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1 Installation

1.1 Installation from Equation Library.hpappdir

More recent versions of the Equation Library are published in an “hpappdir” format. This is essentially
a directory containing various binaries that form the app. To install an app in hpappdir format:

1. Install the connectivity kit and any updates to the connectivity kit as appropriate.
2. Install any firmware updates to the calculator if prompted. Refer to the user manual for more details

on updating firmware.
3. Run the connectivity kit program, and ensure that the Content pane is visible (in the bottom left

corner of the connectivity kit window). If necessary, use the program menu and select Window and
then Content.

4. After uncompressing the zip file, determine which version to install (merged vs. separated).
5. Drag the Equation Library.hpappdir folder into the Content pane in the connectivity kit. Make

sure that this folder is not inadvertently placed inside another folder or existing hpappdir.
6. Run the simulator program (emulator), or connect the calculator via USB.
7. Drag the Equation Library.hpappdir folder inside the Content pane and drop it into the

calculator or simulator shown above the Content pane within the connectivity kit.
8. If you are using the separated version, you will additionally need to drag the SVD2.hpprgm file into

the calculator or virtual calculator. On the calculator (or simulator), type restart in the command
line and then open and close the SVD2 program file.

1.2 Installation on HP Prime simulator from source

Each HP Prime comes with a CD that includes both a simulator and connectivity software. We will assume
that both software packages have already been installed and are in working order. To install Equation
Library on the simulator:

1. Run the simulator program.
2. Press the! key and highlight the Solve app.
3. Click on the Save menu option. When prompted for a new app name, click the Edit menu option

and replace the Advanced Graphing text with Equation Library. PressE twice and the
newly created copy of the Advanced Graphing app should appear in the apps menu with the name
Equation Library.

4. Select the Equation Library app by clicking on the Equation Library icon in the apps menu.
5. PressSy to open the Program Editor and highlight the entry listed as Equation Library

(App). Click the Edit menu option to open the program listing.
6. Clear the existing program listing usingS&.
7. Using a word editor such as Wordpad, open the source code file for the Equation Library app and

copy the entire source listing.
8. On the simulator, (with the Program Editor still opened), paste the source listing by clicking on

Edit and then Paste found in the menu at the top of the simulator window. (If the simulator title bar
does not appear, right-click on the simulator window and select Calculator and then Show Titlebar.)
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9. If installing the separated version, the SVD2 program must also be installed. In the Program Editor,
select the New menu option and use the name SVD2. Copy the contents of the SVD2 program in the
svd2.txt file and replace the contents of the SVD2 program within the Program Editor.

10. Press& to exit the Program Editor.
11. To ensure that the simulator saves its memory state, close the simulator and rerun it.

1.3 Installation Onto the HP Prime calculator

The easiest method is to first install Equation Library on the simulator. Once the app is installed on the
simulator, follow these steps:

1. Ensure that the app is installed on the simulator, and press the! key on the simulator to display the
apps menu. Highlight the Equation Library app.

2. Connect the calculator to the computer running the simulator using the USB cable provided with the
calculator.

3. In the simulator window, select (from the menu at the top of the window): Calculator, Connect
To, <name of calculator>. If the calculator has not been named, then its serial number will appear
instead.

4. In the simulator (with the apps menu open and Equation Library highlighted), click on the Send
menu option at the bottom of the screen.

5. After the app has been sent to the calculator, disconnect the simulator by selecting: Calculator,
Connect To, None from the menu at the top of the simulator window.

6. Turn off the calculator to ensure that the app is saved to permanent storage.

1.4 Updating Equation Library.lib
The data for every single system of equations is stored in an app file named Equation Library.libwithin
the Equation Library app. If there is an update to the library data, the update may be applied in the
following manner. (We will assume that the Equation Library is currently installed on the simulator.)

1. Open the text file containing the library data (list of equations, variables, etc.) on the PC or Mac.
2. Select the entire content of the text file and copy the content into the PC or Mac clipboard.
3. On the simulator (virtual calculator), ensure that the current app is the Equation Library. Type

into the command line
AFiles("Equation Library.lib"):=

but do not press theE key. Make sure that the cursor is to the immediate right of the “=” symbol.
Then paste the content of the library data that was previously copied into the simulator. Then press
E and save the new data.

4. Once this has been updated on the simulator, connect the actual calculator to the PC or Mac.
5. On the simulator, press the! key and select the Equation Library app. The menu at the bottom

should have a “Send” button. Press this menu button to transfer the updated app.
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2 Using the Equation Library
To use the Equation Library press the! key and select the Equation Library app. The app will
start with a blank@ view. At this point, we may either select and existing system of equations stored in the
app, or create a new system of equations to solve.

2.1 Using Existing Systems of Equations

To solve a system of equations that is stored in the app, press theP key and a menu of categories will
appears. Select the appropriate category, and a selection of systems of equations within that category will
appear as shown in Figure 1 below. Upon selecting a system, the@ view will be populated with the

Figure 1: Category and system selection menus

equations from that system as shown in the left screenshot in Figure 2. At this point, we may immediately
solve the system of equations, or we may modify the selection of equations into a smaller subset of equations
by using the check boxes to the left of each equation. A check mark indicates that that particular equation
will be included in the system, whereas a blank box indicates that it will be excluded. Please note that some
systems have more than 10 equations. To view additional pages of equations, press theV key and select
the Select Page option. To view the list of variables of the entire system (for both checked and unchecked
equations), press theV key and select View Variables option. All variables, and their descriptions, will

Figure 2: @ view (left) and list of variables (right)

be listed. Entries surrounded by parentheses are actually constants, though they may be treated as variables
in the sense that we may change their values (perhaps due to a difference in preferred units of measure).
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2.2 Solving a System

Once we have decided which combination of equations to solve, we then enter in known values and initial
guesses using theN key. Note that there may be several pages of variables and constants. Each input

Figure 3: N view for initial guesses and known values

field has a check box to the right to indicate whether the value entered is to be treated as a fixed value
(usually the case for known values or constants). Otherwise the value will be treated as an initial guess
for the corresponding variable, and the system will solve for this variable. A description of the variable is
displayed at the bottom of the screen, just above the list of menu options. Once all values and initial guesses
have been entered, press the OK menu option to begin solving. Depending on the options selected, you may

Figure 4: Iteration information (left) and solution matrix (right)

see information about the current state of the solver as shown in Figure 4 on the left. The information shown
are the Euclidean norm ∥F∥ of the current system and the Euclidean norm ∥∆x∥ of the change in the vector
of variables x. If a solution has been found, a message box indicating a zero was found will be displayed.
Also, a matrix of each individual Newton iteration in the solving process is shown, with the last row of values
being the solution (unless the index of the last row is the one more than the maximum number of iterations
configured).

2.3 Creating a New System

To create a new system to solve, pressP and select New System at the bottom of the list of categories.
Before we can enter in our equations in the@ view, we must initialize the variables that we wish to use in
our system. This can be done by pressingV and selecting the Add/Edit Variables option. In this input
screen, we may also add a description for our variable. The app will continue to prompt for more variable
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names and descriptions after creating a variable. To stop creating new variables, simply select the Cancel
option. This process can be automated if we restrict ourselves to pre-existing variables and by selecting to
have variables be managed automatically. See the Settings section for more information.

Figure 5: Input form for adding or editing variables

There is no option to delete variables. If we should accidentally create a variable we do not wish to use,
we simply avoid using that variable. The system will detect whether a declared variable has been abandoned.
After continued use of the solver, the unused variable(s) will be automatically removed. Variables that are
marked for eventual removal will be marked with (*) in the list of variables (accessible from theVmenu).

Once all variables have been declared, we proceed by populating the@ view with equations. (Note that
any syntax error during the creation of an equation is likely due to the use of a variable that either does not
currently exist in the system or has not been declared.) After entering the desired equations, pressV and
select the Save System option to add the system to the library data file used by the Equation Library
app.
Remark. If using built-in variables such as A through Z, be aware that these variables only store real values.
The solver itself keeps its own record of variables and values and will still solve properly, but we will not be
able to reference any solutions through these variables. That is, if we use the variable A, and the solution
for A is a complex number, then typing A will recall the initial value and not the solved value. Moreover,
subsequent attempts to refine our solution (by pressingN and solving again) will not work. So if we wish
to use complex numbers for our initial values, or if we wish to solve for complex solutions, then we must use
Z0 through Z9 (if the intention is to only use built-in variables), or we must create a new variable which will
always be able to store both real and complex values.

