
13217 Help Text
Main Main Help

This is the online help system for your HP Prime.

Throughout the help system, the word "press" always refers to a physical key on the Prime keyboard. The
word "tap" always refers to an object displayed on the touchscreen, frequently an item in the software
menu (a menu "button") at the bottom of the display.

Press the top or bottom of the rocker wheel, drag or swipe the touchscreen, or tap either side of ▲ Page
▼ to scroll through any help page (such as this one). To exit a help page, tap OK or Esc.

To see all the help topics, tap Tree.

• Navigate using the rocker wheel, drag, or swipe.

• Tap + or - or press right or left rocker wheel to expand/contract a group of topics.

• Press Enter or OK to view a topic.

Tap Keys then press any key on the keyboard to see the help related to that key.

Tap Search, enter search text (hold Alpha key to enter alphabetic characters) and press Enter or tap OK. If
'Find in content' is not checked, only the help titles will be searched.

As a general rule, pressing Help will display the help page most relevant to the current screen or selection.
For example, pressing Help while the Application Library is open will display an overview of whatever app
is currently selected. Once an app is open, there is a separate help page for each app view (Symbolic, Plot,
Numeric, etc.) which will explain the purpose of the view and the menu items at the bottom of the screen.

About HP Prime HP Prime Graphing Calculator

Software Version: 2017 12 11 (13217) BETA

Hardware Version: Emu

CAS Version: 1.4.9

Serial Number: 4CY3420785

Operating System:

© 2017 HP Development Company, L.P.

Thanks Jeri, Teddy, Mark, Ruth, Dave

Bernard, Conrad, Cyrille, Gerald, GT, Jean-Yves, Jeff, Louis, Matt, Rian, Tim

Angie, Bill, Chris, Craig, Glenn, Jason, Jason, Julia, Mike, Michelle, Nick, Shan-shan, Soolee, Syed, Geoff,
Charlotte, George, Jack, James, Katy, Marcia, Mike, Tyler, Anusha, Archana, Dean

Eddie, Edwin, Erik, Fabien, Felix, Gilles, Han, Joe, Johnny, Katie, Marv, Namir, Natasha, Patrice, Stefan, Wes

Home View The base screen of the calculator is the Home view. Most calculations are done here. Enter an expression
in the same left-to-right order in which you would write it.
You can also do calculations using Reverse Polish Notation (RPN) if you have selected RPN as your
preferred entry option in Home Settings.
An expression can contain numbers, function calls, variables, lists, and matrices. To enter an expression,
press the appropriate keys or select items from one of the menus (such as the Toolbox menu). You can
also enter a function name by using the Alpha keys to spell out its name. Once you have finished entering
the expression, press Enter to evaluate it.

You can save an answer by assigning it to a variable, and then use that variable in later calculations.

After evaluation, both the expression and its result are displayed in the history section of Home view. You
can scroll through the history using the rocker wheel, swipe, or drag. You can re-use an expression or
result by tapping twice on it. It is copied to the entry line ready for you to edit. (You can also scroll to an
item in history and tap Copy.)

The Home view touch-button menu items are:

• Sto ►: store data in a variable

• Copy: copy the selected entry or result to the entry line at the current cursor location

• Show: display the selected item in full-screen mode (with horizontal and vertical scrolling enabled)

As well as the Copy button, which only works in Home view and CAS view, you can use the clipboard to
copy and paste expressions. Your last few entries are automatically copied to the clipboard. Press Shift
Menu (Paste) to open the clipboard. Use the rocker wheel to select an expression from the clipboard and
then tap OK or press Esc. To manually add an item to the clipboard, select it and press Shift View (Copy).

Press the Backspace key to delete the character to the left of the cursor on the entry line. To clear the
entire entry line, press Esc. To clear the entire history, press Shift Esc (Clear).

Home Settings Home Settings Menu

Home Settings Page 1 contains the following options:

• Angle Measure: Select Degrees, Radians, or Gradians

• Number Format: Select Standard, Fixed, Scientific, Engineering, Floating, or Rounded

• Choose Digit Grouping

• Entry: Select Algebraic, RPN, or Textbook

• Integers: Select the default base for integer arithmetic: Binary, Octal, Decimal, or Hex. You can also
choose the word size (or number of bits) and whether integers are signed or unsigned.

• Complex: Select the format for representing complex numbers and allow complex output from real input

Help Topics Tree

Page 1 of 239

13217 Help TextHelp Topics Tree
• Language: Select a language

If 'See Symbolic Setup' appears instead of the input field for a setting, that setting is overridden by the
current app. To change the setting, do so in Symbolic Setup. If you want to clear the app-specific override
and return to the system-wide value of the setting, go to Symbolic Setup and change the value of the
setting to 'System'.

Page 1 Home Settings Page 1

Home Settings Page 1 contains the following options:

• Angle Measure: Select Degrees, Radians, or Gradians

• Number Format: Select Standard, Fixed, Scientific, Engineering, Floating or Rounded

• Choose Digit Grouping

• Entry: Select Algebraic, RPN, or Textbook

• Integers: Select the default base for integer arithmetic: Binary, Octal, Decimal, or Hex. You can also
choose the word size (or number of bits) and whether integers are signed or unsigned.

• Complex: Select the format for representing complex numbers and allow complex output from real input

• Language: Select a language

Entry Methods The HP Prime provides you with three ways of entering expressions in Home view.

• Textbook

An expression is entered in the same way as if you were writing it on paper. For example, a division will be
represented by a division bar with the dividend above and the divisor below.

• Algebraic

An expression is entered on a single line of text.

• Reverse Polish Notation (RPN)

The arguments of the expression are entered first followed by the operator. The entry of an operator
automatically evaluates what has already been entered.
Example:

Suppose you wanted to calculate 2 + 3

In Textbook and Algebraic modes, you would enter 2 + 3 Enter

In RPN mode, you would enter 2 Enter 3 +

If you subsequently entered 12 +, 12 is automatically added to the last answer in RPN mode.

Page 2 Home Settings Page 2

Home Settings Page 2 contains the following options:

• Font Size: Select font size Small, Medium, or Large for most displayed text.

• Calculator Name: Give your HP Prime a unique name. This aids recognition in wireless communication
with the Connectivity Kit
• Textbook Display: Toggle Textbook display on or off.

• Menu Display: If selected, mathematical functions and commands are represented in menus using a
descriptive name; if unselected, they are represented by their command name.

• Time: Set the time and the time format. Toggle clock in title bar on or off.

• Date: Set the date and the date format.

• Color Theme: Choose Light or Dark, and also a highlight color.

Page 3 Home Settings Page 3

The options on Home Settings Page 3 all relate to Exam Mode. There is a separate help topic for Exam
Mode.

Page 4 Home Settings Page 4

If your HP Prime supports the wireless module for wireless connectivity, the options on Page 4 enable you
to join an HP Wireless Classroom Network via the wireless module and the Connectivity Kit. You need to
have the wireless adapter plugged in for these options to appear.

Computer Algebra System (CAS) The Computer Algebra System (CAS) enables you to perform symbolic calculations.

By default, CAS works in exact mode, giving you symbolic or exact arithmetic results. On the other hand,
non-CAS calculations, such as those performed in Home view or by an app, are numerical calculations and
are often approximations limited by the precision of the calculator.

For example, 1/3 + 2/7 yields the approximate answer 0.619047619047 in Home view (with Standard
numerical format), but yields the exact answer 13/21 in the CAS.
CAS offers hundreds of functions, covering algebra, calculus, equation solving, polynomials, and more.
You select a function from the CAS menu, one of the Toolbox menus. You can also select a CAS function
from the Catlg menu (another of the Toolbox menus).

CAS View CAS calculations are done in CAS view.

CAS view is almost identical to Home view. A history of calculations is built and you can select and copy
previous calculations just as you can in Home view, as well as store objects in variables.

To open CAS view, press CAS. The label "CAS" appears at the left of the title bar to indicate that you are in
CAS view rather than Home view.
The menu buttons in CAS view are:

• Sto ►: assigns an object to a variable

• simplify: applies common simplification rules to reduce an expression to its simplest form

• Copy: copies a selected entry in history to the entry line

• Show: displays the selected item in full-screen mode (with horizontal and vertical scrolling enabled)

Page 2 of 239

13217 Help TextHelp Topics Tree
CAS Settings Various settings allow you to configure how the CAS works. To display the settings, press Shift CAS. The

options are spread across two pages.
Page 1 CAS Settings Page 1

The options on CAS Settings Page 1 are:

• Angle Measure: Select the units for angle measurements: Radians, Degrees, or Gradians.

• Number Format (first drop-down list): Select the number format for displayed solutions: Standard,
Scientific, or Engineering.
• Number Format (second drop-down list): Select the number of digits to display in approximate mode
(mantissa + exponent).
• Integers (drop-down list): Select the integer base: Decimal (base 10), Hexadecimal (base 16), or Octal
(base 8).
• Integers (check box): If checked, any real number equivalent to an integer in a non-CAS environment will
be converted to an integer in the CAS. (Real numbers not equivalent to integers are treated as real
numbers in CAS whether or not this option is selected.)

• Simplify: Select None, Minimum, or Maximum automatic simplification.

• Exact: If checked, the CAS is in exact mode and solutions will be symbolic. If not checked, the CAS is in
approximate mode and solutions will be approximate. For example, 26/5 returns 26/5 in exact mode and
5.2 in approximate mode.
• Use √: If checked, polynomials are factorized using square roots.

• Principal: If checked, the principal solutions to trigonometric functions will be displayed. If not checked,
the general solutions to trigonometric functions will be displayed.

• Increasing: If checked, polynomials will be displayed with increasing powers (for example, –4+x+3x²+x³).
If not checked, polynomials will be displayed with decreasing powers (for example, x³+3x²+x–4).

Page 2 CAS Settings Page 2

The options on CAS Settings Page 2 are:

• Recursive Evaluation

Specify the maximum number of embedded variables allowed in an interactive evaluation. See also
Recursive Replacement below.
• Recursive Replacement

Specify the maximum number of embedded variables allowed in a single evaluation in a program. See also
Recursive Evaluation above.
• Recursive Function

Specify the maximum number of embedded function calls allowed.

• Epsilon

Any number smaller than the value specified for epsilon will be treated as zero in some numerical
algorithms.
• Probability

Specify the maximum probability of an answer being wrong for non-deterministic algorithms. Set this to
zero for deterministic algorithms.
• Newton

Specify the maximum number of iterations when using Newton's method to find the roots of a polynomial.

HP apps Much of the functionality of the HP Prime is provided in packages called HP apps. The HP Prime comes
with 18 HP apps: 10 dedicated to mathematical topics or tasks, three specialized Solvers, three function
Explorers, a spreadsheet, and an app for recording data streamed to the calculator from the HP
StreamSmart 410.
You launch an app by first pressing the Apps key and tapping on the icon of the app you want.

You can make any number of copies of an existing app either as a backup of settings and data or to
customize them (through a program for example). Such apps are opened from the application library in
the same way that you open a built-in app.
1. Press Apps to open the Application Library.

2. Highlight (but do not open) the app that you want to base the new app on. You can use the rocker
wheel to navigate to an app without opening it.
3. Tap Save.

4. Enter a name for the new app.

5. Tap OK twice.

The new app appears in the Application Library. You can now open it as you would open any app.

Customizing the Advanced Graphing App

You can save a sample graph from the Plot Gallery. See "Advanced Graphing app" for instructions.

Main App Views Most apps have three major views: Symbolic, Plot, and Numeric. These views are based on the symbolic,
graphic, and numeric representations of mathematical objects. They are accessed through the Symb, Plot,
and Num keys near the top left of the keyboard. Typically, these views enable you to define a
mathematical object—such as an expression or an open sentence—plot it, and see the values generated
by it.

Each of these views has an accompanying setup view, a view that enables you to configure the
appearance of the data in the accompanying major view. These views are called Symbolic Setup, Plot
Setup, and Numeric Setup. They are accessed by pressing Shift Symb, Shift Plot and Shift Num respectively.

Not all apps have all the six views outlined above. The scope and complexity of each app determines its
particular set of views. For example, the Spreadsheet app has only a Numeric view and the Quadratic
Explorer has only a Plot view.

Page 3 of 239

13217 Help TextHelp Topics Tree
Symbolic View The Symbolic view varies from app to app, but its purpose is to store symbolic definitions, whether they

are functions, open sentences in x and y, or definitions of statistical analyses. Use the Symbolic view to
define functions and open sentences, create geometric objects, set up a hypothesis test, and define
statistical analyses.
Note that the Symbolic view is not used in the Spreadsheet, Explorer, Triangle Solver or Linear Solver apps.

Symbolic Setup The only view that is common to all apps is the Symbolic Setup view. Its primary purpose is to allow you to
override three of the system-wide settings specified on the Home Settings window.

Tap once on a setting to display a menu of options and then choose the option you want. You can also use
the rocker wheel to highlight a field and tap Choose to display the menu of options.

Plot View The Plot view varies from app to app but its function is to show you the graphical representations of
objects defined in Symbolic view.
In Plot view you can see the graphs of the functions and open sentences defined in Symbolic view. In the
Geometry app you can create geometric objects. In various other apps, you can explore linear, quadratic,
and sinusoidal functions as well as amortization graphs.

In most of the Plot views, the following gestures and features are available:

• tap to jump the tracer to an x-value

• flick to initiate kinetic scrolling in the desired direction

• drag to scroll the window

• open/closed diagonal pinch (put two fingers on the screen and move them apart or together) to zoom
square in or out
• open/closed horizontal pinch to zoom in or out on the x-axis

• open/closed vertical pinch to zoom in or out on the y-axis

• press + to zoom in or - to zoom out on the cursor location

You can press Shift View (Copy) to copy the current Plot view to the clipboard as an image.

Note that the Plot view is not used in the Spreadsheet, Triangle Solver, or Linear Solver apps.

Plot Setup This view is used primarily to modify the appearance of graphs and the plotting environment. It is not
used in apps that have no Plot view. In apps with this view, Page 1 of the view has fields for the X-range, Y-
range and tick spacing on the axes.
Page 2 is devoted to various options such as grid lines, grid dots, axes, axis labels, and cursor type.

Some HP Prime apps support the use of an image as a background in Plot view. For those apps, the third
page of Plot Setup is devoted to selecting the image and configuring its appearance in Plot view. Press
Shift-Plot, then tap the Page-Down menu key twice to access the Image-As-Background page.

The first field is a drop-down list with the following options:

• No Background: No image will be used as a background (default)

• Centered: the selected image will be centered, vertically and horizontally, in Plot view

• Stretched: the selected image will be stretched, both horizontally and vertically (if necessary), to fit the
entire display in Plot view
• Best fit: the selected image will be stretched, either horizontally or vertically (but not both), to fit one of
the two dimensions in Plot view
• XY Range: the user will enter the x- and y-range to place the image in Plot view

Next to the first field is the Opacity field. Enter an integer from 0 to 100 to indicate the level of opacity of
the image, where 0 is transparent and 100 is totally opaque.
Below these two fields is a swipe chooser. The swipe chooser displays all of the images associated with
the current app first, followed by all the built-in images. Swipe to view the library of available images, then
tap to select the one you want. Once you have selected a display option, an opacity level, and an image,
the selected image will be visible in Plot view as a background, with the options and opacity level you
chose.

Dragging the axes or pinching to zoom in or out in Plot view only affects the view of the image if you have
chosen the XY Range option. For all other options, the image is a true background and does not respond
to changes in Plot view. In XY Range, the image is maintained in it x- and y-ranges as you zoom or pan,
allowing you to zoom in or out on the image or pan to a particular feature.

There are two special menu keys on Page 3 of Plot Setup:

• More: tap to pull in an image you want from another HP Prime app

• Calc: with the XY Range option, use it to calculate the fourth coordinate, given the other three

More

Tap the More menu key to see an input form with a drop-down list and a swipe chooser. Use the drop-
down list to select an HP Prime app that currently has images associated with it. The use the swipe
chooser to swipe through the images associated with an app and tap to select one. Tap the OK menu key
to pull that image into your current app.

Calc

If you have chosen the XY RANGE option, fill in 3 of the 4 x-range and y-range values, then select the
fourth and tap the Calc menu key. The value of the fourth field will be computed for you, keeping the
aspect ratio of the original image intact.
For information on how to associate an image with an HP Prime app, see the HP Connectivity Kit User
Guide.

Numeric View The Numeric view varies from app to app, but its purpose is to present sets of numerical values, whether
function values or numerical data.

Page 4 of 239

13217 Help TextHelp Topics Tree
In Numeric view, you can explore tables of values generated by functions, make geometric
measurements, do spreadsheet calculations, and enter data for statistical analyses.

In most of the Numeric views, the following gestures and features are supported:

• tap to select an x- or y-value. You can copy the value to the clipboard and then paste it anywhere. If you
select a value of the independent variable, you can type in a real number and the table will re-configure
around that value.
• tap and hold, then drag to select a rectangular array of numbers. You can then copy the array and paste
it into the Spreadsheet, Statistics 1Var or Statistics 2Var apps, or into the List or Matrix Editors.

• flick to initiate kinetic scrolling in the desired direction

• drag to scroll the window

• open pinch vertically to zoom in on the currently selected row of the table

• close pinch vertically to zoom out on the currently selected row of the table

• press + to zoom in or - to zoom out on the currently selected row of the table, using the zoom factor set
in Numeric Setup
Note that the Numeric view is not used in the Explorer apps.

Numeric Setup View The Numeric Setup view is used to determine the appearance of the Numeric view and to set the zoom
factor.

Info Add a Note to an App

App Note Editor: Shift + Apps (Info)

Use this editor to add a note to the current app (or modify the existing note). The note created here stays
with its app when it is transferred to a PC or another HP Prime. This editor has the same functionality as
the Notes Editor.
The menu items are:

• Edit: tap to add a new note or edit the current note

• Format: displays a menu of formatting options

• Style: displays a menu of style options

• ▲ Page ▼: moves from page to page in a multi-page note

• •: cycles through bullet styles

• Insert: tap to display a menu of items that can be inserted.

Press ALPHA twice to lock the alpha shift. Press it again to release the alpha shift.

You can copy and paste text using Shift View (Copy) and Shift Menu (Paste) respectively.

View View Key

Press the View key to access options specific to the graphing apps (such as split-screen options and
commonly used scaling options).
• Split Screen: Plot Detail

Splits the Plot view into two panels, with zooming only affecting the plot shown in the panel at the right.

• Split Screen: Plot Table

Splits the view into two panels, one showing the Plot view and the other the Numeric view.

• Common zoom options

 • Autoscale: adjusts the range (YRange) so that at least one of the selected definitions in Symbolic view
is clearly visible
 • Decimal: rescales both axes so that each pixel represents 0.1 units.

 • Integer: rescales the horizontal axis only, making each pixel equal to 1 unit.

 • Trig: rescales the horizontal axis so that 1 pixel equals π/24 radians or 7.5 degrees; rescales the
vertical axis so that 1 pixel equals 0.1 units.
You can also modify the View menu options to call programs you have written and attached to apps. See
the User Guide for more details.

Background Image This dialog box is available as the last page of the plot setup view of most of the apps that have a plot
view.
The top choose box lets you choose the image which will be displayed in the background of the app's Plot
view. The list contains all the images built into the calculator for this app, plus any other images you have
saved in the app file for this app (for example through the connectivity kit).

The checkbox on the right of the image selection lets you choose if you want the image to be a full screen
background (unchecked) or if you want to specify the Cartesian coordinates where the image will be
drawn.
You can control the image opacity (100 means a solid image, the smaller the number, the more the image
will fade out in the background).
If an image stored in an app file is selected, you can delete it by tapping the Delete menu (select the
image name for the menu to appear)
You can select any one of the 4 image coordinates and tap on the Calculate menu to recalculate this
coordinate so that the image aspect ratio is preserved.
You can import images from the other apps by tapping the Import menu.

Image import This dialog box lets you select any image from any of the other apps (built-in or user-created) and import
it as a user file in the current app.
Select the image that you want to import using the choose box.

You can change the target file name for the image.

You can change the image size.

If the Proportion check box is checked, the system will keep the image width/height ratio during resizing.

When you press OK, the resized image will be copied to the current app using the specified name.

Page 5 of 239

13217 Help TextHelp Topics Tree
Common App Variables App variables store current settings and results in their respective apps. For example, the X Tick setting is

stored in a variable, as is the angle measure setting and the graphing method setting.

You can change a setting by storing a value to an app variable or check a setting by evaluating an app
variable and looking at it value.
The variables common to most apps are listed in this section. For variables specific to a particular app, see
the section devoted to that app.

Common Plot View Variables This section lists the variables common to many of the HP apps that have a Plot view.

Plot variables include, among other variables specific to the app, Xmin, Xmax, Xtick, Ymin, Ymax, and Ytick.

Not all apps will have Plot view variables.

Xmin Xmin App Variable

Xmin sets the minimum horizontal value of the Plot view.

Xmin := n, where n is a real number

Xmax Xmax App Variable

Xmax sets the maximum horizontal value in the Plot view.

Xmax := n, where n is a real number such that n>Xmin

Ymin Ymin App Variable

Ymin sets the minimum vertical value of the Plot view.

Ymin := n, where n is a real number

Ymax Ymax App Variable

Ymax sets the maximum vertical value in the Plot view.

Ymax := n, where n is a real number such that n>Ymin

Xtick Xtick App Variable

Xtick sets the distance between tick marks for the horizontal axis.

Xtick := n, where n is a real number such that n>0

Ytick Ytick App Variable

Ytick sets the distance between tick marks for the vertical axis.

Ytick := n, where n is a real number such that n>0

Axes Axes App Variable

Turns the display of X and Y axes in Plot View on or off.

Axes := 0 axes on. (default)

Axes := 1 axes off.

Labels Labels App Variable

Labels enables or disables drawing labels in Plot view showing X and Y ranges.

Labels := 0 labels off (default)

Labels := 1 labels on

GridDots GridDots App Variable

GridDots turns the background grid dots in Plot View on or off.

GridDots := 0 grid dots on. (default)

GridDots := 1 grid dots off.

GridLines GridLines App Variable

GridLines turns the background grid lines in Plot View on or off.

GridLines := 0 grid lines on. (default)

GridLines := 1 grid lines off.

Cursor Cursor App Variable

Cursor sets the cursor type in Plot view.

Cursor := 0 normal (default)

Cursor := 1 inverted

Cursor := 2 blinking

ImageName ImageName App Variable

ImageName controls which image is set as a background in plot views.

ImageName := name, where name is a file name string (such as "photo1").

ImageDisplay ImageDisplay App Variable

ImageDisplay controls how a background image is displayed

0 for no background

1 for centered

2 for stretched

3 for best fit

4 for XY range

ImageName controls which image is used

ImageOpacity ImageOpacity App Variable

ImageOpacity controls the opacity of the background image, if present. Use 100 for an unmodified image
and smaller values for less opacity (more transparency) in the image.

ImageOpacity := n, where n is a real number between 0 and 100.

ImageXmin ImageXmin App Variable

ImageXmin sets the minimum horizontal value occupied by the background image, if present.

ImageXmin := n, where n is a real number.

ImageXmax ImageXmax App Variable

Page 6 of 239

13217 Help TextHelp Topics Tree
ImageXmax sets the maximum horizontal value occupied by the background image, if present.

ImageXmax := n, where n is a real number.

ImageYmin ImageYmin App Variable

ImageYmin sets the minimum vertical value occupied by the background image, if present.

ImageYmin := n, where n is a real number.

ImageYmax ImageYmax App Variable

ImageYmax sets the maximum vertical value occupied by the background image, if present.

ImageYmax := n, where n is a real number.

PlotMethod PlotMethod App Variable

PlotMethod sets the graphing method:

PlotMethod := 0, Adaptive (default): gives the most accurate results but takes longer to produce the graph

PlotMethod := 1, Fixed-step segments: this method samples x-values, computes their corresponding y-
values, and then plots and connects the points.
PlotMethod := 2, Fixed-step dots: this works like the fixed-step segments method but does not connect
the points.

Recenter Recenter App Variable

Recenter specifies if the plot recenters on the cursor during Zoom operations in plot view.

Recenter := 0 — recenter on cursor (default)

Recenter := 1 — do not recenter on cursor

Xzoom Xzoom App Variable

Xzoom sets the horizontal zoom factor.

Xzoom := n, where n is a real number such that n>0 (default is 2)

Yzoom Yzoom App Variable

Yzoom sets the vertical zoom factor.

Yzoom := n, where n is a real number such that n>0 (default is 2)

Tmin Tmin App Variable

Tmin contains the starting value for T in parametric Plot view.

Tmin := n, where n is a real number

Tmax Tmax App Variable

Tmax contains the final value for T in parametric Plot view.

Tmax := n , where n is a real number such that n>Tmin

Tstep Tstep App Variable

Tstep contains the step value (increment) of T in parametric Plot view.

Tstep := n, where n is a real number such that n>0

Nmin Nmin App Variable

Nmin contains the starting value for N in Sequence App Plot view.

Nmin := n, where n is a counting number

Nmax Nmax App Variable

Nmax contains the final value for N in Sequence app Plot view.

Nmax := n, where n is a counting number such that n>Nmin

θmin θmin App Variable

θmin contains the starting value for θ in Polar app Plot view.

θmin := n, where n is a real number

θmax θmax App Variable

θmax contains the final value for θ in Polar app Plot view.

θmax := n, where n is a real number such that n>θmin

θstep θstep App Variable

θstep contains the stepping value (increment) of θ in Polar app Plot view.

θstep := n, where n is a real number such that n>0

Common Numeric View Variables This section lists the variables common to many of the HP apps that have a Numeric view.

NumStart NumStart App Variable

NumStart sets the starting value for the independent variable in Numeric view when Automatic is the
Num Type.
NumStart := n, where n is a real number

NumStep NumStep App Variable

NumStep sets the step size (increment) for the independent variable in Numeric view when Automatic is
the Num Type.
NumStep := n, where n is a real number such that n>0

NumType NumType App Variable

Determines how the independent variable values in Numeric view are generated:

• Automatic: uses the NumStart and NumStep values to create the independent variable values.

• Build Your Own: you enter the independent variable values one by one.

NumType := 0 for Automatic (default)

NumType := 1 for BuildYourOwn

NumIndep NumIndep App Variable

Page 7 of 239

13217 Help TextHelp Topics Tree
NumIndep contains the list of values you have entered in Numeric view when you have chosen
BuildYourOwn mode. In the case of the Advanced Graphing app, the list is of pairs of values.

NumZoom NumZoom App Variable

NumZoom sets the Numeric view factor.

NumZoom := n, where n>0 (default is 4)

AFiles App Files

Each HP Prime app can have any number of files associated with it. These files are sent with the app.

AFiles returns the list of all these files.

AFiles("name") returns the content of the file with the given name.

AFiles("name"):= object stores the object in the file with the given name.

AFilesB Binary App Files

Each HP Prime app can have any number of files associated with it. These files are sent with the app.
AFilesB is the binary equivalent of the AFiles variable.
AFilesB returns the list of all files associated with an app.

AFilesB("name") returns the size of the file with the given name.

AFilesB("name", position, [nb]) returns nb bytes read from the file with the given name, starting from
position in the file (position starts at 0).
AFilesB("name", position):= value or { values…} stores n bytes, starting at position, in the file with the
given name.

DelAFiles Delete App Files

DelAFiles("name") Deletes the specified file associated with an HP app.

ANote App Note

ANote returns the note associated with an HP app. This is the note displayed when the user presses Shift
Apps (Info).
ANote:="string" sets the note associated with the app to contain the string.

AProgram App Program

AProgram returns the program associated with an HP Prime app.

AProgram:="string" sets the program associated with the app to contain the string.

AVars App Variables

AVars returns the list of the names of all the variables associated with an HP Prime app.

AVars(n) returns the content of the nth variable associated with the app.

AVars("name") returns the content of the specified variable associated with the app.

AVars(n or "name"):= value sets the specified app variable to contain the given value. If "name" is not an
existing variable, creates a new one.
Note that once an app variable is created through AVars("name"):= value, you can use the variable by
simply typing the variable name.

DelAVars Delete App Variables

DelAVars(n) or DelAVars("name") erases the specified app variable.

Common App Mode Variables This section lists the Mode variables used by the HP apps. They are found in the Symbolic Setup view of
each app.
If the value is set to 0, the settings of the Home view will be used. Else, the setting in the app Symbolic
Setup view overrides the home view setting.

AAngle AAngle App Variable

AAngle sets the angle mode to Degrees, Radians, or System, for the app.

AAngle := 0 use Home view setting

AAngle := 1 for Radians

AAngle := 2 for Degrees

AAngle := 3 for Gradians

ADigits ADigits App Variable

ADigits sets the number of decimal places to use for the number format.

ADigits := n, where n is an integer such that 0≤n≤11

AFormat AFormat App Variable

AFormat defines the format of the number display for the app.

AFormat := 0 use Home view setting

AFormat := 1 for Standard

AFormat := 2 for Fixed

AFormat := 3 for Scientific

AFormat := 4 for Engineering

AFormat := 5 for Floating

AFormat := 6 for Rounded

AComplex AComplex App Variable

AComplex sets the complex number mode for the app.

AComplex := 0 use Home view setting

AComplex := 1 for ON

AComplex := 2 for OFF

Function app The Function app enables you to explore up to 10 real-valued functions of the form Y=f(X) (for example,
y=2x+3).
Once you have defined a function you can:

• View its graphical representation in the Cartesian plane

• Find roots, points of intersection, slope, signed area, and extrema

Page 8 of 239

13217 Help TextHelp Topics Tree
• Create tables of function values

• Zoom in or out in the representation

To launch the Function app, go to the Application Library and tap the Function app icon. You can also use
the rocker wheel to select the Function app icon, then tap Start or press Enter to launch the app.

Function Symbolic View In the Function Symbolic View, you can define up to ten functions, F1(X) through F9(X) and F0(X). Highlight
one of the function fields and begin entering an expression dependent on x, or tap Edit to edit an existing
expression.
The menu buttons are:

• Edit: opens an input line to edit the selected function definition

• ✓: toggles the selected function on or off for plotting and table-building

• X: a typing aid for entering functions of x

• Show: displays the selected function in full-screen mode with horizontal and vertical scrolling enabled.

• Eval: resolves references to other functions, such as F2(X)=F1(X-1)+2

• Choose: select a color for the graph

Examples:

SIN(6*X)*e^X

SIN(2*X)*√(64-X²)

Function Plot View The Plot View is used to display and explore the graphs of the functions defined in Symbolic View. Tap
Menu to toggle the menu on and off.
The menu buttons are:

• Zoom: opens the Zoom menu, with options to zoom in or out, etc.

• Trace: toggles the tracing cursor on and off.

• Go To: lets you move the cursor to any point on the curve by entering its x-coordinate.

• Fcn: opens the Function menu, with the following commands:

 • Sketch: sketch a function with your finger and HP Prime will match it with a function graph

 • Transform: drag to translate or pinch to die the current function

 • Defn: displays the definition of the function being traced, with options to edit the expression or
transform the graph
 • Root: find the root of the current function that is closest to the tracer

 • Intersection: find the intersection of the current function with one other function, closest to the
tracer
 • Slope: find the slope of the current function at the current tracer location

 • Signed Area: find signed area under a curve or between two curves

 • Extremum: find an extremum for the current function, closest to the tracer location

 • Tangent: draw the tangent to the current function through the current trace point

• Menu: toggles the menu on and off

Sketch, Transform, and Definition

Select Sketch to put Plot view in Sketch mode. Sketch a simple function (linear, quadratic, etc.) with your
finger. When you lift your finger from the screen, your sketch will be replaced with the closest graph that
HP Prime can manage; tap OK and its expression will be added to Symbolic view.

Select Transform to translate and dilate the current function graph. Drag to translate and pinch vertically
or horizontally to dilate the graph. The expression will respond accordingly. Tap Simplify to simplify the
current expression. Tap Form to select an alternate form for your function equation.

Select Definition to view the expression for the current graph. In the Definition Box, you can tap Edit to
edit the expression; when you are done editing, tap OK to see the change in the graph. You can also tap
Transform to manipulate the current graph. Tap OK when you are done to return to the Definition Box.
Tap the down-arrow menu key again to close the box.

Use the left- and right-cursor keys or tap to trace along a function. Use the up- and down-cursor keys to
switch from one function to another. Press + to zoom in on the current cursor location and press - to
zoom out. Set the zoom factor under the Zoom menu.

You can also use all the gestures common to the Plot views. See Plot View for more details.

Function Plot Setup The Function Plot Setup enables you to control the appearance of the graph window, including the
appearance of the cursor, whether or not the axes are drawn, etc. This setup has two pages.

On the first page, the fields are:

• X Rng: the horizontal graphing range

• Y Rng: the vertical graphing range

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

• Edit: opens an edit line to edit the value of the selected field

• Page 1/2 ▼: displays the second page of the setup

On the second page, the fields are:

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

Page 9 of 239

13217 Help TextHelp Topics Tree
• Cursor: choose between standard, inverting, and blinking cursors

• Method: choose between Adaptive, Fixed-Step Segments, and Fixed-Step Dots

The menu buttons on the second page are:

• ✓: toggles the current setting on or off

• Choose: make a choice from a choose box

• ▲ Page 2/2: returns to the first page of the setup

The Method field requires an explanation. By default, the HP Prime uses the Adaptive method, an
advanced method that gives very accurate results. You can choose the more traditional method, called
Fixed-Step Segments, which samples x-values, computes their corresponding y-values, and then plots and
connects the points. Or you can choose Fixed-Step Dots, which works like Fixed-Step Segments but does
not connect the points.

Function Numeric View The Function Numeric View is designed to create and explore a table of X/Y values, based on the
function(s) defined in the Symbolic View.
Tap any row of the x-column, enter any real value, and tap OK. The table will reconfigure. You can also
zoom in or out on any row in the table. Press + to zoom in on a row of the table and - to zoom out.

The menu buttons are:

• Zoom: zooms in or out on a highlighted row of the table. Note that in Numeric view, zooming changes
the increment between consecutive x-values. Zooming in decreases the increment; zooming out increases
the increment. The values in the row you zoom in or out on remain the same.

• More: opens a menu with options for selecting multiple cells; you can then copy and pasted them
elsewhere.
• Go To: jumps to a specified value of the independent variable

• Defn: displays the definition of the selected column

The More menu

The More menu contains the following options:

• Select

 • Row: selects the row that contains the currently selected cell; the row can then be copied to paste
elsewhere
 • Swap Ends: this option is available once a multi-cell selection has been made. Swaps the beginning
and ending cells of the current selection.
 • Include Headers: the same as Select Row, except that the row headers are selected as well

• Selection: toggles selection mode on and off

• Font size: select from a small, medium, or large font size

You can also use any of the gestures common to the Numeric views. See Numeric View for more details.

Function Numeric Setup The Function Numeric Setup enables you to control the appearance of the table in the Numeric View,
including which x-value is at the top of the table, the step between x-values in the table, and what the
zoom factor is used for zooming in and out on a row of the table.

The fields are:

• Num Start: the first value of x shown in the table

• Num Step: the increment between consecutive x-values

• Num Zoom: the zoom factor for zooming

• Num Type: choose between table types

 • Automatic: provides x- and function-values

 • BuildYourOwn: you supply x-values; the App provides the corresponding function-values

The menu buttons are:

• Edit: opens an edit line to edit the current value in a field

• Choose: make a choice from a choose box

• Plot→: sets Num Start and Num Step so that the Numeric view table independent variable values match
the independent variable values while tracing in Plot view

Function App Variables To display the variables relating to the Function app, press Vars, tap App and select Function.

The Function app variables are grouped in 5 categories:

• Results

• Symbolic

• Plot

• Numeric

• Modes

The Plot, Numeric, and Modes app variables are discussed under Common App Variables. The Results and
Symbolic function app variables are discussed in the following sections.

Symbolic Variables Function App Symbolic Variables

The Function app symbolic variables are F1 through F9 and F0. These variables contain algebraic
expressions in X.
Fn := f(X), where n is an integer between 0 and 9 inclusive and f(X) is an algebraic expression in X.

Example:

F1:='X+3' → 'X+3'

Results Variables Function App Results Variables

The Function app results variables store the results of calculations made from the Fcn menu in Plot view.

Page 10 of 239

13217 Help TextHelp Topics Tree
Extremum Extremum App Variable

Extremum contains the last value found by the Extremum function in the Plot view Fcn menu.

Isect Isect App Variable

Isect contains the last value found by the Intersection function in the Plot view Fcn menu.

Root Root App Variable

Root contains the last value found by the Root function in the Plot view Fcn menu.

SignedArea SignedArea App Variable

SignedArea contains the last value found by the Signed area function in the Plot view Fcn menu.

Slope Slope App Variable

Slope contains the last value found by the Slope function in the Plot view Fcn menu.

Function App Functions The Function app functions provide the same functionality found in the Function app's Plot view under the
Fcn menu. All of these operations work on functions. The functions may be expressions in X or the names
of the Function app variables F0 through F9.

AREA AREA App Function

Syntax:

AREA(Fn, [Fm], Lower, Upper)

Signed area under a curve or between curves. Approximates the signed area under a function or between
two functions. Finds the area under the function Fn or below Fn and above the function Fm, from Lower X-
value to Upper X-value.
Example:

AREA(-X,X²-2,-2,1) → 4.5

EXTREMUM EXTREMUM App Function

Syntax:

EXTREMUM(Fn, [Guess])

Extremum of a function. Finds the extremum (if one exists) of the function Fn that is closest to the X-value
Guess.
Examples:

EXTREMUM(X²-X-2,0) → 0.5

F1:='X²-4X+3'; EXTREMUM(F1,1) → 2

ISECT ISECT App Function

Syntax:

ISECT(Fn, Fm, [Guess])

Intersection of two functions. Finds the intersection (if one exists) of the two functions Fn and Fm that is
closest to the X-value Guess.
Example:

ISECT(X,3-X,2) → 1.5

ROOT ROOT App Function

Syntax:

ROOT(Fn, [Guess])

Root of a function. Finds the root of the function Fn (if one exists) that is closest to the X-value Guess.

Example:

ROOT(3-X²,2) → 1.73205080757

SLOPE SLOPE App Function

Syntax:

SLOPE(Fn,Value)

Slope of a function. Returns the slope of the function Fn at the X-value Value (if it exists).

Example:

SLOPE(3-X²,2) → -4

Advanced Graphing App The Advanced Graphing app enables you to define and explore the graphs of symbolic open sentences
depending on x or y, both or neither. You can plot conic sections, polynomials in standard or general form,
inequalities, and functions.
Once you have defined an open sentence, you can plot it and view a table of values that shows when the
open sentence is satisfied.
To launch the Advanced Graphing app, go to the Application Library and tap the Advanced Graphing app
icon. You can also use the rocker wheel to select the Advanced Graphing app icon, then tap Start or press
Enter to launch the app.
PLOT GALLERY

To get an idea of the sorts of graphs you can plot with the Advanced Graphing app, open the app, go to
Plot view, press the Menu key, and choose Visit Plot Gallery from the menu. A gallery of plots opens, with
the definitions that generated a plot shown at the bottom of the screen. Press the rocker wheel left/right
to move from plot to plot in the gallery.

To save a plot for your own exploration, tap Save and enter a name for a new customized app. You can
then explore that new app as you would explore the built-in Advanced Graphing app.

Advanced Graphing Symbolic View The Symbolic View of the Advanced Graphing app enables you to define up to ten open sentences.
Highlight one of the ten definition fields (labeled V0 to V9) and begin entering or editing an open sentence.

Menu Buttons: PRIMARY VIEW

• Edit: copies the selected definition to the entry line and activates the cursor

Page 11 of 239

13217 Help TextHelp Topics Tree
• ✓: selects or deselects the highlighted definition. (Only selected definitions are plotted.)

• X: a typing aid for entering an X

• Y: a typing aid for entering a Y

• Show: displays the selected definition in full-screen mode with horizontal and vertical scrolling enabled.

• Eval: resolves references when one definition is defined in terms of another

• Choose: select a color for the graph

Menu Buttons: EDIT VIEW

• =: inserts the equal sign

• ≤,≥,≠: opens a palette of relational operators

• X: a typing aid for entering an X

• Y: a typing aid for entering a Y

• Cancel: closes the edit line without making changes

• OK: saves the changes and closes the edit line

Example:

SIN((1+SIN(X+Y))*ASIN(.5*(SIN(X)+SIN(Y)))+(1+SIN(X-Y))*ASIN(.5*(COS(X)+COS(Y))))=0

Advanced Graphing Plot View The Plot View is used to display and explore the graphs of the open sentences defined in the Symbolic
View. Note that only those definitions selected (checked) in Symbolic view are plotted.

Tap Menu to show or hide the other menu buttons.

Menu Buttons:

• Zoom: opens the Zoom menu, with options to zoom in or out, etc.

• Trace: provides various tracing options

• Go To: moves the cursor to the location you specify

• Defn: displays the definition of the selected open sentence (which you can then edit without needing to
go back to Symbolic view)
• Menu: shows or hides the other menu buttons

The tracer can be customized to trace along the edge of the graph, or to just trace to points of interest
such as x-intercepts, y-intercepts, extrema, or inflection points.
The gestures common to the Plot views are supported here as well. See Plot View for more details.

Advanced Graphing Plot Tracing The tracer in the Plot view of the Advanced Graphing App can be set to trace any of the following
configurations:
• Edge values

• Points of Interest, such as:

 • X-intercepts

 • Y-intercepts

 • Horizontal extrema

 • Vertical extrema

 • Inflection points

In Plot view, tap the Trace menu key and make a selection. For example, if you are tracing on the graph of
Y=sin(X) and choose to trace X-intercepts, the tracer will jump from one X-intercept to the next. If the
tracer is on the point (0, 0) and you press rocker wheel right, the tracer will move to (π, 0).

The same trace options are available in Numeric view so that you can set up the table to show the same
values that you traced in Plot view.

Advanced Graphing Plot Defn You can edit the open sentence shown when you tap Defn (that is, edit it without having to go to Symbolic
view). Tap Edit and a cursor appears at the end of the definition. Make your changes and tap OK (or press
Enter). The graph will change to reflect the new definition. (The original definition in Symbolic view will
also be changed.)

To close the definition pane, tap the down-arrow menu button.

Advanced Graphing Plot Gallery The Plot Gallery is a gallery of plots each of which you can save as a new instance of the Advanced
Graphing app. While you are in Plot view, press the Menu key and select Visit Plot Gallery.

 Press the rocker wheel left/right to move from plot to plot. Note that the definitions that generated the
current plot are shown at the bottom of the screen.
To save a plot for your own exploration, tap Save and enter a name for a new customized app. You can
then explore that new app as you would explore the built-in Advanced Graphing app.

Advanced Graphing Plot Setup The Plot Setup view of the Advanced Graphing app enables you to control the appearance of Plot view,
including the appearance of the cursor, whether or not the axes are drawn, etc. This view has two pages.

Page 1

• X Rng: the horizontal graphing range

• Y Rng: the vertical graphing range

• X Tick: horizontal tick-mark spacing

• Y Tick: vertical tick-mark spacing

Page 2

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

Page 12 of 239

13217 Help TextHelp Topics Tree
Advanced Graphing Numeric View Unlike many of the other HP apps, the Numeric view in the Advanced Graphing app does not give a table

of values of the dependent variable as generated by the definitions selected in Symbolic view. Instead,
both x and y are seen as independent and Numeric view shows whether or not each selected open
sentence is satisfied for a set of (x, y) ordered pairs. If it is satisfied, True appears beside that
combination; otherwise False appears.

You can enter your own values in the X and Y columns. The app will automatically re-assess whether those
values are satisfied by each open sentence that is represented in Numeric view.

You can customize the table using the Trace menu key. Instead of showing x- and y-values and whether or
not they satisfy the sentence, you can choose to fill the table with the coordinates of points of interest
that appear in Plot view. For example, you can select to create a table of the current set of x-intercepts,
inflection points, or intersection points visible in Plot view.

Menu Buttons:

• Zoom: opens the Zoom menu, with options to zoom in or out on the selected row of the table

• More: opens a menu with editing options

• Trace: provides various options for what to show in the table:

 • Edge values

 • Points of Interest (POI)

• Defn: displays the definition of the selected open sentence

The More menu

The More menu contains the following options:

• Select

 • Row: selects the row that contains the currently selected cell; the row can then be copied to paste
elsewhere
 • Swap Ends: this option is available once a multi-cell selection has been made. Swaps the beginning
and ending cells of the current selection.
 • Include Headers: the same as Select Row, except that the row headers are selected as well

• Selection: toggles selection mode on and off

Advanced Graphing: Numeric View: Trace Advanced Graphing: Numeric View: Trace Options

The Trace options give you a way of seeing the numerical values of various of the graphs plotted in Plot
view. You can choose to see the:
• Edge values

• various Points of Interest, such as:

 • X-intercepts

 • Y-intercepts

 • Horizontal extrema

 • Vertical extrema

 • Inflection points

Note that the values shown in Numeric view while tracing is on represent features that fall within the
plotting domain (that is, between Xmin and Xmax, and Ymin and Ymax). Thus if you have chosen to display
the Y-intercepts of open sentence S3 and there are no Y-intercepts within the plotting domain, no values
will appear in the S3 column.

To return Numeric view to its standard presentation, tap Trace > Off.

Advanced Graphing Numeric Setup The Numeric Setup view of the Advanced Graphing app enables you to configure what is displayed in
Numeric view.
Fields:

• Num X Start: the starting value for the displayed X range

• Num Y Start: the starting value for the displayed Y range

• Num X Step: the increment between consecutive X-values

• Num Y Step: the increment between consecutive Y-values

• Num Type: Automatic = displayed values generated by Numeric Setup values; BuildYourOwn = you will
specify the values for X and Y in Numeric view
• Num X Zoom: the horizontal zoom factor for zooming operations

• Num Y Zoom: the vertical zoom factor for zooming operations

Menu Buttons:

• Edit: modify the selected value

• Choose: make a choice from a menu

• Plot ->: Set the Numeric Setup values to match the current Plot view

Advanced Graphing App Variables To display the variables relating to the Advanced Graphic app, press Vars, tap App and select Advanced
Graphing.
The Advanced Graphing app has the following variables:

• Symbolic

• Plot

• Numeric

• Modes

Advanced Graphing Symbolic Variables The Advanced Graphing app symbolic variables are V1 through V9 and V0.

These variables contain open sentences (in X, Y, both, or neither).

Example:

V1:='(X^2/3) –(Y^2/5)=1' → '(X^2/3) –(Y^2/5)=1'

Numeric Variables Advanced Graphing Numeric Variables

Page 13 of 239

13217 Help TextHelp Topics Tree
This section lists the variables used in the Numeric view of the Advanced Graphing app.

NumXStart NumXStart App Variable

NumXStart sets the starting value for the X variable in Numeric view when Automatic is the Num Type.

NumXStart := n, where n is a real number

NumYStart NumYStart App Variable

NumYStart sets the starting value for the Y variable in Numeric view when Automatic is the Num Type.

NumYStart := n, where n is a real number

NumXStep NumXStep App Variable

NumXStep sets the step size (that is, increment value) for the X variable in Numeric view when Automatic
is the Num Type.
NumXStep := n, where n>0

NumYStep NumYStep App Variable

NumYStep sets the step size (that is, increment value) for the Y variable in Numeric view when Automatic
is the Num Type.
NumYStep := n, where n>0

NumType NumType App Variable

NumType determines how the independent variable values in Numeric view are generated:

• Automatic: uses the NumStart and NumStep values to create the independent variable values.

• Build Your Own: you enter the independent variable values one by one.

NumType := 0 for Automatic (default)

NumType := 1 for Build Your Own

NumXZoom NumXZoom App Variable

NumXZoom sets the default zoom factor for zooming in on the X values.

NumXZoom := n, where n is a real number greater than 1

NumYZoom NumYZoom App Variable

NumYZoom sets the default zoom factor for zooming in on the Y values.

NumYZoom := n, where n is a real number greater than 1

NumIndep NumIndep App Variable

NumIndep contains a list of values you have entered in Numeric view when you have chosen
BuildYourOwn mode.

Graph 3D Graph 3D app

The Graph 3D app allows you to explore the graphical representations of functions that define Z in terms
of X and Y. In Symbolic View, you can define up to ten functions, FZ1(X,Y) through FZ9(X,Y) and FZ0(X,Y).
Highlight one of the function fields and begin entering an expression dependent on X and Y, or tap the Edit
menu key to edit an existing expression.

Once you have defined a function, you can view a table of its values or plot its graph.

To launch the Graph 3D app, go to the Application Library and tap the Graph 3D app icon. You can also use
the rocker wheel to select the Graph 3D app icon, then tap Start or press Enter to launch the app.

Graph 3D Symbolic View The Graph 3D Symbolic view contains fields to define up to ten functions, each one defining Z in terms of
X and Y. Press the Symb key to return to this view at any time.
The menu buttons are:

• Edit/Choose: opens an input line to edit the selected function definition or opens a choose box to make
a selection
• ✓: toggles the selected definition on or off for plotting and table-building

• X: a typing aid for entering definitions in X

• Y: a typing aid for entering definitions in Y

• Show: displays the selected definition in full-screen mode with horizontal and vertical scrolling enabled

• Eval: resolves references to other functions, such as FZ2(X,Y)=FZ1(X,Y)+1

Highlight one of the definition fields and begin entering an expression in X and Y, or tap Edit to open an
edit line to edit an existing expression.

Graph 3D Plot View Press the Plot key to enter the Graph 3D Plot view. This view displays the graphs of functions defined in
Symbolic view. Tap the Menu soft key to open the Plot View menu.

The menu buttons are:

• Zoom: opens the Zoom menu, with options to zoom in or out

• Trace: toggles the tracing cursor off and on

• Go To: takes the cursor to the point with given X- and Y-values

• FCN: opens the FCN menu with the following options:

 • Defn: displays the symbolic definition of the current graph; you can edit the expression directly in Plot
view
• Menu: toggles the Plot view menu off and on

Tap to move the tracer to a location. Press + to zoom in on the current cursor location and press - to
zoom out. The Zoom menu has many of the options found in the Zoom menu of the Function app. The
options unique to the Graph 3D app are described here. All the zoom operations use the current zoom
factors. These factors are set using Zoom Factors... in the Zoom menu. All the zooms described below use
the current cursor location to center the zoom.

Option Result

In Zooms in on all three dimensions

Page 14 of 239

13217 Help TextHelp Topics Tree
Out Zooms out on all three dimensions

Z In Zooms in on the Z-dimension

Z Out Zooms out on the Z-dimension

Square XY Makes the Y-range the same as the X-range

Square Makes the Y-range and the Z-range the same as the X-range

Decimal Makes the steps between values of both independent variables 0.1

Graph 3D Plot Setup Press Shift Plot to enter the Graph 3D Plot setup. This view enables you to control the appearance of the
graph and Plot view. The Setup has five pages.
On the first page, the fields are:

Field Description

X Rng The minimum and maximum visible values of X in Plot view

Y Rng The minimum and maximum visible values of Y in Plot view

Z Rng The minimum and maximum visible values of Z in Plot view

X Tick The spacing between tick marks on the X-axis

Y Tick The spacing between tick marks on the Y-axis

Z Tick The spacing between tick marks on the Z-axis

The menu buttons on the first page are:

• Edit: opens an edit line to edit the value of the selected field

• Page 1/5 ▼: displays the second page of Plot Setup (tap on the right side of the menu key)

On the second page, the fields are:

Field Option Description

Grid The number of steps used in computing X- and Y-values for each plot

Surface The Surface field controls the coloring schema for the plots. The options are:

 Top/Bottom Uses one color for the top (positive Z, looking down) and another

color for the bottom (negative Z, looking up)

 Checkerboard Uses a checkerboard pattern to color both the top and bottom of each plot. You can set
the checker size as well.
 Elevation Color changes depending on the Z-value of each point plotted

 Slope Color changes depending on the gradient at each point plotted

Key Axes Determines whether or not the orientation of the 3 axes is shown in the top left of Plot view. If
checked, you can set the colors for the axes as well.
The menu keys are:

• Edit/Choose: opens an input line to edit the selected field or opens a choose box to make a selection

• ✓: toggles the selection on or off

On the third page of Plot Setup, the fields are:

Field Option Description

Box Sides None Do not color any of the box frame faces

 Rear Color each of the X-Y, Y-Z, and X-Z faces of the box frame that sit behind the plots

 Zmin Color the X-Y face at Zmin

Box Frame None Do not draw the box frame around the plots

 Rear Draw only the 9 segments of the box frame that are behind the plots

 Front and Rear Draw the entire box frame

Box Axes None Do not draw the axes

 Rear Draw the axes behind the plots

 Front and Rear Draw axes in front of and behind the plots

Box Lines None Do not draw tick mark grid lines

 Rear Draw the tick mark grid lines that sit behind the plots

 Front and Rear Draw tick mark grid lines both behind and in front of the plots

Box Dots None Do not draw tick mark grid dots

 Rear Draw the tick mark grid dots that sit behind the plots

 Front and Rear Draw tick mark grid dots both behind and in front of the plots

Labels Check to label the axes

The menu keys here are the same as on Page 2.

The Plot Setup Page 4 options are:

Field Option Description

Cursor Standard Steady white cursor

 Inverting

 Blinking Blinking white cursor

Box Scale 0.5-2 The scale factor for the box frame. The default is 1.

Pose X Axis A real number The X-coordinate of the endpoint of the rotation vector

Pose Y Axis A real number The Y-coordinate of the endpoint of the rotation vector

Pose Z Axis A real number The Z-coordinate of the endpoint of the rotation vector

Pose Turn A real number The angle of rotation (in radians) of the rotation vector

The menu keys are the same as Pages 2 and 3.

The last page of Plot Setup is the same as Page 3 of Plot Setup for the Function, Polar, and Parametric
apps. Here you select an image to be used as a background in Plot view.

Page 15 of 239

13217 Help TextHelp Topics Tree
Graph 3D Numeric View Press the Num key to enter Numeric view. The Graph 3D Numeric View is designed to create and explore

a table of X/Y/Z values, based on the function(s) defined in Symbolic View.

Tap any row of the X or Y-columns, enter any real value, and tap OK. The table will reconfigure. You can
also scroll the table by dragging or flicking with a finger.
The menu buttons are:

• Zoom: opens the Zoom menu. Note that in Numeric view, zooming changes the increment between
consecutive X- and Y-values. Zooming in decreases the increment; zooming out increases the increment.
The values in the row you zoom in or out on remain the same.

• More: opens the More menu, identical to the one in the Function or Advanced Graphing app

• Go To: jumps to specified values of the independent variables X and Y

• Defn: displays the definition of the selected column

The Zoom menu in Numeric view has many of the same options in the Zoom menu in Numeric view of the
other graphing apps. Here are the zoom operations unique to the Graph 3D app. All the zoom operations
use the current zoom factors. These factors are set in Numeric Setup.

Option Result

In Zooms in on the current row of the table in both the X- and Y-columns

Out Zooms out on the current row in both the X- and Y-columns

Y In Zooms in on the current row in just the Y-column

Y Out Zooms out on the current row in just the Y-column

Decimal Makes the steps between values of both independent variables 0.1

Integer Makes the steps between values of both independent variables 1

Trig Makes the step between values of both independent variables π/24 (radians)

Un-Zoom Undoes the last zoom

Graph 3D Numeric Setup The Graph 3D Numeric Setup extends the Function Numeric Setup to cover both independent variables X
and Y instead of just X. The Graph 3D Numeric Setup lets you set start- and step-values for both X and Y,
as well as set the zoom factors for both X and Y.

Graph 3D App Variables To display the variables relating to the 3D Graphing app, press Vars, tap App and select 3D Graphing.

Symbolic Variables Symbolic View Variables

The symbolic variables in the Graph 3D app are FZ1(X, Y) through FZ9(X, Y) and FZ0(X, Y). Each of the
variables contains an expression that defines Z in terms of X and Y.

Plot Variables Plot View Variables

The Graph 3D Plot variables include many of the Plot variables from the other graphing apps such as
Function and Advanced Graphing. This section includes only those Plot variables unique to the Graph 3D
app.

Page 1 Variables Plot Setup Page 1 Variables

The unique Plot view app variables on Page 1 of Plot Setup are:

• Zmin: the minimum Z-value

• Zmax: the maximum Z-value

• Ztick: the tick mark spacing on the Z-axis

Page 2 Variables Plot Setup Page 2 Variables

The unique Plot view app variables on Page 2 of Plot Setup are:

• GridX: the number of steps used from Xmin to Xmax for plotting points

• GridY: the number of steps used from Ymin to Ymax for plotting points

• Surface: contains a list that defines the coloring schema

 • {0}: Top/Bottom

 • {1, c, c}: Checkerboard; each square is c by c

 • {2}: Elevation

 • {3}: Slope

 • KeyAxes: contains 0 if Key Axes is unchecked and 1 if it is checked

Page 3 Variables Plot Setup Page 3 Variables

The unique Plot view app variables on Page 3 of Plot Setup are:

• BoxSides: Which of the faces of the box frame are colored

 • 0: None - do not color any of the box frame faces

 • 1: Rear - color the three faces of the box frame that lie behind the plot(s)

 • 2: Zmin - color the face that lies at Zmin

• BoxFrame: How the box frame is drawn

 • 0: None - do not display the box frame

 • 1: Rear - display the three faces of the box frame that lie behind the plot(s)

 • 2: Front and Rear - display all 6 faces of the box frame

• BoxAxes: How the three axes are drawn

 • 0: None - do not display the axes

 • 1: Rear - display the three axes that lie behind the plot(s)

 • 2: Front and Rear - display axes in front of and behind the plot(s)

• BoxLines: How grid lines are drawn on the box frame

 • 0: None - do not draw grid lines on the box frame

 • 1: Rear - draw grid lines on the three faces of the box frame that lie behind the plot(s)

 • 2: Front and Rear - draw grid lines on all of the box frame faces

Page 16 of 239

13217 Help TextHelp Topics Tree
 • BoxDots: How grid dots are drawn on the box frame

 • 0: None - do not draw grid dots on the box frame

 • 1: Rear - draw grid dots on the three faces of the box frame that lie behind the plot(s)

 • 2: Front and Rear - draw grid dots on all of the box frame faces

 • BoxScale: A real number from 0.5 to 2 that determines the scale factor used to draw the box frame

Page 4 Variables Plot Setup Page 4 Variables

The unique Plot view app variables on Page 4 of Plot Setup are:

• BoxScale: a real number between 0.5 and 2 that determines the scale for the box frame

• PoseXaxis: the X-coordinate of the endpoint of the rotation vector

• PoseYaxis: the Y-coordinate of the endpoint of the rotation vector

• PoseZaxis: the Z-coordinate of the endpoint of the rotation vector

• PoseTurn: the angle of rotation (in radians) of the pose axis

Page 5 Variables Plot Setup Page 5 Variables

There are no Plot view app variables unique to the Graph 3D app on Page 5 of Plot Setup. Only the three
common Plot view app variables ImageName, ImageDisplay, and ImageOpacity are used here.

Numeric Variables Numeric View App Variables

There are three Numeric view app variables unique to the Graph 3D app:

• NumYStart: the starting value for Y in Numeric view

• NumYStep: the step-value for Y in Numeric view

• NumYZoom: the zoom-value for Y in Numeric view

Geometry app The Geometry app enables you to create, edit, and explore geometric constructions. A geometric
construction can be composed of any number of geometric objects, such as points, lines, polygons,
curves, tangents, and so on. You can take measurements (such as areas and distances), manipulate
objects, and note how measurements change as you manipulate the construction.

Tap Start or press Enter to launch the app. The app opens in Plot view.

Geometry Plot View In Plot view you can directly draw objects on the screen using various drawing tools. For example, to draw
a circle, tap Cmds, tap Curve and select Circle. Now tap where you want the center of the circle to be and
press Enter. Next, tap a point that is to be on the circumference and press Enter. A circle is drawn with a
center at the location of your first tap, and with a radius equal to the distance between your first tap and
second tap.

Selecting an object usually involves two steps: tap to select a location or object and then press Enter.
Often there will be multiple objects near where you tap the screen; a pop-up menu will appear to allow
you to select the object(s) you want. Check the ones you want to select and tap OK. Otherwise, just press
Enter to confirm your intention to create the point or select the object. When creating a point, you can
tap on the screen and then use the rocker wheel to accurately position the point before pressing Enter.

The bottom of the screen always contains help to guide you. You may see any or all of the following:

 • If a tool is active, you will see help at the bottom left (above the Cmds menu key)

 • If a tool is active, you will see the current command as it will be recorded in Symbolic view to the right
of the help text
 • the current pointer coordinates are displayed at the bottom left

 • the objects recognized as being at the pointer coordinates are displayed at the bottom right; if you
press Enter, these objects will appear in the pop-up menu
Menu Button:

 • Cmds: The Commands menu has the following categories:

 • Zoom: displays a menu of zoom options for you to zoom in or out in Plot view

 • Point: displays a menu for creating various types of points

 • Line: displays a menu for creating various types of straight objects (segments, lines, tangents, etc.)

 • Polygon: displays a menu for creating various types of polygons

 • Curve: displays a menu for drawing conic sections and so on

 • Plot: displays a menu for plotting functions and so on

 • Transform: displays a menu offering various types of transformations (reflection, rotation, etc.)

 • Cartesian: displays a menu for displaying coordinates of points, Cartesian equations and so forth

 • Measure: displays a menu of various measurements, such as distance, slope, and so forth

 • Tests: displays a menu of various tests you can perform, such as is_collinear (tests whether or not a
set of points is collinear)
PROCESS

Choose a tool from one of the menus listed above and follow the on-screen prompts. Press Enter after
following each prompt, and then press Esc to de-activate the drawing tool.

Each geometric object you create in the Plot view has its own entry or entries in the Symbolic view. In
fact, you can create objects directly in the Symbolic view and they will appear in the Plot view. For most
geometric objects, you can create them in either view. The Cmds menu appears in both views.

Page 17 of 239

13217 Help TextHelp Topics Tree
Calculations (measurements, tests, and so on) created from the Cartesian, Measure, or Tests menus
appear at the top left of the display and are docked there; that is, they remain in place even if you scroll
or zoom the display. You can edit the default labels for these objects. Tap and hold and an edit line will
appear for you to enter your own descriptive label. Tap OK when you are done. You can select and move
these objects, effectively undocking them. Once undocked, they move as you scroll and zoom in Plot view.
To re-dock one of these objects, tap and hold. The edit line will re-appear; note the Dock menu key on the
left. Tap Dock and the object will return to its docked position. Each calculation you create has its own
entry in Numeric view, just as each geometric object you create has its own entry in Symbolic view. You
can also create calculations and their labels in Numeric view.

Once you have created objects in Plot view, you can select and move them, either one at a time or as a
group. To select a group of objects, tap and hold, then drag to create a selection rectangle. Everything
within the rectangle is selected. Drag to move the selected objects and press Esc or Enter when you are
done.
OPTIONS MENU

When an object is selected, a new Options menu key appears. Tap this key to select among the options
for the object selected, including color and fill options. The options vary, depending on the type of object
selected, but include the following:
• Choose Color: opens the color picker to select a color for the object

• Fill: toggles between filling the object with its current color and no fill

• Trace: toggles between tracing and not tracing for a selected point

• Animate: starts and stops an animation based on the selected object

• Point Style: opens a choose box to select a style for the selected point

You can pinch (put two fingers on the screen and move them together or apart) to zoom out or in. You
can drag to scroll the Plot view. Of course, + and - work to zoom in and out, respectively, on the pointer.

Keyboard Shortcuts Geometry: Keyboard Shortcuts

The keyboard shortcuts operate in Plot view only. The keyboard shortcuts are arranged by alphabetical
letter; however, you do not have to press the Alpha key first - just press the key on which the
corresponding letter appears.
The keyboard shortcuts are:

• A: toggles axes off and on (press Vars)

• C: create a new circle (press the Template key)

• I: finds an intersection of two objects (press TAN)

• L: creates a new line (press x²)

• P: creates a new point (press EEX)

• S: creates a new segment (press 9)

• T: creates a new triangle (press ÷)

Geometry Plot Setup The Plot Setup of the Geometry app enables you to control the appearance of Plot view, including the
range of values shown, whether or not the axes are drawn, etc.
FIELDS:

• X Rng: the horizontal range

• Y Rng: the vertical range

• Pixel Size: the size of each square pixel in Cartesian units

• Axes: show or hide the axes

• Labels: show or hide the labels for each axis

• Grid Dots: shows or hide grid dots

• Grid Lines: show or hide grid lines

• Scroll Text: auto-scroll the current command text in the help area

The Plot view of the Geometry app always maintains a square window; that is, one in which the horizontal
and vertical units remain the same. For this reason, you cannot modify the X-range and Y-range as freely
as you can in the other apps.
You can set the minimum X-value and minimum Y-value and then set the size of a pixel. Setting the Pixel
size to 0.1 will change the pointer coordinates by 0.1 for each press of the rocker wheel (up, down, left, or
right). As you make choices in these three fields, the other two are calculated and displayed automatically.

ScrollText ScrollText Variable

ScrollText controls the Scroll Text property in the Geometry Plot Setup screen.

ScrollText := 0 Scroll Text check box cleared. (Default)

ScrollText := 1 Scroll Text check box set.

When ScrollText=1, long text in the menu in the Geometry plot view will scroll.

Geometry Symbolic View Every object—whether a point, segment, line, polygon, or curve—is given a name, and its definition is
displayed in Symbolic view. The name is the name for it you see in Plot view, but prefixed by “G”. Thus a
point labeled A in Plot view is given the name GA in Symbolic view.

In Symbolic view, you can modify existing objects and create new objects. Each object definition appears
in its own line and has the following parts:
 • Check Box: the check box determines whether the object defined is shown or hidden in Plot view; check
to show and uncheck to hide the object
 • Color Box: tap the color box to open the color picker; tap a color to select a color and close the picker

 • Name Field: the name field determines a unique name for the object; usually, the name will be set
automatically.
 • Definition Field: the definition field is where the command is entered to define the object symbolically.
Open the Cmds menu and choose a command
You can flick up or down to kinetically scroll the display.

Menu Buttons: PRIMARY VIEW

Page 18 of 239

13217 Help TextHelp Topics Tree
• Edit: modify a selected definition

• ✓: select or deselect an object. Only selected objects appear in Plot view.

• New: tap to create a new object. The buttons change (see below).

• ↓: move the selected object down the list of objects

• ↑: move the selected object up the list of objects

• Delete: delete the selected object

Menu Buttons: OBJECT-CREATION VIEW

If you tap New in the primary Symbolic view (see above), the buttons at the bottom of the screen change
to:
• Cmds: the Commands menu has many of the same categories as it does in Plot view

 • Point: displays a menu for creating various types of points

 • Line: displays a menu for creating various types of straight objects (segments, lines, tangents, etc.)

 • Polygon: displays a menu for creating various types of polygons

 • Curve: displays a menu for drawing conic sections and so on

 • Plot: displays a menu for plotting functions and so on

 • Transform: displays a menu offering various types of transformations (reflection, rotation, etc.)

There are other geometric commands at your disposal in the Catalog. Press the Toolbox key, tap the Ctlg
menu key and scroll through the list. You can press any two-letter combination to jump to the
approximate location of a command. See "Geometry Functions" help for more details on all geometric
commands.
Other Menu Buttons: OBJECT_CREATION VIEW

• x: enters an x

• y: enters a y

• Cancel: cancels the operation

• OK: finalizes the operation

Note that the Geometry app uses lower-case x and y for defining plots and making calculations.

Geometry Numeric View Numeric view enables you to create calculations and perform tests in the Geometry app. The results
displayed are dynamic—if you manipulate an object in Plot view or Symbolic view, any calculations in
Numeric view that refer to that object are automatically updated to reflect the new numerical properties
of that object. As in the Symbolic view, you can check an entry to make it visible in the Plot view of
uncheck it to hide it in the Plot view.

Menu Buttons: PRIMARY VIEW

• Edit: modify a selected measurement or test

• ✓: select or deselect a measurement or test. Selected measurements and tests appear in Plot view.

• New: tap to create a new measurement or test. The buttons change (see below).

• ↓: move the selected down the list

• ↑: move the selected measurement or test up the list

• Delete: delete the selected measurement or test

Menu Buttons:OBJECT-CREATION VIEW

If you tap New in the primary Numeric view (see above), the buttons at the bottom of the screen change
to:
• Cmds: displays a menu of all the geometry-specific measurements and tests

• Vars: displays a menu of all the objects defined in Symbolic view

• Cancel: cancels the operation

• OK: finalizes the operation

THE NUMERIC VIEW COMMANDS MENU

• Cartesian: displays a menu for displaying coordinates of points, Cartesian equations and so forth

• Measure: displays a menu of various measurements, such as distance, slope, and so forth

• Tests: displays a menu of various tests you can perform, such as is_collinear (tests whether or not a set
of points is collinear)
In addition to creating tests and measurements, you can create calculations based on test results and
measurements. Just tap New and enter the calculation as you would in the CAS or Home views. Each
calculation you define in Numeric view appears on its own line and has the following parts:

 • Check Box: the check box determines whether the object defined is shown or hidden in Plot view; check
to show and uncheck to hide the object
 • Color Box: tap the color box to open the color picker; tap a color to select a color and close the picker -
the text label and numerical result will appear in Plot view drawn in this color

 • Label Field: the label field contains the default label for your calculation; tap Label to change the label.

 • Definition Field: the definition field is where the command is entered to define your calculation. Open
the Cmds menu and choose a command; you can also enter functions directly from the keyboard.

Note that the Geometry app uses lower-case x and y for defining plots and making calculations.

Geometry Variables Apart from the modes and Plot view variables (which are common to all apps), the Geometry app has the
following additional Plot view variables:
• PixSize: determines the size of each square pixel in Cartesian units

Page 19 of 239

13217 Help TextHelp Topics Tree
• ScrollText: determines whether or not the current command text in Plot view scrolls manually or
automatically.
 ScrollText := 0 manual scrolling (default)

 ScrollText := 1 automatic scrolling

The other Geometry app vars are explained in HP Apps > Common App Variables > Common Plot View
Variables.
The Geometry app also lists as app vars each object in the Symbolic view.

Geometry Functions This menu contains all the geometry-specific functions and commands.

Point Geometry Point Functions

This menu contains options commands for creating points, midpoints, and so forth.

point Syntax:

point(Real1, Real2)

point(Expr1, Expr2)

Creates a point, given the coordinates of the point. Each coordinate may be a value or an expression
involving variables or measurements on other objects in the geometric construction.

Examples:

point(3,4) creates a point whose coordinates are (3,4). This point may be selected and moved later.

point(abscissa(GA), ordinate(GB)) creates a point whose x-coordinate is the same as that of a point A and
whose y-coordinate is the same as that of a point B. This point will change to reflect the movements of
point A or point B.

element Point On

Syntax:

element(Object, Real) or

element(Real1..Real2)

Creates a point on a geometric object whose abscissa is a given value or creates a real value on a given
interval as a slider bar.
The value you set using element(Real1..Real2) can be used as a coefficient in a function you subsequently
define in Symbolic view and plot in Plot view. In addition, it can be used in a measurement or calculation
in Numeric view.
Examples:

element(plotfunc(x²),–2) creates a point on the graph of y = x². Initially, this point will appear at (–2,4).
You can move the point, but it will always remain on the graph of its function.

element(0..5) creates a slider bar with a value of 2.5 initially.

Tap and hold on the slider name to open the slider bar and manipulate it. There is an Edit menu key that
you can tap to define the slider more accurately, create animations, and so forth. Press Esc to close the
slider bar at the new value or tap anywhere else on the screen.

midpoint Syntax:

midpoint(Segment) or

midpoint(Point1, Point2)

Returns the midpoint of a segment. The argument can be either the name of a segment or two points that
define a segment. In the latter case, the segment need not actually be drawn.

Example:

midpoint(0,6+6i) → point(3,3)

center Syntax:

center(Circle)

Returns the center of a circle. The circle can be defined by the circle command or by name (e.g., GC).

Examples:

center(circle(x²+y²-x-y)) → point(1/2,1/2)

center(circumcircle(0,1,1+i)) → point(1/2,1/2)

single_inter Single Intersection

Syntax:

single_inter(Curve1, Curve2, [Point])

Returns the intersection of Curve1 and Curve2 that is closest to Point.

In Plot view, this command will prompt for two curves. After that, a point will appear; move this point to
the intersection desired and press Enter. You can move the point later to change intersections if you wish.

Example:

single_inter(line(y=x),circle(x²+y²=1), point(1,1)) → point((1+i)*√2/2)

Random Point Creates a random point in Plot view.

Activate this command and press Enter to create a random point in the Plot view. Keep pressing Enter to
create more random points or press Esc to quit.

inter Intersections

Syntax:

inter(Curve1, Curve2)

Returns the intersections of two curves as a vector.

Example:

inter(8-x²/6,x/2-1) → [[6, 2] [-9, -11/2]], indica ng that there are two intersec ons-one at (6,2) and the
other at (-9,-11/2).

Trace Syntax:

trace(point)

Page 20 of 239

13217 Help TextHelp Topics Tree
Trace is an option found in the Options menu of the Plot view of the Geometry app. It is a toggle for
turning tracing off and on for the selected point. There is also an option to clear an existing trace from
Plot view.
Example:

trace(GA)

Clear Trace Clear Trace erases the current trace in Plot view. It does not stop further tracing.

Line Geometry Line Functions

This menu contains all the geometrical functions specific to straight objects (segments, lines, etc.).

segment Syntax:

segment(Point1, Point2)

Draws a segment defined by its endpoints.

Examples:

segment(1+2*i, 4) draws the segment defined by the points with coordinates (1, 2) and (4, 0).

segment(GA,GB) draws segment AB. draws segment AB.

half_line Ray

Syntax:

half_line(Point1, Point2)

Given 2 points, draws a ray from the first point through the second point.

Example:

half_line(0,1+i) draws a ray starting at the origin and passing through the point at (1,1)

line Syntax:

line(Point1, Point2) or

line(a*x+b*y+c) or

line(point1, slope=realm)

Draws a line in the Plot view of the Geometry app or returns the equation of a line in CAS view. The
arguments can be two points, a linear expression of the form a*x+b*y+c, or a point and a slope.

Examples:

line(2+i,3+2*i) draws the line whose equation is y=x-1; that is, the line through the points (2,1) and (3,2).

line(2x-3y-8) draws the line whose equation is 2x-3y=8

line(3-2i,slope=1/2) draws the line whose equation is x-2y=7; that is, the line through (3, -2) with slope
m=1/2

parallel Syntax:

parallel(Point, Line)

Given a point and a line, returns the equation of the line through the point that is parallel to the given line.

Examples:

parallel(GA,GB) draws the line through point A that is parallel to line B.

parallel(point(3,-2),line(x+y=5)) draws the line through the point (3, –2) that is parallel to the line whose
equation is x+y=5; that is, the line whose equation is y=–x+1.

perpendicular Syntax:

perpendicular(Point, Line) or

perpendicular(Point1, Point2, Point3)

Draws a line through a given point that is perpendicular to a given line. The line may be defined by its
name, two points, or an expression in x and y.
Examples:

perpendicular(GA,GD) draws a line perpendicular to line D through point A.

perpendicular(3+2i,GB,GC) draws a line through the point whose coordinates are (3, 2) that is
perpendicular to line BC.
perpendicular(3+2*i,line(x-y=1)) draws a line through the point whose coordinates are (3, 2) that is
perpendicular to the line whose equation is x – y = 1; that is, the line whose equation is y=-x+5.

tangent Syntax:

tangent(Curve, Point)

Draws the tangent(s) to a given curve through a given point. The point does not have to be a point on the
curve.
Examples:

tangent(plotfunc(x²), point(1,1)) draws the tangent to the graph y=x² through the point (1,1); that is, the
line whose equation is y=2*x-1.
tangent(plotfunc(x²), GA) draws the tangent to the graph of y=x² through point A. Point A can then be
moved and the tangent will move with it.
tangent(circle(GB,GC-GB),GA) draws one or more tangent lines through point A to the circle whose center
is at point B and whose radius is defined by segment BC.

median_line Median

Syntax:

median_line(Point1, Point2, Point3)

Given three points that define a triangle, draws the median of the triangle that passes through the first
point and contains the midpoint of the segment defined by the other two points. In CAS view, returns the
equation of the median line.
Example:

Page 21 of 239

13217 Help TextHelp Topics Tree
median_line(0,8*i,4) draws the line whose equation is y=2x; that is, the line through the first vertex of the
triangle at (0,0) and the point at (2,4), the midpoint of the segment with endpoints (0, 8) and (4, 0).

altitude Syntax:

altitude(Point1, Point2, Point3)

Given three non-collinear points, draws the altitude of the triangle defined by the three points that passes
through the first point. The triangle does not have to be drawn.

Example:

altitude(point(6,6), point(-2,3), point(5,1)) draws a line passing through point (6,6) that is perpendicular to
the line passing through both points (-2,3) and (5,1).

bisector Syntax:

bisector(Point1, Point2, Point3)

Given three points, creates the bisector of the angle defined by the three points whose vertex is at the
first point. The angle does not have to be drawn in the Plot view.

Examples:

bisector(0,-4*i,4)

bisector(0,1,i)

bisector(GA,GB,GC) draws the bisector of∡BAC.

bisector(0,-4i,4) draws the line given by y=–x

Polygon Geometry Polygon Functions

This menu contains all the geometrical functions specific to polygons.

triangle Syntax:

triangle(Point1, Point2, Point3)

Draws a triangle, given its three vertices.

Example: triangle(GA,GB,GC) draws ΔABC

isosceles_triangle Isosceles Triangle

Syntax:

isosceles_triangle(Point1, Point2, Angle, [Var])

Draws an isosceles triangle defined by two of its vertices and an angle. The vertices define one of the two
sides equal in length and the angle defines the angle between the two sides of equal length. Like
equilateral_triangle, you have the option of storing the coordinates of the third point into a CAS variable.

Example:

isosceles_triangle(GA,GB,angle(GC,GA,GB)) defines an isosceles triangle such that one of the two sides of
equal length is AB, and the angle between the two sides of equal length has a measure equal to that
of∡ACB.

right_triangle Right Triangle

Syntax:

right_triangle(Point1, Point2, Realk)

Draws a right triangle given two points and a scale factor. One leg of the right triangle is defined by the
two points, the vertex of the right angle is at the first point, and the scale factor multiplies the length of
the first leg to determine the length of the second leg.

Example: right_triangle(GA,GB,1) draws an isosceles right triangle with its right angle at point A, and with
both legs equal in length to segment AB.

quadrilateral Syntax:

quadrilateral(Point1, Point2, Point3, Point4)

Draws a quadrilateral from a set of four points.

Example:

quadrilateral(GA,GB,GC,GD) draws quadrilateral ABCD.

square Syntax:

square(Point1, Point2)

Draws a square, given two consecutive vertices as points.

Example: square(0,3+2i,p,q) draws a square with vertices at (0, 0), (3, 2), (1, 5), and (-2, 3). The last two
vertices are computed automatically and are saved into the CAS variables p and q.

parallelogram Syntax:

parallelogram(Point1, Point2, Point3)

Draws a parallelogram given three of its vertices. The fourth point is calculated automatically but is not
defined symbolically. As with most of the other polygon commands, you can store the fourth point’s
coordinates into a CAS variable. The orientation of the parallelogram is counterclockwise from the first
point.
Example:

parallelogram(0,6,9+5i) draws a parallelogram whose vertices are at (0, 0), (6, 0), (9, 5), and (3,5). The
coordinates of the last point are calculated automatically.

rhombus Syntax:

rhombus(Point1, Point2, Angle)

Draws a rhombus, given two points and an angle. As with many of the other polygon commands, you can
specify optional CAS variable names for storing the coordinates of the other two vertices as points.

Example

rhombus(GA,GB,angle(GC,GD,GE)) draws a rhombus on segment AB such that the angle at vertex A has
the same measure as∡DCE

rectangle Syntax:

Page 22 of 239

13217 Help TextHelp Topics Tree
rectangle(Point1, Point2, Point3) or

rectangle(Point1, Point2, Realk)

Draws a rectangle given two consecutive vertices and a point on the side opposite the side defined by the
first two vertices or a scale factor for the sides perpendicular to the first side. As with many of the other
polygon commands, you can specify optional CAS variable names for storing the coordinates of the other
two vertices as points.

Examples:

rectangle(GA,GB,GE) draws a rectangle whose first two vertices are points A and B (one side is segment
AB). Point E is on the line that contains the side of the rectangle opposite segment AB.

rectangle(GA,GB,3,p,q) draws a rectangle whose first two vertices are points A and B (one side is segment
AB). The sides perpendicular to segment AB have length 3*AB. The third and fourth points are stored into
the CAS variables p and q, respectively.

polygon Syntax:

polygon(Point1, Point2, …, Pointn)

Draws a polygon from a set of vertices.

Example:

polygon(GA,GB,GD) draws ΔABD

isopolygon Regular Polygon

Syntax:

isopolygon(Point1, Point2, Realn)

Draws a regular polygon given the first two vertices and the number of sides, where the number of sides
is greater than 1. If the number of sides is 2, then the segment is drawn.

You can provide CAS variable names for storing the coordinates of the calculated points in the order they
were created. The orientation of the polygon is counterclockwise.

Examples:

isopolygon(point(0,0,0),point(3,3,3),point(0,0,3),-5)

isopolygon(GA,GB,6) draws a regular hexagon whose first two vertices are the points A and B.

Curve Geometry Curve Functions

This menu contains all the geometrical functions specific to curves.

circle Syntax:

circle(Point1, Point2) or

circle(Point1, Point2-Point1) or

circle(equation)

Draws a circle, given the endpoints of the diameter, or a center and radius, or an equation in x and y.

Examples:

circle(GA,GB) draws the circle with diameter AB.

circle(GA,GB-GA) draws the circle with center at point A and radius AB.

circle(x²+y²=1) draws the unit circle.

This command can also be used to draw a clockwise arc.

circle(GA,GB,0,π/2) draws a quarter-circle with diameter AB.

circumcircle Syntax:

circumcircle(Point1, Point2, Point3)

Draws the circumcircle of a triangle; that is, the circle circumscribed about a triangle.

Example:

circumcircle(GA,GB,GC) draws the circle circumscribed about ΔABC

excircle Syntax:

excircle(Point1, Point2, Point3)

Given three points that define a triangle, draws the excircles of the triangle that is tangent to the side
defined by the last two points and also tangent to the extensions of the two sides whose common vertex
is the first point.
Example:

excircle(GA,GB,GC) draws the circle tangent to segment BC and to the rays AB and AC.

incircle Syntax:

incircle(Point1, Point2, Point3)

Draws the incircle of a triangle, the circle tangent to all three sides of the triangle.

Examples:

incircle(0,4,4+4*i)

incircle(GA,GB,GC) draws the incircle of ΔABC.

ellipse Syntax:

ellipse(Point1, Point2, Point3) or

ellipse(Point1, Point2, Realk)

Draws an ellipse, given the foci and either a point on the ellipse or a scalar that is one half the constant
sum of the distances from a point on the ellipse to each of the foci.

Examples:

ellipse(GA,GB,GC) draws the ellipse whose foci are points A and B and which passes through point C.

ellipse(GA,GB,3) draws an ellipse whose foci are points A and B. For any point P on the ellipse, AP+BP=6.

Page 23 of 239

13217 Help TextHelp Topics Tree
hyperbola Syntax:

hyperbola(Point1, Point2, Point3) or

hyperbola(Point1, Point2, Realk)

Draws a hyperbola, given the foci and either a point on the hyperbola or a scalar that is one half the
constant difference of the distances from a point on the hyperbola to each of the foci.

Examples:

hyperbola(GA,GB,GC) draws the hyperbola whose foci are points A and B and which passes through point
C.
hyperbola(GA,GB,3) draws a hyperbola whose foci are points A and B. For any point P on the hyperbola,
|AP-BP|=6.

parabola Syntax:

parabola(Point, Line) or

parabola(Point, Realk) or

parabola(Expr)

Draws a parabola, given a focus point and a directrix line, or the vertex of the parabola and a real number
that represents the focal length
Examples:

parabola(GA,GB) draws a parabola whose focus is point A and whose directrix is line B.

parabola(GA,1) draws a parabola whose vertex is point A and whose focal length is 1.

parabola(x-y²+y-2) draws the graph of the parabolic equation x=y²-y+2

conic Syntax:

conic(Expr)

Plots the graph of a conic section defined by an expression in x and y.

Example:

conic(x²+y²-81) draws a circle with center at (0,0) and radius of 9

locus Syntax:

locus(Point,Element, [tstep=Value]))

Given a first point and a second point that is an element of (a point on) a geometric object, draws the
locus of the first point as the second point traverses its object. The optional tstep statement can be used
to control the default level of detail.

Plot Geometry Plot Functions

This menu contains a set of commands for plotting graphs in Plot view of the Geometry app.

plotfunc Plot Function

Syntax:

plotfunc(Expr)

Used in the Geometry app Plot or Symbolic views, or in CAS view. Draws the plot of a function, given an
expression in the independent variable x. Note the use of lowercase x.

Example:

plotfunc(3*sin(x)) draws the graph of y=3*sin(x).

plotparam Plot Parametric

Syntax:

plotparam(f(Var)+i*g(Var), Var= Interval, [tstep=Value])

Used in the Geometry app Symbolic view. Takes a complex expression in one variable and an interval for
that variable as arguments. Interprets the complex expression f(t)+i*g(t) as x=f(t) and y=g(t) and plots the
parametric equation over the interval specified in the second argument.

Examples:

plotparam(cos(t)+i*sin(t),t=0..2*π) plots the unit circle

plotparam(cos(t)+i*sin(t),t=0..2*π,tstep=π/3) plots a regular hexagon inscribed in the unit circle (note the
tstep value)

plotpolar Plot Polar

Syntax:

plotpolar(Expr,Var=Interval, [Step]) or

plotpolar(Expr, Var, Min, Max, [Step])

Used in the Geometry app to draw a polar graph in Plot view.

Examples:

plotpolar(sin(2*x),x,0,π,tstep=0.1)

plotpolar(f(x),x,a,b) draws the polar curve r=f(x) for x in [a,b]

plotseq Plot Sequence

Syntax:

plotseq(f(Var), Var={Start, Xmin, Xmax}, Integern)

Used in the Geometry app Symbolic view. Given an expression in x and a list containing three values,
draws the line y=x, the plot of the function defined by the expression over the domain defined by the
interval between the last two values, and draws the cobweb plot for the first n terms of the sequence
defined recursively by the expression (starting at the first value).

Example:

plotseq(1-x/2,x={3,-1,6},5) plots y=x and y=1–x/2 (from x=–1 to x=6), then draws the first 5 terms of the
cobweb plot for u(n)=1-(u(n–1)/2), starting at u(0)=3

plotimplicit Plot Implicit

Page 24 of 239

13217 Help TextHelp Topics Tree
Syntax:

plotimplicit(Expr, [XIntrvl, YIntrvl])

Used in the Geometry app Plot or Symbolic views, or CAS view. Plots an implicitly defined curved from
Expr (in x and y). Specifically, plots Expr=0. Note the use of lowercase x and y. With the optional x-interval
and y-interval, plots only within those intervals.

Examples:

plotimplicit((x+5)²+(y+4)²-1,[x=-6..-4,y=-5..-3])

plotimplicit((x+5)²+(y+4)²-1) plots a circle, centered at the point (-5, -4), with a radius of 1

plotinequation Plot Inequation

Syntax:

plotinequation(Expr,[x=xrange,y=yrange],[xstep],[ystep])

Plots the graph of the solution of inequations with two variables.

Example:

plotinequation([x+y>3,x²<y],[x,y],xstep=0.2,ystep=0.2)

plotfield Plot Slopefield

Syntax:

plotfield(Expr, VectorVar, [xstep=Val, ystep=Val, Option])

Used in the Geometry app or CAS view. Plots the graph of the slopefield for the differential equation
y’=f(x,y), where f(x,y) is contained in Expr. VectorVar is a vector containing the variables. If VectorVar is of
the form [x=Interval, y=Interval], then the slopefield is plotted over the specified x-range and y-range.
Given xstep and ystep values, plots the slopefield segments using these steps. If Option is ‘normalize’,
then the slopefield segments drawn are equal in length.

Example:

plotfield(x*sin(y),[x=-6..6,y=-6..6],normalize) draws the slopefield for y'=x*sin(y), from -6 to 6 in both
directions, with segments that are all of the same length.

plotode Plot ODE

Syntax:

plotode(Expr, [Var1, Var2, ...], [Val1, Val2. ...], [tstep=Value])

Used in the Symbolic or Plot views of the Geometry app or in CAS view. Draws the solution of the
differential equation y’=f(Va1, Var2, …) that contains as initial condition for the variables Val1, Val2, … The
first argument is the expression f(Var1, Var2, …), the second argument is the vector of variables, and the
third argument is the vector of initial conditions. The optional tstep can be used to control the level of
detail of the plot.

Examples:

plotode(x*sin(y),[x,y],[-2,2]) draws the graph of the solution to y’=x*sin(y) that passes through the point
(–2, 2) as its initial condition.
plotode(5*[-y,x],[t=0..1,x,y],[0,0.3,0.7],tstep=0.5,plan)

plotlist Plot List

Syntax:

plotlist(Matrix)

Used in the Plot or Symbolic views of the Geometry app, or CAS view, this command plots a set of n points
and connects them with segments. The points are defined by a m x 2 matrix, with the abscissas in the first
row and the ordinates in the second row.

Example: plotlist([[0,3],[2,1],[4,4],[0,3]]) draws a triangle

Transform Geometry Transform Functions

This menu contains all the geometrical functions specific to transformations.

translation Syntax:

translation(Vector, Object)

Translates a geometric object along a given vector. The vector is given as the difference of two points
(head-tail).
Examples:

translation(0-i,GA) translates object A down one unit.

translation(GB-GA,GC) translates object C along the vector AB.

reflection Syntax:

reflection(Line, Object) or

reflection(Point, Object)

Reflects a geometric object over a line or through a point. The latter is sometimes referred to as a half-
turn.
Examples:

reflection(line(x=3),point(1,1)) reflects the point at (1,1) over the vertical line x=3 to create a point at (5,1).

reflection(1+i, 3-2i) reflects the point at (3,-2) through the point at (1, 1) to create a point at (-1,4).

rotation Syntax:

rotate(Point, Angle, Object)

Rotates a geometric object, about a given center point, through a given angle.

Example:

rotate(GA,angle(GB,GC,GD),GK) rotates the geometric object labeled K, about point A, through an angle
equal to∡CBD.

homothety Dilation

Syntax:

Page 25 of 239

13217 Help TextHelp Topics Tree
homothety(Point, Realk, Object)

Dilates a geometric object, with respect to a center point, by a scale factor.

Examples:

homothety(GA,2,GB) creates a dilation centered at point A that has a scale factor of 2. Each point P on
geometric object B has its image P’ on ray AP such that AP’=2AP.
homothety(point(0,0),1/3,point(9,9)) creates an image point at (3,3).

similarity Syntax:

similarity(Point, Realk, Angle, Object)

Dilates and rotates a geometric object about the same center point.

Example:

similarity(0,3,angle(0,1,i),point(2,0)) dilates the point at (2,0) by a scale factor of 3 (a point at (6,0)), then
rotates the result 90° counterclockwise to create a point at (0, 6)

projection Syntax:

projection(Curve, Point)

Draws the orthogonal projection of a point onto a curve.

Example:

projection(circle(x²+y²=4),point(6,6)) creates a point on the circle at (√2,√2)

inversion Syntax:

inversion(Point1, Realk, Point2)

Draws the inversion of a point, with respect to another point, by a scale factor.

Example:

inversion(GA,3,GB) draws point C on line AB such that AB*AC=3. In this case, point A is the center of the
inversion and the scale factor is 3. Point B is the point whose inversion is created.

In general, the inversion of point A through center C, with scale factor k, maps A onto A’, such that A’ is on
line CA and CA*CA’=k, where CA and CA’ denote the lengths of the corresponding segments. If k=1, then
the lengths CA and CA’ are reciprocals.

reciprocation Syntax:

reciprocation(Circle, [Obj1, Obj2,...Objn])

Given a circle and a vector of objects that are either points or lines, returns a vector where each point is
replaced with its polar line and each line is replaced with its pole, with respect to the circle.

Example:

reciprocation(circle(0,1),[line(1+i,2),point(1+i*2)]) returns [point(1/2, 1/2) line(y=-x/2+1/2)]

Cartesian Geometry Cartesian Functions

This menu contains commands that are essentially Cartesian in nature. These include the coordinates of
points, the equations of lines and curves, and slider bars among others.

abscissa Syntax:

abscissa(Point) or abscissa(Vector)

Returns the x coordinate of a point or the x length of a vector.

Example:

abscissa(GA) the x-coordinate of the point A.

affix Syntax:

affix(Point) or affix(Vector)

Returns the coordinates of a point or both the x- and y-lengths of a vector as a complex number.

Examples:

affix(point(3,2)) returns 3+2*i

If GA is a point at (1, -2), then affix(GA) returns 1-2*i.

coordinates Syntax:

coordinates(Point) or coordinates(Vector)

Given a point, returns a vector with its coordinates. Given a vector of points, returns a matrix containing
the x- and y-coordinates of those points. Each row of the matrix defines one point; the first column gives
the x-coordinates and the second column contains the y-coordinates.

Example:

coordinates(point(1+2*i)) → [1,2]

ordinate Syntax:

ordinate(Point) or

ordinate(Vector)

Returns the ordinate of a point or the y-length of a vector.

Example:

ordinate(point(1+2*i)) → 2

polar_coordinates Polar Coordinates

Syntax:

polar_coordinates(Point)

Returns a vector containing the polar coordinates of a point.

Example:

polar_coordinates(point(1+2*i)) → √5 atan(2)

equation Equation of

Syntax:

Page 26 of 239

13217 Help TextHelp Topics Tree
equation(Curve) or equation(Point)

Returns the Cartesian equation of a curve in x and y, or the Cartesian coordinates of a point.

Examples:

equation(line(1-i,i)) → y=-2*x+1

If GA is the point at (0, 0), GB is the point at (1, 0), and GC is defined as circle(GA, GB-GA), then
equation(GC) returns x² + y² =1.

parameq Parametric

Syntax:

parameq(Obj)

Returns a parametric equation for a geometric object. The parametric equation is true for all complex
numbers that represent points on the object.
Examples:

parameq(circle(0,1)) → e^(i*t)

parameq(line(i,1-i))

Measure Geometry Measure Functions

This menu contains all the geometrical measurement specific functions

distance Syntax:

distance(Point1, Point2) or

distance(Point, Curve)

Returns the distance between two points or between a point and a curve.

Examples:

distance(1+i,3+3i) → 2√2

if GA is the point at (0,0) and GB is defined as plotfunc(4-x²/4), then distance (GA,GB) returns 2√3.

radius Syntax:

radius(Circle)

Returns the radius of a circle.

Examples:

radius(circle(-1,1-i)) → √2

If GA is the point at (0,0), GB is the point at (1,0), and GC is defined as circle(GA,GB-GA), then radius(GC)
returns 1.

perimeter Syntax:

perimeter(Polygon) or

perimeter(Circle)

Returns the perimeter of a polygon or the circumference of a circle.

