Fractals using Lindenmayer System: Hilbert, Dragon, SnowFlake, Sierpinski, Penrose ..

+- HP Forums (http://www.hpmuseum.org/forum)
+-- Forum: HP Software Libraries (/forum-10.html)
+--- Forum: HP Prime Software Library (/forum-15.html)
+--- Thread: Fractals using Lindenmayer System: Hilbert, Dragon, SnowFlake, Sierpinski, Penrose .. (/thread-40.html)



Fractals using Lindenmayer System: Hilbert, Dragon, SnowFlake, Sierpinski, Penrose .. - patrice - 12-12-2013 12:46 AM

This program is using the Lindenmayer System to build fractals on screen

The program acts like an application.
Press Help to get instructions.
Press Plot to see actual fractal.
Press Symb to see fractal setting
and Symb again to choose a fractal
+ will calculate the next generation of the fractal.
New version taking advantage of rev 6030
Now with 28 Lindenmayer System fractals
Use key A to change Aspect ratio on screen
Faster drawing
Press Help for explanations
Code:

#pragma mode( separator(.,;) integer(h64) )
// Fractal : Lindenmayer system
// V 1.5 02/2013
// V 2.0 08/2014 taking advantage of Rev 6030
//    and more fractals
//    simplify and speedup
EXPORT LSangle, LSdir, LSaxiom, LSaxiomOrg, LSgen, LSrules, LSNum;
Stk, Clr, Aspect, LPoints, LLines, Timing;
//EXPORT Xmin, Xmax, YMin, YMax;

// Stack functions
StkInit()
BEGIN
  Stk:= {0};
END;
StkPush(val)
BEGIN
  Stk:= CONCAT(Stk, {val});
END;
StkPop()
BEGIN
  LOCAL Tmp;
  Tmp:= Stk(SIZE(Stk));
  Stk:= SUB(Stk,1,SIZE(Stk)-1);
  RETURN Tmp;
END;

LSclr(Ndx)
BEGIN // Color for a segment
  Ndx:= ROUND(Ndx*186,0);
  IF Ndx < 31 THEN RETURN RGB(0,0,Ndx*8); END;
  IF Ndx < 62 THEN RETURN RGB(0,(Ndx-31)*8,31*8); END;
  IF Ndx < 93 THEN RETURN RGB(0,31*8,(92-Ndx)*8); END;
  IF Ndx < 124 THEN RETURN RGB((Ndx-93)*8,31*8,0); END;
  IF Ndx < 155 THEN RETURN RGB(31*8,(154-Ndx)*8,0); END;
  IF Ndx < 186 THEN RETURN RGB(31*8,0,(Ndx-155)*8); END;
  RETURN RGB(31*8,0,31*8);
END;

LSdraw(Axiom)
BEGIN
  LOCAL Scan, Code, LineT, Xp, Yp, Ap, Tmp;
  IF SIZE(LPoints) == 0 THEN
    StkInit(); Xp:= 0; Yp:= 0; Ap:= LSdir;
    Xmin:= 0; Xmax:= 0; Ymin:= 0; Ymax:= 0;
    LPoints:= {{0},{0}}; LLines:= {}; LineT:= 1;
    FOR Scan FROM 1 TO dim(Axiom) DO
      Code:= mid(Axiom,Scan,1);
      IF Code = "F" OR Code = "G" THEN
        Xp:= Xp+ sin(Ap); Yp:= Yp+ cos(Ap);
        IF Code = "F" THEN LPoints[1]:= CONCAT(LPoints[1], Xp); LPoints[2]:= CONCAT(LPoints[2], Yp); LLines:= CONCAT(LLines,{{LineT,SIZE(LPoints[1]),#0}}); LineT:= SIZE(LPoints[1]); END;
      END;
      IF Code = "-" THEN Ap:= Ap- LSangle; END;
      IF Code = "+" THEN Ap:= Ap+ LSangle; END;
      IF Code = "|" THEN Ap:= Ap+ 180; END;
      IF Code = "[" THEN StkPush(Xp); StkPush(Yp); StkPush(Ap); StkPush(LineT); END;
      IF Code = "]" THEN LineT:= StkPop(); Ap:= StkPop(); Yp:= StkPop(); Xp:= StkPop(); END;
    END;
    IF SIZE(LPoints) > 1 THEN
        // échelle
      Xmin := MIN(LPoints[1])-1; Xmax := MAX(LPoints[1])+1;
      Ymin := MIN(LPoints[2])-1; Ymax := MAX(LPoints[2])+1;
      CASE
        IF Aspect == 0 THEN END;
        IF (Xmax- Xmin)*3 < (Ymax- Ymin)*4 THEN Tmp:= ((Ymax- Ymin)*4/3 - (Xmax- Xmin))/2; Xmin:= Xmin-Tmp; Xmax:= Xmax+Tmp; END;
        IF (Xmax- Xmin)*3 > (Ymax- Ymin)*4 THEN Tmp:= ((Xmax- Xmin)*3/4 - (Ymax- Ymin))/2; Ymin:= Ymin-Tmp; Ymax:= Ymax+Tmp; END;
      END;
      IF Clr == 1 THEN // couleur
        FOR Xp FROM 1 TO SIZE(LLines) DO
          LLines[Xp,3]:= LSclr(Xp/SIZE(LLines));
        END;
      END;
      LPoints[1]:= 320/(Xmax-Xmin)*(LPoints[1]-Xmin);
      LPoints[2]:= 240/(Ymax-Ymin)*(Ymax-LPoints[2]);
      LPoints;
      Tmp:= {}; // transposition liste de listes
      FOR Xp FROM 1 TO SIZE(LPoints[1]) DO
        Tmp:= CONCAT(Tmp,{{LPoints[1,Xp],LPoints[2,Xp]}});
      END;
      LPoints:= Tmp;
    END;
  END;
  RECT();
  IF SIZE(LPoints) > 1 THEN
    LINE_P(LPoints,LLines,[[1,0],[0,1]]);
  END;
  RETURN;

