
Orbital Mechanics with MATLAB

page 1

A MATLAB Script for Predicting Orbital Events of the Moon

This document describes a MATLAB script named levents.m that can be used to compute important

orbital events of the Moon. The motion of the Moon is modeled using the JPL DE421 binary ephemeris

and this script uses routines from the MICE software suite to read and evaluate this ephemeris. The

MICE routines and ephemeris file are available at naif.jpl.nasa.gov/naif/toolkit_MATLAB.html. MICE

is a MATLAB implementation of the SPICE library created by JPL.

Using a combination of one-dimensional minimization and root-finding, the levents MATLAB script

computes the following geocentric characteristics of the Moon’s orbital motion.

1) apogee and perigee

2) minimum and maximum geocentric declination

3) user-defined geocentric right ascension

4) user-defined geocentric declination

5) user-defined true anomaly

6) minimum and maximum orbital eccentricity

7) nodal crossings

Script options 1, 2, and 6 are minimum and maximum conditions of the lunar orbit. The nodal crossings

correspond to times when the Moon crosses the Earth’s equatorial plane.

Interacting with the script

The levents MATLAB script will prompt you for the calendar date at which to start the events search

along with a search duration in days. The following illustrates these two prompts along with typical user

inputs shown in bold font. Please be sure to provide all digits of the calendar year.

program levents

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 1,1,2014

please input the search duration (days)

? 30

The script will then display a list of event options with the following menu;

please select the lunar event to predict

 <1> apogee and perigee

 <2> minimum and maximum geocentric declination

 <3> user-defined geocentric right ascension

 <4> user-defined geocentric declination

naif.jpl.nasa.gov/naif/toolkit_MATLAB.html

Orbital Mechanics with MATLAB

page 2

 <5> user-defined true anomaly

 <6> minimum and maximum orbital eccentricity

 <7> nodal crossings

?

For menu option 3, the script will also prompt for the user-defined value of geocentric right ascension

with the following display;

please input the geocentric right ascension (degrees)

(0 <= right ascension <= 360)

?

For menu option 4, the script will also prompt for the user-defined value of geocentric declination with

the following display;

please input the geocentric declination (degrees)

(-90 <= declination <= +90)

For menu option 5, the script will also prompt for the user-defined value of true anomaly with the

following display;

please input the true anomaly (degrees)

(0 <= true anomaly <= 360)

For each of these script options, the input unit is degrees. Please note the range of valid input.

Script example

The following is a typical user interaction with this MATLAB script along with the program output for

the minimum and maximum geocentric declination of the moon during January 2014.

program levents

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 1,1,2014

please input the search duration (days)

? 30

please select the lunar event to predict

 <1> apogee and perigee

 <2> minimum and maximum geocentric declination

 <3> user-defined geocentric right ascension

 <4> user-defined geocentric declination

 <5> user-defined true anomaly

 <6> minimum and maximum orbital eccentricity

Orbital Mechanics with MATLAB

page 3

 <7> nodal crossings

? 2

time and conditions at minimum declination

==

calendar date 27-Jan-2014

TDB time 16:55:48.131

TDB Julian date 2456685.20541819

UTC time 16:54:41.947

UTC Julian date 2456685.20465216

geocentric declination -19.38236906 degrees

geocentric orbital elements and state vector

(Earth mean equator and equinox J2000)

 sma (km) eccentricity inclination (deg) argper (deg)

 +3.88526254363298e+05 +8.01745529529702e-02 +1.93823690622682e+01 +3.10295086963237e+02

 raan (deg) true anomaly (deg) arglat (deg) period (days)

 +3.51862407979640e+02 +3.19704913531811e+02 +2.70000000495048e+02 +2.78950919892399e+01

 rx (km) ry (km) rz (km) rmag (km)

