Orbital Mechanics with MATLAB

A MATLAB Script for Predicting Orbital Events of the Moon

This document describes a MATLAB script named levents.m that can be used to compute important
orbital events of the Moon. The motion of the Moon is modeled using the JPL DE421 binary ephemeris
and this script uses routines from the MICE software suite to read and evaluate this ephemeris. The
MICE routines and ephemeris file are available at naif.jpl.nasa.gov/naif/toolkit MATLAB.html. MICE
is a MATLAB implementation of the SPICE library created by JPL.

Using a combination of one-dimensional minimization and root-finding, the 1events MATLAB script
computes the following geocentric characteristics of the Moon’s orbital motion.

1) apogee and perigee

2) minimum and maximum geocentric declination
3) user-defined geocentric right ascension

4) user-defined geocentric declination

5) user-defined true anomaly

6) minimum and maximum orbital eccentricity

7) nodal crossings

Script options 1, 2, and 6 are minimum and maximum conditions of the lunar orbit. The nodal crossings
correspond to times when the Moon crosses the Earth’s equatorial plane.

Interacting with the script

The levents MATLAB script will prompt you for the calendar date at which to start the events search
along with a search duration in days. The following illustrates these two prompts along with typical user
inputs shown in bold font. Please be sure to provide all digits of the calendar year.

program levents

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
2 1,1,2014

please input the search duration (days)
? 30

The script will then display a list of event options with the following menu;

please select the lunar event to predict
<1> apogee and perigee
<2> minimum and maximum geocentric declination
<3> user-defined geocentric right ascension

<4> user-defined geocentric declination

page 1


naif.jpl.nasa.gov/naif/toolkit_MATLAB.html

Orbital Mechanics with MATLAB

<5> user-defined true anomaly
<6> minimum and maximum orbital eccentricity

<7> nodal crossings

For menu option 3, the script will also prompt for the user-defined value of geocentric right ascension
with the following display;

please input the geocentric right ascension (degrees)
(0 <= right ascension <= 360)
?

For menu option 4, the script will also prompt for the user-defined value of geocentric declination with
the following display;

please input the geocentric declination (degrees)
(-90 <= declination <= +90)

For menu option 5, the script will also prompt for the user-defined value of true anomaly with the
following display;

please input the true anomaly (degrees)
(0 <= true anomaly <= 360)

For each of these script options, the input unit is degrees. Please note the range of valid input.
Script example

The following is a typical user interaction with this MATLAB script along with the program output for
the minimum and maximum geocentric declination of the moon during January 2014.
program levents
< orbital events of the moon >
please input the initial calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
2 1,1,2014
pl;gse input the search duration (days)
?
please select the lunar event to predict
<1> apogee and perigee
<2> minimum and maximum geocentric declination
<3> user-defined geocentric right ascension
<4> user-defined geocentric declination
<5> user-defined true anomaly

<6> minimum and maximum orbital eccentricity

page 2



<7> nodal crossings

? 2

Orbital Mechanics with MATLAB

time and conditions at minimum declination

calendar date
TDB time

TDB Julian date
UTC time

UTC Julian date

geocentric declination

27-Jan-2014

16:55:48.131

2456685.20541819

16:54:41.947

2456685.20465216

-19.38236906

geocentric orbital elements and state vector
(Earth mean equator and equinox J2000)

sma (km)
+3.88526254363298e+05

raan (deg)
+3.51862407979640e+02

rx (km)
-4.85753538318047e+04

vx (kps)
+1.07446967239062e+00

+8.

+3.

eccentricity
01745529529702e-02

true anomaly (degq)
19704913531811e+02

ry (km)

.39710302374387e+05

vy (kps)

.03431188427361e-01

time and conditions at maximum declination

calendar date
TDB time

TDB Julian date
UTC time

UTC Julian date

geocentric declination

09-Feb-2014

15:50:13.403

2456698.15987735

15:49:07.218

2456698.15911132

19.29480971

geocentric orbital elements and state vector
(Earth mean equator and equinox J2000)

sma (km)
+3.86033424966801e+05

raan (deg)
+3.52061507031174e+02

rx (km)
+5.25578732820930e+04

vx (kps)
-9.58447892208817e-01

+5.