Examples:

perimeter(0,1,i) → √2+2

If GA is the point at (0, 0), GB is the point at (1, 0), and GC is defined as circle(GA, GB-GA), then
perimeter(GC) returns 2π.
If GA is the point at (0, 0), GB is the point at (1, 0), and GC is defined as square(GA, GB-GA), then
perimeter(GC) returns 4.

area Syntax:

area(Circle) or

area(Polygon) or

area(Function, Value1, Value2)

Returns the area of a circle or polygon. Can also return the area under a function between two x-values.

Examples:

If GA is defined to be the unit circle, then area(GA) returns π.

If GA is defined to be plotfunc(4-x²/4), then area(GA,-4,4) returns 64/3 or 21.333…

In CAS view, area(4-x²/4,x=-4..4) returns 64/3 as well.

angle Syntax:

angle(Vertex, Point2, Point3)

Returns the measure of a directed angle. The first point is taken as the vertex of the angle and the next
two points in order give the measure and orientation.
Examples:

angle(i,1,1+i,"b") returns the measure of∡BAC

slope Syntax:

slope(Line) or slope(Point1, Point2)

Given a line or two points that define a line, returns the slope of the line.

Example: slope(line(1,2*i)) → -2

arcLen Arc Length

Syntax:

arcLen(Expr, Real1, Real2)

Returns the length of the arc of a curve between two points on the curve. The curve is an expression, the
independent variable is declared, and the two points are defined by values of the independent variable.

This command can also accept a parametric definition of a curve. In this case, the expression is a list of 2
expressions (the first for x and the second for y) in terms of a third independent variable.

Examples:

arcLen(x²,x,-2,2) → 9.29…

Page 27 of 239

13217 Help TextHelp Topics Tree
arcLen({sin(t),cos(t)},t,0,π/2) → 1.57…

Test Geometry Test Functions

This menu contains all the geometrical test specific functions

is_collinear is_collinear Function

Syntax:

is_collinear(Point1, Point2, ..., Pointn)

Takes a set of points as argument and tests whether or not they are collinear. Returns 1 if the points are
collinear and 0 otherwise.
Example:

is_collinear(point(0,0), point(5,0), point(6,1)) → 0

is_concyclic is_concyclic Function

Syntax:

is_concyclic(Point1, Point2, Point3, Point4))

Takes a set of 4 points as argument and tests if they are all on the same circle. Returns 1 if the points are
all on the same circle and 0 otherwise.
Example:

is_concyclic(point(-4,-2), point(-4,2), point(4,-2), point(4,2)) → 1

is_element is_element Function

Syntax:

is_element(Point, Object)

Tests if a point is on a geometric object. Returns a number (1 to number of sides) representing the
segment containing the point and 0 otherwise.
Examples:

is_element(point((√(2)/2),(√(2)/2)),circle(0,1)) → 1

is_element(point(0,0.5),square(0,1)) → 4

is_parallel is_parallel Function

Syntax:

is_parallel(Line1, Line2)

Tests whether or not two lines are parallel. Returns 1 if they are and 0 otherwise.

Example:

is_parallel(line(2x+3y=7),line(2x+3y=9) → 1

is_perpendicular is_perpendicular Function

Syntax:

is_perpendicular(Line1, Line2)

Similar to is_orthogonal. Tests whether or not two lines are perpendicular. Returns 1 if they are or 0 if
they are not.
Example:

is_perpendicular(line(y=x),line(y=-x)) → 1

is_isosceles is_isosceles Function

Syntax:

is_isosceles(Point1, Point2, Point3)

Takes three points and tests whether or not they are vertices of a single isosceles triangle. Returns 0 if
they are not. If they are, returns the number order of the common point of the two sides of equal length
(1, 2, or 3). Returns 4 if the three points form an equilateral triangle.

Examples:

is_isosceles(point(0,0), point(4,0), point(2,4)) → 3

is_isosceles(triangle(0,i,1+i)) → 2

is_equilateral is_equilateral Function

Syntax:

is_equilateral(Point1, Point2, Point3)

Takes three points and tests whether or not they are vertices of a single equilateral triangle. Returns 1 if
they are and 0 otherwise.
Example:

is_equilateral(triangle(0,2,1+i*√3)) → 1

is_parallelogram is_parallelogram Function

Syntax:

is_parallelogram(Point1, Point2, Point3, Point4)

Tests whether or not a set of four points are vertices of a parallelogram. Returns 0 if they are not. If they
are, then returns 1 if they form only a parallelogram, 2 if they form a rhombus, 3 if they form a rectangle,
and 4 if they form a square.
Example:

is_parallelogram(point(0,0), point(2,4), point(0,8), point(-2,4)) → 2

is_conjugate is_conjugate Function

Syntax:

is_conjugate(Circle, Point1, Point2, [Point3]) or

is_conjugate(Line1, Line2, Line3, [Line4])

Tests whether or not two points or two lines are conjugates for the given circle. Returns 1 if they are and
0 otherwise.

Zoom Geometry Zoom Functions

This menu contains options for zooming in Plot view of the Geometry app.

Page 28 of 239

13217 Help TextHelp Topics Tree
Geometry Symbolic Functions There are two symbolic functions in the Geometry app. These were designed to allow the user to edit and

delete symbolic definitions of geometric objects. These commands are Instruction and DelInstruction.

Instruction The Instruction command provides access to the list of symbolic definitions in the Symbolic view of the
Geometry App. Each Symbolic view definition is numbered, with 1 being the first definition.

Instruction(n) returns the value of instruction n (equivalent to typing its name).

Instruction(n,0) returns a textual representation of instruction n.

Instruction(n,1) returns a list containing all the information for instruction n: {name, definition, value,
color, visible(0/1), plotDetail (0-7), filled (0/1), traced (0/1), legend visible (0/1), {} or {font, dpi, x, y} text
position for sliders and measures, animation data: {} or {animation type (0-3), steps per sec (0-15), pause
(0-15), start (real), stop(real), steps(real)}}

Instruction(n, k) returns the kth-1 element from the meta data list, where k is between 2 and 12 inclusive
(see above).
Instruction(n):= Sets the value of instruction n from a string.

Instruction(n,1):= sets all instruction data using the same list format as described above.

Instruction(n, k):= sets meta data object k-1 to a specific value, where k is between 2 and 12 inclusive (see
above).
if n=0 or if n is greater than the number of current instructions, adds an instruction at the end of the
instruction list.
if n<0, inserts an instruction at position -n.

n can also be the variable name, either using 'name' or "name"

DelInstruction Delete Instruction

The DelInstruction command allows you to delete one or more symbolic definitions of geometric objects
in Symbolic view. Each Symbolic view definition is numbered, with 1 being he first definition.

DelInstruction erases ALL instructions.

DelInstruction(n) erases instruction n.

DelInstruction(a,b) erases instructions a to b.

Spreadsheet app The Spreadsheet app provides a grid of cells for you to enter content (such as numbers, text, expressions,
and so on) and to perform certain operations on that content.

Tap Start or press Enter to launch the app.

The app opens in Numeric view. The menu keys are:

• Format: opens the Format menu

• Go To: jumps to a specific cell

• Select: toggles selection mode on and off

• Go: determines where the selection goes after Enter is pressed. Toggles between the options of right
and down.
The following gestures are supported in Numeric view:

• tap to select a cell

• tap and hold, the drag to select a rectangular array of cells

• drag to scroll the window

• flick to initiate kinetic scrolling of the window in the desired direction

• open/close pinch vertically to increase the height of the row that contains the currently selected cell

• open/close pinch horizontally to increase/decrease the width of the column that contains the currently
selected cell

Navigation and Selection You can move about a spreadsheet by using the rocker wheel, tapping or dragging, or by tapping Go To
and specifying the cell you want to move to.
You select a cell simply by moving to it. You can also select an entire column—by tapping the column
letter—and select an entire row (by tapping the row number). You can also select the entire spreadsheet:
just tap on the unnumbered cell at the top-left corner of the spreadsheet (it has the HP logo in it.).

A block of cells can be selected by pressing down on a cell that will be a corner cell of the selection and,
after a second, dragging your finger to the diagonally opposite cell. You can also select a block of cells by
moving to a corner cell, tapping Select and using the rocker wheel to move to the diagonally opposite cell.
Tapping on Sel or another cell deselects the selection.

Cell Referencing You can refer to the value of a cell in formulas as if it were a variable. A cell is referenced by its column
and row coordinates, and references can be absolute or relative. An absolute reference is written as CR
(where C is the column letter and R the row number). Thus B7 is an absolute reference. In a formula it
will always refer to the data in cell B7 wherever that formula, or a copy of it, is placed. On the other hand,
B7 is a relative reference. It is based on the relative position of cells. Thus a formula in, say, B8 that
references B7 will reference C7 instead of B7 if it is copied to C8.

Ranges of cells can also be specified, as in C6:E12, as can entire columns (E:E) or entire rows ($3:$5). Note
that the alphabetic component of column names can be uppercase or lowercase except for columns g, l,
m, and z. These must be in lowercase. Thus cell B1 can be referred to as B1,b1,B1 or b1 whereas M1
can only be referred to as m1 or m1. (G, L, M, and Z are names reserved for graphic objects, lists,
matrices, and complex numbers.)

Row, Col, and Cell are also variables that can be used for referencing. See Spreadsheet Variables for more
information.

Naming Cells Cells, rows, and columns can be named. The name can then be used in a formula. A named cell is
displayed with a blue border.
To name a cell, row, or column:

Page 29 of 239

13217 Help TextHelp Topics Tree
1. Select the cell, row, or column.

Method 1:

2. Enter a name

3. Tap Name in the menu

Method 2:

2. Tap Format and select Name.

3. Enter a name and tap OK.

Using Names In Calculations

The name you give a cell, row, or column can be used in a formula. For example, if you name a cell TOTAL,
you could enter in another cell the formula =TOTAL*11.

Entering Content Syntax:

Row

Cell

A cell can contain any valid calculator object: a real number (3.14), a complex number (a + b*i), an
integer (#1Ah), a list ({1, 2}), a matrix or vector([1, 2]), a string ("text"), a unit (2_m) or an expression (that
is, a formula).
Move to the cell you want to set content into and start entering the content as you would in Home view.
Press Enter when you have finished. You can also enter content into a number of cells with a single entry.
Just select the cells, enter the content—for example, =Row*3—and press Enter.

What you enter on the entry line is evaluated as soon as you press Enter, with the result placed in the cell
or cells. However, if you want to retain the underlying formula, precede it with =. For example, suppose
that you want to add cell A1 (which contains 7) to cell B2 (which contains 12). Entering A1+ B2 in, say, A4
yields 19, as does entering Shift = A1+ B2 in A5. However, if the value in A1 (or B2) changes, the value in
A5 changes but not the value in A4. This is because the expression (or formula) was retained in A5.

To see if a cell contains just the value shown in it or also an underlying formula that generates the value,
move your cursor to the cell. The entry line shows a formula if there is one.

When entering a formula using =, you have the option to have the result evaluated numerically or using
the CAS to generate exact or symbolic results. Once you enter =, you will notice that there is a CAS menu
button. If you activate this button by tapping on it (a dot will indicate it is active), then when you press the
Enter key, the results will be evaluated using the CAS. When you select a cell, row, or column that has a
CAS-active formula in it, you will see "CAS" in red letters above the equal sign.

A single formula can be used to generate a value for every cell in a column or row. For example, move to
C (the heading cell for column C), enter Shift = SIN(Row) and press Enter. Each cell in the column will
display the sine of the cell’s row number. A similar process enables you to populate every cell in a row
with the same formula. Note that no content was placed in these cells.

For example, set A1 to 1 and A to =Cell(Row-1,1)+Cell(Row-2,1) to display a Fibonacci sequence in column
A.
You can also add a formula once and have it apply to every cell in the spreadsheet. You do this by placing
the formula in the cell at the top left (the cell with the HP logo in it).

for example: =COMB(Row, Cell) will create a sheet with Pascal's triangle

Importing from a Statistics App You can import data from the Statistics 1Var and Statistics 2Var apps (and from any app customized from
a statistics app). The procedure below imports dataset D1 from the Statistics 1Var App.

1. Select a cell

2. Enter Statistics_1Var.D1

3. Press Enter

The column is filled with the data from the statistics app, starting with the cell selected at step 1. Any data
in that column will be overwritten by the data being imported.

On the other hand, if you start the formula in Step 2 with =, then the entire list D1 of the Statistics 2Var
app will be pasted into the selected cell.

Sort Cells To sort a group of cells:

1. Select cells to be sorted.

2. Tap Sort. A menu appears giving you the option of choosing what column to sort by.

3. Choose the column. A sub-menu appears given you two sort options: ascending (↑) and descending
(↓).
4. Choose a sort option. The values in the selected cells are sorted accordingly.

Copy and Paste 1. To copy one or more cells, select them and press Shift View (Copy).

2. Move to the desired location and press Shift Menu (Paste).

3. The Paste choose box opens with your selections displayed as a list and selected. Tap on the selection
(or press rocker wheel right) to see a list of paste options. You can choose to paste either the value,
formula, format, both value and format, or both formula and format.

4. Tap on a paste option or use the rocker wheel to select an option and press Enter (or tap OK). The paste
operation is completed.

External References You can refer to data in a spreadsheet from outside the Spreadsheet app by using the reference CR. For
example, in Home view you can refer to cell A6 in the built-in spreadsheet by entering A6. Thus the
formula 6*A6 would multiply whatever value is currently in cell A6 by 6.

If Spreadsheet is not the current app, you can still use Cell content by fully qualifying the cell name using
AppName.CellName. For example, Spreadsheet.A6 or Savings.A6 if you have saved your spreadsheet as
'Savings'.
An external reference can also be to a named cell, as in 5*Savings.TOTAL.

Page 30 of 239

13217 Help TextHelp Topics Tree
In the same way, you can also enter references to spreadsheet cells in the CAS.

Note that a reference to a spreadsheet name is case-sensitive.

Expressions in Spreadsheet Any expression valid in Home or CAS can be used in the Spreadsheet app. This includes use of Home, CAS,
user and App variables.

Name a Cell, Row or Column Enter a name for the cell, row, or column and tap OK.

Go To You can go to any cell in the spreadsheet directly by tapping Go To. Enter the definition of the cell you
want to go to then tap OK.
The definition can be a cell reference (such as B7) or the given name of a cell.

The definition can also be a selection such as A1:F7 in which case all the cells are selected.

Spreadsheet Choose Syntax:

=CHOOSE(Variable_or_number, "title", list)

The CHOOSE function has a special application in the spreadsheet.

Placing a CHOOSE function as a cell formula will do 4 things:

- The cell value (result of the evaluation of CHOOSE) will be the selected item in the choose box

- The cell display will show a dropdown menu

- Tapping on the cell will open the choose and let you change the selection

- When the user changes the selected item in the choose through the UI, the title_Changed function of
the app program will be called.
Note that the 'list' can be hard-coded {"up", "down"}, calculated MAKELIST(X^2, X, 1, 10), or extracted
from the spreadsheet (A1:A5).
The first parameter of the choose can be either a variable name or a cell reference.

Examples:

If the formula in B1 is

=CHOOSE(1, "Direct", {"Up","Down"})

Creates a choose box that let the user choose Up or Down

If the formula in B2 is

=CHOOSE(C2, "VarBased", {"Up","Down"})

Creates a choose box similar to the previous example, except that the selected item is stored in C2

If the formula in B3 is

=CHOOSE(1, "Calculated", MAKELIST(X^2, X, 1, 10))

Allows the user to choose between the first 10 square integers

And finally, assuming that the spreadsheet has data in cells A1 to A5

If the formula in B4 is

=CHOOSE(C3, "SheetData", A1:A3)

Allows the user to choose between the first 5 squares in Column A

Formatting Options The formatting options appear when you tap Format. They apply to whatever is currently selected: a cell,
block, column, row, or the entire spreadsheet.
The options will depend on what is selected. The full list of options is:

• Name: displays an input form for you to give a name to whatever is selected

• Number Format: Auto, Standard, Fixed, Scientific, Engineering, Floating or Rounded

• Font Size: Auto or from 10 to 22 point

• Color: color for the content (text, number, etc.) in the selected cells; the gray-dotted option represents
Auto
• Fill: background color that fills the selected cells; the gray-dotted option represents Auto

• Align ↔: horizontal alignment—Auto, Left, Center, Right

• Align ↕: vertical alignment—Auto, Top, Center, Bottom

• Column ↔: displays an input form for you to specify the required width of the selected columns; only
available if you have selected the entire spreadsheet or one or more entire columns.

• Row ↕: displays an input form for you to specify the required height of the selected rows; only available
if you have selected the entire spreadsheet or one or more entire rows.

• show “ “: show quote marks around strings in the body of the spreadsheet—Auto, Yes, No

• Textbook: display formulas in textbook format—Auto, Yes, No

• Caching: turn this option on to speed up calculations in spreadsheets with many formulas; only
available if you have selected the entire spreadsheet

Spreadsheet Variables Syntax:

ColWidth RowHeight Row Col Cell

Apart from the modes variables (which are common to all apps), the Spreadsheet app has the following
Numeric variables:
• ColWidth

• RowHeight

• Row

• Col

• Cell

ColWidth ColWidth Variable

ColWidth(Integer) allows you to set and get the width of columns.

Integer1 ► ColWidth(Integer2) sets the width of column Integer2 (A=1, B=2, etc.) to Integer1 pixels. Here,
both Integer1 and Integer2 are positive.
If Integer2 is not specified, sets the default width for columns in the spreadsheet to Integer1 pixels.

Page 31 of 239

13217 Help TextHelp Topics Tree
ColWidth(Integer) returns the width of the column specified by Integer (A=1, B=2, etc.).

You can also set the column width from the Format menu.

RowHeight RowHeight Variable

RowHeight(Integer) allows you to set and get the height of rows.

Integer1 ► RowHeight(Integer2) sets the height of row Integer2 to Integer1 pixels.

If Integer2 is not specified, sets the default height for rows in the spreadsheet to Integer1 pixels.

RowHeight(Integer) returns the height of the row specified by Integer.

You can also set the column width from the Format menu.

Row Row Variable

Row is a variable that indicates currently calculated cell row number.

This is mostly used when creating generic expression that need to work anywhere in the spreadsheet or
for columns or full spreadsheet expressions.
Example steps:

1. Select column A

2. Type =expand((x+1)^Row)

3. Tap the CAS menu button

4. Tap the OK menu button

Column A will now contain the expansions of (x+1)¹, (x+1)², (x+1)³, etc.

Col Col Variable

Col is a variable that indicates currently calculated cell column number (A=1, B=2, etc.).

This is mostly used when creating generic expression that need to work anywhere in the spreadsheet or
for rows or full spreadsheet expressions.
Example steps:

1. Tap on the upper left corner of the spreadsheet (where the HP logo is) to select the entire spreadsheet

2. Type =COMB(Row-1,Col-1)

3. Tap the OK menu button

The spreadsheet will now be filled with Pascal's triangle.

Cell References and Cell In most cases, you will be referencing cells directly by their Row-Column (RC) names as in A1 or D6 just
like in your usual spreadsheet. Only advanced formulas creators or users that need access to spreadsheet
data from outside of the spreadsheet numerical view will need to understand the full complexity of cell
references.
Examples:

A1:= 100 stores the value 100 in cell A1.

A1:= A2+A3 stores value of A2+A3 in A1 using the current values of A2 and A3.

A1:= 'A2+A3' sets A1 to the formula A2+A3.

Syntax: Cell(RowNumber, ColNumber, [n])

For slightly more complex formulas, Cell(r, c) where r is a row number and c a column number (A=1, B=2
…) is equivalent to ColNameRowNumber. For example, Cell(1,1) is equivalent to A1.

Valid references are:

[$]R[$]C[(n)] or

[$]CellName[(n)] or

[$]R1[$]C1:[$]R2[$]C2:[(n)] or

[$]CellName1:[$]CellName2[(n)] or a mix of both name and RC syntaxes

[$]R:[$]R[(n)] or

RowName[(n)] or

[$]C:[$]C[(n)] or

ColName[(n)]

Where R(1/2) is a Row name or number and C(1/2) is a Column name or number gives full access to a cell
or selection definition or to the cell's attributes.
For the Cell access method, note that Cell(0, Col) gives access to the specified column, Cell(Row, 0) gives
access to the specified row and Cell(0,0) gives access to the sheet definition itself.

GETTING THE CONTENT OF CELLS AND SELECTIONS:

If n is not specified and the reference is not used as a Sto destination, the value of the cell/selection is
returned.
If the reference is to a single cell, the cell value/content/attributes will be returned.

If the reference is to a single row or column, a list of value/content/attributes will be returned, one for
each cell.
If the reference is to a selection, a list of list of value/content/attributes will be retuned, one for each
column.
Note: a cell with no associated value is considered as having a value of 0.

If n is specified, the table bellow indicates what attribute of the cell will be returned.

MODIFYING THE CONTENT OF CELLS AND SELECTIONS:

If n is not specified and the reference is used as a Sto destination, the expression associated with the
cell/selection is modified.
If a single input is used as the source for more than one destination, the input is duplicated for all
destinations. If the input is an expression, relative cell references are updated as needed.

For example: A1:=1; A2:A10:='A1+1';

Page 32 of 239

13217 Help TextHelp Topics Tree
If n is specified, the table below indicates what attribute of the cell will be modified.

CELL ATTRIBUTES (n)

-1: all attributes. If the cell has nothing defined, returns -1, else return a list of 11 objects.

0: value (read only, you can not set the cell value)

1: formula

2: name

3: number format: Standard 0, Fixed 1, Scientific 2, Engineering 3, Floating 4, Rounded 5, unspecified –1

4: number of decimal places: 1 to 11, or unspecified = –1

5: font: 0 to 6, unspecified = –1

6: foreground color: contents color (color, or -1 if unspecified)

7: background color: cell fill color (color, or -1 if unspecified)

8: horizontal alignment: Left = 0, Center = 1, Right = 2 , unspecified = –1

9: vertical alignment: Top = 0, Center = 1, Bottom = 2, unspecified = –1

10: show strings in quotes: Yes = 0, No = 1, unspecified = –1

11: textbook mode (as opposed to algebraic mode): Yes = 0, No = 1, unspecified = –1

Note: As a general rule, -1 means unspecified or auto.

Cursor Cursor Variable

Syntax:

Cursor

Cursor(n)

Cursor returns a list representing the cursor position and selection stop location.

Cursor(n) returns the nth object of the list that Cursor would have returned

Cursor:= {row, col, [selectionRow, selectionCol]}

Sets the cursor position

If a selection is specified when setting Cursor, then the selection is activated else it is deactivated

Example:

Cursor → {row, col, [selec onRow, Selec onCol]}

CellName CellName Variable

Syntax:

CellName

CellName("name")

CellName returns the list of all the named cells in the spreadsheet

CellName("name") returns a list with the row and column of the named cell if it exists. Else returns 0.

Examples:

CellName → { "name1", "name2"...}

CellName("name") → { row, column }

Spreadsheet App Functions The Spreadsheet app has a set of spreadsheet specific functions.

These functions can be categorized in 2 groups.

1. Functions that need to pay special attention to cell that are empty (but still return a 0, for example
AVERAGE)
2. Functions designed to speed up calculations by returning more than 1 result at once.

SUM SUM Function

Syntax:

SUM([Input])

Calculates the sum of a range of numbers.

For example, SUM(B7:B23) returns the sum of the numbers in the range B7 to B23. You can also specify a
block of cells, as in SUM(B7:C23).
An error is returned if a cell in the specified range contains a non-numeric object.

AVERAGE AVERAGE Function

Syntax:

AVERAGE([Input])

Calculates the arithmetic mean of a range of numbers.

For example, AVERAGE(B7:B23) returns the arithmetic mean of the numbers in the range B7 to B23. You
can also specify a block of cells, as in AVERAGE(B7:C23).
An error is returned if a cell in the specified range contains a non-numeric object. Empty cells are ignored.

AMORT AMORT Function

Syntax:

AMORT(Range, n, i, pv, pmt[, ppyr=12, cpyr=ppyr, Grouping=ppyr, Beg=false, Fix=current],
"Configuration"])
Range is the cell range where the results are placed. If only one cell is specified, then the range is
automatically calculated.
Configuration is a string that defines if a header row needs to be created (starts with H) and what result to
place in which column.
h: This column contains the row headers

S: This column contains the start of the period

E: This column contains the end of the period

P: This column contains the Principal paid this period

Page 33 of 239

13217 Help TextHelp Topics Tree
B: This column contains the balance at the end of the period

I-: his column contains the interest paid this period

For example:

"H h E P" means Put headers and compute End and Principal only.

n, i, pv, pmt are the number of periods for the loan, the interest rate, the present value, and the per
period payment.
ppyr and cpyr are the number of payments per year and the number of compounding periods per year.

Grouping is the number of periods that need to be grouped together in the amortization table.

beg is 1 when payment is at the beginning of each period; otherwise it is 0.

fix is the number of decimal places displayed in the result of calculations.

STAT1 STAT1 Function

Syntax:

STAT1(Input_Range, [Mode], ["Configuration"])

The STAT1 function provides a range of one-variable statistics.

Input_Range is the data source (such as A1:D8).

Mode: Defines how to treat the input. The valid values are:

1 = Single data. Each column is treated as an independent dataset.

2 = Frequency data. Columns are used in pairs and the second column is treated as the frequency of
appearance of the first column.
If more than one column is specified, they are each treated as a different input data set. If only one row is
selected, it is treated as one data set. If two columns are selected, the mode defaults to frequency.

Configuration: Indicates which values you want to place in which row and if you want row or columns
headers. Place the symbol for each value in the order that you want to see the values appear in the
spreadsheet.
The valid values for Configuration are:

H (Place column headers)

h (Place row headers)

MeanX

Σ

Σ²

s

s²

σ

σ²

serr

ss

n

min

q1

med

q3

max

For example, if you specify "h n σ" the first column will contain row headers, the first row will be the
number of items in the input data and the second will be the standard deviation.

Examples:

STAT1(A25:A37)

STAT1(A25:A37,"h n σ")

STAT2 STAT2 Function

Syntax:

STAT2(Input_Range, [Mode], ["Configuration"])

The STAT2 function provides a range of two-variable statistics.

Input_Range is the data source (such as A1:D8).

Mode: Defines how to treat the input. The valid values are:

1 = Single data. Each column pair is treated as a paired dataset.

2 = Frequency data. Columns are used in groups of 3 and the third column is treated as the frequency of
appearance of the paired columns.
If more than two columns are specified, each additional pair is treated as a different input data set. If only
one pair is selected, it is treated as one data set. If three columns are selected, the mode defaults to
frequency.
Configuration: Indicates which values you want to place in which row and if you want row or columns
headers. Place the symbol for each value in the order that you want to see the values appear in the
spreadsheet.
The valid values for Configuration are:

H (Place column headers)

h (Place row headers)

MeanX

Σx

Σx²

sx

Page 34 of 239

13217 Help TextHelp Topics Tree
sx²

σx

σx²

serrx

ssx

n

ȳ

Σy

Σy²

sy

sy²

σy

σy²

serry

ssy

Σxy

For example, if you specify "h n σy" the first column will contain row headers, the first row will be the
number of items in the input data, the second will be the x mean, and the third will be the y standard
deviation.
Examples:

STAT2(A25:B37)

STAT2(A25:B37,"h n σy")

REGRS REGRS Function

Syntax:

REGRS(Input_range, [model], ["configuration"])

Attempts to fit the input data to a function specified by model (default is linear).

Input_range: specifies the data source; for example, A1:D8. It must contain an even number of columns.
Each pair will be treated as a distinct set of data points.
model: specifies the model to be used for the regression.

1: y= sl*x+int

2: y= sl*ln(x)+int

3: y= int*exp(sl*x)

4: y= int*x^sl

5: y= int*sl^x

6: y= sl/x+int

7: y= L/(1 + a*exp(b*x))

8: y= a*sin(b*x+c)+d

9: y= cx²+bx+a

10: y= dx³+cx²+bx+a

11: y= ex⁴+dx³+cx²+bx+a

configuration: a string which indicates which values you want to place in which row and if you want row
and columns headers. Place each parameter in the order that you want to see them appear in the
spreadsheet. (If you do not provide a configuration string, a default one will be provided.)

The valid parameters are:

- H (Place column headers)

- h (Place row headers)

- sl (slope, only valid for modes 1-6)

- int (intercept, only valid for modes 1-6)

- cor (correlation, only valid for modes 1-6)

- cd (Coefficient of determination, only valid for modes 1-6, 8-10)

- sCov (Sample covariance, only valid for modes 1-6)

- pCov (Population covariance, only valid for modes 1-6)

- L (L parameter for mode 7)

- a (a parameter for modes 7-11)

- b (b parameter for modes 7-11)

- c (c parameter for modes 8-11)

- d (d parameter for modes 8, 10-11)

- e (e parameter for mode 11)

- py (place 2 cells, one for user input and the other to display the predicted y for the input)

- px (place 2 cells, one for user input and the other to display the predicted x for the input)

PredY PredY Function

Syntax:

PredY(mode, x, parameters)

Returns the predicted y value for a given x value.

mode governs the regression model used:

1: y= sl*x+int

2: y= sl*ln(x)+int

3: y= int*exp(sl*x)

Page 35 of 239

13217 Help TextHelp Topics Tree
4: y= int*x^sl

5: y= int*sl^x

6: y= sl/x+int

7: y= L/(1 + a*exp(b*x))

8: y= a*sin(b*x+c)+d

9: y= cx²+bx+a

10: y= dx³+cx²+bx+a

11: y= ex⁴+dx³+cx²+bx+a

parameters is either one argument (a list of the coefficients of the regression line), or the n coefficients
one after another.

PredX PredX Function

Syntax:

PredX(mode, y, parameters)

Returns the predicted x value for a given y value.

mode governs the regression model used:

1: y= sl*x+int

2: y= sl*ln(x)+int

3: y= int*exp(sl*x)

4: y= int*x^sl

5: y= int*sl^x

6: y= sl/x+int

7: y= L/(1 + a*exp(b*x))

8: y= a*sin(b*x+c)+d

9: y= cx²+bx+a

10: y= dx³+cx²+bx+a

11: y= ex+dx³+cx²+bx+a

parameters is either one argument (a list of the coefficients of the regression line), or the n coefficients
one after another.

HypZ1mean HypZ1mean Function

Syntax:

HypZ1mean(input_list, ["configuration"])

HypZ1mean(SampMean, SampSize, NullPopMean, PopStdDev, SigLevel, Mode, ["configuration"])

The one-sample Z-test for a mean.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean

 SampSize

 NullPopMean

 PopStdDev

 SigLevel

Mode:

Specifies how to calculate the statistic:

 1 = Less than

 2 = Greater than

 3 = Not equal

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 acc : 0 or 1 to reject or fail to reject the null hypothesis

 tZ : Test Z-value

 tM: Test Mean

 prob : lower-tail probability

 cZ : Critical Z

 cx1 : Critical 1

 cx2 : Critical 2

 std : Standard deviation

HypZ2mean HypZ2mean Function

Syntax:

HypZ2mean(input_list, ["configuration"])

HypZ2mean(SampMean, SampMean2, SampSize, SampSize2, PopStdDev, PopStdDev2, SigLevel, Mode,
["configuration"])
The two-sample Z-test for the difference of two means.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean

Page 36 of 239

13217 Help TextHelp Topics Tree
 SampMean2

 SampSize

 SampSize2

 PopStdDev

 PopStdDev2

 SigLevel

Mode:

Specifies how to calculate the statistics:

 1 = Less than

 2 = Greater than

 3 = Not equal

Configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers) .
 h : Create header cells

 acc : 0 or 1 to reject or fail to reject the null hypothesis

 tZ : Test Z

 tM : Test Mean

 prob : Probability

 cZ : Critical Z

 cx1 : Critical 1

 cx2 : Critical 2

HypZ1prop HypZ1prop Function

Syntax:

HypZ1prop(input_list, ["configuration"])

HypZ1prop(SuccCount, SampSize, NullPopProp, SigLevel, Mode, ["configuration"])

The one-sample Z-test for a proportion.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SuccCount

 SampSize

 NullPopProp

 SigLevel

Mode:

Specifies how to calculate the statistics:

 1 = Less than

 2 = Greater than

 3 = Not equal

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 acc : 0 or 1 to reject or fail to reject the null hypothesis

 tZ : Test Z-value

 tP : Test proportion of successes

 prob : Lower-tail probability

 cZ : Critical Z-value

 cp1 : Lower critical proportion of successes associated with the critical Z-value

 cp2 : Upper critical proportion of successes associated with the critical Z-value

 std : Standard deviation

HypZ2prop HypZ2prop Function

Syntax:

HypZ2prop(Input_List, ["configuration"])

HypZ2prop(SuccCount1, SuccCount2, SampSize1, SampSize2, SigLevel, Mode, ["configuration"])

The two-sample Z-test for comparing two proportions.

Input_List:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SuccCount1

 SuccCount2

 SampSize1

 SampSize2

Mode:

Specifies how to calculate the statistics:

 1 = Less than

 2 = Greater than

 3 = Not equal

Page 37 of 239

13217 Help TextHelp Topics Tree
configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 acc : 0 or 1 to reject or fail to reject the null hypothesis

 tZ : Test Z-value

 tdP : Test proportion of successes

 prob : Lower-tail probability

 cZ : Critical Z-value

 cp1 : Lower critical proportion of successes associated with the critical Z-value

 cp2 : Upper critical proportion of successes associated with the critical Z-value

 std : Standard deviation

HypT1mean HypT1mean Function

Syntax:

HypT1mean(input_list, ["configuration"])

HypT1mean(SampMean, SampStdDev, SampSize, NullPopMean, SigLevel, Mode, ["configuration"])

The one-sample T-test for a mean.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean

 SampStdDev

 SampSize

 NullPopMean

 SigLevel

Mode:

Specifies how to calculate the statistics:

 1 = Less than

 2 = Greater than

 3 = Not equal

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 acc : 0 or 1 to reject or fail to reject the null hypothesis

 tT : Test T-value

 tM : Test mean

 prob : Lower-tail probability

 df : Degrees of freedom

 cT : Critical T-value

 cX : Critical value of the mean associated with the critical T-value

HypT2mean HypT2mean Function

Syntax:

HypT2mean(input_list, ["configuration"])

HypT2mean(SampMean1, SampMean2, SampStdDev1, SampStdDev2, SampSize1, SampSize2, pooled,
SigLevel, Mode, ["configuration"])
The two-sample T-test for the difference of two means.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean1

 SampMean2

 SampStdDev1

 SampStdDev2

 SampSize1

 SampSize2

 pooled: 0 (not pooled) or 1 (pooled)

 SigLevel

Mode:

 Specifies how to calculate the statistics:

 1 = Less than

 2 = Greater than

 3 = Not equal

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 acc : 0 or 1 to reject or fail to reject the null hypothesis

Page 38 of 239

13217 Help TextHelp Topics Tree
 tT : Test T-value

 tM : Test mean

 prob : Lower-tail probability

 df : Degrees of freedom

 cT : Critical T-value

 cdx : Critical value of the delta mean associated with the critical T-value

ConfZ1mean ConfZ1mean Function

Syntax:

ConfZ1mean(input_list, ["configuration"])

ConfZ1mean(SampMean, SampSize, PopStdDevm, ConfLevel, ["configuration"])

The one-sample Normal confidence interval for a mean.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean

 SampSize

 PopStdDevm

 ConfLevel

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 Z : Critical Z-value

 low : Lower bound of the confidence interval

 up : Upper bound of the confidence interval

ConfZ2mean ConfZ2mean Function

Syntax:

ConfZ2mean(input_list, ["configuration"])

ConfZ2mean(SampMean1, SampMean2, SampSize1, SampSize2, PopStdDev1, PopStdDev2, ConfLevel,
["configuration"])
The two-sample Normal confidence interval for the difference of two means.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean1

 SampMean2

 SampSize1

 SampSize2

 PopStdDev1

 PopStdDev2

 ConfLevel

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 Z : Critical Z-value

 low : Lower bound of the confidence interval

 up : Upper bound of the confidence interval

ConfZ1prop ConfZ1prop Function

Syntax:

ConfZ1prop(input_list, ["configuration"])

ConfZ1prop(SuccCount, SampSize, ConfLevel, ["configuration"])

The one-sample Normal confidence interval for a proportion.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SuccCount

 SampSize

 ConfLevel

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 Z : Critical Z-value

 low : Lower bound of the confidence interval

 up : Upper bound of the confidence interval

ConfZ2prop ConfZ2prop Function

Syntax:

Page 39 of 239

13217 Help TextHelp Topics Tree
ConfZ2prop(input_list, ["configuration"])

ConfZ2prop(SuccCount1, SuccCount2, SampSize1, SampSize2, ConfLevel, ["configuration"])

The two-sample Normal confidence interval for the difference of two proportions.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SuccCount1

 SuccCount2

 SampSize1

 SampSize2

 ConfLevel

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 Z : Critical Z-value

 low : Lower bound of the confidence interval

 up : Upper bound of the confidence interval

ConfT1mean ConfT1mean Function

Syntax:

ConfT1mean(input_list, ["configuration"])

ConfT1mean(SampMean, SampStdDev, SampSize, ConfLevel, ["configuration"])

The one-sample Student’s T confidence interval for a mean.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean

 SampStdDev

 SampSize

 ConfLevel

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 df: Degrees of freedom

 T : Critical T-value

 low : Lower bound of the confidence interval

 up : Upper bound of the confidence interval

ConfT2mean ConfT2mean Function

Syntax:

ConfT2mean(input_list, ["configuration"])

ConfT2mean(SampMean1, SampMean2, SampStdDev1, SampStdDev2, SampSize1, SampSize2, pooled,
ConfLevel, ["configuration"])
The two-sample Student’s T confidence interval for the difference of two means.

input_list:

A list of input variables (see Input Parameters below). This can be a range reference, a list of cell
references, or a simple list of values.
Input Parameters:

 SampMean1

 SampMean2

 SampStdDev1

 SampStdDev2

 SampSize1

 SampSize2

 pooled : 0 (not pooled) or 1 (pooled)

 ConfLevel

configuration:

A string that controls what results are shown and the order in which they appear. An empty string ""
displays the default: all results (including headers).
 h : Create header cells

 df: Degrees of freedom

 T : Critical T-value

 low : Lower bound of the confidence interval

 up : Upper bound of the confidence interval

CellHasData Syntax:

CellHasData()

CellHasData(Row,Column)

CellHasData(Row_1, Column_1,Row_2, Column_2)

Page 40 of 239

13217 Help TextHelp Topics Tree
CellHasData returns the number of cells containing data in the designated set of cells.

If the command is given no parameters, all cells containing data will be counted.

If a single Row and Column is specified, only the cell at that location will be counted.

If either Row or Column is -1, all cells containing data in the specified column or row will be counted.

If a second Row and Column is specified, all cells will be counted in a rectangular area where the upper
left corner is the cell at Row_1, Column_1 and the lower right corner is the cell at Row_2, Column_2.

Examples:

CellHasData() counts all cells containing data in the entire spreadsheet.

CellHasData(3,4) counts only the cell at row 3, column 4.

CellHasData(-1,7)counts all cells containing data in column 7.

CellHasData(4,-1) counts all cells containing data in row 4.

CellHasData(3,4,6,8) counts all cells containing data from row 3, column 4 to row 6, column 8.

ClearCell Syntax:

ClearCell()

ClearCell(Row,Column)

ClearCell(Row_1, Column_1,Row_2, Column_2)

ClearCell clears each spreadsheet cell designated by pairs of Row and Column, including all elements of a
list of lists of Row and Column pairs.
CellHasData clears each cell in the designated set of cells.

If the command is given no parameters, all cells will be cleared.

If a single Row and Column is specified, only the cell at that location will be cleared.

If either Row or Column is -1, all cells in the specified column or row will be cleared.

If a second Row and Column is specified, all cells will be cleared in a rectangular area where the upper left
corner is the cell at Row_1, Column_1 and the lower right corner is the cell at Row_2, Column_2.

Examples:

ClearCell() clears the entire spreadsheet.

ClearCell(3,4) clears the cell at row 3, column 4.

ClearCell(-1,7)clears all cells in column 7.

ClearCell(4,-1) clears all cells in row 4.

ClearCell(3,4,6,8) clears all cells from row 3, column 4 to row 6, column 8.

Statistics 1Var app The 1-Variable Statistics app can store up to ten data sets at one time. It can perform one-variable
statistical analysis of one or more sets of data.
The 1-Variable Statistics app starts with the Numeric view, which is used to enter data. The Symbolic view
is used to define an analysis by specifying which column contains data and which column (if any) contains
frequencies.
The Plot view is used to display statistical plots of 1-variable data, including histograms, box-and-whisker
plots, normal quantile plots and other types of plots.
To launch the Statistics 1Var app, go to the Application Library and tap the Statistics 1Var app icon. You
can also use the rocker wheel to select the Statistics 1Var app icon, then tap Start or press Enter to launch
the app.

Stats 1Var Symbolic View Statistics 1Var Symbolic View

Press Symb to enter the Symbolic view. You can define up to 5 1-variable analyses (H1-H5), choosing for
each analysis a data column and an optional frequency column. For the data column, you can enter either
the name of a column (D0-D9) or a mathematical expression involving the name of a column (e.g. D1-9.8).
There is also a Plot field for each analysis where you choose the graphical representation most fitting for
your purposes. The plot options include:

● Histograms

● Box-and-whisker plots, with and without outliers

● Normal probability plots

● Line plots

● Bar graphs

● Pareto charts

● Control charts

● Dot plots

● Stem and Leaf plots, with either single stems (10's) or split stems (5's)

● Pie charts

The menu buttons are:

• Edit: enables you to edit the selected value

• Choose: select the plot type or graph color

• ✓: toggles between making an analysis active or inactive

• Column: select the name of a column from Numeric view

• Show: displays the fit equation in full-screen mode with horizontal and vertical scrolling enabled

• Eval: evaluates the highlighted expression, resolving any references to other definitions

Each active data set (H1-H5) will be used for graphing purposes in Plot view and also for displaying
summary statistics in Numeric view when Stats is tapped.

Stats 1Var Plot View Statistics 1Var Plot View

Page 41 of 239

13217 Help TextHelp Topics Tree
Press Plot to enter the Plot view. This view displays the selected 1-variable statistical plots for the active
analyses (H1-H5). The menu is similar to the Function Plot view, with options for zooming and tracing. Tap
Menu to toggle the menu on and off.

The menu buttons are:

• Zoom: opens the Zoom menu, with options to zoom in or out, etc.

• Trace: toggles the tracing cursor on and off

• Defn: displays the definition of the function being traced

• Menu: toggles the menu on and off

Use the rocker wheel left/right to trace along a statistical plot. Use the rocker wheel up/down to switch
from one plot to another. Press + to zoom in on the current cursor location and press - to zoom out. Set
the zoom factor under the Zoom menu.
All of the gestures common to the Plot views are supported here as well. See Plot View for more details.

Stats 1Var Plot Setup Statistics 1Var Plot Setup

Press Shift Plot to enter the Statistics 1-Var Plot Setup. Page 1 of the Plot Setup contains settings that
control the appearance of 1-variable statistical plots.
The fields are:

• H Width: the bin width for histograms

• H Rng: the range for the data to plot

• X Rng: the horizontal range of the graph window

• Y Rng: the vertical range of the graph window

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

• Edit: opens an edit box to edit the value of the selected field

• Page 1/2 ▼: displays the second page of the setup

Tap Page 1/2 ▼ to view the second page of the setup. Here the fields are:

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

The menu buttons on the second page are:

• ✓: toggles the current setting on or off

• Choose: make a choice from a choose box

• ▲ Page 2/2: returns to the first page of the setup

Stats 1Var Numeric View Statistics 1Var Numeric View

Press Num to return to this view at any time. This view contains a table with up to ten columns of data,
named D1 through D9 and D0.
The menu buttons are:

• Edit: opens an input line to edit the chosen value

• More: opens a menu with options for editing the list

• Go To: jumps to a specific element in the list. Useful for very large lists.

• Sort: sorts the current column in either ascending or descending order

• Make: generates a column of data based on an algebraic formula

• Stats: provides summary statistics on the currently defined analyses (see Symbolic view)

Enter your data manually or store list data in D1, D2, etc. Use the Make feature to create data based on
an algebraic formula. You can also paste data copied from another app or from the List and Matrix Editors.

You can name each data column as well. Tap on the column header and then either edit the name or start
typing to enter a new name.
The More Menu

The More menu contains the following options for editing a list:

• Insert

 o Row: Inserts a new row in the current list. The new row contains 0 as its element.

• Delete

 o Column: Deletes the contents of the current list. To delete a single element, select it and press the
Delete key.
• Select

 o Row: Selects the current row. Once selected, the row can be copied.

 o Column: Selects the current list. Once selected, the list can be copied.

 o Box: Opens a dialog box to select a rectangular array defined by a starting location and a final
location. You can also tap and hold on a cell to start selection, then drag to select a rectangular array of
elements. Once selected, the array can be copied.

 o Swap Ends: Swaps the starting and ending cells for the selected rectangular array of cells.

• Selection: Toggles selection mode on and off. You can also tap and hold on a cell, then drag to select.

• Swap

o Column: Swaps the contents of two columns (lists).

Page 42 of 239

13217 Help TextHelp Topics Tree
Make Column The Make Column Data wizard is basically a shortcut to using the MAKELIST command and storing the

results in Numeric view. The fields in this wizard are:
• Expression: enter the generating expression for your list of real numbers

• Var: declare the independent variable from your expression. All other variables in your expression will
be taken as constants. Note that your variable may be a dummy; that is, it may not appear in your
expression at all.
• Start: enter the starting vale for your variable

• Stop: enter the final value for your variable

• Step: enter the step-value for your variable

• Col: a drop-down list to choose the destination for your list of real numbers

Fill in the fields and tap OK to generate the column of numbers and save them to the list you specified, or
tap Cancel to return to Numeric view without creating a list. Use this wizard to easily create a list of
random integers, a sample distribution, and so on.

Statistics 1Var Variables To display the variables relating to the Statistics 1Var app, press Vars, tap App and select Statistics 1Var.

The Statistics 1Var app has the following variables:

• Results (see below)

• Symbolic (see below)

• Plot (see (see below)

• Numeric (see below)

• Modes (see Common App Variables above)

Results Variables Statistics 1Var Results Variables

The Statistics 1Var app variables store results from the calculations performed when the Stats button is
tapped in the Numeric view of the app or when the Do1VStats command is executed.

NbItem NbItem App Variable

NbItem : The number of data points in the current 1-variable analysis (H1-H5).

MinVal MinVal App Variable

MinVal : The minimum value of the data set in the current 1-variable analysis (H1-H5).

Q₁ Q₁ App Variable

Q₁ : The value of the first quartile in the current 1-variable analysis (H1-H5).

MedVal MedVal App Variable

MedVal : The median in the current 1-variable analysis (H1-H5).

Q₃ Q₃ App Variable

Q₃ : The value of the third quartile in the current 1-variable analysis (H1-H5).

MaxVal MaxVal App Variable

MaxVal : The maximum value in the current 1-variable analysis (H1-H5).

ΣX ΣX App Variable

ΣX : The sum of the data set in the current 1-variable analysis (H1-H5).

ΣX2 ΣX2 App Variable

ΣX2 : The sum of the squares of the data set in the current 1-variable analysis (H1-H5).

MeanX MeanX App Variable

MeanX : The mean of the data set in the current 1-variable analysis (H1-H5).

sX sX App Variable

sX : The sample standard deviation of the data set in the current 1-variable analysis (H1-H5).

σX σX : The population standard deviation of the data set in the current 1-variable analysis (H1-H5).

serrX serrX App Variable

serrX : The standard error of the data set in the current 1-variable analysis (H1-H5).

ssX ssX App Variable

ssX : The sum of the squared deviations of x from the mean of x of the data set in the current 1-variable
analysis (H1-H5).

Symbolic Variables Statistics 1Var Symbolic Variables

The Statistics 1Var symbolic variables are H1 to H5. These variables contain the data values for a 1-
variable statistical analysis. For example, H1(n) returns the nth value in the data set for the H1 analysis.
With no argument, H1 returns a list of the objects that define H1. These objects are as follows, in the
order given:
• A string or expression (in single quotes) that defines the data list

• A string or expression (in single quotes) that optionally defines the frequencies for each of the values in
the data list
• The plot type number

• The option number

• The color for the plot

The plot type number is an integer from 1-9 that controls which statistical plot type is used with each of
the variables H1-H5. The correspondence is shown below.
1 Histogram (default)

2 Box and Whisker

3 Normal Probability

4 Line

5 Bar

6 Pareto

Page 43 of 239

13217 Help TextHelp Topics Tree
7 Control

8 Dot

9 Stem and Leaf

The option number is an integer from 0-2 which controls any option available for the plot type. The
correspondence is shown below.
0 No option

1 Do not show outliers for the Box and Whisker plot

2 Show outliers for the Box and Whisker plot

Example:

H3:={"D1", "", 2, 1, #FF:24h} defines H3 to use D1 for its data list, no frequencies, and draw a Box and
Whisker plot without outliers using a blue color.

Numeric Variables Statistics 1Var Numeric Variables

The Statistics1Var Numeric variables are D1 through D9 and D0. They each represent a single dataset and
contain the values in that dataset. These are all list variables and are compatible with the Statistics 2Var
list variables C0-C9 as well as the Home variables L0-L9.

Plot Variables Statistics 1Var Plot Variables

In addition to the common Plot view variables (see Common App Variables above), the Statistics 1Var app
has three app-specific variables:
• Hmin – minimum value to be included in the histogram

• Hmax – maximum value to be included in the histogram

• Hwidth – width of a histogram bar (bin width)

Hwidth Hwidth Variable

Hwidth : The width of a bar for histogram plots (bin width).

Hmin Hmin Variable

Hmin : The minimum value to be included in the histogram.

Hmax Hmax Variable

Hmax : The maximum value to be included in the histogram.

Statistics 1Var App Functions The Statistics 1Var app has a 3 functions designed to work together to calculate summary statistics based
on one of the statistical analyses (H1-H5) defined in the Symbolic view of the Statistics 1Var app.

Do1VStats Do1VStats App Function

Syntax:

Do1VStats(Hn)

Performs the same calculations as pressing the Stats menu key in the Statistics 1Var app's Numeric view
and stores the results in the appropriate Statistics 1Var app results variables. Hn must be one of the
Statistics 1Var app Symbolic view variables H1-H5.

SetFreq SetFreq App Function

Syntax:

SetFreq(Hn, Dn) or

SetFreq(Hn, Num)

Set frequency. The syntax may be either SetFreq(Hn, Dn) or SetFreq(Hn, Num). Sets the frequency for one
of the statistical analyses (H1-H5) defined in the Symbolic view of the Statistics 1Var app. The frequency
can be either one of the column variables D0-D9, or any positive integer. Hn must be one of the Statistics
1Var app Symbolic view variables H1-H5. If used, Dn must be one of the column variables D0-D9;
otherwise, value must be a positive integer.

Examples:

SetFreq(H1, 7) sets the frequency for each value in the data set for analysis H1 to be 7.

SetFreq(H3, D3) sets the frequencies for the data set in H3 to be column D3.

SetSample SetSample App Function

Syntax:

SetSample(Hn, Dn)

Set sample data. Sets the sample data for one of the statistical analyses (H1-H5) defined in the Symbolic
view of the Statistics 1Var app to one of the column variables D0-D9.

Example:

SetSample(H2,D4) sets analysis H2 to use column D4 for its data.

CHECK CHECK App Function

Syntax:

CHECK(n)

Checks (selects) the corresponding definition in Symbolic view. The integer n must be between 0 and 5.

UNCHECK UNCHECK App Function

Syntax:

UNCHECK(n)

Unchecks (deselects) the corresponding definition in Symbolic view. The integer n must be between 0 and
5.

ISCHECK ISCHECK App Function

Syntax:

ISCHECK(n)

Returns 1 or 0 depending if the corresponding definition in Symbolic view is selected or not. The integer n
must be between 0 and 5.

Page 44 of 239

13217 Help TextHelp Topics Tree
Statistics 2Var app The 2-Variable Statistics app can store up to ten data sets at one time. It can perform two-variable

statistical analysis of one or more sets of data.
The 2-Variable Statistics app starts with the Numeric view which is used to enter data. The Symbolic view
is used to specify which columns contain data.
To launch the Statistics 2Var app, go to the Application Library and tap the Statistics 2Var app icon. You
can also use the rocker wheel to select the Statistics 2Var app icon, then tap Start or press Enter to launch
the app.

Stats 2Var Symbolic View Statistics 2Var Symbolic View

Press Symb to enter the Statistics 2-Var Symbolic view. You can define up to 5 2-variable analyses, named
S1-S5.
Each data set definition has the following fields:

• Sn: defines the independent and dependent columns as well as an optional frequency column for the
data in the dependent column. You can also select a point type and a color for the scatter plot.

• Type: chooses a function type to fit to your data

• Fit: contains the equation of your fit as well as a color picker to the left of Fit so you can choose a color
for the graph of the fit.
For the independent and dependent columns, you can enter mathematical expressions in terms of a
column name (e.g. 2-C1).
Each active data set (S1-S5) will be used for graphing purposes in Plot view and also for displaying
summary statistics in Numeric view when Stats is tapped.
The menu buttons are:

• Edit: enables you to edit the selected value

• Choose: select the plot type or graph color

• ✓: toggles between making an analysis active or inactive

• Column: a choose box for selecting the name of a column

• Fit: toggles the fit on and off in Plot view

• Show: displays the fit equation in full-screen mode with horizontal and vertical scrolling enabled

• Eval: evaluates the highlighted expression, resolving any references to other definitions

Stats 2Var Plot View Statistics 2Var Plot View

Press Plot to enter the Stats 2-Var Plot view. This view displays the scatter plots for the active analyses.
Tap Menu to toggle the menu on and off.
The menu buttons are:

• Zoom: zooms in or out on the graph(s)

• Trace: toggles tracing on and off

• Go To: opens an input form to jump the tracer to a specific x-value

• Fit: toggles displaying a fit for each scatter plot

• FCN: opens the Functions menu

 • Fit: this is a duplicate of the Fit menu key described above

 • Sketch: sketch your own fit with your finger (see below)

 • Defn: shows the definition of the current graph being traced

• Menu: toggles the menu on and off

Sketch, Transform, and Definition

Selecting the Sketch option returns you to Plot view, with a message at the bottom of the display to
sketch a function fit with your finger. Sketch your fit with your finger; tap OK if you like your sketch, or just
sketch a new fit if you do not like your original sketch. When you get the fit you want, tap OK. The fit type
for the current dataset in Symbolic view (S1-S5) will be changed to User-Defined and the expression (in X)
of your fit will be saved as the user-defined fit.

Select Transform to translate and dilate the current function graph. Drag to translate and pinch vertically
or horizontally to dilate the graph. The expression will respond accordingly. Tap Simplify to simplify the
current expression. Tap Form to select an alternate form for your function equation.

Select Definition to view the expression for the current graph. In the Definition Box, you can tap Edit to
edit the expression; when you are done editing, tap OK to see the change in the graph. You can also tap
Transform to manipulate the current graph. Tap OK when you are done to return to the Definition Box.
Tap the down-arrow menu button again to close the box.

Use the rocker wheel left/right to trace along a scatter plot or a fit. Use the rocker wheel up/down to
move from one scatter plot to the next, or from the scatter plot to the fit.

Press + to zoom in on the current cursor location and press - to zoom out. Set the zoom factor under the
Zoom menu.
All of the gestures common to the Plot views are supported here as well. See Plot View for more details.

Stats 2Var Plot Setup Statistics 2Var Plot Setup

Press Shift Plot to enter page 1 of the Stats 2-Var Plot Setup. This view is similar to page 1 of the Stats 1-
Var Plot Setup, except that you can choose different marks for each scatter plot.

On the first page, the fields are:

• S1Mark-S5Mark: choose a style for the data point marks for each scatter plot

• X Rng: the horizontal graphing range

• Y Rng: the vertical graphing range

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

Page 45 of 239

13217 Help TextHelp Topics Tree
• Edit: opens an edit box to edit the value of the selected field

• Page 1/2 ▼: displays the second page of the setup

Tap Page 1/2 ▼ to view the second page of the setup. Here the fields are:

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

• Method: choose the method used to plot the fit

• Connect: connect the scatter plot points with segment (this is not a fit)

• Fit: toggle the fit plotting off and on in Plot view

The menu buttons on the second page are:

• ✓: toggles the current setting on or off

• Choose: make a choice from a choose box

• ▲ Page 2/2: returns to the first page of the setup

Stats 2Var Numeric View Statistics 2Var Numeric View

Press Num to return to this view at any time. This view contains a table with up to ten columns of data,
named C1 through C9 and C0.
The menu buttons are:

• Edit: opens an input line to edit the chosen value

• More: opens a menu with options for editing the list

• Go To: jumps to a specific element in the list. Useful for very large lists.

• Sort: sorts the current column in either ascending or descending order

• Make: generates a column of data based on an algebraic formula

• Stats: provides summary statistics on the currently defined analyses (see Symbolic view)

Enter your data manually or store list data in C1, C2, etc. Use the Make feature to create data based on an
algebraic formula. You can also paste data copied from another app or from the List and Matrix Editors.

You can name each data column as well. Tap on the column header and then either edit the name or start
typing to enter a new name.
The More Menu

The More menu contains the following options for editing a list:

• Insert

 o Row: Inserts a new row in the current list. The new row contains 0 as its element.

• Delete

 o Column: Deletes the contents of the current list. To delete a single element, select it and press the
Delete key.
• Select

 o Row: Selects the current row. Once selected, the row can be copied.

 o Column: Selects the current list. Once selected, the list can be copied.

 o Box: Opens a dialog box to select a rectangular array defined by a starting location and a final
location. You can also tap and hold on a cell to start selection, then drag to select a rectangular array of
elements. Once selected, the array can be copied.

 o Swap Ends: Swaps the starting and ending cells for the selected rectangular array of cells.

• Selection: Toggles selection mode on and off. You can also tap and hold on a cell, then drag to select.

• Swap

o Column: Swaps the contents of two columns (lists).

Make Column The Make Column Data wizard is basically a shortcut to using the MAKELIST command and storing the
results in Numeric view. The fields in this wizard are:
• Expression: enter the generating expression for your list of real numbers

• Var: declare the independent variable from your expression. All other variables in your expression will
be taken as constants. Note that your variable may be a dummy; that is, it may not appear in your
expression at all.
• Start: enter the starting vale for your variable

• Stop: enter the final value for your variable

• Step: enter the step-value for your variable

• Col: a drop-down list to choose the destination for your list of real numbers

Fill in the fields and tap OK to generate the column of numbers and save them to the list you specified, or
tap Cancel to return to Numeric view without creating a list. Use this wizard to easily create a list of
random integers, a sample distribution, and so on.

Statistics 2Var Stats View In the Statistics 2Var app Numeric view, tap Stats to see summary statistics for all active analyses
displayed in the Stats view. By default, the usual 2-variable statistics are displayed and the Stats menu key
has the active white dot in it. The menu keys in this view are:

• More: opens a menu that lets you select and copy multiple cells. You can then paste the contents of
these cells elsewhere.
• Stats: displays common 2-variable summary statistics, such as the correlation coefficient and the sample
and population covariances.
• X: displays summary statistics for the independent variable, such as the mean of x and its standard
deviation.

Page 46 of 239

13217 Help TextHelp Topics Tree
• Y: displays summary statistics for the dependent variable, such as the mean of Y and its standard
deviation.
• OK: returns to Numeric view

Use the More menu to select one or more of the statistics on a page and then press Shift View (Copy) to
copy the array to the clipboard. You can then press Shift Menu (Paste) to open the clipboard and paste
the array anywhere in the system, such as the List or Matrix editors or the Spreadsheet app Numeric view.

When you are done examining summary statistics, press OK to return to Numeric view.

Statistics 2Var Variables To display the variables relating to the Statistics 2Var app, press Vars, tap App and select Statistics 2Var.

The Statistics 2Var app has the following variables:

• Results (see below)

• Symbolic (see below)

• Plot (see (see Common App Variables above)

• Numeric (see below)

• Modes (see Common App Variables above)

Results Variables Statistics 2Var Results Variables

The Statistics 2Var app variables store results from the calculations performed when the Stats button is
tapped in the Numeric view of the app or when the Do2VStats command is executed.

NbItem NbItem App Variable

NbItem contains the number of data points in the current 2-variable analysis (S1-S5).

Corr Corr App Variable

Corr contains the correlation coefficient from the latest calculation of summary statistics.

CoefDet CoefDet App Variable

CoefDet contains the coefficient of determination from the latest calculation of summary statistics. This
value is based on the fit type chosen.

sCov sCov App Variable

sCov contains the sample covariance of the current 2-variable statistical analysis (S1-S5).

σCov σCov App Variable

σCov contains the population covariance of the current 2-variable statistical analysis (S1-S5).

ΣXY ΣXY App Variable

ΣXY contains the sum of the X·Y products for the current 2-variable statistical analysis (S1-S5).

MeanX MeanX App Variable

MeanX contains the mean of the independent values (X) of the current 2-variable statistical analysis (S1-
S5).

ΣX ΣX App Variable

ΣX contains the sum of the independent values (X) of the current 2-variable statistical analysis (S1-S5).

ΣX2 ΣX2 App Variable

ΣX2 contains the sum of the squares of the independent values (X) of the current 2-variable statistical
analysis (S1-S5).

sX sX App Variable

sX contains the sample standard deviation of the independent values (X) of the current 2-variable
statistical analysis (S1-S5).

ΣX ΣX App Variable

ΣX contains the population standard deviation of the independent values (X) of the current 2-variable
statistical analysis (S1-S5).

serrX serrX App Variable

serrX contains the standard error of the independent values (X) of the current 2-variable statistical
analysis (S1-S5).

ssX ssX App Variable

ssX contains the sum of the squared deviations of x from the mean of x of the independent values (X) of
the current 2-variable statistical analysis (S1-S5).

MeanY MeanY App Variable

MeanY contains the mean of the dependent values (Y) of the current 2-variable statistical analysis (S1-S5).

ΣY ΣY App Variable

ΣY contains the sum of the dependent values (Y) of the current 2-variable statistical analysis (S1-S5).

ΣY2 ΣY2 App Variable

ΣY2 contains the sum of the squares of the dependent values (Y) of the current 2-variable statistical
analysis (S1-S5).

sY sY App Variable

sY contains the sample standard deviation of the dependent values (Y) of the current 2-variable statistical
analysis (S1-S5).

σY σY App Variable

σY contains the population standard deviation of the dependent values (Y) of the current 2-variable
statistical analysis (S1-S5).

serrY serrY App Variable

serrY contains the standard error of the dependent values (Y) of the current 2-variable statistical analysis
(S1-S5).

ssY ssY App Variable

Page 47 of 239

13217 Help TextHelp Topics Tree
ssY contains the sum of the squared deviations of y from the mean of y of the dependent values (Y) of the
current 2-variable statistical analysis (S1-S5).

Symbolic Variables Statistics 2Var Symbolic Variables

The Statistics 2Var app variables are S1-S5. These variables contain the data that define a 2-variable
statistical analysis. S1 returns a list of the objects that define S1. Each list contains the following items, in
order:
• A string or expression (in single quotes) that defines the independent variable data list

• A string or expression (in single quotes) that defines the dependent variable data list

• A string or expression that optionally defines the frequencies for the dependent data list

• The fit type number (see below)

• The fit expression

• The scatter plot color

• The scatter plot point mark type number

• The fit plot color

The fit type number is an integer from 1 to 13 that controls which statistical plot type is used with each of
the variables S1-S5. The correspondence is shown below.
1 Linear

2 Logarithmic

3 Exponential

4 Power

5 Exponent

6 Inverse

7 Logistic

8 Quadratic

9 Cubic

10 Quartic

11 Trigonometric

12 Median-Median Line

13 User Defined

The scatter plot point mark type number is an integer from 1 to 9 that controls which graphic is used to
represent each point in a scatter plot. The correspondence is shown below.

1 small hollow dot

2 small hollow square

3 thin x

4 hollow cross

5 small hollow diamond

6 thick x

7 small solid dot

8 thin diamond

9 large hollow dot

Example:

S1:={"C1", "C2", "", 1, "", #FF:24h, 1, #FF:24h} sets C1 as the independent data, C2 as the dependent data,
no frequencies for the dependent data, a linear fit, no specific equation for that linear fit yet, a blue
scatter plot with mark type 1, and a blue fit plot.

Numeric Variables Statistics 2Var Numeric Variables

The Statistics 2Var Numeric app variables are C1 through C9 and C0. They each represent a single dataset
and contain the values in that dataset. These are all list variables and are compatible with the Statistics
1Var list variables D0-D9 as well as the Home variables L0-L9.

Statistics 2Var App Functions The Statistics 2Var app has a number of functions. Some are designed to calculate summary statistics
based on one of the statistical analyses (S1-S5) defined in the Symbolic view of the Statistics 2Var app.
Others predict X- and Y-values based on the fit specified in one of the analyses.

PredX PredX App Function

Syntax:

PredX(Y_value)

Predict X. Uses the fit from the first active analysis (S1-S5) found to predict an x-value given the Y-value.

PredY PredY App Function

Syntax:

PredY(X_value)

Predict Y. Uses the fit from the first active analysis (S1-S5) found to predict a y-value given the x-value.

Resid Resid App Function

Syntax:

Resid(Sn) or

Resid()

Residuals. Calculates a list of residuals, based on column data and a fit defined in the Symbolic view via S1-
S5.
Example:

Page 48 of 239

13217 Help TextHelp Topics Tree
Resid() looks for the first active, defined analysis in the Symbolic view (S1-S5).

Resid(S3) uses analysis S3

Do2VStats Do2VStats App Function

Syntax:

Do2VStats(Sn)

Performs the same calculations as pressing the Stats menu key in the Statistics 2Var app's Numeric view
and stores the results in the appropriate Statistics 2Var app results variables. Sn must be one of the
Statistics 2Var app Symbolic view variables S1-S5.

SetDepend SetDepend App Function

Syntax:

SetDepend(Sn, Cn)

Set dependent column. Sets the dependent column for one of the statistical analyses S1-S5 to one of the
column variables C0-C9.
Example:

SetDepend(S1, C3) sets the dependent column for analysis S1 to column C3.

SetIndep SetIndep App Function

Syntax:

SetIndep(Sn, Cn)

Set independent column. Sets the independent column for one of the statistical analyses S1-S5 to one of
the column variables C0-C9.
Example:

SetIndep(S1, C2) sets the independent column for analysis S1 to column C2.

CHECK CHECK App Function

Syntax:

CHECK(n)

Checks (selects) the corresponding definition in Symbolic view. The integer n must be between 0 and 5.

UNCHECK UNCHECK App Function

Syntax:

UNCHECK(n)

Unchecks (deselects) the corresponding definition in Symbolic view. The integer n must be between 0 and
5.

ISCHECK ISCHECK App Function

Syntax:

ISCHECK(n)

Returns 1 or 0 depending if the corresponding definition in Symbolic view is selected or not. The integer n
must be between 0 and 5.

Inference app The Inference app contains tools for inferential statistics, including creating confidence intervals and
hypothesis testing. This app can import summary statistics from any column of the Statistics 1-Var or 2-
Var apps. Confidence intervals and hypothesis tests are based on the Normal Z-distribution or Students T-
distribution. Results can be displayed both numerically and graphically.

To launch the Inference app, go to the Application Library and tap the Inference app icon. You can also
use the rocker wheel to select the Inference app icon, then tap Start or press Enter to launch the app.

Although the intervals and tests in this app are limited to the Normal and Student's-t distributions, HP
Prime has a full set of probability density functions. Press the Toolbox key, tap Math and select
Probability. You will see categories for Density, Cumulative, and Inverse (Cumulative). Under each you will
find Normal, T, Chi-Square, F, Binomial, and Poisson.

Inference Symbolic View The Inference Symbolic view contains settings to define a confidence interval or hypothesis test. This view
also allows you to select a Chi-Square test or perform inference for linear regression.

The fields are:

• Method: chooses between hypothesis test, confidence interval, Chi-Square, Inference for regression, or
ANOVA
• Type: chooses a specific calculation within the selected Method, where available

• Alt Hypoth: chooses one of three alternative hypotheses (hypothesis test only)

• Expected: chooses between entering expected probabilities and expected counts for the Chi-Square
Goodness of Fit (GoF) test
The only menu button is:

• Choose: make a choice from a choose box

Once you have selected a specific calculation, press the Num key to go to Numeric view and enter the
data for the calculation.

Inference Plot View The Inference Plot view displays graphically the results you see when you tap Calc from the Numeric view.
Not all calculations include a Plot view.

Inference Plot Setup Press Shift Plot to enter the Inference Plot Setup. Page 1 of the Plot Setup contains settings that control
the appearance of inference plots.
The fields are:

• H Width: the bin width for histograms

• H Rng: the range for the data to plot

• X Rng: the horizontal range of the graph window

• Y Rng: the vertical range of the graph window

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

Page 49 of 239

13217 Help TextHelp Topics Tree
Inference Numeric View The Inference app Numeric view is designed for you to enter data required for the calculation selected in

Symbolic view.
Hypothesis Tests and Confidence Intervals

For hypothesis tests and confidence intervals, this view contains fields for the sample statistics (e.g.
sample mean and sample size), the population parameters (e.g. null hypothesis mean, and standard
deviation, σ), and the significance level.
For hypothesis tests and confidence intervals, the menu buttons are:

• Edit: opens an input box to edit the chosen value

• Import: imports statistics (such as n, mean, etc.) from any column in the Statistics 1Var or Statistics
2Var apps (or any app based on these two)
• Calc: computes and displays the results numerically in a table

Enter values in the fields and then tap Calc to see the results.

Chi-Square Tests

For the Chi-Square GoF test, Numeric view presents two lists. The first list, ObsList, is for the observed
counts. The second list is either ProbList for the expected probabilities or ExpList for the expected counts,
depending on the choice you made in Symbolic view for the Expected field. Enter the observed counts in
the first list and either the expected probabilities or counts in the second list. Tap Calc to see the results.

The menu buttons here are:

• Edit: opens an input line to edit the chosen value

• More: opens a menu with options for editing the list

• Go To: jumps to a specific element in the list. Useful for very large lists.

• Make: generates a column of data based on an algebraic formula

• Calc: displays the test results

For the Chi-Square 2-way test, Numeric view presents a matrix named ObsMat, in which you enter the
matrix of observed counts. When you are done, tap Calc to see the results. The top of the screen will
display the Chi-Square statistic value, the probability, and the degrees of freedom.

The menu buttons are the same as for the GoF test, except that there is no Make option. There is also a
Go menu key that toggles between moving the cursor right, down, or not at all after Enter is pressed.

Inference for Linear Regression

For all linear regression options, Numeric view presents two lists; Xlist for the x-values (the explanatory
variable) and Ylist for the y-values (the response variable). Enter your data in these two variables. Press
the Plot key to view a scatter plot of your data. Use the rocker wheel up/down to view a scatter plot of
the residuals and a normal probability plot of the residuals. These plots will help you assess whether or
not your data meet the criteria for the linear t-test, etc. When you are ready, tap Calc. A wizard will open
to guide you through the rest of the steps, such as entering a confidence level or an x-value, depending on
the calculation you chose in Symbolic view.

The menu buttons here are the same as for the Chi-Square GoF test Numeric view.

ANOVA

For analysis of variance, Numeric view presents a set of columns. Enter each data set involved in the
analysis into its own column and then tap Calc. The results of the analysis of variance will be displayed.

The menu buttons here are the same as for the Chi-Square GoF test Numeric view.

Inference Calc View Tap Calc to see the calculation results. The Inference Results screen is displayed. This view varies
depending on the specific calculation results being displayed.
In general, results are displayed in a table whenever possible. Each value is labeled and help text is
provided to describe each value.
Hypothesis Tests

For hypothesis tests, Calc displays the test result, the test values, the probability, and the critical values.
The menu keys here include the More menu to assist you in copying results to paste elsewhere. Tap the
OK menu key to return to Numeric view when you are done.

Confidence Intervals

For confidence intervals, Calc displays the C-value, the degrees of freedom, the critical value, and the
lower and upper bounds of the confidence interval. The menu keys here are the same as for Hypothesis
Tests.
Chi-Square GoF

For the goodness of fit test, Calc displays the Chi-Square value and its probability, along with the degrees
of freedom. The menu keys are:
• More: opens the More menu

• Stats: displays the default results described above

• Exp: switches to display the expected counts

• Cont: switches to display the Chi-Square contributions by category

• OK: returns to Numeric view

Chi-Square Two-Way Test

For the two-way test, Calc displays the Chi-Square value and its probability, along with the degrees of
freedom. The menu keys are the same as for the goodness of fit test.

ANOVA

For the 1-way analysis of variance, Calc displays the degrees of freedom, the f-distribution value, etc. The
menu keys are More (to select multiple cells to copy and paste elsewhere) and OK (to return to Numeric
view).
See the individual help pages for:

• Hypothesis Tests

Page 50 of 239

13217 Help TextHelp Topics Tree
• Confidence Intervals

• Chi-Square Goodness of Fit Test

• Chi-Square 2-Way Test

• Linear Regression T-Test

• Confidence Interval for Slope

• Confidence Interval for Intercept

• Confidence Interval for Mean Response

• Prediction Interval for Future Response

• ANOVA

Hypothesis Test Results Once you tap Calc in Numeric view, the results of your hypothesis test are displayed in a table. Generally,
these results include the following values:
• Result: 0 to reject or 1 to fail to reject the null hypothesis

• Test value: the Z- or t-value calculated for the test

• Test statistic value: the value of the statistic under scrutiny associated with the Test value

• P: the probability

• Critical test value: the boundary test value(s) for your test

• Critical statistic value: the boundary value(s) for the statistic under scrutiny

The menu buttons are:

• More: opens the More menu, with options for selecting multiple cells to copy and then paste elsewhere

• OK: return to the Numeric view of the app

Use the rocker wheel or tap to move about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view. Now you can press the Plot key to see the results
graphically as well.

Confidence Intervals Results Once you tap Calc in Numeric view, the results of your confidence interval calculation are displayed in a
table. Generally, these results include the following values:
• C: the confidence level you entered

• Critical test values: the boundary test values associated with your confidence level

• Lower: the lower bound of the confidence interval

• Upper: the upper bound of the confidence interval

The menu buttons are:

• More: opens the More menu, with options for selecting multiple cells to copy and then paste elsewhere

• OK: return to the Numeric view of the app

Use the rocker wheel or tap to move about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view. Now you can press the Plot key to see the results
graphically as well.

Chi-Square GoF Results Once you tap Calc in Numeric view, the results of your Chi-Square goodness of fit calculation are displayed
in a table containing the following values:
• χ²: the Chi-Square statistic value

• P: the probability

• DF: the degrees of freedom

The menu keys are:

• More: opens the More menu, with options for selecting multiple cells to copy and then paste elsewhere

• Stats: tap to display the test results (on by default)

• Exp: tap to display the list of the expected counts

• Cont: tap to display the list of Chi-Square contributions

• OK: tap to return to Numeric view

Use the rocker wheel or tap to scroll about the table. Use the More menu to select multiple cells to copy
and paste elsewhere. You can also tap and hold on a cell, then drag to select a rectangular array of cells.

Tap the OK menu key to return to Numeric view.

Chi-Square 2-Way Test Results Once you tap Calc in Numeric view, the results of your Chi-Square 2-way test are displayed in a table
containing the following values:
• χ²: the Chi-Square statistic value

• P: the probability

• DF: the degrees of freedom

The menu keys are:

• More: opens the More menu, with options for selecting multiple cells to copy and then paste elsewhere

• Exp: tap to display the matrix of the expected counts (tap OK to exit)

• Cont: tap to display the matrix of Chi-Square contributions (tap OK to exit)

• OK: tap to return to Numeric view

Use the rocker wheel or tap to scroll about the table. Use the More menu to select multiple cells to copy
and paste elsewhere. You can also tap and hold on a cell, then drag to select a rectangular array of cells.

Tap the OK menu key to return to Numeric view.

Page 51 of 239

13217 Help TextHelp Topics Tree
Linear Regression T-Test Results Once you tap Calc in Numeric view, the linear regression t-test results are displayed in a table containing

the following values:
• Test T: the calculated test t-value

• P: the probability

• DF: the degrees of freedom

• β0: the linear regression equation intercept

• β1: the linear regression equation slope

• serrLine: the standard error about the line

• serrSlope: the standard error about the slope

• serrInt: the standard error about the intercept

• r: the correlation value

• R²: the coefficient of determination

Use the rocker wheel or tap to scroll about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view.

CI for Slope Results Once you tap Calc in Numeric view, the results of the confidence interval calculation are displayed in a
table containing the following values:
• C: the confidence level you entered in the wizard

• Crit. T: the critical t-value associated with your confidence level

• DF: the degrees of freedom

• β1: the linear regression equation slope

• serrLine: the standard error about the line

• Lower: the lower bound of the confidence interval for the slope

• Upper: the upper bound of the confidence interval for the slope

Use the rocker wheel or tap to move about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view.

CI for Intercept Results Once you tap Calc in Numeric view, the results of the confidence interval calculation are displayed in a
table containing the following values:
• C: the confidence level you entered in the wizard

• Crit. T: the critical test t-value associated with your confidence level

• DF: the degrees of freedom

• β0: the linear regression equation intercept

• serrLine: the standard error about the line

• Lower: the lower bound of the confidence interval for the intercept

• Upper: the upper bound of the confidence interval for the intercept

Use the rocker wheel or tap to move about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view.

CI for Mean Response Results Once you tap Calc in Numeric view, the results of the confidence interval calculation are displayed in a
table containing the following values:
• C: the confidence level you entered in the wizard

• ŷ: the mean response value for the x-value you entered in the wizard

• DF: the degrees of freedom

• serr ŷ: the standard error about the mean response

• Lower: the lower bound of the confidence interval for the mean response

• Upper: the upper bound of the confidence interval for the mean response

Use the rocker wheel or tap to move about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view.

Prediction Interval Results Once you tap Calc in Numeric view, the results of the prediction interval calculation are displayed in a
table containing the following values:
• C: the confidence level you entered in the wizard

• ŷ: the mean response value for the future x-value you entered in the wizard

• DF: the degrees of freedom

• serr ŷ: the standard error about the mean response

• Lower: the lower bound of the confidence interval for the mean response

• Upper: the upper bound of the confidence interval for the mean response

Use the rocker wheel or tap to move about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view.

ANOVA results Once you tap Calc in Numeric view, the results of your 1-way analysis of variance are displayed in a table
containing the following values:
• F: the F-value

• P: the probability associated with the F-value

Page 52 of 239

13217 Help TextHelp Topics Tree
• DF: the degrees of freedom of the treatments

• SS: the sum of the squares of the treatments

• MS: the mean square of the treatments

• DFerr: the degrees of freedom of the errors

• SSerr: the sum of the squares of the errors

• MSerr: the mean square of the errors

Use the rocker wheel or tap to move about the table. Tap the More menu key to open a menu for options
to assist you in selecting multiple cells to copy and the paste elsewhere. You can also tap and hold on a
cell, then drag to select a rectangular array of cells to copy and paste elsewhere.

Tap the OK menu key to return to Numeric view.

Inference App Variables Besides the common app vars, the Inference app has Symbolic, Numeric, and Results app vars. Each of
these categories contains the app vars used in the corresponding view of the app.

Results Variables Inference App Results Variables

The Inference App Results variables store calculations performed when the Calc menu button is tapped in
the Inference Numeric view or when the DoInference command is executed.

Result Result App Var

For hypothesis tests, contains 0 or 1 to indicate rejection of or failure to reject the null hypothesis.

TestScore TestScore App Var

TestScore contains the Z- or t-distribution value calculated from the hypothesis test or confidence interval
inputs.

TestValue TestValue App Var

TestValue contains the value of the experimental variable associated with the current value in the app
variable TestScore.

CritScore CritScore App Var

CritScore contains the value of the Z- or t-distribution associated with the input α-value

CritVal1 CritVal1 App Var

CritVal1 contains the lower critical value of the experimental variable associated with the negative
TestScore value which was calculated from the input α-level.

CritVal2 CritVal2 App Var

CritVal2 contains the upper critical value of the experimental variable associated with the positive
TestScore value which was calculated from the input α-level.

Prob Prob App Var

Prob contains the probability associated with the TestScore value.

DF DF App Var

DF contains the degrees of freedom for the t-tests.

ContribList ContribList App Var

ContribList is a list that contains the Chi-Square contributions for the last Chi-Square goodness of fit (GoF)
test.

ExpMat ExpMat App Var

ExpMat is a matrix that contains the expected count data from the last Chi-Square 2-Way test calculation.

ContribMat ContribMat App Var

ContribMat is a matrix that contains the Chi-Square contributions for the last Chi-Square 2-way test.

Slope Slope App Var

Slope contains the value of the slope from the last linear regression t-test.

Inter Inter App Var

Inter contains the value of the intercept from the last linear regression t-test.

corr corr App Var

corr contains the value of the correlation from the last linear regression t-test.

coefDet coefDet App Var

coefDet contains the value of the coefficient of determination from the last linear regression t-test.

serrLine serrLine App Var

serrLine contains the value of the standard error of the line from the last linear regression t-test.

serrSlope serrSlope App Var

serrSlope contains the value of the standard error of the slope from the last linear regression t-test or
confidence interval for slope.

serrInter serrInter App Var

serrInter contains the value of the standard error of the intercept from the last linear regression t-test or
confidence interval for the intercept.

Yval Yval App Var

Yval contains the value of ŷ from the last prediction interval or mean response interval calculation.

serrY serrY App Var

serrY contains the value of the standard error of ŷ from the last prediction interval or mean response
interval calculation.

Xval Xval App Var

Xval contains the value of the explanatory variable (X) from the last mean response interval or prediction
interval calculation.

SS SS App Var

Page 53 of 239

13217 Help TextHelp Topics Tree
SS contains the value of the sum of squares of the treatments from the last ANOVA 1-way calculation.

SSerr SSerr App Var

SSerr contains the value of the sum of squares of the errors from the last ANOVA 1-way calculation.

MS MS App Var

MS contains the value of the mean squares for the treatments from the last ANOVA 1-way calculation.

MSerr MSerr App Var

MSerr contains the value of the mean squares for the errors from the last ANOVA 1-way calculation.

Fval Fval App Var

Fval contains the value of the mean squares for the treatments from the last ANOVA 1-way calculation.

DFerr DFerr App Var

DFerr contains the value of the degrees of freedom of the errors from the last ANOVA 1-way calculation.

Numeric Variables Inference App Numeric Variables

The Inference app Numeric Variables correspond to the fields in the Numeric view for the various tests
and confidence intervals.

Alpha Alpha App Var

Sets the alpha level for the hypothesis test.

Alpha:=n, where 0<n<1, sets the alpha-level to n.

Conf Conf App Var

Sets the confidence level for the confidence interval.

Conf:=n, where 0<n<1, sets the confidence level to n.

Mean₁ Mean₁ App Var

Sets the value of the mean of a sample for a 1-mean hypothesis test or confidence interval. For a 2-mean
test or interval, sets the value of the mean of the first sample.
n ▶ Mean₁ sets the value of Mean₁ to n.

Mean₂ Mean₂ App Var

For a 2-mean test or interval, sets the value of the mean of the second sample.

n ▶ Mean₂ sets the value of Mean₂ to n.

σ₁ σ₁ App Var

Sets the population standard deviation for a hypothesis test or confidence interval involving 1 or 2 means
and the Normal distribution. For a test or interval involving the difference of two means, sets the
population standard deviation of the first sample.

n ▶ σ₁ sets the value of σ₁ to n.

σ₂ σ₂ App Var

For a test or interval involving the difference of two means and the Normal distribution, sets the
population standard deviation of the second sample.
n ▶ σ₂ sets the value of σ₂ to n.

s₁ s₁ App Var

Sets the sample standard deviation for a hypothesis test or confidence interval. For a test or interval
involving the difference of two means, sets the sample standard deviation of the first sample.

n ▶ s₁ sets the value of s₁ to n.

s₂ s₂ App Var

For a test or interval involving the difference of two means, sets the sample standard deviation of the
second sample.
n ▶ s₂ sets the value of s₂ to n.

x₁ x₁ App Var

Sets the number of successes for a one-proportion hypothesis test or confidence interval. For a test or
interval involving the difference of two proportions, sets the number of successes of the first sample.

n ▶ x₁ sets the value of x₁ to n.

x₂ x₂ App Var

For a test or interval involving the difference of two proportions, sets the number of successes of the
second sample.
n ▶ x₂ sets the value of x₂ to n.

n₁ n₁ App Var

Sets the size of the sample for a hypothesis test or confidence interval. For a test or interval involving the
difference of two means or two proportions, sets the size of the first sample.

n ▶ n₁ sets the value of n₁ to n.

n₂ n₂ App Var

For a test or interval involving the difference of two means or two proportions, sets the size of the second
sample.
n ▶ n₂ sets the value of n₂ to n.

μ₀ μ₀ App Var

Sets the assumed value of the population mean for a hypothesis test.

n ▶ μ₀ sets the value of μ₀ to n.

π₀ π₀ App Var

Sets the assumed proportion of successes for the one-proportion Z-test.

n ▶ π₀ sets the value of π₀ to n.

Page 54 of 239

13217 Help TextHelp Topics Tree
Pooled Pooled App Var

Determine whether or not the samples are pooled for tests or intervals using the Student’s T-distribution
involving two means.
0 ▶ Pooled for not pooled (default)

1 ▶ Pooled for pooled

ObsList ObsList App Var

ObsList is a list that contains the observed counts for each category from the last Chi-Square goodness of
fit (GoF) test.

ProbList ProbList App Var

ProbList is a list that contains the probabilities for each category from the last Chi-Square goodness of fit
(GoF) test.

ExpList ExpList App Var

ExpList is a list that contains the expected counts for each category from the last Chi-Square goodness of
fit (GoF) test.

ObsMat ObsMat App Var

ObsMat is a matrix that contains the observed count data from the last Chi-Square 2-Way test calculation.

Xlist Xlist App Var

Xlist is a list that contains the data for the explanatory (X) variable from the last inference for regression
calculation.

Ylist Ylist App Var

Ylist is a list that contains the data for the response (Y) variable from the last inference for regression
calculation.

Symbolic Variables Inference App Symbolic Variables

There are four Inference App Symbolic Variables, each of which corresponds to one of the four possible
fields in the Symbolic view of the Inference app:
• Method

• Type

• AltHyp

• DataType

InfType InfType App Var

InfType determines the type of hypothesis test, confidence interval, Chi-Square test, or inference for
regression calculation. Their function depends upon the value of the variable Method.

With Method=0 for hypothesis tests, the constant values and their meanings are as follows:

• InfType:= 0 for Z-Test: 1 mean

• InfType:= 1 for Z-Test: 2 means

• InfType:= 2 for Z-Test: 1 proportion

• InfType:= 3 for Z-Test: 2 proportions

• InfType:= 4 for T-Test: 1 mean

• InfType:= 5 for T-Test: 2 means

With Method=1 for confidence intervals, the constant values and their meanings are as follows:

• InfType:= 0 for Z-Int: 1 mean

• InfType:= 1 for Z-Int: 2 means

• InfType:= 2 for Z-Int: 1 proportion

• InfType:= 3 for Z-Int: 2 proportions

• InfType:= 4 for T-Int: 1 mean

• InfType:= 5 for T-Int: 2 means

With Method=2 for Chi-Square tests, the constant values and their meanings are as follows:

• InfType:= 0 for Chi-Square GoF

• InfType:= 1 for Chi-Square 2-Way test

With Method=3 for inference for regression, the constant values and their meanings are as follows:

• InfType:= 0 for Linear regression t-test

• InfType:= 1 for confidence interval for slope

• InfType:= 2 for confidence interval for intercept

• InfType:= 3 for confidence interval for mean response

• InfType:= 4 for prediction interval for a future response

Method Method App Var

Method determines whether the Inference app is set to calculate hypothesis test results, confidence
intervals, Chi-Square tests, or inference for regression calculations.

• Method := 0 for Hypothesis Tests

• Method := 1 for Confidence Intervals

• Method := 2 for Chi-Square Tests

• Method := 3 for Inference for regression

AltHyp AltHyp App Var

AltHyp determines the alternative hypothesis used for hypothesis testing.

• AltHyp := 0 for μ<μ0

• AltHyp := 1 for μ>μ0

• AltHyp := 2 for μ≠μ0

Page 55 of 239

13217 Help TextHelp Topics Tree
DataType DataType App Var

For the Chi-Square goodness of fit (GoF) test, DataType determines whether the expected list contains
probabilities or counts.
DataType:= 0 for count data

DataType:= 1 for probabilities

Inference App Functions The functions specific to the Inference app are listed in this section.

DoInference DoInference App Function

Syntax:

DoInference()

Calculate confidence interval or test hypothesis.

Performs the same calculations as tapping Calc in the Inference app's Numeric view, and stores the results
in the appropriate Inference app Results variables. The results depend on the contents of the Inference
app Symbolic view variables Method, Type, and Alt Hypoth.

HypZ1mean One-sample Z-test for Mean

Syntax:

HypZ1mean(SampMean, SampSize, NullPopMean, PopStdDev, SigLevel, Mode)

Mode: Specifies which alternative hypothesis to use.

 1: Less than

 2: Greater than

 3: Not equal

Returns a list containing (in order):

• Reject (0) or fail to reject (1) the null hypothesis

• Test Z-value

• Input sample mean value

• Upper-tail probability

• Upper critical Z-value associated with the input α-level

• Critical value of the statistic associated with the critical Z-value

Example:

HypZ1mean(0.461368,50,0.5,0.2887,0.05,1) →
{1,−0.946205374811,0.461368,0.172021922639,−1.64485362695,0.432843347747,0.432843347747}

HypZ2mean Two-sample Z-test for Means

Syntax:

HypZ2mean(SampMean, SampMean2, SampSize,SampSize2, PopStdDev, PopStdDev2, SigLevel, Mode)

Mode: Specifies which alternative hypothesis to use:

 1: Less than

 2: Greater than

 3: Not equal

Returns a list containing (in order):

• Reject (0) or fail to reject (1) the null hypothesis

• Test Z-value

• Test Δ value

• Upper-tail probability

• Upper critical Z-value associated with the input α-level

• Critical value of Δ associated with the critical Z-value

Example:

HypZ2mean(0.461368,0.522851,50,50,0.2887,0.2887,0.05,1) →
{1,−1.06482507793,−0.061483,0.1434775472,−1.64485362695,−0.156456848420,−0.156456848420}

HypZ1prop One-sample Z-test for Proportion

Syntax:

HypZ1prop(SuccCount, SampSize, NullPopProp, SigLevel, Mode)

Mode: Specifies which alternative hypothesis to use.

 1: Less than

 2: Greater than

 3: Not equal

Returns a list containing (in order):

• Reject (0) or fail to reject (1) the null hypothesis

• Test Z-value

• Test π value

• Upper-tail probability

• Upper critical Z-value associated with the input α-level

• Critical value of π associated with the critical Z-value

Example:

HypZ1prop(21,50,0.5,0.05,1) →
{1,−1.13137084989,0.42,0.128949517646,−1.64485362695,0.385189688145,0.385189688145}

HypZ2prop Two-sample Z-test for Proportions

Syntax:

HypZ2prop(SuccCount1, SuccCount2, SampSize1, SampSize2, SigLevel, Mode)

Mode: Specifies which alternative hypothesis to use.

Page 56 of 239

13217 Help TextHelp Topics Tree
 1: Less than

 2: Greater than

 3: Not equal

Returns a list containing (in order):

• Reject (0) or fail to reject (1) the null hypothesis

• Test Z-value

• Test Δπ value

• Upper-tail probability

• Upper critical Z-value associated with the input α-level

• Critical value of Δπ associated with the critical Z-value

Example:

HypZ2prop(21,26,50,50,0.05,1) →
{1,−1.00180487462,−0.1,0.42,0.52,0.158218921229,−1.64485362695,−0.263363033245,−0.263363033245}

HypT1mean One-sample t-test for Mean

Syntax:

HypT1mean(SampMean, SampStdDev, SampSize, NullPopProp, SigLevel, Mode)

Mode: Specifies which alternative hypothesis to use.

 1: Less than

 2: Greater than

 3: Not equal

Returns a list containing (in order):

• Reject (0) or fail to reject (1) the null hypothesis

• Test T-value

• Input value

• Upper-tail probability

• Degrees of freedom

• Upper critical T-value associated with the input α-level

• Critical value of the statistic associated with the critical T-value

Example:

HypT1mean(0.461368,0.2776,50,0.5,0.05,1) →
{1,−0.984039955720,0.461368,0.16496500389,49,−1.67655089261,0.434181011953,0.434181011953}

HypT2mean Two-sample t-test for Means

Syntax:

HypT2mean(SampMean1, SampMean2, SampStdDev1, SampStdDev2, SampSize1, SampSize2, SigLevel,
Pooled, Mode)
Pooled: Specifies whether or not the samples are pooled

 0: not pooled

 1: pooled

Mode: Specifies which alternative hypothesis to use.