 -4.85753538318047e+04 -3.39710302374387e+05 -1.20729016559839e+05 +3.63783108429581e+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.07446967239062e+00 -1.03431188427361e-01 +1.74857394845693e-02 +1.07957808365677e+00

time and conditions at maximum declination

==

calendar date 09-Feb-2014

TDB time 15:50:13.403

TDB Julian date 2456698.15987735

UTC time 15:49:07.218

UTC Julian date 2456698.15911132

geocentric declination 19.29480971 degrees

geocentric orbital elements and state vector

(Earth mean equator and equinox J2000)

 sma (km) eccentricity inclination (deg) argper (deg)

 +3.86033424966801e+05 +5.33702230739854e-02 +1.92948097076573e+01 +3.01922689183831e+02

 raan (deg) true anomaly (deg) arglat (deg) period (days)

 +3.52061507031174e+02 +1.48077310699116e+02 +8.99999998829470e+01 +2.76270558739407e+01

 rx (km) ry (km) rz (km) rmag (km)

 +5.25578732820930e+04 +3.76904041635659e+05 +1.33228329807996e+05 +4.03198182670332e+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -9.58447892208817e-01 +1.61018650533875e-01 +9.48906430849668e-03 +9.71925619705914e-01

Additional script examples can be found in Appendix A.

Orbital Mechanics with MATLAB

page 4

The orbital event summary screen contains the following information:

calendar date = calendar date of trajectory event

TDB time = TDB time of trajectory event

TDB Julian date = Julian Date of trajectory event on TDB time scale

UTC time = UTC time of trajectory event

UTC Julian date = Julian Date of trajectory event on UTC time scale

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (days) = orbital period in days

rx (km) = x-component of the Moon’s position vector in kilometers

ry (km) = y-component of the Moon’s position vector in kilometers

rz (km) = z-component of the Moon’s position vector in kilometers

rmag (km) = scalar magnitude of the Moon’s position vector in kilometers

vx (kps) = x-component of the Moon’s velocity vector in kilometers per second

vy (kps) = y-component of the Moon’s velocity vector in kilometers per second

vz (kps) = z-component of the Moon’s velocity vector in kilometers per second

vmag (kps) = scalar magnitude of the Moon’s velocity vector in kilometers per second

Technical Discussion

In this MATLAB script, the orbital motion of the Moon is evaluated in the Earth mean equator and

equinox of J2000 (EME2000) coordinate system. The following figure illustrates the geometry of the

EME2000 coordinate system. The origin of this ECI inertial coordinate system is the geocenter and the

fundamental plane is the Earth’s mean equator. The z-axis of this system is normal to the Earth’s mean

equator at epoch J2000, the x-axis is parallel to the vernal equinox of the Earth’s mean orbit at epoch

J2000, and the y-axis completes the right-handed coordinate system. The epoch J2000 is the Julian Date

2451545.0 which corresponds to January 1, 2000, 12 hours Terrestrial Time (TT).

Orbital Mechanics with MATLAB

page 5

MATLAB functions

In this MATLAB script, the geocentric position and velocity vectors of the Moon are computed using a

function named jpleph_mice which requires initialization the first time it is called. The proper

initialization for this function is as follows:

 iephem = 1;

ephname = 'de421.bsp';

km = 1;

The second item is the name of the binary ephemeris file to use for all calculations. The third item

determines the units of the output. If km = 1, the output will be in the units of kilometers and

kilometers per second. If km = 0, the output will be in the units of Astronomical Units and

Astronomical Units per day. These three items should be placed in a global statement at the beginning

of the main script which calls either of these functions.

Note that the value of the Astronomical Unit, in kilometers, used in a particular JPL ephemeris is

available as the constant au which is placed in global by the main script. The actual value used in a

particular JPL ephemeris can be found in the header file posted on the JPL website. For example, the

following are the first three lines in the header.421 data file. The value of Astronomical Unit used in

this ephemeris is the first number in row three of this data file.

