Linear Programming and Game Theory Library for
Xcas and the HP Prime

Nikolaus Henderson (ftneek)

2023 - 2024-12-06

Overview

This library contains a linear program solver (simplex()) capable of solving mixed constraint
problems with integer variables, binary variables, and unrestricted variables through the use
of the two-phase Simplex, Dual Simplex, and Gomory Plane Cutting algorithms, as well as
game theory commands capable of solving two-person zero-sum games (solveGame()).

Contents

1 Installation and Verification 2
test_simplex()

[\

2 Linear Programming
simplex(a, [dir], [integers|, [binary], [unrestricted])
simplex_core(a, bv, art, ign, P) oo
simplex_int(a, bv, art, ign, P, integers) o000
basis_toid(Basis, n)
id_tobasis(ID, n, b)

= e W N

3 Game Theory
solveGame(p)
pureCheck(p) L
dominance(p)
twobytwo(p) .« . o
simplex_game(p)
verifySecurityLevels(p, X, Y)

~N 3 3O ot ot

Qo

4 Acknowledgments
References e 8

Nikolaus H. Simplex Library

1 Installation and Verification

1. Download the attached zip file.

2. e To use in Xcas [1]: Click File >Open >File and select the simplex.xws file. You
may need to click 'OK’ in the 3 program editor cells.

e To use on an HP Prime: Use the Connectivity Kit to transfer the three .hpprgm
files (in the hpprgm folder) to the HP Prime.

3. Verify everything is working correctly by running the test_simplex() command.

test_simplex()

Solves a set of linear programming problems and returns a list of 1’s or 0’s (true or false)
depending on whether or not the corresponding test’s output matched the expected result.

Example:

test_simplex ()

,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

Note: 1 test (for the game theory commands) failed in an Xcas web session, but everything
works in Xcas and on the HP Prime.

2 Linear Programming

simplex(a, [dir], [integers|, [binary], [unrestricted])

Solves a linear program by using the Simplex Algorithm or Gomory’s Plane Cutting Algo-
rithm. Accepts 1-5 arguments:

| b

| =2’

where A is the constraint matrix, b is the right hand side of the constraints as a column,
¢ is the objective function row, and zy is the constant coefficient of the objective
function. Any = constraints should be the first rows of the matrix. Any < constraints
should be the next rows. Any > constraints should be the last rows. The objective
function is always the final row, with 2z negated. This means that you should put the
constraints in this order to create the augmented matrix: =, <, >, objective function.

e a: The linear program as an augmented matrix of the form

e dir: A list of 2 items; the number of = constraints and the number of > constraints.
Uses maximization if the first value is positive, and minimization if it is negative.
If there are no = constraints, you can use +inf for min or max. If there are no >
constraints, you can omit the list delimiters and provide only the first value.

e integers: a list of integer variable indices.

e binary: a list of binary variable indices.

2024-12-06 2

N

Nikolaus H. Simplex Library

e unrestricted: a list of variable indices without nonnegative restriction.

Returns [z, m, bv, P, X]. z is the optimal value, m is the final matrix tableau, bv is the list of
final basic variable indices, P is the tally of pivotl operations, X is a matrix whose columns
are the vertices of the basic feasible solution.

Example: min 2x+5y subject to 3x—y = 1, x—y < 5, where z,y are nonnegative and integer.

a:=[[3,-1,1]1,[1,-1,5]1,[2,5,0]1];

dir:=[-1,01; // (or we can use dir:=-1 as a shortcut)
integers:=[1,2];

simplex(a,dir,integers)

100 -1 1 1 ;
001 -2 1 6

1205 1 o0 _3 2 o [-1322]6]]
000 17 —12 —12 8

Therefore, the minimum value of 12 occurs at x =1 and y = 2.

Notes: simplex() uses default settings of minimizing the objective function and all con-
straints are < unless specified by dir, therefore, you can omit the dir arguement for prob-
lems aligning with the default settings. You can transform constraints from > to < and vice
versa by multiplying the constraint by —1 to change the problem’s form and still arrive at
the same solution. The indices stored in integers, binary, and unrestricted start from 1
(variable labeling starts from z; instead of xy). If a variable is binary, it is not necessary
to indicate it as integer (this is done automatically). Currently, using one of the optional
arguments requires you to provide all arguments that come before. For example, to enter
unrestricted variables, you should provide values for dir, integers and binary (even if it
is the default value or an empty list). In addition, using unrestricted variables currently
requires an additional manual step after the final iteration is returned to obtain the final
vertex.

simplex core(a, bv, art, ign, P)
Solves a linear program in canonical form by using the Simplex Algorithm. Accepts 5
arguments:

e a: a matrix contains a linear program in canonical form.

e bv: a list of basic variable indices.

e art: the number of (new or unused) = constraints in the program.

e ign: the number of (old or used) = constraints in the linear program.

e P: the tally of pivotl operations used so far.