9



3 Settings

The settings for the Equation Library are explained below. Do not forget to press the OK menu
button to save your settings!

3.1 Variables Settings

S@ PressS@ to access the settings for how variables are managed when creating
new systems, or when variables become abandoned.

Variable Mode: When creating a new system, variables can either be created manually usingV
and selecting Add/Edit Variables, or they can be managed automatically.
When set to Automatic, then equations that use pre-existing variables will have
those variables added to the system automatically. However, this is only auto-
matic for pre-existing variables. On the other hand, if the equation uses a variable
that does not currently exist, then such variable must still be manually added into
the system regardless of the Variable Mode setting. This has to do with how
the HP Prime manages variables. Regardless of the currently active app, equa-
tions in any@ view may only use pre-existing variables; otherwise a syntax
error will be returned. This is why the Equation Library app provides a
customized method for adding variables (with a description).

Non-use Limit: Variables are not deleted manually. Instead, they are simply abandoned by non-
use. Every time the solver is activated, it scans the current list of equations and
determines which variables are actually used by the system. Those that are no
longer used in any equation are marked for deletion. The Non-use Limit
refers to the number of times the system is solved without using an abandoned
variable. Upon exceeding the limit, the abandoned variable is then removed
permanently. If a variable that has been marked as abandoned is re-used before
the limit is reached, then it is returned to the active state. Variables marked for
eventual removal are listed in the Variables list with (*).
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3.2 General Settings

SP PressSP to access the settings for systems management and warning levels.

Save Mode: Any time a new system of equations is selected, the Equation Library app
will need to know what to do with the system of equations that is currently in
use. The Save Mode determines the default behavior regarding the changes to
the current system of equations.

Warning: Set the warning/error message level according to your preference. Note that
even with None as the setting, critical errors will still appear.

Solve Engine: Select the desired solve engine. The Quasi-Newton engine is the default en-
gine; it is essentially the same solver used in the SolveSys program for the
older HP48 series of calculators. An explanation of the algorithm may be found
in the section titled Newton’s Method. The Solve App engine is engine used
by the Solve App.

3.3 Quasi-Newton Solver Settings

SN PressS@ to access the settings for the solver.

|∆x_i|: This value determines the exit condition for the Newton solver. After each itera-
tion, the solver checks the relative change in the each variable xi by computing

max
(

|∆xi|
max(|xi|, 1)

)
If this value is less than that specified by |∆x_i| then the exit condition is
met and the solver will try to provide an appropriate conclusion about the final
iteration based on the Euclidean norm ∥F∥. In general, for a value of 1 × 10−p,
the iterations stop when the xi’s differ only in the p-th digit or further.
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∥F∥: After an exit condition is met, this value determines whether the current values
of the variables xi are solutions. Here, F refers to the vector F of functions fi,
where each fi corresponds to the i-th equation fi(x) = 0 and x is the vector of
variables the n variables x1, x2, · · · , xn being solved in the system.

LSQ: LSQ refers to the least squares tolerance. When a system is inconsistent, the New-
ton solver will try to return a least-squares solution, i.e. when f = ∥F∥ =

∑
(fi)

2

is locally minimal. The test is an orthogonality test comparing the gradient of
f with the Newton direction. If the vectors are close to orthogonal (test value
close to 0), then the solution is very likely a local minimum. Usually a value of
0.01 is sufficient.

Max # Iterations: This value limits the number of Newton iterations before the solver quits. We
may continue solving the system if the results show that the solutions appear
to be converging (albeit slowly). The most recent iteration values are stored in
their respective variables. PressingN will allow us to continue solving from
the most recent iteration.

3.4 Variables/Files Used by the Equation Library
Below is a description of the variables and/or files used by and created by the Equation Library.

• The Equation Library uses the Home variable eqlib.dat to store all settings. The variable is a
list of the settings above.

• All systems of equations, their corresponding variables, and any initial/solved values are saved in the
app file named Equation Library.lib. The contents of this file can be accessed with the command

AFiles("Equation Library.lib")

and is a list of lists. The content may be converted into a Note using the program LibToNote listed
in the Appendix.

• Messages during the solve routine are printed into the graphics variable G1. To view the most recent
messages, use

blit_p(G1); freeze; wait(-1);

• All input forms that are generated at runtime (as opposed to being explicitly coded into the app) are
copied into the Note named eqlib_debug.log.

• Several CAS variables are created during the solve routine.
– ssF: this is a vector of the equations being solved
– ssFx: this is a CAS-function equivalent of ssF
– ssJ: this is the Jacobian of ssF
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4 The View Menu (V Key)

TheV key provides additional interfaces for managing the system of equations. The menu options are
described below.

Select Page The@ view shows only ten equations at any given time. However, a system
of equations may have more than 10 equations. In this case, the Select Page
option will switch between desired pages of equations. If a new page is desired
while creating a new system, then select Create New Page. A new page will
be created. Upon saving the system, all pages will be consolidated. Any equation
field left blank will be removed so as few pages as possible are used.

View Variables This option lists all the variables and their descriptions. Variables that have be-
come abandoned through non-use and are marked by deletion will be listed with
(*) next to their name.

View Picture If the system of equations has a diagram associated with it, then this option will
display the diagram. A diagrammay be a single image or an animation of several
images. All images are saved as Portable Network Graphics (PNG) files, and use
the naming convention imgNN.png where NN is the “image index.”

Add/Edit Variable In order to create a new system of equations, or modify an existing system to
use additional variables, new variables must be declared for the system. Note
that this is different from creating a variable. The HP Prime is designed to only
recognize pre-existing variables (such as the global variables A through Z) or
those created by the user. Thus, when adding to equations to the@ view,
usage of non-existent variables will result in a syntax error.
The Add/Edit Variable option will not only declare the variables, it will also
create them if and when necessary. This option will also continue to prompt for
new variable definitions until the user selects the Cancel menu option. This
option may also be used to modify an existing variable (mainly to change the
description).

Restore Equations This is the equivalent of an “undo” for the@ view. The last saved set of equa-
tions will replace the current equations.

Save System This option provides direct access to the interface for saving systems of equations.
Use the Save as a new system check box to create a new copy of the current
system. This can be used to “export” variables and equations to a new system for
future modification.

Delete System This option provides direct access to the interface for deleting systems of equa-
tions. In the event that there are more than 70 equations in the current library,
the systems will be presented in blocks of 70 (seven per page, with a maximum
of ten pages).
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5 Equation Reference

The following equation reference comes from the HP48G Advanced User’s Reference.

5.1 Columns and Beams
Variable Description
ϵ Eccentricity (offset) of load
σcr Critical stress
σmax Maximum stress
θ Slope at x
A Cross-sectional area
a Distance to point load
c Distance to edge fiber (Eccentric Columns), or distance to applied moment (beams)
E Modulus of elasticity
I Moment of inertia
K Effective length factor of column
L Length of column or beam
M Applied moment
Mx Internal bending moment at x
P Load (Eccentric Columns), or oint load (beams)
Pcr Critical load
r Radius of gyration
V Shear force at x
w Distributed load
x Distance along beam
y Deflection at x

Remark. For simply supported beams and cantilever beams (Simple Deflection through Cantilever Shear),
the calculations differ depending upon location of x relative to the loads.

• Applied loads are positive downward.
• The applied moment is positive upward.
• Deflection is positive upward.
• Slope is positive counterclockwise.
• Internal bending moment is positive counterclockwise on the left-hand part.
• Shear force is positive downward on the left-hand part.
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5.1.1 Elastic Buckling

These equations apply to a slender column (K·L
r > 100) with length factor K.

Pcr =
π2 · E ·A(

K·L
r

)2 σcr =
Pcr

A

Pcr =
π2 · E · I
(K · L)2

r =

√
I

A

5.1.2 Eccentric Columns

These equations apply to a slender column (K·L
r > 100

) with length factor K.