 0.421000000000000000D+03 0.421000000000000000D+03 0.000000000000000000D+00

 0.120080211181117000D+17 0.000000000000000000D+00 0.299792458000000000D+06

 0.149597870699626200D+09 0.813005690699153000D+02 0.491254957186794000D-10

The following is the syntax for the jpleph_mice MATLAB function:

Orbital Mechanics with MATLAB

page 6

function rrd = jpleph_mice (et, ntarg, ncent)

% reads the jpl planetary ephemeris and gives the position and velocity
% of the point 'ntarg' with respect to point 'ncent' using MICE routines

% input

% et = TDB julian date at which interpolation is wanted

% ntarg = integer number of 'target' point

% ncent = integer number of center point

% the numbering convention for 'ntarg' and 'ncent' is:

% 1 = mercury 8 = neptune
% 2 = venus 9 = pluto
% 3 = earth 10 = moon
% 4 = mars 11 = sun
% 5 = jupiter
% 6 = saturn
% 7 = uranus

% output

% rrd = output 6-word array containing position and velocity
% of point 'ntarg' relative to 'ncent'. the units are
% determined by the value of km passed via global.

% global

% iephem = initialization flag (1 = initialize)
% ephname = name of ephemeris binary data file (de421.bsp, etc.)
% km = state vector units flag (1 = km & km/sec, 0 = au & au/day)
% au = numerical value of astronomical unit (kilometers)

It is good programming practice to close the binary ephemeris file at the end of the main script with the

following statement:

% unload ephemeris

cspice_unload('de421.bsp');

Time systems

Coordinated Universal Time, UTC

Coordinated Universal Time (UTC) is the time scale available from broadcast time signals. It is a

compromise between the highly stable atomic time and the irregular earth rotation. UTC is the

international basis of civil and scientific time.

Orbital Mechanics with MATLAB

page 7

Terrestrial Time, TT

Terrestrial Time is the time scale that would be kept by an ideal clock on the geoid - approximately, sea

level on the surface of the Earth. Since its unit of time is the SI (atomic) second, TT is independent of

the variable rotation of the Earth. TT is meant to be a smooth and continuous “coordinate” time scale

independent of Earth rotation. In practice TT is derived from International Atomic Time (TAI), a time

scale kept by real clocks on the Earth's surface, by the relation TT = TAI + 32
s
.184. It is the time scale

now used for the precise calculation of future astronomical events observable from Earth.

TT = TAI + 32.184 seconds

TT = UTC + (number of leap seconds) + 32.184 seconds

Barycentric Dynamical Time, TDB

Barycentric Dynamical Time is the time scale that would be kept by an ideal clock, free of gravitational

fields, co-moving with the solar system barycenter. It is always within 2 milliseconds of TT, the

difference caused by relativistic effects. TDB is the time scale now used for investigations of the

dynamics of solar system bodies.

TDB = TT + periodic corrections

where typical periodic corrections (USNO Circular 179) are

 

 

 

 

 

 

0.001657sin 628.3076 6.2401

0.000022sin 575.3385 4.2970

0.000014sin 1256.6152 6.1969

0.000005sin 606.9777 4.0212

0.000005sin 52.9691 0.4444

0.000002sin 21.3299 5.5431

0.000010 sin 628.3076 4.24

TDB TT T

T

T

T

T

T

T T

  

 

 

 

 

 

  90 

In this equation, the coefficients are in seconds, the angular arguments are in radians, and T is the

number of Julian centuries of TT from J2000; T = (Julian Date(TT) – 2451545.0) / 36525.

The following is the MATLAB source code for the routine ported from the NOVAS Fortran subroutine.

Notice that the NOVAS name was simply times and the ported version is named novas_times to

avoid confusion with the built-in MATLAB function.

function [ttjd, secdif] = novas_times (tdbjd)

% this function computes the terrestrial time (tt) julian date

% corresponding to a barycentric dynamical time (tdb) julian date.

% the expression used in this version is a truncated form of a

% longer and more precise series given by fairhead & bretagnon

% (1990) a&a 229, 240. the result is good to about 10 microseconds.

