EDITMACRO and RUNMACRO
Eddie Shore

11/11/2014 — Updated 3/9/2015
The programs editmacro and runmacro bring the powerful keystroke RPN (Reverse
Polish Notation) programming to the HP Prime. If you are familiar with the Hewlett

Packard programming calculators (HP 65, 67, 12C, 15C, 35S, and a whole lot more),
you will feel at home using this program package.

Total size: about 28,000 bytes.

A four-level stack is used.

TABLE OF CONTENTS

WWat!S INEW? ..ttt ettt ettt e sttt s bt e e s bt e s bt e e s abeeeabe e e seeesabeeesabeesabeeaasbeesabee e sbeesaseesaneeesabeeanns 3
How EDITMACRO and RUNMACRO WOFK.....cccutiiieiienitinieeieesteesiee st st sttt ettt ettt e sbeesaeesane e 3
Running EDITMACRO and RUNMACRO for the First TIMe.......ccccciiiieiiiiiie e e e e saaee e 4
6T Y = oA BTl W Y S o I =T [A Y, F= Yol o Y- 9
Y= T o T] o ULt (U =P OPPPP 13
VATTADIES <.ttt e e e e s e e e s be e e be e e bt e e s be e e s abeeebeeeanteesreeenars 13
SOOI ATTENMETIC. .. ettt ettt ht e st st ettt e bt e s bt e s it e st e et e e nbeenbeesane e 13
(0o e] o[1Yo] g T K=E] o - U PP 14
LAST X FUNCHION c. ettt et e s e e e s b e e e s s e e e s sareees 14
FOrming ComMPIeX NUMDBEISciiiiiie ettt e e e e s e e e st e e e s bbe e e e s sbeeesssabeeeesnnseeeeenaseeas 14
(0o T 000 g =T Te N OF1 -1 (o - PP PPRPUPPRNt 16
Keyboard COMMANS........coociiiiieiie ettt e e e etee e e et ee e e s eba e e e e abae e e eenbeeeeeanbeeeeesnbeeeeennsenas 16
MEMOIY IMENU — [VAIS] KBY .ueiiiiiiiiie ettt ettt eette e e e tee e e e e bae e e e aba e e e e eate e e e eenbaeeeenaseeeeennrenas 17
Math MenU — [TOOIDOX], [L] eueeeieiiiiiiiiiiieee ettt errre e e e e e eettrr e e e e e e e e eababaeeeeeeeesnasssaaeeeeeenns 17
Control MenU — [TOOIDOX 1, [2 Juureeeieieiiiiiiiiieeee ettt e et e e e e e e et e e e e e e e e e e atbraaeeeeeeenanssraeaeens 18
Hyperbolic Menu — [TOOIDOX], [3] cooceerrrrieeeieiiiiiiiieee e e e e ettt e e e e e eesttrr e e e e e e e e e abbreeeeeeee e asssaeeeeeeennns 18

[T R K T o (o Vi AT s =T 11 Le M =1 o 1=] 18
SaAMPIE Programs CatalOgcc.uiiii et e ettt et e e ettt e e e et e e e e ebteeeeebteeeeebteeeeestaseesstaeeesassaeaeanes 20
T4 (o Tt o] g - | PPN 20
Loop Demonstration: Pascal’s Triangle LOOP ...ccuuiiiiciiiee ittt ettt e e 21

(O IVE: o [=Y ol o U= Y 4o T To] 1YZ =T TP 22
SOIVING @ 2 X 2 LINEAI SYSTEIM ...uviiiiiiie ettt ettt e et e e e et e e e et e e e e etbaeesennbaeeeenteeeeennseeeeennsenas 24
PaYMENT OF @ LOGN 1ottt ettt e e et e e e e et e e e e ebt e e e e ebteeeeebtaeaeaastaeaesstasaesstaeaeanssenaesnnes 26
SUDroUtiNg DEMONSTIATIONeoviiiiiiierieet ettt sttt b e b e s e san e sreesreesaeesane e 27
Numeric Derivative Approximation: Five Stencil Methodccoevciiiiiiiiiei e 28
] 41 4= 1 A0 o PP URR PP 30
Projectile Motion: NO Air RESISTANCE ...uuiiiii ittt e e e e e e st re e e e e e e e esabtseeeeeeeeeennnnnnns 31

Great Circle (Air Distance BEtWeen TWO POINTS) ...ccccuveiiiiiieeieiireec ettt ceree e ceareee e ennbeee e eenbeeas 32

What’s New?