σmax =
P

A
·

1 + ϵ · c
r2

·

 1

cos
(

K·L
2·r ·

√
P

E·A

)

 r =

√
I

A
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5.1.3 Simple Deflection

y =
P · (L− a) · x
6 · L · E · I

·

{
x2 + (L− a)2 − L2, if x ≤ a

(L− x)2 + a2 − L2, if x > a

− M · x
E · I

·


c− x2

6 · L
− L

3
− c2

2 · L
, if x ≤ c

c2 + x2

2 · x
− x2

6 · L
− L

3
− c2

2 · L
, if x > c

− w · x
24 · E · I

· (L3 + x2 · (x− 2 · L))

5.1.4 Simple Slope

θ =
P

6 · L · E · I
·

{
(L− a) ·

(
3 · x2 + (L− a)2 − L2

)
, if x ≤ a

−a ·
(
3 · (L− x)2 + a2 − L2

)
, if x > a

− M

E · I
·


c− x2

2 · L
− L

3
− c2

2 · L
, if x ≤ c

x− x2

2 · L
− L

3
− c2

2 · L
, if x > c

− w · x
24 · E · I

· (L3 + x2 · (x− 2 · L))
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5.1.5 Simple Moment

Mx =
P

L

{
(L− a) · x, if x ≤ a

a · (L− x), if x < a
+

M

L
·

{
x, if x ≤ c

−(L− x), if x > c
+

w · x
2

· (L− x)

5.1.6 Simple Shear

V =
P

L
·

{
L− a, if x ≤ a

−a, if x > a
+

M

L
+

w

2
(L− 2 · x)
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5.1.7 Cantilever Deflection

y =
P

6 · E · I
·

{
x2 · (x− 3 · a), if x ≤ a

a2 · (a− 3 · x), if x > a
+

M

2 · E · I
·

{
x2, if x ≤ c

c · (2x− c), if x > c

− w · x2

24 · E · I
· (6 · L2 − 4 · L · x+ x2)

5.1.8 Cantilever Slope

θ =
P

2 · E · I
·

{
x · (x− 2 · a), if x ≤ a

−a2, if x > a
+

M

E · I
·

{
x, if x ≤ c

c, if x > c

− w · x
6 · E · I

· (3 · L2 − 3 · L · x+ x2)
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5.1.9 Cantilever Moment

Mx =

{
P · (x− a), if x ≤ a

0, if x > a
+

{
M, if x ≤ c

0, if x > 0
− w

2
· (L2 − 2 · L · x+ x2)

5.1.10 Cantilever Shear

V =

{
P, if x ≤ a

0, if x > a
+ w · (L− x)
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5.2 Electricity

Variable Description
ϵr Relative permittivity
µr Relative permeability
ω Angular frequency
ω0 Resonant angular frequency
ϕ Phase angle
ϕp, ϕs Parallel and series phase angles
ρ Resistivity
∆I Current change
∆t Time change
∆V Voltage change
A Wire cross-section area (Wire Resistance), or solenoid cross-section area (Solenoid

Inductance), or plate area (Plate Capacitor)
C, C1, C2 Capacitance
Cp, Cs Parallel and series capacitance
d Plate separation
E Energy
F Force between charges
f Frequency
f0 Resonant frequency
I Current, or total current (Current Divider)
I1 Current in r1
Imax Maximum current
L Inductance, or length (Wire Resistance, Cylindrical Capacitor)
l1, l2 Inductance
Lp, Ls Parallel and series inductances
N Number of turns
n Number of turns per unit length
P Power
q Charge
q1, q2 Point charge
Qp, Qs Parallel and series quality factors
r Charge distance
R, r1, r2 Resistance
ri, ro Inside and outside radii
Rp, Rs Parallel and series resistances
t Time
ti, tf Initial and final times
V Voltage, or total voltage (Voltage Divider)
V 1 Voltage across r1
V i, V f Initial and final voltages
V max Maximum voltage
XC Reactance of capacitor
XL Reactance of inductor
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5.2.1 Coulumb’s Law

This equation describes the electrostatic force between two charged particles.

F =
1

4π · ϵ0 · ϵr
· q1 · q2

r2

5.2.2 Ohm’s Law and Power

V = I ·R P = V · I

P = I2 ·R P =
V 2

R

5.2.3 Voltage Divider

V 1 = V · r1

r1 + r2

5.2.4 Current Divider

I1 = I · r2

r1 + r2

5.2.5 Wire Resistance

R =
ρ · L
A
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5.2.6 Series/Parallel Resistance

Rs = r1 + r2
1

Rp
=

1

r1
+

1

r2

5.2.7 Series/Parallel Capacitance

1

Cs
=

1

C1
+

1

C2
Cp = C1 + C2

5.2.8 Series/Parallel Inductance

Ls = l1 + l2
1

Lp
=

1

l1
+

1

l2
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5.2.9 Capacitive Energy

E =
C · V 2

2

5.2.10 Inductive Energy

E =
L · I2

2

5.2.11 RLC Current Delay

The phase delay (angle) is positive for current lagging voltage.

tan(ϕs) = XL−XC

R
tan(ϕp) =

1
XC − 1

XL
1
R

XC =
1

ω ·XC
XL = ω · L

ω = 2π · f

5.2.12 DC Capacitor Current

These equations approximate the DC current required to change the voltage on a capacitor in a certain time
interval.

I = C · ∆V

∆t
∆V = V f − V i ∆t = tf − ti

5.2.13 Capacitor Charge

q = C · V

5.2.14 DC Inductor Voltage

These equations approximate the DC voltage induced in an inductor by a change in current in a certain time
interval.

V = −L · ∆I

∆t
∆I = I1− I0 ∆t = tf − ti
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5.2.15 RC Transient

V = V f − (V f − V i) · e−t/(R·C)

5.2.16 RL Transient

I =
1

R
·
(
V f − (V f − V i)e−t·R/L

)
5.2.17 Resonant Frequency

ω0 =
1√
L · C

Qs =
1

R
·
√

L

C

Qp = R ·
√

C

L
ω0 = 2π · f0

5.2.18 Plate Capacitor

C =
ϵ0 · ϵr ·A

d
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5.2.19 Cylindrical Capacitor

C =
2π · ϵ0 · ϵr · L

ln ( rori )
5.2.20 Solenoid Inductance

L = µ0 · µr · n2 ·A · h

5.2.21 Toroid Inductance

L =
µ0 · µr ·N2 · h

2π
· ln
(ro
ri

)
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5.2.22 Sinusoidal Voltage

V = V max · sin(ω · t+ ϕ)

5.2.23 Sinusoidal Current

I = Imax · sin(ω · t+ ϕ)
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5.3 Fluids
Variable Description
ϵ Roughness
µ Dynamic viscosity
ρ Density
∆P Pressure change
∆y Height change
ΣK Total fitting coefficients
A Cross-sectional area
A1, A2 Initial and final cross-sectional areas
D Diameter
D1, D2 Initial and final diameters
h Depth relative P0 reference depth
hL Head loss
L Length
M Mass flow rate
n Kinematic viscosity
P Pressure at h
P0 Reference pressure
P1, P2 Initial and final pressures
Q Volume flow rate
RN Reynolds number
v1, v2 Initial and final velocities
vavg Average velocity
W Power input
y1, y2 Initial and final heights

Remark. The parameter f (see Flow in Full Pipes) is the Fanning friction factor and is based on the param-
eters ϵ

D and RN . The Fanning factor is computed as follows.

f = FANNING
( ϵ

D
,RN

)
=

{
16
RN , if RN < 2100
1
4 · fDW, if RN ≥ 2100

where fDW is the Darcy-Weisbach friction factor as calculated using Serghide’s solution. Let

A = −2 · log
(
ϵ/D

3.7
+

12

RN

)
, B = −2 · log

(
ϵ/D

3.7
+

2.51 ·A
RN

)
, C = −2 · log

(
ϵ/D

3.7
+

2.51 ·B
RN

)
.

Then
1√
fDW

= A− (B −A)2

C − 2 ·B +A
.

The Fanning factor (if used) should be computed first, and then set as a constant value once computed.
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5.3.1 Pressure at Depth

This equation describes hydrostatic pressure for an incompressible fluid. Depth h is positive downward from
the reference.

P = P0 + ρ · g · h

5.3.2 Bernoulli Equation

These equations represent the streamlined flow of incompressible fluid.

∆P = P2− P1
∆P

ρ
+

v22 − v12

2
+ g ·∆y = 0

∆y = y2− y1
∆P

ρ
+

v22 ·
[
1−

(
A2
A1

)2]
2

+ g ·∆y = 0

M = ρ ·Q ∆P

ρ
+

v12 ·
[(

A2
A1

)2 − 1
]

2
+ g ·∆y = 0

Q = A2 · v2 Q = A1 · v1 A1 =
π ·D12

4
A2 =

π ·D22

4
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5.3.3 Flow with Losses

These equations extend Bernoulli’s equation to include power input (or output) and head loss.