END;

LSnext(Axiom)
BEGIN // Calc next generation
  LOCAL LSalpha, Scan, Pos, Rep;
  Timing:=Ticks;
  LSalpha:= "";
  FOR Scan FROM 1 TO SIZE(LSrules) DO
    LSalpha:= LSalpha+ LSrules(Scan,1);
  END;
  Rep:= "";
  FOR Scan FROM 1 TO dim(Axiom) DO
    Pos:= instring(LSalpha, mid(Axiom,Scan,1));
    IF Pos THEN
      Rep:= Rep+ LSrules(Pos,2);
    ELSE
      Rep:= Rep+ mid(Axiom,Scan,1);
    END;
  END;
  LPoints:= {};
  Timing:= (Ticks-Timing) /3600000;
  RETURN Rep;
END;

LSinit(Nr)
BEGIN // init a new fractal root
  IF Nr == 0 THEN // Choose
    RETURN {"Hilbert curve", "Hilbert curve II", "Moore Curve", "Penrose Tiling", "Harter-Heighway dragon", "Terdragon", "Mandelbrot H Tree", "Sierpinski curve", "Sierpinski arrowhead curve", "Sierpinski Sieve", "Sierpinski carpet", "Peano-Gosper curve", "Quadratic Gosper curve", "Peano curve", "Koch SnowFlake", "Quadratic Koch island", "Koch curve", "Quadratic Koch curve", "Koch antisnowflake", "Minkowski sausage", "Cross-stitch curve", "Anticross-stitch curve", "Penta Plexity", "McWorter's Pentigree", "Pentadentrite", "Kristall", "Plant 1", "Plant 2"};
  END;
  IF Nr == 1 THEN // Hilbert curve
    LSangle:= 360/4;
    LSdir:= 90;
    LSaxiom:= "A";
    LSrules:= {{"A", "-BF+AFA+FB-"}, {"B", "+AF-BFB-FA+"}};
  END;
  IF Nr == 2 THEN // Hilbert curve II
    LSangle:= 360/4;
    LSdir:= 90;
    LSaxiom:= "X";
    LSrules:= {{"X", "XFYFX+F+YFXFY-F-XFYFX"}, {"Y", "YFXFY-F-XFYFX+F+YFXFY"}};
  END;
  IF Nr == 3 THEN // Moore Curve
    LSangle:= 360/4;
    LSdir:= 0;
    LSaxiom:= "LFL+F+LFL";
    LSrules:= {{"L", "-RF+LFL+FR-"}, {"R", "+LF-RFR-FL+"}};
  END;
  IF Nr == 4 THEN // Penrose Tiling
    LSangle:= 360/10;
    LSdir:= 0;
    LSaxiom:= "[7]++[7]++[7]++[7]++[7]";
    LSrules:= {{"6", "8F++9F----7F[-8F----6F]++"}, {"7", "+8F--9F[---6F--7F]+"}, {"8", "-6F++7F[+++8F++9F]-"}, {"9", "--8F++++6F[+9F++++7F]--7F"}, {"F", ""}};
  END;
  IF Nr == 5 THEN // Harter-Heighway dragon
    LSangle:= 360/4;
    LSdir:= 90;
    LSaxiom:= "FX";
    LSrules:= {{"X", "X+YF+"}, {"Y", "-FX-Y"}, {"F", ""}};
  END;
  IF Nr == 6 THEN // Terdragon
    LSangle:= 360/3;
    LSdir:= 90;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F-F"}};
  END;
  IF Nr == 7 THEN // Mandelbrot H Tree
    LSangle:= 360/4;
    LSdir:= 0;
    LSaxiom:= "A";
    LSrules:= {{"A", "[-BFA]+BFA"}, {"B","C"},{"C","BFB"}};
  END;
  IF Nr == 8 THEN // Sierpinski curve
    LSangle:= 360/4;
    LSdir:= 0;
    LSaxiom:= "F+XF+F+XF";
    LSrules:= {{"X", "XF-F+F-XF+F+XF-F+F-X"}};
  END;
  IF Nr == 9 THEN // Sierpinski Triangle
    LSangle:= 360/6;
    LSdir:= -90;
    LSaxiom:= "AF";
    LSrules:= {{"A", "BF-AF-B"}, {"B","AF+BF+A"}};
  END;
  IF Nr == 10 THEN // Sierpinski Sieve
    LSangle:= 360/6;
    LSdir:= -90;
    LSaxiom:= "FXF++FF++FF";
    LSrules:= {{"F", "FF"}, {"X","++FXF--FXF--FXF++"}};
  END;
  IF Nr == 11 THEN // Sierpinski carpet