Update 3/9/2015:

e Fixed and Standard Display Mode Commands

e Hyperbolic Functions

e Standard Normal Distribution Functions (mean = 0, variance = 1)
e Number of registers increased from 9 to 20

How EDITMACRO and RUNMACRO Work

editmacro

(T () () (R S

#*++ Edit Mode ##+*

The first step is to run editmacro. You will to be taken to the edit mode where you
enter various constants and commands using the keyboard. Once complete, press
[Esc] and a list of your recorded steps are presented. This list can be saved to any of
the default list variables LO through L9, or a custom variable name.

Macros are ran through the runmacro(macroname) program. This is where you enter
data and get results.

The only limit to how big a macro list can be is limited to the size of the memory.
Hence, you can create short and quick macros, or elaborate macros with ease.

Running EDITMACRO and RUNMACRO for the First Time

Start by running editmacro (all lowercase). You will be taken to the edit mode. Press
the [? Help] key.

Esc: Exit, Enter: Constant

Vars: Memory, Toolbox: Math/Cmds
Template: GTO, xtén: XEQ, a b/c: LBL
Shift Keys:

1:FIX, 214, 3: m, 6: MOD,9: x!

The help screen will give you a list of keys to press to access various commands. You
can access the common scientific calculator functions by just using your keyboard. We
will get to these in detall later. For now, just press [Esc] to exit the Help Screen.

Let’s start our first macro with something familiar: the area of a circle. The required
formula is A = nr?, where r is the radius.

We will let the user enter the radius. To allow the user to enter data, we will use the
INPUT command. Press [Toolbox], [2] (for Control), and then [1] (for INPUT).

1: INPUT

Note the screen will now read: “1: INPUT”. This indicates that the INPUT command is
the first step in this macro.

We will need to square this radius. Press [x"2].

2:xh2

The “2: xA2” on the screen shows that we have entered the square command, and it is
the second step in the macro.

The next thing we need to do is to put 1T on the stack. Remember that editmacro and
runmacro uses RPN logic. Press [Shift], [3] (for).

3: PI

The “3: PI” on the screen indicates that the third step of this macro is to enter 1T on the
stack. Note that “3: PI” is in blue because we have used a shifted command.

To finish, we need to multiply. This is accomplished by pressing [x].

4: %

Now that our macro is done, press the [Esc | key.

Function

editmacro ["INPUT", "x72", "PI", "+", "END"}

lsox | [| [| |

You are returned to the home screen with the list as the output: {*INPUT”, “x2”, “PI”,
“? “END”}. The last command, “END” is added automatically. You can run this list as
is, or save it. For our example, | am going to save this macro to the variable name
macroO1.

Function

editmacro ["INPUT", "xA2", "PI", "", "END"}
machD‘I::{"INPUT"J "xn2", "PIM, "&", "END"}
{"IMF‘UT"J Th2t, "PIY, " "END"}

lsox | [| [| |

Now it is time to run the macro. The program runmacro requires one argument: either
a list (in the proper format) or the name of a macro. For our example, let's run macroO1.

editmacro {"INPUT", B O =) L "END"}
macro01:=]"INPUT", "xA2", "PI", "#", "END"

I INPUT' "xA2", "PI", "+", "END"}
runmacro macm[}“l

Input Number: Line 1

Enter value for X

We are prompted for a number. The number must be a real number or an error occurs.
Let’s say we are trying to find out the area of a circle with radius of 15 units. Enter 15
and then press either (OK) or the [Enter] key.

k STACK #%
T:0

Z:0

Y:0

X :706.858347058

When the marco ends, you are shown the four-level stack. On a keystroke
programming calculator with a one-line display, you are shown the contents of the X
stack. In our example, the area of a circle with the radius of 15 units is just over
706.858 square units.