% input

Orbital Mechanics with MATLAB

page 8

% tdbjd = tdb julian date

% output

% ttjd = tt julian date

% secdif = difference tdbjd - ttjd, in seconds

% ported from NOVAS 3.0

%%%%%%%%%%%%%%%%%%%%%%%

% t0 = tdb julian date of epoch j2000.0 (tt)

t0 = 2451545.0d0;

t = (tdbjd - t0) / 36525.0d0;

% expression given in usno circular 179, eq. 2.6

secdif = 0.001657d0 * sin(628.3076d0 * t + 6.2401d0) ...

 + 0.000022d0 * sin(575.3385d0 * t + 4.2970d0) ...

 + 0.000014d0 * sin(1256.6152d0 * t + 6.1969d0) ...

 + 0.000005d0 * sin(606.9777d0 * t + 4.0212d0) ...

 + 0.000005d0 * sin(52.9691d0 * t + 0.4444d0) ...

 + 0.000002d0 * sin(21.3299d0 * t + 5.5431d0) ...

 + 0.000010d0 * t * sin(628.3076d0 * t + 4.2490d0);

ttjd = tdbjd - secdif / 86400.0d0;

The fundamental time argument for the lunar ephemeris function used in this MATLAB script is

“ephemeris” time. As implemented here, we assume this time argument to be Barycentric Dynamical

Time (TDB). To report the time of these celestial events in Universal Coordinated Time (UTC) or civil

time, we need an algorithm to make this time conversion.

The following is the MATLAB source code for a function which iteratively performs this calculation

using Brent’s root-finding method.

function jdutc = tdb2utc (jdtdb)

% convert TDB julian date to UTC julian date

% input

% jdtdb = TDB julian date

% output

% jdutc = UTC julian date

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global jdsaved

Orbital Mechanics with MATLAB

page 9

jdsaved = jdtdb;

% convergence tolerance

rtol = 1.0d-8;

% set lower and upper bounds

x1 = jdsaved - 0.1;

x2 = jdsaved + 0.1;

% solve for UTC julian date using Brent's method

[xroot, froot] = brent ('jdfunc', x1, x2, rtol);

jdutc = xroot;

end

This function calls the following MATLAB objective function during the calculations.

function fx = jdfunc (jdin)

% objective function for tdb2utc

% input

% jdin = current value for UTC julian date

% output

% fx = delta julian date

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global jdsaved

tai_utc = findleap(jdin);

fx = utc2tdb (jdin, tai_utc) - jdsaved;

end

Notice that this function requires the findleap function which calculates the number of leap seconds

for the current UTC Julian date value. The jdfunc function is computing the difference between the

TDB Julian date input by the user and the value computed by the utc2tdb MATLAB function. The

algorithm has converged whenever this value is less than or equal to the user-defined tolerance rtol.

Leap seconds calculation

The difference between International Atomic Time (TAI) and Universal Coordinated Time (UTC) is the

number of current leap seconds. International Atomic Time (TAI, Temps Atomique International) is a

physical time scale with the unit of the SI (System International) second and derived from a statistical

Orbital Mechanics with MATLAB

page 10

timescale based on a large number of atomic clocks. Coordinated Universal Time (UTC) is the time

scale available from broadcast time signals. It is a compromise between the highly stable atomic time

and the irregular earth rotation. UTC is the international basis of civil and scientific time.

The calculation of leap seconds in this MATLAB script is performed by a function that reads a simple

ASCII data file and evaluates the current value of leap seconds. The leap second function must be

initialized by including the following statements in the main script.

% read leap seconds data file

readleap;

The readleap MATLAB function reads the contents of the following simple comma-separated-

variable (csv) two column data file. The name of this file is tai-utc.dat.