    LSangle:= 360/4;
    LSdir:= -45;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F-F-FF-F-F-GF"}, {"G","GGG"}};
  END;
  IF Nr == 12 THEN // Peano-Gosper curve
    LSangle:= 360/6;
    LSdir:= 0;
    LSaxiom:= "XF";
    LSrules:= {{"X", "X+YF++YF-FX--FXFX-YF+"}, {"Y","-FX+YFYF++YF+FX--FX-Y"}};
  END;
  IF Nr == 13 THEN // Quadratic Gosper curve
    LSangle:= 360/4;
    LSdir:= -90;
    LSaxiom:= "-YF";
    LSrules:= {{"X", "XFX-YF-YF+FX+FX-YF-YFFX+YF+FXFXYF-FX+YF+FXFX+YF-FXYF-YF-FX+FX+YFYF-"}, {"Y","+FXFX-YF-YF+FX+FXYF+FX-YFYF-FX-YF+FXYFYF-FX-YFFX+FX+YF-YF-FX+FX+YFY"}};
  END;
  IF Nr == 14 THEN // Peano curve
    LSangle:= 360/4;
    LSdir:= 45;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F-F-F-F+F+F+F-F"}};
  END;
  IF Nr == 15 THEN // Koch SnowFlake
    LSangle:= 360/6;
    LSdir:= 90;
    LSaxiom:= "F--F--F";
    LSrules:= {{"F", "F+F--F+F"}};
  END;
  IF Nr == 16 THEN // Quadratic Koch island
    LSangle:= 360/4;
    LSdir:= 0;
    LSaxiom:= "F+F+F+F";
    LSrules:= {{"F", "F+F-F-FF+F+F-F"}};
  END;
  IF Nr == 17 THEN // Koch curve
    LSangle:= 360/6;
    LSdir:= -90;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F--F+F"}};
  END;
  IF Nr == 18 THEN // Quadratic Koch curve
    LSangle:= 360/4;
    LSdir:= -90;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F-F-F+F"}};
  END;
  IF Nr == 19 THEN // Koch antisnowflake
    LSangle:= 360/6;
    LSdir:= 90;
    LSaxiom:= "F++F++F";
    LSrules:= {{"F", "F+F--F+F"}};
  END;
  IF Nr == 20 THEN // Minkowski sausage
    LSangle:= 360/4;
    LSdir:= -90;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F-F-FF+F+F-F"}};
  END;
  IF Nr == 21 THEN // Cross-stitch curve
    LSangle:= 360/4;
    LSdir:= 90;
    LSaxiom:= "F+F+F+F";
    LSrules:= {{"F", "F-F+F+F-F"}};
  END;
  IF Nr == 22 THEN // Anticross-stitch curve
    LSangle:= 360/4;
    LSdir:= 90;
    LSaxiom:= "F-F-F-F";
    LSrules:= {{"F", "F-F+F+F-F"}};
  END;
  IF Nr == 23 THEN // Penta Plexity
    LSangle:= 360/10;
    LSdir:= -90;
    LSaxiom:= "F++F++F++F++F";
    LSrules:= {{"F", "F++F++F|F-F++F"}};
  END;
  IF Nr == 24 THEN // McWorter's Pentigree
    LSangle:= 360/10;
    LSdir:= 90;
    LSaxiom:= "F";
    LSrules:= {{"F", "+F++F----F--F++F++F-"}};
  END;
  IF Nr == 25 THEN // Pentadentrite
    LSangle:= 360/5;
    LSdir:= 90;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F-F--F+F+F"}};
  END;
  IF Nr == 26 THEN // Kristall
    LSangle:= 360/4;
    LSdir:= -90;
    LSaxiom:= "F";
    LSrules:= {{"F", "F+F--G+F-F++G-F"}, {"G","GGG"}};
  END;
  IF Nr == 27 THEN // Plant 1
    LSangle:= 360/16;
    LSdir:= 90;
    LSaxiom:= "F";
    LSrules:= {{"F", "FF-[-F+F+F]+[+F-F-F]"}};
  END;
  IF Nr == 28 THEN // Plant 2
    LSangle:= 360/18;
    LSdir:= 90;
    LSaxiom:= "F";
    LSrules:= {{"F", "F[+F]F[-F][F]"}};
  END;
  LSaxiomOrg:= LSaxiom; LSgen:= 0;
  LPoints:= {};
END;