Press [Enter] and you will get this screen:

Line 1: INPUT
Line 2: x2
Line 3; PI
Line 4; =

Line 5: END

This screen shows the commands that macro used. You can use this screen for
diagnostics. Or, you can press [Enter] once more:

Function

editmacro ["INPUT", "xA2", "PI", "#", "END"}
macmD”I::{"INPUT"J 2", "PI, M "END"}
{"Il"ull-_’U-l—"J "xh2", PIY, AT, "END"}
runmacro({macro01]
1706.858347058, 0, 0, 0}

[T) () (R S |

You are now at the Home Screen. You will see a four-element list which shows the
contents of the stacks X, Y, Z,and T.

Using EDITLIST to edit Macros

The editmacro program offers a nice interface to enter macros. However, you can use
EDITLIST or the HP Prime’s list editor to edit macros.

macro0l
1 "TNPUT" |
2 "YAZ"
3 "pI"
4 g0
5 "END"
6
7
8
9
10
"INPUT"

Note that each command, except for constants, are in strings. Each command has a
specific string that is required to run the macros properly.

Entering Constants

One major difference between editmacro and RPN keystroke programmable
calculators is the way that numerical constants are entered. In editmacro, you will
need to first press the [Enter] key first. You will be asked for a constant to enter. You
can enter numbers or expressions that evaluate to a real number. Let's demonstrate
that with our next macro:

You are purchasing the required textbooks to take classes at Generous University. The
first two weeks of each semester at Generous, the bookstore gives students a 20%
discount on all text books purchased. What is the discount, and then price after the
discount?

Once again, we will ask the user to enter the costs of the textbooks. For this macro,
let's make it pause to show us the discount first, and then final cost. Hence, the macro
will be this:

1: “INPUT”
2: “DUP”
3: 0.2

4: “*”

5: “PAUSE”
6: “-“

7: “END”

“‘DUP” duplicates the contents on the X stack and moves a copy to the Y stack.

There is no percent function in editmacro. Hence, we will need to enter the decimal
equivalent of 20% = 0.2.

Run editmacro.

1: “INPUT”
Press [Toolbox], [2] (Control), [1] (INPUT)

2: “DUP”
Press [Toolbox], [2] (Control), [2] (DUP)

3: 02
Press [Enter], enter 0.2, press either (OK) or [Enter |

4: Gk
Press [x]

5. “PAUSE”
Press [Enter], [2] (Control), [Template] (or scroll up for option C: PAUSE)

6: “_“
Press|[-].

The last “END” is automatic when terminate an editmacro session. Press [Esc]. You
should have this:

Function

editmacro
{"INPUT", "DUP", 0.2, "=" "PAUSE", "-", "END"}

lsox | [| [| |

Save this macro if desired. | am going to use the variable name macro02. Run this
macro.

For our example, let's say we had to buy 2 textbooks for $170 apiece and 1 at $100.

Input Number: Line 1

Enter value for X

175%2+100

L1 [[loamcel] ok]

At the “Input Number: Line 1” prompt, enter 175*2+100. Remember we can enter
numerical expressions at the INPUT and Constant prompts.

STACK #*%

*

= =< —
Oheoo ¥

At this point, we are shown that the discount is $90 (and the original cost of the
textbooks is $450). Press [Enter] again.

STACK #%%

= =< — %
wooo ¥

You are shown that the final cost of the textbooks is $360: still a lot of money after the
discount.

Macro Structure
Each macro starts at Line 1. These code lines are important because they act as
pointers to guide the macro as it is running. When executing jumps, testing, and

subroutines, you will need to know where you direct the macro’s pointer.

Each macro can run subroutines one level deep.

Variables

All variables in editmacro and runmacro are considered local. That is, nothing
contained in the variables will never change any of the variable’s contents outside of
these programs. There are nine variables that can be used as temporary storage
registers: 1 through 20. Everything is self-contained in the macros.

The default value of the storage registers is 0.

Store Arithmetic

You can store numbers to 20 temporary registers. You can also perform simple
arithmetic functions:

STO+: add the number in the X stack to the register

STO-: subtract the number in the X stack from the register
STO*: multiply the number in the X stack to the memory register
STO/: divide the register by the number X in the stack

INC: increase the designated register by 1
DEC: decrease the designated register by 1

INC and DEC are useful in loops.