∆P = P2− P1 M ·
(
∆P

ρ
+

v22 − v12

2
+ g ·∆y + hL

)
= W

∆y = y2− y1 M ·

∆P

ρ
+

v22 ·
[
1−

(
A2
A1

)2]
2

+ g ·∆y + hL

 = W

M = ρ ·Q M ·

∆P

ρ
+

v12 ·
[(

A2
A1

)2 − 1
]

2
+ g ·∆y + hL

 = W

Q = A2 · v2 Q = A1 · v1 A1 =
π ·D12

4
A2 =

π ·D22

4

5.3.4 Flow in Full Pipes

These equations adapt Bernoulli’s equation for flow in a round, full pipe, including power input (or output)
and frictional losses.

ρ ·
(
π ·D2

4

)
· vavg ·

[
∆P

ρ
+ g ·∆y + vavg2 ·

(
2 · f · L

D
+

ΣK

2

)]
= W

∆P = P2− P1 ∆y = y2− y1 M = ρ ·Q

A1 =
π ·D12

4
A2 =

π ·D22

4
RN =

D · vavg · ρ
µ

n =
µ

ρ
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5.4 Forces and Energy

Variable Description
α Angular acceleration
ω Angular velocity
ωi, ωf Initial and final angular velocity
ρ Fluid density
τ Torque
θ Angular displacement
a Acceleration
A Projected area relative to flow
ar Centripetal acceleration at r
at Tangential acceleration at r
Cd Drag coefficient
E Energy
F Force at r or x, or spring force (Hooke’s Law), or attractive force (Law of Gravita-

tion), or drag force (Drag Force)
I Moment of inertia
k Spring constant
Ki, Kf Initial and final kinetic energies
m, m1, m2 Mass
N Rotational speed
Ni, Nf Initial and final rotational speeds
P Instantaneous power
Pavg Average power
r Radius from rotation axis, or separation distance (Law of Gravitation)
t Time
v Velocity
vf , v1f , v2f Final velocity
vi, v1i Initial velocity
W Work
x Displacement

5.4.1 Linear Mechanics

F = m · a Ki =
1

2
·m · vi2 Kf =

1

2
·m · vf2 W = F · d

W = Kf −Ki P = F · v Pavg =
W

t
vf = vi+ a · t

5.4.2 Angular Mechanics

τ = I · α Ki =
1

2
· I · ωi2 Kf =

1

2
· I · ωf2 W = τ · θ

W = Kf −Ki P = τ · ω Pavg =
W

t
ωf = ωi+ α · t

at = α · r ω = 2π ·N ωi = 2π ·Ni ωf = 2π ·Nf
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5.4.3 Centripetal Force

F = m · ω2 · r ω =
v

r
ar =

v2

r
ω = 2π ·N

5.4.4 Hooke’s Law

The force is that exerted by the spring.

F = −k · x W = −1

2
· k · x2

5.4.5 1D Elastic Collisions

v1f =
m1−m2

m1 +m2
· v1i v2f =

2 ·m1

m1 +m2
· v1i

5.4.6 Drag Force

F = Cd ·
(
ρ · v2

2

)
·A

5.4.7 Law of Gravitation

F = G ·
(
m1 ·m2

r2

)

5.4.8 Mass-Energy Relation

E = m · c2
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5.5 Gases
Variable Description
λ Mean free path
ρ Flow density
ρ0 Stagnation density
A Flow area
At Throat area
d Molecular diameter
k Specific heat ratio
M Mach number
m Mass
MW Molecular weigth
n Number of moles, or polytropic constant (Polytropic Processes)
P , Pressure, or flow pressure (Isentropic Flow)
Po, Pf Initial and final pressure
P0 Stagnation pressure
Pc Pseudocritical pressure
Po, Pf Initial and final pressure
T Temperature, or flow temperature (Isentropic Flow)
T0 Stagnation temperature
Tc Pseudocritical temperature
Ti, Tf Initial and final temperatures
V Volume
V i, V f Initial and final volumes
vrms Root-mean-square velocity
W Work

Remark. See Real Gas Law and Real Gas State Change. The parameter Z is the ZFACTOR (compressibility
factor) and Z is computed from the Redlich-Kwong equations

P =
R · T

V m− b
− a

V m · (V m+ b) ·
√
T

(1)

a =
R2 · Tc5/2

9 · ( 3
√
2− 1) · Pc

≈ R2 · Tc5/2

2.3393 · Pc
b =

3
√
2− 1

3
· R · Tc

Pc
≈ R · Tc

11.5420 · Pc

where V m = V
m is the molar volume. Set V m = Z·R·T

P and substitute into equation (1) to obtain the cubic
equation

Z3 − Z2 − q · Z − r = 0 (2)
where r = A ·B, q = B2 +B −A, and

A =
Pr

2.3393 · Tr5/2
B =

Pr

11.5420 · Tr
Tr =

T

Tc
Pr =

P

Pc

Then Z is the largest real-valued solution to equation (2).
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5.5.1 Ideal Gas Law

P · V = n ·R · T m = n ·MW

5.5.2 Ideal Gas State Change

P2 · V 2

T2
=

P1 · V 1

T1

5.5.3 Isothermal Expansion

These equations apply to an ideal gas.

W = n ·R · T · ln
(
V f

V i

)

5.5.4 Polytropic Process

These equations describe a reversible pressure-volume change of an ideal gas such that P · V n is constant.
Special cases include isothermal processes (n = 1), isentropic processes (n = k, the specific heat ratio), and
constant-pressure processes (n = 0).

Pf

Po
=

(
V f

V i

)−n
Tf

T i
=

(
Pf

Po

)(n−1)/n

5.5.5 Isentropic Flow

The calculation differs at velocities below and above Mach 1. The Mach number is based on the speed of
sound in the compressible fluid.

T

T0
=

2

2 + (k − 1) ·M2

ρ

ρ0
=

(
T

T0

)1/(k−1)

P

P0
=

(
T

T0

)k/(k−1)
A

At
=

1

M
·
[

2

k + 1
·
(
1 +

k − 1

2
·M2

)](k+1)/[2·(k−1)]

5.5.6 Real Gas Law

These equations adapt the ideal gas law to emulate real-gas behavior.
P · V = n · Z ·R · T m = n ·MW

Remark. In this case,
Z = ZFACTOR

(
T

Tc
,
P

Pc

)
.
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5.5.7 Real Gas State Change

This equation adapt the ideal gas state change equation to emulate real-gas behavior.
Pf · V f

Zf · Tf
=

Po · V i

Zi · Ti

Remark. In the equation above,

Zf = ZFACTOR
(
Tf

Tc
,
Pf

Pc

)
and Zi = ZFACTOR

(
Ti

Tc
,
Po

Pc

)
.

5.5.8 Kinetic Theory

These equations describe properties of an ideal gas.

P =
n ·MW · vrms2

3 · V
vrms =

√
3 ·R · T
MW

λ =
1√

2 · π ·
(
n·NA
V

)
· d2

m = n ·MW
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5.6 Heat Transfer
Variable Description
α Expansion coefficient
δ Elongation
λ1, λ2 Lower and upper wavelength limits
λmax Wavelength of maximum emissive power
∆T Temperature difference
A Area
c Specific heat
eb12 Emmissive power in range λ1 to λ2
eb Total emissive power
f Fraction of emissive power in the range λ1 to λ2
h, h1, h3 Convective heat-transfer coefficient
k, k1, k2, k3 Thermal conductivity
L, l1, l2, l3 Length
m Mass
Q Heat capacity
q Heat transfer rate
T Temperature
Tc Cold surface temperature (Conduction), or cold fluid temperature
Th Hot surface temperature, or hot fluid temperature (Conduction + Convection)
Ti, Tf Initial and final temperatures
U Overall heat transfer coefficient

5.6.1 Heat Capacity

Q = m · c ·∆T Q = m · c · (Tf − Ti)

5.6.2 Thermal Expansion

δ = α · L ·∆T δ = α · L · (Tf − Ti)
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5.6.3 Conduction

q =
k ·A
L

·∆T q =
k ·A
L

· (Th− Tc)

5.6.4 Convection

q = h ·A ·∆T q = h ·A · (Th− Tc)

5.6.5 Conduction + Convection

If we have fewer than three layers, we give the extra layers a zero thickness and any nonzero conductiv-
ity. The two temperatures are fluid temperatures—if instead we know a surface temperature, we set the
corresponding convective coefficient to 10499.

q =
A ·∆T

1

h1
+

l1

k1
+

l2

k2
+

l3

k3
+

1

h3

U =
q

A ·∆T

q =
A · (Th− Tc)

1

h1
+

l1

k1
+

l2

k2
+

l3

k3
+

1

h3

U =
q

A · (Th− Tc)
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5.6.6 Black Body Radiation

eb = σ · T 4 eb12 = f · eb
q = eb ·A λmax = c3

f = F0λ(λ2, T )− F0λ(λ1, T )

Remark. The F0λ function returns the fraction of total black-body emissive power at temperature T between
wavelengths 0 and λ.