+1.

+3.

+1.

eccentricity
33702230739854e-02

true anomaly (deg)
48077310699116e+02

ry (km)
76904041635659e+05

vy (kps)
61018650533875e-01

degrees

inclination (deq)
+1.93823690622682e+01

arglat (deg)
+2.70000000495048e+02

rz (km)
-1.20729016559839e+05

vz (kps)
+1.74857394845693e-02

degrees

inclination (deg)
+1.92948097076573e+01

arglat (deg)
+8.99999998829470e+01

rz (km)
+1.33228329807996e+05

vz (kps)
+9.48906430849668e-03

Additional script examples can be found in Appendix A.

page 3

argper (deq)
+3.10295086963237e+02

period (days)
+2.78950919892399%e+01

rmag (km)
+3.63783108429581e+05

vmag (kps)
+1.07957808365677e+00

argper (deg)
+3.01922689183831e+02

period (days)
+2.76270558739407e+01

rmag (km)
+4.03198182670332e+05

vmag (kps)
+9.71925619705914e-01



Orbital Mechanics with MATLAB

The orbital event summary screen contains the following information:

calendar date = calendar date of trajectory event

TDB time = TDB time of trajectory event

TDB Julian date = Julian Date of trajectory event on TDB time scale
UTC time = UTC time of trajectory event

UTC Julian date = Julian Date of trajectory event on UTC time scale
sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (days) = orbital period in days

rx (km) = x-component of the Moon’s position vector in kilometers

ry (km) = y-component of the Moon’s position vector in kilometers

rz (km) = z-component of the Moon’s position vector in kilometers

rmag (km) = scalar magnitude of the Moon’s position vector in kilometers

vx (kps) = x-component of the Moon’s velocity vector in kilometers per second

vy (kps) = y-component of the Moon’s velocity vector in kilometers per second

vz (kps) = z-component of the Moon’s velocity vector in kilometers per second

vmag (kps) = scalar magnitude of the Moon’s velocity vector in kilometers per second

Technical Discussion

In this MATLAB script, the orbital motion of the Moon is evaluated in the Earth mean equator and
equinox of J2000 (EME2000) coordinate system. The following figure illustrates the geometry of the
EME2000 coordinate system. The origin of this ECI inertial coordinate system is the geocenter and the
fundamental plane is the Earth’s mean equator. The z-axis of this system is normal to the Earth’s mean
equator at epoch J2000, the x-axis is parallel to the vernal equinox of the Earth’s mean orbit at epoch
J2000, and the y-axis completes the right-handed coordinate system. The epoch J2000 is the Julian Date
2451545.0 which corresponds to January 1, 2000, 12 hours Terrestrial Time (TT).

page 4



Orbital Mechanics with MATLAB

Earth Mean Orbit Pole ZEME2000
of J2000 (Ecliptic Pole) A

Earth Mean North Pole
of J2000

Earth Mean Orbit

Y Eme2000

-
o

Earth Mean Equator
of J2000

Xeme2000 :
Earth Vernal Equinox

of J2000

MATLAB functions

In this MATLAB script, the geocentric position and velocity vectors of the Moon are computed using a
function named jpleph mice which requires initialization the first time it is called. The proper
initialization for this function is as follows:

iephem = 1;
ephname = 'de42l.bsp';

km = 1;

The second item is the name of the binary ephemeris file to use for all calculations. The third item
determines the units of the output. If km = 1, the output will be in the units of kilometers and
kilometers per second. If km = 0, the output will be in the units of Astronomical Units and
Astronomical Units per day. These three items should be placed in a global statement at the beginning
of the main script which calls either of these functions.

Note that the value of the Astronomical Unit, in kilometers, used in a particular JPL ephemeris is
available as the constant au which is placed in global by the main script. The actual value used in a
particular JPL ephemeris can be found in the header file posted on the JPL website. For example, the
following are the first three lines in the header. 421 data file. The value of Astronomical Unit used in
this ephemeris is the first number in row three of this data file.