Comparison Testing

There are six comparison tests that are presented in editmacro and runmacro. Each
of the comparison tests have the general format:

n: comparison test
n+1: do this command if test is true
n+2: skip command at n+1 if test is false

This scheme operates just as other RPN keystroke programming calculators.

The six comparison tests are:

TEST TRUE FALSE

x=07? The X stack is zero. The X stack is not zero.

x>0? The X stack is positive. The X stack is zero or negative.
x<07? The X stack is negative. The X stack is zero or positive.
X=y? X=Y X#Y

xX>y? X>Y X<Y

X<y? X<Y XzY

Last X Function

Access the Last X function by pressing [Shift][,]. Like classic RPN keystroke
programmable calculators, editmacro and runmacro reserves a special register for
storing the latest value of X prior to using a mathematical operation. Last X recalls this
X onto the stack — which can be useful in programming.

The following commands store the contents of X in this register prior to execution: the
arithmetic functions, EXP, ALOG, LN, LOG, the trigonometric functions, powers, roots,
INT, FRAC, COMB, PERM, 1/x, and polar/rectangular conversions.

Forming Complex Numbers

Unfortunately, we can directly enter complex numbers in editmacro. The workaround
is the [Shift] [2] key sequence. What this does is that the X stack is multiplied by V-1.
To form a complex number, use this schematic:

1. Enter a constant or prompt for a number. This will be the real part of the complex
number.

2. Enter a constant or prompt for a number. This will be the imaginary part of the
complex number.

3. Press[Shift][2], then press [+]

Note that this process requires two stack levels. If complex mode is turned on (“Allow
complex output from real input”) in the Home Settings, you can execute calculations that
return complex numbers.

Commands Catalog

Keyboard Commands

KEY STRING CODE DESCRIPTION RESULT STACK
CODE
[Del] None Deletes the last
command in
editmacro
[Enter] (numerical Calls up the prompt | Numeric constant, X, Y, Z
constant)* to enter a numeric
constant
[x*y] N Power function. XNY,Z, T, T
[Shift], [xy] “XROOT” Root function XMNUY),Z, T, T
[SIN] “SIN” Sine function. SIN(X), Y,Z, T
[Shift][SIN] “ASIN” Arcsine function. ASIN(X), Y, Z, T
[COS] ‘COS” Cosine function. COS(X),Y,Z, T
[Shift][COS] | “ACOS” Arccosine function. ACOS(X), Y, Z, T
[TAN] “TAN” Tangent function. TAN(X), Y,Z, T
[Shift][TAN] “ATAN” Arctangent function. | ATAN(X), Y, Z, T
[LN] “LN” Natural logarithm LN(X), Y, Z, T
function.
[Shift][LN] “eX” Natural exponential | e™X,Y, Z, T
function.
[LOG] “LOG” Common logarithm LN(X)/LN(10), Y, Z, T
function.
[Shift][LOG] | “10*X” Common antilog 10°X,Y,Z, T
function.
[x*2] “x"2” Square function. X2, Y, Z, T
[Shift][x2] “SQRT” Square root VX, Y, Z, T
function.
[+-] “CHS” Changes the sign XY, Z, T
(negates) of the X
register.
[Shift][+/-] “ABS” Absolute value of X,Y,zZ T
the X register.
[O] “‘DOWN” Rolls down the Y,Z, T, X
stack one level.
Puts the contents of
Y on X, and so on.
[Shift][()] “‘UpP” Rolls up the stack T,XY,Z
one level. Puts the
contents of Z on X,
and so on.
[.] “SWAP” Swap the contents Y, X, Z T
of the Xand Y
stacks.
[Shift][,] “LAST” The Last X function Last X, X, Y,Z
[+] ‘I Division. YIX,Z, T, T
[Shift][+] e Reciprocal X, Y, Z, T
[x] o Multiplication X*Y,Z, T, T
[-] Subtraction Y-X,Z, T, T
[+] “+” Addition X+Y,Z, T, T
[Shift][9] “‘FACT” Factorial function. X | X!, Y, Z, T
does not need to be
an integer.
[Shift][6] “‘MOD” Modulus function YMOD X, Z, T, T
[Shift][3] “PI” Enters 17 to the mXY,Z

stack.