F0λ = F0→λT =
2π · C1

σC4
2

∫ ∞

ζ

ζ3

eζ − 1
dζ

where

σ =
2 · C1 · π5

15 · C4
2

, ζ =
C2

λ · T
, C1 = h · c20, C2 =

h · c0
kB

,

h is Planck’s constant, c0 is the speed of light, and kB is the Boltzmann constant. The F0λ function approxi-
mates this integral by using the series expansion

1

eζ − 1
=

e−ζ

1− e−ζ
= e−ζ + e−2ζ + e−3ζ + · · ·

and integration by parts. Thus

F0→λT =
15

π4

∞∑
m=1

[
e−mζ

m
·
(
ζ3 +

3 · ζ2

m
+

6 · ζ
m2

+
6

m3

)]
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5.7 Magnetism

Variable Description
µr Relative permeability
B Magnetic field
d Separation distance
Fba Force
I, Ia, Ib Current
L Length
N Total number of turns
n Number of turns per unit length
r Distance from center of wire
ri, ro Inside and outside radii of toroid
rw Radius of wire

5.7.1 Straight Wire

B =
µ0 · µr · I

2π
·

{
r

rw2 , if r < rw
1
r , if r ≥ rw

5.7.2 Force Between Wires

The force between wires is positive for an attractive force (for currents having the same sign).

Fba =
µ0 · µr · Ib · Ia

2π · d
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5.7.3 Magnetic Field in Solenoid

B = µ0 · µr · I · n

5.7.4 Magnetic Field in Toroid

B =
µ0 · µr · I ·N

2π
·
(

2

ro+ ri

)
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5.8 Motion
Variable Description
α Angular acceleration
ω Angular velocity (Circular Motion), or angular velocity at t (Angular Motion)
ω0 Initial angular velocity
ρ Fluid density
θ Angular position at t
θ0 Initial angular position (Angular Motion), or initial vertical angle (Projectile Motion)
a Acceleration
A Projected horizontal area
ar Centripetal acceleration at r
Cd Drag coefficient
m Mass
M Planet mass
N Rotational speed
R Horizontal range (Projectile Motion), or planet radius (Escape Velocity)
r Radius
t Time
v Velocity at t (Linear Motion), or tangential velocity at r (Circular Motion), or termi-

nal velocity (Terminal Velocity), or escape velocity (Escape Velocity)
v0 Initial velocity
vx Horizontal component of velocity at t
vy Vertical component of velocity at t
x Horizontal position at t
x0 Initial horizontal position
y Vertical position at t
y0 Initial vertical position

5.8.1 Linear Motion

x = x0 + v0 · t+ 1

2
· a · t2 x = x0 +

1

2
· (v0 + v) · t

x = x0 + v · t− 1

2
· a · t2 v = v0 + a · t

5.8.2 Object in Free Fall

y = y0 + v0 · t− 1

2
· g · t2 v2 = v02 − 2 · g · (y − y0)

y = y0 + v · t+ 1

2
· g · t2 v = v0− g · g
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5.8.3 Projectile Motion

x = x0 + v0 · cos(θ0) · t y = y0 + v0 · sin(θ0) · t
vx = v0 · cos(θ0) vy = v0 · sin(θ0)− g · t

R =
v02

g
· sin(2 · θ0)

5.8.4 Angular Motion

θ = θ0 + ω0 · t+ 1

2
· α · t2 θ = θ0 + ω · t− 1

2
· α · t2

θ = θ0 +
1

2
· (ω0 + ω) · t ω = ω0 + α · t

5.8.5 Circular Motion

ω =
v

r
ar =

v2

r
ω = 2π ·N

5.8.6 Terminal Velocity

v =

√
2 ·m · g
Cd · ρ ·A

5.8.7 Escape Velocity

v =

√
2 ·G ·M

R
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5.9 Optics

Variable Description
θ1 Angle of incidence
θ2 Angle of refraction
θB Brewster angle
θc Critical angle
f Focal length
m Magnification
n, n1, n2 Index of refraction
r, r1, r2 Radius of curvature
u Distance to object
v Distance to image

For reflection and refraction problems, the focal length and radius of curvature are positive in the direction of
the outgoing light (reflected or refracted). The object distance is positive in front of the surface. The image
distance is positive in the direction of the outgoing light (reflected or refracted). The magnification is positive
for an upright image.

5.9.1 Law of Refraction

n1 · sin(θ1) = n2 · sin(θ2)

5.9.2 Critical Angle

sin(θc) = n1

n2

42



5.9.3 Brewster’s Law

The Brewster angle is the angle of incidence at which the reflected wave is completely polarized.

tan(θB) =
n2

n1
θB + θ2 = 90

5.9.4 Spherical Reflection

1

u
+

1

v
=

1

f
f =

1

2
· r m = − v

u

5.9.5 Spherical Refraction

n1

u
+

n2

v
=

n2− n1

r
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5.9.6 Thin Lens

1

u
+

1

v
=

1

f
f = (n− 1) ·

(
1

r1
− 1

r2

)
m = − v

u

44



5.10 Oscillations
Variable Description
ω Angular frequency
ϕ Phase angle
θ Cone angle
a Acceleration at t
f Frequency
G Shear modulus of elasticity
h Cone height
I Moment of inertia
J Polar moment of inertia
k Spring constant
L Length of pendulum
m Mass
t Time
T Period
v Velocity at t
x Displacement at t
xm Displacement amplitude

5.10.1 Mass-Spring System

ω =

√
k

m
T =

2π

ω
ω = 2π · f

5.10.2 Simple Pendulum

ω =

√
g

L
T =

2π

ω
ω = 2π · f
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5.10.3 Conical Pendulum

ω =

√
g

h
T =

2π

ω
ω = 2π · f

h = L · cos(θ)

5.10.4 Torsional Pendulum

ω =

√
G · J
L · I

T =
2π

ω
ω = 2π · f

5.10.5 Simple Harmonic

x = xm · cos(ω · t+ ϕ) v = −ω · xm · sin(ω · t+ ϕ)

a = −ω2 · xm · cos(ω · t+ ϕ) ω = 2π · f
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5.11 Plane Geometry

Variable Description
β Central angle of polygon
θ Vertex angle of polygon
A Area
b Base length (Rectangle, Triangle), or length of semiaxis in x direction (Ellipse)
C Circumference
d Distance to rotation axis in y direction
h Height (Rectangle, Triangle), or length of semiaxis in y direction (Ellipse)
I, Ix Moment of inertia about x axis
Id Moment of inertia about y axis
J Polar moment of inertia at centroid
L Side length of polygon
n Number of sides
P Perimeter
r Radius
ri, ro Inside and outside radii
rs Distance to side of polygon
rv Distance to vertex of polygon
v Horizontal distance to vertex

5.11.1 Circle

A = π · r2 C = 2π · r I =
π · r4

4
J =

π · r4

2
Id = I +A · d2
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5.11.2 Ellipse

A = π · b · h C = 2π

√
b2 + h2

2

I =
π · b · h3

4
J =

π · b · h
4

· (b2 + h2)

Id = I +A · d2

5.11.3 Rectangle

A = b · h P = 2 · b+ 2 · h

I =
b · h3

12
J =

b · h
12

· (b2 + h2)

Id = I +A · d2
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5.11.4 Regular Polygon

A =
1
4 · n · L2

tan ( 180n ) P = n · L rs =
L
2

tan ( 180n )
rv =

L
2

sin ( 180n ) θ =
n− 2

n
· 180 β =

360

n

5.11.5 Circular Ring

A = π(ro2 − ri2) I =
π

4
· (ro4 − ri4) J =

π

2
· (ro4 − ri4) Id = I +A · d2
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5.11.6 Triangle

A =
1

2
· b · h P = b+

√
v2 + h2 +

√
(b− v)2 + h2

Ix =
1

36
· b · h3 Iy =

1

36
· b · h · (b2 − b · v + v2)