 1: Less than

 2: Greater than

 3: Not equal

Returns a list containing (in order):

• Reject (0) or fail to reject (1) the null hypothesis

• Test T-value

• Test Δ value

• Upper-tail probability

• The degrees of freedom

• Upper critical T-value associated with the input α-level

• Critical value of Δ associated with the critical T-value

Example:

HypT2mean(0.461368,0.522851,0.2776,0.2943,50,50,0.05,0,1) →
{1,−1.07460751332,−0.061483,0.142599075544,97.6674459454,−1.66060517920,−0.156493491707,−0.15
6493491707}

ConfZ1mean One-sample Normal CI for Mean

Syntax:

ConfZ1mean(SampMean, SampSize, PopStdDevm, ConfLevel)

One-sample Normal confidence interval for a mean

Returns a list containing (in order):

• Lower critical Z-value

• Lower bound of the confidence interval

• Upper bound of the confidence interval

Example:

ConfZ1mean(0.461368,50,0.2887,0.95) → {−1.95996398454,0.381345913182,0.541390086818}

ConfZ2mean Two-sample Normal CI for Mean

Syntax:

ConfZ2mean(SampMean1, SampMean2, SampSize1, SampSize2, PopStdDev1, PopStdDev2, ConfLevel)

Two-sample Normal confidence interval for the difference of two means

Page 57 of 239

13217 Help TextHelp Topics Tree
Returns a list containing (in order):

• Lower critical Z-value

• Lower bound of the confidence interval

• Upper bound of the confidence interval

Example:

ConfZ2mean(0.461368,0.522851,50,50,0.2887,0.2887,0.95) →
{−1.95996398454,−0.174651320467,5.16853204673ᴇ−2}

ConfZ1prop One-sample Normal CI for Proportion

Syntax:

ConfZ1prop(SuccCount, SampSize, ConfLevel)

One-sample Normal confidence interval for a proportion

Returns a list containing (in order):

• Lower critical Z-value

• Lower bound of the confidence interval

• Upper bound of the confidence interval

Example:

ConfZ1prop(21,50,0.95) → {−1.95996398454,0.283195075475,0.556804924525,0.42}

ConfZ2prop Two-sample Normal CI for Proportions

Syntax:

ConfZ2prop(SuccCount1, SuccCount2, SampSize1, SampSize2, ConfLevel)

Two-sample Normal confidence interval for the difference of two proportions

Returns a list containing (in order):

• Lower critical Z-value

• Lower bound of the confidence interval

• Upper bound of the confidence interval

Example:

ConfZ2prop(21,26,50,50,0.95) → {−1.95996398454,−0.294659060430,9.46590604295ᴇ−2,0.42,0.52}

ConfT1mean One-sample t-test for Mean

Syntax:

ConfT1mean(SampMean, SampStdDev, SampSize, ConfLevel)

One-sample Student’s T confidence interval for a mean

Returns a list containing (in order):

• Degrees of freedom

• Lower critical t-value

• Lower bound of the confidence interval

• Upper bound of the confidence interval

Example:

ConfT1mean(0.461368,0.2776,50,0.95) → {49,−2.00957523712,0.382474952915,0.540261047085}

ConfT2mean Two-sample t-test for Means

Syntax:

ConfT2mean(SampMean, SampMean2, SampStdDev, SampStdDev2, SampSize, SampSize2, Pooled,
ConfLevel)
Two-sample Student’s T confidence interval for the difference of two means

Pooled: Specifies whether or not the samples are pooled

 0: not pooled

 1: pooled

Returns a list containing (in order):

• The degrees of freedom

• The lower critical t-value

• The lower bound of the confidence interval

• The upper bound of the confidence interval

• The midpoint of the interval

Example:

ConfT2mean(0.461368,0.522851,0.2887,0.2887,50,50,0.95,0) →
{98.0000000000,−1.98446745450,−0.176066150823,5.31001508231ᴇ−2,−0.061483}

Chi2GOF χ² Goodness of Fit

Syntax:

Chi2GOF(List1, List2, Value)

Takes as arguments a list of observed count data, a second list, and a value of 0 or 1.

If Value=0, the second list is taken as a list of expected probabilities.

If Value=1, then the second list is taken as a list of expected counts.

Returns a list containing:

• χ² statistic value

• Probability

• Degrees of freedom

Example:

Chi2GOF({10,10,12,15,10,6},{0.24,0.2,0.16,0.14,0.13,0.13},0) → {7.95179952323,0.158912133127,5}

Chi2TwoWay χ² Two-Way Test

Page 58 of 239

13217 Help TextHelp Topics Tree
Syntax:

Chi2TwoWay(Matrix)

Given a matrix of count data, returns a list containing:

• χ² statistic value

• Probability

• Degrees of freedom

Example:

Chi2TwoWay([[30,35,30],[11,2,19],[43,35,35]]) → {14.4302681482,6.04117951525ᴇ−3,4}

LinRegrTTest Linear Regression t-test

Syntax:

LinRegrTTest(List1, List2, AltHyp)

Given a list of explanatory (X) variable data, a list of response (Y) variable data, and an integer (0, 1, or 2),
performs a linear regression t-test using the given bivariate data sets.

The last argument determines the nature of the alternative hypothesis used for the test, as shown in the
following list:
• AltHyp := 0 for μ<μ0

• AltHyp := 1 for μ>μ0

• AltHyp := 2 for μ≠μ0

The test returns a list containing the following values in the order shown:

• Test t-value: the t-value associated with the test

• P: the probability associated with the test result

• DF: the degrees of freedom

• β0: the intercept of the linear regression equation

• β1: the slope of the linear regression equation

• serrLine: the standard error about the line

• serrSlope: the standard error of the slope

• serrInter: the standard error of the intercept

• r: the correlation coefficient

• R²: the coefficient of determination

Example:

LinRegrTTest({1,2,3,4},{3,2,0,-2},0) →
{−9.81495457622,5.11086672135ᴇ−3,2,5,−1.7,0.387298334621,0.173205080757,0.474341649025,−0.9897
78266557,0.979661016949}

LinRegrTConfSlope Linear Regression CI for Slope

Syntax:

LinRegrTConfSlope(List1, List2, C-value)

Linear regression confidence interval for the slope

Given a list of explanatory (X) variable data, a list of response (Y) variable data, a value for AltHyp and a
confidence level, returns a list containing the following values in the order shown:

• C: the given confidence level

• Critical T: the value of t associated with the given confidence level

• DF: the degrees of freedom

• β1: the slope of the linear regression equation

• serrSlope: the standard error of the slope

• Lower: the lower bound of the confidence interval for the slope

• Upper: the upper bound of the confidence interval for the slope

Example:

LinRegrTConfSlope({1,2,3,4},{3,2,0,-2},0.95) →
{0.95,4.30265272974,2,−1.7,0.173205080757,−2.44524131352,−0.954758686475}

LinRegrTConfInt Linear Regression CI for Intercept

Syntax:

LinRegrTConfInt(List1, List2, C-value)

Linear regression confidence interval for the intercept

Given a list of explanatory (X) variable data, a list of response (Y) variable data, and a confidence level,
returns a list containing the following values in the order shown:
• C: the given confidence level

• Critical T: the value of t associated with the given confidence level

• DF: the degrees of freedom

• β0: the intercept of the linear regression equation

• serrInter: the standard error of the intercept

• Lower: the lower bound of the confidence interval for the intercept

• Upper: the upper bound of the confidence interval for the intercept

Example:

LinRegrTConfInt({1,2,3,4},{3,2,0,-2},0.95) →
{0.95,4.30265272974,2,5,0.474341649025,2.95907260898,7.04092739101}

LinRegrTMeanResp Linear Regression CI for Mean Resp.

Syntax:

LinRegrTMeanResp(List1, List2, X_value, C-value)

Linear regression confidence interval for a mean response

Page 59 of 239

13217 Help TextHelp Topics Tree
Given a list of explanatory (X) variable data, a list of response (Y) variable data, an X-value, and a
confidence level, returns a list containing the following values in the order shown:

• X: the given X-value

• C: the given confidence level

• T: the t-value associated with the confidence level

• DF: the degrees of freedom

• Ŷ: the mean response for the given X-value

• serr Ŷ: the standard error of the mean response

• Lower: the lower bound of the confidence interval for the mean response

• Upper: the upper bound of the confidence interval for the mean response

Example:

LinRegrTMeanResp({1,2,3,4},{3,2,0,-2},2.5,0.95) →
{2.5,0.95,4.30265272974,2,0.75,0.193649167310,−8.32051183415ᴇ−2,1.58320511834}

LinRegrTPredInt Linear Regression Prediction Interval

Syntax:

LinRegrTPredInt(List1, List2, X-value, C-value)

Linear regression prediction interval for a future response

Given a list of explanatory (X) variable data, a list of response (Y) variable data, a future X-value, and a
confidence level, returns a list containing the following values in the order shown:

• X: the given future X-value

• C: the given confidence level

• T: the t-value associated with the confidence level

• DF: the degrees of freedom

• Ŷ: the mean response for the given future X-value

• serr Ŷ: the standard error of the mean response

• Lower: the lower bound of the prediction interval for the mean response

• Upper: the upper bound of the prediction interval for the mean response

Example:

LinRegrTPredInt({1,2,3,4},{3,2,0,-2},2.5,0.95) →
{2.5,0.95,4.30265272974,2,0.75,0.433012701892,−1.11310328381,2.61310328381}+Q350

AnovaOneWay ANOVA One-Way

Syntax:

AnovaOneWay({list1},{list2},[{list3}] ... [{List14}])

Calculates a one-way analysis of variance using up to 14 treatment groups. Returns a list of results
containing:
• F: the F-value

• P: the probability associated with the F-value

• DF: the degrees of freedom of the treatments

• SS: the sum of the squares of the treatments

• MS: the mean square of the treatments

• DFerr: the degrees of freedom of the errors

• SSerr: the sum of the squares of the errors

• MSerr: the mean square of the errors

Example:

AnovaOneWay({7,4,6,8,6,6,2,9},{5,5,3,4,4,7,2,2},{2,4,7,1,2,1,5,5}) →
{3.59459459459,0.045439700366,2,30.0833333333,15.0416666666,21,87.875,4.18452380952}

Data Streamer app The Data Streamer app simplifies the collection of data from sensors via the HP StreamSmart 410 data
streamer. The Data Streamer app collects the data, then lets you identify the exact data set you wish to
send to the Statistics 1Var or 2Var apps for analysis and modeling.

Tap Start or press Enter to launch the app.

Please refer to the HP StreamSmart 410 User Guide for more information.

Data Streamer Plot View Press Plot to return to this view at any time. The Plot view is the default view for this app. The Plot view
displays up to four data streams, one for each of the active channels on the HP StreamSmart 410.

The menu keys are:

• CHAN: select a channel (stream) to trace, etc.

• PAN/ZOOM: toggle between panning (scrolling) and zooming with direction keys

 • PAN: scroll up, down, left, and right

 • ZOOM: zoom in or out vertically or horizontally

• SCOPE: switch to oscilloscope mode

• START/STOP: stop stream flow or start a new stream

With the PAN menu key active, use the rocker wheel up/down to center the active stream in the graphing
window.
Press the PAN/ZOOM menu key to toggle to ZOOM. Now use the rocker wheel left/right to slow down or
speed up the streams, respectively.
Both panning and zooming can be done while data is streaming for an interactive experience.

Press the STOP menu key and then the EXPORT menu key to isolate the data you want and export it to the
Statistics 1Var or 2Var apps for analysis.
Press Num to enter the Numeric view of the app.

Page 60 of 239

13217 Help TextHelp Topics Tree
Data Streamer Numeric View Press Num to return to this view at any time. The Numeric view displays the incoming data numerically

instead of graphically. This numerical view is useful for monitoring data numerically, such as during
selected events experiments.
Menu Buttons:

• Add: add a reading to the current data set as specified in Setup

• Setup: select experiment type and destination for data

• 1s·: select the sensor refresh rate: 0.5, 1, or 1.5 seconds (1 second is the default)

• Stats: go directly to the Statistics application (as specified in Setup) to view and analyze the current data
set
Tap Setup to define the type of selected events experiment you wish to perform and to select the app and
column(s) destination for your final data set(s). In the Setup view, there are fields and menu buttons for
defining your selected events experiment, as defined below.

Fields:

• App: select Statistics 1Var or Statistics 2Var as the destination for your data (other apps will appear if
you have saved version of the statistics apps)
• Method: select events only or events with entry. If you select events with entry, each time you press the
Add menu button in Numeric view, you will be prompted to add a numerical entry for the data point.

• Entry: select a column in your chosen statistics app for your entry (Events with Entry experiment method
only)
• CH1-CH4: select columns in your chosen statistics app for your data set(s)

Menu Buttons:

• Choose: choose an app, method, column, etc.

• ✓: select or deselect a channel for export

• Cancel: return to Numeric view without making any changes

• OK: save the changes and return to Numeric view

Solve app The Solve app enables you to define up to ten expressions each with as many variables as you like. You
can solve a single expression for one of its variables, based on a seed value. You can also solve a system of
equations (linear or non-linear).

If two or more of your equations share one or more variables, then the current or solved values of those
variables are carried over as you move from one equation to the other.

To launch the Solve app, go to the Application Library and tap the Solve app icon. You can also use the
rocker wheel to select the Solve app icon, then tap Start or press Enter to launch the app.

Solve Symbolic View Use this view to enter and edit up to ten equations (or expressions), named E0 to E9. Each equation can
use any defined variable (including A to Z and θ). Highlight one of the ten fields and begin entering an
equation or expression, or tap Edit to edit an existing expression.

The menu buttons are:

• Edit: opens an input box to edit the selected definition

• ✓: selects a definition for solving

• =: a typing aid for entering the equal sign

• Show: displays the highlighted equation in full-screen mode, with horizontal and vertical scrolling
enabled.
• Eval: resolves references when one equation is defined in terms of another

• Choose: select a color for the graph

Press Num to display the Numeric view. This is where the solving occurs.

Solve Plot View The Plot View gives you a graphical representation of the selected expression in the Symbolic view, if only
one expression is selected. The left and right sides of the current expression are plotted as two separate
graphs. The variable that is highlighted in the Numeric View is taken as the independent variable for
graphing purposes. The point(s) where these two graphs intersect are solutions to the equation. If there is
no 'right side', '=0' is used as an implied right side.

The menu buttons are:

• Menu: this toggle reveals and hides the Plot menu, with options for zooming and tracing

• Zoom: enters the Zoom menu, with options to zoom in or out

• Trace: toggles tracing cursor off and on

• Go To: takes the tracing cursor to the point on the function with a given x-value

• Defn: displays the symbolic definition of the current function

If more than one equation is selected in Symbolic view, then Plot view is not available.

Solve Plot Setup The Solve Plot Setup enables you to control the appearance of the graph window, including the
appearance of the cursor, whether or not the axes are drawn, etc. The Setup has two pages.

On the first page of the setup, the fields are:

• X Rng: the horizontal graphing range

• Y Rng: the vertical graphing range

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

• Edit: edit the value of the selected field

• PAGE 1/2 ▼: go to the second page of the setup

On the second page of the setup, the fields are:

Page 61 of 239

13217 Help TextHelp Topics Tree
• Axes: toggle axes on and off

• Labels: toggle axis labels on and off

• Grid Dots: toggle grid dots on and off

• Grid Lines: toggle grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

• Method: choose between Adaptive, Fixed-Step Segments, and Fixed-Step Dots

The menu buttons on the second page are:

• ✓: toggle the current setting on or off

• Choose: make a choice from a choose box

• ▲ PAGE 2/2 : return to the first page of the setup

The Method field requires an explanation. By default, the HP Prime uses the Adaptive method, an
advanced method that gives very accurate results. You can choose the more traditional method, called
Fixed-Step Segments, which samples x-values, computes their corresponding y-values, and then plots and
connects the points. Or you can choose Fixed-Step Dots, which works like Fixed-Step Segments but does
not connect the points.

Solve Numeric View The Solve Numeric view is used to enter values for all known variable(s) and then to solve for the
unknown(s).
If only one equation is checked in the numerical view, enter the values of the known variables, then select
the unknown variable and tap Solve.
If more than one equation is checked in the numerical view, enter the values of the known variables,
check the variables to solve for and tap Solve.
Note that the current values for the unknown variable can be used as a seed for the solving algorithm.

The menu buttons are:

 • Edit: edit the current variable's value

 • Info: get information about a solution

 • Defn: view the expression that is being solved

 • Solve: solve for the currently selected variable

Note: if Info contains the message Extremum, this indicates that it is highly probable that there is no
solution to the equation or system.

Solve App Variables To display the variables relating to the Solve app, press Vars, tap App and select Solve.

 The Solve app has variables in the following categories:

• Plot (see Common App Variables)

• Modes (see Common App Variables)

Symbolic View Variables

The Solve Symbolic app variables are E1 through E9 and E0. They can contain any expression. The
independent variable is selected by highlighting it in the Numeric View.

En := expression, where n is an integer between 0 and 9 inclusive

Example:

E3:='A+2*X=3*B'

Example:

A+2*X=3*B

SOLVE Solve App Function

Syntax:

SOLVE(En,Var[,Guess])

Solves an equation for one of its variables. The argument En may be an equation or expression or it may
be the name of one of the Solve Symbolic variables E0-E9. Solves the equation En for the variable Var,
using the value of Guess as a seed for the solving algorithm. If En is an expression, then the value of the
variable Var that makes the expression equal to zero is returned.

Example:

SOLVE(X^2-X-2,X,3) → 2 with the Solve app running

This function can also return a list containing an information message and one or more numbers.

Example:

SOLVE(SIN(X)+2, X) returns {Error: Extremum found,−1.57079487496} because sin(x)+2 cannot be equal to
zero.

Linear Solver app The Linear Solver app solves linear systems of 2 equations in 2 variables or 3 equations in 3 variables.

To launch the Linear Solver app, go to the Application Library and tap the Linear Solver app icon. You can
also use the rocker wheel to select the Linear Solver app icon, then tap Start or press Enter to launch the
app.

Linear Solver Numeric View The Linear Solver opens in the Numeric view, the only view for this app. By default, the app opens ready
to solve 3×3 systems of linear equations. Note the dot on the 3×3 menu button to indicate it is active. Tap
the 2×2 menu button to switch to solving 2x2 systems of linear equations.

Enter the coefficients of each variable in each equation as well as the constant term. The solution to the
system appears in real time at the bottom of the screen.
The menu buttons are:

• Edit: opens a line to edit the chosen value

• 2×2: solves a 2×2 system of 2 linear equations with 2 variables

• 3×3: solves a 3×3 system of 3 linear equations with 3 variables

Linear Solver Variables Apart from the modes variables (which are common to all apps), the Linear Solver app has two variables:

Page 62 of 239

13217 Help TextHelp Topics Tree
• LSystem

• LSolution

LSystem LSystem App Var

Contains a 2x3 or 3x4 matrix which represents a 2x2 or 3x3 linear system.

matrix ▶ LSystem, where matrix is either a matrix or the name of one of the matrix variables M0-M9.

LSolution LSolution App Var

Contains a vector with the last solution found by either the Linear Solver app or the LSolve app function.

Linear Solver App Functions This section lists the functions specific to the Linear Solver app.

Solve2×2 Solve2×2 App Function

Syntax:

Solve2x2(a,b,c,d,e,f)

Solves the 2x2 linear system represented by:

ax+by=c

dx+ey=f

Example:

Solve2x2(2,-1,5,5,2,8) → {2,-1)

Solve3×3 Solve3×3 App Function

Syntax:

Solve3x3(a,b,c,d,e,f,g,h,i,j,k,l)

Solves the 3x3 linear system represented by:

ax+by+cz=d

ex+fy+gz=h

ix+jy+kz=l

Example:

Solve3x3(2,1,2,1,4,0,3,-5,0,5,4,13) → {1,5,-3}

LinSolve LinSolve App Function

Syntax:

LinSolve(matrix)

Solve linear system. Solves the NxN linear system represented by an Nx(N+1) matrix.
LinSolve([[a,b,c],[d,e,f]]) solves the linear system:
ax+by=c

dx+ey=f

Examples:

LinSolve([[2,-1,5],[5,2,8]]) → {2,-1}

M2:=[[1,−3,5,−14],[2,1,−6,20],[3,−2,1,0]]; LinSolve(M2) → {1,0,−3}

Triangle Solver app A triangle has 3 sides, each of a specific length, as well as 3 angles, each of a specific measure. Specifying
3 of these 6 values fully defines the triangle, as long as one of these is the length of a side. In the
ambiguous case, specifying three of the values (including one side length) defines the triangle in terms of
two alternatives. The Triangle Solver app allows you to enter 3 known values (one of which must always
be a side length) and to calculate the 3 others-or the two alternatives for the 3 others.

To launch the Triangle Solver app, go to the Application Library and tap the Triangle Solver app icon. You
can also use the rocker wheel to select the Triangle Solver app icon, then tap Start or press Enter to
launch the app. The Triangle Solver app opens in the Numeric view, which is the only view this app has.

Triangle Solver Numeric View Make sure that your angle measure mode is appropriate. If the angle information you have is in degrees
and your current angle measure mode is radians or grads, change the mode to degrees by pressing the
Radians menu key to toggle it to Degrees.

The fields are:

• a: the length of one side of the triangle

• b: the length of another side

• c: the length of the third side

• A: the measure of the angle opposite Side a

• B: the measure of the angle opposite Side b

• C: the measure of the angle opposite Side c

The menu buttons in the main Numeric view are:

• Edit: opens an edit line to edit the current value of a field

• Degrees/Radians: toggles between degrees and radians angle measure

• Rect: toggles between a simple solver for right triangles and the general solver

• Solve: use the current values to solve for the other unknowns

Using the rocker wheel, move to a field whose value you know, enter the value and press Enter. Repeat
for each known value. Note that one of the values must be the length of a side. Tap Solve and the app will
display the remaining lengths and angle measures. If the Alt menu button appears, it means that there are
two possible solutions. Tap Alt to toggle between the two solutions.

If you are determining the properties of a right triangle, a simpler input form is available by tapping the
menu button with a triangle symbol.

Triangle Solver Variables Apart from the modes variables (which are common to all apps), the Triangle Solver app variables
correspond to the fields in the app's Numeric view.

SideA SideA App Variable

Page 63 of 239

13217 Help TextHelp Topics Tree
SideA - The length of the side opposite the angle A.

n ▶ SideA, where n>0, sets the value of SideA to n.

SideB SideB App Variable

SideB - The length of the side opposite the angle B.

n ▶ SideB, where n>0, sets the value of SideB to n.

SideC SideC App Variable

SideC - The length of the side opposite the angle C.

n ▶ SideC, where n>0, sets the value of SideC to n.

AngleA AngleA App Variable

AngleA - The measure of angle A.

The value of this variable will be interpreted according to the angle mode setting (Degrees or Radians).

n ▶ AngleA, where n>0, sets the value of AngleA to n.

AngleB AngleB App Variable

Angle B- The measure of angle B.

The value of this variable will be interpreted according to the angle mode setting (Degrees or Radians).

n ▶ AngleB, where n>0, sets the value of AngleB to n.

AngleC AngleC App Variable

AngleC - The measure of angle C.

The value of this variable will be interpreted according to the angle mode setting (Degrees or Radians).

n ▶ AngleC, where n>0, sets the value of AngleC to n.

TriType Triangle Type Variable

Corresponds to the status of the TriType menu key in the Numeric view of the Triangle Solver app. It
determines whether a general triangle solver or a right triangle solver is used.

0 ▶ TriType for the general triangle solver (default)

1 ▶ TriType for the right triangle solver

Triangle Solver App Functions The Triangle Solver app has a group of functions which allow solving a complete triangle from the input of
3 measures of the triangle. The names of these commands use A to signify an angle, and S to signify a side
length. To use these commands, enter 3 inputs in the specified order given by the command name. These
commands all return a list of 6 items consisting of the three arguments entered with the command and
the three unknown values (lengths of sides and measures of angles).

AAS AAS App Function

Syntax:

AAS(angle,angle,side)

Takes as arguments the measures of two angles and the length of the side opposite the first angle and
returns a list containing the length of the side opposite the second angle, the length of the third side, and
the measure of the third angle (in that order).

Example:

AAngle:=2; AAS(30,60,1) → {1.73205080757,2,90} (Degrees mode)

ASA ASA App Function

Syntax:

ASA(angle,side,angle)

Takes as arguments the measure of two angles and the length of the included side and returns a list
containing the length of the side opposite the first angle, the length of the side opposite the second angle,
and the measure of the third angle (in that order).

Example:

AAngle:=2; ASA(30,2,60) → {1,1.73205080757,90} (Degrees mode)

SAS SAS App Function

Syntax:

SAS(side,angle,side)

Takes as arguments the length of two sides and the measure of the included angle and returns a list
containing the length of the third side, the measure of the angle opposite the third side and the measure
of the angle opposite the second side.
Example:

AAngle:=2; SAS(2,60,1) → {1.73205080757,30,90} (Degrees mode)

SSA SSA App Function

Syntax:

SSA(side,side,angle)

Takes as arguments the lengths of two sides and the measure of a non-included angle and returns a list
containing the length of the third side, the measure of the angle opposite the second side, and the
measure of the angle opposite the third side.

Note: In an ambiguous case, this command will only give you one of the two possible solutions.

Example:

AAngle:=2; SSA(1,2,30) → {1.73205080757,90,60} (Degrees mode)

SSS SSS App Function

Syntax:

SSS(side,side,side)

Page 64 of 239

13217 Help TextHelp Topics Tree
Takes as arguments the lengths of the three sides of a triangle and returns the measures of the angles
opposite them, in order.
Example:

AAngle:=2; SSS(3,4,5) → {36.8698976458,53.1301023542,90} (Degrees mode)

DoSolve DoSolve App Function

Syntax:

DoSolve()

Solves the current problem in the Triangle Solver app.

The Triangle Solver app must have enough data entered to ensure a successful solution; that is, there
must be at least three values entered, one of which must be a side length. Returns a list containing the
unknown values in the Numeric view, in their order of appearance in that view (left to right and top to
bottom).

Finance app The Finance App solves a set of common financial problems. In Symbolic view you can select from a list of
common financial problems. You can then enter Numeric view to solve your selected problem. Some of
the problems also have a plot view.
To launch the Finance app, go to the Application Library and tap the Finance app icon. You can also use
the rocker wheel to select the Finance app icon, then tap Start or press Enter to launch the app.

Finance Symbolic View The Finance Symbolic View allows you to choose which financial calculation you would like to perform in
the Finance App. These include:
• TVM (Time Value of Money): Used for compound interest calculations that involve regular, uniform cash
flows
• Interest conversion: Converts between nominal and effective interest rates

• Date calculation: Calculates the difference between two dates

• Cash flow: Calculates the return on investment and value of cash flows

• Depreciation: Calculates the decrease in asset value over time

• Break-even: Used to find the break even point between number of units sold, fixed costs, manufacturing
costs, sales price, and a desired profit
• Percent change: Calculates a new price, cost, or value based on margin, markup, total percentage or
percent change
• Bond: Calculates bond yield or bond price

• Black-Scholes: Uses the Black-Scholes mathematical model to value European call and put options

First select your desired calculation from the drop down menu. Then press Num to enter the Finance
Numeric View and solve the chosen equation.
For a more complete description of how to use each of the finance options see the help text for the
Finance Numeric View group.

Finance Amortization Graph The Finance Amortization Graph displays the amortization schedule graphically. Use the rocker wheel
left/right to move from payment group to payment group. For each payment group, the principal and
interest paid during the interval are displayed numerically at the bottom of the display.

Finance Plot Setup Press Shift Plot to enter the Finance Plot Setup. Page 1 of the Plot Setup contains settings that control the
appearance of finance plots.
On the first page, the fields are:

• X Rng: the horizontal range of the graph window

• Y Rng: the vertical range of the graph window

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

• Edit: opens an edit box to edit the value of the selected field

• Page 1/2 ▼: displays the second page of the setup

On the second page, the fields are:

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

The menu buttons on the second page are:

• ✓: toggles the current setting on or off

• Choose: make a choice from a choose box

• ▲ Page 2/2: returns to the first page of the setup

Finance Numeric View The Finance Numeric View is where you can find solutions to financial problems in the Finance App.

TVM View Time Value of Money

Time Value of Money (TVM) allows you to solve TVM and amortization problems. You can perform
compound interest calculations and create amortization tables.
Compound interest is accumulative interest, that is, interest on interest already earned. The interest
earned on a given principal is added to the principal at specified compounding periods, and then the
combined amount earns interest at a certain rate. Financial calculations involving compound interest
include savings accounts, mortgages, pension funds, leases, and annuities.

TVM calculations make use of the notion that a dollar today will be worth more than a dollar sometime in
the future. A dollar today can be invested at a certain interest rate and generate a return that the same
dollar in the future cannot. This TVM principle underlies the notion of interest rates, compound interest,
and rates of return.

• N: The total number of compounding periods or payments.

Page 65 of 239

13217 Help TextHelp Topics Tree
• 1%/Yr: The nominal annual interest rate (or investment rate). This rate is divided by the number of
payments per year (P/Yr) to compute the nominal interest rate per compounding period. This is the
interest rate actually used in TVM calculations.
• PV: The present value of the initial cash flow. To a lender or borrower, PV is the amount of the loan; to
an investor, PV is the initial investment. PV always occurs at the beginning of the first period.

• P/Yr: The number of payments made in a year.

• PMT: The periodic payment amount. The payments are the same amount each period and the TVM
calculation assumes that no payments are skipped. Payments can occur at the beginning or the end of
each compounding period—an option you control by selecting or clearing the End option.

• C/Yr: The number of compounding periods in a year.

• FV: The future value of the transaction: the amount of the final cash flow or the compounded value of
the series of previous cash flows. For a loan, this is the size of the final balloon payment (beyond any
regular payment due). For an investment, this is its value at the end of the investment period.

Enter the values you know, select the quantity that you want to solve for and tap Solve. Tap Amort to
display and explore the amortization table for your cash flow. Press Plot to see the amortization graph.

Finance Amortization Table The Finance Amortization Table displays the amortization schedule.

The schedule is a table displaying, for each payment group, the principal and interest paid during the
group as well as the balance remaining at the end of the group.

• Size: choose between small, medium, and large font size

• TVM: returns to the TVM view

Use the rocker wheel or drag to scroll through the table.

Press the TVM menu key to return to the TVM page when you are done.

Interest Conversion View Interest Conversion allows you to convert between the nominal interest rate (a rate that is compounded
after a given period that must be specified) and the effective interest rate (the amount of interest
effectively charged over a year).
• Nom I%: Nominal interest rate: the stated annual interest rate compounded as represented by P/Yr,
such as 18% compounded monthly (P/Yr=12).
• Eff I%: Effective annual interest rate taking compounding into account.

• P/YR: Number of periods per year that the nominal interest rate is compounded.

Date Calculation View Date calculations allows you to calculate the difference between two dates or calculate a date some
number of days from another date.
• Date 1: The first date in YYYY.MMDD format. This must be a Gregorian date and may not exceed
9999.1231.
• Date 2: The second date in YYYY.MMDD format. This must be a Gregorian date and may not exceed
9999.1231.
• Difference: The difference between the two dates in number of days (limited to plus or minus 1,000,000
days ~2700years).
• Cal. 360: Specifies a 30 day per month, 360 day per year calendar should be used for calculations. The
360 day calendar is useful for measuring durations in financial markets.

Enter data in any two of the fields, highlight the remaining field, and tap Solve.

Cash Flow View Cash Flow is used to solve problems where cash flows occur over regular intervals. Problems with regular,
equal, periodic cash flows are handled more easily using the TVM function.

In the numeric screen you will see a table where you can enter the Cash Flow data. The top of the table
has fields to enter these three items:
• Invest I%: Investment or discount interest rate. The rate for cash flows that do not need to be liquid and
highly available, so this rate reflects a higher return commensurate with increased risk.

• Safe I%: Safe investment interest rate. This rate assumes that funds required to cover negative cash
flows are placed in investments that are highly liquid and easy to withdraw at will, making them “safely”
available with minimum risk and therefore a lower return.

• #CF/Yr: The number of cash flows per year

On the lower part of the table you will enter your cash flow data.

• CF#: A number that represents the position of the cash flow in the list, where 0 is the initial investment.
This number is automatically created as you enter data.
• Nb CF: The number of consecutive occurrences of the cash flow.

• Cash Flow: The amount of the cash flow.

Once you have completed your list tap Calc to see the analysis of your cash flow data.

• Internal Rate of Return (IRR): The discount rate that returns a Net Present Value of 0 for the entered
cash flows, by discounting all cash flows with Invest I%.
• Modified IRR (MIRR): Modified Internal Rate of Return. An improved IRR calculation discounting
negative cash flows with Safe I% and positive cash flows with Invest I%.
• Financial MRR: (FMRR) Financial Management Rate of Return. A more complicated IRR calculation than
MIRR, where negative cash flows are removed by prior positive cash flows before discounting with Safe
I% and then subsequent positive cash flows are discounted with Invest I%.

• Total: The sum of all the cash flows, equivalent to NPV if Invest I% is 0.

• Net Present Value (NPV): Value of cash flows at the time of the initial cash flow, discounting future cash
flows by Invest I%.
• Net Future Value (NFV): Value of the cash flows at the time of the last cash flow, discounting earlier
cash flows by Invest I%.
• Net Uniform Series (NUS): Per-period payment of a regular periodic cash flow of equivalent present
value to the cash flow list.
• Discounted PayBack: The number of periods required for the investment to return value if the cash
flows are discounted by Invest I%.

Page 66 of 239

13217 Help TextHelp Topics Tree
• PayBack: The number of periods required for the investment to return value.

Depreciation View Depreciation allows you to calculate the loss in value of assets over time.

The Type field in the Finance Symbolic view allows you to choose between the following methods for
calculating depreciation:
• Straight line: Calculates depreciation presuming an asset loses a certain percentage of its value annually
at an amount evenly distributed throughout its useful life.

• Sum-of-the-years digits: An accelerated depreciation method where the depreciation in year y is (Life-y
+1)/SOY of the asset, where SOY is the sum-of-the-years of asset life. For an asset with a 5-year life,
SOY=5+4+3+2+1=15.
• Declining balance: An accelerated depreciation method that presumes an asset will lose the majority of
its value during the first few years of its useful life.
• DB with SL cross over: Declining balance with Straight Line cross over is an accelerated depreciation
method that presumes an asset will lose the majority of its value in the first few years of its useful life and
then revert to a consistent depreciation during the latter part of its life, calculated with the straight line
method.

• French straight line: Similar to the straight line method, using the actual calendar date the asset was first
placed into service.
• French amortization: An accelerated depreciation method with a cross over to the French straight line
type.
Once you have selected the depreciation type you will enter information into the following fields in the
Finance Numeric view:
• Cost: The starting cost of the asset to be depreciated.

• Salvage: The salvage value of the asset at the end of its useful life.

• Life: The expected useful life of the asset in years.

• First Use: The month (or date for French depreciation types) the asset is first placed into service. Note:
month can be entered with a decimal to indicate first use after the first of the month. For example, if the
asset was placed into service in the middle of March, enter 3.5.

• Factor: The declining balance factor as a percentage. Used for Declining balance and DB with SL cross
over types only.
After entering data into all of the fields, press Calc to view a calculated table of results beginning with the
first year and ending with the last year of useful life.
• Depreciation: Depreciation amount for the year.

• Depr Value: Remaining depreciable value at the end of the year.

• Book Value: Remaining book value at the end of the year.

Break-even View The break-even function allows you to study problems involving a profit when a quantity of items with a
cost to manufacture and a fixed price to develop and market is sold at a given price. This tool solves the
equation Fixed + Quantity * Cost = Quantity * Sales + Profit.

• Fixed: Fixed cost to develop and market a product.

• Quantity: Quantity of units sold.

• Cost: Manufacturing or production cost per unit sold.

• Price: Price per unit sold.

• Profit: Expected profit.

Enter the known information into any four of the fields, move the cursor to the value you wish to
calculate, and tap Solve.

Percent Change View Percent change provides two types of percentage calculation tools: Markup / Margin or Percent Total /
Percent Change.
The Type field in the Finance Symbolic View allows you to choose between the following methods for
calculating business percentages:
• Markup / Margin: Calculates markup as a percent of cost or margin as a percent of price.

• Total / Change: Calculates new value based on total percent of old value or based on percent change
from old value
Markup / Margin uses the following inputs:

• Cost: Total cost to purchase or manufacture the item

• Price: Sales price for the item

• Markup: A percentage of Cost: ((Price - Cost)/Cost)*100

• Margin: A percentage of Price: ((Price - Cost)/Price)*100

Total / Change uses the following inputs:

• Old: The old value for a percent change calculation or the total amount for a part/total calculation.

• New: The new value for a percent change calculation or the part of the total for a part/total calculation.

• Total: Total Percentage: (New/Old)*100

• Change: Percent Change: ((New-Old)/Old)*100

Enter information into two of the fields, move the cursor to the value you wish to calculate, and tap Solve.

Bond View Bond allows you to calculate the price or yield of a bond.

• Set. Date: Settlement date. The day on which transfer of cash or assets is completed and is usually a few
days after the trade was done. Uses format YYYY.MMDD.

• Mat. Date: Maturity date or call date. This date always coincides with a coupon date and is the date the
bond will be redeemed. Uses format YYYY.MMDD.
• Coupon: Coupon rate as an annual percentage. The coupon rate is the fixed annual interest rate paid by
the issuer to a bondholder.
• Call: Call value. Default is call price per 100.00 face value. A bond at maturity has a call value of 100% of
its face value

Page 67 of 239

13217 Help TextHelp Topics Tree
• Cal. 360: Specifies a 30 day per month, 360 day per year calendar should be used for calculations. The
360 day calendar is useful for measuring durations in financial markets.

• Semi-annual: Sets payment frequency to be semi-annual instead of annual.

Enter in all of the known information into all the above fields. Select either Yield or Price and tap Solve.

• Yield: Yield percent to maturity (or call) date for a given price.

• Price: Price per 100.00 face value for a given yield percentage.

The following Results fields are displayed on tapping Solve.

• Accrued Interest: Interest accrued from the last coupon or payment date until the settlement date for a
given yield.
• Modified Duration: A measure of bond price sensitivity to yield changes, derived from Macaulay
duration.
• Macaulay Duration: A measure of bond price sensitivity to yield changes.

Black-Scholes View Black-Scholes is a mathematical model useful for valuing European call and put options. Options give the
holder the right to buy or sell units of an underlying asset for a period of time at a specified price. A call
option is the right to buy and a put option is the right to sell. Specifically, a call option gives the holder of
the option the ability to buy a specified number of shares of a stock at a specified price before a certain
date, regardless of the actual price of the stock on that date. A put option gives the holder of the option
the ability to sell a specified number of shares of a stock at a specified price before a certain date, also
regardless of the actual price of the stock on that date.

For example, assume a call option allows the purchase of 100 shares of a stock at 40.00 per share six
months from now. At that six month point, if the stock is worth 50.00, the holder of the option can buy it
for 40.00 and earn 10.00 per share immediately. If the stock is worth only 38.00 at that six month point,
the option to buy at 40.00 would not be exercised, as it would lose 2.00 per share.

The Black-Scholes computations assume a European option. This differs from an American option in that a
European option can only be exercised at the end of its life, or at its maturity. All other things being equal,
the price for an American option will usually be higher than for a European option, since the American
option can be traded at any time until its expiration.

• Stock price: Current underlying asset price, also known as spot price.

• Strike price: Predetermined price at which the option agrees to buy or sell the underlying asset at
maturity, also known as exercise price.
• Time to maturity: Time remaining until maturity/expiration of the option in years.

• Risk free%: Current risk-free interest rate (for example, the current US Treasury Bond rate).

• Volatility %: Degree of unpredictable change of the stock price. This is usually approximated by the
standard deviation of the variation of the stock price.
• Dividend %: Estimation of the average dividend yield of the stock as a percentage of its price.

Enter in values for all of the fields. Once they are all entered, tap Solve to calculate Call price and Put price.

• Call price: Estimated fair market value for a call option at expiration (a call option is the right to
purchase the asset at a given price).
• Put price: Estimated fair market value for a put option at expiration (a put option is the right to sell the
asset at a given price).

Finance Numeric View The Finance Symbolic View allows you to choose which financial calculation you would like to perform in
the Finance App. These include:
• TVM (Time Value of Money): Used for compound interest calculations that involve regular, uniform cash
flows
• Interest conversion: Converts between nominal and effective interest rates

• Date calculation: Calculates the difference between two dates

• Cash flow: Calculates the return on investment and value of cash flows

• Depreciation: Calculates the loss in value of assets over time

• Break-even: Used to find the break-even point between number of units sold, fixed costs, manufacturing
costs, sales price, and a desired profit
• Percent change: Calculates a change based on a percentage

• Bond: Calculates the yield or price of a bond

• Black-Scholes: Uses the Black-Scholes equation to value investments

First select your desired calculation from the drop down menu. Then press Num to enter the Finance
Numeric View and solve the chosen equation.
For a more complete description of how to use each of the finance options, see the help text for the
Finance Numeric View group.

Finance App Variables Apart from the modes variables (which are common to all apps), the Finance app variables correspond to
the fields in the Finance app Numeric view.

Symbolic Variables There are two Finance App Symbolic Variables, each of which corresponds to one of the two possible
fields in the Symbolic view of the Finance app:
• Method

• FinType

Method Method determines the current calculation type in the Finance app.

• Method := 0 for TVM

• Method := 1 for interest conversion

• Method := 2 for date calculation

• Method := 3 for cash flow

• Method := 4 for depreciation

• Method := 5 for break-even

• Method := 6 for percent change

Page 68 of 239

13217 Help TextHelp Topics Tree
• Method := 7 for bond

• Method := 8 for Black-Scholes

FinType FinType determines the type of calculation for depreciation or percent calculations.

With Method=4 for depreciation, the constant values and their meanings are as follows:

• FinType:= 0 for straight line

• FinType:= 1 for sum-of-the-years digits

• FinType:= 2 for declining balance

• FinType:= 3 for declining balance with crossover

• FinType:= 4 for French straight line

• FinType:= 5 for French amortization

With Method=6 for percent calculations, the constant values and their meanings are as follows:

• FinType:= 0 for margin/markup

• FinType:= 1 for percent/change

TVM Variables After a TVM (Time Value of Money) calculation is performed in the Finance app, the values are stored in
the TVM Variables.

NbPmt NbPmt App Variable

NbPmt - The number of payments in an investment or loan.

n ▶ NbPmt, where n>0, sets the value of NbPmt to n.

IPYR IPYR App Variable

IPYR - The interest rate per year of an investment or loan.

n ▶ IPYR sets the value of IPYR to n.

PV PV App Variable

PV - The present value of an investment or loan.

n ▶ PV sets the value of PV to n.

PMT PMT App Variable

PMT - The value of a payment for an investment or loan.

n ▶ PMT sets the value of PMT to n.

FV FV App Variable

FV - The future value of an investment or loan.

n ▶ FV sets the value of FV to n.

PPYR PPYR App Variable

PPYR - The number of payments made per year for an investment or loan.

n ▶ PPYR, where n>0, sets the value of PPYR to n.

CPYR CPYR App Variable

CPYR - The number of compounding periods per year for an investment or loan. The default value is 12.

n ▶ CPYR, where n>0, sets the value of CPYR to n.

BEG BEG App Variable

BEG determines whether interest is compounded at the beginning or end of the compounding period.

0 ▶ BEG for compounding at the end of the period (default)

1 ▶ BEG for compounding at the beginning of the period

GSize GSize App Variable

GSize - The size of each group for the amortization table. The default value is 12.

n ▶ GSize, where n>0, sets the value of GSize to n.

Interest Conversion Variables After an Interest Conversion calculation is performed in the Finance app, the values are stored in the
Interest Conversion Variables.

NomInt NomInt - The nominal interest rate.

n ▶ NomInt , where 0≤n≤100, sets the value of NomInt to n

EffInt EffInt - The effective interest rate.

n ▶ EffInt , where 0 ≤ n ≤ 100, sets the value of EffInt to n

IntCPYR IntCPYR The number of times interest compounds per year

n ▶ IntCPYR, where n>0, sets the value of IntCPYR to n.

Date Calculation Variables After a Date Calculation is performed, the data is stored in the Date Calculation variables.

DateOne DateOne - The first date used in a date calculation. Uses the format YYYY.MMDD.

n ▶ DateOne, where n is YYYY.MMDD, sets the value of DateOne to n

DateTwo DateTwo - The second date used in a date calculation. Uses the format YYYY.MMDD

n ▶ DateTwo, where n is YYYY.MMDD, sets the value of DateTwo to n

DateDiff DateDiff - The difference between the two dates.

n ▶ DateDiff, where n>0, sets the value of DateDiff to n

Date360 Date360 - Determines whether to use a standard Gregorian or 360-day year when doing a date calculation.

0 ▶ Date360 for standard 365-day year

1 ▶ Date360 for 360-day year

Cash Flow Variables When Cash Flow calculations are performed, the data is stored in the Cash Flow Variables.

CFData Syntax:

CFData

CFData(n)

Page 69 of 239

13217 Help TextHelp Topics Tree
CFData(n,option)

CFData:={cash_flow1, cash_flow2, ... cash_flowN}

CFData:=[cash_flow1, cash_flow2, ... cash_flowN]

CFData:={{cash_flow1, count1},{cash_flow2,count2}, ... {cash_flowN,countN}}

CFData:=[[cash_flow1, count1],[cash_flow2,count2], ... [cash_flowN,countN]]

CFData(n):=cash_flow

CFData(n):={cash_flow, count}

CFData(n):=[cash_flow, count]

CFData provides access to the cash flow information and is a list of lists. Each sublist contains cash flow
and count. Count defaults to 1 if not specified.
CFData(n) references the cashflow and count pair numbered n. The initial cashflow is number 0.

CFData(n,option) references either the cash flow or the count of the nth pair, depending on the value of
option. 1 is cash flow, 2 is count.
An entire list of lists or matrix representing the cash flow information can be stored in a single operation.

Examples:

CFData:={-100,60,60}

CFData:=[-100,60,60]

CFData:={{-100,1},{60,2}}

CFData:=[[-100,1],[60,2]]

CFData(0)

CFData(0,1)

InvestInt InvestInt - The cash flow investment interest rate.

n ▶ InvestInt , where 0 ≤ n ≤100, sets the value of InvestInt to n

SafeInt SafeInt - The cash flow safe interest rate.

n ▶ SafeInt , where 0 ≤ n ≤100, sets the value of SafeInt to n

CFPYR CFPYR - The number of cash flows per year.

n ▶ CFPYR , where 1 ≤ n ≤ 12, sets the value of CFPYR to n

IRR IRR - The Internal Rate of Return of a cash flow.

MIRR MIRR - The Modified Internal Rate of Return of a cash flow.

FMRR FMRR stores Financial Management Rate of Return of a cash flow.

TotalCF TotalCF - The cash flow total..

NPV NPV - Net Present Value of a cash flow.

NFV NFV - Net Future Value of a cash flow.

NUS NUS - Net Uniform Series of a cash flow.

DiscPayback DiscPayback - The Discounted Payback period of a cash flow.

Payback Payback - The Payback period of a cash flow.

Depreciation Variables After a Depreciation calculation is performed in the Finance App, the values are stored in the Depreciation
Variables.

CostAsset CostAsset - The depreciable cost of an asset at time of purchase.

n ▶ CostAsset, where n>0, sets the value of CostAsset to n

SalvageAsset SalvageAsset - The amount of money an asset can be sold or salvaged for at the end of its life.

n ▶ SalvageAsset, where n>0, sets the value of SalvageAsset to n

FirstAsset FirstAsset - The month the asset is first placed into service. Normally, this will be 1. A decimal amount
inidicates a partial month.
n ▶ FirstAsset, where n≥1, sets the value of FirstAsset to n

LifeAsset LifeAsset - The expected useful life of a product.

n ▶ LifeAsset, where n≥1, sets the value of LifeAsset to n.

FactorDepr FactorDepr - The depreciation factor as a percentage, used with the declining balance method.

n ▶ FactorDepr, where n>0, sets the value of FactorDepr to n

FirstDateAsset FirstDateAsset - The date of first use for French style Depreciation, entered as YYYY.MMDD

n ▶ FirstDateAsset, where n is YYYY.MMDD, sets the value of FirstDateAsset to n

Break-even Variables After a Break-even calculation is performed in the Finance App, the values are stored in the Break-even
Variables.

FixedCost FixedCost - The fixed cost of developing and marketing a product.

n ▶ FixedCost, where n>0, sets the value of FixedCost to n.

VariableCost VariableCost - The manufacturing cost per unit.

n ▶ VariableCost, where n>0, sets the value of VariableCost to n

SalePrice SalePrice - The sales price per unit.

n ▶ SalePrice, where n>0, sets the value of SalePrice to n.

Profit Profit - The expected profit.

n ▶ Profit, where n>0, sets the value of Profit to n.

Quantity Quantity - The number of units sold.

n ▶ Quantity, where n>0, sets the value of Quantity to n.

Percent Change Variables After Percent Change calculations are performed, the data is stored in the Percent Change variables.

Price Price - The sales price in markup calculations.

n ▶ Price sets the value of Price to n

Cost Cost - The cost of an item in markup calculations.

Page 70 of 239

13217 Help TextHelp Topics Tree
n ▶ Cost sets the value of Cost to n

Margin Margin - The margin in markup calculations based on cost.

n ▶ Margin sets the value of Margin to n

Markup Markup - The markup percentage in markup calculations.

n ▶ Markup sets the value of Markup to n

OldValue OldValue - The old value in percent-change calculations and the total in part-total calculations.

n ▶ OldValue sets the value of OldValue to n

NewValue NewValue - The new value in percent-change calculations and the part number in part-total calculations.

n ▶ NewValue sets the value of NewValue to n

Total Total - The percentage of the total in part-total calculations.

n ▶ Total sets the value of Total to n

Change Change - The percent change in percent-change calculations.

n ▶ Change sets the value of Change to n

Bond Variables After a Bond calculation is performed in the Finance App, the values are stored in the Bond Variables.

SetDate SetDate - The settlement date of a bond. Dates should be entered as YYYY.MMDD

n ▶ SetDate, where n is YYYY.MMDD, sets the value of SetDate to n

MatDate MatDate - The maturity date or call date of a bond. Dates should be entered as YYYY.MMDD

n ▶ MatDate, where n is YYYY.MMDD, sets the value of MatDate to n

CpnPer CpnPer - The coupon percentage.

n ▶ CpnPer sets the value of CpnPer to n

CallPrice CallPrice - The call price or value.

n ▶ CallPrice sets the value of CallPrice to n

YieldBond YieldBond - The yield percent to maturity of a bond.

n ▶ YieldBond sets the value of YieldBond to n

PriceBond PriceBond - The price per 100.00 value of a bond.

n ▶ PriceBond sets the value of PriceBond to n

Accrued Accrued - The accrued interest of a bond.

n ▶ Accrued sets the value of Accrued to n

Modified Modified - The modified duration of a bond.

n ▶ Modified sets the value of Modified to n

Macaulay Macaulay - The Macaulay duration of a bond.

n ▶ Macaulay sets the value of Macaulay to n

Bond360 Bond360 - Determines whether to use a standard Gregorian or a 360-day calendar .

0 ▶ Bond360 for standard 365-day year

1 ▶ Bond360 for 360-day year

SemiAnnual SemiAnnual - Determines whether payments are made on an annual or semi-annual basis.

0 ▶ SemiAnnual indicates annual payments

1 ▶ SemiAnnual indicates semi-annual payments

Black-Scholes Variables After a Black-Scholes calculation is performed, the values are stored in the Black-Scholes variables.

StockPrice StockPrice - The stock price. This is the current underlying asset price, also known as spot price.

n ▶ StockPrice sets the value of StockPrice to n

StrikePrice StrikePrice - The strike price. This is the predetermined price at which the option agrees to buy or sell the
underlying asset at maturity, also known as exercise price.
n ▶ StrikePrice sets the value of StrikePrice to n

TimeMarket TimeMarket - The time to market of an option.

n ▶ TimeMarket sets the value of TimeMarket to n

RiskFree RiskFree - The risk free interest rate.

n ▶ RiskFree sets the value of RiskFree to n

Volatility Volatility - The volatility of an asset.

n ▶ Volatility sets the value of Volatility to n

Dividend Dividend - The dividend percentage.

n ▶ Dividend sets the value of Dividend to n

BSCall BSCall - The call price of an option.

n ▶ BSCall sets the value of BSCall to n

BSPut BSPut - The put price of an option.

n ▶ BSPut sets the value of BSPut to n

Finance App Functions The functions specific to the Finance app are listed in this section.

TVM Functions The functions specific to time value of money are listed in this section.

TvmNbPmt TvmNbPmt App Function

Syntax:

TvmNbPmt(IPYR, PV, PMT, FV, [PPYR], [CPYR], [BEG])

Solves for the number of payments in an investment or loan.

• IPYR: the annual interest rate

• PV: the present value of the investment or loan

• PMTV: the payment value

Page 71 of 239

13217 Help TextHelp Topics Tree
• FV: the future value of the investment or loan

• PPYR: the number of payments per year

• CPYR: the number of compounding periods per year

• BEG: payments made at the beginning (1) or end (0) of the period

The arguments PPYR, CPYR, and BEG are optional; if not supplied, PPYR=12, CPYR=PPYR, and BEG=0.

Example:

TvmNbPmt(6.5,150000,-948.10,-2.25) → 360

TvmIPYR TvmIPYR App Function

Syntax:

TvmIPYR(NbPmt, PV, PMT, FV, [PPYR], [CPYR], [BEG])

Solves for the interest rate per year of an investment or loan.

• NbPmt: the number of payments

• PV: the present value of the investment or loan

• PMT: the payment value

• FV: the future value of the investment or loan

• PPYR: the number of payments per year

• CPYR: the number of compounding periods per year

• BEG: payments made at the beginning (1) or end (0) of the period

The arguments PPYR, CPYR, and BEG are optional; if not supplied, PPYR=12, CPYR=PPYR, and BEG=0.

Example:

TvmIPYR(360,150000,-948.10,-2.25) → 6.50

TvmPV TvmPV App Function

Syntax:

TvmPV(NbPmt, IPYR, PMT, FV, [PPYR], [CPYR], [BEG])

Solves for the present value of an investment or loan.

• NbPmt: the number of payments

• IPYR: the annual interest rate

• PMTV: the payment value

• FV: the future value of the investment or loan

• PPYR: the number of payments per year

• CPYR: the number of compounding periods per year

• BEG: payments made at the beginning (1) or end (0) of the period

The arguments PPYR, CPYR, and BEG are optional; if not supplied, PPYR=12, CPYR=PPYR, and BEG=0.

Example:

TvmPV(360,6.5,-948.10,-2.25) → 150000.00

TvmPMT TvmPMT App Function

Syntax:

TvmPMT(NbPmt, IPYR, PV, FV, [PPYR], [CPYR], [BEG])

Solves for the value of a payment for an investment or loan.

• NbPmt: the number of payments

• IPYR: the annual interest rate

• PV: the present value of the investment or loan

• FV: the future value of the investment or loan

• PPYR: the number of payments per year

• CPYR: the number of compounding periods per year

• BEG: payments made at the beginning (1) or end (0) of the period

The arguments PPYR, CPYR, and BEG are optional; if not supplied, PPYR=12, CPYR=PPYR, and BEG=0.

Example:

TvmPMT(360,6.5,150000,-2.25) → -948.10

TvmFV TvmFV App Function

Syntax:

TvmFV(NbPmt, IPYR, PV, PMT, [PPYR], [CPYR], [BEG])

Solves for the future value of an investment or loan.

• NbPmt: the number of payments

• IPYR: the annual interest rate

• PV: the present value of the investment or loan

• PMT: the payment value

• PPYR: the number of payments per year

• CPYR: the number of compounding periods per year

• BEG: payments made at the beginning (1) or end (0) of the period

The arguments PPYR, CPYR, and BEG are optional; if not supplied, PPYR=12, CPYR=PPYR, and BEG=0.

Example:

TvmFV(360,6.5,150000,-948.10) → -2.25

Interest Conversion Functions The functions specific to interest conversion are listed in this section.

IntConvNom Syntax:

IntConvNom(effective_rate,compounds_per_year)

Page 72 of 239

13217 Help TextHelp Topics Tree
IntConvNom returns the nominal interest rate in an Interest Conversion calculation when given the
effective_rate and the number of compounds_per_year.
Example:

IntConvNom(6.86,12) → 6.65

IntConvEff Syntax:

IntConvEff(nominal_rate,compounds_per_year)

IntConvEff returns the effective interest rate in an Interest Conversion calculation when given the
nominal_rate and the number of compounds_per_year.
Example:

IntConvEff(6.65,12) → 6.86

IntConvCPYR Syntax:

IntConvCPYR(nominal_rate,effective_rate)

IntConvCPYR returns the number of compounding periods in a year in an Interest Conversion calculation
when given the nominal_rate and the effective_rate.
Example:

IntConvCPYR(6.65,6.86) → 14.64

DateDays Syntax:

DateDays(first_date,second_date,[cal_360])

DateDays returns the difference between two days when given two dates (first_date and second_date as
YYYY.MMDD). Optionally, a 1 in the third field, cal_360, will specify that a 360-day calendar (twelve 30 day
months) should be used.
Examples:

DateDays(2013.1213,2016.0202) → 781

DateDays(2013.1213,2016.0202,1) → 769

Cash Flow Functions The functions specific to cash flow are listed in this section.

CashFlowIRR Syntax:

CashFlowIRR(cash_flow_data,[cashflows_per_year])

CashFlowIRR returns the Internal Rate of Return for cash_flow_data. cashflows_per_year specifies the
number of cash flows per year. If cashflows_per_year is not provided, then it is assumed to be 1.

Enter cash_flow_data as a list or matrix. These are examples of valid input forms:

{cash_flow1, cash_flow2, ... cash_flowN}

[cash_flow1, cash_flow2, ... cash_flowN]

If you wish to specify the count of a cash flow, the cash flow should come first followed by the count. If
you do not specify a count, then count will be assumed to be 1. These are examples of valid input forms:

{cash_flow1,{cash_flow2,count2}, ... {cash_flowN,countN}}

[[cash_flow1, count1],cash_flow2, ... [cash_flowN,countN]]

Example:

CashFlowIRR({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}) → 3.72

CashFlowMIRR Syntax:

CashFlowMIRR(cash_flow_data, investment_rate, safe_investment_rate, [cashflows_per_year])

CashFlowMIRR returns the Modified Internal Rate of Return for cash_flow_data, investment_rate and
safe_investment_rate. If cashflows_per_year is not provided, then it is assumed to be 1.

Enter cash_flow_data as a list or matrix. To indicate the same cash flow repeats more than once, enter
the cash flow as list or matrix with the cash flow followed by the count. If you do not specify a count, then
count will be assumed to be 1. These are examples of valid input forms:

{cash_flow1, {cash_flow2, count2}, ... {cash_flowN, countN}}

[[cash_flow1, count1], cash_flow2, ... [cash_flowN, countN]]

Example:

CashFlowMIRR({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}, 8, 5, 1) → 5.12

CashFlowFMRR Syntax:

CashFlowFMRR(cash_flow_data, investment_rate, safe_investment_rate, [cashflows_per_year])

CashFlowFMRR returns the Financial Management Rate of Return for cash_flow_data, investment_rate
and safe_investment_rate. If cashflows_per_year is not provided, then it is assumed to be 1.

Enter cash_flow_data as a list or matrix. To indicate the same cash flow repeats more than once, enter
the cash flow as list or matrix with the cash flow followed by the count. If you do not specify a count, then
count will be assumed to be 1. These are examples of valid input forms:

{cash_flow1, {cash_flow2, count2}, ... {cash_flowN, countN}}

[[cash_flow1, count1], cash_flow2, ... [cash_flowN, countN]]

Example:

CashFlowFMRR({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}, 8, 5, 1) → 4.98

CashFlowTotal Syntax:

CashFlowTotal(cash_flow_data)

CashFlowTotal calculates the total of all inputs for for cash_flow_data.

Enter cash_flow_data as a list or matrix. To indicate the same cash flow repeats more than once, enter
the cash flow as list or matrix with the cash flow followed by the count. If you do not specify a count, then
count will be assumed to be 1. These are examples of valid input forms:

Page 73 of 239

13217 Help TextHelp Topics Tree
{cash_flow1, {cash_flow2, count2}, ... {cash_flowN, countN}}

[[cash_flow1, count1], cash_flow2, ... [cash_flowN, countN]]

Example:

CashFlowTotal({-1250000,-300000,{200000,3},-200000,700000,300000,500000}) → 350000

CashFlowNPV Syntax:

CashFlowNPV(cash_flow_data, investment_rate, [cashflows_per_year])

CashFlowNPV calculates the Net Present Value for cash_flow_data and investment_rate.
cashflows_per_year specifies the number of cash flows per year. If cashflows_per_year is not provided,
then it is assumed to be 1.
Enter cash_flow_data as a list or matrix. To indicate the same cash flow repeats more than once, enter
the cash flow as list or matrix with the cash flow followed by the count. If you do not specify a count, then
count will be assumed to be 1. These are examples of valid input forms:

{cash_flow1, {cash_flow2, count2}, ... {cash_flowN, countN}}

[[cash_flow1, count1], cash_flow2, ... [cash_flowN, countN]]

Example:

CashFlowNPV({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}, 8, 1) → −300353.93

CashFlowNFV Syntax:

CashFlowNFV(cash_flow_data, investment_rate, [cashflows_per_year])

CashFlowNFV calculates the Net Future Value for cash_flow_data and investment_rate.
cashflows_per_year specifies the number of cash flows per year. If cashflows_per_year is not provided,
then it is assumed to be 1.
Enter cash_flow_data as a list or matrix. To indicate the same cash flow repeats more than once, enter
the cash flow as list or matrix with the cash flow followed by the count. If you do not specify a count, then
count will be assumed to be 1. These are examples of valid input forms:

{cash_flow1, {cash_flow2, count2}, ... {cash_flowN, countN}}

[[cash_flow1, count1], cash_flow2, ... [cash_flowN, countN]]

Example:

CashFlowNFV({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}, 8, 1) → −555934.17

CashFlowNUS Syntax:

CashFlowNUS(cash_flow_data, investment_rate, [cashflows_per_year])

CashFlowNUS calculates the Net Uniform Series for cash_flow_data and investment_rate.
cashflows_per_year specifies the number of cash flows per year. If cashflows_per_year is not provided,
then it is assumed to be 1.
Enter cash_flow_data as a list or matrix. To indicate the same cash flow repeats more than once, enter
the cash flow as list or matrix with the cash flow followed by the count. If you do not specify a count, then
count will be assumed to be 1. These are examples of valid input forms:

{cash_flow1, {cash_flow2, count2}, ... {cash_flowN, countN}}

[[cash_flow1, count1], cash_flow2, ... [cash_flowN, countN]]

Example:

CashFlowNUS({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}, 8, 1) → -52266.02

CashFlowPB Syntax:

CashFlowPB(cash_flow_data, [investment_rate])

CashFlowPB(cash_flow_data, [investment_rate, cashflows_per_year])

CashFlowPB calculates the Discounted Pay Back period for cash_flow_data and investment_rate.
investment_rate specifies the investment rate for the discounting. A value of 0 for investment_rate will
calculate the Pay Back with no discounting. cashflows_per_year specifies the number of cash flows per
year. If cashflows_per_year is not provided, then it is assumed to be 1.

Enter cash_flow_data as a list or matrix. To indicate the same cash flow repeats more than once, enter
the cash flow as list or matrix with the cash flow followed by the count. If you do not specify a count, then
count will be assumed to be 1. These are examples of valid input forms:

{cash_flow1, {cash_flow2, count2}, ... {cash_flowN, countN}}

[[cash_flow1, count1], cash_flow2, ... [cash_flowN, countN]]

Examples:

CashFlowPB({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}, 8) → Error: No payback

CashFlowPB({-1250000, -300000, {200000, 3}, -200000, 700000, 300000, 500000}, 0, 1) → 7.30

Depreciate Syntax:

Depreciate(method, cost, salvage, life, [first], [factor])

Depreciate returns the depreciation schedule when given the method of calculation, the depreciable cost
at the time of purchase, the expected return amount from the salvage sale of the asset, the expected life
in years, the moment of first use, and the factor of depreciation as a percentage.

The moment of first use is expressed as a number corresponding to the month and fractional part of the
month (example: 2.5 = 1/2 of the month of February) for methods 0 to 3 and as an actual date (in
yyyy.mmdd format) for the methods 4 and 5.
To input the method use the following numbers:

0: Straight Line

1: Sum Of Year Digits

2: Declining Balance

Page 74 of 239

13217 Help TextHelp Topics Tree
3: Declining Balance with Straight line crossover

4: French Straight Line

5: French Amortization

The depreciation schedule is returned as a list of lists, where the list number corresponds to the
depreciation year.
{{Depreciation_Year_1,Depreciable_Value_Year_1,Book_Value_Year_1},
{Depreciation_Year_2,Depreciable_Value_Year_2,Book_Value_Year_2}, …
{Depreciation_Year_n,Depreciable_Value_Year_n,Book_Value_Year_n}}
Example:

Depreciate(0,10000,500,2) → {{4750,4750,5250},{4750,0,500}}

Break-Even Functions The functions specific to break-even are listed in this section.

BrkEvFixed Syntax:

BrkEvFixed(quantity, cost, price, profit)

BrkEvFixed returns the fixed cost to develop and market a product in a break-even calculation when given
the cost per unit sold, the sales price per unit, the expected profit, and the quantity of units sold.

Example:

BrkEvFixed(3200,250,300,10000) → 150000

BrkEvCost Syntax:

BrkEvCost (fixed_cost, quantity, price, profit)

BrkEvCost returns the cost per unit in a break-even calculation when given the fixed_cost of marketing
and development, the sales price per unit, the expected profit, and the quantity of units sold.

Example:

BrkEvCost(150000,3200,300,10000) → 250

BrkEvPrice Syntax:

BrkEvPrice(fixed_cost, quantity, cost, profit)

BrkEvPrice returns the unit price in a break-even calculation when given the fixed_cost of marketing and
development, the manufacturing cost per unit, the expected profit, and the quantity of units sold.

Example:

BrkEvPrice(150000,3200,250,10000) → 300

BrkEvProfit Syntax:

BrkEvProfit(fixed_cost, quantity, cost, price)

BrkEvProfit returns the profit in a break-even calculation when given the fixed_cost, cost of
manufacturing for each unit, price of each unit, and the quantity of units sold.
Example:

BrkEvProfit(150000,3200,250,300) → 10000

BrkEvQuant Syntax:

BrkEvQuant(fixed_cost,cost,price,profit)

BrkEvQuant returns the quantity of units sold in a break-even calculation when given the fixed_cost of
marketing and development, the manufacturing cost per unit, the sales price per unit, and the expected
profit.
Example:

BrkEvQuant(150000,250,300,10000) → 3200

Percent Change Functions The functions specific to percent change are listed in this section.

ChangePrice Syntax:

ChangePrice(cost,percentage,option)

ChangePrice returns the sales price of an item in a markup calculation when given the cost and
percentage. If percentage is a markup, use 0 for option. For margin percentage, set option to 1.

Examples:

ChangePrice(35,14.29,0) → 40

ChangePrice(35,12.5,1) → 40

ChangeCost Syntax:

ChangeCost(price,percentage,option)

ChangeCost returns the cost of an item in a markup calculation when given the sales price and
percentage. If percentage is a markup, use 0 for option. For margin percentage, set option to 1.

Examples:

ChangeCost(40,14.29,0) → 35

ChangeCost(40,12.5,1) → 35

PercentMargin Syntax:

PercentMargin(cost,price)

PercentMargin returns the markup percentage as a percentage of cost, or the margin, in markup
calculations when given the sales price and the cost of the item.
Example:

PercentMargin(100,125) → 25

PercentMarkup Syntax:

PercentMarkup(cost,price)

PercentMarkup returns the markup as a percentage of price in markup calculations when given the sales
price and cost of an item.
Example:

PercentMarkup(100,125) → 20

Page 75 of 239

13217 Help TextHelp Topics Tree
ChangeOld Syntax:

ChangeOld(new,percentage,option)

ChangeOld returns the old number in a percent change calculation when given the new number and
percentage.
When option is 0, percentage is a total percentage value and ChangeOld will use a part-total calculation.
(new / (percentage / 100))
When option is 1, percentage is a percent change value andChangeOld will use a percent change
calculation. (new / (1 + percentage / 100))
Examples:

ChangeOld(50,25,0) → 200

ChangeOld(50,25,1) → 40

ChangeNew Syntax:

ChangeNew(old,percentage,option)

ChangeNew returns the new number in a percent change calculation when given the old number and
percentage,
When option is 0, percentage is a total percentage value andChangeNew will perform a part-total
calculation. (old * (percentage/100))
When option is 1, percentage is a percent change value and ChangeNew will perform a percent change
calculation. (old * (1 + percentage/100))
Examples:

ChangeNew(120,25,0) → 30

ChangeNew(120,25,1) → 150

PercentTotal Syntax:

PercentTotal(old,new)

PercentTotal calculates the part-total percentage when given the old and new numbers.

Example:

PercentTotal(65,25) → 38.46

PercentChange Syntax:

PercentChange(old,new)

PercentChange calcuates the percent change when given the old and new number.

Example:

PercentChange(65,25) → −61.54

Bond Functions The functions specific to bonds are listed in this section.

BondYield Syntax:

BondYield(settlement_date,maturity_date,price,coupon_percent,call_value,semi_annual,cal360)

BondYield returns the yield percent to maturity (or call) date when given settlement_date (YYYY.MMDD),
maturity_date (YYYY.MMDD), price per 100.00 face value, coupon_percent, and call_value. The last two
parameters specify whether the payments are made on an annual or semi_annual basis (enter 0 for
annual and 1 for semi_annual) and whether to use an actual or cal360 calendar (0 for actual and 1 for
cal360).

Example:

BondYield(2010.0428,2020.0604,6.75,100,115.74,1,0) → 4.77

BondPrice Syntax:

BondPrice(settlement_date,maturity_date,coupon_percent,call_value,yield_percent,semi_annual,cal360)

BondPrice returns the price per 100.00 face value when given the settlement_date (YYYY.MMDD), the
maturity_date (YYYY.MMDD) or call date, the yield_percent, the coupon_percent, and the call_value. The
last two numbers specify whether the payments are made on an annual or semi_annual basis (enter 0 for
annual and 1 for semi_annual) and whether to use an actual or cal360 calendar (0 for actual and 1 for
cal360).

Example:

BondPrice(2010.0428,2020.0604,6.75,100,4.77,1,0) → 115.72

BlackScholes Syntax:

BlackScholes(stock_price,strike_price,time_to_maturity,risk_free_interest_rate,stock_volatility,stock_divi
dend)
BlackScholes returns the Call price and Put price for options when given the stock_price, the strike_price,
the time_to_maturity, the risk_free_interest_rate, the stock_volatility, and the stock_dividend percentage.

Example:

BlackScholes(74,72,5,0.3,8.21,2.73) → {2.40,8.77}

Explorer app The Explorer app is designed to explore the relationships between the parameters of a function and the
shape of the graph of the function.
There are two ways of exploring in Plot view. You manipulate a graph and note the corresponding changes
in its equation, or you can edit the parameters in an equation and note the corresponding changes in its
graphical representation. The app also has a test mode. In test mode, you test your skill at matching
equations to graphs.

Press the Apps key to open the Apps library, and then select Explorer.

Explorer Symbolic View The app opens in Symbolic view, where you select the function family you would like to explore. The
explorer app supports the following function families:
• Linear

• Quadratic

• Cubic

Page 76 of 239

13217 Help TextHelp Topics Tree
• Exponential

• Logarithmic

• Sinusoidal

Tap on the field and tap Choose to select a function family to explore.

Explorer Plot View Plot view displays an equation along with its graph. The equation and graph depend on the choice of
function family made in Symbolic view. Depending on the function family, Plot view may also display
numerical values associated with the graph, such as the intercepts, etc. There are often multiple types (or
levels) of equation available for you to explore. You choose between them by tapping the menu key
labeled Lev 1 or Lev 2, and so on.

Tap and drag the graph to translate it. The equation updates automatically. Pinch to dilate vertically or
horizontally. Again, the equation updates automatically. The original graph is shown dotted for
comparison purposes. The form of the equation is shown at the top right of the display, with the current
equation that matches the graph just below it. As you manipulate the graph, the equation updates to
reflect the changes. You can also tap on the equation and edit the equation parameters directly. Press
Enter or tap OK to see the graph update.

In Plot view, the common menu keys are:

• Lev n: toggles between various forms of the selected function family

• Test: enters Test mode

Explorer App Functions The functions specific to the Eplorer app are listed in this section.

LinearSlope Solve For Slope

Syntax:

LinearSlope(x1,y1,x2,y2)

Solve for slope. Takes as input the coordinates of two points (x1,y1) and (x2,y2) and returns the slope of
the line containing those two points.
Example:

LinearSlope(3,4,2,2) → 2

LinearYIntercept Solve for Y Intercept

Syntax:

LinearYIntercept(x, y, m)

Takes as input the coordinates of a point (x, y), and a slope m, and returns the y-intercept of the line with
the given slope that contains the given point.
Example:

LinearYIntercept(2,3,-1) → 5

QuadSolve Solve quadratic

Syntax:

QuadSolve(a, b, c)

Given the coefficients of a quadratic equation a*x^2+b*x+c=0, returns the real solutions.

Example:

QuadSolve(1,0,-4) → {-2, 2}

QuadDelta Solve discriminant

Syntax:

QuadDelta(a, b, c)

Given the coefficients of a quadratic equation a*x^2+b*x+c=0, returns the value of the discriminant in the
Quadratic Formula.
Example:

QuadDelta(1,0,-4) → 16

Parametric app The Parametric app allows you to explore the simultaneous variation of two variables, each of which
depends on a parameter T. The values of these two equations when T varies are treated as the x and y
coordinates of a point which is displayed in the Cartesian plane. These equations are displayed in the
symbolic view in the form X=f(T) and Y=g(T).

Once you have defined a pair of parametric equations, you can plot the graph or explore a table of values
for the equations.
To launch the Parametric app, go to the Application Library and tap the Parametric app icon. You can also
use the rocker wheel to select the Parametric app icon, then tap Start or press Enter to launch the app.

Parametric Symbolic View The Parametric Symbolic view contains definitions for up to ten parametric equations, each one defining
X=f(T) and Y=g(T).
The menu buttons are:

• Edit: opens an input box to edit the selected parametric definition

• ✓: toggles the selected definition on or off for plotting and table-building

• T: a typing aid for entering definitions in terms of T

• Show: displays the selected definition in full-screen mode with horizontal and vertical scrolling enabled

• Eval: resolves references to other equations, such as X2(T)=X1(T)/5

• Choose: select a color for the graph

Highlight one of the definition fields and begin entering an expression in T, or tap Edit to open an edit line
to edit an existing expression.

Parametric Plot View Press Plot to enter the Parametric Plot view. This view displays the graphs of parametric equations
defined and checked in Symbolic view. The functionality here is the same as in the Function Plot view,
except that the Fcn functions do not apply here. Tap Menu to open the menu.

The menu buttons are:

• Zoom: enters the Zoom menu, with options to zoom in or out, etc.

Page 77 of 239

13217 Help TextHelp Topics Tree
• Trace: toggles the tracing cursor off and on

• Go To: takes the tracing cursor to the point on the graph with a given value of T.

• Defn: displays the symbolic definition of the current graph

• Menu: toggles the menu off and on

Use the rocker wheel left/right or tap to trace along a graph. Use the rocker wheel up/down to switch
from one graph to another. Press + to zoom in on the current cursor location and press - to zoom out. Set
the zoom factor under the Zoom menu.
You can also use all the gestures common to the Plot views. See Plot View for more details.

Parametric Plot Setup Press Shift Plot to enter the Parametric Plot setup. This view enables you to control the appearance of the
graph window, including the appearance of the cursor, whether or not the axes are drawn, etc. The Setup
has two pages.
On the first page, the fields are:

• T Rng: the range of values for the parameter T

• T Step: the step value for the parameter T

• X Rng: the horizontal graphing range

• Y Rng: the vertical graphing range

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

• Edit: opens an edit line to edit the value of the selected field

• Page 1/2 ▼: displays the second page of the setup

Tap Page 1/2 ▼ to view the second page of the setup. Here the fields are:

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

• Method: choose between Adaptive, Fixed-Step Segments, and Fixed-Step Dots

The menu buttons on the second page are:

• ✓: toggles the current setting on or off

• Choose: make a choice from a choose box

• ▲ Page 2/2: returns to the first page of the setup

The Method field requires an explanation. By default, the Prime uses the Adaptive method, an advanced
method that gives very accurate results. You can choose the more traditional method, called Fixed-Step
Segments, which samples x-values, computes their corresponding y-values, and then plots and connects
the points. Or you can choose Fixed-Step Dots, which works like Fixed-Step Segments but does not
connect the points.

Parametric Numeric View Press Num to enter the Parametric Numeric View. The Parametric Numeric View is designed to create and
explore a table of X/Y/T values, based on the function(s) defined in the Symbolic View.

Place the highlight bar in any row of the T-column, enter any real value, and tap OK. The table will
reconfigure. You can also zoom in or out on any row in the table. Press + to zoom in on a row of the table
and - to zoom out.
The menu buttons are:

• Zoom: zooms in or out on a highlighted row of the table. Note that in Numeric view, zooming changes
the increment between consecutive x-values. Zooming in decreases the increment; zooming out increases
the increment. The values in the row you zoom in or out on remain the same.

• More: opens a menu with editing options

• Go To: jumps to a specified value of the independent variable

• Defn: displays the definition of the selected column

The More menu

The More menu contains the following options:

• Select

 • Row: selects the row that contains the currently selected cell; the row can then be copied to paste
elsewhere
 • Swap Ends: this option is available once a multi-cell selection has been made. Swaps the beginning
and ending cells of the current selection.
 • Include Headers: the same as Select Row, except that the row headers are selected as well

• Selection: toggles selection mode on and off

• Font size: select from a small, medium, or large font size

You can also use any of the gestures common to the Numeric views. See Numeric View for more details.

Parametric Numeric Setup Press Shift Num to enter the Parametric Numeric setup. This view enables you to control the appearance
of the table in the Numeric View, including which T-value is at the top of the table, the step between T-
values, and the zoom factor is for zooming in and out on a row of the table.

The fields are:

• Num Start: the first value of T shown in the table

• Num Step: the table step value (increment) for T

• Num Zoom: the zoom factor for zooming

• Num Type: choose between table types

 • Automatic: provides T-, X-, and Y-values

Page 78 of 239

13217 Help TextHelp Topics Tree
 • Build Your Own: you supply T-values; the app provides the corresponding X- and Y-values for each
checked definition in Symbolic view
The menu buttons are:

• Edit: opens an edit line to edit the current value in a field

• Choose: select table type

• Plot→: sets Num Start and Num Step so that the Numeric view table independent variable values match
the independent variable values while tracing in Plot view

Parametric Variables To display the variables relating to the Parametric app, press Vars, tap App and select Parametric.

The Parametric app has variables in the following categories:

• Symbolic (see immediately below)

• Plot (see Common App Variables)

• Numeric (see Common App Variables)

• Modes (see Common App Variables)

Symbolic View Variables

The Parametric app variables are X0-X9 and Y0-Y9. These variables are always defined in pairs and contain
algebraic expressions dependent on the variable T.
'Xn := f(T)'

'Yn := g(T)'

where n is an integer between 0 and 9 inclusive and f(T) and g(T) are algebraic expressions dependent on
T.
Example:

X1 := '4*COS(6*T)'

Y1 := '4*SIN(T)'

Sequence app Sequences are expressions depending on an integer parameter N>0. Sequences can be defined explicitly
or recursively in terms of the previous one or two terms.
The Sequence app allows you to explore up to 10 sequences, named U1 to U9.

Some of the most famous sequences are the recursive definitions of factorial:

U1(1)=1

U1(N)=N*U1(N-1)

and the Fibonacci sequence:

U1(1)=1

U1(2)=1

U1(N)=U1(N-1)+U1(N-2)

Once you have defined a sequence, you can view a table of its values or plot its graph.

To launch the Sequence app, go to the Application Library and tap the Sequence app icon. You can also
use the rocker wheel to select the Sequence app icon, then tap Start or press Enter to launch the app.

Examples:

N*U1(N-1)

 U1(N-1)+U1(N-2)

Sequence Symbolic View The HP Prime Sequence app allows you to define sequences explicitly or recursively. Use this view to
enter and manage up to ten sequence definitions. Explicit definitions define U(N) in terms of N. Backward
recursive definitions can define U(N) in terms of U(N-1) or both U(N-1) and U(N-2). Similarly, forward
recursive definitions can define U(N+1) in terms of U(N) or U(N+2) in terms of both U(N+1) and U(N+2).
Finally, N can start at 1 (the default value), 0, or any positive integer.

The first two fields in Symbolic view contain the first two numerical values in the sequence. For an
explicitly-defined sequence, these can both be left blank. For a recursively-defined sequence, you must
supply at least one of these two, depending on the nature of your definition. Note that the labels for
these values change, depending on the starting value for N that you choose in the Option field.

The third field is for your symbolic definition. The Option field contains the starting value for N. After this
field is a check box. If left unchecked (the default) then your symbolic definition is for U(N). If the box is
checked, then your symbolic definition is for U(N+1) if you entered a single starting value for your
sequence, or U(N+2) if you entered two numerical values to start your sequence.

The menu buttons are:

• Edit: opens an edit line to edit the chosen definition

• ✓: toggles the current item on or off

• Choose: select graph color

• Show: displays the selected sequence definition in full-screen mode with horizontal and vertical scrolling
enabled
• Eval: resolves references to other symbolic definitions, e.g. U2(N-1)+U1(N).

When the symbolic definition of a sequence is being entered or edited, the additional menu items are:

• (N-2), (N-1), N, (N+1), U1: typing aids for entering your sequence definitions

• Cancel: cancels the current edit

• OK: accepts the current edit

Highlight one of the definition fields and begin entering an expression, or tap Edit to open an edit line to
edit an existing expression.

Sequence Plot View Press Plot to enter the Plot view and explore the sequence graphs. Tap Menu to open the menu.

The menu buttons are:

• Zoom: enters the zoom menu, with options to zoom in or out

• Trace: toggles the tracing cursor off and on

Page 79 of 239

13217 Help TextHelp Topics Tree
• Go To: takes the tracing cursor to the point on the graph with a given value of n.

• Defn: displays the symbolic definition of the current sequence

• Menu: toggles the menu off and on

Use the rocker wheel left/right or tap to trace along a function. Use the rocker wheel up/down to switch
from one function to another. Press + to zoom in on the current cursor location and press - to zoom out.
Set the zoom factor under the Zoom menu.
You can also use all the gestures common to the Plot views. See Plot View for more details.

Sequence Plot Setup Press Shift Plot to enter the Plot Setup. Here you can manually set up the graphing window and the
appearance of the sequence graphs. This setup has two pages.
The fields on the first page are:

• Seq Plot: chooses between Stairstep and Cobweb plots of each sequence

• N Rng: the range of terms to plot for each sequence

• X Rng: the horizontal graphing range

• Y Rng: the vertical graphing range

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

• Choose: opens the Seq Plot choose box

• Edit: opens an edit line to edit the value of the selected field

• Page 1/2 ▼: enters the second page of the view

Tap Page 1/2 ▼ to view the second page of the setup. Here the fields are:

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

The menu buttons on the second page are:

• ✓: toggles the current setting on or off

• Choose: make a choice from a choose box

• ▲ Page 2/2: returns to the first page of the setup

Sequence Numeric View Press Num to enter the Numeric View. The Numeric View is designed to create and explore a table of
term and sequence values, based on the sequence(s) defined in the Symbolic View.

The menu buttons are:

• Zoom: zooms in or out on a highlighted row of the table. Note that in Numeric view, zooming changes
the increment between consecutive x-values. Zooming in decreases the increment; zooming out increases
the increment. The values in the row you zoom in or out on remain the same.

• More: opens a menu with editing options

• Go To: jumps to a specified value of the independent variable

• Defn: displays the definition of the selected column

The More menu

The More menu contains the following options:

• Select

 • Row: selects the row that contains the currently selected cell; the row can then be copied to paste
elsewhere
 • Swap Ends: this option is available once a multi-cell selection has been made. Swaps the beginning
and ending cells of the current selection.
 • Include Headers: the same as Select Row, except that the row headers are selected as well

• Selection: toggles selection mode on and off

• Font size: select from a small, medium, or large font size

Highlight any value in the N-column and enter any counting number greater than or equal to the starting
value for N. The table will reconfigure to show your value.
You can also use any of the gestures common to the Numeric views. See Numeric View for more details.

Sequence Numeric Setup Press Shift Num to enter the Numeric setup. This view enables you to control the appearance of the table
in Numeric View, including which N-value is at the top of the table, the step between N-values, and the
zoom factor is for zooming in and out on a row of the table.

Num Step must be a positive integer (any other values will be ignored).

The fields are:

• Num Start: the first value of N shown in the table

• Num Step: the positive integer step between consecutive N-values

• Num Zoom: the positive integer zoom factor for zooming

• Num Type: choose between table types

 • Automatic: provides N- and sequence-values

 • BuildYourOwn: you supply N-values; the App provides the corresponding sequence-values

The menu buttons are:

• Edit: opens an edit line to edit the current value in a field

• Choose: select table type

• Plot→: sets Num Start and Num Step so that the Numeric view table independent variable values match
the independent variable values while tracing in Plot view

Page 80 of 239

13217 Help TextHelp Topics Tree
Sequence Variables To display the variables relating to the Sequence app, press Vars, tap App and select Sequence.

The Sequence app has variables in the following categories:

• Symbolic (see immediately below)

• Plot (see Common App Variables)

• Numeric (see Common App Variables)

• Modes (see Common App Variables)

Symbolic View Variables

The Sequence app symbolic variables are U1 through U9 and U0. These variables contain lists that define
a sequence. The number of members in the list depends on the type of sequence defined.

Ux := '{expression'[, Ux(1), Ux(2)[, StartIndex [,Forward definition]]]}, where x is an integer between 0 and
9 inclusive and expression is an algebraic expression in terms of any combination of the following:

• N

• Un(N-1)

• Un(N-2)

Examples:

U3 := {'N!'} defines U3 to be a sequence of factorials

U5 := {'U5(N-1)+1,1'} defines U5 as the sequence of counting numbers

U7 := ('U7(N-2)+U7(N-1),1,1'} defines U7 as the Fibonacci sequence

Polar app The Polar app allows you to explore the graphical representation of equations using polar coordinates.
Each equation takes the form R= f(θ) and its graphical representation is the set of points whose polar
coordinates satisfies the R= f(θ) relationship.

Once you have defined a polar equation, you can view a table of its values or plot its graph.

To launch the Polar app, go to the Application Library and tap the Polar app icon. You can also use the
rocker wheel to select the Polar app icon, then tap Start or press Enter to launch the app.

Polar Symbolic View Press Symb to return to this view at any time. The Polar Symbolic view contains fields to define up to ten
polar equations, each one defining R in terms of θ.
The menu buttons are:

• Edit: opens an input line to edit the selected polar definition

• ✓: toggles the selected definition on or off for plotting and table-building

• θ: a typing aid for entering definitions in θ

• Show: displays the selected definition in full-screen mode with horizontal and vertical scrolling enabled

• Eval: resolves references to other polar equations, such as R2(θ)=2-R1(θ)

• Choose: select a color for the graph

Highlight one of the definition fields and begin entering an expression in θ, or tap Edit to open an edit line
to edit an existing expression.
Example:

6*SIN(6*θ)

Polar Plot View Press Plot to enter the Polar Plot view. This view displays the graphs of Polar equations defined in the
Symbolic view. The functionality here is the same as in the Function Plot view, except that the Fcn
functions do not apply here. Tap Menu to open the menu.

The menu buttons are:

• Zoom: enters the Zoom menu, with options to zoom in or out

• Trace: toggles the tracing cursor off and on

• Go To: takes the tracing cursor to the point on the graph with a given value of θ.

• Defn: displays the symbolic definition of the current graph

• Menu: toggles the menu off and on

Use the rocker wheel left/right or tap to trace along a function. Use the rocker wheel up/down to switch
from one function to another. Press + to zoom in on the current cursor location and press - to zoom out.
Set the zoom factor under the Zoom menu.
You can also use all the gestures common to the Plot views. See Plot View for more details.

Polar Plot Setup Press Shift Plot to enter the Polar Plot setup. This view enables you to control the appearance of the
graph window, including the appearance of the cursor, whether or not the axes are drawn, etc. The Setup
has two pages.
On the first page, the fields are:

• θ Rng: the range of values for the independent variable θ

• θ Step: the step value for the independent variable θ

• X Rng: the horizontal graphing range

• Y Rng: the vertical graphing range

• X Tick: horizontal tick mark spacing

• Y Tick: vertical tick mark spacing

The menu buttons on the first page are:

• Edit: opens an edit line to edit the value of the selected field

• Page 1/2 ▼: displays the second page of the setup

Tap Page 1/2 ▼ to view the second page of the setup. Here the fields are:

• Axes: toggles axes on and off

• Labels: toggles axis labels on and off

Page 81 of 239

13217 Help TextHelp Topics Tree
• Grid Dots: toggles grid dots on and off

• Grid Lines: toggles grid lines on and off

• Cursor: choose between Standard, Inverting, and Blinking cursors

• Method: choose between Adaptive, Fixed-Step Segments, and Fixed-Step Dots

The menu buttons on the second page are:

• ✓: toggles the current setting on or off

• Choose: make a choice from a choose box

• ▲ Page 2/2: returns to the first page of the setup

The Method field requires an explanation. By default, the HP Prime uses the Adaptive method, an
advanced method that gives very accurate results. You can choose the more traditional method, called
Fixed-Step Segments, which samples x-values, computes their corresponding y-values, and then plots and
connects the points. Or you can choose Fixed-Step Dots, which works like Fixed-Step Segments but does
not connect the points.

Polar Numeric View Press Num to enter the Polar Numeric View. The Polar Numeric View is designed to create and explore a
table of θ/R values, based on the definitions in Symbolic View.
Place the highlight bar in any row of the θ-column and enter any real value. The table will reconfigure. You
can also zoom in or out on any row in the table. Press + to zoom in on a row of the table and - to zoom
out.
The menu buttons are:

• Zoom: zooms in or out on a highlighted row of the table. Note that in Numeric view, zooming changes
the increment between consecutive x-values. Zooming in decreases the increment; zooming out increases
the increment. The values in the row you zoom in or out on remain the same.

• More: opens a menu with editing options

• Go To: jumps to a specified value of the independent variable

• Defn: displays the definition of the selected column

The More menu

The More menu contains the following options:

• Select

 • Row: selects the row that contains the currently selected cell; the row can then be copied to paste
elsewhere
 • Swap Ends: this option is available once a multi-cell selection has been made. Swaps the beginning
and ending cells of the current selection.
 • Include Headers: the same as Select Row, except that the row headers are selected as well

• Selection: toggles selection mode on and off

• Font size: select from a small, medium, or large font size

You can also use any of the gestures common to the Numeric views. See Numeric View for more details.

Polar Numeric Setup Press Shift Num to enter the Polar Numeric setup. This view enables you to control the appearance of the
table in Numeric View, including which θ-value is at the top of the table, the step between θ-values, and
the zoom factor is for zooming in and out on a row of the table.

The fields are:

• Num Start: the first value of θ shown in the table

• Num Step: the common difference between consecutive θ-values

• Num Type: choose between table types

 • Automatic: provides θ- and R-values

 • BuildYourOwn: you supply θ-values; the app provides the corresponding R-values

• Num Zoom: the zoom factor for zooming

The menu buttons are:

• Edit: opens an edit box to edit the current value in a field

• Plot→: sets Num Start and Num Step so that the Numeric view table independent variable values match
the independent variable values while tracing in Plot view

Polar Variables To display the variables relating to the Polar app, press Vars, tap App and select Polar.

The Polar app has variables in the following categories:

• Symbolic (see immediately below)

• Plot (see Common App Variables)

• Numeric (see Common App Variables)

• Modes (see Common App Variables)

Symbolic View Variables

The Polar app symbolic variables are R1 through R9 and R0. These variables contain algebraic expressions
in terms of θ.
Rn:=f(θ), where n is an integer between 0 and 9 inclusive and f(θ) is an algebraic expression in θ.

Example:

R1:='2*θ'

The Toolbox Menus Press the Toolbox key to access menus listing the most common calculator functions and commands. The
menus are:
• Math - most commonly used math functions

• CAS - most commonly used symbolic functions

• App - all app-specific functions

• User - all the functions and programs you have created yourself

• Catlg - Catalog of all the functions and commands

Page 82 of 239

13217 Help TextHelp Topics Tree
You can select an option by tapping it, or by using the rocker wheel to highlight it and then pressing Enter.
In a menu of options, you can also select an entry by its number or by typing in the first letter or two of its
name and pressing the Enter key.
You can also enter a function or command letter-by-letter.

Menu Display Mode:

The default menu display mode is to display the descriptive names for the Math and CAS functions. For
example, "ifactors" is presented as "Factors List". If you prefer the functions to be presented by their
command name, deselect the Menu Display option on Home Settings Page 2.

Math Menu Toolbox Math Menu

The Toolbox Math menu lists the most commonly used math functions.

Numbers This menu lists the basic real number functions

CEILING Syntax:

CEILING(value)

Least integer greater than or equal to value.

Examples:

CEILING(3.2) → 4

CEILING(-3.2) → -3

CEILING({3.2,-3.2}) → {4,−3}

FLOOR Syntax:

FLOOR(value)

Greatest integer less than or equal to value.

Examples:

FLOOR(3.2) → 3

FLOOR(-3.2) → -4

FLOOR({3.2,-3.2}) → {3,−4}

IP Integer Part

Syntax:

IP(value)

Returns the Integer part of value.

Examples:

IP(23.2) → 23

IP(-23.2) → -23

IP({23.2,15+1/4,51/2,10-4/5}) → {23,15,25,9}

FP Fractional Part

Syntax:

FP(value)

Returns the Fractional part of value.

Examples:

FP(23.2) → 0.2

FP(-23.2) → -0.2

FP({23.2,15+1/4,51/2,10-4/5}) → {0.2,0.25,0.5,0.2}

ROUND Syntax:

ROUND(value, [places])

Rounds value to system display settings. If optional places is given, rounds value to places decimal places.
If places is negative, rounds to significant digits instead.
Examples:

ROUND(7.8676,2) → 7.87

ROUND(7.8676,-2) → 7.9

ROUND((2-3*i)^(2+3*i),4) → −75.8927+236.0767*i

ROUND({22/6,7/6,13/6},{-3,3,4}) → {3.67,1.167,2.1667}

TRUNCATE Syntax:

TRUNCATE(value, [places])

Truncates value to system display settings. If optional places is given, truncates value to places decimal
places. If places is negative, truncates to significant digits instead.

Examples:

TRUNCATE(2.3678,2) → 2.36

TRUNCATE(2.3678,-2) → 2.3

TRUNCATE((2-3*i)^(2+3*i),2) → −75.89+236.07*i

TRUNCATE({22/6,7/6,13/6},{-3,3,4}) → {3.66,1.166,2.1666}

MANT Mantissa

Syntax:

MANT(Value)

Returns the significant digits of Value.

Examples:

MANT(21.2E34) → 2.12

MANT({2.12ᴇ35,5302.00000123}) → {2.12,5.30200000123}

XPON Exponent

Syntax:

XPON(value)

Page 83 of 239

13217 Help TextHelp Topics Tree
Exponent. Returns the exponent of value.

Examples:

XPON(123.4) → 2

XPON({0.001234,56789.0123}) → {-3,4}

Arithmetic Arithmetic Menu

This menu lists the basic arithmetic functions

MAX Maximum

Syntax:

MAX(value1,[value2],[..value16]) or

MAX(list)

Returns the greatest of the values given, or the greatest value of a list.

Examples:

MAX(210,25) → 210

MAX({1,8,2}) → 8

MAX(8/3,11/4) → 2.75

MAX({1,8,2},{2,4,6}) → {2,8,6}

MIN Minimum

Syntax:

MIN(value1,[value2],[..value16]) or

MIN(list)

Returns the least of the values given, or the least value of a list.

Examples:

MIN(210,25) → 25

MIN({1,8,2}) → 1

MIN(8/3,11/4) → 2.6667

MIN({1,8,2},{2,4,6}) → {1,4,2}

MOD Modulo

Syntax:

value1 MOD value2

Returns the remainder of the Euclidean division value1/value2.

Examples:

9 MOD 4 → 1

#27o MOD 12 → 11

[[1,3],[13,14]] MOD 4 → [[1,3],[1,2]]

{11,12,13,15,17} MOD 4 → {3,0,3,1,3}

FNROOT Find Root

Syntax:

FNROOT(Expr, Var, [guess], [guess2])

Function root-finder (like the Solve app).