[Shift][2] “IMAG” Multiplies X by V-1. Xi,Y,Z, T
This makes it
possible to use
complex numbers.
[Shift][1] “FIXn” (0 -11) Fixed Mode — you (no changes to the stack)

can clear it by the
STD command
(Toolbox — Control
Menu)

Note: Numerical constants are not in strings.

Memory Menu — [Vars] key

See the Store Arithmetic section for more details.

STRING CODE
(n = 1 through 20)

DESCRIPTION

“STO n”

1. Store. Stores X in register n.

“‘RCL n” 2. Recall. Recalls register n to the stack.
Result stack: registern, X, Y, Z

“SUM n” 3. STO+

“DIF n” 4. STO-

“PRD n” 5. STO*

‘DIVn” 6. STO/

“INC n” 7. Increment

‘DEC n” 8. Decrement

Math Menu — [Toolbox], [1]

STRING CODE DESCRIPTION CODE RESULT STACK
“INT” 1. INT Returns the integer part IP(X),Y,Z, T
of X.
“FRAC” 2. FRAC Returns the fractional FP(X),Y,Z, T
part of X
“RECT” 3. >Rect Polar to rectangular X*COS(Y), X*SIN(Y), Z, T
conversion.
“POLAR” 4. >Polar Rectangular to polar V(X"2+Y72), ARG(X+Y*), Z, T
conversion
“COMB” 5. COMB Combination function YnCrX,Z, T, T
“PERM” 6. PERM Permutation function YnPrX, Z, T, T
“RAND” 7. RAND Enters a random ‘rand, X, Y, Z
number from0to 1
“ARG” 8. ARG Argumentorangleofa | ARG(X),Y,Z, T
complex number
“>D” 9. >Dec Deg Converts number | X>D,Y,Z, T
from DMS (degree-minutes-
seconds) format to full decimal
“>DMS” A. >Deg Min Sec Converts full X>DMS, Y, Z, T
number to DMS format
“CUBE” B. Cube X"3,Y,Z2, T
“CBRT” C. Cube Root XN, Y, Z, T
“NCDF” D. Normal CDF Function with I (eN-tr2)N@2m) t-0X), Y, Z, T
Mean = 0 and Variance = 1;
given x point, get lower area

“INCDF”

E. Inverse Normal CDF Function
with Mean = 0 and Variance = 1;
given lower area, get x point

Solve | (e"(-t"2)N(2TT),t,-,pt)=X for pt, Y, Z,
7

DMS format: DD.MMSSSS (degrees, minutes, seconds)

Control Menu —[Toolbox], [2]

STRING CODE DESCRIPTION CODE RESULT STACK
“INPUT” 1. INPUT When the macro runs, | entered data, X, Y, Z

it will prompt the user for a

number
“DUP” 2. DUP Duplicates the contents | X, X, Y, Z

of the X stack
“CLx” 3. CLx Sets the value of the X 0,Y,Z, T

stack to zero
“‘DEG” 4. DEG Sets Degrees mode (no changes to the stack)
“RAD” 5. RAD Sets Radians mode (no changes to the stack)
“STD” 6. STD Sets Standard mode (no changes to the stack)
“x=0?" 7. x=0? Comparison test (no changes to the stack)
“x>07" 8. x>0? Comparison test (no changes to the stack)
“x<0?” 9. x<0? Comparison test (no changes to the stack)
“x=y?” A. x=y? Comparison test (no changes to the stack)
“x>y?” B. x>y? Comparison test (no changes to the stack)
“x<y?” C. x<y? Comparison test (no changes to the stack)
“PAUSE” D. PAUSE Stops the execution (no changes to the stack)

of the macro. Shows the stack.

Press [Enter] to continue.
“‘RTN” E. RTN Sets a RTN (return) (no changes to the stack)

command. This ends a

subroutine.
“END” F. END Sets an END (no changes to the stack)

command. This ends a macro

and stops execution.

STD: Standard floating point mode. This clears the fixed mode.