 2441317.5, 10.0

 2441499.5, 11.0

 2441683.5, 12.0

 2442048.5, 13.0

 2442413.5, 14.0

 2442778.5, 15.0

 2443144.5, 16.0

 2443509.5, 17.0

 2443874.5, 18.0

 2444239.5, 19.0

 2444786.5, 20.0

 2445151.5, 21.0

 2445516.5, 22.0

 2446247.5, 23.0

 2447161.5, 24.0

 2447892.5, 25.0

 2448257.5, 26.0

 2448804.5, 27.0

 2449169.5, 28.0

 2449534.5, 29.0

 2450083.5, 30.0

 2450630.5, 31.0

 2451179.5, 32.0

 2453736.5, 33.0

 2454832.5, 34.0

The first column of this data file is the Julian date, on the UTC time scale, at which the leap second

became valid. The second column is the leap second value, in seconds.

Note that this data is passed between the leap second MATLAB functions by way of a global statement.

global jdateleap leapsec

The MATLAB function that actually reads and evaluates the current value of leap seconds has the

following syntax and single argument.

function leapsecond = findleap(jdate)

% find number of leap seconds for utc julian date

Orbital Mechanics with MATLAB

page 11

% input

% jdate = utc julian date

% input via global

% jdateleap = array of utc julian dates
% leapsec = array of leap seconds

% output

% leapsecond = number of leap seconds

The leap seconds data file should be updated whenever the International Earth Rotation and Reference

Systems Service (IERS) announces a new leap second.

Orbital Mechanics with MATLAB

page 12

Appendix A

Additional Script Examples

This appendix includes output created by several of the other levents script options.

program levents

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 1,1,2014

please input the search duration (days)

? 30

please select the lunar event to predict

 <1> apogee and perigee

 <2> minimum and maximum geocentric declination

 <3> user-defined geocentric right ascension

 <4> user-defined geocentric declination

 <5> user-defined true anomaly

 <6> minimum and maximum orbital eccentricity

 <7> nodal crossings

? 3

please input the geocentric right ascension (degrees)

(0 <= right ascension <= 360)

? 120

time and conditions at user-defined right ascension

===

calendar date 16-Jan-2014

TDB time 11:15:07.295

TDB Julian date 2456673.96883443

UTC time 11:14:01.110

UTC Julian date 2456673.96806841

geocentric orbital elements and state vector

(Earth mean equator and equinox J2000)

 sma (km) eccentricity inclination (deg) argper (deg)

 +3.92030629436879e+05 +3.69860119614338e-02 +1.94692410906878e+01 +3.02260247507493e+02

 raan (deg) true anomaly (deg) arglat (deg) period (days)

 +3.51692297464799e+02 +1.84418516689778e+02 +1.26678764197271e+02 +2.82733481403732e+01

 rx (km) ry (km) rz (km) rmag (km)

 -1.95846297076435e+05 +3.39215737025722e+05 +1.08655677168906e+05 +4.06483879760918e+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -8.48917032439884e-01 -4.31347035509562e-01 -1.94249162125556e-01 +9.71829784476637e-01

Orbital Mechanics with MATLAB

page 13

geocentric right ascension 120.00000000 degrees

program levents

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 1,1,2014

please input the search duration (days)

? 30

please select the lunar event to predict

 <1> apogee and perigee

 <2> minimum and maximum geocentric declination

 <3> user-defined geocentric right ascension

 <4> user-defined geocentric declination

 <5> user-defined true anomaly

 <6> minimum and maximum orbital eccentricity

 <7> nodal crossings

? 6

time and conditions at minimum eccentricity

===

calendar date 16-Jan-2014

TDB time 04:52:54.743

TDB Julian date 2456673.70341138

UTC time 04:51:48.559

UTC Julian date 2456673.70264536

orbital eccentricity 0.03693123 degrees

geocentric orbital elements and state vector

(Earth mean equator and equinox J2000)

 sma (km) eccentricity inclination (deg) argper (deg)

 +3.92053087994261e+05 +3.69312337246207e-02 +1.94726115663969e+01 +3.02140356572455e+02

 raan (deg) true anomaly (deg) arglat (deg) period (days)