2024-12-06 3

Nikolaus H. Simplex Library

Returns [z, m, bv, P, X]. z is the optimal value, m is the final matrix tableau, bv is the list of
final basic variable indices, P is the updated tally of pivotl operations, X is a matrix whose
columns are the vertices where the optimal value occurs.

simplex _int(a, bv, art, ign, P, integers)

Solves an (integer) linear program in canonical form by using Gomory’s Plane Cutting Algo-
rithm. Returns the same format as simpelx_core(). Accepts 6 arguments (see simplex_core()
for 1-5):

e integers: a list of integer variable indices.

Note: simplex_core() and simplex_int() are used internally to perform the simplex and
cutting plane algoritms. Since they are more complicated to set up, it is recommended to
solve linear programs with the simplex() command.

basis to_id(Basis, n)

Maps a basis to an ID. Accepts 2 arguments:
e Basis: a list of basic variable indices.
e n: the total number of variables in the system.

Example:

basis_to_id ([3,4,5],5)

9

Therefore, 9 represents the basis [x3, 24, 5] in a system with 5 variables.

id to_basis(ID, n, m)

Returns the basis mapped to the given ID. Accepts 3 arguments:
e ID: an integer representing a unique basis.
e n: the total number of variables in the system.
e m: the number of constraints in the system (number of variables in the target basis).

Example:

id_to_basis (9,5,3)

3,4, 5]
For a system with 5 variables and 3 constraints, the basis corresponding to an ID of 9 is
(23, T4, T5].

2024-12-06 4

Nikolaus H. Simplex Library

3 Game Theory

solveGame(p)

Solves a two-person zero sum game by incorporating multiple strategies including pure strate-
gies, two-by-two matrix shortcut, dominant reduction, and Simplex Algorithm. Accepts 1
argument:

e p: a payoff matrix for a two-person zero sum game.

Returns [v, X,Y].

v is value of the game.

A column of X is a strategy (z) for Player 1, and a column of Y is a strategy (y) for Player
2. For a given set of strategies, x and y, z; and y; are the respective probabilities that, for
every play of the game, Player 1 should play s; and Player 2 should play ¢;.

Example 9.6.1 [2]:

solveGame ([[0,1,-2],[-1,0,1],[2,-1,011)

[0,

NG N g
=D s =
-

Therefore, the value of the game is 0, meaning neither player is expected to win in the long
term (as the number of games approaches infinity). Player 1 and Player 2 should extend 1
finger with probability %, 2 fingers with probability %, or 3 fingers with probability % .

Notes: s; are actions that can be taken by Player 1, ¢; are actions that can be taken by
Player 2. Each set of (s;,t;) is a strategy pair. As the number of games approaches infinity,
the average payoff per game for Player 1 converges to (v) the value of the game (assuming
both players always play optimally). Therefore, a positive value of the game indicates, in the
long-term average, Player 1 wins v per game (Player 2 loses v per game), while a negative
value of the game means, in the long term average, Player 1 loses v per game (Player 2 wins
v per game). If the value of the game is 0, neither player is expected to come out ahead in
the long run.

pureCheck(p)

Checks a payoff matrix for pure strategies. Accepts 1 argument:
e p: a payoff matrix for a two-person zero sum game.

Returns [v, X, Y] for pure strategies or [ug, us| for no pure strategies. v is value of the game.
A column of X or Y is a pure strategy for Player 1 or Player 2, respectively. u; is the security
level for Player 1, us is the security level for Player 2. One way to check for pure strategies
by doing:

2024-12-06 5

Nikolaus H. Simplex Library

r:=pureCheck(p); if dim(r(2)) !'= 1 then // pure strategies ezist

Example 9.3.1a [2]:

pureCheck
(crf1o0,5,5,20,31,f10,15,10,17,25]1,[7,12,8,9,8]1,[5,12,9,10,5]11])

10
? 00
10, [o[-0 1]
0 00

00

Indicates the value of the game is 10, with pure strategies at (sq,?;) and (s2,?3) . This means
that Player 1 should always play sy, while Player 2 should always play ¢, or ts3.

Example 9.3.1b [2]:

pureCheck ([[1,3],[4,2]1]1)

2,3]

Indicates no pure strategies exist, and we must use mixed strategies to solve this game.

dominance(p)

Uses dominant strategies to reduce a payoff matrix to dimensions, stopping when the matrix
is no longer reducible or when the dimensions are [2,2]. Accepts 1 argument:

e p: a payoff matrix for a two-person zero sum game.