0.421000000000000000D+03 0.421000000000000000D+03 0.000000000000000000D+00
0.120080211181117000D+17 0.000000000000000000D+00 0.299792458000000000D+06
0.149597870699626200D+09 0.813005690699153000D+02 0.491254957186794000D-10

The following is the syntax for the jpleph mice MATLAB function:
page 5



Orbital Mechanics with MATLAB

function rrd = jpleph mice (et, ntarg, ncent)

o

reads the jpl planetary ephemeris and gives the position and velocity
of the point 'ntarg' with respect to point 'ncent' using MICE routines

o

% input

% et = TDB julian date at which interpolation is wanted
% ntarg = integer number of 'target' point

% ncent = integer number of center point

o

the numbering convention for 'ntarg' and 'ncent' is:

% 1 = mercury 8 = neptune
% 2 = venus 9 = pluto

% 3 = earth 10 = moon

% 4 = mars 11 = sun

3 5 = jupiter

% 6 = saturn

% 7 = uranus

% output

o\°

rrd = output 6-word array containing position and velocity
of point 'ntarg' relative to 'ncent'. the units are
determined by the value of km passed via global.

o\°

oe

% global

% iephem = initialization flag (1 = initialize)

% ephname = name of ephemeris binary data file (de42l.bsp, etc.)

% km = state vector units flag (1 = km & km/sec, 0 = au & au/day)
% au = numerical value of astronomical unit (kilometers)

It is good programming practice to close the binary ephemeris file at the end of the main script with the
following statement:

o)

% unload ephemeris

cspice unload('de421l.bsp');

Time systems
Coordinated Universal Time, UTC
Coordinated Universal Time (UTC) is the time scale available from broadcast time signals. Itisa

compromise between the highly stable atomic time and the irregular earth rotation. UTC is the
international basis of civil and scientific time.

page 6



Orbital Mechanics with MATLAB

Terrestrial Time, TT

Terrestrial Time is the time scale that would be kept by an ideal clock on the geoid - approximately, sea
level on the surface of the Earth. Since its unit of time is the SI (atomic) second, TT is independent of
the variable rotation of the Earth. TT is meant to be a smooth and continuous “coordinate” time scale
independent of Earth rotation. In practice TT is derived from International Atomic Time (TAI), a time
scale kept by real clocks on the Earth's surface, by the relation TT = TAI + 32°.184. It is the time scale
now used for the precise calculation of future astronomical events observable from Earth.

TT = TAI + 32.184 seconds
TT = UTC + (number of leap seconds) + 32.184 seconds

Barycentric Dynamical Time, TDB

Barycentric Dynamical Time is the time scale that would be kept by an ideal clock, free of gravitational
fields, co-moving with the solar system barycenter. It is always within 2 milliseconds of TT, the
difference caused by relativistic effects. TDB is the time scale now used for investigations of the
dynamics of solar system bodies.

TDB =TT + periodic corrections

where typical periodic corrections (USNO Circular 179) are

TDB =TT +0.001657sin (628.3076T +6.2401)
+0.0000225in (575.3385T +4.2970)
+0.000014sin (1256.6152T +6.1969)
+0.000005sin (606.9777T +4.0212)
+0.000005sin (52.9691T +0.4444)
+0.000002sin (21.3299T +5.5431)
+0.000010T sin (628.3076T +4.2490) + - -

In this equation, the coefficients are in seconds, the angular arguments are in radians, and T is the
number of Julian centuries of TT from J2000; T = (Julian Date(TT) — 2451545.0) / 36525.

The following is the MATLAB source code for the routine ported from the NOVAS Fortran subroutine.
Notice that the NOVAS name was simply times and the ported version is named novas times to
avoid confusion with the built-in MATLAB function.

function [ttjd, secdif] = novas_times (tdbjd)

% this function computes the terrestrial time (tt) julian date

% corresponding to a barycentric dynamical time (tdb) julian date.
% the expression used in this version is a truncated form of a

% longer and more precise series given by fairhead & bretagnon

% (1990) a&a 229, 240. the result is good to about 10 microseconds.

