection of characters.]

Next, we present some examples of numerical solutions of equations (16) through (20):

Example 1
Consider the following data: Q = 0.05m%s, L= 1km, D = 0.20 m, ee= 0.12 mm, g =

9.806 m/'s?, and v= 1x10° mf/s. The velocity is calculated with equation (2), V =
4Q/(7D?) = 4x0.05/(7x0.20%) = 1.59 m/s. With the values of V, L, D, e, g, and v, given
above, we find that hs = 12.04 m (HP calculator, DARCY) or hs = 12.10 m (T calculator,

fs).
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Example 2

Suppose that we use the same data as in Example 1, above, but we now need to find the
diameter required to maintain a velocity of V = 0.75 nVsiif the head loss in a km of
pipeline is to be 5.5 m. Thus, we keep all the values used above, except for V = 0.75, hf
= 5.5, and solve for D. The result is D = 0.1174 m (HP calculator, DARCY) or D =
0.1179 m(T1I calculator, fg).

Example 3
Using the same data as in Example 1, we now determine the velocity in a 0.25-m-
diameter, 500-m-long pipe, if the require friction loss is 2.5m, i.e., use D = 0.25, L =

500, hf = 2.5. The resultis |V = 1.16 m/gin either the HP calculator (DARCY) or Tl
calculator (fg).

Example 4 — Reservoir-pipe system

Consider the case of a reservoir whose free surface is located and an elevation z; = 60 m,
draining through a pipe open to the atmosphere whose outlet is located at an elevation z,
= 40 m. The system is depicted in the following figure.

®
!
(o

| &Y

Point 1 in the energy equation is at the reservoir free surface where p; = Oand V; = 0.
Point 2, on the other hand, is at the pipe outlet where p, = 0 and V, =V, the pipe velocity.
In order to make the problem as general as possible, we’ll write zz = z + H, i.e., H=z —

Z, = 60 m—40 m= 20 m, for this case. Writing out the energy equation between points 1
and 2, thus, we find:

B P.

——=Z +—+—+h ,
aTy 29 Ty o2g
0 02 0 V* L V?
z+H+—+—=z2+—+—+f . — —,
y 29 7y 29 D 2g
which simplifies to
2
H=Y"[1+ f(ﬁﬂji. 21)
29 D v/ )D

In this equation, we’lluse H=20m, L = 100 m, e= 0.046 mm, D = 0.5 m, g = 9.806
m/s?, and v= 1x10° m?/s. The problem requires us to find the flow velocity V. Equation

(8) can be solved using the numerical solvers in either the HP or the TI calculators,
entering the equation as:

12



“H = v~2/(2*g)*(1+DARCY (ee/D,V*D/nu)*L/D)" (22)
in the HP calculators, or as
h = v*2/(2*g)*(1+fsj(ee/d,v*d/nu)*1/d) (23)

in the TI calculators.

Using an approach similar to that of the previous examples, we find that |V = 10.69 mv/g
(HP calculator) or )V = 10.68 m/g (T! calculator).

Solving friction loss problems in terms of flow discharge

Instead of using the flow velocity in the Darcy-Weisbach equation, we can write out the
equations in terms of the discharge as shown in equation (1). The corresponding
equations to be entered in the calculators are:

“hf = DARCY(ee/D,4*Q/ (m*nu*D))*8*L*Q 2/ (n 2*g*D"5) DWFDQ(24)
“hf = FHA(ee/D,4*Q/ (r*nu*D))*8*L*Q 2/ (n"2*g*D"5)” DWFHQ(25)
“hf = FSJ(ee/D,4*Q/ (r*nu*D))*8*L*Q 2/ (n2*g*D"5)” DWFSQ(26)

in the HP calculators, or, in the Tl calculators:

h¥
h¥

fha(ee/d, 4*q/ (*nu*d))*8*1*q"2/ (n2*g*d"5) dwfhq(27)
fsj (ee/d, 4%q/ (v nu*d) ) *8*1*q2/ (n"2*g*d"5) dwfhq(28)

Solutions to sample problems [1] through [3]

The following table summarizes the solution of the three sample problems using
numerical solutions of the equations DWfDQ, DWfHQ, and DWfSQ in the HP
calculators:

Table 3. Solutions to sample problems with equations (13) through (15)

DWIfDQ(24) DWfHQ(25) DWfSQ(26)
Problem [1] hf = 8.85 ft hf = 8.73 ft hf = 8.88 ft
Problem [2] Q =2.69 cfs Q=2.70cfs Q =2.68 cfs
Problem [3] D =0.928 ft D =0.927 ft D =0.929 ft

Additional solutions in terms of discharge are shown next.