LSymb()
BEGIN
  LOCAL Tmp, Scan;
  RECT();
  TEXTOUT_P("Fractal: Lindenmayer System",0,10,2);
  TEXTOUT_P("Curve Name",0,40);
  TEXTOUT_P("Angle",0,60);
  TEXTOUT_P("Direction",0,80);
  TEXTOUT_P("Generation",0,100);
  TEXTOUT_P("Axiom",0,120);
  TEXTOUT_P("Rules",0,140);

  TEXTOUT_P(":",100,40);
  TEXTOUT_P(":",100,60);
  TEXTOUT_P(":",100,80);
  TEXTOUT_P(":",100,100);
  TEXTOUT_P(":",100,120);
  TEXTOUT_P(":",100,140);

  Tmp:= LSinit(0);
  TEXTOUT_P(STRING(Xmin)+" "+STRING(Xmax)+" "+STRING(Ymin)+" "+STRING(Ymax),10,20);
  TEXTOUT_P(Tmp(LSNum),120,40);
  TEXTOUT_P(STRING(LSangle),120,60);
  TEXTOUT_P(STRING(LSdir),120,80);
  TEXTOUT_P(STRING(LSgen),120,100);
  TEXTOUT_P(STRING(→HMS(Timing)),140,100);
  TEXTOUT_P(LSaxiomOrg,120,120);
  FOR Scan FROM 1 TO SIZE(LSrules) DO
    TEXTOUT_P(LSrules(Scan,1)+ "->"+ LSrules(Scan,2), 120,120+Scan*20);
  END;

END;

LHelp()
BEGIN
  PRINT();
  PRINT("Fractal: Lindenmayer System");
  PRINT("");
  PRINT("Symb first: Fractal information");
  PRINT("Symb again: Choose new fractal");
  PRINT("Help: this screen");
  PRINT("Plot: Plot the curve");
  PRINT("A: Aspect ratio/Full Screen");
  PRINT("C: Color/Black");
  PRINT("+: Next generation");

END;

EXPORT LSystem()
BEGIN
  LOCAL Kb, View, Tmp;
  HAngle:=1; View:= 0; Clr:= 1; Aspect:=1; Timing:=0;
  LSNum:= 1; LSinit(LSNum);
  REPEAT
    IF View == 0 THEN LSymb(); END;
    IF View == 1 THEN LSdraw(LSaxiom); END;
    IF View == 6 THEN LHelp(); END;
    REPEAT
      Kb:= WAIT(0);
    UNTIL Kb <> -1;
    IF Kb ==  1 AND View == 0 THEN CHOOSE(LSNum, "Fractal", LSinit(0)); IF LSNum == 0 THEN LSNum:= 1; END; LSinit(LSNum); END;
    IF Kb ==  1 AND View <> 0 THEN View:= 0; END;
    IF Kb ==  3 THEN View:= 6; END;
    IF Kb ==  6 THEN View:= 1; END;
    IF Kb == 14 THEN Aspect:= 1- Aspect; LPoints:= {}; END;
    IF Kb == 16 THEN Clr:= 1- Clr; LPoints:= {}; END;
    IF Kb == 50 THEN LSaxiom:= LSnext(LSaxiom); LSgen:= LSgen+ 1; END;
  UNTIL Kb==4;
  LSaxiom:= ""; LPoints:= {}; LLines:= {};
END;