Finds the value for variable at which an expression most nearly evaluates to zero. Uses guess as initial
estimate.
Examples:

FNROOT(A*9.8/600-1,A,1) → 61.2244897959

FNROOT(X²-3,X,-2) → −1.73205080757

FNROOT(X²-3,X,2) → 1.73205080757

FNROOT(X^2-3,X,2,-2) → −1.73205080757

FNROOT({'X^2-3','T^3+4'},{'X','T'},{-2,-1},{2,1}) → {−1.73205080757,−1.58740105197}

% Percentage

Syntax:

%(x, y)

x percent of y.

Returns (x/100)*y.

Examples:

%(20,50) → 10

%(1.5,7.5) → 0.1125

%({10,20,30},{75,75,75}) → {7.5,15,22.5}

Complex This menu lists the basic complex number functions

ARG Argument

Syntax:

ARG(x+yi)

Finds the angle determined by a complex number.

Example:

ARG(3+3i) → 45 (degrees mode)

CONJ Complex Conjugate

Syntax:

CONJ(x+yi)

Reverses the sign of the imaginary part of a complex number.

Examples:

CONJ(3+4*i) → 3-4*i

Page 84 of 239

13217 Help TextHelp Topics Tree
(CONJ({3+4*i,6-6*i}) → {3-4*i,6+6*i}

IM Imaginary Part

Syntax:

IM(x+yi)

Returns the imaginary part of a complex number.

Examples:

IM(3+4i) → 4

IM({3+4*i,6-6*i}) → {4,-6}

RE Real Part

Syntax:

RE(x+yi)

Returns the real part of a complex number.

Examples:

RE(3+4i) → 3

RE({3+4*i,6-6*i}) → {3,6}

SIGN Sign or Unit Vector

Syntax:

SIGN(value)

SIGN(x+yi)

Returns the sign of value.

If positive, the result is 1; if negative, -1. If zero, the result is zero.

For complex inputs returns the unit vector.

Examples:

SIGN(2) → 1

SIGN(3+4i) → 0.6+0.8i

SIGN({3-√13,6+8*i}) → {−1,0.6+0.8*i}

Exp and Ln This menu lists the basic exponential and log functions

ALOG Common Antilogarithm

Syntax:

ALOG(value)

Common exponential: 10^x (antilogarithm)

Returns the result of raising 10 to the power of value.

Examples:

ALOG(2) → 100

ALOG(2+3*i) → 81.121465284+58.4748481843*i

ALOG({2,4}) → {100,10000}

EXPM1 Exponent Minus 1

Syntax:

EXPM1(value)

Exponential minus 1: (e^x)-1

This is more accurate than EXP when x is close to zero.

Examples:

EXPM1(0.23) → 0.258600009929

EXPM1(0.02+0.03*i) → 1.97422838545ᴇ−2+3.06014495014ᴇ−2*i

LNP1 Natural Log Plus 1

Syntax:

LNP1(value)

Natural log plus 1: LN(X+1)

This is more accurate than the natural logarithm function for values close to zero.

Examples:

LNP1(0.23) → 0.207014169384

LNP1(0.02+0.03*i) → 2.02349662769ᴇ−2+0.029403288204*i

Trigonometry This menu lists the basic trigonometric functions

CSC Cosecant

Syntax:

CSC(value)

Cosecant: 1/SIN(X)

Example:

CSC(90) → 1 (Degrees mode)

CSC(1+i) → 0.621518017169-0.303931001627*i

CSC({30,90}) → {2,1} (Degrees mode)

CSC((π/6)_rad) → 2

ACSC Arc Cosecant

Syntax:

ACSC(value)

Inverse Cosecant: CSC^-1 (X)

Example:

ACSC(1) → 90 (Degrees mode)

ACSC(0.621518017169-0.303931001627*i) → 1+i

Page 85 of 239

13217 Help TextHelp Topics Tree
ACSC({2,1}) → {30,90} (Degrees mode)

SEC Secant

Syntax:

SEC(value)

Secant: 1/COS(X).

Example:

SEC(0) → 1 (Degrees mode)

SEC(1+i) → 0.498337030555+0.591083841721*i

SEC({60,0}) → {2,1} (Degrees mode)

SEC((π/3)_rad) → 2.00000000001

ASEC Arc Secant

Syntax:

ASEC(value)

Inverse Secant: SEC^-1 (X)

Example:

ASEC(1) → 0 (Degrees mode)

ASEC(0.498337030555+0.591083841721*i) → 1+i

ASEC({2,1}) → {60,0} (Degrees mode)

COT Cotangent

Syntax:

COT(value)

Cotangent: COS(X)/SIN(X)

Example:

COT(45) → 1 (Degrees mode)

COT(1+i) → 0.217621561854-0.868014142896*i

COT({45,90}) → {1,0} (Degrees mode)

COT((π/4)_rad) → 1

ACOT Arc Cotangent

Syntax:

ACOT(value)

Inverse Cotangent: COT^-1 (X)

Example:

ACOT(1) → 45 (Degrees mode)

ACOT(0.217621561854-0.868014142896*i) → 1+i

ACOT({1,0}) → {45,90} (Degrees mode)

Hyperbolic This menu lists the basic hyperbolic functions

SINH Hyperbolic Sine

Syntax:

SINH(value)

Hyperbolic Sine

Examples:

SINH(1) → 1.17520119364

SINH(1+i) → 0.634963914785+1.29845758142*i

SINH({0,1}) → {0,1.17520119364}

ASINH Inverse Hyperbolic Sine

Syntax:

ASINH(value)

Inverse Hyperbolic Sine: SINH^-1 (X)

Examples:

ASINH(1.17520119365) → 1

ASINH(0.634963914785+1.29845758142*i) → 1+i

ASINH({0,1.17520119365}) → {0,1}

COSH Hyperbolic Cosine

Syntax:

COSH(value)

Hyperbolic Cosine

Examples:

COSH(1) → 1.54308063482

COSH(1+i) → 0.833730025131+0.988897705763*i

COSH({0,1}) → {1,1.54308063482}

ACOSH Inverse Hyperbolic Cosine

Syntax:

ACOSH(value)

Inverse Hyperbolic Cosine: COSH^-1 (X)

Examples:

ACOSH(1.54308063482) → 1

ACOSH(0.833730025131+0.988897705763*i) → 1+i

ACOSH({1,1.54308063482}) → {0,1}

TANH Hyperbolic Tangent

Page 86 of 239

13217 Help TextHelp Topics Tree
Syntax:

TANH(value)

Hyperbolic Tangent

Examples:

TANH(1) → 0.761594155956

TANH(1+i) → 1.08392332734+0.27175258532*i

TANH({0,0.5}) → {0,0.46211715726}

ATANH Inverse Hyperbolic Tangent

Syntax:

ATANH(value)

Inverse Hyperbolic Tangent: TANH^-1 (X)

Examples:

ATANH(.761594155956) → 1

ATANH(1.08392332734+0.27175258532*i) → 1+i

ATANH({0,0.46211715726}) → {0,0.5}

Probability This menu lists the basic probability functions

! Factorial

Syntax:

value!

For Whole numbers, calculates the Factorial of value.

For Negative Integer, Real, or Complex numbers, calculates the Gamma function: x! = Γ(x + 1).

Examples:

6! → 720

3.45! → 10.8547765843

(2.+3.*i)! → −0.440113407637-6.36372431263e−2*i

([[2,3,4],[4,5,6]])! → [[2,6,24],[24,120,720]]

(3!)_miles → 6_miles

{6,5,4}! → {720,120,24}

COMB Combinations

Syntax:

COMB(n, r)

Returns the number of combinations (without regard to order) of n things taken r at a time: n!/(r!(n-r)!)

Examples:

COMB(5,2) → 10

COMB({5,10,15},{1,2,3}) → {5,45,455}

PERM Permutations

Syntax:

PERM(n, r)

Returns the number of permutations (with regard to order) of n things taken r at a time: n!/(n-r)!

Examples:

PERM(5,2) → 20

PERM({5,10,15},{1,2,3}) → {5,90,2730}

Random Random Number Functions

This menu contains random number functions.

RANDOM Random Number

Syntax:

RANDOM([a],[b],[c])

Returns a pseudo-random number generated using a seed value, and updates the seed value.

With no argument, this function returns a random number x with 0 ≤ x < 1.

With one argument, it returns a random number x with 0 ≤ x < a.

With two arguments, it returns a random number with a ≤ x < b.

With three arguments, this returns a list of size a with each element being a random number x with b ≤ x <
c.
Examples:

RANDOM

RANDOM(5)

RANDOM(3,5)

RANDOM(3,0,10)

RANDINT Random Integer

Syntax:

RANDINT([a],[b],[c])

Returns a pseudo-random integer generated using a seed value, and updates the seed value.

With no argument, this function returns a random integer x from 0 to 1.

With one argument, it returns a random integer x from 0 to a.

With two arguments, it returns a random integer x from a to b.

Page 87 of 239

13217 Help TextHelp Topics Tree
With three arguments, it returns a list of size a with each element being a random integer x from b to c.

Examples:

RANDINT

RANDINT(6)

RANDINT(1,6)

RANDINT(3,1,6) → { random1, random2, random3 }

RANDNORM Random Normal

Syntax:

RANDNORM([μ],[σ]) or

RANDNORM(n,μ,σ)

Return a random number from the normal distribution with the specified mean μ and standard deviation
σ. Default values are 0 and 1.
With three arguments, returns a list of size n with each element being a random number from the normal
distribution with the specified mean μ and standard deviation σ.

Examples:

RANDNORM(1.23)

RANDNORM(1.2,2.3)

RANDNORM(3,0,1) → { random1, random2, random3 }

RANDSEED Random Seed

Syntax:

RANDSEED([value])

Sets the random number generator seed. With no input, it uses the current time value as seed.

Examples:

RANDSEED(3.14)

RANDSEED(3.14); RANDOM(5) → 3.34681220106

RANDSEED(3.14); RANDINT(3,1,6) → {5,5,3}

Density This menu lists the density distributions functions

NORMALD Normal Density

Syntax:

NORMALD([μ, σ,] x)

Normal probability density function.

Computes the probability density at the value x, given the mean, μ, and standard deviation, σ, of a normal
distribution.
With one argument, x, it returns the probability density for the standard normal distribution at x,
assuming a mean of zero and standard deviation of 1.
Examples:

NORMALD(0.5) → 0.352065326764

NORMALD(0,2,0.5) → 0.193334058401

STUDENT Student's t Density

Syntax:

STUDENT(d, x)

Student’s t probability density function

Computes the probability density of the Student’s-t distribution at x, given d degrees of freedom.

Example:

STUDENT(3,5.2) → 0.00366574413491

CHISQUARE χ² Density

Syntax:

CHISQUARE(d, x)

χ² (Chi-squared) probability density function

Computes the probability density of the χ² distribution at x, given d degrees of freedom.

Example:

CHISQUARE(2,3.2) → 0.100948258997

FISHER Fisher Density

Syntax:

FISHER(n, d, x)

F (Fisher or Fisher-Snedecor) probability density function.

Computes the probability density at the value x, given numerator n and denominator d degrees of
freedom.
Example:

FISHER(5,5,2) → 0.158080231095

BINOMIAL Binomial Probability Density

Syntax:

BINOMIAL(n, p, k)

Binomial probability density function.

Computes the probability of k successes out of n trials, each with a probability of success of p. Note that n
and k are integers with k≤n.
Example:

BINOMIAL(4,0.5,2) → 0.375

Page 88 of 239

13217 Help TextHelp Topics Tree
GEOMETRIC Geometric Density

Syntax:

GEOMETRIC(p,x)

Geometric probability density function

Computes the probability density of the geometric distribution at x, given probability p.

Example:

GEOMETRIC(0.3,4) → 0.1029

POISSON Poisson Density

Syntax:

POISSON(μ, k)

Poisson probability mass function

Computes the probability of k occurrences of an event in a time interval, given μ expected (or mean)
occurrences of the event in that interval. For this function, k is a non-negative integer and μ is a real
number.
Example:

POISSON(4, 2) → 0.14652511111

Cumulative This menu lists the cumulative distributions functions

NORMALD_CDF Cumulative Normal

Syntax:

NORMALD_CDF([μ, σ,] x, [x2])

Cumulative normal distribution function.

With three values (μ, σ, and x), returns the lower-tail probability of the normal probability density function
for the value x, given the mean, μ, and standard deviation, σ, of a normal distribution. With the optional
fourth value x2, returns the area under the normal probability density function between the two x-values.

With one argument x, returns the lower-tail probability of the standard normal probability density
function for the value x, assuming a mean of zero and standard deviation of 1.

Examples:

NORMALD_CDF(2)→0.977249868052

NORMALD_CDF(-1,1)→0.682689492138

NORMALD_CDF(0,1,2) → 0.977249868052

NORMALD_CDF(0,1,0,2) → 0.477249868052

STUDENT_CDF Cumulative Student's t

Syntax:

STUDENT_CDF(d, x, [x2])

Cumulative Student’s t distribution function

With two values (n and x), returns the lower-tail probability of the Student’s t probability density function
at x, given d degrees of freedom. With the optional third argument x2, returns the area under the
Student's t probability density function between the two x-values.

Examples:

STUDENT_CDF(3,-3.2) → 0.0246659214813

STUDENT_CDF(3,-3.2,1) → 0.779832969041

CHISQUARE_CDF Cumulative χ²

Syntax:

CHISQUARE_CDF(d, x, [x2])

Cumulative χ² (Chi-squared) distribution function

With two values (n and x) returns the lower-tail probability of the χ² probability density function for the
value x, given d degrees of freedom. With the optional third argument x2, returns the area under the χ²
probability density function between the two x-values.

Examples:

CHISQUARE_CDF(2,6.3) → 0.957147873133

CHISQUARE_CDF(2,2,6.3) → 0.325027314304

FISHER_CDF Cumulative Fisher

Syntax:

FISHER_CDF(n, d, x, [x2])

Cumulative F (Fisher or Fisher-Snedecor) distribution function

Returns the lower-tail probability of the F probability density function for the value x, given numerator n
and denominator d degrees of freedom. With the optional fourth argument x2, returns the area under the
F probability density function between the two x-values.

Examples:

FISHER_CDF(5,5,2) → 0.76748868087

FISHER_CDF(5,5,0.5,2) → 0.53497736174

BINOMIAL_CDF Cumulative Binomial

Syntax:

BINOMIAL_CDF(n, p, k, [k2])

Cumulative binomial distribution function

Page 89 of 239

13217 Help TextHelp Topics Tree
Returns the probability of k or fewer successes out of n trials, with a probability of success, p for each
trial. Note that n and k are integers with k≤n. With the optional fourth argument k2, returns the
cumulative probability for the two k-values; that is, the probability of between k and k2 successes.

Examples:

BINOMIAL_CDF(20,0.5,6) → 0.05765914917

BINOMIAL_CDF(20,0.5,6,12) → 0.847717285156

geometric_cdf Cumulative Geometric

Syntax:

geometric_cdf(p,x,[x2])

Cumulative Geometric distribution function

With two values (p and x), returns the lower-tail probability of the geometric probability density function
for the value x, given probability p. With three values (p, x1, and x2), returns the area under the geometric
probability density function defined by the probability p, between x1 and x2.

Examples:

geometric_cdf(0.3,4) → 0.7599

geometric_cdf(0.5,1,3) → 0.875

POISSON_CDF Cumulative Poisson

Syntax:

POISSON_CDF(μ, k, [k2])

Cumulative Poisson distribution function

Returns the probability of k or fewer occurrences of an event in a given time interval, given μ expected (or
mean) occurrences. With the optional third argument k2, returns the probability of between k and k2
occurrences.
Examples:

POISSON_CDF(4,2) → 0.238103305554

POISSON_CDF(4,2,3) → 0.341891925923

Inverse This menu lists the inverse cumulative distributions functions

NORMALD_ICDF Inverse Cumulative Normal

Syntax:

NORMALD_ICDF([μ, σ,] p)

Inverse cumulative normal distribution function.

Returns the cumulative normal distribution x-value associated with the lower-tail probability p, given the
mean μ, and standard deviation σ, of a normal distribution.
With one argument, p, assumes a mean of 0 and a standard deviation of 1.

Examples:

NORMALD_ICDF(0.977249868052)→2

NORMALD_ICDF(0,1,0.841344746069) → 1

STUDENT_ICDF Inverse Cumulative Student's t

Syntax:

STUDENT_ICDF(d, p)

Inverse cumulative Student’s t distribution function

Returns the value x such that the Student’s-t lower-tail probability of x, with d degrees of freedom, is p.

Example:

STUDENT_ICDF(3,0.0246659214813) → -3.2

CHISQUARE_ICDF Inverse Cumulative χ²

Syntax:

CHISQUARE_ICDF(d, p)

Inverse cumulative χ² (Chi-squared) distribution function

Returns the value x such that the χ² lower-tail probability of x, with d degrees of freedom, is p.

Example:

CHISQUARE_ICDF(2,0.957147873133) → 6.3

FISHER_ICDF Inverse Cumulative Fisher

Syntax:

FISHER_ICDF(n, d, p)

Inverse cumulative F (Fisher or Fisher-Snedecor) distribution function.

Returns the value x such that the F lower-tail probability of x, with numerator n, and denominator d
degrees of freedom, is p.
Example:

FISHER_ICDF(5,5,0.76748868087) → 2

BINOMIAL_ICDF Inverse Cumulative Binomial

Syntax:

BINOMIAL_ICDF(n, p, q)

Inverse cumulative binomial distribution function

Returns the number of successes, k, out of n trials, each with a probability of p, such that the probability
of k or fewer successes is q.
Example:

BINOMIAL_ICDF(4,0.5,0.6875) → 2

geometric_icdf Inverse Cumulative Geometric

Syntax:

Page 90 of 239

13217 Help TextHelp Topics Tree
geometric_icdf(p,k)

Inverse cumulative geometric distribution function

Returns the value x that has the lower-tail probability value k, given the probability p.

Example:

geometric_icdf(0.3,0.95) → 9

POISSON_ICDF Inverse Cumulative Poisson

Syntax:

POISSON_ICDF(μ, p)

Inverse cumulative Poisson distribution function.

Returns the value k such that the probability of k or fewer occurrences of an event in a time interval, with
μ expected (or mean) occurrences of the event in the interval, is p.

Example:

POISSON_ICDF(4,0.238103305554) → 3

List This menu lists the basic lists functions

MAKELIST Make List

Syntax:

MAKELIST(expression, variable, begin, end, [increment])

Calculates a sequence of elements for a new list.

Evaluates expression, incrementing variable from begin to end values, using increment steps (default is 1).

Example:

MAKELIST(2*X-1,X,1,5,1) → {1,3,5,7,9}

SORT Sort List

Syntax:

SORT(list,[sort_by])

Sorts the elements of a list in ascending order. For compound lists (lists of lists or lists containing strings),
sort_by identifies the element number within each object in the list to be used for sorting.

The list must be in the format {object_1,object_2,...,object_n).

Examples:

SORT({2,9,5,3}) → {2,3,5,9}

SORT({"foo","bar","bra"}) → {"bar","bra","foo"}

SORT({"foo","bar","bra"},2) → {"bar","foo","bra"} (sort the list by the 2nd element of each object)

SORT({{10,2,7,6,9},{5,9,8,6,9},{4,10,3,1,6},{7,6,1,8,6}},3) → {{7,6,1,8,6},{4,10,3,1,6},{10,2,7,6,9},{5,9,8,6,9}}
(sort the list by the 3nd element of each object)

SORT({{10,2,"CMABA",6,9},{5,9,"EOGJI",6,9},{4,10,"DOFEB",1,6},{7,6,"IHLCP",8,6},{0,0,"ONAED"}},{{3,2}})
→ {{7,6,"IHLCP",8,6},{10,2,"CMABA",6,9},{0,0,"ONAED"},{4,10,"DOFEB",1,6},{5,9,"EOGJI",6,9}} (sort each
list by the 2nd element of the 3rd object)

SORT({"DACCI","GCIFA","GBCHA","AJEGE","BDCCA"},{3,1}) →
{"BDCCA","DACCI","GBCHA","AJEGE","GCIFA"} (sort the list by the 3rd element followed by the 2nd
element of each object)

REVERSE Reverse List

Syntax:

REVERSE(list)

Creates a list by reversing the order of the elements in list.

Example:

REVERSE({2,3,4,5}) → {5,4,3,2}

CONCAT Concatenate

Syntax:

CONCAT(value1, value2, [..value16]) or

CONCAT(List1, List2) or

CONCAT(List, Item)

Concatenates (joins) items into a list or concatenates two lists.

Examples:

CONCAT({1,2,3},4) → {1,2,3,4}

CONCAT(1,2,3,4) → {1,2,3,4}

CONCAT({1,2},3,{{4,5},6,{7,8}}) → {1,2,3,{4,5},6,{7,8}}

SUPPRESS Remove Items

Syntax:

SUPPRESS(object, index)

SUPPRESS(object, start, end)

SUPPRESS(object, {index1, index2, ... indexN})

SUPPRESS(string1, string2)

Remove items from object using a single position index, a start and end index range, or a list of indices.
object may be a list, vector, or string.
In the case of string1 and string2, every instance of each character in string2 will be removed from string1.

Examples:

SUPPRESS({1,2,3,4},3) → {1,2,4}

Page 91 of 239

13217 Help TextHelp Topics Tree
SUPPRESS({1,2,3,4},2,3) → {1,4}

SUPPRESS({1,2,3,4},{1,3}) → {2,4}

SUPPRESS([1,2,3,4],3) → [1,2,4]

SUPPRESS([1,2,3,4],2,3) → [1,4]

SUPPRESS([1,2,3,4],{1,3}) → [2,4]

SUPPRESS("1234",3) → "124"

SUPPRESS("1234",2,3) → "14"

SUPPRESS("1234",{1,3}) → "24"

SUPPRESS("FizzBuzz","zu") → "FiB"

INSERT Insert Items

Syntax:

INSERT(object1, index, object2)

Insert object2 into object1 immediately prior to position specified by index. If index is one greater than
the size of object1, object2 will be appended to object1.
object1 may be a list, vector, or string. object2 may be anything if object1 is a list. object2 must be a real
or complex number if object1 is a vector. object2 must be a single character string if object1 is a string.

POS Position

Syntax:

POS(list, element)

Returns the position of element within list. If there is more than one instance of element, the position of
the first occurrence is returned. Returns 0 if there is no occurrence of the specified element.

Example:

POS({0,1,3,5},1) → 2

SIZE List Size

Syntax:

SIZE(list)

Returns the number of elements in a list. With a matrix, returns the dimensions of the matrix.

Example:

SIZE({0,1,2,3}) → 4

ΔLIST Δ List

Syntax:

ΔLIST(list)

Creates a new list composed of the first differences of a given list; that is, the differences between the
sequential elements in a list. The new list has one fewer elements than the original list.

Example:

ΔLIST({1,2,3,5,8}) → {1,1,2,3}

ΣLIST Σ List

Syntax:

ΣLIST(list)

Calculates the sum of all elements in a list. If the list contains a string, the result will be a single string with
all elements concatenated together.
Examples:

ΣLIST({2,3,4}) → 9

ΣLIST({"A","B","CE"}) → "ABCE"

ΣLIST({"A",1,"B",2,"CE",3}) → "A1B2CE3"

ΠLIST Π List

Syntax:

ΠLIST(list)

Calculates the product of all elements in a list.

Example:

ΠLIST({2,3,4}) → 24

DIFFERENCE List Difference

Syntax:

DIFFERENCE({list1}, ...{listN})

Returns a list of the elements that are not common between two or more lists.

Examples:

DIFFERENCE({1,2,3},{2,4,8}) → {1,3,4,8}

DIFFERENCE({1,2,3},{2,4,8},{1,2},{3,5,8}) → {4,5}

INTERSECT List Intersect

Syntax:

INTERSECT({list1}, ...{listN})

Returns a list of common elements in two or more lists.

Examples:

INTERSECT({1,2,3},{2,4,8}) → {2}

INTERSECT({1,2,4},{2,4,8}) → {2,4}

INTERSECT({1,2,3},{2,4,8},{1,3,5,8}) → {}

UNION List Union

Syntax:

Page 92 of 239

13217 Help TextHelp Topics Tree
UNION(list1 or object1, ... list_n or object_n)

UNION concatenates the inputs, removing all duplicates.

Example:

UNION({1,2,3}, {2,4,8}, 10) → {1, 2, 3, 4, 8, 10}

EQ Syntax:

EQ(object_1, object2)

Returns 1 if the two objects are the same.

This function is equivalent to the = and == function with one exception - if the two objects are lists, it
returns 1 if the two lists are the same while the = and == functions return a list containing 0 or 1 for each
pair of items.
Examples:

EQ({1,2,3}, {1,2,3}) → 1

EQ({1,2,3}, {0,1,2,3}) → 0

Matrix This menu lists the basic matrix functions

TRN Transpose

Syntax:

TRN(matrix)

Transposes matrix. If Complex mode is on and the matrix contains complex elements, then TRN finds the
conjugate transpose.
Examples:

TRN([[1,2],[3,4]]) → [[1,3],[2,4]]

TRN([[1+2*i,2+4*i],[3+i,4-5*i]]) → [[1+2*i,3+i],[2+4*i,4-5*i]]

TRN({[[5,2],[1,3]],[[2,9],[7,8]]}) → {[[5,1],[2,3]],[[2,7],[9,8]]}

DET Square Matrix Determinant

Syntax:

DET(matrix)

Determinant of a square matrix.

Examples:

DET([[1,2],[3,4]]) → -2

DET([[1+2*i,2+4*i],[3+i,4-5*i]]) → 12-11*i

DET({[[1,2],[5,6]],[[3,4],[−6,−2]]}) → {−4,18}

RREF Reduced-Row Echelon Form

Syntax:

RREF(matrix)

Changes a rectangular matrix to its reduced row-echelon form.

Examples:

RREF([[1,-2,1],[3,4,-1]]) → [[1,0,0.2],[0,1,-0.4]]

RREF([[1+2*i,2+4*i,1+i],[3+i,4-5*i,2-i]]) → [[1,0,0.335849056604-
0.275471698113*i],[0,1,0.132075471698+3.77358490566ᴇ−2*i]]
RREF({[[−2,2,1],[1,4,0]],[[1,3,1],[3,6,9]]}) → {[[1,0,−0.4],[0,1,0.1]],[[1,0,7],[0,1,−2]]}

Create This menu lists the matrix creation functions

MAKEMAT Make Matrix

Syntax:

MAKEMAT(Expr, Rows, Columns) or

MAKEMAT(Expr, Elements)

Creates a matrix of dimension Rows × Columns, using Expr to calculate each element. If Expr contains the
variables I and J, then the calculation for each element substitutes the current row number for I and the
current column number for J. You can also create a vector using the number of Elements instead of the
number of rows and columns.

Examples:

MAKEMAT(0,3,3) → [[0,0,0],[0,0,0],[0,0,0]]

MAKEMAT(√2,2,3) → [[√2,√2,√2],[√2,√2,√2]] in CAS view

MAKEMAT(I+J-1,2,3) → [[1,2,3],[2,3,4]] in Home view

IDENMAT Identity Matrix

Syntax:

IDENMAT(n)

Creates a square matrix of dimension n x n whose diagonal elements are 1 and off-diagonal elements are
zero.
Examples:

IDENMAT(2) → [[1,0],[0,1]]

IDENMAT({2,3}) → {[[1,0],[0,1]],[[1,0,0],[0,1,0],[0,0,1]]}

RANDMAT Random Matrix

Syntax:

RANDMAT([MatrixName], rows, [columns, [integer or real1, real2 or 'generation_function']])

Creates a random matrix with the specified number of rows and columns. If MatrixName is provided, the
result is stored there.
If no additional inputs are provided, the entries will be integers ranging from –99 to 99.

If one integer is provided, the entries will be integers ranging from 0 to that integer.

If two reals are provided, the entries will be reals from real1 to real2.

Page 93 of 239

13217 Help TextHelp Topics Tree
If one generation_function is provided, it will be used to generate each entry in the matrix.

Example:

RANDMAT(2,2) → [[n1,n2],[n3,n4]]

JordanBlock Jordan Block

Syntax:

JordanBlock(Expr, n)

Returns a square n x n matrix with Expr on the diagonal, 1 above and 0 everywhere else.

Examples:

JordanBlock(7,3) → [[7,1,0],[0,7,1],[0,0,7]]

JordanBlock(x+1,3) → [[x+1,1,0],[0,x+1,1],[0,0,x+1]]

hilbert Hilbert Matrix

Syntax:

hilbert(n)

Given a positive integer n, returns the nth order Hilbert matrix. Each element of the matrix is given by the
formula 1/(j+k-1) where j is the row number and k is the column number.

Example:

hilbert(3) → [[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]]

mkisom Isometry

Syntax:

mkisom(Vect,(Sign(1) or -1))

Returns the matrix of an isometry given by its proper elements.

Examples:

mkisom(π,1) → [[-1,0],[0,-1]] (in radians mode)

vandermonde Vandermonde Matrix

Syntax:

vandermonde(vector)

Given a vector [n1, n2, … nj], returns a matrix whose first row is [(n1)⁰,

(n1)¹, (n1)², … , (n1)^(j-1)]. The second row is [(n2)⁰, (n2)¹, (n2)², … , (n2)^(j-1)], etc.

Examples:

vandermonde([1,2,3]) → [[1,1,1],[1,2,4],[1,3,9]]

vandermonde([a,b,c]) → [[1,a,a²],[1,b,b²],[1,b,b²]]

Basic This menu lists the basic matrix functions

ABS Absolute Value

Syntax:

ABS(expr) or

ABS(matrix)

For numerical arguments, returns the absolute value of the expression.

For matrix arguments, returns the Frobenius (Euclidean) norm of the array.

Examples:

ABS(-3.14) → 3.14

ABS([[1,2],[3,4]]) → 5.47722557505

ABS(2-3*i) → 3.60555127546

CAS(ABS([[1,2],[3,4]])) → √30

ROWNORM Row Norm

Syntax:

ROWNORM(matrix)

Finds the maximum value (over all rows) for the sums of the absolute values of all elements in a row.

Example:

ROWNORM([[1,2],[3,4]]) → 7

COLNORM Column Norm

Syntax:

COLNORM(matrix)

Finds the maximum value (over all columns) of the sums of the absolute values of all elements in a matrix.

Example:

COLNORM([[1,2],[3,4]]) → 6

SPECNORM Spectral Norm

Syntax:

SPECNORM(matrix)

Returns the spectral Norm of a square matrix.

Example:

SPECNORM([[1,2],[3,4]]) → 5.4650

SPECRAD Spectral Radius

Syntax:

SPECRAD(matrix)

Returns the spectral radius of a square matrix.

Example:

Page 94 of 239

13217 Help TextHelp Topics Tree
SPECRAD([[1,2],[3,4]]) → 5.3723

COND Condition Number

Syntax:

COND(matrix)

Finds the 1-norm (column norm) of a square matrix.

Example:

COND([[1,2],[3,4]]) → 21

RANK Rank of Rect. Matrix

Syntax:

RANK(matrix)

Returns the rank of a rectangular matrix.

Examples:

RANK([[1,2],[3,4]]) → 2

RANK([[1,2,3],[3,2,1],[2,1,3]]) → 3

RANK([[1+2*i,2+4*i],[3+i,4-5*i]]) → 2

RANK({[[1,2],[3,4],[5,6]],[[1,2,3],[6,5,4]]}) → {2,2}

pivot Syntax:

pivot(matrix,n,m)

Given a matrix, a row number n, and a column number m, uses Gaussian elimination to return a matrix
with zeroes in column m, except that the element in column m and row n is kept as a pivot.

Example:

pivot([[1,2],[3,4],[5,6]],1,1) → [[1,2],[0,-2],[0,-4]]

TRACE Syntax:

TRACE(matrix)

Finds the trace of a square matrix. The trace is equal to the sum of the diagonal elements. (It is also equal
to the sum of the eigenvalues.)
Examples:

TRACE([[1,2],[3,4]]) → 5

TRACE([[1+2*i,2+4*i],[3+i,4-5*i]]) → 5-3*i

TRACE({[[2,1],[6,3]],[[3,8],[5,7]]}) → {5,10}

Advanced This menu lists the advanced matrix functions

EIGENVAL Eigenvalues

Syntax:

EIGENVAL(matrix)

Displays the eigenvalues in vector form for matrix.

Example:

EIGENVAL([[1,2],[3,4]]) → [5.3723, -0.3723]

EIGENVV Eigenvectors and Values

Syntax:

EIGENVV(matrix)

Eigenvectors and Eigenvalues for a square matrix

Displays a list of two arrays. The first contains the eigenvectors and the second contains the eigenvalues.

Example:

EIGENVV([[1,2],[3,4]]) → { [[0.4160,-0.8370],[0.9094,0.5743]], [[5.3723,0], [0,-0.3723]]}

jordan Syntax:

jordan(Matrix)

Returns the list made by the matrix of passage and the Jordan form of a matrix.

Examples:

jordan([[0,2],[1,0]]) → [[√2,-√2],[1,1]],[[√2,0],[0,-√2]]

jordan([[-2,-2,1],[-2,1,-2],[1,-2,-2]])

diag Diagonal

Syntax:

diag(list) or diag(matrix)

Given a list, returns a matrix with the list elements along its diagonal and zeroes elsewhere.

Given a matrix, returns a vector of the elements along its diagonal.

Examples:

diag({1,2,3}) → [[1,0,0],[0,2,0],[0,0,3]]

diag([[1,2],[3,4]]) → [1,4]

cholesky Syntax:

cholesky(matrix)

For a numerical symmetric matrix A, returns the matrix L such that A=L*tran(L).

Example:

cholesky([[3,1],[1,4]]) → [[3/√(3),0],[1/√(3),(1/3)*√(33)]]

ihermite Hermite Normal

Syntax:

ihermite(Matrix_A)

Given Matrix_A, returns the Hermite normal form of a matrix with coefficients in Z: returns U, B such that
U is invertible in Z, B is upper triangular and B=U*A

Page 95 of 239

13217 Help TextHelp Topics Tree
Example:

ihermite([[1,2,3],[4,5,6],[7,8,9]]) → [[-3,1,0],[4,-1,0],[-1,2,-1]],[[1,-1,-3],[0,3,6],[0,0,0]]

hessenberg Syntax:

hessenberg(Matrix_A)

Given Matrix_A, returns the matrix reduction to Hessenberg form. Returns [P,B] such that B=inv(P)*A*P.

Example:

hessenberg([[1,2,3],[4,5,6],[7,8,1]]) → [[[1,0,0],[0,4/7,1],[0,1,0]],[[1,29/7,2],[7,39/7,8],[0,278/49,3/7]]]

ismith Smith Normal

Syntax:

ismith(Matrix_A)

Given Matrix_A, returns the Smith normal form of a matrix with coefficients in Z. Returns [U V B] such that
U and V are invertible in Z, B is the diagonal, B[i,i] divides B[i+1,i+1] and B=U*A*V.

Example:

ismith([[1,2,3],[4,5,6],[7,8,9]]) → [[1,0,0],[4,-1,0],[-1,2,-1]],[[1,0,0],[0,3,0],[0,0,0]],[[1,-2,1],[0,1,-2],[0,0,1]]

Factorize This menu lists the factorization matrix functions

LQ LQ Factorization

Syntax:

LQ(matrix)

Factorizes a m × n matrix into three matrices: L, Q, and P, where L is an m × n lower trapezoidal, Q is an n
× n orthogonal, and P is an m × m permutation; and P*A=L*Q.
Example:

LQ([[1,2],[3,4]]) → {[[2.2360,0],[4.9193,0.8944]],[[0.4472,0.8944],[0.8944,-0.4472]],[[1,0],[0,1]]}

LSQ Least Squares

Syntax:

LSQ(matrix1, matrix2)

Returns the minimum norm least squares matrix (or vector) corresponding to the system
matrix1*X=matrix2
Examples:

LSQ([[1,2],[3,4]],[[5],[11]]) → [[1],[2]]

LSQ([[1,2],[3,4]],[[5,-1],[11,-1]]) → [[1,1],[2,-1]]

LU LU Decomposition

Syntax:

LU(matrix)

Factorizes a square matrix into three matrices L, U, and P, where L is a lowertriangular, U is an
uppertriangular, and P is the permutation; and P*A=L*U.
Example:

LU([[1,2],[3,4]]) → {[[1,0],[0.3333,1]],[[3,4],[0,0.6666],[0,1],[1,0]]}

QR QR Factorization

Syntax:

QR(matrix)

Factors an m x n matrix into three matrices: {[[m x m orthogonal]],[[m x n uppertrapezoidal]],[[n x n
permutation]]}.
Example:

QR([[1,2],[3,4]]) → {[[0.3612,0.9486],[0.9486,-0.3162]],[[3.1622,4.4217],[0,0.6324]],[[1,0],[0,1]]}

SCHUR Schur Decomposition

Syntax:

SCHUR(matrix)

Factors a square matrix into two matrices.

If matrix is real, then the result is {[[orthogonal]],[[upper-quasi triangular]]}.

If Complex mode is on and the matrix is complex, then the result is {[[unitary]],[[upper-triangular]]}.

Example:

SCHUR([[7,-2],[12,-3]]) → {[[0.4472,0.8944],[0.8944,−0.4472]],[[3,14],[0,1]]}

SVD Singular Value Decomposition

Syntax:

SVD(matrix)

Factorizes an m × n matrix into two orthogonal matrices U (m x m) and V (n x n) and a vector S such that
matrix = U*S'*trn(V). (S' is the diagonalization of S.)
Example:

SVD([[1,2],[3,4]]) → {[[0.9145,-0.4046],[-0.4046,0.9145]],[0.3660,5.4650],[[-
0.8174,0.5760],[0.5760,0.8174]]}

SVL Singular Values

Syntax:

SVL(matrix)

Returns a vector containing the singular values of matrix.

Example:

SVL([[1,2],[3,4]]) → [0.3660,5.4650]

Vector This menu lists the vector functions

Page 96 of 239

13217 Help TextHelp Topics Tree
CROSS Cross Product

Syntax:

CROSS(Vector1, Vector2)

Returns the cross product two vectors.

Examples:

CROSS([1,2,3],[4,3,2]) → [-5,10,-5]

CROSS([1+2*i,2-4*i,3+i],[−4+i,1-3*i,2+0.5*i]) → [i,−14-5.5*i,11-19*i]

CROSS({[1,2,3],[4,3,2]},{[7,2,8],[9,1,6]}) → {[10,13,−12],[16,−6,−23]}

DOT Dot Product

Syntax:

DOT(Vector1, Vector2)

Returns the dot product of two vectors.

Examples:

DOT([1,2],[3,4]) → 11

DOT({[1,2],[5,6]},{[3,4],[−6,−2]}) → {11,−42}

maxnorm Max Norm

Syntax:

maxnorm(Vector) or

maxnorm(Matrix)

Returns the l∞ norm (the maximum of the absolute values of the coordinates) of a vector or matrix.

Examples:

maxnorm([1,2]) → 2

maxnorm([[1,2],[3,-4]]) → 4

l1norm L¹ Norm

Syntax:

l1norm(Vector)

Returns the L¹ norm (sum of the absolute values of the coordinates) of a vector.

Example:

l1norm([3,-4,2]) → 9

l2norm L² Norm

Syntax:

l2norm(Vector)

Returns the L² norm (sqrt(x1²+x2²+…xn²)) of a vector.

Example:

l2norm([3,4,-2]) → √29

Special This menu lists the special function linked with distributions functions

Beta Syntax:

Beta(x, y)

Returns the value of the Beta function for two values, x and y, defined as
Gamma(x)*Gamma(y)/Gamma(x+y).
Example:

Beta(3,2) → 1/12

erf Error Function

Syntax:

erf(x)

For a real value x, returns the approximate value of 2/√π*int(e^(-t²),t,0,x)

Example:

erf(1) → 0.84270079295

erfc Complementary Error Function

Syntax:

erfc(x)

For a real value x, returns the approximate value of 2/√π*int(exp(-t²),t,x,∞).

Example:

erfc(1) → 0.15729920705

Gamma Gamma Function

Syntax:

Gamma(Real)

Returns the value of the gamma function (Γ) for a real number.

Gamma(n)=(n-1)! if n is an integer.

Examples:

Gamma(5) → 24

Gamma(1/2)

Psi Syntax:

Psi(Real(a),Intg(n))

Returns the value of the nth derivative of the digamma function at x=a, where the digamma function is
the first derivative of ln(Γ(x)).
Example:

Psi(3,1) → π^2/6-5/4

Zeta Syntax:

Page 97 of 239

13217 Help TextHelp Topics Tree
Zeta(x)

Returns the value of the zeta function (Z) for a real x.

Example:

Zeta(2) → π^2/6

Ci Cosine Integral

Syntax:

Ci(Expr)

Returns the cosine integral of an expression. int(cos(t)/t,t=-∞..x).

Example:

Ci(1.0) → 0.337403922901

Ei Exponential Integral

Syntax:

Ei(x)

For a real value x, returns the approximate value of int(e^(t)/t, -∞, x)

Example:

Ei(1.0) → 1.89511781636

Si Sine Integral

Syntax:

Si(Expr)

Returns the sine integral of an expression, int(sin(t)/t,t=0..x)

Example:

Si(1.0) → 0.946083070367

CAS Menu Toolbox CAS Menu

The Toolbox CAS menu lists all the most useful Computer Algebra System (CAS) functions.

Algebra Algebra Menu

The Algebra menu contains common symbolic algebra commands, such as collect, expand, and factor.

simplify Simplify Expression

Syntax:

simplify(Expr)

Simplifies an expression.

Example:

simplify(4*atan(1/5)-atan(1/239)) → (1/4)*π

collect Collect Like Terms

Syntax:

collect(Poly) or

collect(Poly, Var) or

collect({Poly1, Poly2,..., Polyn})

Collects like terms in a polynomial expression (or of a list of polynomial expressions). Factorizes the
results, depending on the CAS settings.
If specified, will collect with respect to Var.

Examples:

collect(x+2*x+1-4) → 3*x-3

collect(x^2-9*x+5*x+3+1) → (x-2)²

collect(a*(b-c)+d*(b-c)) → (-c+b)*(a+d)

collect(a*(b-c)+d*(b-c),a) → b*d-c*d+(b-c)*a

expand Expand Expression

Syntax:

expand(Expr)

Returns an expression expanded.

Example:

expand((x+y)*(z+1)) → y*z+x*z+y+x

factor Factorize Polynomial

Syntax:

factor(Expr)

Returns a polynomial factorized.

Similar to collect, but will factor using square roots.

Examples:

factor(x^4+12*x^3+54*x²+108*x+81) → (x+3)^4

factor(x^4-1) → (x-1)*(x+1)*(x^2+1)

partfrac Partial Fraction Decomposition

Syntax:

partfrac(RatFrac)

Performs partial fraction decomposition on a fraction.

Example:

partfrac(x/(4-x²)) → (-1/2)/(x-2)-(1/2)/((x+2)

subst Substitute

Syntax:

subst(Expr,Var=value)

Page 98 of 239

13217 Help TextHelp Topics Tree
Substitutes a value for a variable in an expression.

Examples:

subst(x/(4-x²),x=3) → -3/5

subst(∫(sin(x²)*x,x),x=√(t))

Extract This menu contains commands that allow you to extract one side of an equation or one part of a fraction.

denom Simplified Denominator

Syntax:

denom(a/b)

For integers a and b, returns the denominator of the fraction a/b after simplification.

Example:

denom(10/12) → 6

numer Simplified Numerator

Syntax:

numer(a/b)

For integers a and b, returns the numerator of the fraction a/b after simplification.

Example:

numer(10/12) → 5

left Left Side of Equation

Syntax:

left(Expr1=Expr2) or

left(Real1..Real2)

Returns the left side of an equation or the left end of an interval.

Example:

left(x²-1=2*x+3) → x²-1

right Right Side of Equation

Syntax:

right(Expr1=Expr2) or

right(Real1..Real2)

Right Side

Returns the right side of an equation or the right end of an interval.

Example:

right(x²-1=2*x+3) → 2*x+3

Calculus Calculus Menu

The Calculus menu contains operations pertaining to limits, differentiation, and integration.

diff Differentiate

Syntax:

diff(Expr,[Var,[Order]])

diff(Expr,[{Var1,Var2,…},[Order]])

Returns the derivative of an expression with respect to a given variable or list of variables. You can use the
differentiation template in the Template menu as well.
If Var or a list of variables is defined, a final parameter, Order, designates the order of the derivative to be
found. Order defaults to 1.
Examples:

diff(x^3-x) → 3*x²-1

diff(x^3-x,x,2) → 6*x

diff(sin(x)-cos(y),x) → cos(x)

diff(sin(x)-cos(y),y) → sin(y)

diff(sin(x)-cos(y),{x,y}) → [cos(x) sin(y)]

diff(sin(x)-cos(y),{x,y},2) → [[-sin(x),0],[0,cos(y)]]

limit Syntax:

limit(Expr,Var,Val, [Dir])

Returns the limit (2-sided or 1-sided) of the given expression as the given variable approaches a value.

The optional argument Dir indicates a two sided limit if 0, one sided from below if -1, and one sided from
above if 1. If the fourth argument is not provided, the limit returned is bidirectional.

Examples:

limit((n*tan(x)-tan(n*x))/(sin(n*x)-n*sin(x)),x,0) → 2

limit(sin(x)/(x²-3*x),x,0) → -1/3

limit(exp(1/x),x,0,1) → +∞

int Integrate

Syntax:

int(Expr,[Var],[Real1,Real2])

Returns the integral of an expression.

With one expression as argument, returns the indefinite integral with respect to x. With the optional
second, third and fourth arguments you can specify the variable of integration and the bounds for a
definite integral.
Examples:

int(1/x) → ln(abs(x))

int(sin(x),x,0,π) → 2

Page 99 of 239

13217 Help TextHelp Topics Tree
int(1/(1-x^4),x,2,3)) → -1/4*(2*atan(2)+ln(3))+1/4*(2*atan(3)-ln(2)+ln(4))

series Series Expansion

Syntax:

series(Expr,Var=Val,[Order],[Dir])

Returns the series expansion of an expression in the vicinity of a given variable value. With the optional
third and fourth arguments you can specify the order and direction of the series expansion. If no order is
specified, the series returned is fifth order. The optional argument Dir is bidirectional if 0, one sided from
below if -1, and one sided from above if 1. If no direction is specified, the series is bidirectional.

Example:

series((x^4+x+2)/(x²+1),x=0,5) → 2+x-2x²-x³+3x⁴+x⁵+x⁶*order_size(x)

sum Summation

Syntax:

sum(Expr,Var,Real1,Real2,[Step])

Returns the discrete sum of Expr with respect to the variable Var from Real1 to Real2.

With only the first two arguments, returns the discrete antiderivative of the expression with respect to
the variable.
Examples:

sum(n²,n,1,5) → 55

sum(cos(n*x),n)

Differential Differential Menu

This sub-menu contains specialized vector operations based on differentiation, such as curl and grad, as
well as the Laplace and inverse Laplace transforms.

curl Rotational Curl

Syntax:

curl([Expr1, Expr2, ... ExprN], [Var1, Var2, ... VarN])

Returns the rotational curl of a vector field.

curl([A,B,C],[x,y,z]) is defined to be [dC/dy-dB/dz,dA/dz-dC/dx,dB/dx-dA/dy].

Example:

curl([2*x*y,x*z,y*z],[x,y,z]) → [z-x,0,z-2*x]

divergence Syntax:

divergence([Expr1, Expr2, ... ExprN],[Var1, Var2, ... VarN])

Returns the divergence of a vector field, defined by divergence([A,B,C],[x,y,z])=dA/dx+dB/dy+dC/dz.

Example:

divergence([x²+y,x+z+y,z^3+x²],[x,y,z]) → 2*x+3*z²+1

grad Gradient

Syntax:

grad(Expr, ListVars)

Returns the gradient of an expression.

With a list of variables as second argument, returns the vector of partial derivatives.

Example:

grad(2*x²*y-x*z^3,[x,y,z]) → [-z³+4*x*y 2*x² -3*x*z²]

hessian Hessian Matrix

Syntax:

hessian(Expr,ListVar)

Returns the Hessian matrix of an expression.

Example:

hessian(2*x²*y-x*z,[x,y,z]) → [[4*y,4*x,-1],[4*x,0,0],[-1,0,0]]

Integral Integral Menu

This menu contains specialized operations based on integration, such as integration by parts.

ibpdv Integration By Parts v

Syntax:

ibpdv(f(Var), v(Var), [Var], [Real1], [Real2])

Performs integration by parts of the expression f(x)=u(x)*v'(x), with f(x) as the first argument and v(x) (or
0) as the second argument.
Specifically, returns a vector whose first element is u(x)*v(x) and whose second element is v(x)*u'(x). With
the optional third, fourth and fifth arguments you can specify a variable of integration and bounds of the
integration. If no variable of integration is provided, it is taken as x.

Examples:

ibpdv(ln(x),1) → x*ln(x)-x

ibpdv(ln(x),x) → [x*ln(x), -1]

ibpu Integration By Parts u

Syntax:

ibpu(f(Var), u(Var), [Var], [Real1], [Real2])

Performs integration by parts of the expression f(x)=u(x)*v'(x), with f(x) as the first argument and u(x) (or
0) as the second argument.
Specifically, it returns a vector whose first element is u(x)*v(x) and whose second element is v(x)*u'(x).
With the optional third, fourth and fifth arguments you can specify a variable of integration and bounds of
the integration. If no variable of integration is provided, it is taken as x.

Page 100 of 239

13217 Help TextHelp Topics Tree
Example:

ibpu(x*ln(x), x) → [x*(x*ln(x)-x), -x*ln(x)+x]

preval Syntax:

preval(F(var),Real(a),Real(b),[Var])

Returns F(b) – F(a).

Examples:

preval(x²+x,2,3) → 6

preval(y²-2,2,3,y) → 5

Limits Limits Menu

This sub-menu contains specialized operations involving limits, such as Taylor polynomials.

taylor Taylor Series Expansion

Syntax:

taylor(Expr,[Var=Value],[Order])

Returns the Taylor series expansion of an expression at a point or at infinity (by default, at x=0 and with
relative order=5).
Examples:

taylor(sin(x)/x,x=0) → 1-(1/6)*x^2+(1/120)*x^4+x^6*order_size(x)

taylor((x^4+x+2)/(x^2+1),x,5)

divpc Taylor of Quotient

Syntax:

divpc(Poly1, Poly2, Integer)

Returns the n-degree Taylor polynomial for the quotient of 2 polynomials.

Example:

divpc(x^4+x+2,x^2+1,5) → x⁵+3*x⁴-x³-2*x²+x+2, the 5th-degree polynomial

sum_riemann Riemann Sum

Syntax:

sum_riemann(Expr(Xpr),Lst(var1,var2))

Returns in the neighborhood of n=+∞ an equivalent of the sum of Xpr(var1,var2) for var2 from var2=1 to
var2=var1 when the sum is looked at as a Riemann sum associated with a continuous function defined on
[0,1].
Examples:

sum_riemann(1/(n+k),[n,k]) → ln(2)

sum_riemann(n/(n²+k²),[n,k]) → π/4

Transform Transform Menu

This menu contains Laplace and Fourier Transform commands.

laplace Laplace Transform

Syntax:

laplace(Expr,[Var],[LapVar])

Returns the Laplace transform of an expression.

Examples:

laplace(e^(x)*sin(x)) → 1/(x²-2*x+2)

laplace(sin(x)^2,x,s) → 2/(s³+4*s)

invlaplace Inverse Laplace Transform

Syntax:

invlaplace(Expr,[Var],[IlapVar])

Returns the inverse Laplace transform of an expression.

Example:

invlaplace(1/(x²+1)²) → (-x/2)*cos(x)+(1/2)*sin(x)

fft Fast Fourier Transform

Syntax:

fft(Vector) or

fft(Vector, a, p)

With one argument (a vector), returns the discrete Fourier transform in R.

With two additional integer arguments a and p, returns the discrete Fourier transform in the field Z/pZ,
with a primitive nth root of 1 (n=size(Vector)).
Example:

fft([1,2,3,4,0,0,0,0]) → [10.0,-0.414213562373-7.24264068712*(i),-2.0+2.0*i,2.41421356237-
1.24264068712*i,-2.0,2.41421356237+1.24264068712*i,-2.0-2.0*i]

ifft Inverse Fast Fourier Transform

Syntax:

ifft(Vect)

Returns the inverse discrete Fourier transform.

Example:

ifft([100.0,-52.2842712475+6*i,-8.0*i,4.28427124746-6*i,4.0,4.28427124746+6*i,8*i,-52.2842712475-
6*i]) → [0.99999999999,3.99999999999,10.0,20.0,25.0,24.0,16.0,-6.39843733552e-12]

Solve Solve Menu

The Solve menu contains the various commands for solving equations.

solve CAS solve

Syntax:

Page 101 of 239

13217 Help TextHelp Topics Tree
solve(Expr,[Var]) or solve({Eq1, Eq2,…}, [Var]) or solve(Expr, Var=Guess) or solve(Expr, Var=Val1..Val2)

Returns a list of the solutions (real and complex) to a polynomial equation or a set of polynomial
equations.
The user is advised to supply a guess or define an interval in which to search for a solution to get the best
results in cases where the solution is known to be approximate. To supply a guess, use the syntax
Var=Guess. To supply an interval, use the syntax Var=Val1..Val2. In the latter case, the search is confined
to the closed interval [Val1, Val2].

Examples:

solve(x²-3=1) → {-2,2}

solve([x²-y²=0,x²-z²=0],[x,y,z]) → {[x,x,x],[x,-x,-x],[x,x,-x],[x,-x,x]}

solve(x^2-(LN(x)+5)=0, x=2) → 2.42617293082

solve(x^2-(LN(x)+5)=0, x=2..3) → 2.42617293082

zeros Syntax:

zeros(Expr,[Var]) or

zeros([Expr1, Expr2, ... Exprn}, {Var1, Var2, ... Varn})

Returns the zeros (real or complex according to the CAS settings) of the expression Expr for the variable
Var (or the matrix where the lines are the solutions of the system : Expr1=0, Expr2=0…).

Examples:

zeros([x²-1,x²-y²],[x,y]) → [[1,1],[1,-1],[-1,1],[-1,-1]]

zeros(x²+4) → [-2*i,2*i] if Use i is checked in CAS Se ngs and [] otherwise.

cSolve Complex Solve

Syntax:

cSolve(Expr,[Var])

Returns the solutions, including complex solutions, of Expr, for Var.

If Expr is an expression, solves the equation Expr=0.

Examples:

cSolve(x^4=1,x) → {-1,i,1,−i}

cSolve(u*v-u=v and v²=u,[u,v]) → {[0,0],[(1/2*(√5+1))^2,1/2*(√5+1)],[(1/2*(-√5+1))^2,1/2*(-√5+1)]}

cZeros Complex Zeros

Syntax:

cZeros(Expr,[Var]) or

cZeros({Expr1, Expr2, ... ExprN}, {Vr1, Var2, ... VarN})

Returns the roots, including complex roots, of Expr (that is, the solution of Expr=0) or the matrix where
the lines are the solutions of the system: Expr1=0, Expr2=0…ExprN=0.
Examples:

cZeros(x^4-1) → [1,-1, i, -i]

cZeros([x²-1,x²-y²],[x,y])

fsolve Numerical Solve

Syntax:

fsolve(Expr,Var,[Guess or Interval],[Method])

fsolve(ExprVector, [Guess or Interval], [Method})

Returns the numerical solution of an equation or a system of equations.

With the optional third argument you can specify a guess for the solution or an interval within which it is
expected that the solution will occur.
With the optional fourth argument you can name the iterative algorithm to be used by the solver. If you
are solving for a single variable, your options are bisection_solver, newton_solver, or newtonj_solver. If
solving for 2 variables, your only option is newton_solver.

Examples:

fsolve(cos(x)=x,x,-1..1) → [0.739085133215]

fsolve([x²+y-2,x+y²-2],[x,y],[0,0]) → [1.,1.]

desolve Solve Differential Equation

Syntax:

desolve(Eq,[TimeVar],Var)

Returns the solution to a differential equation.

Examples:

desolve(y''+y=0,y) → G_0*cos(x)+G_1*sin(x)

desolve((y''+y=sin(x)) and (y(0)=1) and (y'(0)=2),y)

odesolve ODE Solver

Syntax:

odesolve(Expr, VectVar, VectInit, FinalVal, [tstep=Val, curve])

Ordinary Differential Equation solver

Solves an ordinary differential equation given by Expr, with variables declared in VectVar and initial
conditions for those variables declared in VectInit. For example, odesolve(f(t,y),[t,y],[t0,y0],t1) returns the
approximate solution of y'=f(t,y) for the variables t and y with initial conditions t=t0 and y=y0.

Example:

odesolve(sin(t*y),[t,y],[0,1],2) → [1.82241255674]

linsolve Linear System Solver

Syntax:

Page 102 of 239

13217 Help TextHelp Topics Tree
linsolve([LinEq1, LinEq2,…LinEqn], [Var1,Var2,…Varn])

Given a vector of linear equations and a corresponding vector of variables, returns the solution to the
system of linear equations.
Example:

linsolve([x+y+z=1,x-y=2,2*x-z=3],[x,y,z]) → [3/2,-1/2,0]

Rewrite Rewrite Menu

The Rewrite menu contains commands for rewriting or simplifying expressions by using a variety of
means, including trigonometric identities, etc.

lncollect Collect Logarithms

Syntax:

lncollect(Expr)

Rewrites an expression with the logarithms collected. Applies ln(a)+n*ln(b)=ln(a*b^n) where n is an
integer.
Example:

lncollect(ln(x)+2*ln(y)) → ln(x*y²)

powexpand Power Expand

Syntax:

powexpand(Expr)

Rewrites an expression containing a power that is a sum or product as a product of powers. Applies
a^(b+c)=(a^b)*(a^c).
Example:

powexpand(2^(x+y)) → (2^x)*(2^y)

texpand Transcendental Expand

Syntax:

texpand(Expr)

Expands a transcendental expression; that is, an expression containing trigonometric, logarithmic, or
exponential functions.
texpand develops the expression in terms of sin(), cos(), ln(), and exp().

Examples:

texpand(sin(2*x)+exp(x+y)) → 2*cos(x)*sin(x)+e^(x)*e^(y)

texpand(cos(3*x))

Exp and Log This menu contains commands for converting expressions into equivalent expressions using various
identities involving powers, logarithms, and exponents.

exp2pow Syntax:

exp2pow(Expr)

Transforms an expression of the form e^(n*ln(x)) rewritten as a power of x. Applies e^(n*ln(x))=xⁿ.

Example:

exp2pow(e^(3*ln(x))) → x³

pow2exp Syntax:

pow2exp(Expr)

Returns an expression with powers rewritten as an exponential. Essentially the inverse of exp2pow.

Example:

pow2exp(a^b) → e^(b*ln(a))

exp2trig Syntax:

exp2trig(Expr)

Returns an expression with complex exponentials rewritten in terms of sine and cosine.

Example:

exp2trig(exp(-i*x)) → cos(x)+ i*sin(x)

expexpand Expand Exponentials

Syntax:

expexpand(Expr)

Expands exponentials using the identity e^(a*f(x))=e^(f(x))^a.

Example:

expexpand(e^(3*x)) → (e^x)³

Sin to ... This menu contains commands for converting expressions containing the inverse sine function into
equivalent expressions containing other inverse trigonometric functions.

asin2acos Syntax:

asin2acos(Expr)

Replaces arcsin(x) by π/2-arccos(x) in Expr.

Example:

asin2acos(acos(x)+asin(x)) → π/2-acos(x)+acos(x)

asin2atan Syntax:

asin2atan(Expr)

Replaces arcsin(x) by arctan(x/√(1-x²)) in Expr.

Examples:

asin2atan(2*asin(x)) → 2*atan(x/(√(1-x²)))

asin2atan(asin(√(1-x²))+asin(x))

sin2costan Syntax:

sin2costan(Expr)

Page 103 of 239

13217 Help TextHelp Topics Tree
Rewrites Expr so that sin(x) is replaced by cos(x)*tan(x)

Example:

sin2costan(sin(x)) → tan(x)*cos(x)

Cos to ... This menu contains commands for converting expressions containing the inverse cosine function into
equivalent expressions containing other inverse trigonometric functions.

acos2asin Syntax:

acos2asin(Expr)

Replaces arccos(x) by π/2-arcsin(x) in the argument Expr.

Examples:

acos2asin(acos(x)+asin(x)) → π/2-asin(x)+asin(x)

acos2asin(2*acos(x))

acos2atan Syntax:

acos2atan(Expr)

Replaces arccos(x) by π/2-arctan(x/√(1-x²)) in the argument.

Examples:

acos2atan(2*acos(x)) → 2*(π/2-atan(x/(√(1-x²))))

acos2atan(acos(√(1-x²))+acos(x))

cos2sintan Syntax:

cos2sintan(Expr)

Replaces cos(x) by sin(x)/tan(x) in the argument.

Example:

cos2sintan(cos(x)) → sin(x)/tan(x)

Tan to ... This menu contains commands for converting expressions containing the inverse tangent function into
equivalent expressions containing other inverse trigonometric functions.

atan2asin Syntax:

atan2asin(Expr)

Replaces arctan(x) by arcsin(x/√(1+x²)) in the argument Expr.

Example:

atan2asin(atan(y/x) → asin((y/x)/√(1+(y/x)²))

atan2acos Syntax:

atan2acos(Expr)

Replaces arctan(x) by π/2-arccos(x/√(1+x²)) in the argument.

Example:

atan2acos(atan(2*x) → π/2-acos((2*x)/√(1+(2*x)²))

tanx → sinx/cosx Syntax:

tan2sincos(Expr)

Rewrites Expr with tan(x) using sin(x)/cos(x)

Example:

tan2sincos(tan(x)) → sin(x)/cos(x)

halftan Syntax:

halftan(Expr)

Transforms sin(x), cos(x) and tan(x) as a function of tan(x/2).

Examples:

halftan(sin(x)) → (2*TAN(x/2))/((TAN(x/2))²+1)

halftan(tan(x)) → (2*TAN(x/2))/(-(TAN(x/2))²+1)

Trigonometry to ... This menu contains commands for converting expressions containing the various transcendental functions
into equivalent expressions containing other transcendental functions.

trigx → sinx Syntax:

trigsin(Expr)

Returns an expression simplified using the formulas sin(x)²+cos(x)²=1 and tan(x)=sin(x)/cos(x). sin(x) is
given precedence over cos(x) and tan(x) in the result.
Example:

trigsin(cos(x)^4+sin(x)²) → sin(x)⁴-sin(x)²+1

trigx → cosx Syntax:

trigcos(Expr)

Returns an expression simplified using the formulas sin(x)²+cos(x)²=1 and tan(x)=sin(x)/cos(x). cos(x) is
given precedence over sin(x) and tan(x) in the result.
Example:

trigcos(sin(x)^4+sin(x)^2) → cos(x)⁴-3*cos(x)²+2

trigx → tanx Syntax:

trigtan(Expr)

Returns an expression simplified using the formulas sin(x)²+cos(x)²=1 and tan(x)=sin(x)/cos(x). tan(x) is
given precedence over sin(x) and cos(x) in the result.
Example:

trigtan(cos(x)^4+sin(x)²) → (tan(x)⁴+tan(x)²+1)/(tan(x)⁴+2*tan(x)²+1)

atrig2ln Syntax:

atrig2ln(Expr)

Returns an expression with inverse trigonometric functions rewritten using the natural logarithm function.

Page 104 of 239

13217 Help TextHelp Topics Tree
Examples:

atrig2ln(atan(x)) → 0.5*i*ln((x+i)/(-x+i))

atrig2ln(acos(x)) → −i*ln(x+√(x²-1))

tlin Syntax:

tlin(Expr)

Returns a trigonometric expression with the products and integer powers linearized

Examples:

tlin(sin(x)^3) → 3/4*sin(x)-1/4*sin(3.*x)

tlin(cos(x)*cos(y)) → 1/2*cos(x+y)+1/2*cos(x-y)

tcollect Syntax:

tcollect(Expr)

Returns a trigonometric expression linearized and with any sine and cosine terms of the same angle
collected together.
Example:

tcollect(sin(x)+cos(x)) → √2*cos(x-1/4*π)

trigexpand Syntax:

trigexpand(Expr)

Returns a trigonometric expression in expanded form.

Example:

trigexpand(sin(3*x)) → (4*cos(x)²-1)*sin(x)

trig2exp Syntax:

trig2exp(Expr)

Returns an expression with trigonometric functions rewritten as complex exponentials (without
linearization).
Example:

trig2exp(sin(x)) → (e^(i*x)-(1/e^(i*x)))/(2*i)

Integer Integer Menu

The Integer menu contains operations on integers.

idivis Integer Divisors

Syntax:

idivis(Integer) or

idivis({Intgr1, Intgr2, ... Intgrn})

Returns a list of all the factors of an integer or of a list of integers.

Example:

idivis(12) → [1, 2, 3, 4, 6, 12]

ifactor Integer Factors

Syntax:

ifactor(Integer)

Returns the prime factorization of an integer as a product.

Can be used with STO▶.

Note: in some cases, factorization may fail. In these cases, the command will return the product of -1 and
the opposite of the original input. The -1 indicates that factorization failed.

Example:

ifactor(150) → 2*3*5²

ifactors Integer Factors List

Syntax:

ifactors(Integer)

Similar to ifactor, but returns a list of the factors of the integer with their multiplicities.

Example:

ifactors(150) → [2, 1, 3, 1, 5, 2]

igcd Integer GCD

Syntax:

igcd(Intgr1, Intgr2, ... Intgrn))

Returns the integer that is the greatest common divisor of two or more integers.

Example:

igcd(24,36) → 12

lcm Lowest Common Multiple

Syntax:

lcm(Intgr1, Intgr2, ...) or

lcm(Poly1, Poly2, ...) or

lcm(Rational1, Rational2, ...)

Returns the lowest common multiple of two or more polynomials of several variables, or of two or more
integers, or of two or more rationals.
Examples:

lcm(6,4) → 12

lcm(x²-2*x+1,x^3-1) → (x-1)*(x³-1)

Prime The Prime sub-menu contains operations related to prime numbers.

isprime Primality Test

Syntax:

Page 105 of 239

13217 Help TextHelp Topics Tree
isprime(Integer)

Returns true if the integer is prime; otherwise, returns false.

Examples:

isprime(1999) → 1

isprime(42) → 0

ithprime Ith Prime

Syntax:

ithprime(Integer)

Given an integer n, returns the nth prime number, where n is between 1 and 200,000.

Example:

ithprime(5) → 11

nextprime Next Prime

Syntax:

nextprime(Integer)

Returns the smallest prime number greater than the argument.

Example:

nextprime(12) → 13

prevprime Previous Prime

Syntax:

prevprime(Integer)

Returns the greatest prime number less than the argument.

Example:

prevprime(11) → 7

euler Euler's Totient

Syntax:

euler(Integer);

Euler’s phi (or totient) function

Takes a positive integer and returns the number of positive integers less than or equal to it that are
coprime to it.
Example:

euler(6) → 2

Division The Division sub-menu contains operations related to integer division.

iquo Integer Euclidian Quotient

Syntax:

iquo(Intgr1, Intgr2)

Returns the integer quotient of the Euclidean division of two integers.

Examples:

iquo(148,5) → 29

iquo(25+12*i,5+7*i) → 3-2*i

irem Integer Euclidian Remainder

Syntax:

irem(Intgr1, Intgr2)

Returns the integer remainder from the Euclidean division of two integers.

Examples:

irem(148,5) → 3

irem(25+12*i,5+7*i) → -4+i

powmod Integer Power and Modulo

Syntax:

powmod(a, n, p, [Expr, Var])

For the integers a, n, and p, returns aⁿ mod p.

Examples:

powmod(5,2,13) → 12

powmod(x+1,452,19,x^4+x+1,x) → 6*x^3+5*x²-7*x-7

ichinrem Integer Chinese Remainder

Syntax:

ichinrem([a,p],[b,q]))

Integer Chinese Remainder Theorem for two equations. Takes two lists [a, p] and [b, q] and returns a list
of two integers, [r, n], such that x≡r mod n. In this case, x is such that x≡a mod p and x≡b mod q; also,
n=p*q.
Example:

ichinrem([2,7],[3,5]) → [23,35]

Polynomial Polynomial Menu

The Polynomial sub-menu contains commands related to polynomials.

proot Polynomial Roots

Syntax:

proot(Poly) or proot(Vector)

Returns all computed roots of a polynomial given by its coefficients (may not work if roots are not simple).

Examples:

proot([1,0,-2]) → [−1.41421356237,1.41421356237]

Page 106 of 239

13217 Help TextHelp Topics Tree
proot([1,2,-25,-26,120]) → [-5.,-3.,2.,4.]

coeff Coefficients of Polynomial

Syntax:

coeff(Expr, [Var], [Integer])

Returns the list of coefficients of a polynomial with respect to the second argument or the coefficient of
the term whose degree is Integer.
Examples:

coeff(x^3+2) → [1,0,0,2]

coeff(2*y²-3,y,0) → -3

divis Polynomial Divisors

Syntax:

divis(Poly) or

divis({Poly1, Poly2,…Polyn})

Given a polynomial or list of polynomials, returns a vector containing the divisors of the polynomial.

Example:

divis(x²-1) → [1,x-1,x+1,(x+1)*(x-1)]

factors Polynomial Factor List

Syntax:

factors(Poly) or

factors({Poly1, Poly2, ..., Polyn})

Returns the list of prime factors of a polynomial; each factor followed by its multiplicity.

Examples:

factors(x^4-1) → [x-1,1,x+1,1,x^2+1,1]

factors([x²,x²-1])

gcd Greatest Common Divisor

Syntax:

gcd(Poly1, Poly2,…Polyn) or

gcd(Intgr1, Intgr2,…Intgrn)

Returns the greatest common divisor of two or more polynomials or the greatest common divisor of two
or more integers.
Examples:

gcd(x²-4,x²-5*x+6) → x-2

gcd(45,30) → 15

Create This sub-menu contains commands for creating polynomials, either randomly or with specific properties.

symb2poly Polynomial to Coefficients

Syntax:

symb2poly(Expr,[Var]) or

symb2poly(Expr, {Var1, Var2, ... Varn})

Given a polynomial, returns a vector containing the coefficients of the polynomial. With a variable as
second argument, returns the coefficients of a polynomial with respect to the variable. With a list of
variables as the second argument, returns the internal format of the polynomial. Essentially the inverse of
poly2symb().
Examples:

symb2poly((x+2)*x+3) → [1,2,3]

symb2poly(3*x*y+2*y+1,x,y) → [[3,0],[2,1]]

symb2poly(3*x*y+2*y+1,y,x) → [[3,2],1]

symb2poly(3*x*y+2*y+1,{y,x}) → %%%{3,[1,1]%%%}+%%%{2,[1,0]%%%}+%%%{1,[0,0]%%%}

poly2symb Coefficients to Polynomial

Syntax:

poly2symb(Vector,[Var])

With one vector as argument, returns a polynomial in x with coefficients (in decreasing order) obtained
from the argument vector. With a variable as second argument, returns a similar polynomial in that
variable.
Examples:

poly2symb([1,2,3]) → x*(x+2)+3

poly2symb([1,2,-1],y) → y*(y+2)-1

poly2symb([1,2,3],x=2) → x*(x+2)+3=11

pcoeff Roots to Coefficients

Syntax:

pcoeff(Vector) or pcoeff(List)

Given a list or vector containing the roots of a polynomial, returns a vector containing the coefficients (in
decreasing order) of the univariate polynomial having those roots.

Examples:

pcoeff({1,0,0,0,1}) → [1,-2,1,0,0,0]

pcoeff([1,0,-2]) → [1,1,-2,0]

fcoeff Roots to Polynomial

Syntax:

fcoeff([Root1, Order1, Root2, Order2, ..., Rootn, Ordern])

Page 107 of 239

13217 Help TextHelp Topics Tree
Returns the polynomial described by a list of roots, each followed by its order.

Example:

fcoeff([1,2,0,1,3,-1]) → x*(x-1)²/(x-3)

randpoly Random Polynomial

Syntax:

randpoly([Var], Integer, [Interval, Dist])

Returns a vector of coefficients of a polynomial of variable Var (or x), of degree Integer and where the
coefficients are random integers in the range -99 through 99 with uniform distribution or in an interval
specified by Interval.
Example:

randpoly(t,8,-1..1) returns a vector of 9 random integers, all of them between -1 and 1.

pmin Minimal Polynomial

Syntax:

pmin(Matrix,[Var])

With only a matrix as argument, returns the minimal polynomial in x of a matrix written as a list of its
coefficients. With a matrix and a variable as arguments, returns the minimum polynomial of the matrix
written in symbolic form with respect to the variable.

Example:

pmin([[1,0],[0,1]],x) → x-1

Algebra Among other operations, this menu contains the polynomial equivalents of some of the commands found
in the Integer menu.

quo Quotient

Syntax:

quo(List1, List2, [Var]) or quo(Poly1, Poly2, [Var])

Returns a vector containing the coefficients of the Euclidean quotient of two polynomials. The
polynomials may be written as a list of coefficients or in symbolic form.

Examples:

quo([1,2,3,4],[-1,2]) → poly1[-1,-4,-11]

quo(t^3+2t^2+3t+4,-t+2,t)

rem Remainder

Syntax:

rem(Poly1, Poly2, [Var]) or

rem(List1, List2, [Var])

Returns a vector containing the coefficients of the remainder of the Euclidean quotient of two
polynomials. The polynomials may be written as a list of coefficients or in symbolic form.

Examples:

rem(x^3+2x^2+3x+4,-x+2) → 26

rem([1,2,3,4],[-1,2]) → [26]

degree Degree of Polynomial

Syntax:

degree(Poly)

Returns the degree of a polynomial.

Examples:

degree(x^3+x) → 3

degree([1,0,1,0]) → 3

factor_xn Factor by Degree

Syntax:

factor_xn(Poly)

For a given polynomial in x of degree n, factors out xⁿ and returns the resulting product.

Examples:

factor_xn(x^4-1) → x^4*(1-x^-4)

factor_xn(x^4+12*x^3+54*x^2+108*x+81)

content Coefficient GCD

Syntax:

content(Poly,[Var])

Returns the greatest common divisor (GCD) of the coefficients of a polynomial.

Example:

content(2*x²+10*x+6) → 2

sturmab Zero Count

Syntax:

sturmab(Poly,[Var,Interval)

If Interval real, this returns the number of sign changes in the specified polynomial in the interval. If the
interval is complex, it returns the number of complex roots in the rectangle bounded by the interval. If Var
is omitted, it is assumed to be x.
Examples:

sturmab(x^3-1,x,-2-i,5+3i) → 3

sturmab(x^3-1,x,-2,5) → 1

chinrem Chinese Remainder

Syntax:
Page 108 of 239

13217 Help TextHelp Topics Tree
chinrem(Matrix_2xn)

Given a matrix whose 2 rows each contain the coefficients of a polynomial, returns the Chinese remainder
of those polynomials, also written as a matrix.
Example:

chinrem([[1,2,0],[1,0,1]],[[1,1,0],[1,1,1]]) → [[2,2,1] [1,1,2,1,1]]

Special Syntax:

chinrem(Matrix_2xn)

Given a matrix whose 2 rows each contain the coefficients of a polynomial, returns the Chinese remainder
of those polynomials, also written as a matrix.
Example:

chinrem([[1,2,0],[1,0,1]],[[1,1,0],[1,1,1]]) → [[2,2,1] [1,1,2,1,1]]

cyclotomic Syntax:

cyclotomic(Integer)

Generates a vector representing the nth cyclotomic polynomial.

Example:

cyclotomic(20) → [1,0,-1,0,1,0,-1,0,1]

gbasis Groebner Basis

Syntax:

gbasis([Poly1, Poly2,...], [Var1, Var2, ...])

Given a vector of polynomials and a vector of variables, returns the Groebner basis of the ideal spanned
by the set of polynomials.
Example:

gbasis([x²-y^3,x+y²],[x,y]) → [x*y+x^2,y^2+x]

greduce Groebner Remainder

Syntax:

greduce(Poly1, [Poly2, Poly3,...], [Var1, Var2, ...])

Given a polynomial and both a vector of polynomials and a vector of variables, returns the remainder of
the division of the polynomial by the Groebner basis of the vector of polynomials.

Examples:

greduce(x*y-1,{x²-y²,2*x*y-y²,y^3},{x,y}) → (1/2)*y²-1

greduce(x1²*x3²,[x3^3-1,-x2²-x2*x3-x3²,x1+x2+x3],[x1,x2,x3]) → x2

hermite Hermite Polynomial

Syntax:

hermite(Integer)

Returns the Hermite polynomial of degree n, where n is an integer less than 1556.

Example:

hermite(3) → 8*x³-12*x

lagrange Lagrange Polynomial

Syntax:

lagrange([X1, X2,... Xn], [Y1, Y2, ... Yn]) or

lagrange(Matrix)

Given a vector of abscissas and a vector of ordinates, returns the Lagrange polynomial for the points
specified in the two vectors.
This function can also take a matrix as argument, with the first row containing the abscissas and the
second row containing the ordinates. Returns the polynomial of degree n-1 such that P(xk)=yk, for k=0, 1,
…, n-1.
Example:

lagrange([[1,3],[0,1]]) → (1/2)*(x-1)

laguerre Laguerre Polynomial

Syntax:

laguerre(Integer)

Given an integer n, returns the Laguerre polynomial of degree n.

Example:

laguerre(2) → -a*x+1/2*a^2+1/2*x^2+3/2*a-2*x+1

legendre Legendre Polynomial

Syntax:

legendre(Integer)

Given an integer n, returns the Legendre polynomial of degree n.

Example:

legendre(4) → 35/8*x^4-15/4*x^2+3/8

lll_reduce LLL Reduction

Syntax:

lll_reduce(Matrix)

Implementation of the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm. Takes as argument
an invertable matrix with integer coefficients.
Returns (S, A, L, O) such that:

• the rows of S is a short basis of the Z-module generated by the rows of M

• A is the change-of-basis matrix from the short basis to the basis defined by the rows of M(A*M=S)

• L is a lower triangular matrix and the modulus of it’s non diagonal coefficients are less than 1/2

Page 109 of 239

13217 Help TextHelp Topics Tree
• O is a matrix with orthogonal rows such that L * O = S

Example:

lll_reduce([[1234,3452,4521],[3425,2241,1543],[5643,3425,8721]])

nop No Operation

The no-operation CAS function. On evaluation, no operation will happen.

This function can be useful for some advanced use cases in CAS function programming.

tchebyshev1 Chebyshev Tn

Syntax:

tchebyshev1(Integer)

Returns the nth Tchebyshev polynomial of the first kind.

Example:

tchebyshev1(3) → 4*x³-3*x

tchebyshev2 Chebyshev Un

Syntax:

tchebyshev2(Integer)

Returns the nth Tchebyshev polynomial of the second kind.

Example:

tchebyshev2(3) → 8*x³-4*x

gcd Greatest Common Divisor

Syntax:

gcd(Poly1, Poly2) or

gcd(Integer1, Integer2)

Returns the greatest common divisor of 2 polynomials of several variables. Can also be used as integer
gcd.
Examples:

gcd(x²-4,x²-5*x+6) → x-2

gcd(45,30) → 15

is_cycle is_cycle Function

Syntax:

is_cycle(list)

Tests whether or not list is a cycle. Returns 1 if it is, and 0 otherwise.

Examples:

is_cycle([2,1,3,5]) → 1

is_cycle([2,0,3,2]) → 0

is_permu is_permu Function

Syntax:

is_permu(list)

Tests whether or not list is a permutation. Returns 1 if it is, and 0 otherwise.

Examples:

is_permu([3,1,5,4,2]) → 1

is_permu([3,1,5,4]) → 0

groupermu Syntax:

groupermu(permutation1,permutation2)

Returns the group of permutations generated by permutation1 and permutation2.

Example:

groupermu([2,1],[2,3,1])

lcm Lowest Common Multiple

Syntax:

lcm(Intgr1, Intgr2, ...) or

lcm(Poly1, Poly2, ...) or

lcm(Rational1, Rational2, ...)

Returns the lowest common multiple of two or more polynomials of several variables, or of two or more
integers, or of two or more rationals.
Examples:

lcm(6,4) → 12

lcm(x²-2*x+1,x^3-1) → (x-1)*(x³-1)

Plot Plot Menu

The Plot menu contains operations that allow drawing plots in the CAS.

plotcontour Plot Contour

Syntax:

plotcontour(Expr,[LstVar],[LstVal])

Draws contour-lines z=z_min, …z=z_max of the surface z=Expr, where the contour-lines are defined by
the 3rd argument. Used in the Geometry app Plot or Symbolic views or CAS view.

Example:

plotcontour(x²+2*y²-2,[x,y],[1.0,2.0,3.0]) draws three contour-lines for the given expression

plotfunc Plot Function

Syntax:

plotfunc(Expr)

Page 110 of 239

13217 Help TextHelp Topics Tree
Used in the Geometry app Plot or Symbolic views, or in CAS view. Draws the plot of a function, given an
expression in the independent variable x. Note the use of lowercase x.

Example:

plotfunc(3*sin(x)) draws the graph of y=3*sin(x).

plotimplicit Plot Implicit

Syntax:

plotimplicit(Expr, [XIntrvl, YIntrvl])

Used in the Geometry app Plot or Symbolic views, or CAS view. Plots an implicitly defined curved from
Expr (in x and y). Specifically, plots Expr=0. Note the use of lowercase x and y. With the optional x-interval
and y-interval, plots only within those intervals.

Examples:

plotimplicit((x+5)²+(y+4)²-1,[x=-6..-4,y=-5..-3])

plotimplicit((x+5)²+(y+4)²-1) plots a circle, centered at the point (-5, -4), with a radius of 1

plotfield Plot Slopefield

Syntax:

plotfield(Expr, VectorVar, [xstep=Val, ystep=Val, Option])

Used in the Geometry app or CAS view. Plots the graph of the slopefield for the differential equation
y’=f(x,y), where f(x,y) is contained in Expr. VectorVar is a vector containing the variables. If VectorVar is of
the form [x=Interval, y=Interval], then the slopefield is plotted over the specified x-range and y-range.
Given xstep and ystep values, plots the slopefield segments using these steps. If Option is ‘normalize’,
then the slopefield segments drawn are equal in length.

Example:

plotfield(x*sin(y),[x=-6..6,y=-6..6],normalize) draws the slopefield for y'=x*sin(y), from -6 to 6 in both
directions, with segments that are all of the same length.

plotode Plot ODE

Syntax:

plotode(Expr, [Var1, Var2, ...], [Val1, Val2. ...], [tstep=Value])

Used in the Symbolic or Plot views of the Geometry app or in CAS view. Draws the solution of the
differential equation y’=f(Va1, Var2, …) that contains as initial condition for the variables Val1, Val2, … The
first argument is the expression f(Var1, Var2, …), the second argument is the vector of variables, and the
third argument is the vector of initial conditions. The optional tstep can be used to control the level of
detail of the plot.

Examples:

plotode(x*sin(y),[x,y],[-2,2]) draws the graph of the solution to y’=x*sin(y) that passes through the point
(–2, 2) as its initial condition.
plotode(5*[-y,x],[t=0..1,x,y],[0,0.3,0.7],tstep=0.5,plan)

plotlist Plot List

Syntax:

plotlist(Matrix)

Used in the Plot or Symbolic views of the Geometry app, or CAS view, this command plots a set of n points
and connects them with segments. The points are defined by a m x 2 matrix, with the abscissas in the first
row and the ordinates in the second row.

Example: plotlist([[0,3],[2,1],[4,4],[0,3]]) draws a triangle

App Menu Toolbox App Menu

The Toolbox App menu lists the app-specific functions.

User Menu Toolbox User Menu

The Toolbox User menu lists all the functions and programs you have created yourself. These will be
grouped together under the name of the source file that contains the exported variables or functions.

Catlg Menu Toolbox Catalog Menu

The Toolbox Catalog menu lists all the functions and commands in the system.

On the right side of the Catalog header is a small information icon (i). Tap the icon to see the number of
each type of function currently defined on your HP Prime (CAS, App, User, and so on).

A-E Function Catalog A-E

Toolbox function catalog A-E

:= Assign

Syntax:

variable := object

Assigns object to variable.

Examples:

A := 3 stores the value 3 in the variable A

F1 := 3-X makes F1(X)=3-X

M5 := [1, 2] stores a vector in M5

a2q Syntax:

a2q(Matrix, [Var1, Var2….])

Given a symmetric matrix and a vector of variables, returns the quadratic form of the matrix using the
variables in the vector.
Example:

a2q([[1,2],[4,4]],[x,y]) → 6*x*y+x^2+4*y^2

Page 111 of 239

13217 Help TextHelp Topics Tree
abcuv Syntax:

abcuv(Poly_A,Poly_B,Poly_C,[Var])

Given three polynomials A, B, and C, returns U and V such that A*U+B*V=C. With a variable as the final
argument, U and V are expressed in terms of that variable (if needed); otherwise, x is used.

Example:

abcuv(x²+2*x+1,x²-1,x+1) → [1/2,-1/2]

about Syntax:

about(Var)

Returns the hypothesis made with the assume and additionally commands on the variable Var.

Example

about(n) returns any conditions imposed on the variable n.

ABS Absolute Value

Syntax:

ABS(expr) or

ABS(matrix)

For numerical arguments, returns the absolute value of the expression.

For matrix arguments, returns the Frobenius (Euclidean) norm of the array.

Examples:

ABS(-3.14) → 3.14

ABS([[1,2],[3,4]]) → 5.47722557505

ABS(2-3*i) → 3.60555127546

CAS(ABS([[1,2],[3,4]])) → √30

abscissa Syntax:

abscissa(Point) or

abscissa(Vector)

Returns the abscissa of a point or a vector.

Examples:

abscissa(point(1+2*i)) → 1

abscissa(point(1,2,3))

ACOS Inverse Cosine

Syntax:

ACOS(Value)

Returns the inverse cosine of Value.

The output depends on the Angle Measure setting in Home Settings, CAS Settings, or Symbolic Setup.

Example:

ACOS(0.5) → 60 (Degrees mode)

ACOS(0.833730025131-0.988897705763*i) → 1+i

ACOS({0.5,1}) → {60,0} (Degrees mode)

acos2asin Syntax:

acos2asin(Expr)

Replaces arccos(x) by π/2-arcsin(x) in the argument Expr.

Examples:

acos2asin(acos(x)+asin(x)) → π/2-asin(x)+asin(x)

acos2asin(2*acos(x))

acos2atan Syntax:

acos2atan(Expr)

Replaces arccos(x) by π/2-arctan(x/√(1-x²)) in the argument.

Examples:

acos2atan(2*acos(x)) → 2*(π/2-atan(x/(√(1-x²))))

acos2atan(acos(√(1-x²))+acos(x))

ACOSH Inverse Hyperbolic Cosine

Syntax:

ACOSH(value)

Inverse Hyperbolic Cosine: COSH^-1 (X)

Examples:

ACOSH(1.54308063482) → 1

ACOSH(0.833730025131+0.988897705763*i) → 1+i

ACOSH({1,1.54308063482}) → {0,1}

ACOT Arc Cotangent

Syntax:

ACOT(value)

Inverse Cotangent: COT^-1 (X)

Example:

ACOT(1) → 45 (Degrees mode)

ACOT(0.217621561854-0.868014142896*i) → 1+i

ACOT({1,0}) → {45,90} (Degrees mode)

ACSC Arc Cosecant

Page 112 of 239

13217 Help TextHelp Topics Tree
Syntax:

ACSC(value)

Inverse Cosecant: CSC^-1 (X)

Example:

ACSC(1) → 90 (Degrees mode)

ACSC(0.621518017169-0.303931001627*i) → 1+i

ACSC({2,1}) → {30,90} (Degrees mode)

ADDCOL Add Column

Syntax:

ADDCOL(matrixname, vector, column_number)

Inserts values from vector into a column before column_number in the specified matrix. The size of vector
must be the same as the number of rows in the matrix matrixname.

Examples:

ADDCOL([[1,3],[4,6]],[2,5],2) → [[1,2,3],[4,5,6]]

ADDCOL([[1,3],[4,6]],{[2,5],[3,4]},{2,1}) → {[[1,2,3],[4,5,6]],[[3,1,3],[4,4,6]]}

ADDCOL({[[1,3],[4,6]],[[1,9],[5,6]]},[2,5],2) → {[[1,2,3],[4,5,6]],[[1,2,9],[5,5,6]]}

ADDCOL({[[1,3],[4,6]],[[1,9],[5,6]]},{[2,5],[3,4]},{2,1}) → {[[1,2,3],[4,5,6]],[[3,1,9],[4,5,6]]}

additionally Syntax:

additionally(Expr)

Used in programming with assume() to state an additional assumption about a variable.

Example:

assume(n,integer); additionally(n>5); → [DOM_INT, n]

ADDROW Add Row

Syntax:

ADDROW(matrixname, vector, row_number)

Inserts values from vector into a row before row_number in the specified matrix.

The size of vector must be the same as the number of columns in the matrix matrixname.

Examples:

ADDROW([[1,2],[5,6]],[3,4],2) → [[1,2],[3,4],[5,6]]

ADDROW([[1,2],[5,6]],{[3,4],[2,5]},2) → {[[1,2],[3,4],[5,6]],[[1,2],[2,5],[5,6]]}

ADDROW({[[1,3],[4,6]],[[1,9],[5,6]]},[2,5],2) → {[[1,3],[2,5],[4,6]],[[1,9],[2,5],[5,6]]}

ADDROW({[[1,3],[4,6]],[[1,9],[5,6]]},{[2,5],[3,4]},{2,1}) → {[[1,3],[2,5],[4,6]],[[3,4],[1,9],[5,6]]}

adjoint_matrix Adjoint Matrix

Syntax:

adjoint_matrix(matrix)

Returns the characteristic polynomial of A and the comatrix of A-xI.

Example:

adjoint_matrix([[1,i],[2,3]])

affix Syntax:

affix(Point) or affix(Vector)

Returns the coordinates of a point or both the x- and y-lengths of a vector as a complex number.

Examples:

affix(point(3,2)) returns 3+2*i

If GA is a point at (1, -2), then affix(GA) returns 1-2*i.

algvar Syntax:

algvar(Expr)

Returns a matrix of the symbolic variable names used in an expression. The list is ordered by the algebraic
extensions required to build the original expression.
Example:

algvar(√x+y) → [[y],[x]]

ALOG Common Antilogarithm

Syntax:

ALOG(value)

Common exponential: 10^x (antilogarithm)

Returns the result of raising 10 to the power of value.

Examples:

ALOG(2) → 100

ALOG(2+3*i) → 81.121465284+58.4748481843*i

ALOG({2,4}) → {100,10000}

alog10 Syntax:

alog10(Expr)

Function x->10^x.

Example:

alog10(3) → 1000

altitude Syntax:

altitude(point1, point2, point3)

Page 113 of 239

13217 Help TextHelp Topics Tree
Given three non-collinear points, draws the altitude of the triangle defined by the three points that passes
through the first point. The triangle does not have to be drawn.

Examples:

altitude(point(6,6), point(-2,3), point(5,1)) draws a line passing through point (6,6) that is perpendicular to
the line passing through both points (-2,3) and (5,1).

AND Logical AND

Syntax:

Value1 AND Value2

For Real numbers, returns 1 if both Value1 and Value2 are non-zero; otherwise returns 0.

For Integers and Strings, AND is performed bitwise, returning 1 if corresponding bits are both 1, otherwise
0.
Examples:

3 AND 2 → 1

0 AND 1 → 0

0 AND 0 → 0

{3,0,0} AND {2,1,0} → {1,0,0}

75_mph > 120_kph AND 180_deg ≠ 3.14159_rad → 1

#CC44h AND #44CCh → #4444h

"a" AND "b" → "`"

X:=0; 1 AND (X:=3); 0 AND (X:=5); X → 3

7 > 3 AND 5 < 9 AND 3 ≠ 2 → 1

angle Syntax:

angle(Vertex, Point2, Point3)

Returns the measure of a directed angle. The first point is taken as the vertex of the angle and the next
two points in order give the measure and orientation.
Examples:

angle(i,1,1+i,"b") returns the measure of∡BAC

angleat Syntax:

angleat(point1, point2, point3, point4)

Used in Symbolic view of the Geometry app.

Given the three points of an angle and a fourth point as a location, displays the measure of the angle
defined by the first three points. The measure is displayed, with a label, at the location in the Plot view
given by the fourth point. The first point is the vertex of the angle.

Example:

(in degree mode)

angleat(point(0, 0), point(2*√3, 0), point(2*√3, 3), point(-6, 6)) displays “appoint(0,0)=40.9” at point (–6,6)

Ans Last Answer

Syntax:

Ans

In Home view, Ans returns the result of the last calculation made in Home view to its full precision. The
variable Ans is different from the numbers in Home's history. A value in Ans is stored internally with the
full precision of the calculated result, whereas the displayed numbers match the display mode. Ans(n)
returns the nth entry in the Home view history.

In CAS view, Ans returns the last result in the CAS history and Ans(n) does not recall the nth item in
history. Here, Ans(n) will attempt to substitute n for x (or the default variable) in the last item in history
and return the result. In CAS view, if Ans is a matrix, Ans(m,n)returns the element in row m and column n.

append Syntax:

append((List, Element) or

append(Vector, Element)

Append an element to a list or vector.

Example:

append([1,2,3],4) → [1,2,3,4]

apply Syntax:

apply(Var→f(Var), Vector) or

apply(Var→f(Var), Matrix)

Returns a vector or matrix containing the results of applying the function f to the elements in the vector
or matrix.
Examples:

apply(x->x^3,[1,2,3]) → [1,8,27]

apply(x->x+1,[[1,2,3],[1,2,3]],matrix)

approx Syntax:

approx(Expr, [Int])

Used in the CAS to return the numerical evaluation of the first argument with the number of digits as the
second argument.
Examples:

approx(2/3) → 0.666666666667

approx(1/3,4) → 0.3333

ARC Draw Arc

Page 114 of 239

13217 Help TextHelp Topics Tree
Syntax:

ARC(G, x, y, r or {rx, ry}, [∡1, ∡2], [border_color, [fill_color]])

Draws a circle on GROB G, centered at (x,y), with radius r (in pixels). If r is replaced by a list {rx, ry} then
the Arc becomes an ellipse centered at (x,y) with radius in the x dimension of rx and in the y dimension of
ry.
If ∡1 and ∡2 are specified, draws an arc from ∡1 to ∡2 using the current angle mode.

Example:

Demo_ARC

arc Syntax:

arc(Pnt, Pnt, Real,[Var(C)],[Var(r)])

Draws a circle arc given by 2 vertices and the angle at center. Center will be stored in C and the radius in r.