J =
1

36
· b · h · (h2 + b2 − b · v + v2) Id = Ix+A · d2

50



5.12 Solid Geometry

Variable Description
A Total surface area
b Base length
d Distance to rotation axis in z direction
h Height in z direction (Cone, Cylinder), or height in y direction (Parallelepiped)
I, Ixx Moment of inertia about x axis
Id Moment of inertia in x direction at d
Izz Moment of inertia about z axis
m Mass
r Radius
t Thickness in z direction
V Volume

5.12.1 Cone

V =
π

3
· r2 · h A = π · r2 + π · r ·

√
r2 + h2

Ixx =
3

20
·m · r3 + 3

80
·m · h2 Izz =

3

10
·m · r2

Id = Ixx+m · d2
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5.12.2 Cylinder

V = π · r2 · h A = 2π · r2 + 2π · r · h

Ixx =
1

4
·m · r2 + 1

12
·m · h2 Izz =

1

2
·m · r2

Id = Ixx+m · d2

5.12.3 Parallelepiped

V = b · h · t A = 2 · (b · h+ b · t+ h · t)

I =
1

12
·m · (h2 + t2) Id = I +m · d2
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5.12.4 Sphere

V =
4

3
· π · r3 A = 4π · r2 I =

2

5
·m · r2 Id = I +m · d2
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5.13 Solid State Devices
Variable Description
αF Forward common-base current gain
αR Reverse common-base current gain
γ Body factor
λ Modulation parameter
µn Electron mobility
ϕp Fermi potential
∆L Length adjustment (PN Step Junctions), or channel encroachment (NMOS Transis-

tors)
∆W Width adjustment (PN Step Junctions), or width contraction (NMOS Transistors)
a Channel thickness
Aj Effection junction area
BV Breakdown voltage
CG0 Channel conductance
Cj Junction capacitance per unit area
Cox Silicon dioxide capacitance per unit area
E1 Breakdown voltage field factor
Emax Maximum electric field
gds Output conductance
gm Transconductance
I Diode current
IB Total base current
IC Total collector current
ICEO Collector current (collector-to-base open)
ICO Collector current (emitter-to-base open)
ICS Collector-to-base saturation current
ID, IDS Drain current
IE Total emitter current
IES Emitter-to-base saturation current
IS Transistor saturation current
J Current density
Js Saturation current density
L Drawn mask length (PN Step Junctions), or drawn gate length (NMOS Transistors),

or channel length (JFETs)
Le Effective gate length
NA P-side doping (PN Step Junctions), or substrate doping (NMOS Transistors)
ND N-side doping (PN Step Junctions), or N-channel doping (JFETs)
T Temperature
tox Gate silicon dioxide thickness
V a Applied voltage
V BC Base-to-collector voltage
V BE Base-to-emitter voltage
V bi Built-in voltage
V BS Substrate voltage
V CEsat Collector-to-emitter saturation voltage
V DS Applied drain voltage
V Dsat Saturation voltage
V GS Applied gate voltage
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V t Threshold voltage
V t0 Threshold voltage (at zero substrate voltage)
W Drawn mask width (PN Step Junctions), or drawn widht (NMOS Transistors), or

channel width (JFETs)
We Effective width
xd Depletion-region width
xdmax Depletion-layer width
xj Junction depth

5.13.1 PN Step Junctions

These equations for a silicon PN-junction diode use a “two-sided step-junction” model—the doping density
changes abruptly at the junction. The equations assume the current density is determined by minority carriers
injected across the depletion region and the PN junction is rectangular in its layout. The temperature should
be between 77 and 500 K.

V bi =
k · T
q

· ln
(
NA ·ND

ni2

)
xd =

√
2ϵsi · ϵ0

q
· (V bi− V a) ·

(
1

NA
+

1

ND

)
Cj =

ϵsi · ϵ0
xd

Emax =
2 · (V bi− V a)

xd

BV =
ϵsi · ϵ0 · E12

2 · q
·
(

1

NA
+

1

ND

)
J = Js ·

(
eq·V a/(k·T ) − 1

)
I = J ·Aj

Aj = (W + 2 ·∆W ) · (L+ 2 ·∆L) + π · (W + L+ 2 ·∆W + 2 ·∆L) · xj + 2π · xj2

Remark. The ni paremeter here refers to the silicon density (intrinsic carrier concentration) at temperature
T . This is computed by the SIDENS function, which returns

ni(T ) =
√
Nc ·Nv · e−Eg/(2·k·T )

where
Eg = 1.17− 4.73 · 10−4 · T 2

T + 636

and T is temperature in degrees K.
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5.13.2 NMOS Transistors

These equations for a silicon NMOS transistor use a two-port network model. They include linear and non-
linear regions in the device characteristics and are based on a gradual-channel approximation (the electric
fields in the direction of current flow are small compared to those perpendicular to the flow). The drain cur-
rent and tansconductance calculations differ depending on wether the transistor is in the linear, saturated, or
cutoff region. The equations assume the physical geometry of the device is a rectangle, second-order length-
parameter effects are negligible, short-channel, hot-carrier, and velocity-saturation effects are negligible, and
subthreshold currents are negligible. See PN Step Junctions regarding ni.

We = W − 2 ·∆W Le = L− 2 ·∆L Cox =
ϵox · ϵ0
tox

IDS = Cox · µn ·
(
We

Le

)
· (1 + λ · V DS) ·


0, if V GS < V t

(V GS − V t) · V DS − V DS2

2 , if 0 ≤ V DS ≤ V GS − V t
1
2 · (V GS − V t)2, if 0 ≤ V GS − V t < V DS

γ =

√
2 · ϵsi · ϵ0 · q ·NA

Cox
V t = V t0 + γ · (

√
2 · |ϕp|+ |V BS| −

√
2 · |ϕp|)

ϕp = −k · T
q

· ln
(
NA

ni

)
gds = IDS · λ

V Dsat = V GS − V t

gm =


0, if V GS < V t

Cox · µn ·
(
We
Le

)
· V DS · (1 + λ · V DS), if 0 ≤ V DS ≤ V GS − V t√

Cox · µn ·
(
We
Le

)
· (1 + λ · V DS) · 2 · IDS, if 0 ≤ V GS − V t < V DS
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5.13.3 Bipolar Transistors

These equations for an NPN silicon bipolar transistor are based on large-signal models developed by J.J Ebers
and J.L. Moll. The offset-voltage calculation differs depending on whether the transistor is saturated or not.
The equations also include the special conditions when the emitter-base or collector-base junction is open,
which are convenient for measuring transistor parameters.

IE = −IES ·
(
eq·V BE/(k·T ) − 1

)
+ αR · ICS ·

(
eq·V BC/(k·T − 1

)
IC = −ICS ·

(
eq·V BC/(k·T ) − 1

)
+ αF · IES ·

(
eq·V BE/(k·T − 1

)
V CEsat =


0, if IC

IB ·
(
1−αF
αF

)
≥ 1

k · T
q

· ln
[

1 + IC
IB · (1− αR)

αR ·
(
1− IC

IB ·
(
1−αF
αF

))] , if IC
IB ·

(
1−αF
αF

)
< 1

IS = −αF · IES IS = αR · ICS IB + IE + IC = 0

ICO = ICS · (1− αF · αR) ICEO =
ICO

1− αF
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5.13.4 JFETs

These equations for a silicon N-channel junction field-effect transistor (JFET) are based on single-sided step-
junction approximation, which assumes the gates are heavily doped compared to the channel doping. The
drain-current calculation differs depending on whether the gate-junction depletion-layer thickness is less than
or greater than the channel thickness. The equations assume the channel is uniformly doped and end effects
(such as contact, drain, and source resistances) are negligible. See PN Step Junctions regarding ni.