Hyperbolic Menu — [Toolbox], [3]

STRING CODE DESCRIPTION CODE RESULT STACK
“SINH” 1. Hyperbolic Sine SINH(X), Y, Z, T

“ASINH” 2. Inverse Hyperbolic Sine ASINH(X), Y, Z, T

“COSH’ 3. Hyperbolic Cosine COSH(X), Y, Z, T

“ACOSH” 4. Inverse Hyperbolic Cosine ACOSH(X), Y, Z, T

“TANH” 5. Hyperbolic Tangent TANH(X), Y, Z, T

“ATANH” 6. Inverse Hyperbolic Tangent ATANH(X), Y, Z, T

Go To, Subroutine, and Labels

GTO n: Go To Command — [Template] key

You can transfer control to specific points in the macros by using labels. Each macro
can contain up to 9 labels. When the macro runs and hits a GTO command, it will
transfer the pointer to the specified label (LBL).

String Code: “GTO n” where n is the label number.

XEQ n: Subroutine Command - [xt 8 n] key

You can temporary execute a subroutine. Subroutines end with a return (RTN)
command.

String Code: “XEQ n” where n is the label number.
LBL n: Label Command - [a b/c] key

Press the fraction key into insert labels in the macro. Each macro can have up to 9
labels.

String Code: “LBL n” where n is the label number.

Sample Programs Catalog

Comments are followed by double slashes (//). Memory registers are designated by
“‘Rn” where n is the register number 1 through 9. Remember, the last END is inserted
atomically when you exit editmacro. Also, constants (numbers not in strings) must be
entered by pressing [Enter] first then enter the number when prompted.

Large Factorials

Based on HP 41C — Brian D Steel — 1/5/1984 — Datafile March & April 1984 Vol. 3 No. 2
Pg. 24

Output:

Y: exponent

X: mantissa

Where: x*10"y
Mantissa is an approximate!

‘INPUT” // asks for a number

“INT” // automatically make it an integer
“STO 17

0 // set up the sum

“STO 27

“LBL 1”

‘RCL 1” // loop starts here

“LOG” /I need LOG, not LN

“SUM 2”

10: “DEC 1" //IM1-1=M1

11: “RCL 1”7

12: “x>07?”

13: “GTO 17

14: “RCL 2”

15: “DUP”

16: “INT” // separate the exponent portion
17: “SWAP”

18: “FRAC”

19: “ALOG” // extract mantissa portion
20: “END”

Example:
12 ->{4.79001599997, 8, 0, 0}
125 ->{1.882677182, 209, 0, 0}

Loop Demonstration: Pascal’s Triangle Loop

This program will show all of the entries of the nth row of Pascal’s Triangle.
Registers: R1 = n, R2 = counter

Program:

“‘INPUT” // ask for n

“STO 17

0 /I start a counter

“STO 27

“LBL 1” // loop starts here

‘RCL 17

‘RCL 27

“COMB”

“‘PAUSE” // shows each entry on Pascal’s Triangle
10: “INC 27 // increase counter by 1
11: “RCL 27

12: “RCL 1”

13: “*

14: “x>07?" // is counter>n?

15: “END” // if yes, then stop program
16: “GTO 1”7 //'if no, run loop again
17: “END”

ONORWN 2

Quadratic Equation Solver
ax?+bx+c=0

This program assumes that the “Allow Complex Output from Real Input” is checked. Go
to Settings and check the box next to the Complex scroll box.

Program:

1: “INPUT” // input a
2: “STO1”

3: “INPUT” // input b
4: “STO 2"

5: “INPUT” //'input c
6: “STO 3”

7: “RCL 2’ // -b/(2a)

8: “CHS”

9: 2

10: “RCL 1”

11:

12: 4

13: “STO 4

14: “RCL 2" //(b*2-4ac)/(2a)
15: “xA2”

16: “RCL 1”

17: “RCL 3”

18: “*”

19: 4

20: “*

21 “"

22: “SQRT”

23: 2

24: “RCL 1”

25: “*

26: “/”

27: “STO 5

28: “RCL 4” // root 1

29: “RCL 5"

30: “+

31: “RCL 4” // root 2

32: “RCL 5"

33: “"

34: “END”

Output: Y Stack: root 1, X Stack: root 2

Examples:

Variables: a=1,b=3,c=6
Y: -1.5 + 1.93649167311i

X: -1.5-1.93649167311i

Variables: a=-2,b=6,c=7
Y: -0.89791576166
X: 3.89791576166

Solving a 2 x 2 Linear System

ax*x+bxy=e
cxx+d*xy=f

Solution:

x=(dx+xe—=bxf)/(axd—Db=xc)
y=(axf—-cxe)/(axd—Dbx*c)

Variables Used:

Rl1=a,R2=b,R3=c,R4=d,R5=¢e, R6 =f R7 = a*d-b*c
Input order: a, b, c, d, f, e

Program:

1: “INPUT” //input a
2: “STO1”

3: “INPUT” // input b
4: “STO 2"

5: “INPUT” // input c
6: “STO 3”

7.