Example 5
Consider the data: Q = 0.05m’/s, L = 1 km, D = 0.20 m, ee = 0.12 mm, g = 9.806 /<%,

and v= 1x10° m’/s. With the equations (14) and (15) given in terms of discharge, there
is no need to calculate the velocity. Instead, we program the equations in the
corresponding calculators and solve directly for hx. The result is (HP
calculator) or (T calculator).
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Example 6
Suppose that we use the same data as in Example 1, above, but we now need to find the

diameter required to maintain a discharge of Q = 0.10 nVsif the head loss in a km of
pipeline is to be 5.5 m. Thus, we keep all the values used above, except for Q = 0.10, hf

= 5.5, and solve for D. The result is D = 0.3035 m (HP calculator) or |D = 0.3038 m (TI

calculator).

Example 7
Using the same data as in Example 1, we now determine the discharge in a 0.25-m-

diameter, 500-m-long pipe, if the require friction loss is 2.5m, i.e., use D = 0.25,L =
500, hy = 2.5. The result is|Q = 0.057 m’/g in either the HP calculator or TI calculator.

Example 8 — Reservoir-pipe system

Consider the flow described by Equation (8), presented above. This equation was given
in terms of the flow velocity. If we re-write it now in terms of the discharge, we find the
following equation:

H §Q24(1+f(£,£j£j, (29)
7°gb D »nD) D

In this equation, we’ll use H=20m, L = 100 m, e= 0.046 mm, D = 0.5 m, g = 9.806
m/s?, and v= 1x10° m?/s. The problem requires us now to find the discharge Q.
Equation (16) can be solved using the numerical solvers in either the HP or the Tl
calculators, entering the equations as:

“‘H = 8*Q"2/ (n"2*g*D"4)*(1+DARCY (ee/D,4*Q/ (n*nu*D))*L/D)” (30)
in the HP calculators, or as
h = 8*g"2/(x"2*g*d~4)*(1+sj (ee/d,4*q/ (x*nu*d))*1/d) (31)
in the TI calculators.

Using an approach similar to that of the previous examples, we find that|Q = 2.10 m’/s
(HP calculator) or |Q = 2.10 m°/g (TI calculator).

Example 9 — Two reservoirs connected by a single pipe—case 1

Two reservoirs (A) and (B) are connected by a pipe with L = 1500 ft, D = 0.50 ft, and e =
0.000005 ft. The level of reservoir (A) is maintained at an elevation H = 20 ft above that
of reservoir (B). Take the kinematic viscosity of water to be v= 1.3x10° ft¥s.
Assuming that all minor losses are negligible, except for the discharge loss at the
entrance to reservoir (B), calculate the discharge Q. The system is depicted in the
following figure.
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Setting up the energy equation between the free surfaces of reservoirs (A) and (B), with
pa=ps =0,Va= Vs =0,and za = zzs + H, and including friction losses and discharge
losses, the resulting equation turns out to be the same as equation (29). Entering equation
(30) into the HP calculators or equation (31) into the T1 calculators, with the given data,

we find

Example 10 — Two reservoirs connected by a single pipe — case 2
Suppose that for the system of Example 9 we have Q = 3 cfsand we are asked to find D.
Using the equation for Example 9 with the same data except for Q, and solving for D

results in[D = 0.75 |

Example 11 — Two reservoirs connected by a single pipe — case 3

Suppose that for the system of Example 9 we have Q = 3 cfsand D = 0.6 ft, and we are
asked to determine the length L of the pipe while all other data remain the same as in
Example 9. Using the equation for Example 9 with the same data except for Q and D,

and solving for L results in |L = 474.51 ft.

Example 12 — Two reservoirs connected by a single pipe— case 4

Suppose that for the system of Example 9 we have Q = 2.5cfs, D = 0.6 ft, and L = 1200
ft, and we are asked to determine the elevation H of reservoir (A) over that of reservoir
(B) while all other data remain the same as in Example 9. Using the equation for
Example 9 with the same data except for Q, D, and L, and solving for H results in

B43Lf,

5 — Empirical equations for single-pipe flow

For water flow in pipes there are a couple of empirical equations that are often used to
calculate flow velocities in pipelines. These are the Hazen-Williams equation and the
Manning’s equation.