V bi =
k · T
q

· ln
(
ND

ni

)
xdmax =

√
2 · ϵsiϵ0
q ·ND

· (V bi− V GS + V DS)

CG0 = q ·ND · µn ·
(
a ·W
L

)
V Dsat =

q ·ND · a2

2 · ϵsi · ϵ0
− (V bi− V GS)

V t = V bi− q ·ND · a2

2 · ϵsi · ϵ0
gm = CG0 ·

(
1−

√
2 · ϵsi · ϵ0
q ·ND · a2

· (V bi− V GS)

)

ID = CG0 ·


V GS − 2

3 ·
√

2 · ϵsi · ϵ0
q ·ND · a2

(
(V bi− V GS + V DS)3/2 − (V bi− V GS)3/2

)
, if xdmax < a

q ·ND · a2

6 · ϵsi · ϵ0
− (V bi− V GS) ·

(
1− 2

3
·

√
2ϵsi · ϵ0

q ·ND · a2
· (V bi− V GS)

)
, if xdmax ≥ a
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5.14 Stress Analysis

Variable Description
δ Elongation
ϵ Normal strain
γ Shear strain
ϕ Angle of twist
σn Normal stress
σ1 Maximum principal normal stress
σ2 Minimum principal normal stress
σavg Normal stress on plane of maximum shear stress
σx Normal stress in x direction
σx1 Normal stress in rotated-x direction
σy Normal stress in y direction
σx1 Normal stress in rotated-y direction
τ Shear stress
τmax Maximum shear stress
τx1y1 Rotated shear stress
τxy Shear stress
θ Rotation angle
θp1 Angle to plane of maximum principal normal stress
θp2 Angle to plane of minimum principal normal stress
θs Angle to plane of maximum shear stress
A Area
E Modulus of elasticity
G Shear modulus of elasticity
J Polar moment of inertia
L Length
P Load
r Radius
T Torque

5.14.1 Normal Stress

σn = E · ϵ ϵ =
δ

L
σn =

P

A
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5.14.2 Shear Stress

τ = G · γ γ =
r · ϕ
L

τ =
T · r
J

5.14.3 Stress on an Element

σx1 =
σx+ σy

2
+

σx− σy

2
· cos(2 · θ) + τxy · sin(2 · θ)

τx1y1 = −
(
σx− σy

2

)
· sin(2θ) + τxy · cos(2 · θ)

σx1 + σy1 = σx+ σy
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5.14.4 Mohr’s Circle

σ1 =
σx+ σy

2
+

√(
σx− σy

2

)2

+ τxy2 sin(2 · θp1) = τxy√(
σx−σy

2

)2
+ τxy2

σ1 + σ2 = σx+ σy θp2 = θp1 + 90

τmax =
σ1− σ2

2
θs = θp1− 45

σavg =
σx+ σy

2
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5.15 Waves
Variable Description
β Sound level
λ Wavelength
ω Angular frequency
ρ Density of medium
B Bulk modulus of elasticity
f Frequency
I Sound intensity
k Angular wave number
s Longitudinal displacement at x and t
sm Longitudinal amplitude
t Time
v Speed of sound in medium (Sound Waves), or wave speed (Transverse Waves, Lon-

gitudinal Waves)
x Position
y Transverse displacement at x and t
ym Transverse amplitude

5.15.1 Transverse Waves

y = ym · sin(k · x− ω · t) v = λ · f k =
2π

λ
ω = 2π · f

5.15.2 Longitudinal Waves

s = sm · cos(k · x− ω · t) v = λ · f k =
2π

λ
ω = 2π · f

5.15.3 Sound Waves

v =
√
βρ I =

1

2
· ρ · v · ω2 · sm2 β = 10 · log

(
I

10

)
ω = 2π · f

5.16 References

Hewlett-Packard. HP 48G Advanced User’s Reference Manual, 4th Ed., 1994.
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6 Newton’s Method

Newton’s method is essentially an application of tangent lines. The equation of a line tangent to a single-
variable function f(x) at x = x0 is given by

y = f ′(x0) · (x− x0) + f(x0). (3)

This comes from the point-slope form of a line: y − y0 = m · (x − x0), where y0 = f(x0), and m = f ′(x0).
Newton’s method approximates the zero of f(x) as the horizontal intercept of equation (3).

x = x0 −
f(x0)

f ′(x0)
(4)

Upon converting equation (4) to iterative form, we have

xn+1 = xn − f(xn)

f ′(xn)

A similar derivation works equally well for multivariable functions. For example, if we have a two-variable
function f(x, y), with partial derivatives fx(x, y) and fy(x, y), then linear approximation of f(x, y) is essen-
tially the equation of its tangent plane at some specific location x = x0, y = y0:

z = f(x0, y0) + fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0)︸ ︷︷ ︸
∇f ·∆x

.

Observe that part of the right hand side can be interpreted as the (matrix) product ∇f ·∆x, where

∇f =
[
fx(x0, y0) fy(x0, y0)

] and ∆x =

[
x− x0

y − y0

]
So finding an approximation of a zero of f(x, y), with an initial guess of x = x0 and y = y0, amounts to
solving

∇f ·∆x = −f(x0, y0) (5)
for ∆x and then computing [

x
y

]
︸︷︷︸
x

=

[
x0

y0

]
︸︷︷ ︸
x0

+

[
x− x0

y − y0

]
︸ ︷︷ ︸

∆x

Solving a system of m equations in n unknowns is equivalent to finding the zeros of m functions in the n
variables x1, x2, · · ·xn as shown below.

f1(x1, x2 · · ·xn) = 0
f2(x1, x2 · · ·xn) = 0

...
fm(x1, x2 · · ·xn) = 0

Let x = [x1, x2, · · · , xn]
T . Using Newton’s method with an initial guess of x = x0, we would have to solve m

equations similar to (5), with each equation corresponding to a linear approximation of fi at the point x0.

∇f1 ·∆x = −f1(x0)
∇f2 ·∆x = −f2(x0)

...
∇fm ·∆x = −fm(x0)

.
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The system above is equivalent to the matrix equation

J ·∆x = −F0

where F0 = F(x0),

J =


(f1)x1 (f1)x2 · · · (f1)xn

(f2)x1 (f2)x2 · · · (f2)xn... ... . . . ...
(fm)x1 (fm)x2 · · · (fm)xn

 and F(x) =


f1(x)
f2(x)
...

fm(x)

 .

The matrix J is called the Jacobian (and is evaluated at x0). The (i, j)-th entry of J is the partial derivative
of fi with respect variable xj (and the partial derivative is evaluated at x = x0). Again, we solve for ∆x.

∆x = −J−1 · F0 (6)

We then obtain an approximation for the solution to our system of equations using x = x0 +∆x, and iterate
on formula (6) to refine our solution. While Newton’s method can be used to solve a system of equations,
whether a solution will be found depends on the initial guess. A poor initial guess may very well lead to a
worse estimation of a solution.

6.1 Minimization

If x is a solution to F(x) = 0, then x is also a zero of the function

g(x) =
1

2
F(x).F(x) =

1

2
[(f1(x))2 + (f2(x))2 + · · ·+ (fm(x))2].

(Here, the operation u.v denotes the dot product of u and v.) Note that g is non-negative, so solutions to
F(x) = 0 are minimums of g. (On the other hand, the minimums of g may not necessarily correspond to
solutions of F(x) = 0.) Another important observation is that ∇g = FT · J, which implies

∇g ·∆x = (FT · J) · (−J−1 · F) = −FT · F = −F.F = −2g < 0

So the Newton step ∆x is a descent direction toward a minimum of g. If the minimum is also a zero of g,
then it is also a solution to F(x) = 0. In practice, we can simply check whether the norm of F is sufficiently
small. Otherwise, we try again with a different initial guess.

6.2 Line Search

Note that while∆x is a descent direction, the full step∆xmay be “too far” and actually result in g(x+∆x) >
g(x). When this happens, we can simply scale back the Newton step by a factor of λ so that g(x+λ∆x) < g(x).
Such a λ is guaranteed by the fact that ∆x is a descent direction. The scaling factor λ can be determined by
a line search.

Suppose that g(x + ∆x) > g(x) > 0 and let h(λ) = g(x + λ∆x). Then h must have a minimum in the
interval (0, 1) since h is non-negative and ∆x is a descent direction from the point x. We can approximate
h(λ) as a quadratic function

h(λ) ≈ [h(1)− h(0)− h′(0)]λ2 + h′(0)λ+ h(0)

where h(0) = g(x), h(1) = g(x+∆x), and

h′(0) = ∇g ·∆x = −2g(x) = −2h(0).
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The quadratic approximation of h has a minimum when
2[h(1)− h(0)− h′(0)]λ+ h′(0)︸ ︷︷ ︸

h′(λ)

= 0.

The equation above has the solution

λq =
h′(0)

2[h(1)− h(0)− h′(0)]
. (7)

We then test to see if h(λq) = g(x+ λqx) is “sufficiently less than” g(x). If not, then we approximate h by a
cubic function using this additional evaluation of g(x+ λq∆x).
Remark. In practice we compute (7) using h′(0) = −2h(0) so that

λq =
−2h(0)

2[h(1)− h(0) + 2h(0)]
=

h(0)

h(1) + h(0)

Should the quadratic approximation fail to yield a suitable λ, we can proceed with a cubic approximation
of h using the formula

h(λ) = aλ3 + bλ2 + h′(0)λ+ h(0).