8: “CHS”

9: “SWAP”

10: “INPUT” // input d

11: “STO 4”7

12: ¥

13: “+”

14: “STO 7” /Il a*d-b*c
15: “RCL 1” // calculate y
16: “INPUT” //input f
17: “STO 6”

18: “*”

19: “RCL 3”

20: “INPUT” /l'input e
21: “STO 5”

22: ¥

23: “-

24: “RCL 77

25: 4

26: “PAUSE”

27: “RCL 4” // calculate x
28: “RCL 5”

29: “*’
30: “RCL 2"
31: “RCL 6’
32:

33

34: “RCL 7
35: “

36: “END’

Example: a=2,b=1,c=-3,d=2,f=3,e=-1.

Results: x =-0.714285714286, y = 0.428571428571

Payment of a Loan

Source: HP 65 Standard Pac — June 1974

14— YN _q
Formula: PV = PMT * (, 100 -

Toon*(
100N 100N

)YN

Input Order: I, N, Y, PV

Variables Used:
R1=N

R2 = 1/(100N)
R3 = Y*N

Program:

‘INPUT" /1
‘“INPUT” /I N
“STO 17

100

«m

“STO 27

1

"

» “INPUT”

: “RCL 17

. %

: “STO 37

. HAY

1

: “‘RCL 2"
1

- “+”

: “RCL 3"

. AP

: “RCL 2"

D

D X

: “INPUT” /I PV

Wk

LoNoORWN 2

NRORNNOMNONNNNRN S S S
PONOPTROUN2QOONDITRWN2O

: “END”

Subroutine Demonstration

2
Let f(x) = 9" \where ¢=V1—x2

1-¢

Registers: R1=x, R2=0

Program:

CONORWN 2

10:

11

12:

13

14
15:
16:
17:
18:

“INPUT” // enter x

“STO 1”

“XEQ 1” /I run the subroutine starting at LBL 1
“XA2”

1

“XEQ 1” /I run the subroutine again

“/”

: “END” // end the main program and show results
:“LBL 1” /I start the subroutine

1

: “RCL 1”7

“XA2”

“‘SQRT”

“RTN” // RTN command needed — ends the subroutine
(‘END”

Example: f(0.5) = 2.79903810561

Numeric Derivative Approximation: Five Stencil Method

General Formula:

4

H
f'(x) = *(f(x—ZH)—8(f—H)+8(f+H)—f(x+2H))+%

12H

H is a small number, used as a tolerance setting.

Source:
Burden, Richard L. and Douglas Faires. “Numerical Analysis 8" Edition” Thompson
Brooks/Cole. Belton, CA 2005.

Example: Find the slope of f(x) = e(sinx) atx=-1and x = 1. Use H = 1*10"-6

Registers:

R1 = temporary — use Register 1 as your X in f(x)
R2=H

R3 = temporary

R4 =X

R5 = f'(x)

Program:

“RAD” /I set radians mode
“INPUT” // ask for X
“STO 1”

“‘STO 47

0.000001

“STO2” /IH

2

Wk

RN RWN 2

: “DOWN”
10: “STO 3”
11: “UP”

12: “+”

13: “STO 1”7
14: “XEQ 17 /] execute subroutine
15: “CHS”
16: “STO 5”
17: “RCL 3”
18: “RCL 2”
19: “+”

20: “STO 17
21: “XEQ 1”7

22: 8

23.