Example:

arc(0,1,π/4,C,r)

ARC_P Draw Arc

Syntax:

ARC_P(G, x, y, r or {rx, ry}, [∡1, ∡2], [border_color, [fill_color]])

Draws a circle on GROB G, centered at (x,y), with radius r (in pixels). If r is replaced by a list {rx, ry} then
the Arc becomes an ellipse centered at (x,y) with radius in the x dimension of rx and in the y dimension of
ry.
If ∡1 and ∡2 are specified, draws an arc from ∡1 to ∡2 using the current angle mode.

Example:

Demo_ARC_P

arcLen Arc Length

Syntax:

arcLen(Expr, Real1, Real2)

Returns the length of the arc of a curve between two points on the curve. The curve is an expression, the
independent variable is declared, and the two points are defined by values of the independent variable.

This command can also accept a parametric definition of a curve. In this case, the expression is a list of 2
expressions (the first for x and the second for y) in terms of a third independent variable.

Examples:

arcLen(x²,x,-2,2) → 9.29…

arcLen({sin(t),cos(t)},t,0,π/2) → 1.57…

area Syntax:

area(Circle) or

area(Polygon) or

area(Function, Value1, Value2)

Returns the area of a circle or polygon. Can also return the area under a function between two x-values.

Examples:

If GA is defined to be the unit circle, then area(GA) returns π.

If GA is defined to be plotfunc(4-x²/4), then area(GA,-4,4) returns 64/3 or 21.333…

In CAS view, area(4-x²/4,x=-4..4) returns 64/3 as well.

areaat Syntax:

areaat(Polygon, Point) or

areaat(Circle, Point)

Used in the Symbolic view of the Geometry app.

Displays the algebraic area of a polygon or circle. The measure is displayed, with a label, at the given point
in Plot view.
Example:

areaat(circle(x²+y²=1),point(-4,4)) displays “acircle(x²+y²=1)= π” at point (-4,4))

ARG Argument

Syntax:

ARG(x+yi)

Finds the angle determined by a complex number.

Example:

ARG(3+3i) → 45 (degrees mode)

ASC Syntax:

ASC(String)

Returns a list containing the numerical Unicode values of String.

Examples:

ASC("AB") → {65,66}

ASC("ʥ♘♕♤♦☎") → {677,9816,9813,9828,9830,9742}

ASC({"HE","LLO"}) → {{72,69},{76,76,79}}

ASEC Arc Secant

Syntax:

ASEC(value)

Inverse Secant: SEC^-1 (X)

Example:

ASEC(1) → 0 (Degrees mode)

Page 115 of 239

13217 Help TextHelp Topics Tree
ASEC(0.498337030555+0.591083841721*i) → 1+i

ASEC({2,1}) → {60,0} (Degrees mode)

ASIN Inverse Sine

Syntax:

ASIN(Value)

Returns the inverse sine of Value.

The output depends on the Angle Measure setting in Home Settings, CAS Settings, or Symbolic Setup.

Example:

ASIN(1) → 90 (Degrees mode)

ASIN(1.29845758142+0.634963914785*i) → 1+i

ASIN({0.5,1}) → {30,90} (Degrees mode)

asin2acos Syntax:

asin2acos(Expr)

Replaces arcsin(x) by π/2-arccos(x) in Expr.

Example:

asin2acos(acos(x)+asin(x)) → π/2-acos(x)+acos(x)

asin2atan Syntax:

asin2atan(Expr)

Replaces arcsin(x) by arctan(x/√(1-x²)) in Expr.

Examples:

asin2atan(2*asin(x)) → 2*atan(x/(√(1-x²)))

asin2atan(asin(√(1-x²))+asin(x))

ASINH Inverse Hyperbolic Sine

Syntax:

ASINH(value)

Inverse Hyperbolic Sine: SINH^-1 (X)

Examples:

ASINH(1.17520119365) → 1

ASINH(0.634963914785+1.29845758142*i) → 1+i

ASINH({0,1.17520119365}) → {0,1}

assume Syntax:

assume(Expr)

Make an assumption on a variable.

Example:

assume(a>0) → a . Now solve(a²=9,a) will return {3} instead of {-3,3}.

ATAN Inverse Tangent

Syntax:

ATAN(Value)

Returns the inverse tangent of Value.

The output depends on the Angle Measure setting in Home Settings, CAS Settings, or Symbolic Setup.

Example:

ATAN(1) → 45 (Degrees mode)

ATAN(0.27175258532+1.08392332734*i) → 1+i

ATAN({1,0}) → {45,0} (Degrees mode)

atan2acos Syntax:

atan2acos(Expr)

Replaces arctan(x) by π/2-arccos(x/√(1+x²)) in the argument.

Example:

atan2acos(atan(2*x) → π/2-acos((2*x)/√(1+(2*x)²))

ATANH Inverse Hyperbolic Tangent

Syntax:

ATANH(value)

Inverse Hyperbolic Tangent: TANH^-1 (X)

Examples:

ATANH(.761594155956) → 1

ATANH(1.08392332734+0.27175258532*i) → 1+i

ATANH({0,0.46211715726}) → {0,0.5}

atrig2ln Syntax:

atrig2ln(Expr)

Returns an expression with inverse trigonometric functions rewritten using the natural logarithm function.

Examples:

atrig2ln(atan(x)) → 0.5*i*ln((x+i)/(-x+i))

atrig2ln(acos(x)) → −i*ln(x+√(x²-1))

barycenter barycenter Function

Syntax:

barycenter([Point1, Weight1], [Point2, Weight2],…,[Pointn, Weightn])

Page 116 of 239

13217 Help TextHelp Topics Tree
Calculates the hypothetical center of mass of a set of points, each with a given weight (a real number).
Each point, weight pair is enclosed in square brackets as a vector.

Examples:

barycenter([0,1],[1,1],[4,2]) → point(9/4,0)

barycenter([point(-1),1],[point(1+i),2],[point(1-i),1] → point(1/2,1/4)

basis Syntax:

basis(Lst(vector1,..,vectorn))

Extract a basis from a spanning set of vectors.

Example:

basis([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) → [[-3,0,3],[0,-3,-6]]

BEGIN END BEGIN END Block

Syntax:

BEGIN commands; END;

Defines a set of commands to be executed in a block.

Example:

EXPORT SQM1(X)

BEGIN

 RETURN X^2-1;

END;

This program defines a user function named SQM1(X). Entering SQM1(8) returns 63.

bernoulli Bernoulli Number

Syntax:

bernoulli(n,[variable])

Returns Bernoulli number n, or Bernoulli polynomial n using variable.

Examples:

bernoulli(6) → 1/42

bernoulli(2,x) → x^2-x+1/6

Beta Syntax:

Beta(x, y)

Returns the value of the Beta function for two values, x and y, defined as
Gamma(x)*Gamma(y)/Gamma(x+y).
Example:

Beta(3,2) → 1/12

betad Discrete Beta

Syntax:

betad(α,β,x)

Beta probability density function

Computes the probability density of the beta distribution at x given parameters α and β.

Example:

betad(2.2,1.5,.8) → 1.46143068876

betad_cdf Cumulative beta

Syntax:

betad_cdf(a,b,x,[x2])

Returns the lower-tail probability of the beta probability density function for the value x, given parameters
a and b.
Examples:

betad_cdf(2,1,.2) → 0.04

betad_cdf(2,1,.2,.5) → 0.21

betad_icdf Inverse cumulative beta

Syntax:

betad_icdf(a,b,p)

Returns the value x such that the beta lower-tail probability of x, given parameters a and b, is p.

Example:

betad_icdf(2,1,0.95) → 0.974679434481

BINOMIAL Binomial Probability Density

Syntax:

BINOMIAL(n, p, k)

Binomial probability density function.

Computes the probability of k successes out of n trials, each with a probability of success of p. Note that n
and k are integers with k≤n.
Example:

BINOMIAL(4,0.5,2) → 0.375

BINOMIAL_CDF Cumulative Binomial

Syntax:

BINOMIAL_CDF(n, p, k, [k2])

Cumulative binomial distribution function

Page 117 of 239

13217 Help TextHelp Topics Tree
Returns the probability of k or fewer successes out of n trials, with a probability of success, p for each
trial. Note that n and k are integers with k≤n. With the optional fourth argument k2, returns the
cumulative probability for the two k-values; that is, the probability of between k and k2 successes.

Examples:

BINOMIAL_CDF(20,0.5,6) → 0.05765914917

BINOMIAL_CDF(20,0.5,6,12) → 0.847717285156

BINOMIAL_ICDF Inverse Cumulative Binomial

Syntax:

BINOMIAL_ICDF(n, p, q)

Inverse cumulative binomial distribution function

Returns the number of successes, k, out of n trials, each with a probability of p, such that the probability
of k or fewer successes is q.
Example:

BINOMIAL_ICDF(4,0.5,0.6875) → 2

bisector Syntax:

bisector(Point1, Point2, Point3)

Given three points, creates the bisector of the angle defined by the three points whose vertex is at the
first point. The angle does not have to be drawn in the Plot view.

Examples:

bisector(0,-4*i,4)

bisector(0,1,i)

bisector(GA,GB,GC) draws the bisector of∡BAC.

bisector(0,-4i,4) draws the line given by y=–x

BITAND Bitwise AND

Syntax:

BITAND(int1, int2, … intn)

Returns the bitwise logical AND of the specified integers.

Example:

BITAND(20,13) → 4

BITNOT Bitwise NOT

Syntax:

BITNOT(int)

Returns the bitwise logical NOT of the specified integer.

Example:

BITNOT(47) → 549755813840

BITOR Bitwise OR

Syntax:

BITOR(int1, int2, … intn)

Returns the bitwise logical OR of the specified integers.

Example:

BITOR(9,26) → 27

BITSL Bitwise Shift Left

Syntax:

BITSL(int1 [, int2])

Takes one or two integers as input and returns the result of shifting the bits in the first integer to the left
by the number of places indicated by the second integer. If there is no second integer, then the bits in the
first integer are shifted to the left one place.

Examples:

BITSL(28,2) → 112

BITSL(5) → 10

BITSR Bitwise Shift Right

Syntax:

BITSR(int1 [, int2])

Takes one or two integers as input and returns the result of shifting the bits in the first integer to the right
by the number of places indicated by the second integer. If there is no second integer, then the bits in the
first integer are shifted to the right one place.

Examples:

BITSR(112,2) → 28

BITSR(10) → 5

BITXOR Bitwise XOR

Syntax:

BITXOR(int1, int2, … intn)

Returns the bitwise logical exclusive OR of the specified integers.

Example:

BITXOR(9,26) → 19

BLIT Copy GROB

Syntax:

BLIT([trgtG], [dx1, dy1], [dx2, dy2], srcG, [sx1, sy1], [sx2, sy2], [c], [alpha])

Page 118 of 239

13217 Help TextHelp Topics Tree
Copies the region of graphic srcG between point (sx1, sy1) and (sx2, sy2) into the region of trgtG between
points (dx1, dy1) and (dx2, dy2). Pixels from srcG that are color c are not copied. alpha is a number from 0
(transparent) to 255 (opaque) which represent the transparency (alpha channel) of the source bitmap.

The defaults for the optional arguments are:

 trgtG = G0

 srcG = G0

 sx1, sy1 = srcGRB top left corner

 sx2, sy2 = srcGRB bottom right corner

 dx1, dy1 = trgtGRB top left corner

 dx2, dy2 = calculated so destination area is the same as source area

 c = all pixel colors

 alpha= 255 (fully opaque)

Note: when using the c and alpha options, it is highly recommended to specify the source x/y coordinates
in order to make sure that the system can distinguish what each parameter is.

Example:

Demo_BLIT

BLIT_P Copy GROB

Syntax:

BLIT_P([trgtG], [dx1, dy1], [dx2, dy2], srcG, [sx1, sy1], [sx2, sy2], [c], [alpha])

Copies the region of graphic srcG between point (sx1, sy1) and (sx2, sy2) into the region of trgtG between
points (dx1, dy1) and (dx2, dy2). Pixels from srcG that are color c are not copied. alpha is a number from 0
(transparent) to 255 (opaque) which represent the transparency (alpha channel) of the source bitmap.

The defaults for the optional arguments are:

 trgtG = G0

 srcG = G0

 sx1, sy1 = srcGRB top left corner

 sx2, sy2 = srcGRB bottom right corner

 dx1, dy1 = trgtGRB top left corner

 dx2, dy2 = calculated so destination area is the same as source area

 c = all pixel colors

 alpha= 255 (fully opaque)

Note: when using the c and alpha options, it is highly recommended to specify the source x/y coordinates
in order to make sure that the system can distinguish what each parameter is.

Example:

Demo_BLIT_P

blockmatrix Block Matrix

Syntax:

blockmatrix(m,n,{matrix_blocks})

Returns the matrix of size m*n created from a vector of matrix_blocks of count m*n.

Example:

blockmatrix(2,2,{makemat(1,2,2),makemat(2,2,2),makemat(3,2,2),makemat(4,2,2)}) →
[[1,1,2,2],[1,1,2,2],[3,3,4,4],[3,3,4,4]]

bounded_function Returns the argument returned by a limit function thereby indicating that the function is bounded.

BREAK Break Loop

Syntax:

BREAK [n];

Exits from expression local loop structure.

Example:

FOR A FROM 1 TO 10 DO

 B:= (A+3) MOD 5

 IF B==1 THEN BREAK;

 END;

END;

If n is specified, allow to exit n loop structures.

Example:

Demo_BREAK

breakpoint Syntax:

breakpoint(Intg)

Adds a breakpoint.

Example:

breakpoint(1)

B→R Base to Real

Syntax:

B→R(#integer[m])

Converts an integer in base m to a decimal integer (base10).

The base marker m can be b (for binary), o (for octal), or h (for hexadecimal). If m is omitted, the current
system base is assumed.

Page 119 of 239

13217 Help TextHelp Topics Tree
Examples:

B→R(#1101b) → 13

B→R(#1101) → 4353 (If system base is hexadecimal)

B→R({#101h,#101o,#101b}) → {257,65,5}

c1oc2 Syntax:

c1oc2(cycle1,cycle2)

Returns the permutation product of cycle1 and cycle2.

Example:

c1oc2([4,1,2],[1,3]) → [3,4,2,1]

c1op2 Syntax:

c1op2(cycle,permutation)

Returns the permutation product of cycle and permutation.

Example:

c1op2([4,1,2],[3,2,4,1]) → [3,4,1,2]

canonical_form Canonical Form

Syntax:

canonical_form(Trinomial,[Var])

Canonical form of a second degree polynomial.

Examples:

canonical_form(2*x²-12*x+1) → 2*(x-3)²-17

canonical_form(2*a²-12*a+1,a)

CAS CAS Evaluation

Syntax:

CAS(expression) or

CAS.function(...) or

CAS.variable[(...)]

Evaluate an expression or variable using the CAS.

Note that outputs in numerical mode are transformed into strings or lists of expressions for symbolic
matrices.

CASE Starts a "CASE … END" branch structure.

Syntax:

 CASE

 IF test1 THEN commands1 END

 IF test2 THEN commands2 END

 …

 IF testN THEN commandsN END

 [DEFAULT] [commandsD]

 END;

Evaluates test1. If true, executes commands1 and ends the CASE. Otherwise, evaluates test2. If true,
executes commands2. Continues evaluating tests until a true is found. If no true test is found, executes
commandsD, if provided.
Example:

Demo_CASE

cat Concatenate

Syntax:

cat(Obj1, Obj2, ..., Objn)

Evaluates the objects in a sequence, then returns them concatenated as a string.

Example:

cat("aaa",c,12*3) → "aaac36"

cauchy Cauchy Density

Syntax:

cauchy([x0],[a],x)

Cauchy probability density function

Computes the probability density of the Cauchy distribution at x given parameters x0 and a. By default, x0
is 0 and a is 1.
Examples:

cauchy(1) → 1/2/π

cauchy(0,1,1) → 1/2/π

cauchy_cdf Cumulative Cauchy

Syntax:

cauchy_cdf(x0,a,x,[x2])

Returns the lower-tail probability of the Cauchy probability density function for the value x, given
parameters x0 and a.
Examples:

cauchy_cdf(0,2,2.1) → 0.757762116818

cauchy_cdf(0,2,2.1,3.1) → 0.0598570954516

cauchy_icdf Inverse Cumulative Cauchy

Syntax:

cauchy_icdf(x0,a,p)

Returns the value x such that the Cauchy lower-tail probability of x, given parameters x0 and a, is p.

Page 120 of 239

13217 Help TextHelp Topics Tree
Example:

cauchy_icdf(0,2,.95) → 12.6275030293

CEILING Syntax:

CEILING(value)

Least integer greater than or equal to value.

Examples:

CEILING(3.2) → 4

CEILING(-3.2) → -3

CEILING({3.2,-3.2}) → {4,−3}

center Syntax:

center(Circle)

Returns the center of a circle. The circle can be defined by the circle command or by name (e.g., GC).

Examples:

center(circle(x²+y²-x-y)) → point(1/2,1/2)

center(circumcircle(0,1,1+i)) → point(1/2,1/2)

cFactor Complex Factor

Syntax:

cFactor(Expr)

Returns an expression factorized over the complex field (on Gaussian integers if there are more than two).

Examples:

cFactor(x²*y+y) → y*(x+i)*(x-i)

cFactor(x²*y²+y²+2*x²+2) → (x+i)*(x-i)*(y+√2*i)*(y+√2*(−i))

changebase Equivalent Matrix

Syntax:

changebase(A,P)

changebase takes as argument a matrix A and a change-of-basis matrix P and creates an equivalent
matrix, B, by multiplying them..
changebase returns the matrix B such that B=inv(P)*A*P.

Example:

changebase([[1,1],[0,1]],[[1,2],[3,4]]) → [[-5,-8],[9/2,7]]

CHAR Syntax:

CHAR(List) or CHAR(Vector) or CHAR(Integer)

Returns the string corresponding to the numerical Unicode character codes in List or Vector, or the
numerical Unicode character code of Integer.
Examples:

CHAR(65) → "A"

CHAR({82,77,72}) → "RMH"

CHAR({#261Eh,#265Eh,#266Ch,#266Dh,#2680h,#2685h}) → "☞♞♬♭"

charpoly Characteristic polynomial

Syntax:

charpoly(Matrix,[Var])

Returns the coefficients of the characteristic polynomial of a matrix. With only one argument, the variable
used in the polynomial is x. With a variable as second argument, the polynomial returned is in terms of
that variable.
Examples:

charpoly([[1,2],[3,4]], z) → z²-5*z-2

charpoly([[1,2,3],[1,3,6],[2,5,7]],z)

chinrem Chinese Remainder

Syntax:

chinrem(Matrix_2xn)

Given a matrix whose 2 rows each contain the coefficients of a polynomial, returns the Chinese remainder
of those polynomials, also written as a matrix.
Example:

chinrem([[1,2,0],[1,0,1]],[[1,1,0],[1,1,1]]) → [[2,2,1] [1,1,2,1,1]]

CHISQUARE χ² Density

Syntax:

CHISQUARE(d, x)

χ² (Chi-squared) probability density function

Computes the probability density of the χ² distribution at x, given d degrees of freedom.

Example:

CHISQUARE(2,3.2) → 0.100948258997

CHISQUARE_CDF Cumulative χ²

Syntax:

CHISQUARE_CDF(d, x, [x2])

Cumulative χ² (Chi-squared) distribution function

With two values (n and x) returns the lower-tail probability of the χ² probability density function for the
value x, given d degrees of freedom. With the optional third argument x2, returns the area under the χ²
probability density function between the two x-values.

Page 121 of 239

13217 Help TextHelp Topics Tree
Examples:

CHISQUARE_CDF(2,6.3) → 0.957147873133

CHISQUARE_CDF(2,2,6.3) → 0.325027314304

CHISQUARE_ICDF Inverse Cumulative χ²

Syntax:

CHISQUARE_ICDF(d, p)

Inverse cumulative χ² (Chi-squared) distribution function

Returns the value x such that the χ² lower-tail probability of x, with d degrees of freedom, is p.

Example:

CHISQUARE_ICDF(2,0.957147873133) → 6.3

chisquaret χ² Test of Equality

Syntax:

chisquaret(Data,[distribution_law],[distribution_paramaters])

χ² test of equality between 2 (or n) samples, or between 1 sample and distribution_law.

Examples:

chisquaret([57,54])

chisquaret([1,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,0,0,0],[.4,.6])

chisquaret([57,30],[.6,.4])

chisquaret([17,15,12,15],[15,13,13,14])

chisquaret(randvector(1000,binomial,10,.5),binomial)

chisquaret(randvector(1000,binomial,10,.5),binomial,11,.5)

chisquaret(randvector(1000,normald,0,.2),normald)

chisquaret([11,16,17,22,14,10],[1/6,1/6,1/6,1/6,1/6,1/6])

cholesky Syntax:

cholesky(matrix)

For a numerical symmetric matrix A, returns the matrix L such that A=L*tran(L).

Example:

cholesky([[3,1],[1,4]]) → [[3/√(3),0],[1/√(3),(1/3)*√(33)]]

CHOOSE Choose Box

Syntax:

CHOOSE(var, “title”, “item1”, “item2”,[…"item14"]) or

CHOOSE(var,"title",{"item1"..."itemN"})

Displays a choose box with the given "title" and containing items with the strings "item1", etc.

If the user chooses an object, var is updated to contain the number of the selected object (an integer, 1, 2,
3, …) and CHOOSE returns true (non zero).
If the user exits without choosing, var is not changed and CHOOSE returns false (0).

Examples:

CHOOSE(A, "Pick a Number",1,2,3,4)

CHOOSE(B, "Direction", {"Up","Left","Right","Down"})

CHOOSEDATE Date Chooser

Syntax:

CHOOSEDATE(var, [“title”], [min_date], [max_date])

Displays a calendar date chooser with the optional title displayed. An optional date range may be
specified between min_date and max_date. If min_date or max_date is not given, any valid date for the
system is allowed to be chosen. The existing date stored in var will be selected if valid and within
min_date and max_date, else the first date within the specified range, or the current system date will be
selected.
If the user chooses a date, var is updated to contain the selected date in form YYYY.MMDD and
CHOOSEDATE returns true (non zero).
If the user exits without choosing, var is not changed and CHOOSEDATE returns false (0).

Examples:

CHOOSEDATE(A)

CHOOSEDATE(A,"My Date")

CHOOSEDATE(A,"My Date",2017.1201)

CHOOSEDATE(A,"My Date",2017.1201,2017.1231)

CHOOSEDATE(A,2017.1201,2017.1231)

chrem Chinese Remainders

Syntax:

chrem(List1, List2) or

chrem(Vector1, Vector2)

Returns a vector containing the Chinese remainders for two sets of integers, contained in either two
vectors or two lists.
Examples:

chrem([2,3],[7,5]) → [-12,35]

chrem([2*x+1,4*x+2,6*x-1,x+1],[3,5,7,11])

circle Syntax:

circle(Point1, Point2) or

circle(Point1, Point2-Point1) or

Page 122 of 239

13217 Help TextHelp Topics Tree
circle(equation)

Draws a circle, given the endpoints of the diameter, or a center and radius, or an equation in x and y.

Examples:

circle(GA,GB) draws the circle with diameter AB.

circle(GA,GB-GA) draws the circle with center at point A and radius AB.

circle(x²+y²=1) draws the unit circle.

This command can also be used to draw a clockwise arc.

circle(GA,GB,0,π/2) draws a quarter-circle with diameter AB.

circumcircle Syntax:

circumcircle(Point1, Point2, Point3)

Draws the circumcircle of a triangle; that is, the circle circumscribed about a triangle.

Example:

circumcircle(GA,GB,GC) draws the circle circumscribed about ΔABC

coeff Coefficients of Polynomial

Syntax:

coeff(Expr, [Var], [Integer])

Returns the list of coefficients of a polynomial with respect to the second argument or the coefficient of
the term whose degree is Integer.
Examples:

coeff(x^3+2) → [1,0,0,2]

coeff(2*y²-3,y,0) → -3

col Column of Matrix

Syntax:

col(Matrix, Integer) or

col(Matrix, Interval)

Returns the column n or the sequence of the columns n1 … n2 of the matrix A.

Example:

col([[1,2,3],[4,5,6],[7,8,9]],2) → [2,5,8]

colDim Column Dimension

Syntax:

colDim(Matrix)

Returns the number of columns of a matrix.

Examples:

colDim([[1,2,3],[4,5,6]]) → 3

colDim([[1,2],[3,4],[5,6]]) → 2

collect Collect Like Terms

Syntax:

collect(Poly) or

collect(Poly, Var) or

collect({Poly1, Poly2,..., Polyn})

Collects like terms in a polynomial expression (or of a list of polynomial expressions). Factorizes the
results, depending on the CAS settings.
If specified, will collect with respect to Var.

Examples:

collect(x+2*x+1-4) → 3*x-3

collect(x^2-9*x+5*x+3+1) → (x-2)²

collect(a*(b-c)+d*(b-c)) → (-c+b)*(a+d)

collect(a*(b-c)+d*(b-c),a) → b*d-c*d+(b-c)*a

COLNORM Column Norm

Syntax:

COLNORM(matrix)

Finds the maximum value (over all columns) of the sums of the absolute values of all elements in a matrix.

Example:

COLNORM([[1,2],[3,4]]) → 6

colNorm Column Norm

Syntax:

COLNORM(Matrix)

Finds the maximum value (over all columns) of the sums of the absolute values of all elements in a
column.
Examples:

COLNORM([[1,2],[3,-4]]) → 6

COLNORM([[1,2,3,-4],[-5,3,2,1]])

colspace Column Subspace

Syntax:

colspace(matrix,[variable])

Returns a matrix where the columns are a basis of the vector space generated by the columns of the
matrix A. If given, the dimension of this space will be stored into variable.

Examples:

Page 123 of 239

13217 Help TextHelp Topics Tree
colspace([[1,2,3],[1,2,3],[1,2,4],[1,2,5]])

colspace([[1,2,3],[1,3,6],[2,5,9]],d)

COMB Combinations

Syntax:

COMB(n, r)

Returns the number of combinations (without regard to order) of n things taken r at a time: n!/(r!(n-r)!)

Examples:

COMB(5,2) → 10

COMB({5,10,15},{1,2,3}) → {5,45,455}

COMB Combinations

Syntax:

COMB(n, r)

The number of combinations (without regard to order) of n things taken r at a time.

Example:

Suppose you want to know how many ways five things can be combined two at a time.

COMB(5,2) → 10

comDenom Common Denominator

Syntax:

comDenom(Expr,[Var])

Rewrites a sum of rational fractions as a one rational fraction. The denominator of the one rational
fraction is the common denominator of the rational fractions in the original expression. With a variable as
second argument, the numerator and denominator are developed according to it.

Example:

comDenom(1/x+1/y^2+1) → (x*y^2+x+y^2)/(x*y^2)

common_perpendicular Common Perpendicular

Syntax:

common_perpendicular(Line(D1),Line(D2))

Draws the common perpendicular of the lines D1 and D2.

Example:

common_perpendicular(line([0,0,0],[0,5,5]),line([5,0,0],[0,0,5]))

companion Companion Matrix

Syntax:

companion(Poly,Var)

Companion matrix of a polynomial (an=1).

Example:

companion(x^2+5x-7,x) → [[0,7],[1,-5]]

compare Compare Objects

Syntax:

compare(Obj1, Obj2)

Compares two objects and returns 1 if type(Obj1)<type(Obj2) or if type(Obj1)==type(Obj2) and
Obj1<Obj2; otherwise returns 0.
Examples:

compare(1,2) → 1

compare("ab","cd") → 1

complexroot Complex Root

Syntax:

complexroot(Poly, Real, [Complx1, Complx2])

With a polynomial and a real as its two arguments, returns a matrix. Each row of the matrix contains
either a complex root of the polynomial with its multiplicity or an interval containing such a root and its
multiplicity. The interval defines a (possibly) rectangular region in the complex plane where a complex
root lies.
With two additional complex numbers as third and fourth arguments, returns a matrix as described for
two arguments, but only for those roots lying in the rectangular region defined by the diagonal created by
the two complex numbers.
Examples:

complexroot(x^3+1,0.1) → [[-1,1],[[(262144-454047*i)/524288,(524288-
908093*i)/1048576],1],[[(524288+908093*i)/1048576,(262144+454047*i)/524288],1]]
complexroot(x^3+1,0.1,-1,1+2*i) → [[-1,1],[[(524288+908093*i)/1048576,(262144+454047*i)/524288],1]]

CONCAT Concatenate

Syntax:

CONCAT(value1, value2, [..value16]) or

CONCAT(List1, List2) or

CONCAT(List, Item)

Concatenates (joins) items into a list or concatenates two lists.

Examples:

CONCAT({1,2,3},4) → {1,2,3,4}

CONCAT(1,2,3,4) → {1,2,3,4}

CONCAT({1,2},3,{{4,5},6,{7,8}}) → {1,2,3,{4,5},6,{7,8}}

CONCAT Concatenate Objects

Page 124 of 239

13217 Help TextHelp Topics Tree
Syntax:

CONCAT(Obj1, Obj2)

Concatenates two lists or two strings or two sequences or 2 matrices.

Examples:

CONCAT({1,2,3},{4,5,6}) → {1,2,3,4,5,6}

CONCAT([[1,2],[3,4]],[[1,2],[3,4]]) → [[1,2,1,2],[3,4,3,4]]

COND Condition Number

Syntax:

COND(matrix)

Finds the 1-norm (column norm) of a square matrix.

Example:

COND([[1,2],[3,4]]) → 21

conic Syntax:

conic(Expr)

Plots the graph of a conic section defined by an expression in x and y.

Example:

conic(x²+y²-81) draws a circle with center at (0,0) and radius of 9

CONJ Complex Conjugate

Syntax:

CONJ(x+yi)

Reverses the sign of the imaginary part of a complex number.

Examples:

CONJ(3+4*i) → 3-4*i

(CONJ({3+4*i,6-6*i}) → {3-4*i,6+6*i}

CONJ Complex Conjugate

Syntax:

CONJ(Complex) or

CONJ(List) or

CONJ(Matrix)

For a list or matrix, returns a list or matrix containing the complex conjugates of all complex elements.

Conjugation is the negation (sign reversal) of the imaginary part of a complex number.

Examples:

CONJ(3+4*i) → 3-4*i

CONJ([[1+i,2,3],[1,3,6],[2,5,9-i]]))

contains Syntax:

contains(List, Element) or

contains(Vector, Element)

Given a list or vector and an element, returns the index of the first occurrence of the element in the list or
vector. If the element does not appear in the list or vector, returns 0.

Example:

contains({0,1,2,3},2) → 3

content Coefficient GCD

Syntax:

content(Poly,[Var])

Returns the greatest common divisor (GCD) of the coefficients of a polynomial.

Example:

content(2*x²+10*x+6) → 2

CONTINUE Syntax:

CONTINUE [n];

Transfers execution in a loop to the start of the next iteration of the nth upper loop (default current loop).

Example:

Demo_CONTINUE

CONVERT Syntax:

CONVERT(Value Unit1, 1_Unit2)

Converts Value Unit1 to the corresponding value in compatible Unit2.

Example:

CONVERT(20_m,1_ft) → 65.6167979003_

Alternative: 20_m ►_ft

convexhull Convex Hull

Syntax:

convexhull(Point1, Point2, ..., PointN)

Returns a vector containing the points that serve as the convex hull for a given set of points.

Example:

convexhull([0,1,1+i,1+2i,-1-i,1-3i,-2+i]) → [1-3*i 1+2*i -2+ i -1- i]

coordinates Syntax:

coordinates(Point) or

Page 125 of 239

13217 Help TextHelp Topics Tree
coordinates(Vector)

Given a point or a vector of points, returns a matrix containing the x- and y-coordinates of those points.
Each row of the matrix defines one point; the first column gives the x-coordinates and the second column
contains the y-coordinates.
Examples:

coordinates(point(1+2*i)) → [1,2]

GA:=point(3,-4); coordinates(GA) → [3, -4]

CopyVar Copy Variable

Syntax:

CopyVar(Var1, Var2)

Copies the first variable into the second variable without evaluation.

Example:

CopyVar(A,B)

correlation Syntax:

correlation(List) or

correlation(Matrix)

Returns the correlation of the elements of a list or matrix.

Example:

correlation([[1,2],[1,1],[4,7]]) → 33/(6*√31)

COS Cosine Function

Syntax:

COS(Value)

Returns the cosine of Value.

Value is interpreted as radians, degrees or gradians, depending on the setting of Angle Measure in Home
Settings, CAS Settings, or Symbolic Setup.
Example:

COS(60) → 0.5 (Degrees mode)

COS(1+i) → 0.833730025131-0.988897705763*i

COS({60,0}) → {0.5,1} (Degrees mode)

COS((π/3)_rad) → 0.499999999997

cos2sintan Syntax:

cos2sintan(Expr)

Replaces cos(x) by sin(x)/tan(x) in the argument.

Example:

cos2sintan(cos(x)) → sin(x)/tan(x)

COSH Hyperbolic Cosine

Syntax:

COSH(value)

Hyperbolic Cosine

Examples:

COSH(1) → 1.54308063482

COSH(1+i) → 0.833730025131+0.988897705763*i

COSH({0,1}) → {1,1.54308063482}

COT Cotangent

Syntax:

COT(value)

Cotangent: COS(X)/SIN(X)

Example:

COT(45) → 1 (Degrees mode)

COT(1+i) → 0.217621561854-0.868014142896*i

COT({45,90}) → {1,0} (Degrees mode)

COT((π/4)_rad) → 1

count Syntax:

count(Var→Func on, List) or

count(Var→Func on, Matrix) or

count(Var→Test, List) or

count(Var→Test, Matrix)

There are two uses for this function, whose first argument is always a mapping of a variable onto an
expression.
If the expression is a function of the variable, then the function is applied to each element in a list or
matrix (the second argument) and the sum of the results is returned.

If the expression is a Boolean test, then each element in a list or matrix is tested and the number of
elements that pass the test is returned.
Examples:

count(x->x²,{1,2,3}) → 14

count(x->x>6,{2,4,6,8,10,12}) → 3

count_eq Count Items Equal

Syntax:

count_eq(item, list)

count_eq(item, matrix)

Page 126 of 239

13217 Help TextHelp Topics Tree
Returns the count of items from list or matrix that are equal to item.

This is equivalent to count(x→x==item,list or matrix)

Examples:

count_eq(2,{1,2,3,2,3,2}) → 3

count_eq(x,[x,x+1,x,x^2]) → 2

count_inf Count Items Less Than

Syntax:

count_inf(item, list)

count_inf(item, matrix)

Returns the count of items from list or matrix that are less than item.

This is equivalent to count(x→x<item,list or matrix)

Examples:

count_inf(2,{1,2,3,2,3,2}) → 1

count_inf(3,[1,2,3,2,3,2]) → 4

count_sup Count Items Greater Than

Syntax:

count_sup(item, list)

count_sup(item, matrix)

Returns the count of items from list or matrix that are greater than item.

This is equivalent to count(x→x>item,list or matrix)

Examples:

count_sup(2,{1,2,3,2,3,2}) → 2

count_sup(1,[1,2,3,2,3,2]) → 5

covariance Covariance of Elements

Syntax:

covariance(List) or covariance(Matrix)

Returns the covariance of the elements in a list or matrix.

Example:

covariance([[1,2],[1,1],[4,7]]) → 11/3

covariance_correlation Covariance and Correlation

Syntax:

covariance_correlation(List) or

covariance_correlation(Matrix)

Returns a vector containing both the covariance and the correlation of the elements of a list or vector.

Example:

covariance_correlation([[1,2],[1,1],[4,7]]) → [11/3 33/(6*√31)]

cpartfrac Complex Partial Fraction

Syntax:

cpartfrac(RatFrac)

Returns the result of partial fraction decomposition of a rational fraction in the Complex field.

Examples:

cpartfrac(x/(4-x²)) → 1/((x-2)*-2)+1/((x+2)*-2)

cpartfrac(a/(z*(z-b)),z)

crationalroot Complex Rational Roots

Syntax:

crationalroot(Poly)

Returns the list of complex rational roots of a polynomial without indicating the multiplicity.

Example:

crationalroot(2*x^3+(-5-7*i)*x²+(-4+14*i)*x+8-4*i) → [(3+i)/2 2*i 1+i]

CROSS Cross Product

Syntax:

CROSS(Vector1, Vector2)

Returns the cross product two vectors.

Examples:

CROSS([1,2,3],[4,3,2]) → [-5,10,-5]

CROSS([1+2*i,2-4*i,3+i],[−4+i,1-3*i,2+0.5*i]) → [i,−14-5.5*i,11-19*i]

CROSS({[1,2,3],[4,3,2]},{[7,2,8],[9,1,6]}) → {[10,13,−12],[16,−6,−23]}

CSC Cosecant

Syntax:

CSC(value)

Cosecant: 1/SIN(X)

Example:

CSC(90) → 1 (Degrees mode)

CSC(1+i) → 0.621518017169-0.303931001627*i

CSC({30,90}) → {2,1} (Degrees mode)

CSC((π/6)_rad) → 2

cSolve Complex Solve

Page 127 of 239

13217 Help TextHelp Topics Tree
Syntax:

cSolve(Expr,[Var])

Returns the solutions, including complex solutions, of Expr, for Var.

If Expr is an expression, solves the equation Expr=0.

Examples:

cSolve(x^4=1,x) → {-1,i,1,−i}

cSolve(u*v-u=v and v²=u,[u,v]) → {[0,0],[(1/2*(√5+1))^2,1/2*(√5+1)],[(1/2*(-√5+1))^2,1/2*(-√5+1)]}

cumSum Cumulative Sums

Syntax:

cumSum(List) or

cumSum(Vector)

Accepts as argument either a list or a vector and returns a list or vector whose elements are the
cumulative sums of the original argument.
Examples:

cumSum([0,1,2,3,4]) → [0,1,3,6,10]

cumSum("a","b","c","d")

curve Syntax:

curve(Expr)

Reserved word. Do not use for anything.

cycle2perm Syntax:

cycle2perm(cycle)

Converts cycle to a permutation.

Example:

cycle2perm([1,3,5]) → [3,2,5,4,1]

cycleinv Syntax:

cycleinv(cycle)

Returns the inverse cycle of cycle.

Example:

cycleinv([1,3,2]) → [2,3,1]

cycles2permu Syntax:

cycles2permu(list)

Convert a product of cycles into a permutation.

Example:

cycles2permu({[1,3,5],[3,4]}) → [3,2,4,5,1]

cZeros Complex Zeros

Syntax:

cZeros(Expr,[Var]) or

cZeros({Expr1, Expr2, ... ExprN}, {Vr1, Var2, ... VarN})

Returns the roots, including complex roots, of Expr (that is, the solution of Expr=0) or the matrix where
the lines are the solutions of the system: Expr1=0, Expr2=0…ExprN=0.
Examples:

cZeros(x^4-1) → [1,-1, i, -i]

cZeros([x²-1,x²-y²],[x,y])

C→PX Syntax:

C→PX(x, y) or

C→PX({x, y})

Converts from Cartesian coordinates to screen coordinates.

Examples:

C→PX(0,0) → {160,110} (assuming current app Plot Se ngs are set to default)

C→PX({15.9,10.9}) → {319,0} (assuming current app Plot Se ngs are set to default)

DATEADD Date Addition

Syntax:

DATEADD(Date, NbDays)

Adds NbDays to Date, returning the resulting date in YYYY.MMDD format.

Examples:

DATEADD(2008.1228, 559) → 2010.0710

DATEADD({2008.1228,2017.012},{559,1383}) → {2010.071,2020.1103}

DAYOFWEEK Syntax:

DAYOFWEEK(Date)

Day of the week. Given a date in YYYY.MMDD format, returns a number between 1 (Monday) and 7
(Sunday) which represents the day of the week associated with the date.

Examples:

DAYOFWEEK(2006.1228) → 4 (Thursday)

DAYOFWEEK({2008.1228,2017.012,2020.1103}) → {7,5,2}

DDAYS Date Difference

Syntax:

DDAYS(Date1, Date2)

Calculates the numbers of days between 2 dates expressed in YYYY.MMDD format.

Page 128 of 239

13217 Help TextHelp Topics Tree
Examples:

DDAYS(2008.1228,2010.0710) → 559

DDAYS({2008.1228,2017.012},{2010.071,2020.1103}) → {559,1383}

DEBUG Debug Command

Syntax:

DEBUG(ProgramName(arguments))

DEBUG

Inserts a breakpoint in a program, calling the Debugging Environment. When the DEBUG; line in a program
is found, the Debugger opens at the following line of code.
You can also use this command in Home view to debug a program. DEBUG(name) opens the Debugger
with the program name.

degree Degree of Polynomial

Syntax:

degree(Poly)

Returns the degree of a polynomial.

Examples:

degree(x^3+x) → 3

degree([1,0,1,0]) → 3

DELCOL Delete Column

Syntax:

DELCOL(name, column_number)

Deletes column column_number from matrix name.

Example:

DELCOL([[1,2,3],[4,5,6]],2) → [[1,3],[4,6]]

delcols Delete Columns

Syntax:

delcols(Matrix, Integer) or

delcols(Matrix, Intg1..Intg2)

Given a matrix and an integer n, deletes the nth column from the matrix and returns the result. If an
interval of two integers is used instead of a single integer, deletes all columns in the interval and returns
the result.
Example:

delcols([[1,2,3],[4,5,6],[7,8,9]],1) → [[2,3],[5,6],[8,9]]

DELROW Delete Row

Syntax:

DELROW(name, row_number)

Deletes row row_number from matrix name.

Example:

DELROW([[1,2][3,4][5,6]],2) → [[1,3],[4,6]]

delrows Delete Rows

Syntax:

delrows(Matrix, Integer) or

delrows(Matrix, Intg1..Intg2)

Given a matrix and an integer n, deletes the nth row from the matrix and returns the result. If an interval
of two integers is used instead of a single integer, deletes all rows in the interval and returns the result.

Example:

delrows([[1,2,3],[4,5,6],[7,8,9]],2) → [[1,2,3],[7,8,9]]

deltalist Delta List

Syntax:

deltalist(List)

deltalist(Vector)

Creates a new list or vector composed of the first differences of a list or vector; that is, the differences
between consecutive elements in the list. The new list has one less element than the original list.

Example:

deltalist([1,4,8,9]) → [3,4,1]

denom Simplified Denominator

Syntax:

denom(a/b)

For integers a and b, returns the denominator of the fraction a/b after simplification.

Example:

denom(10/12) → 6

desolve Solve Differential Equation

Syntax:

desolve(Eq,[TimeVar],Var)

Returns the solution to a differential equation.

Examples:

desolve(y''+y=0,y) → G_0*cos(x)+G_1*sin(x)

desolve((y''+y=sin(x)) and (y(0)=1) and (y'(0)=2),y)

DET Square Matrix Determinant

Page 129 of 239

13217 Help TextHelp Topics Tree
Syntax:

DET(matrix)

Determinant of a square matrix.

Examples:

DET([[1,2],[3,4]]) → -2

DET([[1+2*i,2+4*i],[3+i,4-5*i]]) → 12-11*i

DET({[[1,2],[5,6]],[[3,4],[−6,−2]]}) → {−4,18}

dfc Number to Continued Fraction

Syntax:

dfc(real,[integer])

dfc(real,[epsilon])

Returns the continued fraction representation of real with order integer using the CAS setting epsilon
value, or with specified epsilon.
Examples:

dfc(sqrt(2)) → [1,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

dfc(sqrt(2),5) → [1,2,[2]]

dfc(π,1e-7) → [3,7,15,1,292]

dfc2f Continued Fraction to Number

Syntax:

dfc2c(continued_fraction)

Transforms continued_fraction vector back into a real number, fraction, or value.

Examples:

dfc2f([1,1,1]) → 3/2

normal(dfc2f([1,2,[2]])) → sqrt(2)

diag Diagonal

Syntax:

diag(list) or diag(matrix)

Given a list, returns a matrix with the list elements along its diagonal and zeroes elsewhere.

Given a matrix, returns a vector of the elements along its diagonal.

Examples:

diag({1,2,3}) → [[1,0,0],[0,2,0],[0,0,3]]

diag([[1,2],[3,4]]) → [1,4]

diff Differentiate

Syntax:

diff(Expr,[Var,[Order]])

diff(Expr,[{Var1,Var2,…},[Order]])

Returns the derivative of an expression with respect to a given variable or list of variables. You can use the
differentiation template in the Template menu as well.
If Var or a list of variables is defined, a final parameter, Order, designates the order of the derivative to be
found. Order defaults to 1.
Examples:

diff(x^3-x) → 3*x²-1

diff(x^3-x,x,2) → 6*x

diff(sin(x)-cos(y),x) → cos(x)

diff(sin(x)-cos(y),y) → sin(y)

diff(sin(x)-cos(y),{x,y}) → [cos(x) sin(y)]

diff(sin(x)-cos(y),{x,y},2) → [[-sin(x),0],[0,cos(y)]]

DIM String Dimensions

Syntax:

DIM(String) or

DIM(Matrix)

Returns the number of characters in String or the dimensions of Matrix.

Examples:

DIM("12345") → 5

DIM([[1,2],[4,5],[7,8]]) → {3,2}

DIM({"12345","HP Prime"}) → {5,8}

DIMGROB Size GROB

Syntax:

DIMGROB(G, w, h, [color]) or

DIMGROB(G, w, h, list)

Sets the dimensions of GROB G to w*h. Initializes the graphic G with color or with the graphic data
provided in list. If the graphic is initialized using graphic data, then list is a list of integers. Each integer, as
seen in base 16, describes one color every 16 bits.

Colors are in A1R5G5B5 format (1 bit for alpha channel and 5 bits for R, G and B).

Example:

Demo_DIMGROB

DIMGROB_P Size GROB

Syntax:

DIMGROB_P(G, w, h, [color]) or

Page 130 of 239

13217 Help TextHelp Topics Tree
DIMGROB_P(G, w, h, list)

Sets the dimensions of GROB G to w*h. Initializes the graphic G with color or with the graphic data
provided in list. If the graphic is initialized using graphic data, then list is a list of integers. Each integer, as
seen in base 16, describes one color every 16 bits.

Colors are in A1R5G5B5 format (1 bit for alpha channel and 5 bits for R, G and B).

Example:

Demo_DIMGROB_P

Dirac Dirac Delta Function

Syntax:

Dirac(Real)

Returns the value of the Dirac delta function for a real number.

Example:

Dirac(-1) → 0

distance Syntax:

distance(Point1, Point2) or

distance(Point, Curve)

Returns the distance between two points or between a point and a curve.

Example:

distance(0,1+i) → √2

distance2 Distance Squared

Syntax:

distance2(Point1, Point2) or

distance2(Point, Curve)

Returns the square of the distance between two points or between a point and a curve.

Examples:

distance2(1+i,3+3i) → 8

If GA is the point at (0,0) and GB is defined as plotfunc(4-x²/4), then distance (GA, GB) returns 12.

distanceat Distance At

Syntax:

distanceat(Point1, Point2, Point3) or

distanceat(Point1, Curve, Point3)

Similar to the distance command, but used in Symbolic view of the Geometry app. Displays the distance
between two points or between a point and a curve and places that measurement at the location of
Point3 in the Plot view. The distance is labeled.

Examples:

distanceat(1+i,3+3i,point(0,0)) returns 2.828… or 2√2 and places that measure, with a label, at the origin
in Plot view.
If GA is the point at (0,0) and GB is defined as plotfunc(4-x²/4), then distanceat(GA,GB,GA) returns 3.464…
or 2√3 and places this measure in Plot view at (0,0).

Define A:=point(0) and B:=point(1+i); then distanceat(A,B,(1+i)/2)) returns √2 and places this
measurement at (1/2, 1/2) with a label.

divergence Syntax:

divergence([Expr1, Expr2, ... ExprN],[Var1, Var2, ... VarN])

Returns the divergence of a vector field, defined by divergence([A,B,C],[x,y,z])=dA/dx+dB/dy+dC/dz.

Example:

divergence([x²+y,x+z+y,z^3+x²],[x,y,z]) → 2*x+3*z²+1

divis Polynomial Divisors

Syntax:

divis(Poly) or

divis({Poly1, Poly2,…Polyn})

Given a polynomial or list of polynomials, returns a vector containing the divisors of the polynomial.

Example:

divis(x²-1) → [1,x-1,x+1,(x+1)*(x-1)]

division_point Division Point

Syntax:

division_point(PointA, PointB, Realk) or

division_point(CplxA, CplxB, Cplxk)

For two points A and B, and a numerical factor k, returns a point C such that C - B = k*(C - A). The two
points may be referenced by name or represented by complex numbers.

Examples:

division_point(0,6+6*i,4) → point (8,8)

division_point(i,2+i,3)

divpc Taylor of Quotient

Syntax:

divpc(Poly1, Poly2, Integer)

Page 131 of 239

13217 Help TextHelp Topics Tree
Returns the n-degree Taylor polynomial for the quotient of 2 polynomials.

Example:

divpc(x^4+x+2,x^2+1,5) → x⁵+3*x⁴-x³-2*x²+x+2, the 5th-degree polynomial

domain Function Domain

Syntax:

domain(function,[variable])

Returns the domain of variable in function. If not given, variable is assumed to be x.

Examples:

domain((1/x)) → x≠0

domain(ln(x),x) → x>0

DOT Dot Product

Syntax:

DOT(Vector1, Vector2)

Returns the dot product of two vectors.

Examples:

DOT([1,2],[3,4]) → 11

DOT({[1,2],[5,6]},{[3,4],[−6,−2]}) → {11,−42}

DRAWMENU Draw Button Menu

Syntax:

DRAWMENU(string1 or graphic, string2 or graphic,… string6 or graphic)

Draws a six-button menu at the bottom of the display, with labels string1, string2, …, string6, or using the
provided graphic (G0-G9 or "icon name").
Example:

DRAWMENU("ABC","","DEF"); FREEZE creates a menu with the first and third buttons labeled ABC and
DEF, respectively. The other four menu keys are blank.

DrawSlp Draw Slope

Syntax:

DrawSlp(a, b, m)

Given three real numbers a, b, and m, draws a line with slope m that passes through the point (a, b).

Examples:

DrawSlp(2,1,3) → line(y=3*x–5)

DrawSlp(2,1,-1) → line(y=-x+3)

e Natural Algorithm Base

Syntax:

e

The mathematical constant e (Euler’s number), internally represented as 2.71828182846

Example:

e → 2.71828182846

EDITLIST Edit List

Syntax:

EDITLIST(listvar or list, [title], [read only])

Allows the user to edit the specified list.

If a list variable is used (e.g., L0-L9), updates the variable if OK is clicked.

The title can be either "title" or { "title", {"row names"…}, {"column names"…}}

"title" will be displayed above the editor as a "title" or "name".

if "row names" and "column names" are specified, they will be used as row and column headers.

If read only is non 0, the user will not be able to modify the object.

Returns the edited list upon completion.

Example:

L1:={"123","456"};EDITLIST(L1) edits list L1

EDITLIST({1,2,3},"My List",1) displays a list but does not allow editing

EDITMAT Edit Matrix

Syntax:

EDITMAT(matrixvar, [title], [read only])

EDITMAT(matrix, [title], [read only]

Allows the user to edit or view a specified matrix. If a matrix variable is used (e.g., M0-M9), updates the
variable when the user taps the OK menu key.
The optional title can be either "title" or { "title", {"row names"…}, {"column names"…}}

If supplied, "title" will be displayed at the top of the editor. If "row names" and "column names" are
specified, they will be used as row and column headers in the editor.

If read only is not 0, the user will not be able to modify the matrix, but can only view it.

EDITMAT returns the edited matrix upon completion. If used in programming, returns to the program
when the user taps the OK menu key.
Example:

EDITMAT(M1) edits matrix M1.

EDITMAT Edit Matrix

Syntax:

Page 132 of 239

13217 Help TextHelp Topics Tree
EDITMAT(matrixvar, [title], [read only])

EDITMAT(matrix, [title], [read only]

Allows the user to edit or view a specified matrix. If a matrix variable is used (e.g., M0-M9), updates the
variable when the user taps the OK menu key.
The optional title can be either "title" or { "title", {"row names"…}, {"column names"…}}

If supplied, "title" will be displayed at the top of the editor. If "row names" and "column names" are
specified, they will be used as row and column headers in the editor.

If read only is not 0, the user will not be able to modify the matrix, but can only view it.

EDITMAT returns the edited matrix upon completion. If used in programming, returns to the program
when the user taps the OK menu key.
Example:

EDITMAT(M1) edits matrix M1.

egcd Syntax:

egcd((PolyA, PolyB, [Var]) or

egcd(ListA, ListB, [Var])

Given two polynomials, A and B, returns three polynomials U, V and D such that:
U(x)*A(x)+V(x)*B(x)=D(x), where D(x)=GCD(A(x),B(x)), the greatest common divisor of polynomials A and
B.
The polynomials can be provided in symbolic form or as lists of coefficients in descending order.

Without a third argument, it is assumed that the polynomials are expressions of x. With a variable as third
argument, the polynomials are expressions of that variable.
Examples:

egcd((x-1)^2,x^3-1) → [-x-2 1 3*x-3]

egcd([1,-2,1],[1,-1,2])

Ei Exponential Integral

Syntax:

Ei(x)

For a real value x, returns the approximate value of int(e^(t)/t, -∞, x)

Example:

Ei(1.0) → 1.89511781636

EIGENVAL Eigenvalues

Syntax:

EIGENVAL(matrix)

Displays the eigenvalues in vector form for matrix.

Example:

EIGENVAL([[1,2],[3,4]]) → [5.3723, -0.3723]

eigenvals Matrix Eigenvalues

Syntax:

eigenvals(Matrix)

Returns the sequence of the eigenvalues of a matrix.

Example:

eigenvals([[-2,-2,1],[-2,1,-2],[1,-2,-2]]) → [3 -3 -3]

eigenvects Matrix Eigenvectors

Syntax:

eigenvects(Matrix)

Computes the eigenvectors of a diagonalizable matrix.

Example:

eigenvects([[-2,-2,1],[-2,1,-2],[1,-2,-2]]) → [[1 -3 -3],[-2 0 -3],[1 3 -3]]

EIGENVV Eigenvectors and Values

Syntax:

EIGENVV(matrix)

Eigenvectors and Eigenvalues for a square matrix

Displays a list of two arrays. The first contains the eigenvectors and the second contains the eigenvalues.

Example:

EIGENVV([[1,2],[3,4]]) → { [[0.4160,-0.8370],[0.9094,0.5743]], [[5.3723,0], [0,-0.3723]]}

eigVc Syntax:

eigVc(Matrix)

Computes the eigenvectors of a diagonalizable matrix.

Example:

eigVc([[-2,-2,1],[-2,1,-2],[1,-2,-2]]) → [[1 -3 -3],[-2 0 -3],[1 3 -3]]

eigVl Syntax:

eigVl(Matrix)

Returns the Jordan matrix associated with a matrix when the eigenvalues are calculable.

Example:

eigVl([[4,1],[-4,0]]) → [[2, 1],[0,2]]

element Point On

Syntax:

Page 133 of 239

13217 Help TextHelp Topics Tree
element(Object, Real) or

element(Real1..Real2)

Creates a point on a geometric object whose abscissa is a given value or creates a real value on a given
interval as a slider bar.
The value you set using element(Real1..Real2) can be used as a coefficient in a function you subsequently
define in Symbolic view and plot in Plot view. In addition, it can be used in a measurement or calculation
in Numeric view.
Examples:

element(plotfunc(x²),–2) creates a point on the graph of y = x². Initially, this point will appear at (–2,4).
You can move the point, but it will always remain on the graph of its function.

element(0..5) creates a slider bar with a value of 2.5 initially.

Tap and hold on the slider name to open the slider bar and manipulate it. There is an Edit menu key that
you can tap to define the slider more accurately, create animations, and so forth. Press Esc to close the
slider bar at the new value or tap anywhere else on the screen.

ellipse Syntax:

ellipse(Point1, Point2, Point3) or

ellipse(Point1, Point2, Realk)

Draws an ellipse, given the foci and either a point on the ellipse or a scalar that is one half the constant
sum of the distances from a point on the ellipse to each of the foci.

Examples:

ellipse(GA,GB,GC) draws the ellipse whose foci are points A and B and which passes through point C.

ellipse(GA,GB,3) draws an ellipse whose foci are points A and B. For any point P on the ellipse, AP+BP=6.

END Ends a structure, either a block, a test, a loop or a branch.

equilateral_triangle Equilateral Triangle

Syntax:

equilateral_triangle(Point1, Point2, [Var])

Draws an equilateral triangle defined by one of its sides; that is, by two consecutive vertices. The third
point is calculated automatically, but is not defined symbolically. If a lowercase variable is added as a third
argument, then the third point is labeled with the variable name and the coordinates of the third point are
stored in that variable. The orientation of the triangle is counterclockwise from the first point.

Example:

equilateral_triangle(point(0,0),point(1,0)) draws the equilateral triangle through the points at (0,0), (1,0),
and (1/2, √3/2).

erf Error Function

Syntax:

erf(x)

For a real value x, returns the approximate value of 2/√π*int(e^(-t²),t,0,x)

Example:

erf(1) → 0.84270079295

erfc Complementary Error Function

Syntax:

erfc(x)

For a real value x, returns the approximate value of 2/√π*int(exp(-t²),t,x,∞).

Example:

erfc(1) → 0.15729920705

error Syntax:

error(String)

Generates the display of an error message containing String in a CAS program.

Example:

error("Error")

euler Euler's Totient

Syntax:

euler(Integer);

Euler’s phi (or totient) function

Takes a positive integer and returns the number of positive integers less than or equal to it that are
coprime to it.
Example:

euler(6) → 2

EVAL Evaluate Expression

Syntax:

EVAL(Expr)

Useful in programs where parameters are passed unevaluated with the command QUOTE.

Example:

EVAL('2+3') → 5

eval Syntax:

eval(Expr)

Evaluates an expression.

Page 134 of 239

13217 Help TextHelp Topics Tree
Example:

eval(2*sin(π)) → 0

evalb Evaluate Boolean

Syntax:

evalb(expression)

This function will evaluate expression down to a true or false value if possible.

Examples:

evalb(5=5) → true

evalb(5=-5) → false

evalc Evaluate Complex Expression

Syntax:

evalb(expression)

Returns a complex expression written in the form real + i*imag.

Example:

evalc(1/(x+y*i)) → (x/(x²+y²))-(i)*y/(x²+y²)

evalf Evaluate Expression Numerically

Syntax:

evalf(Expr,[Integer])

Given an expression and a number of significant digits, returns the numerical evaluation of the expression
to the given number of significant digits. With just an expression, returns the numerical evaluation based
on the CAS settings.
Examples:

evalf(1/3,4) → 0.3333

evalf(2/3) → 0.666666666667

EVALLIST Evaluate List

Syntax:

EVALLIST({list})

Evaluates the content of each element in the list and returns the resulting list.

Example:

EVALLIST({'1+1','4/2*(6-3)'}) → {2,6}

even Evenness Test

Syntax:

even(Integer)

Tests whether or not an integer is even. Returns 1 if it is and 0 if it is not.

Examples:

even(1251) → 0

even(8) → 1

exact Exact Conversion

Syntax:

exact(Expr)

Converts a decimal expression to a rational or real expression within the Epsilon tolerance specified in
CAS settings.
Examples:

exact(1.4141) → 14141/10000

exact(0.156381102937) → 2572/16447

exbisector exbisector Function

Syntax:

exbisector(Point1, Point2, Point3)

Given three points that define a triangle, creates the bisector of the exterior angles of the triangle whose
common vertex is at the first point. The triangle does not have to be drawn in the Plot view.

Examples:

exbisector(GA,GB,GC) draws the bisector of the exterior angles of ΔABC whose common vertex is at point
A.
exbisector(0,–4i,4) draws the line given by y=x

excircle Syntax:

excircle(Point1, Point2, Point3)

Given three points that define a triangle, draws the excircles of the triangle that is tangent to the side
defined by the last two points and also tangent to the extensions of the two sides whose common vertex
is the first point.
Example:

excircle(GA,GB,GC) draws the circle tangent to segment BC and to the rays AB and AC.

EXECON Execute On Element

Syntax:

EXECON("&Expr", List1, [List2,…])

Creates a new list based on the elements in one or more lists by iteratively modifying each element
according to an expression that contains the ampersand character (&).

Examples:

EXECON("&1+1",{1,2,3}) → {2,3,4}

In the example above, &1 indicates an element in the list. &1+1 means to add 1 to each element of the list.

Page 135 of 239

13217 Help TextHelp Topics Tree
Where the & is followed directly by a number, the relative position in the list is indicated. For example:

EXECON("&2-&1",{1,4,3,5}) → {3, -1, 2}

In the example above, &2 indicates the second element and &1 the first element in each pair of elements.
The minus operator between them subtracts the first from the second in each pair until there are no more
pairs. In this case (with just a single list), the numbers appended to &

can only be from 1 to 9 inclusive.

EXECON can also operate on more than one list. For example:

EXECON("&1+&2",{1,2,3},{4,5,6}) → {5,7,9}

In the example above, &1 indicates an element in the first list and &2 indicates the corresponding element
in the second list. These element pairs are added until there are no more pairs. With two lists, the
numbers appended to & can have two digits; in this case, the first digit refers to the list number (in order
from left to right) and the second digit refers to the element in the list; the second digit can still only be
from 1 to 9, inclusive.

EXECON can also begin operating on a specified element in a specified list. For example:

EXECON("&23+&1",{1,5,16},{4,5,6,7}) → {7,12}

In the example above, &23 indicates that operations are to begin on the second list and with the third
element. To that element is added the first element in the first list. The process continues until there are
no more pairs.
EXECON can also operate on matrices in the same way as lists:

EXECON("&1+&2",[[1,2],[3,4]],[[5,6],[6,7]]) → [[6,8],[9,11]]

In the example above, the result is the sum of the two matrices.

EXP Natural Exponential

Syntax:

EXP(value)

Natural exponential: e^x (natural antilogarithm)

Returns the result of raising e (Euler's number) to the power value.

Examples:

EXP(5) → 148.413159103

EXP(2+3*i) → −7.3151100949+1.04274365624*i

EXP({-2.3,0}) → {0.100258843723,1}

exp2pow Syntax:

exp2pow(Expr)

Transforms an expression of the form e^(n*ln(x)) rewritten as a power of x. Applies e^(n*ln(x))=xⁿ.

Example:

exp2pow(e^(3*ln(x))) → x³

exp2trig Syntax:

exp2trig(Expr)

Returns an expression with complex exponentials rewritten in terms of sine and cosine.

Example:

exp2trig(exp(-i*x)) → cos(x)+ i*sin(x)

expand Expand Expression

Syntax:

expand(Expr)

Returns an expression expanded.

Example:

expand((x+y)*(z+1)) → y*z+x*z+y+x

expexpand Expand Exponentials

Syntax:

expexpand(Expr)

Expands exponentials using the identity e^(a*f(x))=e^(f(x))^a.

Example:

expexpand(e^(3*x)) → (e^x)³

EXPM1 Exponent Minus 1

Syntax:

EXPM1(value)

Exponential minus 1: (e^x)-1

This is more accurate than EXP when x is close to zero.

Examples:

EXPM1(0.23) → 0.258600009929

EXPM1(0.02+0.03*i) → 1.97422838545ᴇ−2+3.06014495014ᴇ−2*i

exponential Discrete Exponential

Syntax:

exponential(k,x)

Exponential probability density function

Computes the probability density of the exponential distribution at x given parameter k.

Example:

Page 136 of 239

13217 Help TextHelp Topics Tree
exponential(2.1,0.5) → 0.734869273133

exponential_cdf Cumulative Exponential

Syntax:

exponential_cdf(k,x,[x2])

Cumulative exponential distribution function

Returns the lower-tail probability of the exponential probability density function for the value x, given
parameter k.
Examples:

exponential_cdf(4.2,.5) → 0.877543571747

exponential_cdf(4.2,.5,3) → 0.122453056238

exponential_icdf Inverse Cumulative Exponential

Syntax:

exponential_icdf(k,p)

Inverse cumulative exponential distribution function

Returns the value x such that the exponential lower-tail probability of x, given parameter k, is p.

Example:

exponential_icdf(4.2,0.95) → 0.713269588941

exponential_regression Exponential Regression

Syntax:

exponential_regression(Matrix) or

exponential_regression(List1, List2) or

exponential_regression(Vector1, Vector2)

Given a set of points, returns a vector containing the coefficients a and b of y=b*a^x, the exponential
which best fits the set of points. The points may be the elements in two lists or the rows of a 2 x n matrix.

Example:

exponential_regression([1.0,0.0,4.0],[2.0,1.0,7.0]) → [1.60092225473 1.10008339351]

EXPORT EXPORT function or variables

Syntax:

EXPORT FunctionName(Parameters)

EXPORT Var1[,Var2, ... ,Var8];

EXPORT Var1[:=Val1, Var2:=Val2, ... Var8:=Val8];

In a program, declares functions or variables to export globally. Exported functions appear in the Toolbox
User menu; exported variables appear in the Vars CAS, App, or User menus.

For an exported function:

Forward function declaration:

EXPORT function(params);

Normal function declaration:

EXPORT function[(params)]

BEGIN

//Function definition goes here

END;

Examples:

EXPORT X2m1(X);

EXPORT ratio:=0.15;

EXPORT X2M1(X)

BEGIN

RETURN X^2-1;

END;

Examples:

Demo_EXPORT

EXPR Evaluate String

Syntax:

EXPR(String)

Parses a string into a number or expression and returns the result evaluated.

Examples:

EXPR("2+3") → 5

X:=90; EXPR("X+10") → 100

X:=90; Y:=3; EXPR({"X/2","2^Y"}) → {45,8}

extract_measure Extract Measure

Syntax:

extract_measure(Var)

Returns the definition of a geometric object. For a point, that definition consists of the coordinates of the
point. For other objects, the definition mirrors their definition in Symbolic view, with the coordinates of
their defining points supplied.
Examples:

extract_measure(angleatraw(0,1,1+i,1) → π/4

extract_measure(distanceatraw(0,1+i,(1+i)/2)) → √2

ezgcd Syntax:

Page 137 of 239

13217 Help TextHelp Topics Tree
ezgcd(Poly1, Poly2)

Uses the EZ GCD algorithm to return the greatest common divisor of two polynomials with at least two
variables.
Example:

ezgcd(x^2-2*x-x*y+2*y,x^2-y^2) → x-y

F-J Function Catalog F-J

Toolbox function catalog F-J

f2nd Fraction → Numerator/Denominator

Syntax:

f2nd(Frac) or f2nd(RatFrac)

Returns a vector consisting of the numerator and denominator of an irreducible form of a rational
fraction.
Examples:

f2nd(42/12) → [7,2]

f2nd((x^2+2*x+1)/(x^2-1)) → [x^2+2.*x+1.,x^2-1.]

factor Factorize Polynomial

Syntax:

factor(Expr)

Returns a polynomial factorized.

Similar to collect, but will factor using square roots.

Examples:

factor(x^4+12*x^3+54*x²+108*x+81) → (x+3)^4

factor(x^4-1) → (x-1)*(x+1)*(x^2+1)

factor_xn Factor by Degree

Syntax:

factor_xn(Poly)

For a given polynomial in x of degree n, factors out xⁿ and returns the resulting product.

Examples:

factor_xn(x^4-1) → x^4*(1-x^-4)

factor_xn(x^4+12*x^3+54*x^2+108*x+81)

factorial Syntax:

factorial(Integer) or factorial(Real)

Returns the factorial of an integer or the solution to the gamma function for a non-integer. For an integer
n, factorial(n)=n! . For a non-integer real number a, factorial(a)=a! = Gamma(a + 1).

Examples:

factorial(4) → 24

factorial(1.2) → 1.10180249088

factors Polynomial Factor List

Syntax:

factors(Poly) or

factors({Poly1, Poly2, ..., Polyn})

Returns the list of prime factors of a polynomial; each factor followed by its multiplicity.

Examples:

factors(x^4-1) → [x-1,1,x+1,1,x^2+1,1]

factors([x²,x²-1])

fcoeff Roots to Polynomial

Syntax:

fcoeff([Root1, Order1, Root2, Order2, ..., Rootn, Ordern])

Returns the polynomial described by a list of roots, each followed by its order.

Example:

fcoeff([1,2,0,1,3,-1]) → x*(x-1)²/(x-3)

fft Fast Fourier Transform

Syntax:

fft(Vector) or

fft(Vector, a, p)

With one argument (a vector), returns the discrete Fourier transform in R.

With two additional integer arguments a and p, returns the discrete Fourier transform in the field Z/pZ,
with a primitive nth root of 1 (n=size(Vector)).
Example:

fft([1,2,3,4,0,0,0,0]) → [10.0,-0.414213562373-7.24264068712*(i),-2.0+2.0*i,2.41421356237-
1.24264068712*i,-2.0,2.41421356237+1.24264068712*i,-2.0-2.0*i]

FILLPOLY Draw Filled Polygon

Syntax:

FILLPOLY([G], {Coordinates}, Color, [Alpha])

FILLPOLY([G], [Coordinates], Color, [Alpha])

Fills the polygon specified by the provided Cartesian coordinates using the color provided.

If Alpha (0 to 255) is provided, the polygon is drawn with transparency.

Examples:

Page 138 of 239

13217 Help TextHelp Topics Tree
FILLPOLY([(0,0),(1,1),(2,0),(3,-1),(2,-2)],#FF,128)

Demo_FILLPOLY

FILLPOLY_P Draw Filled Polygon

Syntax:

FILLPOLY_P([G], {Coordinates}, Color, [Alpha])

FILLPOLY_P([G], [Coordinates], Color, [Alpha])

Fills the polygon specified by the provided pixel coordinates using the color provided.

If Alpha (0 to 255) is provided, the polygon is drawn with transparency.

Examples:

FILLPOLY_P([(20,20),(120,120),(150,20),(180,150),(50,100)],#FF,128)

Demo_FILLPOLY_P

FISHER Fisher Density

Syntax:

FISHER(n, d, x)

F (Fisher or Fisher-Snedecor) probability density function.

Computes the probability density at the value x, given numerator n and denominator d degrees of
freedom.
Example:

FISHER(5,5,2) → 0.158080231095

FISHER_CDF Cumulative Fisher

Syntax:

FISHER_CDF(n, d, x, [x2])

Cumulative F (Fisher or Fisher-Snedecor) distribution function

Returns the lower-tail probability of the F probability density function for the value x, given numerator n
and denominator d degrees of freedom. With the optional fourth argument x2, returns the area under the
F probability density function between the two x-values.

Examples:

FISHER_CDF(5,5,2) → 0.76748868087

FISHER_CDF(5,5,0.5,2) → 0.53497736174

FISHER_ICDF Inverse Cumulative Fisher

Syntax:

FISHER_ICDF(n, d, p)

Inverse cumulative F (Fisher or Fisher-Snedecor) distribution function.

Returns the value x such that the F lower-tail probability of x, with numerator n, and denominator d
degrees of freedom, is p.
Example:

FISHER_ICDF(5,5,0.76748868087) → 2

FLOOR Syntax:

FLOOR(value)

Greatest integer less than or equal to value.

Examples:

FLOOR(3.2) → 3

FLOOR(-3.2) → -4

FLOOR({3.2,-3.2}) → {3,−4}

fMax Function Maximum

Syntax:

fMax(Expr,[Var])

Given an expression in x, returns the value of x for which the expression has its maximum value. Given an
expression and a variable, returns the value of that variable for which the expression has its maximum
value.
Example:

fMax(-x²+2*x+1,x) → 1

fMin Function Minimum

Syntax:

fMin(Expr,[Var])

Given an expression in x, returns the value of x for which the expression has its minimum value. Given an
expression and a variable, returns the value of that variable for which the expression has its minimum
value.
Example:

fMin(x²-2*x+1,x) → 1

FNROOT Find Root

Syntax:

FNROOT(Expr, Var, [guess], [guess2])

Function root-finder (like the Solve app).

Finds the value for variable at which an expression most nearly evaluates to zero. Uses guess as initial
estimate.
Examples:

FNROOT(A*9.8/600-1,A,1) → 61.2244897959

FNROOT(X²-3,X,-2) → −1.73205080757

FNROOT(X²-3,X,2) → 1.73205080757

Page 139 of 239

13217 Help TextHelp Topics Tree
FNROOT(X^2-3,X,2,-2) → −1.73205080757

FNROOT({'X^2-3','T^3+4'},{'X','T'},{-2,-1},{2,1}) → {−1.73205080757,−1.58740105197}

FOR FROM TO DO END For Loop Structure

Syntax:

FOR var FROM start TO (or DOWNTO) finish [STEP increment] DO commands END;

Sets variable var to start; then, for as long as this variable’s value is less than or equal to (or more than for
a DOWNTO) finish, executes commands and adds (or subtracts for DOWNTO) 1 (or increment) to var.

Examples:

//print 1 3 5 7 9

FOR A FROM 1 TO 10 STEP 2

 DO

 PRINT(A);

END;

//print 10 8 6 4 2

FOR A FROM 10 DOWNTO 1 STEP 2

 DO

 PRINT(A);

END;

Example:

Demo_FOR

format Format Number

Syntax:

format(real, format))

Returns real number as a string in the indicated format (f=float, s=scientific, e=engineering,
a=hexadecimal).
Examples:

format(9.3456,"s3") → "9.35"

format(pi,"a12") → "0x1.921 54442d0p+1"

fourier_an Syntax:

fourier_an(Expr,Var,T,n,a)

Returns the nth Fourier coefficient an=2/T*∫(f(x)*cos(2*pi*n*x/T),a,a+T).

Example:

fourier_an(x^2,x,2,0,-1) → 1/3

fourier_bn Syntax:

fourier_bn(Expr,Var,T,n,a)

Returns the nth Fourier coefficient bn=2/T*∫(f(x)*sin(2*pi*n*x/T),a,a+T).

Example:

fourier_bn(x^2,x,2,0,-1) → 0

fourier_cn Syntax:

fourier_cn(Expr,Var,T,n,a)

Returns the nth Fourier coefficient cn=1/T*∫(f(x)*exp(-2*i*pi*n*x/T),a,a+T).

Example:

fourier_cn(x^2,x,2,0,-1) → 1/3

FP Fractional Part

Syntax:

FP(value)

Returns the Fractional part of value.

Examples:

FP(23.2) → 0.2

FP(-23.2) → -0.2

FP({23.2,15+1/4,51/2,10-4/5}) → {0.2,0.25,0.5,0.2}

fPart Fractional Part

Syntax:

fPart(Real) or

fPart(List)

Returns the fractional part of a real number or the fractional parts of a list of real numbers.

Examples:

fPart(1.2) → 0.2

fPart([3.4,√2])

fracmod Syntax:

fracmod(Expr,Integer))

For a given expression and an integer n, returns the fraction a/b such that a/b=Expr mod n, where -
√n/2<a≤√n/2 and 0≤b<√n/2
Example:

fracmod(41,121) → 2/3

FREEZE Freeze Screen

Syntax:

FREEZE

Page 140 of 239

13217 Help TextHelp Topics Tree
Prevents the screen from being redrawn after the program ends. Leaves the modified display on the
screen for the user to see.
This command does not pause and wait for input. Rather, it prevents a redraw until any other operation
(key press, screen touch, or data communication, or command) triggers the screen to be drawn.

Example:

FREEZE

froot Numerical Roots & Poles

Syntax:

froot(RatPoly)

Returns the list of roots and poles of a rational polynomial with their multiplicities.

Example:

froot((x^5-2*x^4+x^3)/(x-1)) → [0,3,1,2,3,-1]

fsolve Numerical Solve

Syntax:

fsolve(Expr,Var,[Guess or Interval],[Method])

fsolve(ExprVector, [Guess or Interval], [Method})

Returns the numerical solution of an equation or a system of equations.

With the optional third argument you can specify a guess for the solution or an interval within which it is
expected that the solution will occur.
With the optional fourth argument you can name the iterative algorithm to be used by the solver. If you
are solving for a single variable, your options are bisection_solver, newton_solver, or newtonj_solver. If
solving for 2 variables, your only option is newton_solver.

Examples:

fsolve(cos(x)=x,x,-1..1) → [0.739085133215]

fsolve([x²+y-2,x+y²-2],[x,y],[0,0]) → [1.,1.]

function_diff Functional Derivative

Syntax:

function_diff(FunctionName)

Returns the derivative function as a mapping of x onto the derivative of the given function.

Examples:

function_diff(sin) → (x)->cos(x)

function_diff(sin²+id) → (x)->2*cos(x)*sin(x)+1

Gamma Gamma Function

Syntax:

Gamma(Real)

Returns the value of the gamma function (Γ) for a real number.

Gamma(n)=(n-1)! if n is an integer.

Examples:

Gamma(5) → 24

Gamma(1/2)

gammad Gamma Density

Syntax:

gammad(a,t,x)

Gamma probability density function

Computes the probability density of the gamma distribution at x given parameters a and t.

Example:

gammad(2.2,1.5,.8) → 0.510330619114

gammad_cdf Cumulative Gamma

Syntax:

gammad_cdf(a,t,x,[x2])

Cumulative gamma distribution function

Returns the lower-tail probability of the gamma probability density function for the value x, given
parameters a and t. With the optional fourth argument x2, returns the area between the two x-values.

Examples:

gammad_cdf(2,1,2.96) → 0.794797087996

gammad_cdf(2,1,2.96,4) → 0.11362471756

gammad_icdf Inverse Cumulative Gamma

Syntax:

gammad_icdf(a,t,p)

Inverse cumulative gamma distribution function

Returns the value x such that the gamma lower-tail probability of x, given parameters a and t, is p.

Example:

gammad_icdf(2,1,0.95) → 4.74386451839

gauss Syntax:

gauss(Expr,Vector)

Page 141 of 239

13217 Help TextHelp Topics Tree
Given an expression followed by a vector of variables, uses the Gauss algorithm to return the quadratic
form of the expression written as a sum or difference of squares of the variables given in the vector.

Example:

gauss(x²+2*a*x*y,[x,y]) → -a²*y²+(a*y+x)²

gbasis Groebner Basis

Syntax:

gbasis([Poly1, Poly2,...], [Var1, Var2, ...])

Given a vector of polynomials and a vector of variables, returns the Groebner basis of the ideal spanned
by the set of polynomials.
Example:

gbasis([x²-y^3,x+y²],[x,y]) → [x*y+x^2,y^2+x]

gcd Greatest Common Divisor

Syntax:

gcd(Poly1, Poly2) or

gcd(Integer1, Integer2)

Returns the greatest common divisor of 2 polynomials of several variables. Can also be used as integer
gcd.
Examples:

gcd(x²-4,x²-5*x+6) → x-2

gcd(45,30) → 15

GETBASE Get Base

Syntax:

GETBASE(#integer[m])

Returns the base number for integer with base marker m. The base number is used by the SETBASE
function.
0 = System

1 = Binary

2 = Octal

3 = Decimal

4 = Hexadecimal

The base marker m can be b (for binary), o (for octal), d (for decimal), or h (for hexadecimal). If m is
omitted, the current system base is assumed.
Examples:

GETBASE(#1101b) → #1h

GETBASE(#1101) → #0h (if default base is hexadecimal)

GETBASE({#100h,#100d,#100o,#100b}) → {#4h,#3h,#2h,#1h}

GETBITS Get Bits

Syntax:

GETBITS(#integer)

Returns the number of bits used for encoding an integer. If not specified, then the value in the Integers
field of Page 1 of Home Settings is used.
Examples:

GETBITS(#22122) → 32 (If Home Se ngs Integers is set to 32 bits)

GETBITS(#1:45h) → 45

GETBITS(#153:-16o) → -16

GETBITS({#FFFF:16h,#777:-23o}) → {16,−23}

GETKEY Get Key

Syntax:

GETKEY

Returns the ID of the first key in the keyboard buffer, or -1 if no key was pressed since the last call to
GETKEY. Key IDs are integers from 0 to 50, numbered from top left (key 0) to bottom right (key 50).

0 = Apps

1 = Symb

2 = Up

3 = Help

4 = Esc

5 = Home

6 = Plot

7 = Left

8 = Right

9 = View

10 = CAS

11 = Num

12 = Down

13 = Menu

After that, the keys are numbered from top left (14 = Vars) to bottom right (50 = +)

GETPIX Get Pixel Color

Syntax:

GETPIX([G], x, y)

Returns the color of the pixel of G with Cartesian coordinates (x, y).

Page 142 of 239

13217 Help TextHelp Topics Tree
Examples:

Demo_GETPIX

GETPIX_P Get Pixel Color

Syntax:

GETPIX_P([G], x, y)

Returns the color of the pixel of G with pixel coordinates (x, y).

Examples:

Demo_GETPIX_P

GF Create Galois Field

Syntax:

GF(Integerp, Integern)

Creates a Galois Field of characteristic p with p^n elements.

Example:

GF(5,9) → GF(5,k^9-k^8+2*k^7+2*k^5-k^2+2*k-2,[k,K,g],undef)

grad Gradient

Syntax:

grad(Expr, ListVars)

Returns the gradient of an expression.

With a list of variables as second argument, returns the vector of partial derivatives.

Example:

grad(2*x²*y-x*z^3,[x,y,z]) → [-z³+4*x*y 2*x² -3*x*z²]

gramschmidt Gramschmidt Orthonormalization

Syntax:

gramschmidt(Vector, Function)

Given a basis of a vector subspace, and a function that defines a scalar product on this vector subspace,
returns an orthonormal basis for that function.
Example:

gramschmidt([1,1+x],(p,q)->integrate(p*q,x,-1,1)) → [1/(√2),(1+x-1)/(√6)/3]

greduce Groebner Remainder

Syntax:

greduce(Poly1, [Poly2, Poly3,...], [Var1, Var2, ...])

Given a polynomial and both a vector of polynomials and a vector of variables, returns the remainder of
the division of the polynomial by the Groebner basis of the vector of polynomials.

Examples:

greduce(x*y-1,{x²-y²,2*x*y-y²,y^3},{x,y}) → (1/2)*y²-1

greduce(x1²*x3²,[x3^3-1,-x2²-x2*x3-x3²,x1+x2+x3],[x1,x2,x3]) → x2

GROBH GROB Height

Syntax:

GROBH(G)

Returns the height of the graphic object G.

Example:

GROBH(G0) → 24

GROBH_P GROB Height

Syntax:

GROBH_P(G)

Returns the height of the graphic object G in pixels.

Example:

GROBH(G0) → 240

GROBW GROB Width

Syntax:

GROBW(G)

Returns the width of the graphic object G.

Example:

GROBW(G0) → 32

GROBW_P GROB Width

Syntax:

GROBW_P(G)

Returns the width of the graphic object G in pixels.

Example:

GROBW_P(G0) → 320

groupermu Syntax:

groupermu(permutation1,permutation2)

Returns the group of permutations generated by permutation1 and permutation2.

Example:

groupermu([2,1],[2,3,1])

hadamard Syntax:

hadamard(Matrix,[Matrix])

Hadamard bound of a matrix or element by element multiplication of 2 matrices.

Examples:

Page 143 of 239

13217 Help TextHelp Topics Tree
hadamard([[1,2],[3,4]]) → 5*√5

hadamard([[1,2],[3,4]],[[3,4],[5,6]]) → [[3,8],[15,24]]

half_line Ray

Syntax:

half_line(Point1, Point2)

Given 2 points, draws a ray from the first point through the second point.

Example:

half_line(0,1+i) draws a ray starting at the origin and passing through the point at (1,1)

halftan Syntax:

halftan(Expr)

Transforms sin(x), cos(x) and tan(x) as a function of tan(x/2).

Examples:

halftan(sin(x)) → (2*TAN(x/2))/((TAN(x/2))²+1)

halftan(tan(x)) → (2*TAN(x/2))/(-(TAN(x/2))²+1)

halftan_hyp2exp Syntax:

halftan_hyp2exp(Expr)

Transforms the trigonometric functions in tan(x/2) and hyperbolic functions into exponentials.

Example:

halftan_hyp2exp(sin(x)+sinh(x)) → (1/2)*((-1/e^x)+e^x)+2*tan((1/2)*x)/((tan((1/2)*x))²+1)

halt Syntax:

halt

Puts a program in step-by-step debug mode.

Example:

halt()

hamdist Hamming Distance

Syntax:

hamdist(Intgr1, Intgr2)

Returns the Hamming distance between two integers.

Example:

hamdist(0x12,0x38) → 3

harmonic_conjugate Harmonic Conjugate

Syntax:

harmonic_conjugate(Point1, Point2, Point3) or

harmonic_conjugate(Line1, Line2, Line3)

Returns the harmonic conjugate of 3 points. Specifically, returns the harmonic conjugate of Point3 with
respect to Point1 and Point2. Also accepts three parallel or concurrent lines; in this case, it returns the
equation of the harmonic conjugate line.
Examples:

harmonic_conjugate(point(0,0),point(3,0),point(4,0))

harmonic_conjugate(line(0,1+i),line(0,3+i),point(3/2+i))

harmonic_conjugate(point(0, 0), point(3, 0), point(4, 0)) → point(12/5, 0)

harmonic_division Harmonic Division

Syntax:

harmonic_division(point1, point2, point3, var) or

harmonic_division(line1, line2, line3, var)

Returns the 4 points (resp lines) and affects the last argument, such as the 4 points (resp lines) are in a
harmonic division.
Examples:

harmonic_division(point(0, 0),point(3, 0),point(4, 0), p) → point(12/5,0)

harmonic_division(line(0,1+i),line(0,3+i),line(0,i),D)

has Has Variable

Syntax:

has(Expr,Var)

Checks if a variable is in an expression.

Returns 1 if the variable is in the expression, and returns 0 otherwise.

Examples:

has(x+y,x) → 1

has(x+y,n) → 0

head Head Element

Syntax:

head(Vector) or

head(String) or

head(Obj1, Obj2,...)

Returns the first element of a vector or a string or a set of objects.

Examples:

head(1,2,3) → 1

head("bonjour") → "b"

Heaviside Syntax:

Page 144 of 239

13217 Help TextHelp Topics Tree
Heaviside(Real)

Returns the value of the Heaviside function for a given real number.

The Heaviside function is equal to 0 if x<0 and 1 if x≥0.

Example:

Heaviside(1) → 1

hermite Hermite Polynomial

Syntax:

hermite(Integer)

Returns the Hermite polynomial of degree n, where n is an integer less than 1556.

Example:

hermite(3) → 8*x³-12*x

hessenberg Syntax:

hessenberg(Matrix_A)

Given Matrix_A, returns the matrix reduction to Hessenberg form. Returns [P,B] such that B=inv(P)*A*P.

Example:

hessenberg([[1,2,3],[4,5,6],[7,8,1]]) → [[[1,0,0],[0,4/7,1],[0,1,0]],[[1,29/7,2],[7,39/7,8],[0,278/49,3/7]]]

hessian Hessian Matrix

Syntax:

hessian(Expr,ListVar)

Returns the Hessian matrix of an expression.

Example:

hessian(2*x²*y-x*z,[x,y,z]) → [[4*y,4*x,-1],[4*x,0,0],[-1,0,0]]

hexagon Syntax:

hexagon(Point1, Point2, [Var1, Var2, Var3, Var4])

Draws a regular hexagon defined by one of its sides; that is, by two consecutive vertices. The remaining
points are calculated automatically, but are not defined symbolically. The orientation of the hexagon is
counterclockwise from the first point.
Examples:

hexagon(0,6) draws a regular hexagon whose first two vertices are at (0, 0) and (6, 0).

hexagon(0,6,a,b,c,d) draws a regular hexagon whose first two vertices are at (0, 0) and (6, 0)l labels the
other four vertices a, b, c, and d, and stores the coordinates into the CAS variables a, b, c, and d.

You do not have to define variables for all four remaining points, but the coordinates are stored in order.
For example, hexagon(0,6, a) stores just the third point into the CAS variable a.

hilbert Hilbert Matrix

Syntax:

hilbert(n)

Given a positive integer n, returns the nth order Hilbert matrix. Each element of the matrix is given by the
formula 1/(j+k-1) where j is the row number and k is the column number.

Example:

hilbert(3) → [[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]]

HMS→ Syntax:

HMS→(value)

Displays a sexagesimal value in decimal format.

Examples:

HMS→(8°30) → 8.5

HMS→({8°30ʹ00ʺ,286°15ʹ00ʺ}) → {8.5,286.25}

homothety Dilation

Syntax:

homothety(Point, Realk, Object)

Dilates a geometric object, with respect to a center point, by a scale factor.

Examples:

homothety(GA,2,GB) creates a dilation centered at point A that has a scale factor of 2. Each point P on
geometric object B has its image P’ on ray AP such that AP’=2AP.
homothety(point(0,0),1/3,point(9,9)) creates an image point at (3,3).

horner Syntax:

horner(Polynomial,Real)

Returns the value of a polynomial P(a) calculated with Horner's method. The polynomial may be given as
a symbolic expression or as a vector of coefficients.
Examples:

horner(x^2+1,2) → 5

horner([1,0,1],2) → 5

hyp2exp Syntax:

hyp2exp(Expr)

Returns an expression with hyperbolic terms rewritten as exponentials.

Example:

hyp2exp(cosh(x)) → (exp(x)+1/exp(x))/2

hyperbola Syntax:

hyperbola(Point1, Point2, Point3) or
Page 145 of 239

13217 Help TextHelp Topics Tree
hyperbola(Point1, Point2, Realk)

Draws a hyperbola, given the foci and either a point on the hyperbola or a scalar that is one half the
constant difference of the distances from a point on the hyperbola to each of the foci.

Examples:

hyperbola(GA,GB,GC) draws the hyperbola whose foci are points A and B and which passes through point
C.
hyperbola(GA,GB,3) draws a hyperbola whose foci are points A and B. For any point P on the hyperbola,
|AP-BP|=6.

iabcuv Syntax:

iabcuv(Intg(a),Intg(b),Intg(c))

Returns [u,v] such as au+bv=c for 3 integers a,b,c

Example:

iabcuv(21,28,7) → [-1,1]

ibasis Intersection Basis

Syntax:

ibasis(Matrix1, Matrix2))

Given two matrices, interprets them as two vector spaces and returns the vector basis of their
intersection.
Example:

ibasis([[1,0,0],[0,1,0]],[[1,1,1],[0,0,1]]) → [-1 -1 0]

ibpdv Integration By Parts v

Syntax:

ibpdv(f(Var), v(Var), [Var], [Real1], [Real2])

Performs integration by parts of the expression f(x)=u(x)*v'(x), with f(x) as the first argument and v(x) (or
0) as the second argument.
Specifically, returns a vector whose first element is u(x)*v(x) and whose second element is v(x)*u'(x). With
the optional third, fourth and fifth arguments you can specify a variable of integration and bounds of the
integration. If no variable of integration is provided, it is taken as x.

Examples:

ibpdv(ln(x),1) → x*ln(x)-x

ibpdv(ln(x),x) → [x*ln(x), -1]

ibpu Integration By Parts u

Syntax:

ibpu(f(Var), u(Var), [Var], [Real1], [Real2])

Performs integration by parts of the expression f(x)=u(x)*v'(x), with f(x) as the first argument and u(x) (or
0) as the second argument.
Specifically, it returns a vector whose first element is u(x)*v(x) and whose second element is v(x)*u'(x).
With the optional third, fourth and fifth arguments you can specify a variable of integration and bounds of
the integration. If no variable of integration is provided, it is taken as x.

Example:

ibpu(x*ln(x), x) → [x*(x*ln(x)-x), -x*ln(x)+x]

ichinrem Integer Chinese Remainder

Syntax:

ichinrem([a,p],[b,q]))

Integer Chinese Remainder Theorem for two equations. Takes two lists [a, p] and [b, q] and returns a list
of two integers, [r, n], such that x≡r mod n. In this case, x is such that x≡a mod p and x≡b mod q; also,
n=p*q.
Example:

ichinrem([2,7],[3,5]) → [23,35]

icontent GCD of Integer Coefficients

Syntax:

icontent(Poly,[Var])

Returns the greatest common divisor of the integer coefficients of a polynomial.

Example:

icontent(24x^3+6x²-12x+18) → 6

id Identity Function

Syntax:

id(Expr)

The id entity function: x→x. Returns a set containing the original argument.

Example:

id(1,2,3) → [1 2 3]

IDENMAT Identity Matrix

Syntax:

IDENMAT(n)

Creates a square matrix of dimension n x n whose diagonal elements are 1 and off-diagonal elements are
zero.
Examples:

IDENMAT(2) → [[1,0],[0,1]]

IDENMAT({2,3}) → {[[1,0],[0,1]],[[1,0,0],[0,1,0],[0,0,1]]}

identity Identity Matrix

Syntax:

Page 146 of 239

13217 Help TextHelp Topics Tree
identity(Integer)

Given an integer n, returns the identity matrix of dimension n.

Example:

identity(3) → [[1,0,0],[0,1,0],[0,0,1]]

idivis Integer Divisors

Syntax:

idivis(Integer) or

idivis({Intgr1, Intgr2, ... Intgrn})

Returns a list of all the factors of an integer or of a list of integers.

Example:

idivis(12) → [1, 2, 3, 4, 6, 12]

iegcd Integer Extended GCD

Syntax:

iegcd(Integer1, Integer2)

Given two integers a and b, returns the extended greatest common divisor for two integers. Returns
[u,v,igcd(a,b)] such that a*u+b*v=igcd(a,b).
Example:

iegcd(14, 21) → [-1, 1, 7]

IF THEN ELSE END IF Branch Structure

Syntax:

IF test THEN commands1 [ELSE commands2] END;

Starts an "IF … THEN … END" or "IF … THEN … ELSE … END" branch structure.

Evaluate test. If test is true (non 0), executes commands1, otherwise, executes commands2

Example:

IF A<1

 THEN PRINT("A<1");

 ELSE PRINT("A>1");

END;

Examples:

Demo_IF

ifactor Integer Factors

Syntax:

ifactor(Integer)

Returns the prime factorization of an integer as a product.

Can be used with STO▶.

Note: in some cases, factorization may fail. In these cases, the command will return the product of -1 and
the opposite of the original input. The -1 indicates that factorization failed.

Example:

ifactor(150) → 2*3*5²

ifactors Integer Factors List

Syntax:

ifactors(Integer)

Similar to ifactor, but returns a list of the factors of the integer with their multiplicities.

Example:

ifactors(150) → [2, 1, 3, 1, 5, 2]

IFERR Error Trapping Structure

Syntax:

IFERR commands1 THEN commands2 [ELSE commands3] END;

Executes sequence of commands1. If an error occurs during execution of commands1, executes sequence
of commands2. Otherwise, execute sequence of commands3.
Many conditions are automatically recognized by the HP Prime as error conditions and are automatically
treated as errors in programs. This command facilitates error-trapping of such errors.

Note: the error number will be stored in the Ans variable. So you can access it and use it in the THEN
clause of the IFERR.
Example:

IFERR 1/0

 THEN PRINT("1/0 Error");

END;

Example:

Demo_IFERR

ifft Inverse Fast Fourier Transform

Syntax:

ifft(Vect)

Returns the inverse discrete Fourier transform.