The Hazen-Williams equation

This equation is valid for water in pipes whose diameters are larger than 2 inches and for
flow velocities less than 10 fps. The Hazen-Williams equation is given, in BG and Sl
units, as follows:

BG units: V= 1.318 Cpyw RS> with V(fps), Ru(ft), S(f/fit)  (32)

Slunits: V= 1318 Cuw RS with V(mVs), Ry(m), S(m/m)  (32)
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Where V is the flow velocity, R, is the hydraulic radius (for a pipe flowing full, R, =
D/4), and Sis the energy gradient, S= h;/L. The Hazen-Williams coefficient (Cuw)
depends on the pipe material. Some typical values are:

Chw = 140, smooth straight pipe

Chw = 110, riveted steel or vitrified pipe
Chw = 90, old pipes

Chw = 80, tuberculated pipes

The Manning's equation
The Manning’s equation was developed for open-channel flow applications, but can also
be used in pipelines. The equation, in BG and Sl units, is given as follows:

BG units: Vv = =48, RY®.s5Y2, with V(fps), Ry(ft), S(ft/ft)  (32)
nm
SI units: VA R2?.8Y2, with V(mVs), Ry(m), S(m/m)  (32)
n

m

The Manning’s resistance coefficient (n,,) depends on the pipe material. Some typical
values are:

nm = 0.008, brass or plastic pipe

nm= 0.012, concrete pipes

nm=0.014, drainage tile, vitrified sewer pipe
nm = 0.021-0.030 old pipes

nm= 0.035, tuberculated cast-iron pipes

Non-rigorous head-loss equations

Unlike the Darcy-Weisbach’s equation with a friction factor f that depends on the relative
roughness (e/D) and the Reynolds number (R), the Hazen-Williams and Manning’s
equations use coefficients that are constant. Since the rigorous derivation of the Darcy-
Weisbach equation demonstrated that such should not be the case for pipe flow, the
Hazen-Williams and Manning’s equations produce non-rigorous, yet practical, head-loss
equations.

Using either the Hazen-Williams equations the head loss can be written in the general
form:

hf =K -Qn. (33)

Sometimes, to avoid the iterative process typically involved in solving the Darcy-
Weisbach equation, it can be assumed that the flow is in the fully-rough regime and that a
constant value of f applies. Thus, equation (33) would also apply for this non-rigorous
Darcy-Weisbach equation.
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The values of K and n for the Darcy-Weisbach, Hazen-Williams, and Manning’s
equations (the two latter in the BG system only) are given by:

e Darcy-Weisbach: K= ?LLS n=2 (34)
7°gDb
e Hazen-Williams (BG): K=—2l2lk - 1857 (35)
Chw D”
. 4.66-n%-L
e Manning’s (BG): K :%, n=2 (36)

Example 13 — Two reservoirs connected by a single pipe—case 1

Two reservoirs (A) and (B) are connected by a pipe with L = 1500 ft, and D = 0.50 ft.
The level of reservoir (A) is maintained at an elevation H = 20 ft above that of reservoir
(B). Use a Hazen-Williams coefficient Cyw = 140 and a Manning’s coefficient ny, =
0.008. Assuming that all minor losses are negligible, except for the discharge loss at the
entrance to reservoir (B), calculate the discharge Q. The system is depicted in the
following figure:

Setting up the energy equation between the free surfaces of reservoirs (A) and (B), with
pa=ps =0,Va= Vs =0,and za = zz + H, and including friction losses and discharge
losses, the resulting equation turns out to be
2
H-h -V —o. (37)
29
Replacing the following expression for the velocity head

=K, -Q%, (38)

ﬁzi.( 4Q j _ &
2g 29 \aD? 7?gD*
and equation (33) for the friction loss ht, equation (37) becomes:

H=KQ"+ K\Q* (37)
where K is given by either equation (35) or (36), and

8

K, =—° .
\ 72'ng4

(38)
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For this problem we find K, = 0.403 and the following values for K and n:

e Hazen-Williams, Kpw= % =21.98, npw = 1.857
C.w D
2
e Manning’s, Kmn= % =18.04, ny=2

Thus, the system equation (37), for the Hazen-Williams formula is:

20 = 21.98Q%" + 0.403Q% (39)

A numerical solution with a calculator solver produces the result|Q = 0.94 cfs. If using
the Manning’s equation, equation (37) becomes

20 = 18.04Q%*+0.403Q%, (40)

whose solution is|Q = 1.04 cfs.
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