24:“SUM 5” /| STO+ 5
25: “RCL 3”

26: “RCL 2”

27 “-~

28: “STO 1”

29: “XEQ 17

30:8

31

32: “DIF 5” // STO-5
33: “RCL 3"

34: “RCL 27

35: 2

36: “”

37: -~

38: “STO 1”

39: “XEQ 17

40: “SUM 5”

41:12

42: “RCL 2”

43: “*”

44: “DIV 5” /I STO/ 5
45: “RCL 5”

46: “END”

47: “LBL 17 // function starts here, f(R1)
48: “RCL 17

49: “SIN”

50: “e™X”

51: “RTN” // Use RTN to end f(x)
52: “END”

Examples:
f(-1) = 0.232912 (Actual: 0.23291330138...)
(1) = 1.2533875 (Actual: 1.25338076749...)

Summation

Calculate Y12, x3. Run this macro in Standard Mode.

Registers:

R1 = lower limit, which increases by 1, and temporary X
R2 = higher limit

R3 =sum

“‘STD” /] setup

‘INPUT” // prompt for lower limit
“‘STO 17

‘INPUT” /I prompt for upper limit
“STO 27

“‘LBL 1”7 // main loop

‘RCL 17

“XEQ 2”7 /I execute subroutine
“SUM 3” // add to sum

10: “INC 1”7 // increase R1 by 1

11: “RCL 2” // testing

12: “RCL 17

13: “-*

14: “x<07?”

15: “GTO 3” // finished if R1>R2

16: “GTO 17 /] repeat main loop if not
17: “LBL 3” // display the sum

18: “RCL 3”

19: “END” // terminate program

20: “LBL 2” // subroutine, f(x) goes here
21: “RCL 1”7 // use R1 for x

22: 3

23: N

24: “RTN”

25: “END” // last default end

OCONORWN =2

Result: The sum is 3,025 (shown on the X stack)
Stack: {3025, -1, 1000, 10}

Projectile Motion: No Air Resistance

Calculate the range and height given the initial velocity and initial angle. Sl units are
assumed.

Range: R = (V/2 * sin(2*0))/g
Height: H = (V * sin(8))"2/(2*g)
where g = 9.80665 m/s"2

Program:

1: “DEG” // set Degrees mode
2: “INPUT” // enter initial velocity m/s
3: “STO 1”

4: “INPUT” /I enter initial angle in degrees
5. “STO 2”

6: “RCL 1”7 // calculate range
7. “xXN2”

8: “RCL 2"

9: 2

10: “*”

11: “SIN”

12: “”

13: 9.80665

14 “/"

15: “PAUSE”

16: “RCL 1” // calculate height
17: “RCL 2”

18: “SIN”

19: “”

20: “xr2”

21:19.6133

22: 4"

23: “END”

Example:
V =42.25m/s, 6 = 46°

Results:
Range = 181.914832095 m
Height = 47.0945807904 m

Stack:
{47.0945807904, 181.914832095, 46, 46}

Great Circle (Air Distance Between two Points)
Calculate the distance between two points on Earth (Latitude and Longitude). Formulas:
D = acos(sin(®1)*sin(P2)+cos(Pl)*cos(P2)*cos(A2-A1))

Then:
D =3959 * D * 11/180

Where:

@1: Latitude of Place 1, enter in DD.MMSSSS (use positive for North)
Al: Longitude of Place 1, enter in DD.MMSSSS (use positive for East)
@2: Latitude of Place 2, enter in DD.MMSSSS (use positive for North)
A2: Longitude of Place 2, enter in DD.MMSSSS (use positive for East)

Program:

: “DEG”

: “INPUT” /I ®1
“>D”

“‘STO 17

‘INPUT” // AL

“>D”

“STO 3”

“INPUT” /] ®2

“>D”

10: “STO 27

11: “INPUT” // A2

12: “>D”

13: “STO 47

14: “RCL 17

15: “SIN”

16: “RCL 2”

17: “SIN”

18: “*”

19: “RCL 17

20: “COS”

21: “RCL 27

22: “COS”

LONORWN =2

24: “RCL 3"
25: “RCL 4"
26: “-“

27: “COSs”
28: “*”

29: “+7

30: “ACOS”

31: 3959
32: "

33: “PI”
34:

35: 180
36: /"

37: “END”

Example:

Los Angeles (@1 = 34.03, A1 =-118.15)
New York (P2 = 40.4246, A2 = -74.0021)
Distance: 2446.11028003 mi

Stack: {2446.11028003, 0.365215094289, 0.365215094289, 0.36521094289}