% input

page 7



Orbital Mechanics with MATLAB

tdbjd = tdb julian date

o\

o

output

o\

ttjd = tt julian date

o\

secdif = difference tdbjd - ttjd, in seconds

o

ported from NOVAS 3.0

o

o+

(@]
Il

tdb julian date of epoch 32000.0 (tt)

t0 = 2451545.0d0;

t = (tdbjd - t0) / 36525.0d0;

% expression given in usno circular 179, eq. 2.6

secdif = 0.001657d0 * sin(628.3076d0 * t + 6.2401d0)

+ 0.000022d0 * sin(575.3385d0 * t + 4.2970d0)
+ 0.000014d0 * sin(1256.6152d0 * t + 6.1969d0)
+ 0.000005d0 * sin(606.9777d0 * t + 4.0212d0)
+ 0.000005d0 * sin(52.9691d0 * t + 0.4444d0)

+ 0.000002d0 * sin(21.3299d0 * t + 5.5431d0)

+ 0.000010d0 * t * sin(628.3076d0 * t + 4.2490d0);

ttjd = tdbjd - secdif / 86400.0d0;

The fundamental time argument for the lunar ephemeris function used in this MATLAB script is
“ephemeris” time. As implemented here, we assume this time argument to be Barycentric Dynamical
Time (TDB). To report the time of these celestial events in Universal Coordinated Time (UTC) or civil
time, we need an algorithm to make this time conversion.

The following is the MATLAB source code for a function which iteratively performs this calculation
using Brent’s root-finding method.

function jdutc = tdb2utc (jdtdb)

oe

convert TDB julian date to UTC julian date

o©

input

oe

jdtdb = TDB julian date

o\°

output

o\°

jdutc = UTC julian date

% Orbital Mechanics with MATLAB

global jdsaved

page 8



Orbital Mechanics with MATLAB
jdsaved = jdtdb;

o)

s convergence tolerance
rtol = 1.0d-8;

[

% set lower and upper bounds

x1 jdsaved - 0.1;
x2 = jdsaved + 0.1;

% solve for UTC julian date using Brent's method

[xroot, froot] = brent ('jdfunc', x1, x2, rtol);

jdutc = xroot;

end

This function calls the following MATLAB objective function during the calculations.

function fx = jdfunc (jdin)
% objective function for tdb2utc

% input

% Jjdin = current value for UTC julian date
% output

% fx = delta julian date

Orbital Mechanics with MATLAB

o\°

00090090090000090909000000000009000000
0000000000000 0000000000000000T0T0

global jdsaved
tai utc = findleap(jdin);
fx = utc2tdb (jdin, tai utc) - jdsaved;

end

Notice that this function requires the findleap function which calculates the number of leap seconds
for the current UTC Julian date value. The jdfunc function is computing the difference between the
TDB Julian date input by the user and the value computed by the utc2tdb MATLAB function. The
algorithm has converged whenever this value is less than or equal to the user-defined tolerance rtol.

Leap seconds calculation

The difference between International Atomic Time (TAI) and Universal Coordinated Time (UTC) is the
number of current leap seconds. International Atomic Time (TAI, Temps Atomique International) is a
physical time scale with the unit of the SI (System International) second and derived from a statistical

page 9



Orbital Mechanics with MATLAB

timescale based on a large number of atomic clocks. Coordinated Universal Time (UTC) is the time
scale available from broadcast time signals. It is a compromise between the highly stable atomic time
and the irregular earth rotation. UTC is the international basis of civil and scientific time.

The calculation of leap seconds in this MATLAB script is performed by a function that reads a simple
ASCII data file and evaluates the current value of leap seconds. The leap second function must be
initialized by including the following statements in the main script.

% read leap seconds data file

readleap;

The readleap MATLAB function reads the contents of the following simple comma-separated-
variable (csv) two column data file. The name of this file is tai-utc.dat.

2441317.5, 10.0
2441499.5, 11.0
2441683.5, 12.0
2442048.5, 13.0
2442413.5, 14.0
2442778.5, 15.0
2443144.5, 16.0
2443509.5, 17.0
2443874.5, 18.0
2444239.5, 19.0
2444786.5, 20.0
2445151.5, 21.0
2445516.5, 22.0
2446247.5, 23.0
2447161.5, 24.0
2447892.5, 25.0
2448257.5, 26.0
2448804.5, 27.0
2449169.5, 28.0
2449534.5, 29.0
2450083.5, 30.0
2450630.5, 31.0
2451179.5, 32.0
2453736.5, 33.0
2454832.5, 34.0

The first column of this data file is the Julian date, on the UTC time scale, at which the leap second
became valid. The second column is the leap second value, in seconds.