Example:

ifft([100.0,-52.2842712475+6*i,-8.0*i,4.28427124746-6*i,4.0,4.28427124746+6*i,8*i,-52.2842712475-
6*i]) → [0.99999999999,3.99999999999,10.0,20.0,25.0,24.0,16.0,-6.39843733552e-12]

Page 147 of 239

13217 Help TextHelp Topics Tree
IFTE If Then Else structure

Syntax:

IFTE(Expr, TrueClause, FalseClause)

If Expr evaluates true (1), evaluates TrueClause; if not, evaluates FalseClause.

If Expr returns a list, then TrueClause and FalseClause each have to be either a single object, or a list of the
same size as the result of Expr. The result will be a list of that size with elements picked from TrueClause
and FalseClause according to the Boolean value of each element of the result of Expr.

Examples:

IFTE(2<3, 5-1, 2+7) → 4

IFTE({2<3,√(6*π)≤3},5-1,{2+7,7*6}) → {4,7*6}

igcd Integer GCD

Syntax:

igcd(Intgr1, Intgr2, ... Intgrn))

Returns the integer that is the greatest common divisor of two or more integers.

Example:

igcd(24,36) → 12

ihermite Hermite Normal

Syntax:

ihermite(Matrix_A)

Given Matrix_A, returns the Hermite normal form of a matrix with coefficients in Z: returns U, B such that
U is invertible in Z, B is upper triangular and B=U*A
Example:

ihermite([[1,2,3],[4,5,6],[7,8,9]]) → [[-3,1,0],[4,-1,0],[-1,2,-1]],[[1,-1,-3],[0,3,6],[0,0,0]]

ilaplace Inverse Laplace Transform

Syntax:

ilaplace(Expr,[Var],[IlapVar])

Returns the inverse Laplace transform of a rational fraction.

Examples:

ilaplace(1/(x^2+1)^2) → (1/2)*sin(x)-(1/2)*x*cos(x)

ilaplace(s/(s^4-1),s,x)

IM Imaginary Part

Syntax:

IM(x+yi)

Returns the imaginary part of a complex number.

Examples:

IM(3+4i) → 4

IM({3+4*i,6-6*i}) → {4,-6}

image Syntax:

image(Matrix)

Image of a linear application of a matrix.

Example:

image([[1,2],[3,6]]) → [1,3]

implicit_diff Implicit derivative

Syntax:

implicit_diff(expression, var1, var2, [Order])

Returns the implicit derivative of expression with respect to var1, var2. The result is an expression that
defines d(var2)/d(var1), so the order of the variables is important. expression is usually an equation; if
there is no equal sign, expression=0 is assumed. The optional parameter, Order, designates the order of
the derivative to be found. Order defaults to 1.

Examples:

implicit_diff(y^5=x,x,y) → 1/(5*y^4)

implicit_diff(y^5=x,y,x) → 5*y^4

implicit_diff(x^2+y^2-5,x,y) → –x/y

implicit_diff(x^2+y^2-5,x,y,2) → (-x^2-y^2)/y^3

incircle Syntax:

incircle(Point1, Point2, Point3)

Draws the incircle of a triangle, the circle tangent to all three sides of the triangle.

Examples:

incircle(0,4,4+4*i)

incircle(GA,GB,GC) draws the incircle of ΔABC.

INPUT Input Form

Syntax:

INPUT(var,[“title”], [“label”], [“help”], [reset_value], [initial_value])

INPUT({vars},[“titles”], [{“labels”}], [{“helps”}], [{reset_values}], [{initial_values}])

var -> {var_name, real, [{pos}]}

var -> {var_name, [allowed_types_matrix], [{pos}]}

var -> {var_name, {choose_items}, [{pos}]}

Page 148 of 239

13217 Help TextHelp Topics Tree
The simpler form of this command opens a dialog box with the given title and one field named label,
displaying help at the bottom. The dialog box includes Cancel and OK menu keys. The user can enter a
value in the labeled field. If the user presses the OK menu key, the variable var is updated with the
entered value and 1 is returned. If the user presses the Cancel menu key, var is not updated and 0 is
returned.

In the more complex form of the command, lists are used to create a multi-field dialog box. If var is a list,
each element can be either a variable name or a list using the following format:

{var_name, real, [{pos}]} to create a checkbox control. If real is >1, then this checkbox gets pooled with
the next n -1 checkboxes in a radio group (i.e., only one of the n checkboxes can be checked at any time)

{var_name, [allowed_types_matrix], [{pos}]} to create an edit field. allowed_types_matrix lists all the
allowed types ([-1] stands for all types allowed). If the only allowed type is a string, then the edition will
hide the double quotes.
{var_name, {choose_items}, [{pos}]} to create a choose field.

If pos is specified, it is a list of the form {field start in screen percentage, field width in screen percentage,
line (starts at 0) }. This allows you to control precisely the position and size of your fields. Note that you
have to specify pos for either none or all fields in the dialog box.

There is a maximum of 7 lines of controls per page. Controls with more than 7 lines will be placed in
subsequent pages. If more than one page is created, titles can be a list of titles.

INSTRING In String

Syntax:

INSTRING(String1, String2)

Returns the index of the first occurrence of String2 in String1. Returns 0 if String2 is not present in String1.
Note that the first character in a string is position 1.
Examples:

INSTRING("vanilla", "van") → 1

INSTRING("banana","na") → 3

INSTRING("ab","abc") → 0

INSTRING({"vanilla","banana","ab"},{"van","ana","abc"}) → {1,2,0}

int Integrate

Syntax:

int(Expr,[Var],[Real1,Real2])

Returns the integral of an expression.

With one expression as argument, returns the indefinite integral with respect to x. With the optional
second, third and fourth arguments you can specify the variable of integration and the bounds for a
definite integral.
Examples:

int(1/x) → ln(abs(x))

int(sin(x),x,0,π) → 2

int(1/(1-x^4),x,2,3)) → -1/4*(2*atan(2)+ln(3))+1/4*(2*atan(3)-ln(2)+ln(4))

inter Intersections

Syntax:

inter(Curve1, Curve2)

Returns the intersections of two curves as a vector.

Example:

inter(8-x²/6,x/2-1) → [[6, 2] [-9, -11/2]], indica ng that there are two intersec ons-one at (6,2) and the
other at (-9,-11/2).

interval2center Syntax:

interval2center(Interval) or

interval2center(Object)

Returns the center of an interval or object.

Example:

interval2center(2..5) → 7/2

inv Inverse

Syntax:

inv(Expr) or inv(Matrix)

Returns the inverse of an expression or matrix.

Examples:

inv(9/5) → 5/9

inv([[1,2],[3,4]]) → [[-2 1], [3/2 -1/2]]

INVERSE Square matrix Inverse

Syntax:

Matrix^(-1)

Inverts a square matrix.

If Complex mode is on, the matrix may contain complex elements.

inversion Syntax:

inversion(Point1, Realk, Point2)

Draws the inversion of a point, with respect to another point, by a scale factor.

Example:

Page 149 of 239

13217 Help TextHelp Topics Tree
inversion(GA,3,GB) draws point C on line AB such that AB*AC=3. In this case, point A is the center of the
inversion and the scale factor is 3. Point B is the point whose inversion is created.

In general, the inversion of point A through center C, with scale factor k, maps A onto A’, such that A’ is on
line CA and CA*CA’=k, where CA and CA’ denote the lengths of the corresponding segments. If k=1, then
the lengths CA and CA’ are reciprocals.

INVERT Invert GROB

Syntax:

INVERT([G, x1, y1, x2, y2])

Inverts the rectangle on G defined by the diagonal points (x1, y1) and (x2, y2). The effect is reverse video.

The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

If only one (x,y) pair is specified, it refers to the top left corner of G.

Example:

Demo_INVERT

INVERT_P Invert GROB

Syntax:

INVERT_P([G, x1, y1, x2, y2])

Inverts the rectangle on G defined by the diagonal points (x1, y1) and (x2, y2). The effect is reverse video.

The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

If only one (x,y) pair is specified, it refers to the top left corner of G.

Example:

Demo_INVERT_P

invlaplace Inverse Laplace Transform

Syntax:

invlaplace(Expr,[Var],[IlapVar])

Returns the inverse Laplace transform of an expression.

Example:

invlaplace(1/(x²+1)²) → (-x/2)*cos(x)+(1/2)*sin(x)

invztrans Inverse Z Transform

Syntax:

invztrans(Expr,[Var],[InvZtransVar])

Returns the inverse z transform of a rational fraction.

Examples:

invztrans(1/(x^2+1)^2) → (1/4)*(x*e^((i/2)*π*x)+x*e^((−i/2)*π*x)-2*e^((i/2)*π*x)-
2*e^((−i/2)*π*x))*Heaviside(x-1)
invztrans(z/(z^4-1),z,n)

IP Integer Part

Syntax:

IP(value)

Returns the Integer part of value.

Examples:

IP(23.2) → 23

IP(-23.2) → -23

IP({23.2,15+1/4,51/2,10-4/5}) → {23,15,25,9}

iPart Integer Part

Syntax:

iPart(Real) or

iPart(List)

Returns a real number without its fractional part or a list of real numbers each without its fractional part.

Examples:

iPart(4.3) → 4

iPart(4.3,√2)

iquo Integer Euclidian Quotient

Syntax:

iquo(Intgr1, Intgr2)

Returns the integer quotient of the Euclidean division of two integers.

Examples:

iquo(148,5) → 29

iquo(25+12*i,5+7*i) → 3-2*i

iquorem Integer Quotient and Remainder

Syntax:

iquorem(Integer1, Integer2))

Returns the Euclidean quotient and remainder of two integers.

Example:

Page 150 of 239

13217 Help TextHelp Topics Tree
iquorem(63,23) → [2,17]

irem Integer Euclidian Remainder

Syntax:

irem(Intgr1, Intgr2)

Returns the integer remainder from the Euclidean division of two integers.

Examples:

irem(148,5) → 3

irem(25+12*i,5+7*i) → -4+i

is_collinear is_collinear Function

Syntax:

is_collinear(Point1, Point2, ..., Pointn)

Takes a set of points as argument and tests whether or not they are collinear. Returns 1 if the points are
collinear and 0 otherwise.
Example:

is_collinear(point(0,0), point(5,0), point(6,1)) → 0

is_concyclic is_concyclic Function

Syntax:

is_concyclic(Point1, Point2, Point3, Point4))

Takes a set of 4 points as argument and tests if they are all on the same circle. Returns 1 if the points are
all on the same circle and 0 otherwise.
Example:

is_concyclic(point(-4,-2), point(-4,2), point(4,-2), point(4,2)) → 1

is_conjugate is_conjugate Function

Syntax:

is_conjugate(Circle, Point1, Point2, [Point3]) or

is_conjugate(Line1, Line2, Line3, [Line4])

Tests whether or not two points or two lines are conjugates for the given circle. Returns 1 if they are and
0 otherwise.

is_coplanar is_coplanar Function

Syntax:

is_coplanar(Point1, Point2, Point3, Point4)

Tests if four points are in the same plane.

Returns 1 if true or 0 if false.

is_cycle is_cycle Function

Syntax:

is_cycle(list)

Tests whether or not list is a cycle. Returns 1 if it is, and 0 otherwise.

Examples:

is_cycle([2,1,3,5]) → 1

is_cycle([2,0,3,2]) → 0

is_element is_element Function

Syntax:

is_element(Point, Object)

Tests if a point is on a geometric object. Returns a number (1 to number of sides) representing the
segment containing the point and 0 otherwise.
Examples:

is_element(point((√(2)/2),(√(2)/2)),circle(0,1)) → 1

is_element(point(0,0.5),square(0,1)) → 4

is_equilateral is_equilateral Function

Syntax:

is_equilateral(Point1, Point2, Point3)

Takes three points and tests whether or not they are vertices of a single equilateral triangle. Returns 1 if
they are and 0 otherwise.
Example:

is_equilateral(triangle(0,2,1+i*√3)) → 1

is_harmonic Syntax:

is_harmonic(Point1, Point2, Point3, Point4)

Tests whether or not four points are in a harmonic division or range.

Returns 1 if they are or 0 otherwise.

Example:

is_harmonic(0,1+i,1,i) → 0

is_harmonic_circle_bundle Syntax:

is_harmonic_circle_bundle(Circle1, Circle2, ..., Circlen)

Returns

1 if the circles have a common external tangent

2 if they have the same center

3 if they are all the same circle

0 if none of the above

Example:

is_harmonic_circle_bundle([circle(0,1+i),circle(2,1+i),circle(1+i,point(1-i))]) → 1

is_harmonic_line_bundle Syntax:

Page 151 of 239

13217 Help TextHelp Topics Tree
is_harmonic_line_bundle(Line1, Line2, ..., Linen)

Returns:

1 if the lines have a common point

2 if they are all parallel

3 if they are all the same line

0 otherwise

Example:

is_harmonic_line_bundle(line(x+2*y=3), line(2*x+4*y=6)) → 3

is_isosceles is_isosceles Function

Syntax:

is_isosceles(Point1, Point2, Point3)

Takes three points and tests whether or not they are vertices of a single isosceles triangle. Returns 0 if
they are not. If they are, returns the number order of the common point of the two sides of equal length
(1, 2, or 3). Returns 4 if the three points form an equilateral triangle.

Examples:

is_isosceles(point(0,0), point(4,0), point(2,4)) → 3

is_isosceles(triangle(0,i,1+i)) → 2

is_orthogonal is_orthogonal Function

Syntax:

is_orthogonal(Line1, Line2) or

is_orthogonal(Circle1, Circle2)

Tests whether or not two lines or two circles are orthogonal (perpendicular). In the case of two circles,
tests whether or not the tangent lines at a point of intersection are orthogonal. Returns 1 if they are and 0
otherwise.
Example:

is_orthogonal(line(y=x),line(y=-x)) → 1

is_parallel is_parallel Function

Syntax:

is_parallel(Line1, Line2)

Tests whether or not two lines are parallel. Returns 1 if they are and 0 otherwise.

Example:

is_parallel(line(2x+3y=7),line(2x+3y=9) → 1

is_parallelogram is_parallelogram Function

Syntax:

is_parallelogram(Point1, Point2, Point3, Point4)

Tests whether or not a set of four points are vertices of a parallelogram. Returns 0 if they are not. If they
are, then returns 1 if they form only a parallelogram, 2 if they form a rhombus, 3 if they form a rectangle,
and 4 if they form a square.
Example:

is_parallelogram(point(0,0), point(2,4), point(0,8), point(-2,4)) → 2

is_permu is_permu Function

Syntax:

is_permu(list)

Tests whether or not list is a permutation. Returns 1 if it is, and 0 otherwise.

Examples:

is_permu([3,1,5,4,2]) → 1

is_permu([3,1,5,4]) → 0

is_perpendicular is_perpendicular Function

Syntax:

is_perpendicular(Line1, Line2)

Similar to is_orthogonal. Tests whether or not two lines are perpendicular. Returns 1 if they are or 0 if
they are not.
Example:

is_perpendicular(line(y=x),line(y=-x)) → 1

is_rectangle is_rectangle Function

Syntax:

is_rectangle(Point1, Point2, Point3, Point4)

Tests whether or not a set of four points are vertices of a rectangle.

Returns 0 if they are not, 1 if they are, and 2 if they are vertices of a square.

Example:

is_rectangle(point(0,0), point(4,2), point(2,6), point(-2,4)) → 2

With a set of only three points as argument, tests whether or not they are vertices of a right triangle.
Returns 0 if they are not. If they are, returns the number order of the common point of the two
perpendicular sides (1, 2, or 3).

is_rhombus Syntax:

is_rhombus(Point1, Point2, Point3, Point4)

Tests whether or not a set of four points are vertices of a rhombus.

Returns

0 if they are not

1 if they are

2 if they are vertices of a square

Page 152 of 239

13217 Help TextHelp Topics Tree
Example:

is_rhombus(point(0,3), point(3,0), point(0,-3), point(-3,0)) → 2

is_square is_square Function

Syntax:

is_square(Point1, Point2, Point3, Point4)

Tests whether or not a set of four points are vertices of a square.

Returns 1 if they are and 0 otherwise.

Example:

is_square(point(0,0),point(4,2), point(2,6),point(-2,4)) → 1

ISKEYDOWN Is Key Pressed

Syntax:

ISKEYDOWN(KeyIdentifier)

Returns true (non-zero) if the key whose KeyIdentifier is provided is currently pressed, and false (0) if it is
not.

ismith Smith Normal

Syntax:

ismith(Matrix_A)

Given Matrix_A, returns the Smith normal form of a matrix with coefficients in Z. Returns [U V B] such that
U and V are invertible in Z, B is the diagonal, B[i,i] divides B[i+1,i+1] and B=U*A*V.

Example:

ismith([[1,2,3],[4,5,6],[7,8,9]]) → [[1,0,0],[4,-1,0],[-1,2,-1]],[[1,0,0],[0,3,0],[0,0,0]],[[1,-2,1],[0,1,-2],[0,0,1]]

isobarycenter isobarycenter Function

Syntax:

isobarycenter(Point1, Point2, …, Pointn)

Returns the hypothetical center of mass of a set of points. Works like barycenter but assumes all points
have equal weight.
Example:

isobarycenter(-1,1-i,i) → point(0,0)

isopolygon Regular Polygon

Syntax:

isopolygon(Point1, Point2, Realn)

Draws a regular polygon given the first two vertices and the number of sides, where the number of sides
is greater than 1. If the number of sides is 2, then the segment is drawn.

You can provide CAS variable names for storing the coordinates of the calculated points in the order they
were created. The orientation of the polygon is counterclockwise.

Examples:

isopolygon(point(0,0,0),point(3,3,3),point(0,0,3),-5)

isopolygon(GA,GB,6) draws a regular hexagon whose first two vertices are the points A and B.

isosceles_triangle Isosceles Triangle

Syntax:

isosceles_triangle(Point1, Point2, Angle, [Var])

Draws an isosceles triangle defined by two of its vertices and an angle. The vertices define one of the two
sides equal in length and the angle defines the angle between the two sides of equal length. Like
equilateral_triangle, you have the option of storing the coordinates of the third point into a CAS variable.

Example:

isosceles_triangle(GA,GB,angle(GC,GA,GB)) defines an isosceles triangle such that one of the two sides of
equal length is AB, and the angle between the two sides of equal length has a measure equal to that
of∡ACB.

isprime Primality Test

Syntax:

isprime(Integer)

Returns true if the integer is prime; otherwise, returns false.

Examples:

isprime(1999) → 1

isprime(42) → 0

ITERATE Iterate Expression

Syntax:

ITERATE(expr, var, ivalue, times)

For times, recursively evaluates expr in terms of var, beginning with var = ivalue.

Examples:

ITERATE(X^2, X, 2, 3) → 256

ITERATE({'X^2','Y^3','Z+1'},{'X','Y','Z'},{2,3,4},{3,2,3}) → {256,19683,7}

ithprime Ith Prime

Syntax:

ithprime(Integer)

Given an integer n, returns the nth prime number, where n is between 1 and 200,000.

Example:

Page 153 of 239

13217 Help TextHelp Topics Tree
ithprime(5) → 11

jacobi_symbol Jacobi Symbol

Syntax:

jacobi_symbol(Integer1, Integer2)

Returns the Jacobi symbol of the two given integers.

Example:

jacobi_symbol(132,5) → -1

jordan Syntax:

jordan(Matrix)

Returns the list made by the matrix of passage and the Jordan form of a matrix.

Examples:

jordan([[0,2],[1,0]]) → [[√2,-√2],[1,1]],[[√2,0],[0,-√2]]

jordan([[-2,-2,1],[-2,1,-2],[1,-2,-2]])

JordanBlock Jordan Block

Syntax:

JordanBlock(Expr, n)

Returns a square n x n matrix with Expr on the diagonal, 1 above and 0 everywhere else.

Examples:

JordanBlock(7,3) → [[7,1,0],[0,7,1],[0,0,7]]

JordanBlock(x+1,3) → [[x+1,1,0],[0,x+1,1],[0,0,x+1]]

limit Syntax:

limit(Expr,Var,Val, [Dir])

Returns the limit (2-sided or 1-sided) of the given expression as the given variable approaches a value.

The optional argument Dir indicates a two sided limit if 0, one sided from below if -1, and one sided from
above if 1. If the fourth argument is not provided, the limit returned is bidirectional.

Examples:

limit((n*tan(x)-tan(n*x))/(sin(n*x)-n*sin(x)),x,0) → 2

limit(sin(x)/(x²-3*x),x,0) → -1/3

limit(exp(1/x),x,0,1) → +∞

→HMS Syntax:

→HMS(value)

Displays a decimal value in sexagesimal format; that is, in units subdivided into groups of 60. This includes
degrees, minutes, and seconds as well as hours, minutes, and seconds.

Examples:

→HMS(8.5) → 8°30'

→HMS({8.5,37.7539}) → {8°30ʹ00ʺ,37°45ʹ14.04ʺ}

K-O Function Catalog K-O

Toolbox function catalog K-O

+/- Negative

Syntax:

- Value or - Expression

Unary minus.

Changes the sign of Value or Expression. Used to enter negative numbers.

ker Kernel of Matrix

Syntax:

ker(Mtrx(M))

Returns the kernel of a linear application of a matrix.

Example:

ker([[1,2],[3,6]]) → [2,-1]

KILL Stop Execution

Syntax:

KILL;

Stops the execution of a program.

Example:

Demo_KILL

kolmogorovd Kolmogorov-Smirnov distribution

Returns the Kolmogorov-Smirnov distribution value.

1-2*sum((-1)^(k-1)*exp(-k^2*x^2),k,1,∞)

Example:

kolmogorovd(1.36) → 0.950514123245

kolmogorovt Kolmogorov-Smirnov test

Syntax:

kolmogorovt(list1,list2)

kolmogorovt(list1,distribution_law)

Kolmogorov-Smirnov equality test to a continuous distribution law - either between two samples list1 and
list2 from an unknown distribution, or
between a sample list1 and a specific distribution_law.

Page 154 of 239

13217 Help TextHelp Topics Tree
Examples:

kolmogorovt(randvector(100,normald,0,1),randvector(100,normald,0,1))

kolmogorovt(randvector(100,normald,0,1),randvector(100,normald,3,1))

kolmogorovt(randvector(100,normald,0,1),normald(0,1))

kolmogorovt(randvector(100,normald,0,1),student(2))

l1norm L¹ Norm

Syntax:

l1norm(Vector)

Returns the L¹ norm (sum of the absolute values of the coordinates) of a vector.

Example:

l1norm([3,-4,2]) → 9

l2norm L² Norm

Syntax:

l2norm(Vector)

Returns the L² norm (sqrt(x1²+x2²+…xn²)) of a vector.

Example:

l2norm([3,4,-2]) → √29

lagrange Lagrange Polynomial

Syntax:

lagrange([X1, X2,... Xn], [Y1, Y2, ... Yn]) or

lagrange(Matrix)

Given a vector of abscissas and a vector of ordinates, returns the Lagrange polynomial for the points
specified in the two vectors.
This function can also take a matrix as argument, with the first row containing the abscissas and the
second row containing the ordinates. Returns the polynomial of degree n-1 such that P(xk)=yk, for k=0, 1,
…, n-1.
Example:

lagrange([[1,3],[0,1]]) → (1/2)*(x-1)

laguerre Laguerre Polynomial

Syntax:

laguerre(Integer)

Given an integer n, returns the Laguerre polynomial of degree n.

Example:

laguerre(2) → -a*x+1/2*a^2+1/2*x^2+3/2*a-2*x+1

laplace Laplace Transform

Syntax:

laplace(Expr,[Var],[LapVar])

Returns the Laplace transform of an expression.

Examples:

laplace(e^(x)*sin(x)) → 1/(x²-2*x+2)

laplace(sin(x)^2,x,s) → 2/(s³+4*s)

laplacian Syntax:

laplacian(Expr, Vector)

Returns the Laplacian of an expression with respect to a vector of variables.

Example:

laplacian(e^(z)*cos(x*y),[x,y,z]) → e^(z)*cos(x*y)-x²*e^(z)*cos(x*y)-y²*e^(z)*cos(x*y)

latex Generate Latex Text

Syntax:

latex(Expr)

Returns the evaluated CAS expression written in Latex format.

Examples:

latex(1/2) → "\frac{1}{2}"

latex((x^4-1)/(x^2+3)) → "\frac{(x^{4}-1)}{(x^{2}+3)}"

lcm Lowest Common Multiple

Syntax:

lcm(Intgr1, Intgr2, ...) or

lcm(Poly1, Poly2, ...) or

lcm(Rational1, Rational2, ...)

Returns the lowest common multiple of two or more polynomials of several variables, or of two or more
integers, or of two or more rationals.
Examples:

lcm(6,4) → 12

lcm(x²-2*x+1,x^3-1) → (x-1)*(x³-1)

lcoeff Syntax:

lcoeff(Poly)

lcoeff(Vector)

lcoeff(List)

Returns the coefficient of the term of highest degree of a polynomial. The polynomial can be expressed in
symbolic form or as a vector or list of coefficients.
Examples:

Page 155 of 239

13217 Help TextHelp Topics Tree
lcoeff(1-2*x^3+x^2+7*x) → -2

lcoeff([-2,1,7,0]) → -2

left Left Side of Equation

Syntax:

left(Expr1=Expr2) or

left(Real1..Real2)

Returns the left side of an equation or the left end of an interval.

Example:

left(x²-1=2*x+3) → x²-1

LEFT Left Part

Syntax:

LEFT(String, Integer)

Given a string and an integer n, return the first n characters of the string. If n ≥ DIM(str) or n ≤ 0, returns
the entire string.
Example:

LEFT("MOMOGUMBO",3) → "MOM"

legendre Legendre Polynomial

Syntax:

legendre(Integer)

Given an integer n, returns the Legendre polynomial of degree n.

Example:

legendre(4) → 35/8*x^4-15/4*x^2+3/8

legendre_symbol Legendre symbol

Syntax:

legendre_symbol(Integer1, [Integer2])

Given two integers, returns the Legendre symbol of the second integer, using the Legendre polynomial
whose degree is the first integer.
Example:

legendre_symbol(132,5) → -1

length Syntax:

length(List) or

length(String) or

length(Object1)

Returns the length of a list, a string or a set of objects.

Examples:

length([1,2,3]) → 3

length("12345") → 5

length(x²+5*x-1) → 3

lgcd Greatest Common Divisor

Syntax:

lgcd(List) or

lgcd(Vector) or

lgcd(Integer1, Integer2, …) or

lgcd(Poly1, Poly2, …)

Returns the greatest common divisor of a set of integers or polynomials, contained in a list, a vector, or
just entered directly as arguments.
Examples:

lgcd({45,75,20,15}) → 5

lgcd(x^2-2*x+1,x^3-1,x-1) → x-1

lin Syntax:

lin(Expr)

Linearization of exponentials. Returns an expression with the exponentials linearized.

Example:

lin((e^(x)^3+e^(x))^2) → e^(2*x³)+2*e^(x³+x)+e^(2*x)

LINE Line Drawing

Syntax:

LINE([G], x1, y1, x2, y2, [color])

LINE([G],points_definition, lines_definitions, rotation_matrix or {rotation_matrix or -1, ["N"], [{eye_x,
eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

LINE([G],pre_rotated_points, line_definitions, [zstring])

The basic form of LINE draws one line between specified coordinates in the graphic using the specified
color.
The advanced form of LINE allows the rendering of multiple lines at a time with a potential 3D
transformation of the points that define the line. This is mostly used if you have a set of vertices and lines
and want to display them all at once (faster).
points_definition is either a list or a matrix of point definitions. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are some examples: [x, y, z, c], {x, y, z,
c}, {x, y, #c}, {(x, y), c}, (x,y).

Page 156 of 239

13217 Help TextHelp Topics Tree
lines_definitions is either a list or a matrix of line definitions. Each line is defined by 2 to 4 numbers. p1,
p2, color and alpha. p1 and p2 are the index in the points_definition of the 2 points that define the line.
Color is used to override the per point color definition. If you need to provide an Alpha, but not a color,
use -1 for the color.

Note, that {Color, [Alpha], line_1, …, line_n} is also a valid form to avoid re-specifying the same color for
each line.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the points
using the usual 3D or 4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.
Each point is rotated and translated through a multiplication by rotation_matrix. It is then projected on
the view plane using the eye position according to the following equation: x=eye_z/z*x-eye_x and
y=eye_z/z*y-eye_y.
Each line is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier
zClipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

LINE returns a string which contains all the transformed points. If you plan to call TRIANGLE or LINE
multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to TRIANGLE
and LINE.
About ZString

TRIANGLE([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE to create a Z clipping string (initialized at 255 for each pixels). You can
then call LINE with appropriate z (0-255) values for each of the triangle vertexes and LINE will not draw
pixels further than the already drawn pixels. ZString is automatically updated as appropriate.

Example:

Demo_LINE

line Syntax:

line(Point1, Point2) or

line(a*x+b*y+c) or

line(point1, slope=realm)

Draws a line in the Plot view of the Geometry app or returns the equation of a line in CAS view. The
arguments can be two points, a linear expression of the form a*x+b*y+c, or a point and a slope.

Examples:

line(2+i,3+2*i) draws the line whose equation is y=x-1; that is, the line through the points (2,1) and (3,2).

line(2x-3y-8) draws the line whose equation is 2x-3y=8

line(3-2i,slope=1/2) draws the line whose equation is x-2y=7; that is, the line through (3, -2) with slope
m=1/2

LINE_P Line Drawing

Syntax:

LINE_P([G], x1, y1, x2, y2, [color])

LINE_P([G],points_definition, lines_definitions, rotation_matrix or {rotation_matrix or -1, ["N"], [{eye_x,
eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

LINE_P([G],pre_rotated_points, line_definitions, [zstring])

The basic form of LINE_P draws one line between specified coordinates in the graphic using the specified
color.
The advanced form of LINE_P allows the rendering of multiple lines at a time with a potential 3D
transformation of the points that define the line. This is mostly used if you have a set of vertices and lines
and want to display them all at once (faster).
points_definition is either a list or a matrix of point definitions. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are some examples: [x, y, z, c], {x, y, z,
c}, {x, y, #c}, {(x, y), c}, (x,y).
lines_definitions is either a list or a matrix of line definitions. Each line is defined by 2 to 4 numbers. p1,
p2, color and alpha. p1 and p2 are the index in the points_definition of the 2 points that define the line.
Color is used to override the per point color definition. If you need to provide an Alpha, but not a color,
use -1 for the color.

Note, that {Color, [Alpha], line_1, …, line_n} is also a valid form to avoid re-specifying the same color for
each line.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the points
using the usual 3D or 4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.
Each point is rotated and translated through a multiplication by rotation_matrix. It is then projected on
the view plane using the eye position using the following equation: x=eye_z/z*x-eye_x and y=eye_z/z*y-
eye_y.
Each line is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier
zClipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

Page 157 of 239

13217 Help TextHelp Topics Tree
LINE_P returns a string which contains all the transformed points. If you plan to call TRIANGLE_P or
LINE_P multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to
TRIANGLE_P and LINE_P.

About ZString

TRIANGLE_P([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE_P to create a Z clipping string (initialized at 255 for each pixels). You can
then call LINE_P with appropriate z (0-255) values for each of the triangle vertexes and LINE_P will not
draw pixels further than the already drawn pixels. ZString is automatically updated as appropriate.

Example:

Demo_LINE_P

linear_interpolate Syntax:

linear_interpolate(Matrix,Xmin,Xmax,Xstep)

Makes a regular sample from a polygonal line defined by a two row matrix.

Example:

linear_interpolate([[1,2,6,9],[3,4,6,7]],1,9,1) → [[1. 2. 3. 4. 5. 6. 7. 8. 9.],[3 4 4.5 5 5.5 6 6.33333333333
6.66666666667 7]]

linear_regression Linear Regression

Syntax:

linear_regression(Matrix) or

linear_regression(List1, List2)

Given a set of points, returns a vector containing the coefficients a and b of y=a*x+b, the line which best
fits the set of points. The points may be the elements in two lists or the rows of a matrix.

Example:

linear_regression([0.0,1.0,2.0,3.0,4.0],[0.0,1.0,4.0,9.0,16.0]) → [4. -2]

LineHorz Horizontal Line

Syntax:

LineHorz(Exp) or

LineHorz(Real)

Used in the Symbolic view of the Geometry app. Given a real number a or an expression that evaluates to
a real number a, draws the horizontal line y=a.
Example:

LineHorz(-1) draws the line whose equation is y=-1

LineTan LineTan Function

Syntax:

LineTan(f(x), [Var], Value)

Draws the tangent to y=f(Var) at Var=Value.

Example:

LineTan(x²-x,1) returns line(y=x-1); that is, the line tangent to the graph of y=x²-x at x=1

LineVert Vertical Line

Syntax:

LineVert(Expr) or

LineVert(Real)

Used in the Symbolic view of the Geometry app. Given a real number a or an expression that evaluates to
a real number a, draws the vertical line x=a.
Example:

LineVert(2) draws the line whose equation is x=2

linsolve Linear System Solver

Syntax:

linsolve([LinEq1, LinEq2,…LinEqn], [Var1,Var2,…Varn])

Given a vector of linear equations and a corresponding vector of variables, returns the solution to the
system of linear equations.
Example:

linsolve([x+y+z=1,x-y=2,2*x-z=3],[x,y,z]) → [3/2,-1/2,0]

list2mat Syntax:

list2mat(List, Integer)

Given a list and an integer n, returns a matrix of n columns made by splitting a list into rows, each
containing n terms. If the number of elements in the list is not divisible by n, then the matrix is completed
with zeros.
Example:

list2mat([1,8,4,9],2) → [[1,8],[4,9]]

lll_reduce LLL Reduction

Syntax:

lll_reduce(Matrix)

Implementation of the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm. Takes as argument
an invertable matrix with integer coefficients.
Returns (S, A, L, O) such that:

• the rows of S is a short basis of the Z-module generated by the rows of M

• A is the change-of-basis matrix from the short basis to the basis defined by the rows of M(A*M=S)

Page 158 of 239

13217 Help TextHelp Topics Tree
• L is a lower triangular matrix and the modulus of it’s non diagonal coefficients are less than 1/2

• O is a matrix with orthogonal rows such that L*O = S

Example:

lll_reduce([[1234,3452,4521],[3425,2241,1543],[5643,3425,8721]])

LN Natural Logarithm

Syntax:

LN(value)

Natural Logarithmic function

Returns the logarithm of value in base e, Euler's number.

Examples:

LN(1) → 0

LN(2+3*i) → 1.28247467873+0.982793723247*i

LN({0.1,1}) → {−2.30258509299,0}

lname List Variable Names

Syntax:

lname('Expr')

Returns a list of the variables in an expression, which must be contained in single quotation marks (').

In CAS, this command and all variables must be in lower case. In Home, the command and variables must
be in upper case.
Examples:

lname('e^(x)*2*sin(y)') → [x y]

lname({'e^x*2*sin(y)','x^(x-3)*z-4*q*t'}) → [x,y,z,q,t]

LNAME('e^X*2*SIN(Y)') → {X,Y}

lncollect Collect Logarithms

Syntax:

lncollect(Expr)

Rewrites an expression with the logarithms collected. Applies ln(a)+n*ln(b)=ln(a*b^n) where n is an
integer.
Example:

lncollect(ln(x)+2*ln(y)) → ln(x*y²)

lnexpand Expand Logarithm

Syntax:

lnexpand(Expr)

Returns the expanded form of a logarithmic expression.

Example:

lnexpand(ln(3*x)) → ln(3)+ln(x)

LNP1 Natural Log Plus 1

Syntax:

LNP1(value)

Natural log plus 1: LN(X+1)

This is more accurate than the natural logarithm function for values close to zero.

Examples:

LNP1(0.23) → 0.207014169384

LNP1(0.02+0.03*i) → 2.02349662769ᴇ−2+0.029403288204*i

LOCAL LOCAL keyword

Syntax:

LOCAL Var1[:=Val1, Var2:=Val2, ... Var8:=Val8];

Declares one or more local variables. Each variable can be assigned an optional initial value as well. If the
declaration is in a function block, these variables will be local to the function. If the declaration is in the
main program body, the variables are local to the program.

There can only be 8 variables per LOCAL keyword. To create more variables, you must add another LOCAL
keyword.
Examples:

Demo_LOCAL

locus Syntax:

locus(Point,Element, [tstep=Value]))

Given a first point and a second point that is an element of (a point on) a geometric object, draws the
locus of the first point as the second point traverses its object. The optional tstep statement can be used
to control the default level of detail.

LOG General Logarithm

Syntax:

LOG(value, [base])

General logarithmic function

Returns the logarithm of value in base. By default, base=10.

Examples:

LOG(8) → 0.903089986992

LOG(8,2) → 3

LOG(2+3*i) → 0.556971676153+0.426821890855*i

LOG(2+3*i,2) → 1.85021985907+1.41787163075*i

Page 159 of 239

13217 Help TextHelp Topics Tree
LOG({100,10}) → {2,1}

LOG({8,27,10000},{2,3,10}) → {3,3,4}

log10 Common Logarithm

Syntax:

log10(Expr)

Common logarithm (base 10). Returns the common logarithm of an expression.

Example:

log10(10) → 1

logarithmic_regression Logarithmic Regression

Syntax:

logarithmic_regression(Matrix) or

logarithmic_regression(List1, List2)

Given a set of points, returns a vector containing the coefficients a and b of y=a*ln(x)+b, the natural
logarithmic function which best fits the set of points. The points may be the elements in two lists or the
rows of a matrix.
Example:

logarithmic_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) → 10.1506450002,-0.564824055818

logb Syntax:

logb(a,b)

Given a real number a and an integer b, returns the logarithm of a in the base b.

Example:

logb(5, 2) → ln(5)/ln(2), ~2.32192809489

logistic_regression Logistic Regression

Syntax:

logistic_regression(Lst(L),Real(x0),Real(y0))

Returns [y,y',C,y'max,xmax,R] where y is a logistic function (solution of y'/y=a*y+b), such that y(x0)=y0
and where [y'(x0),y'(x0+1)…] is the best approximation of L.
Example:

logistic_regression([0.0,1.0,2.0,3.0,4.0],0.0,1.0) → [-17.77/(1+exp(-
0.496893925384*x+2.82232341488+3.14159265359*i)),-2.48542227469/(1+cosh(-
0.496893925384*x+2.82232341488+3.14159265359*i))]

LOWER Lowercase

Syntax:

LOWER(string)

Returns string with uppercase characters converted to lowercase.

Examples:

LOWER("ABC") → "abc"

LOWER("ΑΒΓ") → "αβγ"

LQ LQ Factorization

Syntax:

LQ(matrix)

Factorizes a m × n matrix into three matrices: L, Q, and P, where L is an m × n lower trapezoidal, Q is an n
× n orthogonal, and P is an m × m permutation; and P*A=L*Q.
Example:

LQ([[1,2],[3,4]]) → {[[2.2360,0],[4.9193,0.8944]],[[0.4472,0.8944],[0.8944,-0.4472]],[[1,0],[0,1]]}

LSQ Least Squares

Syntax:

LSQ(matrix1, matrix2)

Returns the minimum norm least squares matrix (or vector) corresponding to the system
matrix1*X=matrix2
Examples:

LSQ([[1,2],[3,4]],[[5],[11]]) → [[1],[2]]

LSQ([[1,2],[3,4]],[[5,-1],[11,-1]]) → [[1,1],[2,-1]]

LU LU Decomposition

Syntax:

LU(matrix)

Factorizes a square matrix into three matrices L, U, and P, where L is a lowertriangular, U is an
uppertriangular, and P is the permutation; and P*A=L*U.
Example:

LU([[1,2],[3,4]]) → {[[1,0],[0.3333,1]],[[3,4],[0,0.6666],[0,1],[1,0]]}

lvar List of Variables & Expressions

Syntax:

lvar(Expr)

Given an expression, returns a list of the functions of the expression which utilize variables, including
occurrences of the variables themselves.
Example:

lvar(e^(x)*2*sin(y)+ln(x)) → [e^(x) sin(y) ln(x)]

MAKELIST Make List

Syntax:

MAKELIST(expression, variable, begin, end, [increment])

Page 160 of 239

13217 Help TextHelp Topics Tree
Calculates a sequence of elements for a new list.

Evaluates expression, incrementing variable from begin to end values, using increment steps (default is 1).

Example:

MAKELIST(2*X-1,X,1,5,1) → {1,3,5,7,9}

MAKEMAT Make Matrix

Syntax:

MAKEMAT(Expr, Rows, Columns) or

MAKEMAT(Expr, Elements)

Creates a matrix of dimension Rows × Columns, using Expr to calculate each element. If Expr contains the
variables I and J, then the calculation for each element substitutes the current row number for I and the
current column number for J. You can also create a vector using the number of Elements instead of the
number of rows and columns.

Examples:

MAKEMAT(0,3,3) → [[0,0,0],[0,0,0],[0,0,0]]

MAKEMAT(√2,2,3) → [[√2,√2,√2],[√2,√2,√2]] in CAS view

MAKEMAT(I+J-1,2,3) → [[1,2,3],[2,3,4]] in Home view

MANT Mantissa

Syntax:

MANT(Value)

Returns the significant digits of Value.

Examples:

MANT(21.2E34) → 2.12

MANT({2.12ᴇ35,5302.00000123}) → {2.12,5.30200000123}

map map Function

Syntax:

map(Matrix, Var→Func on) or

map(Matrix, Var→Test)

There are two uses for this function, whose second argument is always a mapping of a variable onto an
expression.
Examples:

map([1,2,3], x→x^3) → [1,8,27]

If the expression is a function of the variable, then the function is applied to each element in the vector or
matrix (the first argument) and the resulting vector or matrix is returned.

map([1,2,3], x→x>1) → [0,1,1]

If the expression is a Boolean test, then each element in the vector or matrix is tested and the results are
returned as a vector or matrix. Each test returns either 0 (fail) or 1 (pass).

mat2list Syntax:

mat2list(Matrix)

Returns a list containing the elements of the given matrix.

Example:

mat2list([[1,8],[4,9]]) → [1,8,4,9]

matpow Syntax:

matpow(Matrix,Int(n))

Calculates the n power of a matrix by use of the Jordan normal form.

Example:

matpow([[1,2],[3,4]],n) → [[(√33-3)*((√33+5)/2)^n*-6/(-12*√33)+(-(√33)-3)*((-(√33)+5)/2)^n*6/(-
12*√33),(√33-3)*((√33+5)/2)^n*(-(√33)-3)/(-12*√33)+(-(√33)-3)*((-(√33)+5)/2)^n*(-(√33)+3)/(-
12*√33)],[6*((√33+5)/2)^n*-6/(-12*√33)+6*((-(√33)+5)/2)^n*6/(-12*√33),6*((√33+5)/2)^n*(-(√33)-3)/(-
12*√33)+6*((-(√33)+5)/2)^n*(-(√33)+3)/(-12*√33)]]

MAX Maximum

Syntax:

MAX(value1,[value2],[..value16]) or

MAX(list)

Returns the greatest of the values given, or the greatest value of a list.

Examples:

MAX(210,25) → 210

MAX({1,8,2}) → 8

MAX(8/3,11/4) → 2.75

MAX({1,8,2},{2,4,6}) → {2,8,6}

maxnorm Max Norm

Syntax:

maxnorm(Vector) or

maxnorm(Matrix)

Returns the l∞ norm (the maximum of the absolute values of the coordinates) of a vector or matrix.

Examples:

maxnorm([1,2]) → 2

maxnorm([[1,2],[3,-4]]) → 4

Page 161 of 239

13217 Help TextHelp Topics Tree
MAXREAL Maximum Real

Syntax:

MAXREAL

Returns the maximum real number that the HP Prime is capable of representing in Home and CAS views.

In CAS view, MAXREAL=1.79769313486ᴇ308

In Home view, MAXREAL=9.99999999999ᴇ499

Example:

MAXREAL

mean Syntax:

mean(List1, [List2]) or mean(Matrix)

Returns the arithmetic mean of a list (with an optional list as a list of weights).

With a matrix as argument, returns the mean of the columns.

Examples:

mean([1,2,3],[1,2,3]) → 7/3

mean([[1,2,3],[4,5,6]]) → [5/2,7/2,9/2]

median Syntax:

median(List1, [List2]) or

median(Matrix)

Returns the median of a list or vector (with an optional list as a list of weights).

With a matrix as argument, returns the medians of the columns.

Example:

median([0,1,3,4,2,5,6]) → 3

median_line Median

Syntax:

median_line(Point1, Point2, Point3)

Given three points that define a triangle, draws the median of the triangle that passes through the first
point and contains the midpoint of the segment defined by the other two points. In CAS view, returns the
equation of the median line.
Example:

median_line(0,8*i,4) draws the line whose equation is y=2x; that is, the line through the first vertex of the
triangle at (0,0) and the point at (2,4), the midpoint of the segment with endpoints (0, 8) and (4, 0).

member Syntax:

member(Element, List) or

member(Element, Vector)

Given a list or vector and an element, returns the index of the first occurrence of the element in the list or
vector. If the element does not appear in the list or vector, returns 0. Similar to contains, except that the
element comes first in the argument order.

Example:

member(1,[4,3,1,2]) → 3

MEMORY System Memory

Syntax:

MEMORY

MEMORY(n)

Returns a list containing integers representing memory and storage space, or the individual integer at
position n.
Examples:

MEMORY()

MEMORY(1)

MID Middle

Syntax:

MID(String, Position, [n])

Extracts n characters from String starting at Position. If n is not specified, then MID extracts the remainder
of String from Position.
Examples:

MID("MOMOGUMBO",3,5) → "MOGUM"

MID("PUDGE",4) → "GE"

midpoint Syntax:

midpoint(Segment) or

midpoint(Point1, Point2)

Returns the midpoint of a segment. The argument can be either the name of a segment or two points that
define a segment. In the latter case, the segment need not actually be drawn.

Example:

midpoint(0,6+6i) → point(3,3)

MIN Minimum

Syntax:

MIN(value1,[value2],[..value16]) or

MIN(list)

Returns the least of the values given, or the least value of a list.

Page 162 of 239

13217 Help TextHelp Topics Tree
Examples:

MIN(210,25) → 25

MIN({1,8,2}) → 1

MIN(8/3,11/4) → 2.6667

MIN({1,8,2},{2,4,6}) → {1,4,2}

MINREAL Minimum Real

Syntax:

MINREAL

Returns the minimum real number (closest to zero) that the HP Prime is capable of representing in Home
and CAS views.
In CAS view, MINREAL=2.22507385851ᴇ-308

In Home view, MINREAL=1ᴇ-499

Example:

MINREAL

mkisom Isometry

Syntax:

mkisom(Vect,(Sign(1) or -1))

Returns the matrix of an isometry given by its proper elements.

Examples:

mkisom(π,1) → [[-1,0],[0,-1]] (in radians mode)

MKSA Convert to Metric System

Syntax:

MKSA(Value_Unit)

Converts the measurement Value_Unit to its corresponding value and unit in Unit's MKSA equivalent.

MKSA stands for the Meter-Kilogram-Second-Ampere system.

Examples:

MKSA(32_yd) → 29.2608_m

MKSA(75_mph) →33.528_m/s

MKSA({33_(cm),4_(yd^3)}) → {0.33_m,3.05821943194_(m^3)}

MOD Modulo

Syntax:

value1 MOD value2

Returns the remainder of the Euclidean division value1/value2.

Examples:

9 MOD 4 → 1

#27o MOD 12 → 11

[[1,3],[13,14]] MOD 4 → [[1,3],[1,2]]

{11,12,13,15,17} MOD 4 → {3,0,3,1,3}

modgcd Syntax:

modgcd(Poly1, Poly2)

Uses the modular algorithm to return the greatest common divisor of two polynomials.

Example:

modgcd(x^4-1,(x-1)^2) → x-1

MOUSE Get Touch Event

Syntax:

MOUSE[(index)]

Returns two lists describing the current location of each potential pointer (or empty lists if the pointers
are not used). The output is {x , y, original z, original y, type} where type is 0 (for new), 1 (for completed), 2
(for drag), 3 (for stretch), 4 (for rotate), and 5 (for long click).

The optional parameter index is the nth element that would have been returned—x, y, original x,
etc.—had the parameter been omitted (or –1 if no pointer activity had occurred).

mRow Multiply Row

Syntax:

mRow(Expr, Matrix, Integer)

Given an expression, a matrix, and an integer n, multiplies row n of the matrix by the expression.

Example:

mRow(12,[[1,2],[3,4],[5,6]],1) → [[12,24],[3,4],[5,6]]

MSGBOX Message Box

Syntax:

MSGBOX(expr,[OK_Cancel]) or

MSGBOX(string,[OK_Cancel])

Displays a message box with either the value of expr or string.

If OK_Cancel is true, displays OK and CANCEL menu keys, otherwise only displays the OK menu key.
Default value for OK_Cancel is false.
Returns true (non-zero) if the user presses OK, false (0) if the user presses CANCEL.

Example:

MSGBOX("Click OK to continue")

Page 163 of 239

13217 Help TextHelp Topics Tree
mult_c_conjugate Syntax:

mult_c_conjugate(Expr)

If the given complex expression has a complex denominator, returns the expression after both the
numerator and the denominator have been multiplied by the complex conjugate of the denominator. If
the given complex expression does not have a complex denominator, returns the expression after both
the numerator and the denominator have been multiplied by the complex conjugate of the numerator.

Example:

mult_c_conjugate(1/(3+i*2)) → (3-i*2)/((3+i*2)*(3-i*2))

mult_conjugate Syntax:

mult_conjugate(Expr)

Takes an expression in which the numerator or the denominator contains a square root. If the
denominator contains a square root, returns the expression after both the numerator and the
denominator have been multiplied by the conjugate of the denominator. If the denominator does not
contain a square root, returns the expression after both the numerator and the denominator have been
multiplied by the conjugate of the numerator.

Example:

mult_conjugate(1/(√3-√2)) → ((√3+√2)/((√3-(√2)*(√3+√2))

multinomial Multinomial Distribution

Syntax:

multinomial(Integern, VectorP, VectorK)

Computes the probability of VectorK successes out of Integern trials, each with a probability of success of
VectorP.
The multinomial distribution is a more general form of the Binomial Distribution where each outcome can
have two or more possible outcomes.
Examples:

multinomial(10,[0.5,0.5],[3,7])

multinomial(10,[0.2,0.3,0.5],[1,3,6])

randvector(3,multinomial,[1/2,1/3,1/6])

ranm(4,3,multinomial,[1/2,1/3,1/6])

nDeriv Numerical Derivative

Syntax:

nDeriv(Expr, Var, Real) or

nDeriv(Expr, Var1, Var2)

Given an expression, a variable of differentiation, and a real number h, returns an approximate value of
the derivative of the expression, using f’(x)=(f(x+h)–f(x+h))/(2*h).

Without a third argument, the value of h is set to 0.001; with a real as third argument, it is the value of h.
With a variable as the third argument, returns the expression above with that variable in place of h.

Examples:

nDeriv(f(x),x,h) → (f(x+h)-(f(x-h)))*0.5/h

nDeriv(x^2,x)

negbinomial Discrete Negative Binomial

Syntax:

negbinomial(n,k,x)

Negative binomial probability density function

Computes the probability density of the negative binomial distribution at x given parameters n and k.

Example:

negbinomial(4,2,.6) → 0.20736

negbinomial_cdf Cumulative Negative Binomial

Syntax:

negbinomial_cdf(n,k,x,[x2])

Cumulative negative binomial distribution function

Returns the lower-tail probability of the negative binomial probability density function for the value x,
given parameters n and k.
Examples:

negbinomial_cdf(4,.5,2) → 0.34375

negbinomial_cdf(4,.5,2,3) → 0.15625

negbinomial_icdf Inverse Cumulative Negative Binomial

Syntax:

negbinomial_icdf(n,k,p)

Inverse cumulative negative binomial distribution function

Returns the value x such that the negative binomial lower-tail probability of x, given parameters n and k, is
p.
Example:

negbinomial_icdf(4,0.5,0.7) → 5

newton Newton's Method

Syntax:

newton(Expr,Var, [Guess],[Integer])

Uses Newton's method to estimate the root of a function, beginning with Guess and calculating Integer
iterations. By default, Integer is 20.

Page 164 of 239

13217 Help TextHelp Topics Tree
Example:

newton(3-x^2,x,2) → 1.73205080757

nextprime Next Prime

Syntax:

nextprime(Integer)

Returns the smallest prime number greater than the argument.

Example:

nextprime(12) → 13

nop No Operation

The no-operation CAS function. On evaluation, no operation will happen.

This function can be useful for some advanced use cases in CAS function programming.

normal Syntax:

normal(Expr)

Returns the expanded irreducible form of an expression.

Examples:

normal(2*x*2) → 4*x

normal((2*x+1)²) → 4*x²+4*x+1

NORMALD Normal Density

Syntax:

NORMALD([μ, σ,] x)

Normal probability density function.

Computes the probability density at the value x, given the mean, μ, and standard deviation, σ, of a normal
distribution.
With one argument, x, it returns the probability density for the standard normal distribution at x,
assuming a mean of zero and standard deviation of 1.
Examples:

NORMALD(0.5) → 0.352065326764

NORMALD(0,2,0.5) → 0.193334058401

NORMALD_CDF Cumulative Normal

Syntax:

NORMALD_CDF([μ, σ,] x, [x2])

Cumulative normal distribution function.

With three values (μ, σ, and x), returns the lower-tail probability of the normal probability density function
for the value x, given the mean, μ, and standard deviation, σ, of a normal distribution. With the optional
fourth value x2, returns the area under the normal probability density function between the two x-values.

With one argument x, returns the lower-tail probability of the standard normal probability density
function for the value x, assuming a mean of zero and standard deviation of 1.

Examples:

NORMALD_CDF(2)→0.977249868052

NORMALD_CDF(-1,1)→0.682689492138

NORMALD_CDF(0,1,2) → 0.977249868052

NORMALD_CDF(0,1,0,2) → 0.477249868052

NORMALD_ICDF Inverse Cumulative Normal

Syntax:

NORMALD_ICDF([μ, σ,] p)

Inverse cumulative normal distribution function.

Returns the cumulative normal distribution x-value associated with the lower-tail probability p, given the
mean μ, and standard deviation σ, of a normal distribution.
With one argument, p, assumes a mean of 0 and a standard deviation of 1.

Examples:

NORMALD_ICDF(0.977249868052)→2

NORMALD_ICDF(0,1,0.841344746069) → 1

normalize Syntax:

normalize(Vector) or

normalize(Complex)

Given a vector, returns it divided by its l2 norm (where the l2 norm is the square root of the sum of the
squares of the vector’s coordinates).
Given a complex number, returns it divided by its modulus.

It is also an option for plotfield. In this case, the term comes last in the set of arguments and the result is
the slopefield segments are given equal length.
Examples:

normalize(3+4*i) → (3+4*i)/5

normalize([3,4]) → [3/5,4/5]

NOT Logical NOT

Syntax:

NOT Value

For Real numbers, returns 1 if Value is zero; otherwise returns 0.

For Integers and Strings, NOT is performed bitwise, flipping all 1's to 0's and all 0's to 1's.

Examples:

Page 165 of 239

13217 Help TextHelp Topics Tree
NOT 3 → 0

NOT 0 → 1

A:=32; B:=2^5; NOT (A=B) → 0

NOT #DFCA:16h → #2035:16h

NOT #1776:16o → #176001:16o

NOT "abcdefg" → "ﾞﾝﾜﾛﾚﾙﾘ"

NOT {"ab","cd"} → {"ﾞﾝ","ﾜﾛ"}

numer Simplified Numerator

Syntax:

numer(a/b)

For integers a and b, returns the numerator of the fraction a/b after simplification.

Example:

numer(10/12) → 5

odd Oddness Test

Syntax:

odd(Integer)

Returns 1 if the given integer is odd, otherwise returns 0.

Examples:

odd(6) → 0

odd(1251) → 1

odesolve ODE Solver

Syntax:

odesolve(Expr, VectVar, VectInit, FinalVal, [tstep=Val, curve])

Ordinary Differential Equation solver

Solves an ordinary differential equation given by Expr, with variables declared in VectVar and initial
conditions for those variables declared in VectInit. For example, odesolve(f(t,y),[t,y],[t0,y0],t1) returns the
approximate solution of y'=f(t,y) for the variables t and y with initial conditions t=t0 and y=y0.

Example:

odesolve(sin(t*y),[t,y],[0,1],2) → [1.82241255674]

open_polygon Syntax:

open_polygon(point1, point2, …, point1) or

open_polygon(point1, point2, …, pointn)

Connects a set of points with line segments, in the given order, to produce a polygon. If the last point is
the same as the first point, then the polygon is closed; otherwise, it is open.

Example:

open_polygon(point(0,0),point(3,3),point(0,3),point(0,0)) draws a right triangle

OR Logical OR

Syntax:

Value1 OR Value2

For Real numbers, returns 1 if either Value1 or Value2 is non-zero; otherwise returns 0.

For Integers and Strings, OR is performed bitwise, returning 1 if either corresponding bit is 1, otherwise 0.

Examples:

3 OR 2 → 1

0 OR 2 → 1

0 OR 0 → 0

{3,0,0} OR {2,1,0} → {1,1,0}

3_inch==7.62_cm OR 9_(inch²)==58.0644_(cm²) → 1

#CC44h OR #44CCh → #CCCCh

"c" OR "d" → "g"

X:=0; 0 OR (X:=7); 1 OR (X:=9); X → 7

7 ≤ 3 OR 5 < 9 OR 3 ≠ 2.9 + 0.1 → 1

order_size Syntax:

order_size(Expr)

Returns the remainder (O term) of a series expansion:

limit(x^a*order_size(x),x=0)=0 if a>0

ordinate Syntax:

ordinate(Point) or

ordinate(Vector)

Returns the ordinate of a point or the y-length of a vector.

Example:

ordinate(point(1+2*i)) → 2

orthocenter orthocenter Function

Syntax:

orthocenter(Triangle) or

orthocenter(Point1, Point2, Point3)

Page 166 of 239

13217 Help TextHelp Topics Tree
Returns the orthocenter of a triangle; that is, the intersection of the three altitudes of a triangle. The
argument can be either the name of a triangle or three non-collinear points that define a triangle. In the
latter case, the triangle does not need to be drawn.

Examples:

orthocenter(0,4*i,4) → point(0,0)

orthocenter(triangle(0,1,1+i)) → point(1,0)

orthogonal Syntax:

orthogonal(Point, Line) or

orthogonal(Point, Plane)

orthogonal(A,line(B,C)) draws the orthogonal plane of line BC through point A.

Example:

orthogonal(point(0,0,0),plane(point(1,0,0),point(0,1,0),point(0,0,1)))

ΔLIST Δ List

Syntax:

ΔLIST(list)

Creates a new list composed of the first differences of a given list; that is, the differences between the
sequential elements in a list. The new list has one fewer elements than the original list.

Example:

ΔLIST({1,2,3,5,8}) → {1,1,2,3}

ΠLIST Π List

Syntax:

ΠLIST(list)

Calculates the product of all elements in a list.

Example:

ΠLIST({2,3,4}) → 24

ΣLIST Σ List

Syntax:

ΣLIST(list)

Calculates the sum of all elements in a list. If the list contains a string, the result will be a single string with
all elements concatenated together.
Examples:

ΣLIST({2,3,4}) → 9

ΣLIST({"A","B","CE"}) → "ABCE"

ΣLIST({"A",1,"B",2,"CE",3}) → "A1B2CE3"

ⁿ√ Nth Root Key

Syntax:

Value1 √ Value2

NTHROOT: the nth root function

This Shift-key combination brings up a template for the NTHROOT function. It returns the primary Value1
root of Value2. On the keyboard, NTHROOT is represented by ⁿ√ .
Examples:

3 NTHROOT 8 → 2

3 NTHROOT 79.507 → 4.3

2.3 NTHROOT 5413.44050218 → 42

2.1 NTHROOT 3+2*i → 1.76999848019+0.508973095403*i

(1.2-0.5*i) NTHROOT (0.2+4*i) → 0.137162958212+1.70241905473*i

3 NTHROOT {27,8,64} → {3,2,4}

P-T Function Catalog P-T

Toolbox function catalog P-T

p1oc2 Syntax:

p1oc2(permutation,cycle)

Returns the permutation product of permutation and cycle.

Example:

p1oc2([3,2,4,1],[4,1,2]) → [2,1,4,3]

p1op2 Syntax:

p1op2(permutation1,permutation2)

Returns the permutation product of permutation1 and permutation2.

Example:

p1op2([1,3,2],[2,1,4,3]) → [3,1,4,2]

pa2b2 Syntax:

pa2b2(Integer)

Takes a prime integer n congruent to 1 modulo 4 and returns [a,b] such that a²+b²=n.

Examples:

pa2b2(17) → [4,1]

pa2b2(97) → [9,4]

pade Pade Approximation

Syntax:

pade(Expr, Var, Integern, Integerp)

Page 167 of 239

13217 Help TextHelp Topics Tree
Returns the Pade approximation of an expression; that is, a rational fraction P/Q such that P/Q=Expr mod
x^(n+1) or mod n with degree<p.
Example:

pade(e^(x),x,5,3) → (–3*x²–24*x–60)/(x³–9*x²+36*x–60)

pade Pade Approximation

Syntax:

pade(Expr, Var, Integern, Integerp)

Returns the Pade approximation of an expression; that is, a rational fraction P/Q such that P/Q=Expr mod
x^(n+1) or mod n with degree<p.
Example:

pade(e^(x),x,5,3) → (–3*x²–24*x–60)/(x³–9*x²+36*x–60)

parabola Syntax:

parabola(Point, Line) or

parabola(Point, Realk) or

parabola(Expr)

Draws a parabola, given a focus point and a directrix line, or the vertex of the parabola and a real number
that represents the focal length
Examples:

parabola(GA,GB) draws a parabola whose focus is point A and whose directrix is line B.

parabola(GA,1) draws a parabola whose vertex is point A and whose focal length is 1.

parabola(x-y²+y-2) draws the graph of the parabolic equation x=y²-y+2

parallel Syntax:

parallel(Point, Line)

Given a point and a line, returns the equation of the line through the point that is parallel to the given line.

Examples:

parallel(GA,GB) draws the line through point A that is parallel to line B.

parallel(point(3,-2),line(x+y=5)) draws the line through the point (3, –2) that is parallel to the line whose
equation is x+y=5; that is, the line whose equation is y=–x+1.

parallelogram Syntax:

parallelogram(Point1, Point2, Point3)

Draws a parallelogram given three of its vertices. The fourth point is calculated automatically but is not
defined symbolically. As with most of the other polygon commands, you can store the fourth point’s
coordinates into a CAS variable. The orientation of the parallelogram is counterclockwise from the first
point.
Example:

parallelogram(0,6,9+5i) draws a parallelogram whose vertices are at (0, 0), (6, 0), (9, 5), and (3,5). The
coordinates of the last point are calculated automatically.

parameq Parametric

Syntax:

parameq(Obj)

Returns a parametric equation for a geometric object. The parametric equation is true for all complex
numbers that represent points on the object.
Examples:

parameq(circle(0,1)) → e^(i*t)

parameq(line(i,1-i))

part Part of Expression

Syntax:

part(Expr, Integer)

Returns the nth sub expression of an expression.

Examples:

part(sin(x)+cos(x),1) → sin(x)

part(sin(x)+cos(x),2) → cos(x)

part(part(exp(x)*sin(x)+cos(x),1),2) → sin(x)

partfrac Partial Fraction Decomposition

Syntax:

partfrac(RatFrac)

Performs partial fraction decomposition on a fraction.

Example:

partfrac(x/(4-x²)) → (-1/2)/(x-2)-(1/2)/((x+2)

pcoeff Roots to Coefficients

Syntax:

pcoeff(Vector) or pcoeff(List)

Given a list or vector containing the roots of a polynomial, returns a vector containing the coefficients (in
decreasing order) of the univariate polynomial having those roots.

Examples:

pcoeff({1,0,0,0,1}) → [1,-2,1,0,0,0]

pcoeff([1,0,-2]) → [1,1,-2,0]

perimeterat Syntax:

perimeterat(polygon, point) or

Page 168 of 239

13217 Help TextHelp Topics Tree
perimeterat(circle, point)

Used in Symbolic view of the Geometry app. Displays the perimeter of a polygon or the circumference of
a circle. The measure is displayed, with a label, at the given point in Plot view.

Example:

perimeterat(circle(x^2+y^2=1), point(-4,4))

displays “pcircle(x^2+y^2=1)= 2*π” at point (-4, 4)

perminv Permutation Inverse

Syntax:

perminv(permutation)

Returns the inverse permutation of permutation.

Example:

perminv([2,4,3,1]) → [4,1,3,2]

permu2cycles Syntax:

permu2cycles(permutation)

Converts permutation to a product of disjoined cycles.

Example:

permu2cycles([1,3,2,4,6,5]) → [[2,3],[5,6]]

permu2mat Syntax:

permu2mat(permutation)

Returns the matrix where the rows of the identity matrix are permuted with permutation.

Example:

permu2mat([2,3,1]) → [[0,1,0],[0,0,1],[1,0,0]]

permuorder Permutation Order

Syntax:

permuorder(permutation)

Returns the order of permutation.

Example:

permuorder([2,4,3,5,1]) → 5

perpen_bisector Perpendicular Bisector

Syntax:

perpen_bisector(Segment) or

perpen_bisector(Point1, Point2)

Draws the perpendicular bisector of a segment. The segment is defined either by its name or by its two
endpoints.
Examples:

perpen_bisector(3+2*i, i) draws the perpendicular bisector of segment C.

perpen_bisector(GC) draws the perpendicular bisector of segment AB.

perpen_bisector(GA, GB) draws the perpendicular bisector of a segment whose endpoints have
coordinates (3, 2) and (0, 1); that is, the line whose equation is y=x/3+1.

PIECEWISE Piecewise Function

Syntax:

PIECEWISE(test1, case1, ...[, test8], case8)

Used with Home settings Entry set to Algebraic to enter a piecewise-defined function in the Function app
Symbolic view (among other uses). Takes as arguments pairs, each of which consists of a condition that
defines a sub-function domain and an expression that defines the sub-function. Each of these pairs
defines a sub-function of the piecewise

function and the domain over which it is active.

If used with Home settings Entry set to Textbook or if accessed via the Template menu, then the syntax
varies slightly and is restricted to two pieces.
Syntax :

 {case1 if test1

 …

 {case8 [if test8]

Example:

PIECEWISE(X<-4,X,-4≤X AND X<2, X+1, X≥2,X+2) as F1(X) in the Symbolic view of the Function app appears
as:
 X if X<-4

F1(X)= X+1 if -4≤X AND X<2

 X+2 if X≥2

In Plot view, the graph of two rays and a segment is drawn.

PIXOFF Pixel Off

Syntax:

PIXOFF([G], x, y)

Sets the color of the pixel of GROB G with coordinates (x, y) to white.

PIXOFF_P Pixel Off

Syntax:

PIXOFF_P([G], x, y)

Sets the color of the pixel of GROB G with coordinates (x, y) to white.

Page 169 of 239

13217 Help TextHelp Topics Tree
PIXON Pixel On

Syntax:

PIXON([G], x, y, [color])

Sets the color of the pixel of GROB G with coordinates (x, y). If supplied, color is a hexadecimal integer of
the form aaRRGGBB. This is an RGB color with the Alpha Channel in the high order byte. The Alpha
Channel number runs from 0 (opaque) to 255 (transparent). If no color is specified, black is used.

Examples:

PIXON(0,0,RGB(255,0,0))

PIXON(0,0,RGB(255,0,0,128))

PIXON_P Pixel On

Syntax:

PIXON_P([G], x, y, [color])

Sets the color of the pixel of GROB G with coordinates (x, y). If supplied, color is a hexadecimal integer of
the form aaRRGGBB. This is an RGB color with the Alpha Channel in the high order byte. The Alpha
Channel number runs from 0 (opaque) to 255 (transparent). If no color is specified, black is used.

Examples:

PIXON_P(50,50,RGB(255,0,0))

PIXON_P(50,50,RGB(255,0,0,128))

plotinequation Plot Inequation

Syntax:

plotinequation(Expr,[x=xrange,y=yrange],[xstep],[ystep])

Plots the graph of the solution of inequations with two variables.

Example:

plotinequation([x+y>3,x²<y],[x,y],xstep=0.2,ystep=0.2)

plotparam Plot Parametric

Syntax:

plotparam(f(Var)+i*g(Var), Var= Interval, [tstep=Value])

Used in the Geometry app Symbolic view. Takes a complex expression in one variable and an interval for
that variable as arguments. Interprets the complex expression f(t)+i*g(t) as x=f(t) and y=g(t) and plots the
parametric equation over the interval specified in the second argument.

Examples:

plotparam(cos(t)+i*sin(t),t=0..2*π) plots the unit circle

plotparam(cos(t)+i*sin(t),t=0..2*π,tstep=π/3) plots a regular hexagon inscribed in the unit circle (note the
tstep value)

plotpolar Plot Polar

Syntax:

plotpolar(Expr,Var=Interval, [Step]) or

plotpolar(Expr, Var, Min, Max, [Step])

Used in the Geometry app to draw a polar graph in Plot view.

Examples:

plotpolar(sin(2*x),x,0,π,tstep=0.1)

plotpolar(f(x),x,a,b) draws the polar curve r=f(x) for x in [a,b]

plotseq Plot Sequence

Syntax:

plotseq(f(Var), Var={Start, Xmin, Xmax}, Integern)

Used in the Geometry app Symbolic view. Given an expression in x and a list containing three values,
draws the line y=x, the plot of the function defined by the expression over the domain defined by the
interval between the last two values, and draws the cobweb plot for the first n terms of the sequence
defined recursively by the expression (starting at the first value).

Example:

plotseq(1-x/2,x={3,-1,6},5) plots y=x and y=1–x/2 (from x=–1 to x=6), then draws the first 5 terms of the
cobweb plot for u(n)=1-(u(n–1)/2), starting at u(0)=3

point Syntax:

point(Real1, Real2)

point(Expr1, Expr2)

Creates a point, given the coordinates of the point. Each coordinate may be a value or an expression
involving variables or measurements on other objects in the geometric construction.

Examples:

point(3,4) creates a point whose coordinates are (3,4). This point may be selected and moved later.

point(abscissa(GA), ordinate(GB)) creates a point whose x-coordinate is the same as that of a point A and
whose y-coordinate is the same as that of a point B. This point will change to reflect the movements of
point A or point B.

point2d point2d Function

Syntax:

point2d(point1, point2, …, pointn)

Randomly re-distributes a set of points such that, for each point, x is in the interval [-5, 5] and y is in the
interval [-5, 5]. Any further movement of one of the points will randomly re-distribute all of the points.

Example:

Page 170 of 239

13217 Help TextHelp Topics Tree
point2d(GA,GB,GC,GD)

polar Syntax:

polar(Circle, Point) or

polar(Circle, Complex)

Returns the polar line of the given point as pole with respect to the given circle.

Example:

polar(circle(x²+y²=1),point(1/3,0)) → line(x=3)

polar_coordinates Polar Coordinates

Syntax:

polar_coordinates(Point)

Returns a vector containing the polar coordinates of a point.

Example:

polar_coordinates(point(1+2*i)) → √5 atan(2)

polar_point Polar Point

Syntax:

polar_point(Radius, Angle)

Given the radius and angle of a point in polar form, returns the point with rectangular coordinates in
complex form.
Example:

polar_point(2,π/3) → point(2*(1/2+i*√3/2))

pole Syntax:

pole(Circle, Line)

Returns the pole of the given line with respect to the given circle.

Examples:

pole(circle(x²+y²=1), line(x=3)) → point(1/3, 0)

pole(circle(0,1),line((1+i),2))

POLYCOEF Polynomial coefficients

Syntax:

POLYCOEF(Vector) or

POLYCOEFF(List)

Returns the coefficients of the polynomial with the roots specified in a vector or list.

Example:

POLYCOEF({-1,1}) → [1,0,-1]

POLYEVAL Polynomial Evaluation

Syntax:

POLYEVAL(Vector, Value) or

POLYEVAL(List, Value)

Given a vector or list of coefficients and a value, evaluates the polynomial given by those coefficients at
the given value.
Example:

POLYEVAL({1,0,-1},3) → 8

polyEval Polynomial Evaluation

Syntax:

polyEval(Vector, Real)

Given a polynomial defined by a vector of coefficients, and a real value n, evaluates the polynomial at that
value.
Examples:

polyEval([1,0,-2],1) → -1

polyEval([1,2,-25,-26,120],8) → 3432

polygonplot Syntax:

polygonplot(Mtrx)

Used in the Geometry app Symbolic view. Given an n × m matrix, draws and connects the points (xk, yk),
where xk is the element in row k and column 1, and yk is the element in row k and column j (with j fixed
for k=1 to n rows). Thus, each column pairing generates its own figure, resulting in m–1 figures.

Example:

polygonplot([[1,2,3],[2,0,1],[-1,2,3]]) draws two figures, each with three points connected by segments.

polygonscatterplot Syntax:

polygonscatterplot(Matrix)

Used in the Geometry app Symbolic view. Given an n × m matrix, draws and connects the points (xk, yk),
where xk is the element in row k and column 1, and yk is the element in row k and column j (with j fixed
for k=1 to n rows). Thus, each column pairing generates its own figure, resulting in m-–1 figures.

Example: polygonscatterplot([[1,2,3],[2,0,1],[-1,2,3]]) draws two figures, each with three points connected
by segments.

polynomial_regression Polynomial Regression

Syntax:

polynomial_regression(List1, List2, Integer) or

polynomial_regression(Matrix, Integer)

Given a set of points defined by two lists or a matrix, and a positive integer n, returns a vector containing
the coefficients of the nth order polynomial which best approximates the given points.

Page 171 of 239

13217 Help TextHelp Topics Tree
Example:

polynomial_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) → [0 1 0 0]

POLYROOT Polynomial roots

Syntax:

POLYROOT(Poly) or

POLYROOT(Vector)

Returns the zeros of the polynomial given as argument (either as a symbolic expression or as a vector of
coefficients).
Example:

POLYROOT([1,0,-1]) → {-1,1}

potential Syntax:

potential(Vector1, Vector2)

Returns a function whose gradient is the vector field defined by a vector and a vector of variables.

Example:

potential([2*x*y+3,x²-4*z,-4*y],[x,y,z]) → x²*y+3*x-4*y*z

power_regression Power Regression

Syntax:

power_regression(List1, List2) or

power_regression(Vector1, Vector2) or

power_regression(Matrix)

Given a set of points defined by two lists, returns a vector containing the coefficients m and b of y=b*x^m,
the monomial which best approximates the given points.

Examples:

power_regression({1, 2, 3, 4}, {1, 4, 9, 16}) → [2. 1.]

power_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) → [2.,1.]

powerpc Syntax:

powerpc(Circle, Point)

Given a circle and a point, returns the difference between the square of the distance from the point to the
circle’s center and the square of the circle’s radius.
Examples:

powerpc(circle(0,1+i),3+i) → 8

powerpc(circle(0,point(1+i)),3+i)

prepend Syntax:

prepend(List, Element) or

prepend(Vector, Element)

Adds an element to the beginning of a list or vector.

Example:

prepend([1,2],3) → [3,1,2]

primpart Syntax:

primpart(Poly,[Var])

Returns a polynomial divided by the greatest common divisor of its coefficients.

Example:

primpart(2x²+10x+6) → x²+5*x+3

PRINT Syntax:

PRINT(expr) or

PRINT(string)

PRINT()

Prints either the result of expr or string to the terminal.

The terminal is a program text output viewing mechanism which is displayed only when PRINT commands
are executed. When visible, you can use the up/down keys to view the text, Backspace to erase the text
and any other key to hide the terminal.
You can show the terminal at anytime using the ON+T combination (press and hold the On key, press the T
key, then release both keys). Pressing On stops the interaction with the terminal.

PRINT with no argument clears the terminal.

product Syntax:

product(Expr, [Var], [Min], [Max], [Step]) or

product(List) or

product(Matrix)

With an expression as the first argument, returns the product of solutions when the variable in the
expression goes from a minimum value to a maximum value by a given step. If no step is provided, it is
taken as 1.
With a list as the first argument, returns the product of the values in the list.

With a matrix as the first argument, returns the element-by-element product of the matrix.

Examples:

product(n,n,1,10,2)→ 945

product([[2,3,4],[5,6,7]],[[2,3,4],[5,6,7]])

propfrac Proper Fraction

Syntax:

propfrac(Fraction) or
Page 172 of 239

13217 Help TextHelp Topics Tree
propfrac(RatFrac)

Returns a fraction or rational fraction A/B simplified to Q+R/B with R<B (or with the degree of R less than
the degree of B).
Examples:

propfrac(28/12) → 2+1/3

propfrac((x²+2*x-1)/(x+1)) → x+1-2/(x+1)

ptayl Syntax:

ptayl(Poly, Value, [Var])

Given a polynomial P and a value a, returns the Taylor polynomial Q such as P(x)=Q(x-a)

Examples:

ptayl(x²+2*x+1,1) → x²+4*x+4

ptayl(y²+2*y+1,1.1,y) → y²+4.2*y+4.41

purge Purge Variable

Syntax:

purge(Var)

Unassigns a variable name in CAS view. For example, if f is defined, then purge(f) deletes that definition
and returns f to its symbolic state.

q2a Syntax:

q2a(QuadExpr, Vector)

Given a quadratic form and a vector of variables, returns the symmetric matrix of the quadratic form with
respect to the given variables.
Example:

q2a(x²+2*x*y+2*y²,[x,y]) → [[1,1],[1,2]]

quantile Syntax:

quantile(List, Value) or

quantile(Vector, Value)

Given a list or vector, and a quantile value between 0 and 1, returns the corresponding quantile of the
elements of the list or vector.
Examples:

quantile([0,1,3,4,2,5,6],0.25) → 1

quantile([0,1,3,4,2,5,6],0.75) → 5

quartile1 Syntax:

quartile1(List) or

quartile1(Vector) or

quartile1(Matrix)

Given a list or vector, returns the first quartile of the elements of the list or vector. Given a matrix, returns
the first quartile of the columns of the matrix.
Examples:

quartile1([1,2,3,5,10,4]) → 2

quartile1([[1,2],[5,4],[3,6],[7,8]])

quartile3 Syntax:

quartile3(List) or

quartile3(Vector) or

quartile3(Matrix)

Given a list or vector, returns the third quartile of the elements of the list or vector. Given a matrix,
returns the third quartile of the columns of the matrix.
Examples:

quartile3([1,2,3,5,10,4]) → 5

quartile3([[1,2],[5,4],[3,6],[7,8]])

quartiles Syntax:

quartiles(List) or

quartiles(Vector) or

quartiles(Matrix)

Returns a matrix containing the minimum, first quartile, median, third quartile, and maximum of the
elements of a list or vector. With a matrix as argument, returns the 5-number summary of the columns of
the matrix.
Examples:

quartiles([1,2,3,5,10,4]) → [[1],[2],[3],[5],[10]]

quartiles([[1,2],[5,4],[3,6],[7,8]])

quorem Quotient and Remainder

Syntax:

quorem(Poly1, Poly2) or

quorem(Vector1, Vector2)

Returns the Euclidean quotient and remainder of the quotient of 2 polynomials, each expressed either in
symbolic form directly or as a vector of coefficients. If the polynomials are expressed as vectors of their
coefficients, then this command returns a similar vector of the quotient and a vector of the remainder.

Examples:

quorem(x^3+2*x^2+3*x+4,-x+2) → [-x²-4*x-11,26]

quorem([1,2,3,4],[-1,2]) → [[-1, -4, -11] [26]]

quote Quote Argument

Syntax:

Page 173 of 239

13217 Help TextHelp Topics Tree
quote(Expr)

Returns the argument unevaluated.

Example:

quote(3+2*x) → 3+2*x

You can also use this command to purge a variable.

a:=quote(a) purges the variable a

radical_axis Syntax:

radical_axis(Circle1, Circle2)

Returns the line whose points all have the same powerpc values for the two given circles.

Examples:

radical_axis(circle(((x+2)²+y²)=8),circle(((x-2)²+y²) = 8)) → line(x=0)

radical_axis(circle(0,point(1+i)),circle(1,point(1+i)))

randbinomial Random Binomial

Syntax:

randbinomial(n,p)

Returns a random integer with binomial distribution given n trials, each with a probability of success of p.

Example:

randbinomial(10,.4)

randchisquare Random χ²

Syntax:

randchisquare(n)

Returns a random number with χ² distribution given n degrees of freedom.

Example:

randchisquare(5)

randexp Random Exponential

Syntax:

randexp(Real)

Given a positive real number, returns a random real according to an exponential distribution with real a>0.

Example:

randexp(2)

randfisher Random F

Syntax:

randfisher(n,d)

Returns a random number with F distribution given numerator n and denominator d degrees of freedom.

Example:

randfisher(5,2)

randgeometric Random Geometric

Syntax:

randgeometric(p)

Returns a random integer with geometric distribution given given probability p.

Example:

randgeometric(.4)

randnorm Random Normal

Syntax:

randnorm(mu, sigma)

Returns a random real number from the normal distribution N(mu, sigma).

Example:

RANDNORM(2,1)

randperm Random Permutation

Syntax:

randperm(Integer)

Given a positive integer, returns a random permutation of [1,2,…,n].

Example:

randperm(4) returns a random permutation of the elements of the vector [1, 2, 3, 4]

randpoisson Random Poisson

Syntax:

randpoisson(k)

Returns a random integer with Poisson distribution given k.

Example:

randpoisson(5.4)

randstudent Random T

Syntax:

randstudent(n)

Returns a random number with Student’s t distribution given n degrees of freedom.

Example:

randstudent(5)

Page 174 of 239

13217 Help TextHelp Topics Tree
randvector Random Vector

Syntax:

randvector(Integern, Integerm)

randvector(Integern, Interval)

randvector(Integern, distribution_law)

Returns a vector of size Integern that contains random integers in the range -99 through 99 (or in
0..Integerm-1) with uniform
distribution, integers in the given Interval, or contains random numbers according to distribution_law.

Examples:

randvector(3)

randvector(3,6)

randvector(3,normald,0,1)

randvector(3,poisson,1.2)

randvector(3,exponentiald,1.2)

randvector(3,multinomial,[1/2,1/3,1/6])

randvector(3,multinomial,[1/2,1/3,1/6],[a,b,c])

randvector(3,'rand(3)')

randvector(3,1..2)

ranm Syntax:

ranm(Integern, [Integerm],[Interval or Distribution])

Returns a vector of size n or a n*m matrix that contains random integers in the range -99 through 99 with
uniform distribution or contains random numbers in a given interval or according to the given Distribution.

Example:

ranm(3) returns a vector with three elements, each of which is an integer between -100 and 100.

ratnormal Syntax:

ratnormal(Expr)

Rewrites an expression as an irreducible rational fraction.

Examples:

ratnormal((x^2-1)/(x^3-1)) → (x+1)/(x²+x+1)

ratnormal((x^2-1)/(x^3-1)+(x-1)/(x^3-1)+1)

reciprocation Syntax:

reciprocation(Circle, [Obj1, Obj2,...Objn])

Given a circle and a vector of objects that are either points or lines, returns a vector where each point is
replaced with its polar line and each line is replaced with its pole, with respect to the circle.

Example:

reciprocation(circle(0,1),[line(1+i,2),point(1+i*2)]) returns [point(1/2, 1/2) line(y=-x/2+1/2)]

RECT Draw Rectangle

Syntax:

RECT([G], [x1, y1], [x2, y2], [Color])

RECT([G], [x1, y1], [x2, y2], [edgeColor],[fillColor])

Draws a rectangle on G, with diagonal defined by points (x1,y1) and (x2,y2), using edgeColor for the
perimeter and fillColor for the inside.
The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

edgeColor=white

fillColor=edgeColor

To erase a GROB, execute RECT_P(G). To clear the screen, execute RECT_P().

Note: semi-transparent rectangles can be drawn by using the Alpha channel in the color (0 is opaque, 255
is transparent). The color can also be expressed as { color, alpha }.

Examples:

Demo_RECT

RECT_P Rectangle

Syntax:

RECT_P([G], [x1, y1], [x2, y2], [Color])

RECT_P([G], [x1, y1], [x2, y2], [edgeColor],[fillColor])

Draws a rectangle on G, with diagonal defined by points (x1,y1) and (x2,y2), using edgeColor for the
perimeter and fillColor for the inside.
The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

edgeColor=white

fillColor=edgeColor

Note: To erase a GROB, execute RECT_P(G). To clear the screen, execute RECT_P().

Note: semi-transparent rectangles can be drawn by using the Alpha channel in the color (0 is opaque, 255
is transparent). The color can also be expressed as { color, alpha }.

Page 175 of 239

13217 Help TextHelp Topics Tree
Example:

Demo_RECT_P

rectangular_coordinates Rectangular Coordinates

Syntax:

rectangular_coordinates(Vector)

Given a vector containing the polar coordinates of a point, returns a vector containing the rectangular
coordinates of the point.
Example:

rectangular_coordinates(1,π/4) → [1/√2 1/√2]

REDIM Redimension

Syntax:

REDIM(matrixname, size)

Redimensions the specified matrix or vector to size. For a matrix, size is a list of two integers {n1, n2}. For
a vector, size is a list containing one integer {n}. Existing values in the matrix are preserved. Fill values will
be zeros.

reduced_conic Syntax:

reduced_conic(Expr,[Vector])

Takes a conic expression and returns a vector with the following items:

• The origin of the conic

• The matrix of a basis in which the conic is reduced

• 0 or 1 (0 if the conic is degenerate)

• The reduced equation of the conic

• A vector of the conic’s parametric equations

Examples:

reduced_conic(x²+2*x-2*y+1) → [[-1,0],[[0,1],[-1,0]],1,y²+2*x,[[-1-i*(t*t/-2+i*t),t,-4,4,0.1]]]

reduced_conic((x+y)²-2*x+1,x,y)

ref Gaussian Reduction

Syntax:

ref(Matrix)

Performs Gaussian reduction of a matrix.

Examples:

ref([[3,1,-2],[3,2,2]]) → [[1,1/3,-2/3],[0,1,4]]

ref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]]) → [[1,1,2,-1],[0,1,-1,-3],[0,0,1,0.5]]

regroup Regroup expression

Syntax:

regroup(expr)

Collect terms in an expression. This is equivalent to the auto simplication setting of "Minimum" in the CAS
Setup screen.
Example:

regroup(x+3*x+(5*4/x)) → 4*x+20/x

remove Syntax:

remove(Value, List) or

remove(Test, List)

Given a vector or list, removes the occurrences of Value or removes the values that make Test true and
returns the resulting vector or list.
Examples:

remove(5,[1,2,5,6,7,5]) → [1,2,6,7]

remove(x->x>=5,[1,2,6,7]) → [1,2]

reorder Syntax:

reorder(Expr, Vector)

Given an expression and a vector of variables, reorders the variables in the expression according to the
order given in the vector.
Example:

reorder(x²+2*x+y²,[y,x]) → y²+x²+2*x

residue Syntax:

residue(Expr, Var, Value)

Returns the residue of an expression at a value.

Examples:

residue(1/z,z,0) → 1

residue(c/(z*(z-b)),z=b) → c/b

restart Syntax:

restart

Purges all CAS variables and resets CAS settings.

Example:

restart

resultant Syntax:

resultant(Poly1,Poly2,Var)

Returns the resultant (the determinant of the Sylvester matrix) of two polynomials.

Example:

resultant(x^3+x+1,x^2-x-2,x)

RETURN Return Command

Page 176 of 239

13217 Help TextHelp Topics Tree
Syntax:

RETURN expression;

Exits from a function and returns the value of expression (optional).

Example:

EXPORT FACTORIAL(N)

BEGIN

 IF N==1 THEN

 RETURN 1;

 ELSE

 RETURN N*FACTORIAL(N-1);

 END;

END;

Example:

$Demo_RETURN

revlist Reverse List

Syntax:

revlist(List) or revlist(Vector)

Reverses the order of the elements in a list or vector.

Example:

revlist([1,2,3]) → [3,2,1]

rhombus Syntax:

rhombus(point1, point2, angle)

Used in the Geometry app. Draws a rhombus, given two points and an angle. As with many of the other
polygon commands, you can specify optional CAS variable names for storing the coordinates of the other
two vertices as points.
Example:

rhombus(point(0,0),point(2,2),π/4) draws the rhombus whose first two vertices are given by (0, 0) and (2,
2). The angle at (0, 0) has a measure in radians of π/4.

RIGHT Right Part

Syntax:

RIGHT(String, n)

Returns the last n characters of the string.

Example:

RIGHT("MOMOGUMBO",5) → "GUMBO"

romberg Syntax:

romberg(Expr, Var, Val1, Val2)

Uses Romberg’s method to return the approximate value of a definite integral.

Example:

romberg(e^(x²),x,0,1) → 1.46265174591

ROTATE Syntax:

ROTATE(String, n)

ROTATE(grob, angle, [bg_color])

ROTATE([DestGrob], angle, SrcGrob, [dest_point])

ROTATE([DestGrob], SrcGrob, dest_point_1, dest_point_2, dest_point_3, dest_point_4, [src_point_1,
src_point_2, src_point_3, src_point_4])
The string form of ROTATE moves n characters from the beginning or end of String to the opposite end of
String, depending on the sign of n.
If n is positive, takes the first n characters of String and put them on the right of String.

If n is negative, takes the last n characters and put them on the left of String.

If ABS(n)>dim(string), returns String.

The graphical forms of ROTATE use an angle or sets of points to rotate a graphic object (grob).

ROTATE(grob, angle, [bg_color])

Rotate grob around its center by angle. grob will be resized to accommodate the extra space needed and
that extra space will be filled by bg_color.
If bg_color is not specified, the current background color is used.

ROTATE([DestGrob], angle, SrcGrob, [dest_point])

Draw SrcGrob, rotated by angle, on DestGrob with the center of SrcGrob at position dest_point (specified
in pixels as a list of 2 numbers or a single complex number).
If DestGrob is not specified, G0 is used. If dest_point is not specified, the center of DestGrob is used.

ROTATE([DestGrob], SrcGrob, dest_point_1, dest_point_2, dest_point_3, dest_point_4, [src_point_1,
src_point_2, src_point_3, src_point_4])
Note: src_points and dest_points are specified in pixels as lists of 2 numbers or as complex numbers.

If src_points are not specified, then src_point_1 is set to to the top left corner of SrcGrob, src_point_2 is
set to to the top right corner of SrcGrob, src_point_3 is set to to the bottom right corner of SrcGrob, and
src_point_4 is set to to the bottom left corner of SrcGrob.

Draws the part of SrcGrob specified by the 4 src_points in the area of DestGrob specified by the 4
dest_points.

Page 177 of 239

13217 Help TextHelp Topics Tree
This is done internally by subdividing the work into 2 triangles (points1, 2 and 3 and points 1, 3 and 4).
Therefore non homogenous coordinates can yield to different stretching on both triangles. It is possible to
have point_1=point_2 to only work with triangles.

Examples:

ROTATE("12345",2) → "34512"

ROTATE("12345",-1) → "51234"

ROTATE("12345",6) → "12345"

Demo_ROTATE

row Syntax:

row(Matrix, Integer) or

row(Matrix, Interval)

Given a matrix and an integer n, returns the row n of the matrix. Given a matrix and an interval, returns a
vector containing the rows of the matrix indicated by the interval.

Example:

row([[1,2,3],[4,5,6],[7,8,9]],2) → [4,5,6]

rowAdd Row Add

Syntax:

rowAdd(Matrix, Integer1, Integer2)

Given a matrix and two integers, returns the matrix obtained from the given matrix after the row
indicated by the second integer is replaced by the sum of the rows indicated by the two integers.

Example:

rowAdd([[1,2],[3,4],[5,6]],1,2) → [[1,2],[4,6],[5,6]]

rowDim Row Dimension

Syntax:

rowDim(Matrix)

Returns the number of rows of a matrix

Examples:

rowDim([[1,2,3],[4,5,6]]) → 2

rowDim([[1,2],[3,4],[5,6]]) → 3

rowNorm Row Norm

Syntax:

ROWNORM(Matrix)

Finds the maximum value (over all rows of the matrix) for the sums of the absolute values of all elements
in a row.
Examples:

ROWNORM([[1,2],[3,-4]]) → 7

ROWNORM([[1,2,3,-4],[-5,3,2,1]]) → 11

rowspace Row Subspace

Syntax:

rowspace(matrix,[variable])

Returns a matrix where the rows are a basis of the vector space generated by the rows of matrix. If given,
the dimension of this space will be stored into variable.
Examples:

rowspace([[1,2,3],[1,2,3],[1,2,4],[1,2,5]])

rowspace([[1,2,3],[1,3,6],[2,5,9]],d)

rowSwap Row Swap

Syntax:

rowSwap(Matrix,Integer1,Integer2)

Given a matrix and two integers, returns the matrix obtained from the given matrix after swapping the
two rows indicated by the two integers.
Example:

rowSwap([[1,2],[3,4],[5,6]],1,2) → [[3,4],[1,2],[5,6]]

rref Syntax:

RREF(Matrix) or

RREF(Matrix, [Integer, Option])

Reduced Row-Echelon Form. Changes a rectangular matrix to its reduced row-echelon form.

Examples:

rref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]])

rref([[1,1,0,0,-a1],[0,1,1,0,-a2],[0,0,1,1,-a3],[1,0,0,1,-a4]],keep_pivot)

rsolve Recurrance Solve

Syntax:

rsolve(Expr, Var, Condition) or

rsolve(List1, List2, List3)

Given an expression defining a recurrence relation, a variable, and an initial condition, returns the closed
form solution (if possible) of the recurrent sequence. Given three lists, each containing multiple items of
the above nature, solves the system of recurrent sequences.

Examples:

rsolve(u(n+1)=2*u(n)+n,u(n),u(0)=1) → [-n+2*2^n-1]

Page 178 of 239

13217 Help TextHelp Topics Tree
rsolve([u(n+1)=3*v(n)+u(n),v(n+1)=v(n)+u(n)],[u(n),v(n)],[u(0)=1,v(0)=2])

R→B Real to Base

Syntax:

R→B(Real [, bits [,base]])

Converts a decimal integer (base 10) to an integer.

Optionally specify bits and base.

 1 ≤ bits ≤ 64 (Unsigned integer)

-1 ≥ bits ≥ -63 (Signed integer)

base = 0 System

base = 1 Binary

base = 2 Octal

base = 3 Decimal

base = 4 Hexadecimal

Examples:

R→B(13) → #Dh (If system base is hexadecimal)

R→B(1800,64,2) → #3410:64o

R→B({50,50,50},{64,32,16},{1,2,4}) → {#110010:64b,#62o,#32:16h}

SCALE Syntax:

SCALE(matrixname, value, row_number)

Multiplies the specified row_number of the specified matrix by value.

Examples:

SCALE([1,2],3,1) → [3,6]

SCALE([[1,2],[3,4]],3,2) → [[1,2],[9,12]]

SCALE([[1,2],[3,4]],{3,2},{2,1}) → {[[1,2],[9,12]],[[2,4],[3,4]]}

SCALEADD Syntax:

SCALEADD(matrixname, value, row1, row2)

Multiplies the specified row1 of the matrix name by value, then adds this result to the second specified
row2 of the matrix matrixname.
Examples:

SCALEADD([[1,2],[3,4]],3,2,1) → [[10,14],[3,4]]

SCALEADD([[1,2],[3,4]],{3,2},{2,1},{1,1}) → {[[10,14],[3,4]],[[3,6],[3,4]]}

select Syntax:

select(Test, List) or select(Test, Vector)

Given a test expression in a single variable and a list or vector, tests each element in the list or vector and
returns a list or vector containing the elements that satisfy the test.