At this point, we have already evaluated h(1) and h(λq), which we use to solve the linear system
a+ b+ h′(0) + h(0) = h(1)

aλ3
q + bλ2

q + h′(0)λq + h(0) = h(λq)

for a and b. The cubic approximation of h has critical points when h′(λ) = 0. The solutions to
3aλ2 + 2bλ+ h′(0) = 0

are
λc =

−2b±
√
(2b)2 − 4(3a)h′(0)

2(3a)
=

−b±
√

b2 + 6h(0)

3a
.

6.3 Computing J−1

In equation (6), we assumed that J was invertible. It is quite possible for J to be non-square (in the case of
over determined or under determined systems). And even when J is a square matrix, it may very well be
singular (or nearly singular) at some particular iteration of Newton’s method. There are several approaches
to solving the equation J ·∆x = −F, though the most robust (and perhaps the slowest) method is to compute
the pseudo-inverse J+ of J using the singular value decomposition (SVD) of J.

When J is square and non-singular, the pseudo-inverse J+ is exactly the inverse of J. That is, J+ = J−1,
and

∆x = −J+ · F = −J−1 · F.
If J is non-square but still has full rank, then

J+ = (J∗ · J)−1 · J∗

where J∗ is the Hermitian transpose (conjugate transpose). (If J has only real-valued entries, then J∗ = JT .)
Moreover, in this case, J+ constitutes a left inverse since

J+ · J = ((J∗ · J)−1 · J∗) · J = (J∗ · J)−1(J∗ · J) = I.

Solve for ∆x in J ·∆x = −F to obtain ∆x = −J+ · F. Lastly, if J is singular, then J+ is a generalized inverse
of J and has the property J · J+ · J = J. Notice that

J ·∆x = (J · J+ · J) ·∆x = J · J+ · (J ·∆x) = J · J+ · (−F)

So even in the singular case, we can obtain ∆x since J ·∆x = J · J+ · (−F) suggests that ∆x = −J+ · F.
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6.4 Points of Failure

Despite the robustness of the pseudo-inverse, and the fact that the Newton step ∆x is a descent step, the
algorithm can fail in several places.

1. Machine precision (or the lack thereof) could produce a λ value (in the line search) so small that its
effect would not propagate significantly into the computation of F and its norm.

2. A combination of precision, bad guess, and singular functions (i.e. the fi’s in Fmight be discontinuous)
could lead to an evaluation error in F.

3. The Jacobian J could similarly have points of discontinuity.
4. The system is inconsistent (no solution). Though in this case, Newton’s method can still produce a

“least squares” solution (i.e. a solution for which the norm of F is locally minimal).
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7 Appendix

7.1 Library File Format

The default library file is saved in Equation Library.lib. It consists of a list of lists
{

system1,
system2,
...
systemK

}

where system1 through systemK are themselves lists. Below is a generic example of one such system (of
M equations and N variables/constants) and the descriptions of its components.
{

"System Name",
{

"equation1",
"equation2",
...
"equationM"

},
{ eqchk1,eqchk2,...,eqchkM },
{ "var1", "var2", ..., "varN" },
{ "desc1", "desc2", ..., "descN" },
{ val1,val2,...,valN },
{ const1,const2,...,constN },
"Category",
"Image Index"

}

"System Name" This is the name or title of the system of equations.

"equationi" Each equation is stored as a string. For example, the equation F = m ·a for force
as a product of mass and acceleration is stored as "F=m*a".

eqchki While a system of equations may have M equations, the user may choose to
use only a subset of these equations. The user may select the subset using the
checkboxes in@ view. Upon saving the system, the selection list is saved into
a list of eqchki’s. These values are either 0 or 1 and correspond to whether the
equation was selected (set to 1) in the most recently saved solving session.

"varj" Each variable is listed as a string. For example, the variables F , m, and a in the
equation F = m · a are stored as "F", "m", and "a" respectively.

"descj" This is the description of the j-th variable. These descriptions are used in two
places: the help prompt in theN view and the list of variables shown by the
View Variables option in theV menu. Some variables are actually con-
stants. For example, NA is the conventional constant for Avogadro’s number.
The "varj" string would be "NA". The description for "NA" is "(Avagadro's
Number)"—note the parentheses. The use of ()’s provides a visual cue to users
that this variable should be treated as a fixed constant.
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valj This is the most recently saved value of the corresponding variable varj.

constj This value is normally 0 or 1, and determines whether the corresponding variable
varj should be treated as a constant (set to 1). Actual constants should always
have this value set to 1. Variables whose values are considered as “known” during
the solving process will also have this set to 1 so that the solve engine does not
try to solve for that particular variable. Variables that have been abandoned (no
longer used in the system) will have their constj value increment up until the
Non-use Limit value, upon which these variables (and their corresponding
"descj", valj, and constj) are removed from the system definition.

"Category" This string determines the category to which the system belongs.

"Image Index" All diagrams associated with a system of equations are stored as PNG files. These
files are app files with the name imgNN.png where NN denotes the image index.
The unmodified equation library uses 63 images stored in the files img01.png
through img63.png. The image index is a string containing the characters be-
tween the letters img and file extension .png in the file name ("01" through
"63"). The desired convention is to retain this file name scheme. Of course, a
user’s equation library may grow to use more than 100 images (in which case
the image index string would be three characters wide). That said, users may
use whatever naming indexing scheme they wish (i.e. NN may be anything that
is allowed in an app file name).

For animations, "Image Index" may be replaced by a list whose content
are strings of image indices followed by a wait value. For example, the
Mass-Spring System uses the list
{ "40", "41", "42", "41", .1 }

instead of a single image index string. The value .1 refers to the delay between
each frame of animation. The frames are looped until a key is pressed or the
screen detects a touch event.
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7.2 LibToNote
The following program may be used to convert an existing library file (named Equation Library.lib)
into a Note that can be then copied (from the emulator) into a text file for manual editing.

EXPORT LibToNote()
BEGIN

local note:="EqLib.txt";
local lib:=AFiles("Equation Library.lib");
local n:=size(lib);
local sys, m, j, k, r;

Notes(note):="{\n";
for j from 1 to n do

Notes(note):=Notes(note) + " {\n";
sys:=lib(j);
for k from 1 to 9 do

Notes(note):=Notes(note) + " ";
if (k == 2) or (k == 5) then

Notes(note):=Notes(note) + "{\n";
for r from 1 to (size(sys(k))-1) do

Notes(note):=Notes(note) + " ";
Notes(note):=Notes(note) + string(sys(k,r)) + ",\n";

end;
Notes(note):=Notes(note) + " ";
Notes(note):=Notes(note) + string(sys(k,r)) + "\n }";

else
Notes(note):=Notes(note) + string(sys(k));

end;
if (k < 9) then Notes(note):=Notes(note) + ","; end;
Notes(note):=Notes(note) + "\n";

end;
Notes(note):=Notes(note) + " }";
if (j < n) then Notes(note):=Notes(note) + ",\n"; end;
Notes(note):=Notes(note) + "\n";

end;
Notes(note):=Notes(note) + "}";

END;

69



7.3 Creating Diagrams

As of version 0.900, diagrams may be associated with a system of equations. Systems may be saved with
related diagrams starting with version 1.000 onward. The Equation Library does not provide any mech-
anism for creating diagrams. Users may either create the diagrams on a computer and use the connectivity kit
software to import the images into the app, or use the built-in Geometry app to create a diagram. Instruc-
tions on how to use the Geometry app is beyond the scope of this reference manual. However, a general
workflow is outlined below.

1. Create a diagram using the Geometry app.
2. While the Geometry app is active, take a “snapshot” of the diagram using the following code snippet:

DIMGROB_P(G1,320,240); STARTVIEW(1,1); BLIT_P(G1,G0);

The code above initializes the graphic object G1 to a 320× 240 image, displays theP view, and then
copies the current screen G0 into the graphic object G1.

3. Switch over to the Equation Library app and save the diagram using:

AFiles("img64.png"):=G1;

Change the file name from "img64.png" to any appropriately indexed name. Make sure to use the
format imgXYZ.png for the file name, where XYZ may be any alpha-numeric sequence of characters
that are allowed in an app file name.

4. When saving a system of equations, select XYZ as the image index.
Remark. Make sure that all images are no larger than 320 pixels in width and 240 pixels in height. Images
whose width and height are simultaneously less than 160 and 120 pixels, respectively, will be scaled by a
factor of 2 to fill the screen.
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