Note that this data is passed between the leap second MATLAB functions by way of a global statement.
global jdateleap leapsec

The MATLAB function that actually reads and evaluates the current value of leap seconds has the
following syntax and single argument.

function leapsecond = findleap (jdate)

% find number of leap seconds for utc julian date

page 10



Orbital Mechanics with MATLAB

o\

input

o

jdate = utc julian date

o

input via global

% Jjdateleap = array of utc julian dates
% leapsec = array of leap seconds

% output

% leapsecond = number of leap seconds

The leap seconds data file should be updated whenever the International Earth Rotation and Reference
Systems Service (IERS) announces a new leap second.

page 11



program levents

Orbital Mechanics with MATLAB

Appendix A

Additional Script Examples

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12,
2 1,1,2014

please input the search duration

? 30

please
<1>
<2>
<3>
<4>
<5>
<6>
<7>

nodal crossings

? 3

please input the geocentric right ascension

1 <= day <= 31,

apogee and perigee

year =

(days)

select the lunar event to predict

user—-defined geocentric right ascension
user-defined geocentric declination
user-defined true anomaly

minimum and maximum orbital eccentricity

(0 <= right ascension <= 360)

? 120

all digits!)

minimum and maximum geocentric declination

(degrees)

time and conditions at user-defined right ascension

calendar date

TDB time

TDB Julian date

UTC time

UTC Julian date

16-Jan-2014

11:15:07.295

2456673.96883443

11:14:01.110

2456673.96806841

geocentric orbital elements and state vector
(Earth mean equator and equinox J2000)

sma (km)
+3.92030629436879e+05

raan (deg)
+3.51692297464799%e+02

rx (km)
-1.95846297076435e+05

vx (kps)
-8.48917032439884e-01

+3.

+1.

+3.

eccentricity
69860119614338e-02

true anomaly (deg)
84418516689778e+02

ry (km)
39215737025722e+05

vy (kps)

.31347035509562e-01

inclination (deq)
+1.94692410906878e+01

arglat (deg)
+1.26678764197271e+02

rz (km)
+1.08655677168906e+05

vz (kps)
-1.94249162125556e-01

page 12

+3.

+2.

+4.

+9.

This appendix includes output created by several of the other 1events script options.

argper (deqg)
02260247507493e+02

period (days)
82733481403732e+01

rmag (km)
06483879760918e+05

vmag (kps)
71829784476637e-01



Orbital Mechanics with MATLAB

geocentric right ascension 120.00000000 degrees
program levents
< orbital events of the moon >
please input the initial calendar date
(1 <= month <= 12, 1 <= day <= 31, year = all digits!)
2 1,1,2014
please input the search duration (days)
? 30
please select the lunar event to predict
<1> apogee and perigee

<2> minimum and maximum geocentric declination

<3>
<4> user-defined geocentric declination

<5> user-defined true anomaly

<6> minimum and maximum orbital eccentricity

<7> nodal crossings
? 6

time and conditions at minimum eccentricity

calendar date 16-Jan-2014

TDB time 04:52:54.743

TDB Julian date 2456673.70341138

UTC time 04:51:48.559

UTC Julian date 2456673.70264536

orbital eccentricity 0.03693123
geocentric orbital elements and state vector
(Earth mean equator and equinox J2000)

sma (km)
+3.92053087994261e+05 +3.

eccentricity
69312337246207e-02

raan (deg) true anomaly (degq)
+3.51677918019766e+02 +1.81410918479402e+02
rx (km) ry (km)
-1.76083175319990e+05 +3.48573938945866e+05
vx (kps) vy (kps)