Returns list of [p’, [indices of deleted rows|, [indices of deleted columns]]. If no dominant
strategies exist, a p’ will be unmodified and the lists will be empty.

Example:

dominance ([[0,-2,-1,0],[3,5,6,-1]1,[5,-1,-3,-211)

13 4] e

Indicating row 3 and columns 1 and 3 have been removed by dominant strategies.

2024-12-06 6

Nikolaus H. Simplex Library

twobytwo(p)

Solves a two-person zero-sum game (with dimensions of [2,2]) by 2x2 shortcut method.
Assumes no pure strategies. Accepts 1 argument:

e p: a payoff matrix (with dimensions of [2,2]) for a two-person zero-sum game.

Example:

twobytwo ([[1,3],[4,011)

2|

W[—WIN

'

DO [0 | =
| I
—

simplex _game(p)

Solves a two-person zero sum game by Simplex Algorithm. Assumes no possible pure strate-
gies (because only 1 strategy is returned per player when solving by simplex). Accepts 1
argument:

e p: a payoff matrix for a two-person zero sum game.

Returns [v,x,y]. v is value of the game. z; and y; is the probability Player 1 and Player 2
should play s; and ¢;, respectively.

Example: see solveGame() Example 9.6.1

verifySecurityLevels(p, X, Y)

Computes bounds for the maximum security level of Player 1 (v;) when given X, and the
minimum security level of Player 2 (v5) when Y. Accepts 3 arguments:

e p: a payoff matrix for a two-person zero sum game.
e X: a matrix where columns (X;) are potential mixed strategies for Player 1.
e Y: a matrix where columns (Y;) are potential mixed strategies for Player 2.

Returns [vy, v5], where v; will be an empty list if X is an empty list, or vy will be an empty
list if Y is an empty list.

Note: For Player 1, the security level represents the minimum average amount they can
expect to gain by playing strategy X;. For Player 2, it is the maximum average amount they
should expect to lose when playing strategy Y. Player 1 wishes to maximize their security
level, while Player 2 wishes to minimize theirs. If Y is an empty list, computes only bounds
for v;. If X is an empty list, computes only bounds for vs. When provided both X and Y,
computes both v; and v,. X and Y can each be given multiple strategies (columns), and the
strongest bound for the security level of each player will be returned (maximum for Player
1 and minimum for Player 2). If v; = vq, that is the value of the game.

2024-12-06 7

Nikolaus H. Simplex Library

Example 9.4.1 [2]:

verifySecurityLevels ([[1,3],[4,0]1]1,[[1/2],[1/211,1[1)

3

2.0
Therefore, on average, Player 1 can secure a payoff of at least % per game by using the mixed
strategy (3, 1]7

Example (Problem Set 9.4, #1 [2]):

a:=[[1,2,3,4]1,[6,5,2,11,[7,0,1,811];
x:=[[1/3,2/3]1,[1/3,1/3],[1/3,011;
y:=[[1/6,0],[0,1/3],[5/6,1/2],[0,1/6]1];
verifySecurityLevels (a,x,[])

We conclude v; > % (when Player 1 plays X).

verifySecurityLevels(a,[],y)

0.3

We conclude vy < % (when Player 2 plays Y7). Since v; = vy, the value of the game is 3.

4 Acknowledgments

Thanks to Albert Chan for helping investigate bugs, as well as suggesting fixes and im-
provements, and to Bernard Parisse for creating and maintaining Giac/Xcas, as well as
maintaining the HP Prime’s CAS.

References

[1] Giac/Xcas, Bernard Parisse and Renée De Graeve, version 1.9.0 (2024), https://www-
fourier.univ-grenoble-alpes.fr/~parisse/giac.html

[2] An Introduction to Linear Programming and Game Theory 3rd Edition, Paul R. Thie
and Gerard E. Keough (ISBN: 978-0470232866)

2024-12-06 8

https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html
https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac.html

	Installation and Verification
	test_simplex()

	Linear Programming
	simplex(a, [dir], [integers], [binary], [unrestricted])
	simplex_core(a, bv, art, ign, P)
	simplex_int(a, bv, art, ign, P, integers)
	basis_to_id(Basis, n)
	id_to_basis(ID, n, b)

	Game Theory
	solveGame(p)
	pureCheck(p)
	dominance(p)
	twobytwo(p)
	simplex_game(p)
	verifySecurityLevels(p, X, Y)

	Acknowledgments
	References