Example:

select(x->x>=5,[1,2,6,7]) → [6,7]

seq Sequence

Syntax:

seq(Expr, Var=Interval, [Step]) or

seq(Expr, Integer)

Given an expression, a variable defined over an interval, and an Optional step value, returns a vector
containing the sequence obtained when the expression is evaluated within the given interval using the
given step. If no step is provided, the step used is 1.

Given an expression and an integer n, returns a list with the expression repeated n times.

Example:

seq(2^k,k=0..8) → [1,2,4,8,16,32,64,128,256]

seqsolve Sequence Solve

Syntax:

seqsolve(Expr, Vector, Condition) or

seqsolve(List1, List2, List3)

Similar to rsolve. Given an expression defining a recurrence relation in terms of n and/or the previous
term (x), followed by a vector of variables and an initial condition for x (the 0th term), returns the closed
form solution (if possible) for the recurrent sequence. Given three lists, each containing multiple items of
the above nature, solves the system of recurrent sequences.

Examples:

seqsolve(2x+n,[x,n],1) → -n-1+2*2^n

seqsolve([x+y,x],[x,y,n],[1,1])

SERIAL Syntax:

SERIAL

Returns the calculator serial number

SETBASE Set Base

Syntax:

SETBASE(#integer[m] [,c])

Displays integer expressed in base m in whatever base is indicated by c.

Base marker m can be b (for binary), d (for decimal), o (for octal), d (for decimal), or h (for hexadecimal).
If m is omitted, the input is assumed to be in the default base.
c = 0 System

Page 179 of 239

13217 Help TextHelp Topics Tree
c = 1 Binary

c = 2 Octal

c = 3 Decimal

c = 4 Hexadecimal

If c is omitted, the output is displayed in the default base.

Examples:

SETBASE (#34o,1) → #11100b

SETBASE (#1101b) → #Dh (if the default base is hexadecimal)

SETBASE({#100d,#100d,#100d,#100d,#100d},{0,1,2,3,4}) → {#64h,#1100100b,#144o,#100d,#64h}

SETBITS Set Bits

Syntax:

SETBITS(#integer[m] [,bits])

Sets the number of bits to represent integer.

The value of bits must be in the range –63 to 64. Base marker m can be b (for binary), d (for decimal), o
(for octal), d (for decimal), or h (for hexadecimal). If base marker m or bits is omitted, the default value is
used.
Examples:

SETBITS(#1111b, 15) → #1111:15b

SETBITS({#FFFFh,#777o},{15,7}) → {#7FFF:15h,#177:7o}

shift Syntax:

shift(List, Integer) or

shift(Vector, [Integer]) or

shift(Integer1, Integer2)

Given a list or vector and an integer n, shifts the elements of the list or vector n places to the left if n>0 or
to the right if n<0. Elements leaving the list from one side are replaced by 0 on the other side. If no integer
is provided, the value 1 is used, shifting the elements one place to the left.

Given an integer and a second integer n, performs a bitwise shift on the first integer; the shift is left if n>0
and right if n<0.
Examples:

shift([0,1,2,3],2) → [2,3,0,0]

shift([0,1,2,3,4]) → [0,0,1,2,3]

shift_phase Shift Phase

Syntax:

shift_phase(Expr)

Returns the result of applying a phase shift of π/2 to a trigonometric expression.

Example:

shift_phase(sin(x)) → -cos((π+2*x)/2) with CAS setting Simplify set to None

Si Sine Integral

Syntax:

Si(Expr)

Returns the sine integral of an expression, int(sin(t)/t,t=0..x)

Example:

Si(1.0) → 0.946083070367

signature Syntax:

signature(Vector)

Returns the signature of a permutation given as a vector.

Example:

signature([2,1,4,5,3]) → -1

simplex_reduce Simplex Reduction

Syntax:

simplex_reduce(Matrix_A, Vector_B, Vector_C)

Reduction by simplex algorithm to find max(c.x) under A.x<=b and x>=0, b>=0. Returns the maximum, the

augmented solution x and the reduced matrix. Accepts also [[A|I|b],[-c|*|0]] as argument.

Examples:

simplex_reduce([[3,2,2],[1,1,1]],[3,4],[1,2,3])

simplex_reduce([[2,1,1,1,0,0,2],[1,2,3,0,1,0,5],[2,2,1,0,0,1,6],[-3,-1,-3,1,-1,2,0]])

simult Syntax:

simult(Matrix1, Matrix2)

Returns the solution to a system of linear equations or several systems of linear equations presented in
matrix form. In the case of one system of linear equations, takes a matrix of coefficients and a column
matrix of constants, and returns the column matrix of the solution.

Example: simult([[3,1],[3,2]],[[-2],[2]]) returns [[-2],[4]]

Examples:

simult([[3,1],[3,2]],[[-2],[2]]) → [[-2],[4]]

simult([[3,1],[3,2]],[[-2,1],[2,-1]]) → [[-2, 1],[4,-2]]

SIN Sine

Syntax:

Page 180 of 239

13217 Help TextHelp Topics Tree
SIN(Value)

Returns the sine of Value.

Value is interpreted as radians, degrees or gradians, depending on the setting of Angle Measure in Home
Settings, CAS Settings, or Symbolic Setup.
Example:

SIN(30) → 0.5 (Degrees mode)

SIN(1+i) → 1.29845758142+0.634963914785*i

SIN({30,90}) → {0.5,1} (Degrees mode)

SIN((π/6)_rad) → 0.5

sincos Syntax:

sincos(Expr)

Returns an expression with the complex exponentials rewritten in terms of sine and cosine.

Example:

sincos(exp(-i*x)) → cos(x)-i*sin(x)

single_inter Single Intersection

Syntax:

single_inter(Curve1, Curve2, [Point])

Returns the intersection of Curve1 and Curve2 that is closest to Point.

In Plot view, this command will prompt for two curves. After that, a point will appear; move this point to
the intersection desired and press Enter. You can move the point later to change intersections if you wish.

Example:

single_inter(line(y=x),circle(x²+y²=1), point(1,1)) → point((1+i)*√2/2)

SIZE Size of a matrix

Syntax:

SIZE(matrix)

Size of a list or matrix. Returns the size of a list or the dimensions of matrix as a list: {Rows, Columns}.

Examples:

SIZE({1,2,3,4,5}) → 5

SIZE([[1,2,3], [4,5,6]]) → [2 3]

slope Syntax:

slope(Line) or slope(Point1, Point2)

Given a line or two points that define a line, returns the slope of the line.

Example: slope(line(1,2*i)) → -2

slopeat Syntax:

slopeat(Segment, Point) or

slopeat(Line, Point) or

slopeat(Ray, Point)

Used in Symbolic view of the Geometry app. Displays the slope of a straight object (segment, line, etc.).
The measure is displayed, with a label, at the given point in Plot view.

Example:

In Symbolic view, slopeat(line(point(0,0), point(2,3)), point(-8,8)) displays “sline(point(0,0),
point(2,3))=3/2” at point (–8, 8) in Plot view.
Example:

slopeat(line(point(0,1),point(3,2)),point(-10,4))

sort Syntax:

sort(List) or sort(Obj1, Obj2, ...)

Sorts a list of a sequence of objects. If the list or sequence contains numbers, then sorting is done in
increasing order. If the list or sequence contains expressions, then the sorting is done in increasing order
of numerical values, sums, and products, in increasing exponential order.

Examples:

sort([3,2,2,4,1,0]) → [0,1,2,2,3,4]

sort(x,3*x,4*x²,5,7,x²+1) → [5 7 x x²+1 3*x 4*x²]

spline Syntax:

spline(ListX, ListY, Var, Integer) or

spline(VectorX, VectorY, Var, Integer)

Given two lists or vectors (one for the x-values and one for the y-values), as well as a variable and an
integer degree, returns the natural spline through the points given by the two lists. The polynomials in the
spline are in terms of the given variable and are of the given degree.

Example:

spline([0,1,2],[1,3,0],x,3) → [(-5/4)*x^3+(13/4)*x+1, (5/4)*(x-1)^3/4-(15/4)*(x-1)^2-(1/2)(x-1)+3]

sqrfree Syntax:

sqrfree(Expr)

Returns a polynomial factorized as a product of powers of coprime factors where each factor has roots of
multiplicity 1
Examples:

sqrfree(x^4-2*x²+1) → (x²-1)²

sqrfree((x-2)^7*(x+2)^7*(x^4-2*x²+1)) → (x²-1)²*(x²-4)⁷

Page 181 of 239

13217 Help TextHelp Topics Tree
sqrt Square Root

Syntax:

sqrt(Expr)

Returns the square root of Expr

Example:

sqrt(50) → 5*√2 (7.07106781178)

STARTVIEW Start View

Syntax:

STARTVIEW(ViewNumber[,Redraw])

Starts a view of the current app. Redraw, is optional; if Redraw, is true (non 0), it will force a refresh for
the view.
The view numbers are as follows:

0=Symbolic

1=Plot

2=Numeric

3=Symbolic Setup

4=Plot Setup

5=Numeric Setup

6=App Info

7=Views key

If the current app has views defined under the Views menu, then the following view numbers are used:

8=First special view (Split Screen Plot Detail)

9=Second special view (Split Screen Plot Table)

10=Third special view (Autoscale)

11=Fourth special view (Decimal)

12=Fifth special view (Integer)

13=Sixth special view (Trig)

If ViewNumber is negative, the following global views are used:

-1=Home Screen

-2=Modes

-3=Memory Manager

-4=App Library

-5=Matrix Catalog

-6=List Catalog

-7=Program Catalog

-8=Note Catalog

Example:

STARTVIEW(-3)

stddev Sample Standard Deviation

Syntax:

stddev(List1, [List2]) or

stddev(Vector1, [Vector2]) or

stddev(Matrix)

Returns the standard deviation of the elements of a list or vector, or a list

of the standard deviations of the columns of a matrix. The optional second list is a list of weights.

Examples:

stddev([[1,2,3],[5,6,7]]) → [2,2,2]

stddev([1,2,3]) → (√6)/3

stddevp Population Standard Deviation

Syntax:

stddevp(List1, [List2]) or

stddvp(Vector 1, Vector2) or

stddvp(Matrix)

Returns the population standard deviation of the elements of a list or vector, or a list of the population
standard deviations of the columns of a matrix. The optional second list is a list of weights.

Examples:

stddevp([1,2,3]) → 1

stddevp([[1,2,3],[5,6,7]])

sto Store

Syntax:

sto(Obj, Var)

Stores the object given as first argument in the variable given as second argument.

Example:

sto("hello",b)

STRING Syntax:

STRING(Expression, [Mode], [Precision], [Separator or {Separator,
["[DecimalPoint[Exponent[NegativeSign]]]"], [DotZero]}], [SizeLimit or {SizeLimit, [FontSize], [Bold],
[Italic], [Monospaced]}])

Page 182 of 239

13217 Help TextHelp Topics Tree
Evaluates Expression and returns the result as a string.

The Mode, Precision, and Separator parameters specify how numbers are displayed.

If Mode is specified, it is:

0: Use current setting

1: Standard

2: Fixed

3: Scientific

4: Engineering

5: Floating

6: Rounded

Add 7 to this value to specify proper fraction mode and 14 for mixed fraction mode.

Precision is either -1 for current settings or 0 to 12.

Separator can be a number. -1 means use default, 0 to 10 correspond to the 11 built-in digit grouping
choices available in home settings.
OR

Separator can be a string containing a set of digits and separators. The last digit is assumed to be the one
just before the decimal point.
"[DecimalPoint[Exponent[NegativeSign]]]" is a string of 0 to 3 characters. The first one will be used for the
decimal point, the second for the exponent and the last one for the negative sign.

If DotZero is non-zero, then numbers between -1 and 1 are displayed without a leading zero (for example,
.1 instead of 0.1)
If SizeLimit is specified, the command will attempt to generate a string that fits in the given number of
pixels. FontSize is used along with Bold, Italic, and Monospaced (if their value is non-zero) to estimate the
maximum string length that will fit.

The values for FontSize are:

0=current font (default)

1=font 10

2=font 12 (Small)

3=font 14 (Medium)

4=font 16 (Large)

5=font 18

6=font 20

7=font 22

Examples:

Current number format setting Standard:

STRING(3*π) → "9.42477796077"

Number format Fixed, 4 decimal places:

STRING(3*π,2,4) → "9.4248"

STRINGFROMID String From Identifier

Syntax:

STRINGFROMID(Integer)

Returns the built-in string associated with the ID of the current language.

Example:

STRINGFROMID(1)

sturm Syntax:

sturm(Poly,[Var, Complexa, Complexb])

Returns the Sturm sequence corresponding to a polynomial or the number of sign changes of this
polynomial for the variable in the interval (a,b].
Examples:

sturm(x^3-1,x) → [1,[[1,0,0,-1],[3,0,0],9],1]

sturm(x^3-1,x,-2-i,5+3i) → 3

sturmseq Syntax:

sturmseq(Poly,[Var]) or sturmseq(RatFrac, [Var])

Returns the Sturm sequence corresponding to a polynomial or to a rational fraction.

Examples:

sturmseq(x^3-1,x) → [1,[[1,0,0,-1],[3,0,0],9],1]

sturmseq((x^5-x^3)/(x+2),x)

SUB Extract Portion

Syntax:

SUB(object, start, end)

Extracts a portion, of a list or matrix.

For a matrix, start and end are two lists of two numbers ({row, col}) specifying the top left and bottom
right of the portion to extract.
For a vector or list, start and end are two numbers specifying the indexes of the first and last objects of
the portion to extract.
Examples:

SUB([[1,2,1],[2,1,3],[4,2,3]],{2,1},{3,2}) → [[2,1],[4,2]]

SUB({5,2,9,4},2,3) → {2,9}

SUBGROB Copy GROB to Target

Syntax:

Page 183 of 239

13217 Help TextHelp Topics Tree
SUBGROB(srcG, [x1, y1], [x2, y2], trgtG)

Sets graphic trgtG to be a copy of the area of srcG between points (x1,y1) and (x2,y2). If both (x1, y1) and
(x2, y2) are not specified, then the entire graphic srcG is used. If (x1, y1) is not specified, then the top left
corner of srcG is used; if (x2, y2) is not specified, then the bottom right corner of srcG is used.

trgtGRB can be any of the graphic variables except G0.

SUBGROB(G1, G4) will copy G1 in G4.

Example:

Demo_SUBGROB

SUBGROB_P Copy GROB to Target

Syntax:

SUBGROB_P(srcG, [x1, y1], [x2, y2], trgtG)

Sets graphic trgtG to be a copy of the area of srcG between points (x1,y1) and (x2,y2). If both (x1, y1) and
(x2, y2) are not specified, then the entire graphic srcG is used. If (x1, y1) is not specified, then the top left
corner of srcG is used; if (x2, y2) is not specified, then the bottom right corner of srcG is used.

trgtGRB can be any of the graphic variables except G0.

SUBGROB_P(G1, G4) will copy G1 in G4.

Example:

Demo_SUBGROB_P

subMat Sub Matrix

Syntax:

subMat(Matrix, Int1, Int2, Int3, Int4)

Extracts from a matrix a sub matrix whose diagonal is defined by four integers. The first two integers
define the row and column of the first element and the last two integers define the row and column of
the last element of the sub matrix.
Example:

subMat([[1,2],[3,4],[5,6]],1,1,2,1) → [[1],[3]]

suppress Syntax:

suppress(List, Integer)

Given a list and a counting number n, deletes the nth element in the list and returns the result.

Example:

suppress([0,1,2,3],2) → [0,2,3]

surd Syntax:

surd(Expr, Integer)

Given an expression and an integer n, returns the expression raised to the power 1/n.

Example:

surd(-8,3) → -2

SWAPCOL Swap Columns

Syntax:

SWAPCOL(matrixname, column1, column2)

Exchanges column1 and column2 in the specified matrix matrixname.

Examples:

SWAPCOL([[1,2,1],[2,1,3],[4,2,3]],2,3) → [[1,1,2],[2,3,1],[4,3,2]]

SWAPCOL([[1,2,1],[2,1,3],[4,2,3]],{1,2},{3,3}) → {[[1,2,1],[3,1,2],[3,2,4]],[[1,1,2],[2,3,1],[4,3,2]]}

SWAPCOL({[[1,2,1],[2,1,3],[4,2,3]],[[9,8,7],[9,8,7]]},{1,2},{3,3}) → {[[1,2,1],[3,1,2],[3,2,4]],[[9,7,8],[9,7,8]]}

SWAPROW Swap Rows

Syntax:

SWAPROW(matrixname, row1, row2)

Exchanges row1 and row2 in the specified matrix matrixname.

Examples:

SWAPROW([[1,2,1],[2,1,3],[4,2,3]],2,3) -→ [[1,2,1],[4,2,3],[2,1,3]]

SWAPROW([[1,2,1],[2,1,3],[4,2,3]],{1,2},{3,3}) → {[[4,2,3],[2,1,3],[1,2,1]],[[1,2,1],[4,2,3],[2,1,3]]}

SWAPROW({[[1,2,1],[2,1,3],[4,2,3]],[[9,9],[6,6],[5,5],[8,8]]},{1,2},{3,3}) →
{[[4,2,3],[2,1,3],[1,2,1]],[[9,9],[5,5],[6,6],[8,8]]}

sylvester Sylvester Matrix

Syntax:

sylvester(Poly,Poly,Var)

Returns the Sylvester matrix of two polynomials

Examples:

sylvester(x^2-1,x^3-1,x) → [[1,0,-1,0,0],[0,1,0,-1,0],[0,0,1,0,-1],[1,0,0,-1,0],[0,1,0,0,-1]]

sylvester(x^3-p*x+q,3*x^2-p,x)

table CAS Table

Syntax:

table(SeqEqual(index=value))

Defines an array where the index are strings or real numbers

Example:

table(3=-10,"a"=10,"b"=20,"c"=30,"d"=40)

Page 184 of 239

13217 Help TextHelp Topics Tree
tabvar Table of Variation

Syntax:

tabvar(function,[variable, minimum, maximum])

Creates a table of variation for function. If variable is not given, a default variable is assumed. If minimum
or maximum is not specified, they are also assumed.
Examples:

tabvar(sin(x))

tabvar(x^2+x+1,x)

tabvar(a^2,a,-3,5)

tail Syntax:

tail(Vector) or

tail(List) or

tail(String) or

tail(Obj1, Obj2, ...)

Given a vector, list, string, or sequence of objects, returns a vector with the first element deleted.

Examples:

tail([3,2,4,1,0]) → [2,4,1,0]

tail("bonjour") → "onjour"

tan2cossin2 Syntax:

tan2cossin2(Expr)

Returns an expression with tan(x) rewritten as (1–cos(2*x))/sin(2*x).

Example:

tan2cossin2(tan(x/2)) → (1-cos(x))/sin(x)

tan2sincos2 Syntax:

tan2sincos2(Expr)

Returns an expression with tan(x) rewritten as sin(2*x)/(1+cos(2*x)).

Example:

tan2sincos2(tan(x/2)) → sin(x)/(1+cos(x))

tcoeff Syntax:

tcoeff(Poly)

tcoeff(Vector)

tcoeff(List)

Returns the coefficient of the term of lowest degree of a polynomial. The polynomial can be expressed in
symbolic form or as a vector or list of coefficients.
Examples:

tcoeff(1-2*x^3+x^2+7*x) → 7

tcoeff([-2,1,7,0]) → 7

TEVAL Time Evaluation

Syntax:

TEVAL(Param)

Returns the time it takes to evaluate the parameter.

Example:

TEVAL(WAIT(5)) → ~5.095_s

Note: actual result will vary but should be close to 5.00_s

TEXTOUT Draw Text

Syntax:

TEXTOUT(text, [G], x, y, [font], [textColor], [width], [backgroundColor])

Draws text on graphic G at position (x, y) using font and textColor. Paints the background before drawing
the text using color backgroundColor. If width is specified, does not draw text more than width pixels
wide. If backgroundColor is not specified, the background is not erased.

The sizes for font are:

0=current font (default)

1=font 10

2=font 12 (Small)

3=font 14 (Medium)

4=font 16 (Large)

5=font 18

6=font 20

7=font 22

Returns the X (in pixels, not Cartesian) coordinate at which the next character of the string should be
drawn if the string had more characters
Examples:

TEXTOUT("Hello HP Prime",-5,0,4,RGB(128,0,128),200,RGB(255,255,0)); FREEZE

Demo_PISERIES

TEXTOUT_P Draw Text

Syntax:

TEXTOUT_P(text, [G], x, y, [font], [textColor], [width], [backgroundColor])

Page 185 of 239

13217 Help TextHelp Topics Tree
Draws text on graphic G at position (x, y) using font and textColor. Paints the background before drawing
the text using color backgroundColor. If width is specified, does not draw text more than width pixels
wide. If backgroundColor is not specified, the background is not erased.

The sizes for font are:

0=current font (default)

1=font 10

2=font 12 (Small)

3=font 14 (Medium)

4=font 16 (Large)

5=font 18

6=font 20

7=font 22

Returns the X coordinate at which the next character of the string should be drawn if the string had more
characters
Examples:

TEXTOUT_P("Hello HP Prime",100,100,4,RGB(255,0,0),200,RGB(0,255,255)); FREEZE

Demo_PISERIES_P

TICKS Internal Ticks Value

Syntax:

TICKS()

Returns the internal millisecond clock value.

Example:

TICKS

transpose Transpose Matrix

Syntax:

transpose(Matrix)

Transposes a matrix (without conjugation).

Examples:

transpose([[1,2,3],[1,3,6],[2,5,7]]) → [[1,1,2],[2,3,5],[3,6,7]]

transpose(conj([[1+i,2,3],[1,3,6],[2,5,9-i]]))

TRIANGLE_P Draw Triangle

Syntax:

TRIANGLE_P([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha])

TRIANGLE_P([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha], ["ZString", z1, z2, z3])

TRIANGLE_P([G], {x1, y1, [c1], [z1]}, {x2, y2, [c2], [z2]},{x3, y3, [c3], [z3]}, ["ZString"])

TRIANGLE_P([G], points_definition, triangle_definitions, rotation_matrix or {rotation_matrix or -1, ["N"],
[{eye_x, eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

TRIANGLE_P([G], pre_rotated_points, triangle_definitions, [zstring])

TRIANGLE_P([G])

The basic form of TRIANGLE_P draws one triangle between specified pixel coordinates in the graphic using
the specified color and transparency (0 ≤ Alpha ≤ 255). If 3 colors are specified, blends the colors in
between the vertexes.
The advanced form of TRIANGLE_P allows the rendering of multiple triangles at a time with a potential 3D
transformation of the triangles vertices. This is mostly used if you have a set of vertices and triangles and
want to display them all at once (faster).

points_definition is either a list or a matrix of point definition. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are a couple of example: [x, y, z, c],
{x, y, z, c}, {x, y, #c}, {(x, y), c}, (x,y)…
triangle_definitions is either a list or a matrix of triangle definition. Each triangle is defined by 3 to 5
numbers. p1, p2, p3, color and alpha. p1, p2 and p3 are the index in the points_definition of the 3 points
that define the triangle. Color is used to override the per point color definition. If you need to provide an
Alpha, but not a color, use -1 for the color.

Note, that {Color, [Alpha], triangle_1, …, triangle_n} is also a valid form to avoid re-specifying the same
color for each triangle.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the point
using usual 3/4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.
Each point is rotated and translated through a multiplication by the rotation_matrix. It is then projected
on the view plan using the eye position using the following equation: x=eye_z/z*x-eye_x and y=eye_z/z*y-
eye_y.
Each triangle is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier z
clipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

TRIANGLE_P returns a string which contains all the transformed points. If you plan to call TRIANGLE_P or
LINE_P multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to
TRIANGLE_P and LINE_P.

About zstring

Page 186 of 239

13217 Help TextHelp Topics Tree
TRIANGLE_P([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE_P to create a Z clipping string (initialized at 255 for each pixels). You can
then call TRIANGLE_P with appropriate z (0-255) values for each of the triangle vertexes and TRIANGLE_P
will not draw pixels further than the already drawn pixels. zstring is automatically updated as appropriate.

Examples:

TRIANGLE_P(0,20,150,50,100,100,#FFh,#FF00h,#FF0000h,128); FREEZE

Demo_TRIANGLE_P

Demo_Tetrahedron_P

trunc Syntax:

TRIANGLE_P([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha])

TRIANGLE_P([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha], ["ZString", z1, z2, z3])

TRIANGLE_P([G], {x1, y1, [c1], [z1]}, {x2, y2, [c2], [z2]},{x3, y3, [c3], [z3]}, ["ZString"])

TRIANGLE_P([G], points_definition, triangle_definitions, rotation_matrix or {rotation_matrix or -1, ["N"],
[{eye_x, eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

TRIANGLE_P([G], pre_rotated_points, triangle_definitions, [zstring])

TRIANGLE_P([G])

The basic form of TRIANGLE_P draws one triangle between specified pixel coordinates in the graphic using
the specified color and transparency (0 ≤ Alpha ≤ 255). If 3 colors are specified, blends the colors in
between the vertexes.
The advanced form of TRIANGLE_P allows the rendering of multiple triangles at a time with a potential 3D
transformation of the triangles vertices. This is mostly used if you have a set of vertices and triangles and
want to display them all at once (faster).

points_definition is either a list or a matrix of point definition. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are a couple of example: [x, y, z, c],
{x, y, z, c}, {x, y, #c}, {(x, y), c}, (x,y)…
triangle_definitions is either a list or a matrix of triangle definition. Each triangle is defined by 3 to 5
numbers. p1, p2, p3, color and alpha. p1, p2 and p3 are the index in the points_definition of the 3 points
that define the triangle. Color is used to override the per point color definition. If you need to provide an
Alpha, but not a color, use -1 for the color.

Note, that {Color, [Alpha], triangle_1, …, triangle_n} is also a valid form to avoid re-specifying the same
color for each triangle.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the point
using usual 3/4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.
Each point is rotated and translated through a multiplication by the rotation_matrix. It is then projected
on the view plan using the eye position using the following equation: x=eye_z/z*x-eye_x and y=eye_z/z*y-
eye_y.
Each triangle is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier z
clipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

TRIANGLE_P returns a string which contains all the transformed points. If you plan to call TRIANGLE_P or
LINE_P multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to
TRIANGLE_P and LINE_P.

About zstring

TRIANGLE_P([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE_P to create a Z clipping string (initialized at 255 for each pixels). You can
then call TRIANGLE_P with appropriate z (0-255) values for each of the triangle vertexes and TRIANGLE_P
will not draw pixels further than the already drawn pixels. zstring is automatically updated as appropriate.

Examples:

TRIANGLE_P(0,20,150,50,100,100,#FFh,#FF00h,#FF0000h,128); FREEZE

Demo_TRIANGLE_P

Demo_Tetrahedron_P

truncate Syntax:

truncate(Poly, Integer)

Given a polynomial and an integer n, truncates the polynomial at order n.

Example:

truncate((x²+x)²,3) → 2*x³+x²

tsimplify Transcendental Simplify

Syntax:

tsimplify(Expr)

Returns an expression with transcendental rewritten as complex exponentials

Example:

tsimplify(e^(2*x)+e^(x)) → e^(x)²+e^(x)

TYPE Object Type

Syntax:

TYPE(object)

Page 187 of 239

13217 Help TextHelp Topics Tree
Returns the type of the object:

0: Real

1: Integer

2: String

3: Complex

4: Matrix

5: Error

6: List

8: Function

9: Unit

14.?: CAS object. the fractional part is the CAS type

type Syntax:

type(Object)

Returns the type of an object.

Examples:

type("abc") → DOM_STRING

type([1,2,3]) → DOM_LIST

QPI Real to Quotient Approximation

Syntax:

QPI(expr,[digits])

QPI attempts to approximate expr into one of the following forms using digits of precision: p/q,
(a/b)*√(p/q), (p/q)*π, ln(p/q) or e^(p/q)
expr may be a number, complex, list, vector or matrix.

Examples:

QPI(1.23) → 123/100

QPI(2.2360679775) → √(5)

QPI(1.46633706879) → LN((13/3))

QPI(4.71238898038) → (3/2)*π

QPI({-0.714285714286,-1.41421356237,-0.405465108108,1.11751906874,-
2.44346095279,0.657047293577}) → {-(5/7),-√(2),LN((2/3)),e^(1/9),-((7/9)*π),(5/7)*√(11/13)}

▶ Store

Syntax:

value ▶ variable

Stores value in variable.

Example:

3▶A stores the value 3 in the variable A.

U-Z Function Catalog U-Z

Toolbox function catalog U-Z

UFACTOR Unit factor conversion

Syntax:

UFACTOR(Value_Unit1, 1_Unit2)

Converts a measurement using a compound unit into a measurement expressed in constituent units.

Example: A Coulomb—a measure of electric charge—is a compound unit derived from the SI base units of
Ampere and second: 1 C = 1 A * 1 s. Using UFACTOR, you can express a measurement in Coulombs as a
product of Amperes and time.
Examples:

UFACTOR(100_C,1_A) → 100_A*s

UFACTOR(100_C,1_min) → 1.66666666667_min*A

unapply Syntax:

unapply(Expr,Var)

Returns the function defined by an expression and a variable.

Example:

unapply(2*x²,x) → (x)->2*x²

uniform Discrete Uniform

Syntax:

uniform(a,b,x)

Uniform probability density function

Computes the probability density of the uniform distribution at x given parameters a and b.

Example:

uniform(1.2,3.5,3) → 0.434782608696

uniform_cdf Cumulative Uniform

Syntax:

uniform_cdf(a,b,x,[x2])

Cumulative uniform distribution function

Returns the lower-tail probability of the uniform probability density function for the value x, given
parameters a and b.
Examples:

uniform_cdf(1.2,3.5,3) → 0.782608695652

Page 188 of 239

13217 Help TextHelp Topics Tree
uniform_cdf(1.2,3.5,2,3) → 0.434782608696

uniform_icdf Inverse Cumulative Uniform

Syntax:

uniform_icdf(a,b,p)

Inverse cumulative uniform distribution function

Returns the value x such that the uniform lower-tail probability of x, given parameters a and b, is p.

Example:

uniform_icdf(3.2,5.7,0.48) → 4.4

UPPER Uppercase

Syntax:

UPPER(string)

Returns string with lowercase characters converted to uppercase.

Examples:

UPPER("abc") → "ABC"

UPPER("αβγ") → "ΑΒΓ"

USIMPLIFY Unit Simplification

Syntax:

USIMPLIFY(Value_Unitsexpr)

Simplifies Value in a complex unit expression Unitsexpr to an equivalent value in a simpler unit expression.

Example: a Joule is defined as 1 kg*m²/s².

USIMPLIFY(5_kg*1_m²/1_s²) → 5_J

UTPC Upper-Tail Chi-Square Probability

Syntax:

UTPC(Degrees, Value)

Upper-Tail Chi-Squared probability distribution function. Returns the Upper-Tail Chi-Squared probability,
given degrees of freedom, evaluated at the given value. Returns the probability that a Chi-Squared
random variable is greater than the given value.
Example:

UTPC(5,1.1) → 0.954103676028

UTPF Upper-Tail F Probability

Syntax:

UTPF(Numerator, Denominator, Value)

Upper-Tail Snedecor's F Probability distribution function. Returns the Upper-Tail Snedecor's F probability,
given Numerator degrees of freedom and Denominator degrees of freedom, evaluated at the given Value.
Returns the probability that a Snedecor's F random variable is greater than the given value.

Example:

UTPF(3,2,1.1) → 0.508688301183

UTPN Upper-Tail Normal Probability

Syntax:

UTPN(Mean, Variance, Value)

Upper-Tail Normal Probability distribution function. Returns the Upper-Tail Normal probability, given
Mean and Variance, evaluated at Value. Returns the probability that a normal random variable is greater
than the given value. Note: The variance is the square of the standard deviation.

Example:

UTPN(0,1,1.1) → 0.135666060946

UTPT Upper-Tail t Probability

Syntax:

UTPT(Degrees, Value)

Upper-Tail Student's t probability distribution function. Returns the Upper-Tail Students t probability,
given degrees of freedom, evaluated at Value. Returns the probability that the Student's t random
variable is greater than the given value.
Example:

UTPT(5,1) → 0.181608733825

valuation Syntax:

valuation(Poly,[Var])

Returns the valuation (degree of the term of lowest degree) of a polynomial. With only a polynomial as
argument, the valuation returned is for x. With a variable as second argument, the valuation is performed
for it.
Examples:

valuation(x^4+x^3) → 3

valuation([5,0,0,3,0,0])

variance Syntax:

variance(List1, [List2]) or

variance(Matrix)

Returns the variance of a list or the list of variances of the columns of a matrix. The optional second list is
a list of weights.
Examples:

variance([3,4,2]) → 2/3

variance([[1,2,3],[5,6,7]])

Page 189 of 239

13217 Help TextHelp Topics Tree
vector Syntax:

vector(Point1, [Point2])

Given one point, defines a vector from the origin to the given point. With two points, defines the vector
from the first point to the second.
Example:

vector(point(1,1),point(3,0)) creates a vector from (1,1) to (3,0).

VERSION Syntax:

VERSION([n])

Returns a string that contains the version numbers for the various components of the system. This is
equivalent to the About Prime help page
If given integer n, returns that specific part of the version string.

Examples:

VERSION

VERSION(1)

VERSION(5)

vertices Syntax:

vertices(Polygon)

Returns a vector containing the list of the vertices of a polygon.

Examples:

vertices(isoceles_triangle(0,1,π/4))[2]

vertices(isopolygon(0,1,4) → [point(0,0) point(1,0) point(1,1) point(0,1)]

vertices_abca Closed Vertices

Syntax:

vertices_abca(Polygon)

Returns a vector containing the closed list of the vertices of a polygon.

Example:

vertices_abca(isopolygon(0,1,4) → [point(0,0) point(1,0) point(1,1) point(0,1) point(0,0)]

vpotential Syntax:

vpotential(Vector1, Vector2)

Given a vector V and a vector of variables, returns the vector U such that curl(U)=V.

Example:

vpotential([2*x*y+3,x²-4*z,-2*y*z],[x,y,z]) → [0,-2*x*y*z,(-1/3)*x³+4*x*z+3*y]

WAIT Syntax:

WAIT(n)

Pauses program execution.

If n ≥ 1 :

 Execution paused for the specified number (n) seconds.

 Returns the value of n.

If n = 0 or omitted :

 Execution paused until a key is pressed.

 If a key is pressed, the key code is returned.

 After a 1-minute timeout, returns -1

If n = -1 :

 Execution paused until a key is pressed or there is a mouse event.

 If a key is pressed, the key code is returned.

 If a mouse event happens, a list of the form { type, [x, y], [dx, dy] } is returned. Normally x/y is the event
position unless otherwise indicated.
 After a 1-minute timeout, returns -1

Event type can be:

 0: Mouse Down

 1: Mouse Move

 2: Mouse Up (x/y is not provided)

 3: Mouse Click (if a click is detected, there is no Mouse Up)

 5: Mouse Stretch. x/y is the delta since the last event. dx/dy is the delta since the original mouse down.

 6: Mouse Rotate, x is original angle, y is new angle in 32nd of a circle.

7: Mouse Long Click, indicates the mouse stayed down for 1 second.

Example:

WAIT(3)

weibull Discrete Weibull

Syntax:

weibull(k,n,[t],x)

Weibull probability density function

Computes the probability density of the Weibull distribution at x given parameters k, n and t. By default, t
is 0.
Examples:

weibull(2.1,1.2,1.3) → 0.58544681204

weibull(2.1,1.2, 0,1.3) → 0.58544681204

weibull_cdf Cumulative Weibull

Syntax:

Page 190 of 239

13217 Help TextHelp Topics Tree
weibull_cdf(k,n,[t],x,[x2])

Cumulative Weibull distribution function

Returns the lower-tail probability of the Weibull probability density function for the value x, given
parameters k, n and t. By default, t is 0.
Examples:

weibull_cdf(2.1,1.2,1.9) → 0.927548261801

weibull_cdf(2.1,1.2,0,1.9) → 0.927548261801

weibull_cdf(2.1,1.2,1,1.9) → 0.421055367782

weibull_icdf Inverse Cumulative Cauchy

Syntax:

weibull_icdf(k,n,[t],x)

Inverse cumulative Weibull distribution function

Returns the value x such that the Weibull lower-tail probability of x, given parameters k , n and t

Examples:

weibull_icdf(4.2,1.3,.95) → 1.68809330364

weibull_icdf(4.2,1.3,0,.95) → 1.68809330364

when When Conditional

Syntax:

when(Cond,Expr1,Expr2)

If condition is true, returns Expr1; otherwise, returns Expr2.

Example:

when(n,1,0)

WHILE While Loop Structure

Syntax:

WHILE test DO commands END;

Executes commands WHILE test is true.

Example:

A:=5;

WHILE A>0 DO

 PRINT(A);

 A:= A-1;

END;

will print 5 4 3 2 1

Examples:

Demo_WHILE

ISPERFECT

PERFECTNUMS

wilcoxonp Wilcoxon Distribution

Syntax:

wilcoxonp(Integer1,[Integer2])

Distribution of the Wilcoxon or Mann-Whitney test for one or two samples.

Examples:

wilcoxonp(4)

wilcoxonp(7,5)

wilcoxons Wilcoxon statistic

Syntax:

wilcoxons(List1,Median)

wilcoxons(List1,List2)

Rank statistic of Wilcoxon or Mann-Whitney test for 1 sample (List1) and Median, or 2 samples
(List1,List2).
Examples:

wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20])

wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10)

wilcoxont Wilcoxon test

Syntax:

wilcoxons(List1,Median, [Method],[Significance])

wilcoxons(List1,List2)

wilcoxont(List,List || Real,[Func],[Real])

Wilcoxon or Mann-Whitney test for 1 sample (List1) and Median, or 2 samples (List1,List2). Optionally,
specify Method to be '<' or '>', and Significance.
Examples:

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20])

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20],0.01)

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>')

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>',0.05)

XOR Logical XOR

Syntax:

Value1 XOR Value2

For Real numbers, returns 1 if either Value1 or Value2 is non-zero but not both; otherwise, returns 0.

Page 191 of 239

13217 Help TextHelp Topics Tree
For Integers and Strings, XOR is performed bitwise, returning 1 if exactly one bit is 1 and the
corresponding bit is 0, otherwise 0.
Examples:

3 XOR 2 → 0

0 XOR 2 → 1

0 XOR 0 → 0

{3,0,0} XOR {2,1,0} → {0,1,0}

3_inch==7.62_cm XOR 9_(inch²)==58.0644_(cm²) → 0

#CC44h XOR #44CCh → #8888h

"C" XOR "b" → "!"

X:=0; 0 XOR (X:=7); 1 XOR (X:=9); X → 9

7 ≤ 3 XOR 5 < 9 XOR 3 ≠ 2.9 + 0.2 → 0

zip Syntax:

zip(‘Function’, List1, List2, Default) or

zip(‘Function’, Vector1, Vector2, Default)

Applies a bivariate function to the elements of two lists or vectors and returns the results in a vector.
Without the default value the length of the vector is the minimum of the lengths of the two lists; with the
default value, the shorter list is padded with the default value.

Examples:

zip('+',[a,b,c,d], [1,2,3,4]) → [a+1,b+2,c+3,d+4]

zip(sum,[a,b,c,d], [1,2,3,4]) → [a+1,b+2,c+3,d+4]

ztrans Z Transform

Syntax:

ztrans(Expr,[Var],[ZtransVar])

Returns the Z transform of a sequence.

Examples:

ztrans(a^x) → -x/(a-x)

ztrans(a^n,n,z) → -z/(a-z)

Other Function Catalog - Other

Toolbox function catalog - Other

%CHANGE Percent Change

Syntax:

%CHANGE(x, y)

Percent change from x to y. Returns 100*(y-x)/x.

Examples:

%CHANGE(20,50) → 150

%CHANGE(4.5,8.3) → 84.4444444444

%CHANGE({10,20,30},{75,75,75}) → {650,275,150}

%TOTAL Percent Total

Syntax:

%TOTAL(x, y)

Percent total; the percentage of x that is y. Returns 100*y/x.

Examples:

%TOTAL(20,50) → 250

%TOTAL(1.5,7.5) → 500

%TOTAL({10,20,30},{75,75,75}) → {750,375,250}

.* Syntax:

List1 .* List2 or

Matrix1 .* Matrix2

Performs an element-by-element multiplication of 2 lists or 2 matrices.

Examples:

[[1,2],[3,4]] .* [[3,4],[5,6]] → [[3,8],[15,24]]

[[1+2*i,3+2*i],[1+2*i,2+i]] .* [[1,2],[3,4]] → [[1+2*i,6+4*i],[3+6*i,8+4*i]]

{1,2,3} .* {4,5,6} → {4,10,18}

.+ Syntax:

Matrix .+ Value or

Value <Space> .+ Matrix or

List .+ Value or

Value <Space> .+ List

Adds a value (real or complex) to each element of a list or matrix.

Note that when the value precedes the operator, you must put a space between the value and the
operator; otherwise, the point in the operator is read as a (possible extraneous) decimal point in the value.

Examples:

[1,2] .+ 3 → [4,5]

2.5 .+ [[1,2],[3,4]] → [[3.5,4.5],[5.5,6.5]]

[[1,2],[3,4]] .+ (2+5i) → [[3+5*i,4+5*i],[5+5*i,6+5*i]]

2_slug .+ [[1,2],[3,4]]_slug → [[3,4],[5,6]]_slug

{[[6,6],[3,1]],[[1,2],[8,7]]} .+ 3 → {[[9,9],[6,4]],[[4,5],[11,10]]}

Page 192 of 239

13217 Help TextHelp Topics Tree
.- Syntax:

Matrix .- Value or

Value <Space> .- Matrix or

List .- Value or

Value <Space> .- List

Subtracts a value (real or complex) from each element of a list or vector. When the value precedes the
operator, then each element in the list or matrix is subtracted from the value. In this latter case, you must
put a space between the value and the operator; otherwise, the point in the operator is read as a
(possible extraneous) decimal point in the value.

Examples:

3 - 2 → 1

0.5 - 3.7 → -3.2

(2+5i) - (3+2i) → 1+3i

[[1,2],[3,4]] - [[0.5,0.6],[1.5,4.1]] → [[0.5,1.4],[1.5,−0.1]]

[[1,2],[3,4]] - {1,2,3} → {[[0,1],[2,3]],[[−1,0],[1,2]],[[−2,−1],[0,1]]}

{1_l,20_cm,3_kg}-{4_ozfl,5_inch,5_lb} → {0.88170588175_l,7.3_cm,0.73203815_kg}

./ Syntax:

List1 ./ List2 or

Matrix1 ./ Matrix2

Element-by-element division. Returns the term-by-term division of two lists or two matrices.

Examples:

{3,6,10}./{3,2,5} → {1,3,2}

[[1,2],[3,4]]./[[3,4],[5,6]] → [[1/3,1/2],[3/5,2/3]]

[[1+2*i,6+4*i],[3+6*i,8+4*i]] ./ [[1+2*i,3+2*i],[1+2*i,2+i]] → [[1,2],[3,4]]

.^ Syntax:

Object1 .^ Object2

Returns the result of raising Object1 to the Object2 power.

One or both objects are typically lists or matrices. The objects may be numerical values or expressions
that return numerical results. .
Examples:

[[1,2],[3,4]] .^ 3 → [[1,8],[27,64]]

{3,5,7} .^ 4 → {81, 625, 2,401}

[[1+i,2+2*i],[i,3*i]].^3 → [[−2+2*i,−16+16*i],[-i,−27*i]]

[[1+i,2+2*i],[i,3*i]].^i →
[[0.428829006294+0.154871752464*i,0.230914901055+0.3931385059*i],[0.207879576351,9.4550371367
8ᴇ−2+0.18513277813*i]]

QUOTE QUOTE or ' '

Syntax:

QUOTE(expression)

Returns the expression unchanged and un-evaluated.

This function is used mainly with Sto▶ in order to store a function in a function variable.

For example, if you want to store SIN(X) in F1, you cannot do SIN(X)►F1 as SIN(X) would be evaluated and
a numerical result would be stored into F1. Instead, use QUOTE(SIN(X))►F1 to store SIN(X) in F1.

| Where Function

Syntax:

Expr| Var=Value

Expr| {Var1=Val1, Var2=Val2, ...}

Substitutes Value for Var in Expr and evaluates the result. This command can also take a list of
substitutions for multiple variables.
Examples:

SIN(X)|X=π/6 → 0.5

(X+Y)|{X=2,Y=6} → 8

π Mathematical Constant π

The ratio of the circumference to the diameter of any circle. Internally represented as 3.14159265359.

Example:

π → 3.14159265359

Σ Σ - Summation

Syntax:

Σ(expr, var, ivalue, fvalue)

Finds the sum of expr with respect to var as var goes from ivalue to fvalue in steps of 1.

Examples:

Σ(X²,X,1,5) → 55

Σ({'X^2','Y-3'},{'X','Y'},{1,3},{5,10}) → {55,28}

∂ ∂ - Numerical Derivative

Syntax:

∂(Expr, Var=Value)

Page 193 of 239

13217 Help TextHelp Topics Tree
Numerical derivative. Returns the numerical derivative of an expression, with respect to a variable, at a
given value.
Example: ∂(1/X-X,X=5) returns -1.04 in Home view and -26/25 in CAS view

This command can be used in the Symbolic view of the Function app to plot the graph of a function
defined as a derivative.
F1(X)= ∂(1/X-X, X=X) will plot the graph of the derivative of f(X)=1/X-X.

∫ ∫ - Numerical Integral

Syntax:

∫(Expr, Var, Val1, Val2)

Returns the integral of an expression.

With one expression as argument, returns the indefinite integral with respect to x. With the optional
second, third and fourth arguments you can specify the variable of integration and the bounds for a
definite integral.
Example:

∫(2*X,X,0,3) → 9

i Imaginary Value

Syntax:

i

The square root of -1.

Units You can add units to numbers to make them measurements. You can also retrieve the values of many
common physical constants. These features are available by pressing Shift Units. The following menu
buttons appear:
Menu Buttons:

 • Tools: for performing certain operations on measurements

• Units: opens a menu with 18 sub-menus, each offering units from a particular domain (area, volume,
electricity, etc.).
• Const: opens a menu with 4 sub-menus, each offering constants from a particular domain (chemistry,
physics, quantum mechanics, etc.).
• Value: choose whether to retrieve the value of a constant or its name.

• OK: copies the selected command to the entry line

Press the Esc key to close the menu without making a selection.

Unit Tools Four tools are available for you to manipulate measurements:

• CONVERT: convert between units

• MKSA: meter, kilogram, second, ampere system

• UFACTOR: factor units

• USIMPLIFY: simplify units

CONVERT Syntax:

CONVERT(Value Unit1, 1_Unit2)

Converts Value Unit1 to the corresponding value in compatible Unit2.

Example:

CONVERT(20_m,1_ft) → 65.6167979003_

Alternative: 20_m ►_ft

MKSA Convert to Metric System

Syntax:

MKSA(Value_Unit)

Converts the measurement Value_Unit to its corresponding value and unit in Unit's MKSA equivalent.

MKSA stands for the Meter-Kilogram-Second-Ampere system.

Examples:

MKSA(32_yd) → 29.2608_m

MKSA(75_mph) →33.528_m/s

MKSA({33_(cm),4_(yd^3)}) → {0.33_m,3.05821943194_(m^3)}

UFACTOR Unit factor conversion

Syntax:

UFACTOR(Value_Unit1, 1_Unit2)

Converts a measurement using a compound unit into a measurement expressed in constituent units.

Example: A Coulomb—a measure of electric charge—is a compound unit derived from the SI base units of
Ampere and second: 1 C = 1 A * 1 s. Using UFACTOR, you can express a measurement in Coulombs as a
product of Amperes and time.
Examples:

UFACTOR(100_C,1_A) → 100_A*s

UFACTOR(100_C,1_min) → 1.66666666667_min*A

USIMPLIFY Unit Simplification

Syntax:

USIMPLIFY(Value_Unitsexpr)

Simplifies Value in a complex unit expression Unitsexpr to an equivalent value in a simpler unit expression.

Example: a Joule is defined as 1 kg*m²/s².

USIMPLIFY(5_kg*1_m²/1_s²) → 5_J

Units Units Menu

Press Shift Units to open the Units menu and then tap on the Units menu button. The menu has 18 sub-
menus, each offering units from a particular domain (area, volume, electricity, etc.).

Page 194 of 239

13217 Help TextHelp Topics Tree
By adding a unit to a number you turn that number into a measurement.

Certain arithmetic operations can be performed on measurements, even if the measurements have
different units. (However, the units must all be consistent: all length, all volume, etc.) For example, to add
5 cm to 2 inches:
1. Enter 5 on the entry line.

2. Press Shift Units.

3. With the Units menu open, tap Length and select cm.

 5_cm appears on the entry line. Note the underscore character.

4. Enter + 2.

5. Press Shift Units.

6. With the Units menu open, tap Length and select in.

7. Press Enter. The result is 10.08_cm.

Note that the unit of the first entered measurement is used for the result.

PREFIXES

Note that the very first item on the Units menu is Prefix. Prefixes are not units, but multipliers. Choose the
prefix you want before choosing the unit.

Prefix Unit Prefixes

The Units menu includes an entry that is not a unit category, namely, Prefix. Selecting this option displays
a palette of prefixes.
Y: yotta 10²⁴

Z: zetta 10²¹

E: exa 10¹⁸

P: peta 10¹⁵

T: tera 10¹²

G: giga 10⁹

M: mega 10⁶

k: kilo 10³

h: hecto 10²

D: deca 10

d: deci 10⁻¹

c: centi 10⁻²

m: milli 10⁻³

μ: micro 10⁻⁶

n: nano 10⁻⁹

p: pico 10⁻¹²

f: femto 10⁻¹⁵

a: atto 10⁻¹⁸

z: zepto 10⁻²¹

y: yocto 10⁻²⁴

Note: D stands for deca (more commonly abbreviated as da).

Length Length Units

m : meter *

cm : centimeter (1/100 m)

mm : millimeter (1/1000 m)

km : kilometer (1,000 m)

au : astronomical unit (149,597,870,700 m)

lyr : light-year (9.46052840488ᴇ15 m)

pc : parsec (3.261563407982 lyr)

Å : angstrom (10ᴇ-10 m)

fermi : fermi (10ᴇ-15 m)

yd : yard (3 ft)

ft : foot (12 in)

in : inch (2.54 cm)

mile : mile (5,280 ft)

fath : fathom (6 ft)

ftUS : US survey foot (1200/3937 m)

miUS : US survey mile (5,280 ftUS)

rod : rod (16.5 ft)

chain : chain (66 ft)

nmi : nautical mile (1,852 m)

mil : (1/1000 in)

* = SI base unit

Area Area Units

m² : square meter

km² : square kilometer

cm² : square centimeter

yd² : square yard

ft² : square foot

in² : square inch

mile² : square mile

Page 195 of 239

13217 Help TextHelp Topics Tree
ha : hectare (10,000 m²)

a : are (100 m²)

acre : acre (43,560 ft²)

b : barn (10ᴇ-28 m²)

miUS² : square US survey mile

Volume Volume Units

m³: cubic meter

cm³ : cubic centimeter (1ᴇ-6 m³)

l : liter (1,000 cm³)

ml : milliliter (1 cm³)

yd : cubic yard

ft³ : cubic foot

in³ : cubic inch

ozfl : US fluid ounce (1/128 galUS)

ozUK : UK fluid ounce (1/160 galUK)

qt : US liquid quart (1/4 galUS)

liqpt : US liquid pint (1/8 galUS)

ptUK : UK liquid pint (1/8 galUK)

galUS : US liquid gallon (3.785411784 l)

galUK : UK liquid gallon (4.54609 l)

tbsp : US tablespoon (1/2 ozfl)

tsp : US teaspoon (1/6 ozfl)

bu : UK bushel (≈ 2,219.36 in³)

pk : US peck (1/4 buUS)

bbl : Oil barrel (42 galUS)

st : stère (1 m³)

buUS : US bushel (≈ 2150.42 in³)

cu : US cup (1/16 galUS)

fbm : board foot (1/12 ft³)

Time Units of Time

s : second *

min : minute (60 s)

h : hour (60 min)

d : day (24 hrs.)

yr : year (≈ 365.2422 d)

Hz : hertz (Cycles per Second)

* = SI base unit

Speed Units of Speed

m/s : meters per second

cm/s : centimeters per second

ft/s : feet per second

kph : kilometers per hour

km/h : kilometers per hour

mph : miles per hour (1.609344 km/h)

mile/h : miles per hour

knot : knot (1 nmi/h or 1.852 km/h)

rad/s : radians per second

tr/min : turns per minute

tr/s : turns per second

Mass Units of Mass

kg : kilogram *

g : gram (1/1000 kg)

slug : slug (≈ 32.174 lb)

lb : pound (0.45359237 kg)

oz : ounce (1/16 lb)

tonUK : long ton or imperial ton (2,240 lb)

tonUS : ton or short ton (2,000 lb)

ozt : troy ounce (31.1034768 g)

grain : grain (1/7,000 lb)

lbt: troy pound (≈ 373.24 g)

u : unified atomic mass unit (1.660538921ᴇ-27 kg)

t : tonne or metric ton (1,000 kg)

ct : carat (0.2 g)

mol : mole (6.0221412927ᴇ23) *

* = SI base unit

Acceleration Units of Acceleration

m/s² : meters per second per second

ft/s² : feet per second per second

grav : acceleration of gravity (≈ 32.174 ft/s² or ≈ 9.81 m/s²)

Page 196 of 239

13217 Help TextHelp Topics Tree
Gal : galileo (1 cm/s²)

rad/sec² : radians per second per second

Force Units of Force

kg*m/s² : kilogram meter per second per second

N : newton (1 kg m/s²)

dyn : dyne (1 g cm/s²)

lbf : pound-force (4.4482216 N)

kip : kip (1,000 lbf)

gf : gram-force (9.80665 mN)

pdl : poundal (1 lb ft/s²)

Energy Units of Energy

kg*m²/s² : (1 Joule)

J : joule (1 kg m²/s²)

Wh : watt Hour (3,600 J)

kWh : kilowatt hour (3.6ᴇ6 J)

ft*lbf : foot-pound force (≈ 1.355818 J)

kcal : kilocalorie (4186.8 J)

cal : calorie (4.1868 J)

eV : electron volt (1.602177733ᴇ-19 J)

MeV : mega-electron volt (1,000,000 eV)

Btu : British thermal unit (1,055.05585262 J)

erg : erg (1ᴇ-7 J)

thermEC : therm(EC) (1.05506ᴇ+8 J)

thermUS : therm(US) (1.054804ᴇ+8 J)

thermUK : therm(UK) (≈ 105,505,585.257 J)

toe : tonne of oil equivalent (41,868,000,000 J)

tec : tonne of coal equivalent (2.784ᴇ10 J)

lep : liter of oil equivalent (35,788,320 J)

boe : barrel of oil equivalent (6.1178632ᴇ9 J)

Power Units of Power

kg*m²/s³ : (1 Watt)

W : watt (1 kg m²/s³)

MW : megawatt (1,000,000 W)

hp : horsepower (745.699871582 W)

ft*lbf/s : foot-pound-force per second (1.35581794833 W)

Pressure Units of Pressure

kg/m*s² : (1 Pascal)

Pa : pascal (1 kg/m·s²)

bar : bar (100,000 Pa)

atm : atmosphere (101,325 Pa)

psi : pound-force per square inch (6,894.75729317 Pa)

torr : torr (133.322368421 Pa)

mmHg : millimeter of mercury (133.322368421 Pa)

inHg : inch of mercury (3,386.38815789 Pa)

inH20 : inch of water (248.84 Pa @ 60 °F)

Temperature Temperature Scales

°C : Celsius scale

 (Freezing point of water 0 °C)

°F : Fahrenheit scale

 (Freezing point of water 32 °F)

K : Kelvin scale *

 (Freezing point of water 273.15 K)

°R : Rankine scale

 (Freezing point of water 459.67 °R)

* = SI base unit

Electrical Electrical Units

A : ampere (electric current) *

V : volt (electric potential)

C : coulomb (electric charge)

Ohm : ohm Ω (resistance)

F : farad (capacitance)

Fdy : faraday (96,485.3365 C)

Wb : weber (magnetic flux)

H : henry (inductance)

mho : mho ℧ (conductance)

S : siemens (conductance)

T : tesla (magnetic flux density)

A*h : ampere-hour (3,600 C)

* = SI base unit

Page 197 of 239

13217 Help TextHelp Topics Tree
Light Photometric Units

cd : candela (㏐/㏛) *

flam : footlambart (㏅/㎡)

* = SI base unit

Angle Angle Units

rad : radian (180/π degrees)

deg : degree (π/180 radian)

grad : gradient (1/400 turn)

gon : gon (1/400 turn)

arcmin : arc minute (1/60 degree)

arcs : arc second (1/3600 degree)

tr : turn (360 degrees)

Viscosity Viscosity Units

m²/s : SI unit of kinematic viscosity

P : poise dynamic viscosity (0.1 kg/m·s)

St : stokes kinematic viscosity (1 cm²/s)

Radiation Radiation Units

Activity

 Bq : becquerel

 Ci : curie (3.7ᴇ10 Bq)

Absorbed Dose

 Gy : gray (1 J/kg)

 rd : rad (0.1 J/kg)

Equivalent Dose

 rem : roentgen equivalent man (0.01 J/kg)

 Sv : sievert (1 J/kg)

Exposure

R : roentgen (2.58ᴇ-4 C/kg)

Constants Physical Constants

There are 29 physical constants from the fields of math, chemistry, physics and quantum mechanics that
you can use in calculations. Press Shift Units and tap Const to display a menu of these constants.

Tap Value• to retrieve the value of a constant with its units.

Tap OK or press Enter to copy the constant into the entry line.

Math Math Constants

Euler's number

e = 2.71828182846

Maximum real number HP Prime is capable of representing

MAXREAL=1.79769313486ᴇ308 (CAS View)

MAXREAL=9.99999999999ᴇ499 (Home View)

Minimum real number (closest to zero) HP Prime is capable of representing

MINREAL=2.22507385851ᴇ-308 (CAS View)

MINREAL=1ᴇ-499 (Home View)

pi

π = 3.14159265359

Imaginary value

i = √-1

Chemistry Chemistry Constants

NA : Avogadro (6.02214129ᴇ23 1/mol)

k : Boltzmann (1.3806488ᴇ-3 J/K)

Vm : molar volume of ideal gas (22.413968 l/mol)

R : molar gas (8.3144621 J/(mol K))

StdT : standard temperature (273.15 K)

StdP : standard pressure (101.325 kPa)

Physics Physics Constants

σ : Stefan–Boltzmann (5.670373ᴇ-8 W/(m² K⁴)

c : speed of light (299,792,458 m/s)

ε0 : vacuum permittivity (8.8541878176ᴇ-12 F/m)

µ0 : vacuum permeability (1.25663706144ᴇ-6 H/m)

g : acceleration of gravity (9.80665 m/s²)

G : gravitation (6.67384ᴇ-11 m3/(s² kg))

Quantum Quantum Constants

h : Planck (6.62606957ᴇ-34 J s)

ħ : Dirac (1.054571729ᴇ-34 J s)

q : electronic charge (1.602176565ᴇ-19 C)

me : electron mass (9.10938291ᴇ-31 kg)

qme : q/me ratio (175,882,008,800 C/kg)

mp : proton mass (1.672621777ᴇ-27 kg)

mpme : mp/me ratio (1,836.15267245)

Page 198 of 239

13217 Help TextHelp Topics Tree
α : fine-structure (7.2973525698ᴇ-3)

φ : magnetic flux quantum (2.067833758ᴇ-15 Wb)

F : Faraday (96,485.3365 C/mol)

R∞ : Rydberg (10,973,731.5685 1/m)

α₀ : Bohr radius (5.2917721092ᴇ-11 m)

μB : Bohr magneton (9.27400968ᴇ-24)

μN : nuclear magneton (5.05078353ᴇ-27 J/T)

λ₀ : photon wavelength (1.2398419292ᴇ-6 m)

f₀ : photon frequency (2.41798934961ᴇ14 Hz)

λc : Compton wavelength (2.4263102389ᴇ-12 m)

Variables Variables are named references to objects (such as function definitions, numbers, matrices, the results of
calculations, and the like). Some are built-in and cannot be deleted. But you can also create your own.

Using a variable name in a formula returns the variable content (or value).

Using a variable name as a destination in a STO (or :=) operation modifies its content (or value).

Press the Vars key to access the variables menus. These menus are:

• Home

• CAS

• App

• User

• Catalog

The CAS menu appears only if you have created your own variables in CAS view, or created objects in the
Geometry app.
The User menu appears only if you have created your own variables in Home view, or created global
variables in a program.
The Catalog menu opens an integrated menu of all variables currently defined on your HP Prime.

Tap the OK menu key to copy the selected variable name to the entry line or press the Esc key to back out
of the Vars menu. In a menu of options, you can also select an entry by its number or by typing in the first
letter or two of its name and pressing the Enter key.

Home Variables The Home variables menu lists those variables that are commonly accessed in the Home view or that
affect the working of Home view.

Real Variables This menu contains the names of the real variables: A through Z and θ.

Complex Variables This menu contains the names of the ten complex variables: Z0 through Z9.

List Variables This menu contains the names of the ten list variables: L0 through L9.

Matrix Variables This menu contains the names of the ten matrices: M0 through M9.

Graphics Variables This menu contains the names of the ten graphic variables: G0 through G9.

Home Settings Variables Variables for Home Settings

This menu lists the names of the variables used to control the Home settings. They are:

• HAngle

• HFormat

• HDigits

• HComplex

• Entry

• Integer: Base

• Integer: Bits

• Integer: Signed

HAngle The Home variable HAngle is used to set the Home view angle mode.

HAngle := 0 for Radians (default)

HAngle := 1 for Degrees

HAngle := 2 for Gradians

HFormat The Home variable HFormat controls how numbers are displayed in Home view. This variable may contain
any integer from 0 through 5, each value having the following meaning:

HFormat :=0 for Standard

HFormat :=1 for Fixed

HFormat :=2 for Scientific

HFormat :=3 for Engineering

HFormat :=4 for Floating

HFormat :=5 for Rounded

HDigits The Home variable HDigits controls the number of digits displayed after the decimal point when the
number format is not Standard.
HDigits := n, where n is an integer such that 0 ≤ n ≤ 11.

HSeparator The Home variable HSeparator is used to control the separators used in number display.

HSeparator may contain any integer from 0 through 10 corresponding to the selected Digit Grouping on
Home Settings Page 1.

HComplex The Home variable HComplex is used to control the Complex settings.

This variable contains a two-digit integer. The units digit of HComplex controls the complex result from
real input (1: enabled, 0: disabled)
The tens digit controls the display of complex numbers (0: a+bi, 1: (a,b))

Page 199 of 239

13217 Help TextHelp Topics Tree
Thus HComplex := 10; sets the display of complex numbers as (a,b) and blocks complex results from real
inputs.
With the units digit of HComplex set to 0, ASIN(2) returns an error; set to 1, ASIN(2) returns
1.57079632679−1.31695789692*i.

Entry Entry Variable

Returns or sets the entry mode.

Entry := 0 for Textbook (default)

Entry := 1 for Algebraic

Entry := 2 for RPN

Base Base Variable

Returns or sets the integer base format.

Base := 0 for binary

Base := 1 for octal

Base := 2 for decimal

Base := 3 for hexadecimal (default)

Signed Signed Variable

Returns or sets the integer signed format.

Signed := 0 for unsigned (default)

Signed := 1 for signed

Bits Bits Variable

Returns or sets the integer bit size.

Bits := x, where 1≤x≤64

System Variables This menu lists the names of the variables used to control the system settings or objects. They are:

• Date

• Time

• Language

• Notes

• Programs

• TOff

Date Date Variables

Returns the system date in YYYY.MMDD format.

Date:= YYYY.MMDD changes the date.

Time System Time Variable

Returns the system time in DMS format. DMS format is HH°MM'SS" where HH = hours, MM = minutes,
and SS = seconds.
Time:= HH°MM'SS" sets the time.

Language Language Variable

The Home variable Language controls which language is used in Home view.

Language:= 1 for English (Default)

Language:= 2 for Chinese

Language:= 3 for French

Language:= 4 for German

Language:= 5 for Spanish

Language:= 6 for Dutch

Language:= 7 for Portuguese

Language:= 8 for Japanese

Notes Notes Variable

The Notes variable gives access to the notes saved in the calculator.

With no argument, Notes returns a list of the names of all the notes in the calculator.

Notes(n) returns the contents of the nth note in the calculator (1 to number of notes).

Notes("name") returns the contents of the note called name.

This command can also be used to define, redefine, or clear a note.

Notes(n):="string" sets the value of note n. If the string is empty, the note is erased.

Similarly, Notes("name"):="string" sets the value of note "name". If string is empty, the note is erased. If
there is no note called "name", creates it with string as content.

Programs Programs Variable

The Programs variable gives access to the programs saved in the calculator.

Programs returns the list of the names of all the programs in the calculator.

Programs(n) returns the content of the nth program in the calculator (1 to number of programs)

Programs(n):="string" sets the program source code for program n. If String is empty, erases the program.

Programs("name") returns the source of program "name".

Programs("name"):="string" sets program "name" source code to string. If string is empty, erases the
program. If there is no program called "name", creates it.

TOff Time Off Variable

TOff contains an integer that defines the number of milliseconds until the next calculator auto shutoff.
The default is 5 minutes, or #493E0h. (5*60*1000 milliseconds)

Valid ranges are from #1388h to #3FFFFFFFh.

Page 200 of 239

13217 Help TextHelp Topics Tree
Theme Theme Variable

Theme variable contains a list representing the current theme and the color shade as defined on Home
Settings Page 2. May take a single number as input to return the indexed item from the list.

Examples:

Theme()

Theme(1)

HVars Home Variables

Gives access to user defined home variables.

HVars returns a list of the names of all the defined home user variables.

HVars(n) returns the nth user-defined home variable.

HVars("name") returns the user defined home variable with the given name.

HVars(n or "name", 2) if the variable is a user function, returns the list of the parameters for that function;
else returns 0.
HVars(n):=value stores value in the nth home user variable.

HVars("name"):=object stores object in the home user variable called "name". If no such variable exists,
creates it.
HVars(n or "name", 2):= {"Param1Name", …, "ParamNName"} assumes that the specified user variable
contains a function. Specifies what the parameters of that function are.

HVars("name", {"param",...}):='function' creates a user function called name with params as the inputs
and function defined in terms of those inputs.
Examples

HVars("Current",{"V","R"}):=QUOTE(V/R) creates a user function called Current to use Ohm's Law to
calculate the value of I (current) given the input variables V (voltage) and R (resistance).

DelHVars Delete Home Variables

DelHVars(n) or DelHVars("name") deletes the specified home user variable.

CAS Variables The CAS menu appears only if you have created your own variables in CAS view or created objects in the
Geometry app. Objects created in the Geometry app are given a "G" prefix (such as GA, GB, etc.).

App Variables App Variables Menu

App variables are variables for settings and results within a specific app. The variables are arranged by app.

For apps that yield results, each RESULTS variable can be used in an expression. For example, the Function
app enables you to calculate various critical points, such as intersections, roots, extrema, and the like. If,
for example, you have used the Function app to calculate the roots of a function, you could select the
Root variable and press Enter. The value of the variable is retrieved. You could also include Root in an
expression, such as X²–2*X+Root.

Note that variable names are case-sensitive.

User Variables The User menu appears only if you have created your own variables in Home view, or created global
variables in a program using the EXPORT command.

Vars Catalog The Variables Catalog

The Vars Catalog contains a comprehensive listing of all variables currently defined on your HP Prime.

On the right side of the Vars Catalog header is a small information icon (i). Tap the icon to see the number
of each type of variable currently defined on your HP Prime.

Memory Manager The Shift of the Toolbox key (Mem) takes you to the Memory Manager, which is a catalog of catalogs. All
the catalogs are listed here. Tap the View menu button or press Enter to enter a selected catalog and
delete objects you no longer need.
Menu Buttons:

• Info: displays memory and storage space

• Clone: clones the current HP Prime to an attached HP Prime

• Send: sends all the data of a certain category (Lists, Matrices, etc.) to an attached HP Prime

• View: opens the selected catalog

Backups This screen lets you save, restore, or create new complete backups of your calculator.

Menu Buttons

• Restore: replace the current content of your calculator with the files from the selected backup archive

• Delete: delete the currently selected backup archive

• New: open a dialog to create a new backup. By default, the word "Backup" and the current date are
provided.

Backup Backup Calculator Memory

Syntax:

Backup("name")

Backs up all the calculator memory under "name".

Example:

Backup("name")

Restore Restore Calculator Memory

Syntax:

Restore(“name”)

Restore() Returns the list of all the available backups.

Restore("name") Restores the calculator memory to the state saved under "name". The current calculator
memory will be erased.

DelBackup Delete Calculator Backup

Page 201 of 239

13217 Help TextHelp Topics Tree
Syntax:

DelBackup("name")

Deletes the backup "name".

Example:

DelBackup("name")

Characters Menu The Shift of the Vars key (Char) takes you to the Characters menu, which contains the extended character
set of the HP Prime. Use the rocker wheel to select a character from the current set. Double-tap the
character or tap Echo to add it to your current string in the input area. Add as many characters as you like.
Tap OK to enter them at the current cursor location or press Esc to drop all characters and return to the
edit line.

Menu Buttons:

• Echo: add the highlighted character to a string of one or more characters to be inserted into the current
edit line
• More: choose from a selection of character sets, each with multiple pages of characters

• ▲ Page ▼: move up and down through the various pages of the current character set

• OK: exit the Chars menu and paste the current string of characters into the edit line

Shortcut Palettes Many operations and characters can be entered simply by selecting them from palettes. There is a:

• Math Template palette – the Math Template key displays a palette of pre-formatted templates
representing common mathematical operations and expressions, such as nth root, differentiation, and
integration (as well as vectors, matrices, and sexagesimal numbers).

• Relations palette – (Shift 6) displays Boolean and relational operators useful in mathematics and
programming (such as greater than, not equal to, and OR).
• Special characters palette – (Shift 9) displays a palette of characters common in mathematics and
statistics (such as infinity, mean, and standard deviation), as well as Greek characters

Math Template The Math Template key displays a palette of pre-formatted templates representing common
mathematical operations and expressions, such as nth root, differentiation, and integration (as well as
vectors, matrices, and sexagesimal numbers).

Either tap on the template you want, or user the rocker wheel to highlight the template and press Enter.
The template is copied to the entry line ready for you to add in the values.

Press Esc to close the palette without making a selection.

Math Template The Math Template key displays a palette of pre-formatted templates representing common
mathematical operations and expressions, such as nth root, differentiation, and integration (as well as
vectors, matrices, and sexagesimal numbers).

Either tap on the template you want, or user the rocker wheel to highlight the template and press Enter.
The template is copied to the entry line ready for you to add in the values.

Press Esc to close the palette without making a selection.

Special Characters Palette Press Shift 9 (!,∞,→) to display the Special Characters pale e. This pale e displays many common
mathematical symbols (such as infinity, mean, and standard deviation), as well as Greek characters.

Press Esc to close the palette without making a selection.

Note that a full list of characters can be displayed by pressing Shift Vars (Chars).

Relations Palette Press Shift 6 (≤,≥,≠) to display the relations palette. This palette displays Boolean and relational operators
useful in mathematics and programming (such as ≤, ==, >, AND, and OR).

Press Esc to close the palette without making a selection.

Keyboard Here you can get help on any key on the keyboard and any Shift-key combination.

a_b⁄c Decimal Conversions: a_b⁄c

Decimal to fraction conversion

In Home view, toggles the last entry between decimal, fraction, and mixed number forms. If a result from
the History is selected, then it toggles the selection through these forms. Also works with lists and
matrices.
In CAS view, it only toggles between decimal and fractional equivalents, and adds them as new entries to
the History.

Directional Pad The directional pad moves the cursor around the display.

Press the Shift key first to move to the beginning, end, top, or bottom of a list or the display.

Press the ALPHA key first to jump 1 screen at a time.

In the Plot view, with TRACE on, the rocker wheel left/right move the tracer left and right along the
current graph. Use the rocker wheel up/down to switch to the previous or next active graph.

X,T,θ,N X,T,θ,N Key

The X,T,θ,N key is a typing aid that enters the appropriate independent variable for the current app.

In the Parametric app, it enters T.

In the Polar app, it enters θ.

In the Sequence app, it enters N.

In the Solve app, it enters the first variable found in the checked equation.

In all other apps, it enters X.

Backspace Backspace Key

Page 202 of 239

13217 Help TextHelp Topics Tree
The Backspace key deletes the character to the left of the cursor.

In a setup screen, such as Plot Setup, press this key to reset any field to its default value.

In the history, press this key to delete the highlighted entry or result.

TAN Tangent

Syntax:

TAN(Value)

Returns the tangent of Value.

Value is interpreted as radians, degrees or gradians, depending on the setting of Angle Measure in Home
Settings, CAS Settings, or Symbolic Setup.
Example:

TAN(45) → 1 (Degrees mode)

TAN(1+i) → 0.27175258532+1.08392332734*i

TAN({45,0}) → {1,0} (Degrees mode)

TAN((π/4)_rad) → 1

x² Square Function

Syntax:

Value²

Returns the square of Value.

Examples:

3^2 →9

2.4^2 → 5.76

(2+3i)^2 →-5+12i

[[2,2],[3,3]]^2 → [[10,10],[15,15]]

(5_m)^2 → 25_(m²)

{2,4,6,8}^2 → {4,16,36,64}

x^y Power Function

Syntax:

x^y

Returns the result of raising x to the power of y. Also accepts complex numbers.

Examples:

2^3 → 8

4.5^3.2 → 123.10623351

(2+3i)^3 → −46+9*i

(1-2*i)^i → 2.09777264942+2.18044142399*i

[[1,2],[3,4]]^3 → [[37,54],[81,118]]

(10_km)^3 → 1000_(km^3)

{1,2,3}^4 → {1,16,81}

÷ Divide

Syntax:

Object1 ÷ Object2

Returns the result of dividing Object1 by Object2.

The objects may be numerical values or expressions that return numerical results. The objects may also
be lists or matrices of appropriate dimensions.
Examples:

3 / 2 → 1.5

4.6 / 2.5 → 1.84

(3+2*i) / (1-2*i) → −0.2+1.6*i

[[1,2,3],[4,5,6],[7,8,9]] / 4 → [[0.25,0.5],[0.75,1]]

[[1,2],[3,4]] / [[5,6],[7,8]] → [[5,4],[−4,−3]]

[[1,2],[3,4]] / {1,2,4} → {[[1,2],[3,4]],[[0.5,1],[1.5,2]],[[0.25,0.5],[0.75,1]]}

12_((kg*m)/s²)/4_(m/s²) → 3_kg

{12,9,8} / {6,3,2} → {2,3,4}

, Comma

Enters a separator character. The character entered depends on the selected Digit Grouping on Home
Settings Page 1.

Numerals Enters the numerals 0 through 9.

× Multiply

Syntax:

Object1×Object2

Returns the result of multiplying Object1 and Object2.

The objects may be numerical values or expressions that return numerical results. The objects may also
be lists or matrices of appropriate dimensions.
Examples:

3 * 2 → 6

4.1 * 2.4 → 9.84

(3+2*i) * (1-2*i) → 7-4i

[[1,2,3],[4,5,6],[7,8,9]] * 3 → [[3,6,9],[12,15,18],[21,24,27]]

(3+2*i) .* [[1,2],[3,4]] → [[3+2*i,6+4*i],[9+6*i,12+8*i]]

[[1,2],[3,4]] * [[5,6],[7,8]] → [[19,22],[43,50]]

[[1,2],[3,4]] * {1,2,3} → {[[1,2],[3,4]],[[2,4],[6,8]],[[3,6],[9,12]]}

Page 203 of 239

13217 Help TextHelp Topics Tree
3_kg*4_(m/s^2) → 12_((kg*m)/s²)

{1,2,3} * {4,5,6} → {4,10,18}

- Subtract

Syntax:

Object1 - Object2

Returns the result of subtracting Object2 from Object1. The objects may be numerical values or
expressions that return numerical results. The objects may also be lists or matrices of appropriate
dimensions.
Examples:

3 - 2 → 1

0.5 - 3.7 → -3.2

(2+5i) - (3+2i) → 1+3i

[[1,2],[3,4]] - [[0.5,0.6],[1.5,4.1]] → [[0.5,1.4],[1.5,−0.1]]

[[1,2],[3,4]] - {1,2,3} → {[[0,1],[2,3]],[[−1,0],[1,2]],[[−2,−1],[0,1]]}

{1_l,20_cm,3_kg}-{4_ozfl,5_inch,5_lb} → {0.88170588175_l,7.3_cm,0.73203815_kg}

+ Add

Syntax:

Object1 + Object2

Returns the result of adding Object2 to Object1. The objects may be numerical values or expressions that
return numerical results. The objects may also be lists or matrices of appropriate dimensions.

Examples:

3 + 2 → 5

0.5 + 3.7 → 4.2

(2+5i) + (3+2i) → 5+7i

[[1,2],[3,4]] + [[0.5,0.6],[1.5,4.1]] → [[1.5,2.6],[4.5,8.1]]

[[1,2],[3,4]] + {1,2,3} → {[[2,3],[4,5]],[[3,4],[5,6]],[[4,5],[6,7]]}

32_tonUS+3_t → 35.3069339328_tonUS

{1,2,{1,0,1}}+{5,4,3} → {6,6,{4,3,4}}

. Decimal Point

Pressing the decimal point (.) key enters the decimal mark character. The character entered depends on
the selected Digit Grouping on Home Settings Page 1.
If the selected Digit Grouping uses the comma as the decimal mark, press ALPHA before pressing this key
to enter a period.

Enter Enter Key

Executes the expression in the entry line. Also works like the OK menu button to accept the current state
of an input field.

Define Create a user-defined function

The Define dialog box allows you to define a user function without having to create a program. Simply
enter the name of the function in the Name field and the function in the Function field.

When you tap OK, you will be presented with a list of the variables used in the function. Check each
variable that is an INPUT to your function, press OK and you are done. You can now use your function in
the system.
Example: To create the function SINCOS(A,B) = SIN(A)+COS(B)+C

Enter SINCOS as the name, SIN(A)+COS(B)+C as the function, tap OK, check A and B and uncheck C. Now
tap OK.
Now, on the entry line, you can type SINCOS(1,2) to calculate SIN(1)+COS(2)+C.

If you enter the name of an existing function in the Name field, the Function field will be filled
automatically with the function associated with that name. This will allow you to easily modify the
definition.
In the Define dialog box, tap Choose to see a list of all the user-defined functions. To delete a function,
use the rocker wheel to highlight it in the list and then press the backspace key. To edit a function, just
select it from the list.

° ' " Degrees Minutes Seconds

Decimal to sexagesimal conversion

This Shift-key combination toggles a numerical result between decimal and sexagesimal representations.

Any decimal result can de displayed in sexagesimal; that is, in units subdivided into groups of 60. This
includes degrees, minutes, and seconds as well as hours, minutes, and seconds. Enter your expression in
the Home view and then press the Shift key, followed by this key, to convert the result to sexagesimal;
repeat to return to a decimal representation.

During entry of any expression, this Shift-key combination inserts the degree, minute, and seconds
symbols (°, ', ").

EEX EEX Key

The EEX key is used to enter numbers in 'exponential' notation, also known as scientific notation, scientific
form, standard form or standard index form.
For HP Prime, a number in exponential notation is represented by 2 parts separated by the ᴇ character
(corresponding to the EEX key).
The first part, usually referred to as the mantissa, is a real number.

The second part, usually referred to as the exponent, is an integer.

The number represented by this notation is mantissa*10^exponent.

Thus typing 3 EEX 5 generates 3ᴇ5 on the command line, which returns the number 300000.

Example:

3ᴇ5 → 300000

Page 204 of 239

13217 Help TextHelp Topics Tree
Clear Clear Key

The Shift-Esc (Clear) key combination clears the edit line, if active. In a field in a view, such as Plot Setup,
press this key to reset all fields in the view to their default values. In the display history, press this key to
delete all entries and results in the history.

e^x Exponential Function

Syntax:

e^Value

e^(Expr)

The Shift LN (e^x) key combination is the exponential function; it returns e raised to the power of Value.

Example:

e^1 → 2.71828182846

√ Square Root

Syntax:

√Value or √(Expr)

The Shift x² (√) key combination is the square root function and returns the positive square root of Value
or the positive square root of the numerical result of Expr.
Examples:

√9 → 3

√3 → 1.73205080757

√(2+3i) → 1.67414922804+0.89597747613*i

√[[10,10],[15,15]] → [[2,2],[3,3]]

√(9_(km²)) → 3_km

√{9,4,36,81} → {3,2,6,9}

Copy Press Shift View (Copy) to copy the highlighted value, expression, text, or object to the clipboard.

Paste Press Shift Menu (Paste) to open the Paste clipboard.

Once the clipboard is open, you can scroll to highlight an object. Tap the OK menu key or press Enter to
paste the highlighted object into the edit line at the cursor position or into a selected field in an input
form.
Press the Esc key to close the clipboard without pasting anything.

Menu Buttons:

• Show: displays the selected item full-screen using textbook format

• Clear: clears all items in the clipboard

• Delete: deletes the selected item from the clipboard

• OK: pastes the selected item into the edit line at the cursor position or into a selected field in an input
form

x-1 Inverse

Syntax:

Object⁻¹

Returns the inverse of Object. The object may be a number, an expression that results in a numerical
value, a list or a square matrix.
Examples:

2^-1 → 0.5

4.5⁻¹ → 0.222222222222

(2+4*i)⁻¹ → 0.1-0.2*i

[[1,2,3],[2,0,1],[3,1,2]]⁻¹ → [[−1/3,−1/3,2/3],[−1/3,−7/3,5/3],[2/3,5/3,-4/3]]

(42.3_(m/s²))⁻¹ → 2.36406619385ᴇ−2_(s²/m)

{1/3,4/5,1/6}⁻¹ → {3,5/4,6}

∡ Angle

 Syntax:

Value1 ∡ Value2

 ∡: Angle of a complex number in polar mode.

 Enters the angle symbol. Used to enter complex numbers in polar form. With a complex number in Ans
and in the display as the last result, press this key to toggle between polar and rectangular forms of the
complex number.

Base Base Key

The Base key enters the character # in the edit field, unless the currently selected item (or most recent
result) is an integer, in which case the Edit Integer screen is displayed.

In the Edit Integer dialog box, the Was field at the top shows the original integer you selected in Home
view. The Out field shows the edited integer. Both integers are initially displayed in the default base as
specified in Home Settings Page 1.

Page 205 of 239

13217 Help TextHelp Topics Tree
The 16 field is the hexadecimal representation of Out.

The 10 field is the decimal representation of Out.

The box below the decimal value shows the 64 bit binary (bit) representation of Out.

Changing the value by any of the following methods updates the value of Out and all representations:

• Shift the integer left or right. Bits shifted off either end are lost.

 - Drag the screen left or right to shift by 1 bit in the corresponding direction

 - Rocker wheel left/right to shift 1 bit

 - Alpha rocker wheel right/left to shift by 4 bits (1 nibble)

 - Shift rocker wheel right/left shifts by 8 bits (one byte)

• Change word size (number of bits) of the integer

 - Drag the screen down/up to increase/decrease by 1

 - Press rocker wheel up/down to increase/decrease by 1

 - Alpha rocker wheel up/down to increase/decrease by 4 (1 nibble)

 - Shift rocker wheel up/down to increase/decrease by 8 (one byte)

• Change sign of the integer: Press +/- key

• Cycle through base settings (system, hex, decimal, octal and binary): + and – keys

Menu Buttons:

• Reset: returns all changes to their original state

• Base: cycles through the bases; same as pressing +

• Signed: toggles the word size between signed and unsigned

• NOT: returns the ones' complement (that is, each bit in the specified word size is inverted: 0s are
replaced by 1s and vice versa)
• Edit: toggles edit mode. Edit mode is active if a bullet character appears on the Edit button. When Edit
mode is active, a digit selector highlightes a single digit and you can move abut the dialog using the rocker
wheel. The hex and decimal fields can be modified, as can the bit representation, one digit at a time. A
change in any field automatically modifies the other fields.

• OK: closes the dialog and saves your changes. If you don’t want to save your changes, press Esc instead.

Validate the change in the number using OK or cancel using the Esc key.

= Equal Key

Syntax:

Expr1=Expr2

Enters the equal sign. Used to enter equations in the Solve or Advanced Graphing apps as well as in the
CAS.
Other uses of the equal sign:

• The Boolean (logical) operator for equivalence is ==

• The operator for greater-than-or-equal-to can be entered as >=

• The operator for less-than-or-equal-to can be entered as <=

• The assignment operator is :=

CAS CAS Key

Opens the Computer Algebra System (CAS).

Vars Vars Key

The Vars key opens menus for you to choose variables. Home, CAS, App, and User variables can be
selected from these menus.

Apps Apps Key

Pressing Apps opens the Application Library from where you can select an app to reset, open, or send.

Symb Symbolic View

Symb Key

Opens the Symbolic View for the active app. What you do in this view depends on the app. For instance,
you can define functions and open sentences, create geometric objects, set up a hypothesis test, and
define statistical analyses.
Note that the Symbolic view is not used in the Spreadsheet app, Finance app, the Solver apps, and the
Explorer apps.

Plot Plot View

Plot Key

Opens the Plot View for the active app. What you do in this view depends on the app. For instance, you
can plot functions and open sentences, create geometric objects, and explore linear, quadratic, sinusoidal,
and amortization graphs.
Note that the Plot view is not used in the Spreadsheet, Linear Solver, or Triangle Solver apps.

Num Numeric View

Num Key

Opens the Numeric View for the active app. What you do in this view depends on the app. For instance,
you can explore tables of values generated by functions, make geometric measurements, do spreadsheet
calculations, and enter data for statistical analyses.

Note that the Numeric view is not used in the Explorer apps.

Menu Menu Key

Menu Key

The context-sensitive menu provides options for you to:

• copy an item from Home view to CAS view

• copy an item from CAS view to Home view

Page 206 of 239

13217 Help TextHelp Topics Tree
• view messages you have received via the Connectivity Kit

The Menu key also may give you access to functions specific to your current app. For example, in the
Spreadsheet app, the menu includes such functions as SUM, AVERAGE, AMORT, etc.

Esc Escape Key

Esc: Escape

• Clears the entry line or closes a menu.

• Closes a menu or pop-up window

• Closes most views and input forms

• Cancels changes in an input field being edited

() Parentheses

Press () to insert a pair of parentheses.

ALPHA ALPHA Key

Press the ALPHA key to access the text character printed in orange on the bottom right of a key. For
example, to type Z in Home view, press Alpha 2.
When you press ALPHA, the annunciator A...Z is displayed in the title bar. This indicates the next key
pressed will insert uppercase text. However, in CAS view, the annunciator a...z will be displayed, indicating
the next key will insert lowercase text.
Press Shift to change the case: the annunciator will change to indicate the case of the next character.

Press ALPHA ALPHA to put the keyboard into lock mode where you can type more than one letter
consecutively. The title bar annunciator changes to AZ indicating uppercase lock (or az in CAS).

Press Shift before the key to change case; the annunciator changes to a..z indicating next character
lowercase (A..Z in CAS).
Press Shift ALPHA to change the case of the lock; the annunciator will change from AZ to az or from az to
AZ.
Press ALPHA to leave alpha-lock. The text annunciator is cleared.

Shift Shift Key

Press Shift once to insert a blue-colored key character.

Used in conjunction with ALPHA to enter lowercase characters.

On On Key

Turns on the calculator.

Once on, the key works as an alternative Esc key. You can use it to clear the entry line or close a menu.

Press and hold the On key then press a second key to perform the following.

• Clear Memory : On & Apps & Esc

• Reboot : On & Symb

• Terminal screen : On & T (÷)

• Decrease display brightness: On & -

• Increase display brightness : On & +

• Exam Mode screen : On & Esc or On & E (a b/c)

└─┘ Space Key

Space: alphabetical space

Enters a space

Sto ► Sto ► Key

Stores a value in a variable (that is, assigns a value to a variable). Then when you want to use that value in
a calculation, you can refer to it by the variable’s name.
Example: 3 ► A stores the value 3 in the variable A

You can access the store command by pressing Shift EEX.

Symb Setup Symbolic Setup View

Displays the Symbolic Setup view. This view is the same for each app. It enables you to override the
system-wide settings for angle measure, number format, and complex-number entry. The setting
"System" indicates the system setting for that field will be used.

The override applies to every function as long as the modified app is active. Switching to another app
changes the settings to match that app. Switching back to the modified app restores the settings for it.

Some apps have some overrides pre-set due to the nature of calculations primarily performed in that app.
For example, the Finance app has number format set to Fixed, 2 decimals.

Plot Setup Plot Setup View

Displays the Plot Setup view. This view is used primarily to modify the appearance of graphs and the
plotting environment. It is not used in apps which have no Plot view.

Num Setup Numeric Setup View

Displays the Numeric Setup view. This view is used primarily to specify the appearance of Numeric view
and to set the zoom factor.

'□' Single Quotes

Press the '□' key to insert a pair of single quota on marks. Single quotes are used to enter algebraic
expressions.

{ } Braces

{ } : Braces

Inserts a pair of braces. Braces are used to enclose lists.

[] Square Brackets

[] : Square Brackets

Page 207 of 239

13217 Help TextHelp Topics Tree
Inserts a pair of square brackets. These are used to enclose vectors and matrices.

Eval Eval Key

Syntax:

EVAL(Expr)

Evaluates the expression Expr.

Example:

EVAL(2+3) → 5

!,∞,→ Special Characters Palette

Press Shift 9 (!,∞,→) to display the Special Characters pale e. This pale e displays many common
mathematical symbols (such as infinity, mean, and standard deviation), as well as Greek characters.

Press Esc to close the palette without making a selection.

Note that a full list of characters can be displayed by pressing Shift Vars (Chars).

≤,≥,≠ Relations Palette

Press Shift 6 (≤,≥,≠) to display the relations palette. This palette displays Boolean and relational operators
useful in mathematics and programming (such as ≤, ==, >, AND, and OR).

Press Esc to close the palette without making a selection.

< Less Than

Syntax:

Value1 < Value2

Tests whether or not Value1 is less than Value2. Returns 1 if true, 0 if false.

Examples:

2 < 1 → 0

1.999999999999 < 2.000000000001 → 0

75_mph < 120_kph → 0

{5<9<18,-2<0<9<122<3} → {1,0}

((x+1)*(x-2))<(x^2-x-2) → false

≤ Less Than or Equal To

Syntax:

Value1 ≤ Value2

Tests whether or not Value1 is less than or equal to Value2. Returns 1 if true, 0 if false.

Example: 2 ≤ 1 → 0

Alternative: <=

> Greater Than

Syntax:

Value1 > Value2

Tests whether or not Value1 is greater than Value2. Returns 1 if true, 0 if false.

Examples:

2 > 1 → 1

2.000000000001 > 1.999999999999 → 0

75_mph > 120_kph → 1

{4>2,5>3>1>0} → {1,1}

((x+1)*(x-2))<(x^2-x+2) → 1

≥ Greater Than or Equal To

Syntax:

Value1 ≥ Value2

≥ Greater than or equal to

Tests whether or not Value1 is either greater than or equal to Value2. Returns 1 if true, 0 if false.

Example: 3 ≥ 4 → 0

Alternative: >=

== Equivalence

Syntax:

Value1 == Value2

Tests if Value1is equal toValue2. Returns 1 if true, 0 if false. If Value1 and Value2 are listes, returns a list
containing 0 or 1 for each pair of items.
If two expressions are tested for equivalence, the test results are sensitive to the CAS Settings.

If the setting Simplify is set to None, a==b checks that a and b have the same tree representation.

If Simplify is set Maximum, the auto simplification function is called on a-b and the system returns true if
the result of the Simplify function on a-b is 0.
Note: when the calculator evaluates an expression containing a test, each test is evaluated as it is
encountered before proccessing rest of the expression. Therefore a compound expression such as
A==B==C will evaluate A==B first and then compare the result of that evaluation (either 0 or 1) to C. In
other words, there are implied parentheses around each successive argrument, so A==B==C==D is
evaulated as ((A==B)==C)==D.

Examples:

3 == 2 → 0

2.375 == 2+0.375 → 1

Page 208 of 239

13217 Help TextHelp Topics Tree
(2+5i) == (3,2) + (-1,3) → 1

[[1,2],[3,4]] == [[3,4],[5,6]]-2 → 1

{"red","white","blue"} == {"red","white","black"} → {1,1,0}

(((x+1)*(x-2))==(x^2-x-2)) → 1

3==3==3==3 → 0

(3==3)==(3==3) → 1

≠ Not Equal To

Syntax:

Value1 ≠ Value2

Tests if Value1 is not equal to Value2. Returns 1 if true, 0 if false.

Alternative: <>

Note: when the calculator evaluates an expression containing a test, each test is evaluated as it is
encountered before proccessing rest of the expression. Therefore a compound expression such as A≠B≠C
will evaluate A≠B first and then compare the result of that evaluation (either 0 or 1) to C. In other words,
there are implied parentheses around each successive argrument, so A≠B≠C≠D is evaulated as
((A≠B)≠C)≠D.

Examples:

3 ≠ 5 → 13 ≠ 5 ----> 1

√25 ≠ 4 NTHROOT 625 → 0

(2+5i) ≠ (3+2*i)*(16/13,11/13) → 0

[[1,2],[3,4]] ≠ [[3,4],[5,6]]-[[2,1],[0,2]] → 1

{"red","white","blue"} ≠ {"red","white","black"} → {0,0,1}

180_deg ≠ 3.14159_rad → 1

((x+1)*(x-2))≠(x^2-x-2) → false

3≠4≠0≠2 → 1

(3≠4)≠(0≠2) → 0

AND Logical AND

Syntax:

Value1 AND Value2

For Real numbers, returns 1 if both Value1 and Value2 are non-zero; otherwise returns 0.

For Integers and Strings, AND is performed bitwise, returning 1 if corresponding bits are both 1, otherwise
0.
Examples:

3 AND 2 → 1

0 AND 1 → 0

0 AND 0 → 0

{3,0,0} AND {2,1,0} → {1,0,0}

75_mph > 120_kph AND 180_deg ≠ 3.14159_rad → 1

#CC44h AND #44CCh → #4444h

"a" AND "b" → "`"

X:=0; 1 AND (X:=3); 0 AND (X:=5); X → 3

7 > 3 AND 5 < 9 AND 3 ≠ 2 → 1

NOT Logical NOT

Syntax:

NOT Value

For Real numbers, returns 1 if Value is zero; otherwise returns 0.