-8.74212262361963e-01 -3.84589848574662e-01

time and conditions at maximum eccentricity

user—-defined geocentric right ascension

degrees

inclination (deg)
+1.94726115663969e+01

arglat (deg)
+1.23551275051857e+02

rz (km)
+1.12939911436396e+05

vz (kps)
-1.79290695107703e-01

page 13

argper (deg)
+3.02140356572455e+02

period (days)
+2.82757777504264e+01

rmag (km)
+4.06527365792596e+05

vmag (kps)
+9.71751812266335e-01



calendar date
TDB time

TDB Julian date
UTC time

UTC Julian date

orbital eccentricity

Orbital Mechanics with MATLAB

30-Jan-2014
20:39:04.380
2456688.36046737
20:37:58.196
2456688.35970134

0.08890970 degree

geocentric orbital elements and state vector
(Earth mean equator and equinox J2000)

sma (km)
+3.91932987684056e+05

raan (deg)
+3.51994152637177e+02

rx (km)
+2.29164286094128e+05

vx (kps)
+8.50430760916976e-01

+8.

+6.

+6.

eccentricity
89096980310241e-02

true anomaly (deg)
55117989479818e+00

ry (km)

.62160869103048e+05

vy (kps)
47881277899118e-01

S

inclination (deq)
+1.93622366218224e+01

arglat (deg)
+3.17507346791526e+02

rz (km)
-8.00133662056496e+04

vz (kps)
+2.67078849953152e-01

argper (deq)
+3.10956166896728e+02

period (days)
+2.82627858762572e+01

rmag (km)
+3.57276825558916e+05

vmag (kps)
+1.10195904708765e+00

program levents

< orbital events of the moon >

please input the initial calendar date

(1 <= month <= 12,
?21,1,2014

please input the search duration

? 30

please
<1>
<2>
<3>
<4>
<5>
<6>
<7>

nodal crossings

? 7

1 <= day <= 31,

apogee and perigee

year = all d

(days)

select the lunar event to predict

user—-defined geocentric right ascension
user-defined geocentric declination
user-defined true anomaly

minimum and maximum orbital eccentricity

time and conditions at ascending node

calendar date

TDB time

TDB Julian date

UTC time

06-Jan-2014
06:20:10.745
2456663.76401325

06:19:04.561

page

igits!)

minimum and maximum geocentric declination

14



UTC Julian date

Orbital Mechanics with MATLAB

2456663.76324723

geocentric orbital elements and state vector
(Earth mean equator and equinox J2000)

sma (km)
+3.85971581783473e+05
raan (deq)
+3.51369706512152e+02
rx (km)
+3.68448269004108e+05
vx (kps)

+2.15458420574909e-01

time and conditions at

eccentricity
+7.29960147093920e-02
true anomaly (deqg)
+6.55786037242167e+01
ry (km)
.59218397063176e+04

vy (kps)

+9.68255200707477e-01

descending node

calendar date

TDB time

TDB Julian date

UTC time

UTC Julian date

20-Jan-2014

22:25:09.075

2456678.43413281

22:24:02.890

2456678.43336679

geocentric orbital elements and state vector
(Earth mean equator and equinox J2000)

sma (km)
+3.86990262729164e+05

raan (deg)
+3.51811237252316e+02

rx (km)
-3.94480609837439e+05

vx (kps)
-9.26836051146707e-02

eccentricity
+5.03492563329996e-02
true anomaly (deg)
+2.31342064875707e+02
ry (km)

+5.67665516047724e+04

vy (kps)
.24576725110698e-01

inclination (deqg)
+1.94780509815064e+01

arglat (deq)
+3.59999999997201e+02

rz (km)
-6.06983962825325e-06

vz (kps)
+3.50017330824906e-01

inclination (deg)
+1.93974648943419e+01

arglat (deg)
+1.79999999997321e+02

rz (km)
+6.18902717874903e-06

vz (kps)
-3.26877925301143e-01

page 15

+2.

+2.

+3.

+1.

+3.

+2.

+3.

+9.

argper (deg)
94421396272985e+02

period (days)
76204172908247e+01

rmag (km)
72667920658947e+05

vmag (kps)
05188050489184e+00

argper (deg)
08657935121614e+02

period (days)
77298357719506e+01

rmag (km)
98544091561793e+05

vmag (kps)
85028704821669e-01