 +3.51677918019766e+02 +1.81410918479402e+02 +1.23551275051857e+02 +2.82757777504264e+01

 rx (km) ry (km) rz (km) rmag (km)

 -1.76083175319990e+05 +3.48573938945866e+05 +1.12939911436396e+05 +4.06527365792596e+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -8.74212262361963e-01 -3.84589848574662e-01 -1.79290695107703e-01 +9.71751812266335e-01

time and conditions at maximum eccentricity

===

Orbital Mechanics with MATLAB

page 14

calendar date 30-Jan-2014

TDB time 20:39:04.380

TDB Julian date 2456688.36046737

UTC time 20:37:58.196

UTC Julian date 2456688.35970134

orbital eccentricity 0.08890970 degrees

geocentric orbital elements and state vector

(Earth mean equator and equinox J2000)

 sma (km) eccentricity inclination (deg) argper (deg)

 +3.91932987684056e+05 +8.89096980310241e-02 +1.93622366218224e+01 +3.10956166896728e+02

 raan (deg) true anomaly (deg) arglat (deg) period (days)

 +3.51994152637177e+02 +6.55117989479818e+00 +3.17507346791526e+02 +2.82627858762572e+01

 rx (km) ry (km) rz (km) rmag (km)

 +2.29164286094128e+05 -2.62160869103048e+05 -8.00133662056496e+04 +3.57276825558916e+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +8.50430760916976e-01 +6.47881277899118e-01 +2.67078849953152e-01 +1.10195904708765e+00

program levents

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

? 1,1,2014

please input the search duration (days)

? 30

please select the lunar event to predict

 <1> apogee and perigee

 <2> minimum and maximum geocentric declination

 <3> user-defined geocentric right ascension

 <4> user-defined geocentric declination

 <5> user-defined true anomaly

 <6> minimum and maximum orbital eccentricity

 <7> nodal crossings

? 7

time and conditions at ascending node

=====================================

calendar date 06-Jan-2014

TDB time 06:20:10.745

TDB Julian date 2456663.76401325

UTC time 06:19:04.561

Orbital Mechanics with MATLAB

page 15

UTC Julian date 2456663.76324723

geocentric orbital elements and state vector

(Earth mean equator and equinox J2000)

 sma (km) eccentricity inclination (deg) argper (deg)

 +3.85971581783473e+05 +7.29960147093920e-02 +1.94780509815064e+01 +2.94421396272985e+02

 raan (deg) true anomaly (deg) arglat (deg) period (days)

 +3.51369706512152e+02 +6.55786037242167e+01 +3.59999999997201e+02 +2.76204172908247e+01

 rx (km) ry (km) rz (km) rmag (km)

 +3.68448269004108e+05 -5.59218397063176e+04 -6.06983962825325e-06 +3.72667920658947e+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +2.15458420574909e-01 +9.68255200707477e-01 +3.50017330824906e-01 +1.05188050489184e+00

time and conditions at descending node

======================================

calendar date 20-Jan-2014

TDB time 22:25:09.075

TDB Julian date 2456678.43413281

UTC time 22:24:02.890

UTC Julian date 2456678.43336679

geocentric orbital elements and state vector

(Earth mean equator and equinox J2000)

 sma (km) eccentricity inclination (deg) argper (deg)

 +3.86990262729164e+05 +5.03492563329996e-02 +1.93974648943419e+01 +3.08657935121614e+02

 raan (deg) true anomaly (deg) arglat (deg) period (days)

 +3.51811237252316e+02 +2.31342064875707e+02 +1.79999999997321e+02 +2.77298357719506e+01

 rx (km) ry (km) rz (km) rmag (km)

 -3.94480609837439e+05 +5.67665516047724e+04 +6.18902717874903e-06 +3.98544091561793e+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -9.26836051146707e-02 -9.24576725110698e-01 -3.26877925301143e-01 +9.85028704821669e-01