For Integers and Strings, NOT is performed bitwise, flipping all 1's to 0's and all 0's to 1's.

Examples:

NOT 3 → 0

NOT 0 → 1

A:=32; B:=2^5; NOT (A=B) → 0

NOT #DFCA:16h → #2035:16h

NOT #1776:16o → #176001:16o

NOT "abcdefg" → "ﾞﾝﾜﾛﾚﾙﾘ"

NOT {"ab","cd"} → {"ﾞﾝ","ﾜﾛ"}

OR Logical OR

Syntax:

Value1 OR Value2

For Real numbers, returns 1 if either Value1 or Value2 is non-zero; otherwise returns 0.

For Integers and Strings, OR is performed bitwise, returning 1 if either corresponding bit is 1, otherwise 0.

Examples:

3 OR 2 → 1

0 OR 2 → 1

0 OR 0 → 0

{3,0,0} OR {2,1,0} → {1,1,0}

3_inch==7.62_cm OR 9_(inch²)==58.0644_(cm²) → 1

#CC44h OR #44CCh → #CCCCh

Page 209 of 239

13217 Help TextHelp Topics Tree
"c" OR "d" → "g"

X:=0; 0 OR (X:=7); 1 OR (X:=9); X → 7

7 ≤ 3 OR 5 < 9 OR 3 ≠ 2.9 + 0.1 → 1

XOR Logical XOR

Syntax:

Value1 XOR Value2

For Real numbers, returns 1 if either Value1 or Value2 is non-zero but not both; otherwise, returns 0.

For Integers and Strings, XOR is performed bitwise, returning 1 if exactly one bit is 1 and the
corresponding bit is 0, otherwise 0.
Examples:

3 XOR 2 → 0

0 XOR 2 → 1

0 XOR 0 → 0

{3,0,0} XOR {2,1,0} → {0,1,0}

3_inch==7.62_cm XOR 9_(inch²)==58.0644_(cm²) → 0

#CC44h XOR #44CCh → #8888h

"C" XOR "b" → "!"

X:=0; 0 XOR (X:=7); 1 XOR (X:=9); X → 9

7 ≤ 3 XOR 5 < 9 XOR 3 ≠ 2.9 + 0.2 → 0

_ Underscore

_ : Underscore

Enters the underscore character (_).

CAS Settings Displays the CAS Settings screen with various settings for you to configure how the computer algebra
system works.

Del Delete Key

Press Shift Backspace (Del) to delete the character to the right of the cursor.

Help Help Key

Displays the online help. The help provided will be relevant to the screen that is open at the time you
press this key.
The online help also gives you help on all the keys on the keyboard. It also provides a tree of help topics
that you can browse.
Menu Buttons:

• Tree: displays the full help tree

• Keys: puts the help system into Key mode; once in Key mode, press any keyboard key to get help on
that key
• ▲ Page ▼: Page up and down; press the right side to go down a page and the left side to go up a page
in a multi-page help script
• OK: leave the help system

User User Keyboard

Press Shift Help (User) to activate the user keyboard.

You can assign alternative functionality to any key on the keyboard, including the functionality provided
by the Shift and ALPHA keys. This enables you to customize the keyboard to your particular needs. When
the user keyboard is active, the keyboard works as you have defined it.

Press User once (1U appears in the title bar) to activate the user keyboard for just the next key press.

Press User twice (↑U appears in the tle bar) to keep the user keyboard ac ve (locked on). Press it once
more to deactivate it.

≈ Approximate

≈ : Numerical approximation

Provides a numerical approximation to the selected item in the CAS history.

Example:

In CAS 1 ÷ 4 ≈ returns 0.25

ABS Absolute Value

Syntax:

ABS(expr) or

ABS(matrix)

For numerical arguments, returns the absolute value of the expression.

For matrix arguments, returns the Frobenius (Euclidean) norm of the array.

Examples:

ABS(-3.14) → 3.14

ABS([[1,2],[3,4]]) → 5.47722557505

ABS(2-3*i) → 3.60555127546

CAS(ABS([[1,2],[3,4]])) → √30

ACOS Inverse Cosine

Syntax:

ACOS(Value)

Returns the inverse cosine of Value.

The output depends on the Angle Measure setting in Home Settings, CAS Settings, or Symbolic Setup.

Example:

ACOS(0.5) → 60 (Degrees mode)

Page 210 of 239

13217 Help TextHelp Topics Tree
ACOS(0.833730025131-0.988897705763*i) → 1+i

ACOS({0.5,1}) → {60,0} (Degrees mode)

Ans Last Answer

Syntax:

Ans

In Home view, Ans returns the result of the last calculation made in Home view to its full precision. The
variable Ans is different from the numbers in Home's history. A value in Ans is stored internally with the
full precision of the calculated result, whereas the displayed numbers match the display mode. Ans(n)
returns the nth entry in the Home view history.

In CAS view, Ans returns the last result in the CAS history and Ans(n) does not recall the nth item in
history. Here, Ans(n) will attempt to substitute n for x (or the default variable) in the last item in history
and return the result. In CAS view, if Ans is a matrix, Ans(m,n)returns the element in row m and column n.

ASIN Inverse Sine

Syntax:

ASIN(Value)

Returns the inverse sine of Value.

The output depends on the Angle Measure setting in Home Settings, CAS Settings, or Symbolic Setup.

Example:

ASIN(1) → 90 (Degrees mode)

ASIN(1.29845758142+0.634963914785*i) → 1+i

ASIN({0.5,1}) → {30,90} (Degrees mode)

ATAN Inverse Tangent

Syntax:

ATAN(Value)

Returns the inverse tangent of Value.

The output depends on the Angle Measure setting in Home Settings, CAS Settings, or Symbolic Setup.

Example:

ATAN(1) → 45 (Degrees mode)

ATAN(0.27175258532+1.08392332734*i) → 1+i

ATAN({1,0}) → {45,0} (Degrees mode)

COS Cosine Function

Syntax:

COS(Value)

Returns the cosine of Value.

Value is interpreted as radians, degrees or gradians, depending on the setting of Angle Measure in Home
Settings, CAS Settings, or Symbolic Setup.
Example:

COS(60) → 0.5 (Degrees mode)

COS(1+i) → 0.833730025131-0.988897705763*i

COS({60,0}) → {0.5,1} (Degrees mode)

COS((π/3)_rad) → 0.499999999997

LN Natural Logarithm

Syntax:

LN(value)

Natural Logarithmic function

Returns the logarithm of value in base e, Euler's number.

Examples:

LN(1) → 0

LN(2+3*i) → 1.28247467873+0.982793723247*i

LN({0.1,1}) → {−2.30258509299,0}

LOG General Logarithm

Syntax:

LOG(value, [base])

General logarithmic function

Returns the logarithm of value in base. By default, base=10.

Examples:

LOG(8) → 0.903089986992

LOG(8,2) → 3

LOG(2+3*i) → 0.556971676153+0.426821890855*i

LOG(2+3*i,2) → 1.85021985907+1.41787163075*i

LOG({100,10}) → {2,1}

LOG({8,27,10000},{2,3,10}) → {3,3,4}

+/- Negative

Syntax:

- Value or - Expression

Unary minus.

Changes the sign of Value or Expression. Used to enter negative numbers.

Page 211 of 239

13217 Help TextHelp Topics Tree
ⁿ√ Nth Root Key

Syntax:

Value1 √ Value2

NTHROOT: the nth root function

This Shift-key combination brings up a template for the NTHROOT function. It returns the primary Value1
root of Value2. On the keyboard, NTHROOT is represented by ⁿ√ .
Examples:

3 NTHROOT 8 → 2

3 NTHROOT 79.507 → 4.3

2.3 NTHROOT 5413.44050218 → 42

2.1 NTHROOT 3+2*i → 1.76999848019+0.508973095403*i

(1.2-0.5*i) NTHROOT (0.2+4*i) → 0.137162958212+1.70241905473*i

3 NTHROOT {27,8,64} → {3,2,4}

SIN Sine

Syntax:

SIN(Value)

Returns the sine of Value.

Value is interpreted as radians, degrees or gradians, depending on the setting of Angle Measure in Home
Settings, CAS Settings, or Symbolic Setup.
Example:

SIN(30) → 0.5 (Degrees mode)

SIN(1+i) → 1.29845758142+0.634963914785*i

SIN({30,90}) → {0.5,1} (Degrees mode)

SIN((π/6)_rad) → 0.5

Math Template The Math Template key displays a palette of pre-formatted templates representing common
mathematical operations and expressions, such as nth root, differentiation, and integration (as well as
vectors, matrices, and sexagesimal numbers).

Either tap on the template you want, or user the rocker wheel to highlight the template and press Enter.
The template is copied to the entry line ready for you to add in the values.

Press Esc to close the palette without making a selection.

Math Chars Press Shift 9 to open a menu of commonly used mathematical symbols and Greek characters. All of these
characters can also be found by pressing Shift Vars (Chars).

Integer Arithmetic You can perform integer arithmetic in four bases: decimal (base 10), binary (base 2), octal (base 8), and
hexadecimal (base 16). For example, you could multiply 4 in base 16 by 71 in base 8 and the answer is E4
in base 16. This is equivalent in base 10 to multiplying 4 by 57 to get 228.

Indicate that you are about to engage in integer arithmetic by preceding the number with the pound
symbol: # (press Alpha 3). Then indicate what base to use for the number by appending the appropriate
base marker.
 d: decimal

 b: binary

 o: octal

 h: hexadecimal

[blank]: default base

Examples:

#423:d

#01101010:b

#6537:o

#CFF0:h

#B1D4

Change Integer Base The calculator’s default base for integer arithmetic is 16 (hexadecimal).

To change the default base:

1. Press Shift Home (Home settings).

2. Choose the base you want from the Integers menu: Binary, Octal, Decimal, or Hex.

3. The field to the right of the Integers menu is the word size field. This is the maximum number of bits
that can represent an integer. The default value is 32, but you can change it any value between 1 and 64.

4. If you want to allow for signed integers, select the ± option to the right of the word size field. Choosing
this option reduces the maximum size of an integer to one bit less than the word size.

Manipulate Integers The Base key enters the character # in the edit field, unless the currently selected item (or most recent
result) is an integer, in which case the Edit Integer screen is displayed.

In the Edit Integer dialog box, the Was field at the top shows the original integer you selected in Home
view. The Out field shows the edited integer. Both integers are initially displayed in the default base as
specified in Home Settings Page 1.
The 16 field is the hexadecimal representation of Out.

The 10 field is the decimal representation of Out.

The box below the decimal value shows the 64 bit binary (bit) representation of Out.

Changing the value by any of the following methods updates the value of Out and all representations:

• Shift the integer left or right. Bits shifted off either end are lost.

 - Drag the screen left or right to shift by 1 bit in the corresponding direction

Page 212 of 239

13217 Help TextHelp Topics Tree
 - Rocker wheel left/right to shift 1 bit

 - Alpha rocker wheel right/left to shift by 4 bits (1 nibble)

 - Shift rocker wheel right/left shifts by 8 bits (one byte)

• Change word size (number of bits) of the integer

 - Drag the screen down/up to increase/decrease by 1

 - Press rocker wheel up/down to increase/decrease by 1

 - Alpha rocker wheel up/down to increase/decrease by 4 (1 nibble)

 - Shift rocker wheel up/down to increase/decrease by 8 (one byte)

• Change sign of the integer: Press +/- key

• Cycle through base settings (system, hex, decimal, octal and binary): + and – keys

Menu Buttons:

• Reset: returns all changes to their original state

• Base: cycles through the bases; same as pressing +

• Signed: toggles the word size between signed and unsigned

• NOT: returns the one’s complement (that is, each bit in the specified word size is inverted: a 0 is
replaced by 1 and a 1 by 0.
• Edit: toggles edit mode. Edit mode is active if a bullet character appears on the Edit button. When Edit
mode is active, a digit selector highlightes a single digit and you can move abut the dialog using the rocker
wheel. The hex and decimal fields can be modified, as can the bit representation, one digit at a time. A
change in any field automatically modifies the other fields.

• OK: closes the dialog and saves your changes. If you don’t want to save your changes, press Esc instead.

Validate the change in the number using OK or cancel using the Esc key.

List Catalog Press Shift 7 (List) to see the List Catalog. There are ten lists available, named L1-L9 and L0.

Use the rocker wheel up/down to select a list name.

Tap Edit or press Enter to edit the selected list.

Menu Buttons:

• Edit: opens the selected list for editing in the List Editor

• Delete: deletes the contents of the highlighted list

• Send: when present, sends a list to another HP Prime

List Editor The List Editor is designed to help you create and edit any of the lists available on the HP Prime. The
default lists are named L1-L9 and L0.
When you select a list, the List Editor opens. This is where you add elements to, or change elements in, a
list. When you first open a list, it will be blank. To enter an element, just start keying it. The menu items in
the List Editor are:
• Edit: copies the selected element to the entry line where it can be edited. This item is only visible when
an element in the list is selected.
• More: opens a menu with options for editing the list

• Go To: jumps to a specific element in the list. Useful for very large lists.

• Go: toggles how the cursor moves when you press Enter. The options are Down, Right, and None.

The List Editor More Menu

The List Editor More menu contains the following options for editing a list:

• Insert

 • Row: Inserts a new row in the current list. The new row contains 0 as its element.

• Delete

 • Column: Deletes the contents of the current list. To delete a single element, select it and press the
Delete key.
• Select

 • Row: Selects the current row. Once selected, the row can be copied.

 • Column: Selects the current list. Once selected, the list can be copied.

 • Box: Opens a dialog box to select a rectangular array defined by a starting location and a final
location. You can also tap and hold on a cell to start selection, then drag to select a rectangular array of
elements. Once selected, the array can be copied.

 • Swap Ends: Swaps the starting and ending cells for the selected rectangular array of cells.

• Selection: Toggles selection mode on and off. You can also tap and hold on a cell, then drag to select.

• Swap

 • Column: Swaps the contents of two columns (lists).

Type in the first entry in the list and press the Enter key. Continue until you have completed the list. When
you have completed the list you can return to the List Catalog.

In programs or Home view, you can reference your list by name (L1, L2, etc.) to perform operations on
your new list. Use the rocker wheel left/right to scroll through all ten lists once you are in the List Editor.

Matrix Catalog Press Shift 4 (Matrix) to enter the Matrix Catalog.

There are ten matrices available, named M1-M9 and M0.

Menu Buttons:

• Edit: opens the selected matrix for editing in the Matrix Editor

• Delete: deletes the contents of the selected matrix

• Vect: changes a matrix into a vector

• Send: when present, sends a matrix to another HP Prime

Page 213 of 239

13217 Help TextHelp Topics Tree
Matrix Editor When you select a matrix, the Matrix Editor opens. The menu items in the Matrix Editor are:

• Edit: copies the selected element to the entry line where it can be edited. This item is only visible when
an element in the matrix or vector is selected.
• More: opens a menu with options for editing the matrix

• Go To: jumps to a specific element in the matrix. Useful for large matrices.

• Go: toggles how the cursor moves when you press Enter. The options are Down, Right, and None.

The Matrix Editor More Menu

The Matrix Editor More menu contains options similar to those in the List Editor More menu, but with an
expanded offering appropriate to editing matrices. The options are as follows:

• Insert

 • Row: Inserts a new row in the current matrix, above the current row. The new row contains zeroes.

 • Column: Inserts a new column in the matrix, to the left of the current column. The new column
contains zeroes.
• Delete

 • Row: Deletes the current row of the matrix.

 • Column: Deletes the current column of the matrix.

 • All: Deletes the contents of the matrix.

• Select

 • Row: Selects the current row. Once selected, the row can be copied.

 • Column: Selects the current column. Once selected, the column can be copied.

 • Box: Opens a dialog box to select a rectangular array defined by a starting location and a final
location. You can also tap and hold on a cell to start selection, then drag to select a rectangular array of
elements. Once selected, the array can be copied.

 • Swap Ends: Swaps the beginning and ending cells for the selected array of cells.

• Selection: Toggles selection mode on and off. You can also tap and hold on a cell, then drag to select.

• Swap

 • Row: Swaps the contents of two rows.

 • Column: Swaps the contents of two columns.

You do not have to define the dimensions of a matrix first; just start typing in values. You can enter values
row by row, or column by column; the Go button toggles through the options.

As with a list, you can send a matrix to another HP Prime or receive one from another HP Prime. In
programs or the Home view, you can reference these matrices by name to perform operations on them.

Program Catalog Press Shift 1 (Program) to enter the Program Catalog.

In the Program Catalog, you can view the list of existing programs, edit or run any of them, or send them
to another HP Prime. You can also create a new program. An HP Prime program can be as simple as a
single user-defined function, or it can contain a set of related functions that are exported to show up as a
submenu in the User menu of the Toolbox menus. These functions can have their variables exported to
show up in the User menu under the Vars key or kept local. An HP Prime program could also be a full-
blown application in its own right. The choice is up to you.

Menu Buttons:

• Edit: opens the highlighted program for editing in the Program Editor

• New: prompts for a new program name, then opens the Program Editor

• More: opens more menu options (Save, Rename, Sort, Delete, and Clear) for the highlighted program

• Send: sends a program to another HP Prime that supports unit-to-unit connectivity

• Debug: debugs the highlighted program

• Run: runs the highlighted program

Tap New to create a new program and enter a name for the program. Use the rocker wheel up/down to
select an existing program. Tap Edit to start the Program Editor and edit an existing program.

A program name can contain only alphanumeric characters (letters and numbers) and the underscore
character. The first character must be a letter. For example, GOOD_NAME, RollDice, and Spin2 are valid
program names.

Program Editor Once you enter your program name and tap OK, you enter the Program Editor. Here, a template for your
program is created. The template consists of a heading for a function with the same name as the
program, and a BEGIN–END pair that blocks off the statements for the function.

Menu Buttons:

• Cmds: opens a menu from which you can choose from common programming commands

• Tmplt: opens a menu from which you can choose from templates for common programming control
structures
• ▲ Page ▼: moves from page to page in a multi-page program

• Check: checks the program for syntax errors

If you press the Menu key while in the Program Editor, you will see two new options:

• Create user key: tap this option and then press any key to paste a template into your program for
redefining that key as a user key.
• Insert pragma: tap this option to paste a #pragma mode definition into your program. The #pragma
mode definition is of the following form:
#pragma mode(separator(), integer())

Page 214 of 239

13217 Help TextHelp Topics Tree
Use the #pragma mode definition to define the set of separators used for digit grouping and the integer
type. The #pragma mode definition will force the program to compile using these settings. This capability
is useful for adapting a program written for a culture that uses different grouping symbols (. vs. ,) than
your own.
You can type in your program letter-by-letter if you know the command names, or use the Cmds or Tmplt
menus. You can also press the Toolbox key see the Toolbox menus to see more functions and commands.
Once you have finished your program, you can return to the Program Catalog by pressing Shift 1
(Program). From the catalog, you can send your program to another HP Prime or receive a program from
another HP Prime. Enter your program name in the Home view and press Enter to run your program.

Note: the Editor saves your changes automatically when you exit the editor. If you want to save the
original version of your program before you make changes, be sure to use the More button in the
Program Catalog and select Save.

Commands Menu The Commands (Cmds) menu contains the programming commands for the HP Prime. This main menu
contains the command categories, and the sub-menus contain the specific commands within each
category. Use the rocker wheel to select a category in the main menu and then right rocker wheel to the
sub-menu of commands within that category. Use the rocker wheel left/right to select the command you
want within a category.

An HP Prime program contains a sequence of commands that execute automatically to perform a task.

Commands are separated by a semicolon (;). Commands that take multiple arguments have those
arguments enclosed in parentheses and separated by a comma(,). For example,

PIXON (xposition , yposition);

Sometimes, command arguments are optional. If an optional argument is omitted, a default value is used
in its place. Optional command arguments appear inside [square brackets]. Note that square brackets are
also used for vectors, which are usually not optional!

Programs can contain any number of subroutines (each of which is a function or procedure). Subroutines
start with a heading consisting of the name, followed by parentheses and a list of parameters or
arguments, separated by commas. The body of a subroutine is a sequence of statements enclosed within
a BEGIN END; pair. A function can return a value using the RETURN command.

String String Commands

This menu contains all the string manipulation commands. A string is a set of characters enclosed in
double quotes; for example, "ABC", "12A", and "3-A" are all strings.

The \ character starts an escape sequence, and the character(s) immediately following are interpreted
specially, as described below.
• "": "

• \": "

• \\: \

• \0: 0

• \n” new line

• \r: carriage return

• \t: tab

• \nnn: octal, as in \115 for character 77

• \xnn: hex, as in \x45 for character 69

• \unnnn: Unicode for character nnnn

To put a new line into a string, you can also press Enter to wrap the text at that point.

REPLACE Syntax:

REPLACE(Object1,Start,Object2)

Replaces portion of a matrix, vector or string (Object1) starting at Start with Object2.

For a matrix, Start is a list containing two numbers; for a vector or string it is a single number.

Note: for strings, you can do: REPLACE("string", "sub_string", "replace_string")

Examples:

REPLACE([[1,2,3],[4,5,6]],{1,2},[[8,8],[9,9]]) → [[1,8,8],[4,9,9]]

REPLACE([10,12,23],3,[9,8,7,6]) → [10,12,9,8,7,6]

REPLACE("Replacement","place","configure") → "Reconfigurement"

L1:={8,9,7,3,4,6,6,8,0}; REPLACE(L1,5,{1,2,3,4,5}) → {8,9,7,3,1,2,3,4,5}

ASC Syntax:

ASC(String)

Returns a list containing the numerical Unicode values of String.

Examples:

ASC("AB") → {65,66}

ASC("ʥ♘♕♤♦☎") → {677,9816,9813,9828,9830,9742}

ASC({"HE","LLO"}) → {{72,69},{76,76,79}}

CHAR Syntax:

CHAR(List) or CHAR(Vector) or CHAR(Integer)

Returns the string corresponding to the numerical Unicode character codes in List or Vector, or the
numerical Unicode character code of Integer.
Examples:

CHAR(65) → "A"

Page 215 of 239

13217 Help TextHelp Topics Tree
CHAR({82,77,72}) → "RMH"

CHAR({#261Eh,#265Eh,#266Ch,#266Dh,#2680h,#2685h}) → "☞♞♬♭⚀ ⚅"

DIM String Dimensions

Syntax:

DIM(String) or

DIM(Matrix)

Returns the number of characters in String or the dimensions of Matrix.

Examples:

DIM("12345") → 5

DIM([[1,2],[4,5],[7,8]]) → {3,2}

DIM({"12345","HP Prime"}) → {5,8}

EXPR Evaluate String

Syntax:

EXPR(String)

Parses a string into a number or expression and returns the result evaluated.

Examples:

EXPR("2+3") → 5

X:=90; EXPR("X+10") → 100

X:=90; Y:=3; EXPR({"X/2","2^Y"}) → {45,8}

INSTRING In String

Syntax:

INSTRING(String1, String2)

Returns the index of the first occurrence of String2 in String1. Returns 0 if String2 is not present in String1.
Note that the first character in a string is position 1.
Examples:

INSTRING("vanilla", "van") → 1

INSTRING("banana","na") → 3

INSTRING("ab","abc") → 0

INSTRING({"vanilla","banana","ab"},{"van","ana","abc"}) → {1,2,0}

LEFT Left Part

Syntax:

LEFT(String, Integer)

Given a string and an integer n, return the first n characters of the string. If n ≥ DIM(str) or n ≤ 0, returns
the entire string.
Example:

LEFT("MOMOGUMBO",3) → "MOM"

LOWER Lowercase

Syntax:

LOWER(string)

Returns string with uppercase characters converted to lowercase.

Examples:

LOWER("ABC") → "abc"

LOWER("ΑΒΓ") → "αβγ"

MID Middle

Syntax:

MID(String, Position, [n])

Extracts n characters from String starting at Position. If n is not specified, then MID extracts the remainder
of String from Position.
Examples:

MID("MOMOGUMBO",3,5) → "MOGUM"

MID("PUDGE",4) → "GE"

STRINGFROMID String From Identifier

Syntax:

STRINGFROMID(Integer)

Returns the built-in string associated with the ID of the current language.

Example:

STRINGFROMID(1)

ROTATE Syntax:

ROTATE(String, n)

ROTATE(grob, angle, [bg_color])

ROTATE([DestGrob], angle, SrcGrob, [dest_point])

ROTATE([DestGrob], SrcGrob, dest_point_1, dest_point_2, dest_point_3, dest_point_4, [src_point_1,
src_point_2, src_point_3, src_point_4])
The string form of ROTATE moves n characters from the beginning or end of String to the opposite end of
String, depending on the sign of n.
If n is positive, takes the first n characters of String and put them on the right of String.

If n is negative, takes the last n characters and put them on the left of String.

If ABS(n)>dim(string), returns String.

The graphical forms of ROTATE use an angle or sets of points to rotate a graphic object (grob).

Page 216 of 239

13217 Help TextHelp Topics Tree
ROTATE(grob, angle, [bg_color])

Rotate grob around its center by angle. grob will be resized to accommodate the extra space needed and
that extra space will be filled by bg_color.
If bg_color is not specified, the current background color is used.

ROTATE([DestGrob], angle, SrcGrob, [dest_point])

Draw SrcGrob, rotated by angle, on DestGrob with the center of SrcGrob at position dest_point (specified
in pixels as a list of 2 numbers or a single complex number).
If DestGrob is not specified, G0 is used. If dest_point is not specified, the center of DestGrob is used.

ROTATE([DestGrob], SrcGrob, dest_point_1, dest_point_2, dest_point_3, dest_point_4, [src_point_1,
src_point_2, src_point_3, src_point_4])
Note: src_points and dest_points are specified in pixels as lists of 2 numbers or as complex numbers.

If src_points are not specified, then src_point_1 is set to to the top left corner of SrcGrob, src_point_2 is
set to to the top right corner of SrcGrob, src_point_3 is set to to the bottom right corner of SrcGrob, and
src_point_4 is set to to the bottom left corner of SrcGrob.

Draws the part of SrcGrob specified by the 4 src_points in the area of DestGrob specified by the 4
dest_points.
This is done internally by subdividing the work into 2 triangles (points1, 2 and 3 and points 1, 3 and 4).
Therefore non homogenous coordinates can yield to different stretching on both triangles. It is possible to
have point_1=point_2 to only work with triangles.

Examples:

ROTATE("12345",2) → "34512"

ROTATE("12345",-1) → "51234"

ROTATE("12345",6) → "12345"

Demo_ROTATE

RIGHT Right Part

Syntax:

RIGHT(String, n)

Returns the last n characters of the string.

Example:

RIGHT("MOMOGUMBO",5) → "GUMBO"

STRING Syntax:

STRING(Expression, [Mode], [Precision], [Separator or {Separator,
["[DecimalPoint[Exponent[NegativeSign]]]"], [DotZero]}], [SizeLimit or {SizeLimit, [FontSize], [Bold],
[Italic], [Monospaced]}])
Evaluates Expression and returns the result as a string.

The Mode, Precision, and Separator parameters specify how numbers are displayed.

If Mode is specified, it is:

0: Use current setting

1: Standard

2: Fixed

3: Scientific

4: Engineering

5: Floating

6: Rounded

Add 7 to this value to specify proper fraction mode and 14 for mixed fraction mode.

Precision is either -1 for current settings or 0 to 12.

Separator can be a number. -1 means use default, 0 to 10 correspond to the 11 built-in digit grouping
choices available in home settings.
OR

Separator can be a string containing a set of digits and separators. The last digit is assumed to be the one
just before the decimal point.
"[DecimalPoint[Exponent[NegativeSign]]]" is a string of 0 to 3 characters. The first one will be used for the
decimal point, the second for the exponent and the last one for the negative sign.

If DotZero is non-zero, then numbers between -1 and 1 are displayed without a leading zero (for example,
.1 instead of 0.1)
If SizeLimit is specified, the command will attempt to generate a string that fits in the given number of
pixels. FontSize is used along with Bold, Italic, and Monospaced (if their value is non-zero) to estimate the
maximum string length that will fit.

The values for FontSize are:

0=current font (default)

1=font 10

2=font 12 (Small)

3=font 14 (Medium)

4=font 16 (Large)

5=font 18

6=font 20

7=font 22

Examples:

Current number format setting Standard:

STRING(3*π) → "9.42477796077"

Page 217 of 239

13217 Help TextHelp Topics Tree
Number format Fixed, 4 decimal places:

STRING(3*π,2,4) → "9.4248"

UPPER Uppercase

Syntax:

UPPER(string)

Returns string with lowercase characters converted to uppercase.

Examples:

UPPER("abc") → "ABC"

UPPER("αβγ") → "ΑΒΓ"

Drawing Drawing Commands

This menu contains commands for creating simple graphic objects, such as line segments, in graphic
variables. There are 10 graphic variables in the HP Prime, called G0 to G9. G0 is always the current screen
graphic and is used by default if no GROB is specified for any of the drawing commands.

G1 to G9 can be used to store temporary graphic objects (called GROBs for short) when programming
applications that use graphics. Variables G1 to G9 are temporary and are cleared when the calculator
turns OFF.
There are two identical sets of functions that can be used to modify graphic variables. The first set of
them work based on Cartesian coordinates using the Cartesian plane defined in the current app by the
variables Xmin, Xmax, Ymin, and Ymax in the Plot setup. The rest work on absolute pixel references based
on the physical display of the HP Prime. For these functions, (0,0) is the top left pixel of the GROB, and
(320,1240) is the bottom right. This second set of functions—those that work with pixels—have a _P suffix
attached to their name, as in ARC_P and LINE_P.

In many of the commands, the color used can be specified as well. Unless otherwise specified, colors are
defined in #A8R8G8B8 format (8 bits for R, G, B and A). It is highly recommended to use the RGB function
when defining colors to provide compatibility for future devices in your programs.

If color is not specified for a drawing command, it will default to black unless otherwise specified.

PX→C Syntax:

PX→C(x, y) or

PX→C({x, y})

Transform pixel coordinates into Cartesian coordinates. Returns a list.

Examples:

PX→C(319,219) → {15.9,−10.9} (assuming current app Plot Se ngs are set to default)

PX→C({320,0}) → {16,10.9} (assuming current app Plot Se ngs are set to default)

RGB Syntax:

RGB(R, G, B, [A])

Returns an integer number that can be used as the color parameter for a drawing function. Based on Red,
Green and Blue components values (0 to 255).
The Alpha Channel number A runs from 0 (opaque) to 255 (transparent).

Pixels Pixel Commands

The commands for drawing using pixel coordinates are listed in this section.

ARC_P Draw Arc

Syntax:

ARC_P(G, x, y, r or {rx, ry}, [∡1, ∡2], [border_color, [fill_color]])

Draws a circle on GROB G, centered at (x,y), with radius r (in pixels). If r is replaced by a list {rx, ry} then
the Arc becomes an ellipse centered at (x,y) with radius in the x dimension of rx and in the y dimension of
ry.
If ∡1 and ∡2 are specified, draws an arc from ∡1 to ∡2 using the current angle mode.

Example:

Demo_ARC_P

BLIT_P Copy GROB

Syntax:

BLIT_P([trgtG], [dx1, dy1], [dx2, dy2], srcG, [sx1, sy1], [sx2, sy2], [c], [alpha])

Copies the region of graphic srcG between point (sx1, sy1) and (sx2, sy2) into the region of trgtG between
points (dx1, dy1) and (dx2, dy2). Pixels from srcG that are color c are not copied. alpha is a number from 0
(transparent) to 255 (opaque) which represent the transparency (alpha channel) of the source bitmap.

The defaults for the optional arguments are:

 trgtG = G0

 srcG = G0

 sx1, sy1 = srcGRB top left corner

 sx2, sy2 = srcGRB bottom right corner

 dx1, dy1 = trgtGRB top left corner

 dx2, dy2 = calculated so destination area is the same as source area

 c = all pixel colors

 alpha= 255 (fully opaque)

Note: when using the c and alpha options, it is highly recommended to specify the source x/y coordinates
in order to make sure that the system can distinguish what each parameter is.

Example:

Demo_BLIT_P

DIMGROB_P Size GROB

Page 218 of 239

13217 Help TextHelp Topics Tree
Syntax:

DIMGROB_P(G, w, h, [color]) or

DIMGROB_P(G, w, h, list)

Sets the dimensions of GROB G to w*h. Initializes the graphic G with color or with the graphic data
provided in list. If the graphic is initialized using graphic data, then list is a list of integers. Each integer, as
seen in base 16, describes one color every 16 bits.

Colors are in A1R5G5B5 format (1 bit for alpha channel and 5 bits for R, G and B).

Example:

Demo_DIMGROB_P

GETPIX_P Get Pixel Color

Syntax:

GETPIX_P([G], x, y)

Returns the color of the pixel of G with pixel coordinates (x, y).

Examples:

Demo_GETPIX_P

GROBH_P GROB Height

Syntax:

GROBH_P(G)

Returns the height of the graphic object G in pixels.

Example:

GROBH(G0) → 240

GROBW_P GROB Width

Syntax:

GROBW_P(G)

Returns the width of the graphic object G in pixels.

Example:

GROBW_P(G0) → 320

INVERT_P Invert GROB

Syntax:

INVERT_P([G, x1, y1, x2, y2])

Inverts the rectangle on G defined by the diagonal points (x1, y1) and (x2, y2). The effect is reverse video.

The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

If only one (x,y) pair is specified, it refers to the top left corner of G.

Example:

Demo_INVERT_P

FILLPOLY Draw Filled Polygon

Syntax:

FILLPOLY([G], {Coordinates}, Color, [Alpha])

FILLPOLY([G], [Coordinates], Color, [Alpha])

Fills the polygon specified by the provided Cartesian coordinates using the color provided.

If Alpha (0 to 255) is provided, the polygon is drawn with transparency.

Examples:

FILLPOLY([(0,0),(1,1),(2,0),(3,-1),(2,-2)],#FF,128)

Demo_FILLPOLY

FILLPOLY_P Draw Filled Polygon

Syntax:

FILLPOLY_P([G], {Coordinates}, Color, [Alpha])

FILLPOLY_P([G], [Coordinates], Color, [Alpha])

Fills the polygon specified by the provided pixel coordinates using the color provided.

If Alpha (0 to 255) is provided, the polygon is drawn with transparency.

Examples:

FILLPOLY_P([(20,20),(120,120),(150,20),(180,150),(50,100)],#FF,128)

Demo_FILLPOLY_P

LINE_P Line Drawing

Syntax:

LINE_P([G], x1, y1, x2, y2, [color])

LINE_P([G],points_definition, lines_definitions, rotation_matrix or {rotation_matrix or -1, ["N"], [{eye_x,
eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

LINE_P([G],pre_rotated_points, line_definitions, [zstring])

The basic form of LINE_P draws one line between specified coordinates in the graphic using the specified
color.
The advanced form of LINE_P allows the rendering of multiple lines at a time with a potential 3D
transformation of the points that define the line. This is mostly used if you have a set of vertices and lines
and want to display them all at once (faster).

Page 219 of 239

13217 Help TextHelp Topics Tree
points_definition is either a list or a matrix of point definitions. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are some examples: [x, y, z, c], {x, y, z,
c}, {x, y, #c}, {(x, y), c}, (x,y).
lines_definitions is either a list or a matrix of line definitions. Each line is defined by 2 to 4 numbers. p1,
p2, color and alpha. p1 and p2 are the index in the points_definition of the 2 points that define the line.
Color is used to override the per point color definition. If you need to provide an Alpha, but not a color,
use -1 for the color.

Note, that {Color, [Alpha], line_1, …, line_n} is also a valid form to avoid re-specifying the same color for
each line.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the points
using the usual 3D or 4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.
Each point is rotated and translated through a multiplication by rotation_matrix. It is then projected on
the view plane using the eye position using the following equation: x=eye_z/z*x-eye_x and y=eye_z/z*y-
eye_y.
Each line is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier
zClipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

LINE_P returns a string which contains all the transformed points. If you plan to call TRIANGLE_P or
LINE_P multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to
TRIANGLE_P and LINE_P.

About ZString

TRIANGLE_P([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE_P to create a Z clipping string (initialized at 255 for each pixels). You can
then call LINE_P with appropriate z (0-255) values for each of the triangle vertexes and LINE_P will not
draw pixels further than the already drawn pixels. ZString is automatically updated as appropriate.

Example:

Demo_LINE_P

PIXOFF_P Pixel Off

Syntax:

PIXOFF_P([G], x, y)

Sets the color of the pixel of GROB G with coordinates (x, y) to white.

PIXON_P Pixel On

Syntax:

PIXON_P([G], x, y, [color])

Sets the color of the pixel of GROB G with coordinates (x, y). If supplied, color is a hexadecimal integer of
the form aaRRGGBB. This is an RGB color with the Alpha Channel in the high order byte. The Alpha
Channel number runs from 0 (opaque) to 255 (transparent). If no color is specified, black is used.

Examples:

PIXON_P(50,50,RGB(255,0,0))

PIXON_P(50,50,RGB(255,0,0,128))

RECT_P Rectangle

Syntax:

RECT_P([G], [x1, y1], [x2, y2], [Color])

RECT_P([G], [x1, y1], [x2, y2], [edgeColor],[fillColor])

Draws a rectangle on G, with diagonal defined by points (x1,y1) and (x2,y2), using edgeColor for the
perimeter and fillColor for the inside.
The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

edgeColor=white

fillColor=edgeColor

Note: To erase a GROB, execute RECT_P(G). To clear the screen, execute RECT_P().

Note: semi-transparent rectangles can be drawn by using the Alpha channel in the color (0 is opaque, 255
is transparent). The color can also be expressed as { color, alpha }.

Example:

Demo_RECT_P

SUBGROB_P Copy GROB to Target

Syntax:

SUBGROB_P(srcG, [x1, y1], [x2, y2], trgtG)

Sets graphic trgtG to be a copy of the area of srcG between points (x1,y1) and (x2,y2). If both (x1, y1) and
(x2, y2) are not specified, then the entire graphic srcG is used. If (x1, y1) is not specified, then the top left
corner of srcG is used; if (x2, y2) is not specified, then the bottom right corner of srcG is used.

trgtGRB can be any of the graphic variables except G0.

SUBGROB_P(G1, G4) will copy G1 in G4.

Example:

Page 220 of 239

13217 Help TextHelp Topics Tree
Demo_SUBGROB_P

TEXTOUT_P Draw Text

Syntax:

TEXTOUT_P(text, [G], x, y, [font], [textColor], [width], [backgroundColor])

Draws text on graphic G at position (x, y) using font and textColor. Paints the background before drawing
the text using color backgroundColor. If width is specified, does not draw text more than width pixels
wide. If backgroundColor is not specified, the background is not erased.

The sizes for font are:

0=current font (default)

1=font 10

2=font 12 (Small)

3=font 14 (Medium)

4=font 16 (Large)

5=font 18

6=font 20

7=font 22

Returns the X coordinate at which the next character of the string should be drawn if the string had more
characters
Examples:

TEXTOUT_P("Hello HP Prime",100,100,4,RGB(255,0,0),200,RGB(0,255,255)); FREEZE

Demo_PISERIES_P

TRIANGLE_P Draw Triangle

Syntax:

TRIANGLE_P([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha])

TRIANGLE_P([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha], ["ZString", z1, z2, z3])

TRIANGLE_P([G], {x1, y1, [c1], [z1]}, {x2, y2, [c2], [z2]},{x3, y3, [c3], [z3]}, ["ZString"])

TRIANGLE_P([G], points_definition, triangle_definitions, rotation_matrix or {rotation_matrix or -1, ["N"],
[{eye_x, eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

TRIANGLE_P([G], pre_rotated_points, triangle_definitions, [zstring])

TRIANGLE_P([G])

The basic form of TRIANGLE_P draws one triangle between specified pixel coordinates in the graphic using
the specified color and transparency (0 ≤ Alpha ≤ 255). If 3 colors are specified, blends the colors in
between the vertexes.
The advanced form of TRIANGLE_P allows the rendering of multiple triangles at a time with a potential 3D
transformation of the triangles vertices. This is mostly used if you have a set of vertices and triangles and
want to display them all at once (faster).

points_definition is either a list or a matrix of point definition. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are a couple of example: [x, y, z, c],
{x, y, z, c}, {x, y, #c}, {(x, y), c}, (x,y)…
triangle_definitions is either a list or a matrix of triangle definition. Each triangle is defined by 3 to 5
numbers. p1, p2, p3, color and alpha. p1, p2 and p3 are the index in the points_definition of the 3 points
that define the triangle. Color is used to override the per point color definition. If you need to provide an
Alpha, but not a color, use -1 for the color.

Note, that {Color, [Alpha], triangle_1, …, triangle_n} is also a valid form to avoid re-specifying the same
color for each triangle.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the point
using usual 3/4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.
Each point is rotated and translated through a multiplication by the rotation_matrix. It is then projected
on the view plan using the eye position using the following equation: x=eye_z/z*x-eye_x and y=eye_z/z*y-
eye_y.
Each triangle is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier z
clipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

TRIANGLE_P returns a string which contains all the transformed points. If you plan to call TRIANGLE_P or
LINE_P multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to
TRIANGLE_P and LINE_P.

About zstring

TRIANGLE_P([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE_P to create a Z clipping string (initialized at 255 for each pixels). You can
then call TRIANGLE_P with appropriate z (0-255) values for each of the triangle vertexes and TRIANGLE_P
will not draw pixels further than the already drawn pixels. zstring is automatically updated as appropriate.

Examples:

TRIANGLE_P(0,20,150,50,100,100,#FFh,#FF00h,#FF0000h,128); FREEZE

Demo_TRIANGLE_P

Demo_Tetrahedron_P

Cartesian Cartesian Drawing Commands

Page 221 of 239

13217 Help TextHelp Topics Tree
The commands for drawing using Cartesian coordinates are listed in this section.

TRIANGLE Draw Triangle

Syntax:

TRIANGLE([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha])

TRIANGLE([G], x1, y1, x2, y2, x3, y3, c1, [c2, c3], [Alpha], ["ZString", z1, z2, z3])

TRIANGLE([G], {x1, y1, [c1], [z1]}, {x2, y2, [c2], [z2]},{x3, y3, [c3], [z3]}, ["ZString"])

TRIANGLE([G], points_definition, triangle_definitions, rotation_matrix or {rotation_matrix or -1, ["N"],
[{eye_x, eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

TRIANGLE([G], pre_rotated_points, triangle_definitions, [zstring])

TRIANGLE([G])

The basic form of TRIANGLE draws one triangle between specified pixel coordinates in the graphic using
the specified color and transparency (0 ≤ Alpha ≤ 255). If 3 colors are specified, blends the colors in
between the vertexes.
The advanced form of TRIANGLE allows the rendering of multiple triangles at a time with a potential 3D
transformation of the triangles vertices. This is mostly used if you have a set of vertices and triangles and
want to display them all at once (faster).
points_definition is either a list or a matrix of point definition. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are a couple of example: [x, y, z, c],
{x, y, z, c}, {x, y, #c}, {(x, y), c}, (x,y)…
triangle_definitions is either a list or a matrix of triangle definition. Each triangle is defined by 3 to 5
numbers. p1, p2, p3, color and alpha. p1, p2 and p3 are the index in the points_definition of the 3 points
that define the triangle. Color is used to override the per point color definition. If you need to provide an
Alpha, but not a color, use -1 for the color.

Note, that {Color, [Alpha], triangle_1, …, triangle_n} is also a valid form to avoid re-specifying the same
color for each triangle.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the point
using usual 3/4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.
Each point is rotated and translated through a multiplication by the rotation_matrix. It is then projected
on the view plan using the eye position using the following equation: x=eye_z/z*x-eye_x and y=eye_z/z*y-
eye_y.
Each triangle is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier z
clipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

TRIANGLE returns a string which contains all the transformed points. If you plan to call TRIANGLE or LINE
multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to TRIANGLE
and LINE.
About zstring

TRIANGLE([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE to create a Z clipping string (initialized at 255 for each pixels). You can
then call TRIANGLE with appropriate z (0-255) values for each of the triangle vertexes and TRIANGLE will
not draw pixels further than the already drawn pixels. zstring is automatically updated as appropriate.

Examples:

TRIANGLE(0,0,5,5,5,-5,#FFh,#FF00h,#FF0000h,128); FREEZE

Demo_TRIANGLE

Demo_Tetrahedron

ARC Draw Arc

Syntax:

ARC(G, x, y, r or {rx, ry}, [∡1, ∡2], [border_color, [fill_color]])

Draws a circle on GROB G, centered at (x,y), with radius r (in pixels). If r is replaced by a list {rx, ry} then
the Arc becomes an ellipse centered at (x,y) with radius in the x dimension of rx and in the y dimension of
ry.
If ∡1 and ∡2 are specified, draws an arc from ∡1 to ∡2 using the current angle mode.

Example:

Demo_ARC

BLIT Copy GROB

Syntax:

BLIT([trgtG], [dx1, dy1], [dx2, dy2], srcG, [sx1, sy1], [sx2, sy2], [c], [alpha])

Copies the region of graphic srcG between point (sx1, sy1) and (sx2, sy2) into the region of trgtG between
points (dx1, dy1) and (dx2, dy2). Pixels from srcG that are color c are not copied. alpha is a number from 0
(transparent) to 255 (opaque) which represent the transparency (alpha channel) of the source bitmap.

The defaults for the optional arguments are:

 trgtG = G0

 srcG = G0

 sx1, sy1 = srcGRB top left corner

 sx2, sy2 = srcGRB bottom right corner

 dx1, dy1 = trgtGRB top left corner

 dx2, dy2 = calculated so destination area is the same as source area

Page 222 of 239

13217 Help TextHelp Topics Tree
 c = all pixel colors

 alpha= 255 (fully opaque)

Note: when using the c and alpha options, it is highly recommended to specify the source x/y coordinates
in order to make sure that the system can distinguish what each parameter is.

Example:

Demo_BLIT

DIMGROB Size GROB

Syntax:

DIMGROB(G, w, h, [color]) or

DIMGROB(G, w, h, list)

Sets the dimensions of GROB G to w*h. Initializes the graphic G with color or with the graphic data
provided in list. If the graphic is initialized using graphic data, then list is a list of integers. Each integer, as
seen in base 16, describes one color every 16 bits.

Colors are in A1R5G5B5 format (1 bit for alpha channel and 5 bits for R, G and B).

Example:

Demo_DIMGROB

GETPIX Get Pixel Color

Syntax:

GETPIX([G], x, y)

Returns the color of the pixel of G with Cartesian coordinates (x, y).

Examples:

Demo_GETPIX

GROBH GROB Height

Syntax:

GROBH(G)

Returns the height of the graphic object G.

Example:

GROBH(G0) → 24

GROBW GROB Width

Syntax:

GROBW(G)

Returns the width of the graphic object G.

Example:

GROBW(G0) → 32

INVERT Invert GROB

Syntax:

INVERT([G, x1, y1, x2, y2])

Inverts the rectangle on G defined by the diagonal points (x1, y1) and (x2, y2). The effect is reverse video.

The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

If only one (x,y) pair is specified, it refers to the top left corner of G.

Example:

Demo_INVERT

LINE Line Drawing

Syntax:

LINE([G], x1, y1, x2, y2, [color])

LINE([G],points_definition, lines_definitions, rotation_matrix or {rotation_matrix or -1, ["N"], [{eye_x,
eye_y, eye_z} or -1], [{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D}]}, [zstring])

LINE([G],pre_rotated_points, line_definitions, [zstring])

The basic form of LINE draws one line between specified coordinates in the graphic using the specified
color.
The advanced form of LINE allows the rendering of multiple lines at a time with a potential 3D
transformation of the points that define the line. This is mostly used if you have a set of vertices and lines
and want to display them all at once (faster).
points_definition is either a list or a matrix of point definitions. Each point is defined by 2 to 4 numbers: x,
y, z and color. A valid point definition can have multiple forms. Here are some examples: [x, y, z, c], {x, y, z,
c}, {x, y, #c}, {(x, y), c}, (x,y).
lines_definitions is either a list or a matrix of line definitions. Each line is defined by 2 to 4 numbers. p1,
p2, color and alpha. p1 and p2 are the index in the points_definition of the 2 points that define the line.
Color is used to override the per point color definition. If you need to provide an Alpha, but not a color,
use -1 for the color.

Note, that {Color, [Alpha], line_1, …, line_n} is also a valid form to avoid re-specifying the same color for
each line.
rotation_matrix is a matrix of sizes 2*2 to 3*4 which specifies the rotation and translation of the points
using the usual 3D or 4D geometry.
{eye_x, eye_y, eye_z} defines the eye position (projection).

{xmin3D, xmax3D, ymin3D, ymax3D, zmin3D, zmax3D} is used to perform 3D clipping on the pre-
transformed objects.

Page 223 of 239

13217 Help TextHelp Topics Tree
Each point is rotated and translated through a multiplication by rotation_matrix. It is then projected on
the view plane using the eye position according to the following equation: x=eye_z/z*x-eye_x and
y=eye_z/z*y-eye_y.
Each line is clipped in 3D if 3D clipping data is provided.

If "N" is specified, the Z coordinates are Normalized between 0 and 255 after rotation provided easier
zClipping.
If zstring is provided, per pixel z clipping will happen using the z value string (see below).

LINE returns a string which contains all the transformed points. If you plan to call TRIANGLE or LINE
multiple times in a row using the same points and transformation, you can do so by replacing the
points_definition by this string and omitting the transformation definition in subsequent calls to TRIANGLE
and LINE.
About ZString

TRIANGLE([G]) returns a string adapted for z clipping.

To use Z clipping, call TRIANGLE to create a Z clipping string (initialized at 255 for each pixels). You can
then call LINE with appropriate z (0-255) values for each of the triangle vertexes and LINE will not draw
pixels further than the already drawn pixels. ZString is automatically updated as appropriate.

Example:

Demo_LINE

PIXOFF Pixel Off

Syntax:

PIXOFF([G], x, y)

Sets the color of the pixel of GROB G with coordinates (x, y) to white.

PIXON Pixel On

Syntax:

PIXON([G], x, y, [color])

Sets the color of the pixel of GROB G with coordinates (x, y). If supplied, color is a hexadecimal integer of
the form aaRRGGBB. This is an RGB color with the Alpha Channel in the high order byte. The Alpha
Channel number runs from 0 (opaque) to 255 (transparent). If no color is specified, black is used.

Examples:

PIXON(0,0,RGB(255,0,0))

PIXON(0,0,RGB(255,0,0,128))

RECT Draw Rectangle

Syntax:

RECT([G], [x1, y1], [x2, y2], [Color])

RECT([G], [x1, y1], [x2, y2], [edgeColor],[fillColor])

Draws a rectangle on G, with diagonal defined by points (x1,y1) and (x2,y2), using edgeColor for the
perimeter and fillColor for the inside.
The following values are optional and their defaults are listed:

x1, y1=top left corner of G

x2, y2=bottom right corner of G

edgeColor=white

fillColor=edgeColor

To erase a GROB, execute RECT_P(G). To clear the screen, execute RECT_P().

Note: semi-transparent rectangles can be drawn by using the Alpha channel in the color (0 is opaque, 255
is transparent). The color can also be expressed as { color, alpha }.

Examples:

Demo_RECT

SUBGROB Copy GROB to Target

Syntax:

SUBGROB(srcG, [x1, y1], [x2, y2], trgtG)

Sets graphic trgtG to be a copy of the area of srcG between points (x1,y1) and (x2,y2). If both (x1, y1) and
(x2, y2) are not specified, then the entire graphic srcG is used. If (x1, y1) is not specified, then the top left
corner of srcG is used; if (x2, y2) is not specified, then the bottom right corner of srcG is used.

trgtGRB can be any of the graphic variables except G0.

SUBGROB(G1, G4) will copy G1 in G4.

Example:

Demo_SUBGROB

TEXTOUT Draw Text

Syntax:

TEXTOUT(text, [G], x, y, [font], [textColor], [width], [backgroundColor])

Draws text on graphic G at position (x, y) using font and textColor. Paints the background before drawing
the text using color backgroundColor. If width is specified, does not draw text more than width pixels
wide. If backgroundColor is not specified, the background is not erased.

The sizes for font are:

0=current font (default)

1=font 10

2=font 12 (Small)

3=font 14 (Medium)

4=font 16 (Large)

Page 224 of 239

13217 Help TextHelp Topics Tree
5=font 18

6=font 20

7=font 22

Returns the X (in pixels, not Cartesian) coordinate at which the next character of the string should be
drawn if the string had more characters
Examples:

TEXTOUT("Hello HP Prime",-5,0,4,RGB(128,0,128),200,RGB(255,255,0)); FREEZE

Demo_PISERIES

ICON ICON keyword

Insert "ICON name hexPngFile;" in the core of a program (i.e., not in a function) to create a Named
graphic to use in subsequent graphic functions such as BLIT_P(G0, "name").

Although ICONs can be modified the intent is more as a source object.

Size of icons cannot be changed. Therefore, ICONs can not be the target of SUB and DIMGROB functions.

ICON are recreated each time a program is reloaded from storage, so any changes made will not be
permanent unlike changes in EXPORT variables.

C→PX Syntax:

C→PX(x, y) or

C→PX({x, y})

Converts from Cartesian coordinates to screen coordinates.

Examples:

C→PX(0,0) → {160,110} (assuming current app Plot Se ngs are set to default)

C→PX({15.9,10.9}) → {319,0} (assuming current app Plot Se ngs are set to default)

DRAWMENU Draw Button Menu

Syntax:

DRAWMENU(string1 or graphic, string2 or graphic,… string6 or graphic)

Draws a six-button menu at the bottom of the display, with labels string1, string2, …, string6, or using the
provided graphic (G0-G9 or "icon name").
Example:

DRAWMENU("ABC","","DEF"); FREEZE creates a menu with the first and third buttons labeled ABC and
DEF, respectively. The other four menu keys are blank.

FREEZE Freeze Screen

Syntax:

FREEZE

Prevents the screen from being redrawn after the program ends. Leaves the modified display on the
screen for the user to see.
This command does not pause and wait for input. Rather, it prevents a redraw until any other operation
(key press, screen touch, or data communication, or command) triggers the screen to be drawn.

Example:

FREEZE

Matrix Matrix Commands

The Matrix commands allow matrices to be manipulated from within a program. In this help section,
matrixname refers to the name of a matrix and must be M0, M1, M2, …, M9.

ADDCOL Add Column

Syntax:

ADDCOL(matrixname, vector, column_number)

Inserts values from vector into a column before column_number in the specified matrix. The size of vector
must be the same as the number of rows in the matrix matrixname.

Examples:

ADDCOL([[1,3],[4,6]],[2,5],2) → [[1,2,3],[4,5,6]]

ADDCOL([[1,3],[4,6]],{[2,5],[3,4]},{2,1}) → {[[1,2,3],[4,5,6]],[[3,1,3],[4,4,6]]}

ADDCOL({[[1,3],[4,6]],[[1,9],[5,6]]},[2,5],2) → {[[1,2,3],[4,5,6]],[[1,2,9],[5,5,6]]}

ADDCOL({[[1,3],[4,6]],[[1,9],[5,6]]},{[2,5],[3,4]},{2,1}) → {[[1,2,3],[4,5,6]],[[3,1,9],[4,5,6]]}

ADDROW Add Row

Syntax:

ADDROW(matrixname, vector, row_number)

Inserts values from vector into a row before row_number in the specified matrix.

The size of vector must be the same as the number of columns in the matrix matrixname.

Examples:

ADDROW([[1,2],[5,6]],[3,4],2) → [[1,2],[3,4],[5,6]]

ADDROW([[1,2],[5,6]],{[3,4],[2,5]},2) → {[[1,2],[3,4],[5,6]],[[1,2],[2,5],[5,6]]}

ADDROW({[[1,3],[4,6]],[[1,9],[5,6]]},[2,5],2) → {[[1,3],[2,5],[4,6]],[[1,9],[2,5],[5,6]]}

ADDROW({[[1,3],[4,6]],[[1,9],[5,6]]},{[2,5],[3,4]},{2,1}) → {[[1,3],[2,5],[4,6]],[[3,4],[1,9],[5,6]]}

DELCOL Delete Column

Syntax:

DELCOL(name, column_number)

Deletes column column_number from matrix name.

Example:

DELCOL([[1,2,3],[4,5,6]],2) → [[1,3],[4,6]]

Page 225 of 239

13217 Help TextHelp Topics Tree
DELROW Delete Row

Syntax:

DELROW(name, row_number)

Deletes row row_number from matrix name.

Example:

DELROW([[1,2][3,4][5,6]],2) → [[1,3],[4,6]]

EDITMAT Edit Matrix

Syntax:

EDITMAT(matrixvar, [title], [read only])

EDITMAT(matrix, [title], [read only]

Allows the user to edit or view a specified matrix. If a matrix variable is used (e.g., M0-M9), updates the
variable when the user taps the OK menu key.
The optional title can be either "title" or { "title", {"row names"…}, {"column names"…}}

If supplied, "title" will be displayed at the top of the editor. If "row names" and "column names" are
specified, they will be used as row and column headers in the editor.

If read only is not 0, the user will not be able to modify the matrix, but can only view it.

EDITMAT returns the edited matrix upon completion. If used in programming, returns to the program
when the user taps the OK menu key.
Example:

EDITMAT(M1) edits matrix M1.

REDIM Redimension

Syntax:

REDIM(matrixname, size)

Redimensions the specified matrix or vector to size. For a matrix, size is a list of two integers {n1, n2}. For
a vector, size is a list containing one integer {n}. Existing values in the matrix are preserved. Fill values will
be zeros.

SCALEADD Syntax:

SCALEADD(matrixname, value, row1, row2)

Multiplies the specified row1 of the matrix name by value, then adds this result to the second specified
row2 of the matrix matrixname.
Examples:

SCALEADD([[1,2],[3,4]],3,2,1) → [[10,14],[3,4]]

SCALEADD([[1,2],[3,4]],{3,2},{2,1},{1,1}) → {[[10,14],[3,4]],[[3,6],[3,4]]}

SUB Extract Portion

Syntax:

SUB(object, start, end)

Extracts a portion, of a list or matrix.

For a matrix, start and end are two lists of two numbers ({row, col}) specifying the top left and bottom
right of the portion to extract.
For a vector or list, start and end are two numbers specifying the indexes of the first and last objects of
the portion to extract.
Examples:

SUB([[1,2,1],[2,1,3],[4,2,3]],{2,1},{3,2}) → [[2,1],[4,2]]

SUB({5,2,9,4},2,3) → {2,9}

SWAPCOL Swap Columns

Syntax:

SWAPCOL(matrixname, column1, column2)

Exchanges column1 and column2 in the specified matrix matrixname.

Examples:

SWAPCOL([[1,2,1],[2,1,3],[4,2,3]],2,3) → [[1,1,2],[2,3,1],[4,3,2]]

SWAPCOL([[1,2,1],[2,1,3],[4,2,3]],{1,2},{3,3}) → {[[1,2,1],[3,1,2],[3,2,4]],[[1,1,2],[2,3,1],[4,3,2]]}

SWAPCOL({[[1,2,1],[2,1,3],[4,2,3]],[[9,8,7],[9,8,7]]},{1,2},{3,3}) → {[[1,2,1],[3,1,2],[3,2,4]],[[9,7,8],[9,7,8]]}

SWAPROW Swap Rows

Syntax:

SWAPROW(matrixname, row1, row2)

Exchanges row1 and row2 in the specified matrix matrixname.

Examples:

SWAPROW([[1,2,1],[2,1,3],[4,2,3]],2,3) -→ [[1,2,1],[4,2,3],[2,1,3]]

SWAPROW([[1,2,1],[2,1,3],[4,2,3]],{1,2},{3,3}) → {[[4,2,3],[2,1,3],[1,2,1]],[[1,2,1],[4,2,3],[2,1,3]]}

SWAPROW({[[1,2,1],[2,1,3],[4,2,3]],[[9,9],[6,6],[5,5],[8,8]]},{1,2},{3,3}) →
{[[4,2,3],[2,1,3],[1,2,1]],[[9,9],[5,5],[6,6],[8,8]]}

SCALE Syntax:

SCALE(matrixname, value, row_number)

Multiplies the specified row_number of the specified matrix by value.

Examples:

SCALE([1,2],3,1) → [3,6]

SCALE([[1,2],[3,4]],3,2) → [[1,2],[9,12]]

SCALE([[1,2],[3,4]],{3,2},{2,1}) → {[[1,2],[9,12]],[[2,4],[3,4]]}

Page 226 of 239

13217 Help TextHelp Topics Tree
REPLACE Syntax:

REPLACE(Object1,Start,Object2)

Replaces portion of a matrix, vector or string (Object1) starting at Start with Object2.

For a matrix, Start is a list containing two numbers; for a vector or string it is a single number.

Note: for strings, you can do: REPLACE("string", "sub_string", "replace_string")

Examples:

REPLACE([[1,2,3],[4,5,6]],{1,2},[[8,8],[9,9]]) → [[1,8,8],[4,9,9]]

REPLACE([10,12,23],3,[9,8,7,6]) → [10,12,9,8,7,6]

REPLACE("Replacement","place","configure") → "Reconfigurement"

L1:={8,9,7,3,4,6,6,8,0}; REPLACE(L1,5,{1,2,3,4,5}) → {8,9,7,3,1,2,3,4,5}

App Functions This menu contains commands for configuring Apps from within a program.

CHECK Check (Select) Definition

Syntax:

CHECK(n)

Checks (selects) the corresponding symbolic definition field in the current app. The integer n must be
between 0 and 9 for most apps. For Statistics 1-Var and Statistics 2-Var apps, n must be between 1 and 5.

For example, CHECK(3) would check F3 if the current app is Function. Then a checkmark would appear
next to F3 in Symbolic view, F3 would be plotted in Plot view, and evaluated in Numeric view.

ISCHECK Is Checked (Selected)

Syntax:

ISCHECK(n)

Returns 1 or 0 depending if the corresponding symbolic definition field in the current app is checked or
not. The integer n must be between 0 and 9 for most apps. For Statistics 1-Var and Statistics 2-Var apps, n
must be between 1 and 5.

STARTAPP Start Application

Syntax:

STARTAPP("AppName")

Starts the app AppName. The App's START function will run if present. The App’s default view will be
started. Note that the START function is always executed when the user presses the START menu key in
the App Library. Also works for apps saved in the App Library.

UNCHECK Uncheck (Deselect) Definition

Syntax:

UNCHECK(n)

Unchecks (deselects) the corresponding symbolic definition field in the current app. The integer n must be
between 0 and 9 for most apps. For Statistics 1-Var and Statistics 2-Var apps, n must be between 1 and 5.

For example, UNCHECK(3) would uncheck F3 if the current app is Function.

VIEW View Keyword

Syntax:

VIEW "Text" Function()

BEGIN

END;

Only works in an app program.

Allows a programmer to customize the View menu. Causes "Text" to appear when the View is pressed and
Function to be executed when the OK menu key (or ENTER key) is pressed.

Note that a view function can also be exported.

Integer Integer Commands

This menu contains commands working with integers.

BITAND Bitwise AND

Syntax:

BITAND(int1, int2, … intn)

Returns the bitwise logical AND of the specified integers.

Example:

BITAND(20,13) → 4

BITNOT Bitwise NOT

Syntax:

BITNOT(int)

Returns the bitwise logical NOT of the specified integer.

Example:

BITNOT(47) → 549755813840

BITOR Bitwise OR

Syntax:

BITOR(int1, int2, … intn)

Returns the bitwise logical OR of the specified integers.

Example:

BITOR(9,26) → 27

BITSL Bitwise Shift Left

Syntax:

Page 227 of 239

13217 Help TextHelp Topics Tree
BITSL(int1 [, int2])

Takes one or two integers as input and returns the result of shifting the bits in the first integer to the left
by the number of places indicated by the second integer. If there is no second integer, then the bits in the
first integer are shifted to the left one place.

Examples:

BITSL(28,2) → 112

BITSL(5) → 10

BITSR Bitwise Shift Right

Syntax:

BITSR(int1 [, int2])

Takes one or two integers as input and returns the result of shifting the bits in the first integer to the right
by the number of places indicated by the second integer. If there is no second integer, then the bits in the
first integer are shifted to the right one place.

Examples:

BITSR(112,2) → 28

BITSR(10) → 5

BITXOR Bitwise XOR

Syntax:

BITXOR(int1, int2, … intn)

Returns the bitwise logical exclusive OR of the specified integers.

Example:

BITXOR(9,26) → 19

B→R Base to Real

Syntax:

B→R(#integer[m])

Converts an integer in base m to a decimal integer (base10).

The base marker m can be b (for binary), o (for octal), or h (for hexadecimal). If m is omitted, the current
system base is assumed.
Examples:

B→R(#1101b) → 13

B→R(#1101) → 4353 (If system base is hexadecimal)

B→R({#101h,#101o,#101b}) → {257,65,5}

GETBASE Get Base

Syntax:

GETBASE(#integer[m])

Returns the base number for integer with base marker m. The base number is used by the SETBASE
function.
0 = System

1 = Binary

2 = Octal

3 = Decimal

4 = Hexadecimal

The base marker m can be b (for binary), o (for octal), d (for decimal), or h (for hexadecimal). If m is
omitted, the current system base is assumed.
Examples:

GETBASE(#1101b) → #1h

GETBASE(#1101) → #0h (if default base is hexadecimal)

GETBASE({#100h,#100d,#100o,#100b}) → {#4h,#3h,#2h,#1h}

GETBITS Get Bits

Syntax:

GETBITS(#integer)

Returns the number of bits used for encoding an integer. If not specified, then the value in the Integers
field of Page 1 of Home Settings is used.
Examples:

GETBITS(#22122) → 32 (If Home Se ngs Integers is set to 32 bits)

GETBITS(#1:45h) → 45

GETBITS(#153:-16o) → -16

GETBITS({#FFFF:16h,#777:-23o}) → {16,−23}

R→B Real to Base

Syntax:

R→B(Real [, bits [,base]])

Converts a decimal integer (base 10) to an integer.

Optionally specify bits and base.

 1 ≤ bits ≤ 64 (Unsigned integer)

-1 ≥ bits ≥ -63 (Signed integer)

base = 0 System

base = 1 Binary

base = 2 Octal

base = 3 Decimal

base = 4 Hexadecimal

Page 228 of 239

13217 Help TextHelp Topics Tree
Examples:

R→B(13) → #Dh (If system base is hexadecimal)

R→B(1800,64,2) → #3410:64o

R→B({50,50,50},{64,32,16},{1,2,4}) → {#110010:64b,#62o,#32:16h}

SETBASE Set Base

Syntax:

SETBASE(#integer[m] [,c])

Displays integer expressed in base m in whatever base is indicated by c.

Base marker m can be b (for binary), d (for decimal), o (for octal), d (for decimal), or h (for hexadecimal).
If m is omitted, the input is assumed to be in the default base.
c = 0 System

c = 1 Binary

c = 2 Octal

c = 3 Decimal

c = 4 Hexadecimal

If c is omitted, the output is displayed in the default base.

Examples:

SETBASE (#34o,1) → #11100b

SETBASE (#1101b) → #Dh (if the default base is hexadecimal)

SETBASE({#100d,#100d,#100d,#100d,#100d},{0,1,2,3,4}) → {#64h,#1100100b,#144o,#100d,#64h}

SETBITS Set Bits

Syntax:

SETBITS(#integer[m] [,bits])

Sets the number of bits to represent integer.

The value of bits must be in the range –63 to 64. Base marker m can be b (for binary), d (for decimal), o
(for octal), d (for decimal), or h (for hexadecimal). If base marker m or bits is omitted, the default value is
used.
Examples:

SETBITS(#1111b, 15) → #1111:15b

SETBITS({#FFFFh,#777o},{15,7}) → {#7FFF:15h,#177:7o}

I/O Input/Output Commands

The Input/output commands allow users to interact with programs.

CHOOSE Choose Box

Syntax:

CHOOSE(var, “title”, “item1”, “item2”,[…"item14"]) or

CHOOSE(var,"title",{"item1"..."itemN"})

Displays a choose box with the given "title" and containing items with the strings "item1", etc.

If the user chooses an object, var is updated to contain the number of the selected object (an integer, 1, 2,
3, …) and CHOOSE returns true (non zero).
If the user exits without choosing, var is not changed and CHOOSE returns false (0).

Examples:

CHOOSE(A, "Pick a Number",1,2,3,4)

CHOOSE(B, "Direction", {"Up","Left","Right","Down"})

EDITLIST Edit List

Syntax:

EDITLIST(listvar or list, [title], [read only])

Allows the user to edit the specified list.

If a list variable is used (e.g., L0-L9), updates the variable if OK is clicked.

The title can be either "title" or { "title", {"row names"…}, {"column names"…}}

"title" will be displayed above the editor as a "title" or "name".

if "row names" and "column names" are specified, they will be used as row and column headers.

If read only is non 0, the user will not be able to modify the object.

Returns the edited list upon completion.

Example:

L1:={"123","456"};EDITLIST(L1) edits list L1

EDITLIST({1,2,3},"My List",1) displays a list but does not allow editing

EDITMAT Edit Matrix

Syntax:

EDITMAT(matrixvar, [title], [read only])

EDITMAT(matrix, [title], [read only]

Allows the user to edit or view a specified matrix. If a matrix variable is used (e.g., M0-M9), updates the
variable when the user taps the OK menu key.
The optional title can be either "title" or { "title", {"row names"…}, {"column names"…}}

If supplied, "title" will be displayed at the top of the editor. If "row names" and "column names" are
specified, they will be used as row and column headers in the editor.

If read only is not 0, the user will not be able to modify the matrix, but can only view it.

Page 229 of 239

13217 Help TextHelp Topics Tree
EDITMAT returns the edited matrix upon completion. If used in programming, returns to the program
when the user taps the OK menu key.
Example:

EDITMAT(M1) edits matrix M1.

GETKEY Get Key

Syntax:

GETKEY

Returns the ID of the first key in the keyboard buffer, or -1 if no key was pressed since the last call to
GETKEY. Key IDs are integers from 0 to 50, numbered from top left (key 0) to bottom right (key 50).

0 = Apps

1 = Symb

2 = Up

3 = Help

4 = Esc

5 = Home

6 = Plot

7 = Left

8 = Right

9 = View

10 = CAS

11 = Num

12 = Down

13 = Menu

After that, the keys are numbered from top left (14 = Vars) to bottom right (50 = +)

INPUT Input Form

Syntax:

INPUT(var,[“title”], [“label”], [“help”], [reset_value], [initial_value])

INPUT({vars},[“titles”], [{“labels”}], [{“helps”}], [{reset_values}], [{initial_values}])

var -> {var_name, real, [{pos}]}

var -> {var_name, [allowed_types_matrix], [{pos}]}

var -> {var_name, {choose_items}, [{pos}]}

The simpler form of this command opens a dialog box with the given title and one field named label,
displaying help at the bottom. The dialog box includes Cancel and OK menu keys. The user can enter a
value in the labeled field. If the user presses the OK menu key, the variable var is updated with the
entered value and 1 is returned. If the user presses the Cancel menu key, var is not updated and 0 is
returned.

In the more complex form of the command, lists are used to create a multi-field dialog box. If var is a list,
each element can be either a variable name or a list using the following format:

{var_name, real, [{pos}]} to create a checkbox control. If real is >1, then this checkbox gets pooled with
the next n -1 checkboxes in a radio group (i.e., only one of the n checkboxes can be checked at any time)

{var_name, [allowed_types_matrix], [{pos}]} to create an edit field. allowed_types_matrix lists all the
allowed types ([-1] stands for all types allowed). If the only allowed type is a string, then the edition will
hide the double quotes.
{var_name, {choose_items}, [{pos}]} to create a choose field.

If pos is specified, it is a list of the form {field start in screen percentage, field width in screen percentage,
line (starts at 0) }. This allows you to control precisely the position and size of your fields. Note that you
have to specify pos for either none or all fields in the dialog box.

There is a maximum of 7 lines of controls per page. Controls with more than 7 lines will be placed in
subsequent pages. If more than one page is created, titles can be a list of titles.

ISKEYDOWN Is Key Pressed

Syntax:

ISKEYDOWN(KeyIdentifier)

Returns true (non-zero) if the key whose KeyIdentifier is provided is currently pressed, and false (0) if it is
not.

MOUSE Get Touch Event

Syntax:

MOUSE[(index)]

Returns two lists describing the current location of each potential pointer (or empty lists if the pointers
are not used). The output is {x , y, original z, original y, type} where type is 0 (for new), 1 (for completed), 2
(for drag), 3 (for stretch), 4 (for rotate), and 5 (for long click).

The optional parameter index is the nth element that would have been returned—x, y, original x,
etc.—had the parameter been omitted (or –1 if no pointer activity had occurred).

MSGBOX Message Box

Syntax:

MSGBOX(expr,[OK_Cancel]) or

MSGBOX(string,[OK_Cancel])

Displays a message box with either the value of expr or string.

Page 230 of 239

13217 Help TextHelp Topics Tree
If OK_Cancel is true, displays OK and CANCEL menu keys, otherwise only displays the OK menu key.
Default value for OK_Cancel is false.
Returns true (non-zero) if the user presses OK, false (0) if the user presses CANCEL.

Example:

MSGBOX("Click OK to continue")

STARTVIEW Start View

Syntax:

STARTVIEW(ViewNumber[,Redraw])

Starts a view of the current app. Redraw, is optional; if Redraw, is true (non 0), it will force a refresh for
the view.
The view numbers are as follows:

0=Symbolic

1=Plot

2=Numeric

3=Symbolic Setup

4=Plot Setup

5=Numeric Setup

6=App Info

7=Views key

If the current app has views defined under the Views menu, then the following view numbers are used:

8=First special view (Split Screen Plot Detail)

9=Second special view (Split Screen Plot Table)

10=Third special view (Autoscale)

11=Fourth special view (Decimal)

12=Fifth special view (Integer)

13=Sixth special view (Trig)

If ViewNumber is negative, the following global views are used:

-1=Home Screen

-2=Modes

-3=Memory Manager

-4=App Library

-5=Matrix Catalog

-6=List Catalog

-7=Program Catalog

-8=Note Catalog

Example:

STARTVIEW(-3)

PRINT Syntax:

PRINT(expr) or

PRINT(string)

PRINT()

Prints either the result of expr or string to the terminal.

The terminal is a program text output viewing mechanism which is displayed only when PRINT commands
are executed. When visible, you can use the up/down keys to view the text, Backspace to erase the text
and any other key to hide the terminal.
You can show the terminal at anytime using the ON+T combination (press and hold the On key, press the T
key, then release both keys). Pressing On stops the interaction with the terminal.

PRINT with no argument clears the terminal.

wilcoxonp Wilcoxon Distribution

Syntax:

wilcoxonp(Integer1,[Integer2])

Distribution of the Wilcoxon or Mann-Whitney test for one or two samples.

Examples:

wilcoxonp(4)

wilcoxonp(7,5)

wilcoxons Wilcoxon statistic

Syntax:

wilcoxons(List1,Median)

wilcoxons(List1,List2)

Rank statistic of Wilcoxon or Mann-Whitney test for 1 sample (List1) and Median, or 2 samples
(List1,List2).
Examples:

wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20])

wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10)

wilcoxont Wilcoxon test

Syntax:

wilcoxons(List1,Median, [Method],[Significance])

wilcoxons(List1,List2)

wilcoxont(List,List || Real,[Func],[Real])

Page 231 of 239

13217 Help TextHelp Topics Tree
Wilcoxon or Mann-Whitney test for 1 sample (List1) and Median, or 2 samples (List1,List2). Optionally,
specify Method to be '<' or '>', and Significance.
Examples:

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20])

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20],0.01)

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>')

wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>',0.05)

WAIT Syntax:

WAIT(n)

Pauses program execution.

If n ≥ 1 :

 Execution paused for the specified number (n) seconds.

 Returns the value of n.

If n = 0 or omitted :

 Execution paused until a key is pressed.

 If a key is pressed, the key code is returned.

 After a 1-minute timeout, returns -1

If n = -1 :

 Execution paused until a key is pressed or there is a mouse event.

 If a key is pressed, the key code is returned.

 If a mouse event happens, a list of the form { type, [x, y], [dx, dy] } is returned. Normally x/y is the event
position unless otherwise indicated.
 After a 1-minute timeout, returns -1

Event type can be:

 0: Mouse Down

 1: Mouse Move

 2: Mouse Up (x/y is not provided)

 3: Mouse Click (if a click is detected, there is no Mouse Up)

 5: Mouse Stretch. x/y is the delta since the last event. dx/dy is the delta since the original mouse down.

 6: Mouse Rotate, x is original angle, y is new angle in 32nd of a circle.

7: Mouse Long Click, indicates the mouse stayed down for 1 second.

Example:

WAIT(3)

More This menu contains additional programming commands.

CAS CAS Evaluation

Syntax:

CAS(expression) or

CAS.function(...) or

CAS.variable[(...)]

Evaluate an expression or variable using the CAS.

Note that outputs in numerical mode are transformed into strings or lists of expressions for symbolic
matrices.

EXECON Execute On Element

Syntax:

EXECON("&Expr", List1, [List2,…])

Creates a new list based on the elements in one or more lists by iteratively modifying each element
according to an expression that contains the ampersand character (&).

Examples:

EXECON("&1+1",{1,2,3}) → {2,3,4}

In the example above, &1 indicates an element in the list. &1+1 means to add 1 to each element of the list.

Where the & is followed directly by a number, the relative position in the list is indicated. For example:

EXECON("&2-&1",{1,4,3,5}) → {3, -1, 2}

In the example above, &2 indicates the second element and &1 the first element in each pair of elements.
The minus operator between them subtracts the first from the second in each pair until there are no more
pairs. In this case (with just a single list), the numbers appended to &

can only be from 1 to 9 inclusive.

EXECON can also operate on more than one list. For example:

EXECON("&1+&2",{1,2,3},{4,5,6}) → {5,7,9}

In the example above, &1 indicates an element in the first list and &2 indicates the corresponding element
in the second list. These element pairs are added until there are no more pairs. With two lists, the
numbers appended to & can have two digits; in this case, the first digit refers to the list number (in order
from left to right) and the second digit refers to the element in the list; the second digit can still only be
from 1 to 9, inclusive.

EXECON can also begin operating on a specified element in a specified list. For example:

EXECON("&23+&1",{1,5,16},{4,5,6,7}) → {7,12}

Page 232 of 239

13217 Help TextHelp Topics Tree
In the example above, &23 indicates that operations are to begin on the second list and with the third
element. To that element is added the first element in the first list. The process continues until there are
no more pairs.
EXECON can also operate on matrices in the same way as lists:

EXECON("&1+&2",[[1,2],[3,4]],[[5,6],[6,7]]) → [[6,8],[9,11]]

In the example above, the result is the sum of the two matrices.

EVALLIST Evaluate List

Syntax:

EVALLIST({list})

Evaluates the content of each element in the list and returns the resulting list.

Example:

EVALLIST({'1+1','4/2*(6-3)'}) → {2,6}

→HMS Syntax:

→HMS(value)

Displays a decimal value in sexagesimal format; that is, in units subdivided into groups of 60. This includes
degrees, minutes, and seconds as well as hours, minutes, and seconds.

Examples:

→HMS(8.5) → 8°30'

→HMS({8.5,37.7539}) → {8°30ʹ00ʺ,37°45ʹ14.04ʺ}

HMS→ Syntax:

HMS→(value)

Displays a sexagesimal value in decimal format.

Examples:

HMS→(8°30) → 8.5

HMS→({8°30ʹ00ʺ,286°15ʹ00ʺ}) → {8.5,286.25}

ITERATE Iterate Expression

Syntax:

ITERATE(expr, var, ivalue, times)

For times, recursively evaluates expr in terms of var, beginning with var = ivalue.

Examples:

ITERATE(X^2, X, 2, 3) → 256

ITERATE({'X^2','Y^3','Z+1'},{'X','Y','Z'},{2,3,4},{3,2,3}) → {256,19683,7}

TEVAL Time Evaluation

Syntax:

TEVAL(Param)

Returns the time it takes to evaluate the parameter.

Example:

TEVAL(WAIT(5)) → ~5.095_s

Note: actual result will vary but should be close to 5.00_s

TICKS Internal Ticks Value

Syntax:

TICKS()

Returns the internal millisecond clock value.

Example:

TICKS

TYPE Object Type

Syntax:

TYPE(object)

Returns the type of the object:

0: Real

1: Integer

2: String

3: Complex

4: Matrix

5: Error

6: List

8: Function

9: Unit

14.?: CAS object. the fractional part is the CAS type

%CHANGE Percent Change

Syntax:

%CHANGE(x, y)

Percent change from x to y. Returns 100*(y-x)/x.

Examples:

%CHANGE(20,50) → 150

%CHANGE(4.5,8.3) → 84.4444444444

%CHANGE({10,20,30},{75,75,75}) → {650,275,150}

%TOTAL Percent Total

Page 233 of 239

13217 Help TextHelp Topics Tree
Syntax:

%TOTAL(x, y)

Percent total; the percentage of x that is y. Returns 100*y/x.

Examples:

%TOTAL(20,50) → 250

%TOTAL(1.5,7.5) → 500

%TOTAL({10,20,30},{75,75,75}) → {750,375,250}

Template Menu This menu contains all the programing structure and templates that are useful when editing a program

Block Block Menu

This menu contains commands for entering block structures in programs.

BEGIN END BEGIN END Block

Syntax:

BEGIN commands; END;

Defines a set of commands to be executed in a block.

Example:

EXPORT SQM1(X)

BEGIN

 RETURN X^2-1;

END;

This program defines a user function named SQM1(X). Entering SQM1(8) returns 63.

KILL Stop Execution

Syntax:

KILL;

Stops the execution of a program.

Example:

Demo_KILL

RETURN Return Command

Syntax:

RETURN expression;

Exits from a function and returns the value of expression (optional).

Example:

EXPORT FACTORIAL(N)

BEGIN

 IF N==1 THEN

 RETURN 1;

 ELSE

 RETURN N*FACTORIAL(N-1);

 END;

END;

Example:

$Demo_RETURN

Branch Branch Commands

This menu contains common branch commands such as IF … THEN.

CASE Starts a "CASE … END" branch structure.

Syntax:

 CASE

 IF test1 THEN commands1 END

 IF test2 THEN commands2 END

 …

 IF testN THEN commandsN END

 [DEFAULT] [commandsD]

 END;

Evaluates test1. If true, executes commands1 and ends the CASE. Otherwise, evaluates test2. If true,
executes commands2. Continues evaluating tests until a true is found. If no true test is found, executes
commandsD, if provided.
Example:

Demo_CASE

IF THEN ELSE END IF Branch Structure

Syntax:

IF test THEN commands1 [ELSE commands2] END;

Starts an "IF … THEN … END" or "IF … THEN … ELSE … END" branch structure.

Evaluate test. If test is true (non 0), executes commands1, otherwise, executes commands2

Example:

IF A<1

 THEN PRINT("A<1");

 ELSE PRINT("A>1");

END;

Examples:

Page 234 of 239

13217 Help TextHelp Topics Tree
Demo_IF

IFERR Error Trapping Structure

Syntax:

IFERR commands1 THEN commands2 [ELSE commands3] END;

Executes sequence of commands1. If an error occurs during execution of commands1, executes sequence
of commands2. Otherwise, execute sequence of commands3.
Many conditions are automatically recognized by the HP Prime as error conditions and are automatically
treated as errors in programs. This command facilitates error-trapping of such errors.

Note: the error number will be stored in the Ans variable. So you can access it and use it in the THEN
clause of the IFERR.
Example:

IFERR 1/0

 THEN PRINT("1/0 Error");

END;

Example:

Demo_IFERR

Variable Variable Menu

This menu contains options relating to the variables you can create in programs.

EXPORT EXPORT function or variables

Syntax:

EXPORT FunctionName(Parameters)

EXPORT Var1[,Var2, ... ,Var8];

EXPORT Var1[:=Val1, Var2:=Val2, ... Var8:=Val8];

In a program, declares functions or variables to export globally. Exported functions appear in the Toolbox
User menu; exported variables appear in the Vars CAS, App, or User menus.

For an exported function:

Forward function declaration:

EXPORT function(params);

Normal function declaration:

EXPORT function[(params)]

BEGIN

//Function definition goes here

END;

Examples:

EXPORT X2m1(X);

EXPORT ratio:=0.15;

EXPORT X2M1(X)

BEGIN

RETURN X^2-1;

END;

Examples:

Demo_EXPORT

:= Assign

Syntax:

variable := object

Assigns object to variable.

Examples:

A := 3 stores the value 3 in the variable A

F1 := 3-X makes F1(X)=3-X

M5 := [1, 2] stores a vector in M5

LOCAL LOCAL keyword

Syntax:

LOCAL Var1[:=Val1, Var2:=Val2, ... Var8:=Val8];

Declares one or more local variables. Each variable can be assigned an optional initial value as well. If the
declaration is in a function block, these variables will be local to the function. If the declaration is in the
main program body, the variables are local to the program.

There can only be 8 variables per LOCAL keyword. To create more variables, you must add another LOCAL
keyword.
Examples:

Demo_LOCAL

▶ Store

Syntax:

value ▶ variable

Stores value in variable.

Example:

3▶A stores the value 3 in the variable A.

Loop Loop Commands

This menu contains loop commands such as FOR … NEXT.

REPEAT Repeat Loop Structure

Page 235 of 239

13217 Help TextHelp Topics Tree
Syntax:

REPEAT commands UNTIL test;

Executes commands UNTIL test is true.

A:=5;

REPEAT

 PRINT(A);

 A:= A-1;

UNTIL A<1;

will print 5 4 3 2 1

Examples:

Demo_REPEAT

GETSIDES

BREAK Break Loop

Syntax:

BREAK [n];

Exits from expression local loop structure.

Example:

FOR A FROM 1 TO 10 DO

 B:= (A+3) MOD 5

 IF B==1 THEN BREAK;

 END;

END;

If n is specified, allow to exit n loop structures.

Example:

Demo_BREAK

CONTINUE Syntax:

CONTINUE [n];

Transfers execution in a loop to the start of the next iteration of the nth upper loop (default current loop).

Example:

Demo_CONTINUE

FOR FROM TO DO END For Loop Structure

Syntax:

FOR var FROM start TO (or DOWNTO) finish [STEP increment] DO commands END;

Sets variable var to start; then, for as long as this variable’s value is less than or equal to (or more than for
a DOWNTO) finish, executes commands and adds (or subtracts for DOWNTO) 1 (or increment) to var.

Examples:

//print 1 3 5 7 9

FOR A FROM 1 TO 10 STEP 2

 DO

 PRINT(A);

END;

//print 10 8 6 4 2

FOR A FROM 10 DOWNTO 1 STEP 2

 DO

 PRINT(A);

END;

Example:

Demo_FOR

WHILE While Loop Structure

Syntax:

WHILE test DO commands END;

Executes commands WHILE test is true.

Example:

A:=5;

WHILE A>0 DO

 PRINT(A);

 A:= A-1;

END;

will print 5 4 3 2 1

Examples:

Demo_WHILE

ISPERFECT

PERFECTNUMS

KEY Key Keyword

Syntax:

KEY name

BEGIN

END;

Page 236 of 239

13217 Help TextHelp Topics Tree
Declaring a function with the KEY keyword allows to redefine the appropriate key in the keyboard.

The name of the function specifies the key.

See user manual for the complete list.

Note that a key function can also be exported and be a view.

VIEW View Keyword

Syntax:

VIEW "Text" Function()

BEGIN

END;

Only works in an app program.

Allows a programmer to customize the View menu. Causes "Text" to appear when the View is pressed and
Function to be executed when the OK menu key (or ENTER key) is pressed.

Note that a view function can also be exported.

Debugging Environment Once you tap the Debug menu key with a program selected, if a program hits a Debug statement or if you
debug a program using the debug command, the debugging environment starts. This environment has
three parts:
• A title bar at the top, with the current name of the program and/or routine being debugged

• The listing of the program being debugged (if available, else it displays the current and next instructions)

• A variable watch listing in a two-column table

In the variable list, type the names of the variables you want to observe during debugging in the left
column. Their current values will be displayed in the right column. By typing a new value in the right
column, you can change the value of a variable.

The menu keys are:

• Skip: executes a subroutine but does not debug it

• Step: moves to the next step in the program; if the next step is a subroutine, then steps down into it and
begins to debug it
• Swap: switches to view the calculator display so you can see your program output (press any key to
return to the debugger)
• Stop: quits the debugging environment and returns to the Program Catalog

• Cont: continues execution of the program without debugging

If the variable list has the focus, Edit can be used to change the variable listed on a row or to change the
variable value.
If the program listing has the control, Edit will stop the program evaluation and jump to the program
editor to allow you to modify the program.
You can drag the program source code.

You can drag the variable list header to see more or less of the program as needed.

Note Catalog Press Shift 0 (Notes) to open the Note Catalog.

Menu Buttons:

• Edit: opens the highlighted note for editing in the Notes Editor

• New: creates a new note

• More: opens more menu options (Save, Rename, Sort, Delete, and Clear) for the highlighted note

• Send: sends the highlighted note to another HP Prime

Note: the Editor saves your changes automatically when you exit the editor. If you want to save the
original version of your note before you make changes, be sure to use the More button in the Note
Catalog and select Save.

Note Editor The Note Editor is where you create or modify a note.

Menu Buttons:

• Format: displays a menu of formatting options

• Style: displays a menu of style options

• ▲ Page ▼: moves from page to page in a multi-page note

• •: cycles through bullet styles

• Insert: tap to display a menu of items that can be inserted

Press ALPHA twice to lock the alpha shift. Press it again to release the alpha shift.

You can copy and paste text using Shift View (Copy) and Shift Menu (Paste) respectively.

Messaging When connected to a PC either wirelessly or via USB, the PC can send messages to the calculator. You can
also send a message back to the PC. See the HP Prime Connectivity Kit User Guide for more details.

Either dismiss the message by tapping OK, or tap Reply, enter your message, and tap OK to send it.

Poll and Quiz Poll and Quiz functionality enables communication between a computer and any number of other
calculators. It enables teachers to wirelessly communicate with students' calculators, send them
questions, and receive responses. The responses are aggregated and displayed. These features enable
formative assessment as well as active participation of the students in classroom activities.

Poll and Quiz functionality requires the HP Prime Connectivity Kit. See the User Guide that accompanies
the HP Prime Connectivity Kit for instructions.

Page 237 of 239

13217 Help TextHelp Topics Tree
Exam Mode The HP Prime calculator can be precisely configured for an examination, with any number of features or

functions disabled for a set period of time. Configuring a HP Prime calculator for an examination is called
exam mode configuration. You can create and save multiple exam mode configurations, each with its own
subset of functionality disabled. You can set each configuration for its own time period, with or without a
password.

Exam mode configuration will be of interest primarily to teachers, proctors, and invigilators who want to
ensure that the calculator is used appropriately by students sitting for an examination.

Exam Mode can be configured, and activated, on Home Settings Page 3. You can quickly access this page
by holding down the ON key and pressing Esc.
Basic and Custom Mode

You can create your own exam mode configurations using the Custom Mode as a basis. Or you can use
the Basic Mode. To use the Basic Mode, simply tap on the Configuration field and select Basic Mode. Then
tap the Start menu key. The Basic Mode configuration is as follows:

• The HP Prime memory is hidden and restored when the exam mode exits

• The green LED at the top of the calculator is set to blink

• The Basic Mode will end when the calculator is connected to either a PC or another HP Prime via the
micro-USB cable
Fields

• Configuration: choose Basic Mode or create your own Custom Mode (see below)

• Timeout: choose a duration for Exam Mode (that is, how long the disabled features will be disabled).

• Default Angle: sets the angle measure (degrees or radians) that all client calculators must use, or allows
the current calculator settings to be used
• Password: a code that will deactivate Exam Mode before the time-out period.

• Memory: Keep, Erase, Hide, or Keep and delete memory changes that occurred during exam mode

• Blink LED: forces the LED on all client calculators to maintain a fixed sequential pattern

• Security code: check to prompt for a security code to enter at the start of exam mode that drives the
LED blink pattern
Menu Buttons:

• Config: view and edit the selected exam configuration (not available in Basic Mode)

• Choose: select an option from the currently selected menu

• ▲ Page ▼: return to the previous page (left side of button) or go to the next page (right side of button)

• More: display options to copy the configuration or reset it (not available in Basic Mode)

• Start or Send: activate exam mode or send it to another HP Prime

Note that Send only appears if the HP Prime is connected to another HP Prime via the USB cable on HP
Prime calculators that support unit-to-unit connectivity.

Configuring Exam Mode On the Exam Mode settings screen (Home Settings Page 3), tap Config. The Exam Mode Configuration
screen appears with a tree depicting the sets of features that can be disabled. Each entry has a check box
to its left. Tap an entry to select it and then either tap its check box to disable it or tap on the ✓ menu
button.
Some of the entries have a plus sign (+) to the left of their check boxes. These entries represent
categories; you can check it to disable all the features in the category or tap on the plus sign (+) to expand
the category and disable certain features within the category.

1. Select those features you want disabled, and make sure that those features you don’t want disabled are
not selected.
2. Tap OK to return to Exam Mode Settings.

Creating New Configurations As well as modifying Custom Exam Mode configuration, you can create new configurations. You can then
select the particular configuration you want before activating Exam Mode.

1. On Home Settings Page 3, choose the configuration you want to be the base for a new configuration. (If
you haven't yet created a new configuration, the only configuration available will be Custom Mode.)

2. Tap More and select Copy

 The New Exam Mode Configuration screen appears.

3. Enter a name for the new configuration.

4. Tap OK twice.

5. Tap Config.

6. Select those functions you want disabled, and make sure that those functions you don’t want disabled
are not selected.
7. Tap OK.

The new configuration has now been added to the Configuration field drop-down box.

Activating Exam Mode Exam Mode can be activated on Home Settings Page 3. You can quickly access this page by holding down
the On key and pressing Esc.
1. On Home Settings Page 3, choose the configuration you want to activate.

2. Tap Start. A summary screen will appear notifying you that you are about to enter an exam mode.
Swipe the lock to start exam mode, or tap Cancel to exit and return to Home Settings Page 3.

3, Depending on the exam mode configuration, you may be prompted to enter a security code provided
by your proctor.
4. You can always exit exam mode by connecting the HP Prime to a PC via the USB cable or connecting it
to another HP Prime via the micro-USB unit-to-unit cable.

Page 238 of 239

13217 Help TextHelp Topics Tree
Depending on the exam mode configuration, you may also be able to exit exam mode by:

• entering the password on the Exam Mode settings screen and tapping OK

• waiting for the timeout period to expire

You can also activate the current Exam Mode configuration on an HP Prime attached to yours via the USB
cable, if both units support unit-to-unit connectivity. In this case, the Start menu button is replaced with a
Send menu button once the HP Primes are connected. Tap the Send menu button to install and start the
current Exam Mode configuration on the attached HP Prime.

Finally, you can install and start an Exam Mode configuration on one or more HP Prime calculators using
the Connectivity Kit. The HP Prime calculators can communicate with the Connectivity Kit either via USB
cable or using the optional wireless module(s) if your HP Prime supports wireless connectivity. Please see
the Connectivity Kit User Guide for details.

Page 239 of 239

